
...c89
c89 is the name of the Dec ANSI C compiler. Other compilers exist for example: acc -
SUN's ANSI Compiler, cc - non-ANSI compiler, gcc - Gnu C compiler and whole host
of proprietary compilers (tcc - TURBO C)

...together.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Even though we deal with UNIX and C nearly all the forthcoming discussions are
applicable to MSDOS and other operating systems

...CEILIDH
A ceilidh (pronounced Kay-Lee) is an informal gathering for conversation, music,
dancing, songs and stories. Concise OED.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming in C
UNIX System Calls and Subroutines

using C,
 A. D. Marshall 1994-9

Substantially Updated March 1999

Next: Copyright

Search for Keywords in C Notes
Keyword Searcher

Download Postscript Version of
Notes
Click Here to Download Course Notes. Local Students Only.

Algorithm Animations
Direct link to Java Algorithm Animations (C related)

C COURSEWARE
Lecture notes + integrated exercises, solutions and marking

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Contents
The Common Desktop Environment

The front panel
The file manager
The application manager
The session manager
Other CDE desktop tools
Application development tools
Application integration
Windows and the Window Manager
The Root Menu
Exercises

C/C++ Program Compilation
Creating, Compiling and Running Your Program

Creating the program
Compilation
Running the program

The C Compilation Model
The Preprocessor
C Compiler
Assembler
Link Editor
Some Useful Compiler Options
Using Libraries
UNIX Library Functions
Finding Information about Library Functions

Lint -- A C program verifier
Exercises

C Basics
History of C
Characteristics of C
C Program Structure
Variables

Defining Global Variables
Printing Out and Inputting Variables

Constants
Arithmetic Operations
Comparison Operators
Logical Operators
Order of Precedence
Exercises

Conditionals
The if statement
The ? operator
The switch statement
Exercises

Looping and Iteration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Looping and Iteration
The for statement
The while statement
The do-while statement
break and continue
Exercises

Arrays and Strings
Single and Multi-dimensional Arrays
Strings
Exercises

Functions
void functions
Functions and Arrays
Function Prototyping
Exercises

Further Data Types
Structures

Defining New Data Types
Unions
Coercion or Type-Casting
Enumerated Types
Static Variables
Exercises

Pointers
What is a Pointer?
Pointer and Functions
Pointers and Arrays
Arrays of Pointers
Multidimensional arrays and pointers
Static Initialisation of Pointer Arrays
Pointers and Structures
Common Pointer Pitfalls

Not assigning a pointer to memory address before
using it
Illegal indirection

Exercise
Dynamic Memory Allocation and Dynamic Structures

Malloc, Sizeof, and Free
Calloc and Realloc
Linked Lists
Full Program: queue.c
Exercises

Advanced Pointer Topics
Pointers to Pointers
Command line input
Pointers to a Function
Exercises

Low Level Operators and Bit Fields
Bitwise Operators
Bit Fields

Bit Fields: Practical Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A note of caution: Portability
Exercises

The C Preprocessor
#define
#undef
#include
#if -- Conditional inclusion
Preprocessor Compiler Control
Other Preprocessor Commands
Exercises

C, UNIX and Standard Libraries
Advantages of using UNIX with C
Using UNIX System Calls and Library Functions

Integer Functions, Random Number, String Conversion, Searching
and Sorting: <stdlib.h>

Arithmetic Functions
Random Numbers
String Conversion
Searching and Sorting
Exercises

Mathematics: <math.h>
Math Functions
Math Constants

Input and Output (I/O):stdio.h
Reporting Errors

perror()
errno
exit()

Streams
Predefined Streams

Redirection
Basic I/O
Formatted I/O

Printf
scanf
Files

Reading and writing files
sprintf and sscanf

Stream Status Enquiries
Low Level I/O
Exercises

String Handling: <string.h>
Basic String Handling Functions

String Searching
Character conversions and testing: ctype.h
Memory Operations: <memory.h>
Exercises

File Access and Directory System Calls
Directory handling functions: <unistd.h>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory handling functions: <unistd.h>
Scanning and Sorting Directories: <sys/types.h>,
<sys/dir.h>

File Manipulation Routines: unistd.h, sys/types.h, sys/stat.h
File Access

errno
File Status
File Manipulation:stdio.h, unistd.h
Creating Temporary FIles:<stdio.h>

Exercises
Time Functions

Basic time functions
Example time applications

Example 1: Time (in seconds) to perform some
computation
Example 2: Set a random number seed

Exercises
Process Control: <stdlib.h>,<unistd.h>

Running UNIX Commands from C
execl()
fork()
wait()
exit()
Exerises

Interprocess Communication (IPC), Pipes
Piping in a C program: <stdio.h>
popen() -- Formatted Piping
pipe() -- Low level Piping
Exercises

IPC:Interrupts and Signals: <signal.h>
Sending Signals -- kill(), raise()
Signal Handling -- signal()
sig_talk.c -- complete example program
Other signal functions

IPC:Message Queues:<sys/msg.h>
Initialising the Message Queue
IPC Functions, Key Arguments, and Creation Flags:
<sys/ipc.h>
Controlling message queues
Sending and Receiving Messages
POSIX Messages: <mqueue.h>
Example: Sending messages between two processes

message_send.c -- creating and sending to a simple
message queue
message_rec.c -- receiving the above message

Some further example message queue programs
msgget.c: Simple Program to illustrate msget()
msgctl.cSample Program to Illustrate msgctl()
msgop.c: Sample Program to Illustrate msgsnd() and
msgrcv()

Exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IPC:Semaphores
Initializing a Semaphore Set
Controlling Semaphores
Semaphore Operations
POSIX Semaphores: <semaphore.h>
semaphore.c: Illustration of simple semaphore passing
Some further example semaphore programs

semget.c: Illustrate the semget() function
semctl.c: Illustrate the semctl() function
semop() Sample Program to Illustrate semop()

Exercises
IPC:Shared Memory

Accessing a Shared Memory Segment
Controlling a Shared Memory Segment

Attaching and Detaching a Shared Memory Segment
Example two processes comunicating via shared memory:
shm_server.c, shm_client.c

shm_server.c
shm_client.c

POSIX Shared Memory
Mapped memory

Address Spaces and Mapping
Coherence
Creating and Using Mappings
Other Memory Control Functions

Some further example shared memory programs
shmget.c:Sample Program to Illustrate shmget()
shmctl.c: Sample Program to Illustrate shmctl()
shmop.c: Sample Program to Illustrate shmat() and
shmdt()

Exercises
IPC:Sockets

Socket Creation and Naming
Connecting Stream Sockets
Stream Data Transfer and Closing
Datagram sockets
Socket Options
Example Socket Programs:socket_server.c,socket_client

socket_server.c
socket_client.c

Exercises
Threads: Basic Theory and Libraries

Processes and Threads
Benefits of Threads vs Processes
Multithreading vs. Single threading
Some Example applications of threads

Thread Levels
User-Level Threads (ULT)
Kernel-Level Threads (KLT)
Combined ULT/KLT Approaches

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Threads libraries
The POSIX Threads Library:libpthread, <pthread.h>

Creating a (Default) Thread
Wait for Thread Termination
A Simple Threads Example
Detaching a Thread
Create a Key for Thread-Specific Data
Delete the Thread-Specific Data Key
Set the Thread-Specific Data Key
Get the Thread-Specific Data Key
Global and Private Thread-Specific Data Example
Getting the Thread Identifiers
Comparing Thread IDs
Initializing Threads
Yield Thread Execution
Set the Thread Priority
Get the Thread Priority
Send a Signal to a Thread
Access the Signal Mask of the Calling Thread
Terminate a Thread

Solaris Threads: <thread.h>
Unique Solaris Threads Functions

Suspend Thread Execution
Continue a Suspended Thread
Set Thread Concurrency Level
Readers/Writer Locks
Readers/Writer Lock Example

Similar Solaris Threads Functions
Create a Thread
Get the Thread Identifier
Yield Thread Execution
Signals and Solaris Threads
Terminating a Thread
Creating a Thread-Specific Data Key
Example Use of Thread Specific Data:Rethinking
Global Variables

Compiling a Multithreaded Application
Preparing for Compilation
Debugging a Multithreaded Program

Further Threads Programming:Thread Attributes (POSIX)
Attributes
Initializing Thread Attributes
Destroying Thread Attributes
Thread's Detach State
Thread's Set Scope
Thread Scheduling Policy

Thread Inherited Scheduling Policy
Set Scheduling Parameters

Thread Stack Size
Building Your Own Thread Stack

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Further Threads Programming:Synchronization
Mutual Exclusion Locks

Initializing a Mutex Attribute Object
Destroying a Mutex Attribute Object
The Scope of a Mutex
Initializing a Mutex
Locking a Mutex

Lock with a Nonblocking Mutex
Destroying a Mutex
Mutex Lock Code Examples

Mutex Lock Example
Using Locking Hierarchies: Avoiding Deadlock

Nested Locking with a Singly Linked List
Solaris Mutex Locks

Condition Variable Attributes
Initializing a Condition Variable Attribute
Destoying a Condition Variable Attribute
The Scope of a Condition Variable
Initializing a Condition Variable
Block on a Condition Variable
Destroying a Condition Variable State
Solaris Condition Variables

Threads and Semaphores
POSIX Semaphores
Basic Solaris Semaphore Functions

Thread programming examples
Using thr_create() and thr_join()
Arrays
Deadlock
Signal Handler
Interprocess Synchronization
The Producer / Consumer Problem
A Socket Server
Using Many Threads
Real-time Thread Example
POSIX Cancellation
Software Race Condition
Tgrep: Threadeds version of UNIX grep
Multithreaded Quicksort

Remote Procedure Calls (RPC)
What Is RPC
How RPC Works
RPC Application Development

Defining the Protocol
Defining Client and Server Application Code
Compliling and running the application

Overview of Interface Routines
Simplified Level Routine Function
Top Level Routines

Intermediate Level Routines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Intermediate Level Routines
Expert Level Routines
Bottom Level Routines

The Programmer's Interface to RPC
Simplified Interface
Passing Arbitrary Data Types
Developing High Level RPC Applications

Defining the protocol
Sharing the data

The Server Side
The Client Side

Exercise
Protocol Compiling and Lower Level RPC Programming

What is rpcgen
An rpcgen Tutorial

Converting Local Procedures to Remote Procedures
Passing Complex Data Structures
Preprocessing Directives

cpp Directives
Compile-Time Flags
Client and Server Templates
Example rpcgen compile options/templates

Recommended Reading
Exercises

Writing Larger Programs
Header files
External variables and functions

Scope of externals
Advantages of Using Several Files
How to Divide a Program between Several Files
Organisation of Data in each File
The Make Utility
Make Programming
Creating a makefile
Make macros
Running Make

Program Listings
hello.c
printf.c
swap.c
args.c
arg.c
average.c
cio.c
factorial
power.c
ptr_arr.c
Modular Example

main.c
WriteMyString.c
header.h

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Makefile
static.c
malloc.c
queue.c
bitcount.c
lowio.c
print.c
cdir.c
list.c
list_c.c
fork_eg.c
fork.c
signal.c
sig_talk.c
Piping

plot.c
plotter.c
externals.h

random.c
time.c
timer.c

Online Marking of C Programs --- CEILIDH
Ceilidh - On Line C Tutoring System

Why Use CEILIDH ?
Introduction
Using Ceilidh as a Student

The course and unit level
The exercise level
Interpreted language exercises
Question/answer exercises

The command line interface (TEXT CEILIDH ONLY)
Advantages of the command line interface
General points

Conclusions
How Ceilidh works, Ceilidh Course Notes, User Guides etc.
References

About this document ...

Dave Marshall
29/3/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ceilidh Guides
General Overview of Ceilidh
Student's Guide to CEILIDH
Course developer's Guide to CEILIDH
Installer's Guide to CEILIDH
Question/answer exercises in Ceilidh
Teacher's Guide to CEILIDH
Tutor's Guide to CEILIDH
Ceilidh System Changes

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ceilidh Notes
Ceilidh Notes 1 --- Introduction
Ceilidh Notes 2 --- Basics
Ceilidh Notes 3 --- If and Switch
Ceilidh Notes 4 --- Loops
Ceilidh Notes 5 --- Array and structures
Ceilidh Notes 6 --- Pointers
Ceilidh Notes 7 --- Functions
Ceilidh Notes 8 --- File I/O
Ceilidh Notes 9 --- Process management
Ceilidh Notes 10 --- Questionaire

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Ceilidh Papers
General Overview of Ceilidh
AUTOMATIC PROGRAM ASSESSMENT SYSTEM
The command line interface ceilidh
Courseware to support the teaching of programming
The Design Document for Ceilidh
The "oracle" program
Policy on Plagiarism and Late Handing in of Work
Question/answer exercises in Ceilidh
Ceilidh Statistics Package
Ceilidh System Changes

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Books Up: Programming in C Previous: Programming in C

Copyright
All notes here are copyrighted. All copying etc. is not permitted.

 David Marshall 1994

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Header files Up: Programming in C Previous: Exercises

Writing Larger Programs

This Chapter deals with theoretical and practical aspects that need to be considered when
writing larger programs.

When writing large programs we should divide programs up into modules. These would be
separate source files. main() would be in one file, main.c say, the others will contain
functions.

We can create our own library of functions by writing a suite of subroutines in one (or more)
modules. In fact modules can be shared amongst many programs by simply including the
modules at compilation as we will see shortly..

There are many advantages to this approach:

the modules will naturally divide into common groups of functions.
we can compile each module separately and link in compiled modules (more on this
later).
UNIX utilities such as make help us maintain large systems (see later).

Header files
External variables and functions

Scope of externals
The Make Utility
Make Programming
Creating a makefile
Make macros
Running Make

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Advantages of using UNIX with C Up: Programming in C Previous: Running Make

UNIX and C
There is a very close link between C and most operating systems that run our C programs.
Almost the whole of the UNIX operating system is written in C. This Chapter will look at how
C and UNIX interface together.

We have to use UNIX to maintain our file space, edit, compile and run programs etc.
(Appendix).

However UNIX is much more useful than this:

Advantages of using UNIX with C
Using UNIX System Calls and Library Functions
File and Directory Manipulation

Directory handling functions
File Manipulation Routines
errno

Process Control and Management
Running UNIX Commands from C

execl()
fork()
wait()
exit()

Piping in a C program
popen() - Formatted Piping
pipe() - Low level Piping

Interrupts and Signals
Sending Signals - kill()
Receiving signals - signal()

Times Up!!
Exercises

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Why Use CEILIDH ? Up: Programming in C Previous: Exercises

Ceilidh - On Line C Tutoring System

Why Use CEILIDH ?
Introduction
Using Ceilidh as a Student

The course and unit level
The exercise level
Interpreted language exercises
Question/answer exercises

The command line interface (TEXT CEILIDH ONLY)
Advantages of the command line interface
General points

Conclusions
How Ceilidh works, Ceilidh Course Notes, User Guides etc.
References

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Compiler Options Up: Programming in C Previous: References

Common C Compiler Options

Here we list common C Compiler options. They can be tagged on to the compiler directive.
Some take an additional argument.

E.g.

 c89 -c -o prog prog.c

The -o option needs an argument, -c does not.

Compiler Options

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Buffer Manipulation Up: Programming in C Previous: Compiler Options

C Standard Library Functions

Listed below are nearly all the ANSI C standard library functions.

The header file where related definitions are stored are given. These may vary on some
systems so check local reference manuals.

A brief description is include with all parameter types. More info can be obtained from online
man calls or reference manuals.

Buffer Manipulation
Character Classification and Conversion
Data Conversion
Directory Manipulation
File Manipulation
Input and Output

Stream 1/0
Low level I/O

Mathematics
Memory Allocation
Process Control
Searching and Sorting
String Manipulation
Time

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: hello.c Up: Programming in C Previous: Time

Program Listings

Here we give complete program listings that illustrate points in the course.

hello.c
printf.c
swap.c
args.c
arg.c
average.c
cio.c
factorial
power.c
ptr_arr.c
Modular Example

main.c
WriteMyString.c
header.h
Makefile

static.c
malloc.c
queue.c
bitcount.c
lowio.c
print.c
cdir.c
list.c
list_c.c
fork_eg.c
fork.c
signal.c
sig_talk.c
Piping

plot.c
plotter.c
externals.h

random.c
time.c
timer.c

Dave.Marshall@cm.cf.ac.uk

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: About this document ... Up: Programming in C Previous: timer.c

Using Dec Workstations and Unix

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Up: Programming in C Previous: Using Dec Workstations and Unix

About this document ...
This document was generated using the LaTeX2HTML translator Version 0.5.3 (Wed Jan 26
1994) Copyright © 1993, Nikos Drakos, Computer Based Learning Unit, University of Leeds.

The command line arguments were:
latex2html CE.tex.

The translation was initiated by Dave.Marshall@cm.cf.ac.uk on Wed Sep 14 10:06:31 BST
1994

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: The Minimum C Program Up: Programming in C Previous: Exercises - Using X
WindowsEditing and

The C Program
In this Chapter we will look at the basic elements of C programming. We will firstly look at
the basic C program structure and then how to compile and run programs.

The Minimum C Program
A more useful minimal C program
Creating, Compiling and Running Your Program

Creating the program
Compilation
Running the program

The C Compilation Model
The Preprocessor
C Compiler
Assembler
Link Editor
Using Libraries

Characteristics of C
History of C
Exercises

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: About This Course Up: Programming in C Previous: Copyright

Books
Brian W Kernighan and Dennis M Ritchie, The C Programming Language 2nd Ed,
Prentice-Hall, 1988.

Kenneth E. Martin, C Through UNIX, WCB Group, 1992.

Keith Tizzard, C for Professional Programmers, Ellis Horwood, 1986.

Chris Carter, Structured Programming into ANSI C, Pittman, 1991.

C. Charlton, P. Leng and Janet Little, A Course on C, McGraw Hill, 1992.

G. Bronson and S. Menconi, A First Book on C: Fundamentals of C Programming (2nd
ed.), West Publishing, 1991.

Any book on ANSI C will probably do, some UNIX may help.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Course Material and On-line facilities Up: Programming in C Previous: Books

About This Course
This course aims to teach a sound basis of C PROGRAMMING.

We will start with basic ideas and hopefully extend these to include some advanced features of
C. We will particularly look at how C uses pointers, references low level memory and bytes
and how it interfaces with the operating system.

Course Material and On-line facilities
Exercises - Using X Windows, Editing and UNIX Basics

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

...NAME="84">
The Meta key is an abstraction of the X Window System which is
usually alt on most systems. However some systems may not posses
such a key. Apple Macintoshes use the Apple key instead, for example.
On Sun Type 4 keyboards the Meta key is the diamond shape key next
to the alt key (not the alt key). Local X implementation should be
consulted for further clarification. In this book we will simply refer to
the Meta key.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...together.
Even though we deal with UNIX and C nearly all the forthcoming
discussions are applicable to MSDOS and other operating systems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.

.

.

.

.

.

.

.

.

.

.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Contents
Contents
The Common Desktop Environment

The front panel
The file manager
The application manager
The session manager
Other CDE desktop tools
Application development tools
Application integration
Windows and the Window Manager
The Root Menu
Exercises

C/C++ Program Compilation
Creating, Compiling and Running Your Program

Creating the program
Compilation
Running the program

The C Compilation Model
The Preprocessor
C Compiler
Assembler
Link Editor
Some Useful Compiler Options
Using Libraries
UNIX Library Functions
Finding Information about Library Functions

Lint -- A C program verifier
Exercises

C Basics
History of C
Characteristics of C
C Program Structure
Variables

Defining Global Variables
Printing Out and Inputting Variables

Constants
Arithmetic Operations
Comparison Operators
Logical Operators
Order of Precedence
Exercises

Conditionals
The if statement
The ? operator
The switch statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Looping and Iteration

The for statement
The while statement
The do-while statement
break and continue
Exercises

Arrays and Strings
Single and Multi-dimensional Arrays
Strings
Exercises

Functions
void functions
Functions and Arrays
Function Prototyping
Exercises

Further Data Types
Structures

Defining New Data Types
Unions
Coercion or Type-Casting
Enumerated Types
Static Variables
Exercises

Pointers
What is a Pointer?
Pointer and Functions
Pointers and Arrays
Arrays of Pointers
Multidimensional arrays and pointers
Static Initialisation of Pointer Arrays
Pointers and Structures
Common Pointer Pitfalls

Not assigning a pointer to memory address before using it
Illegal indirection

Exercise
Dynamic Memory Allocation and Dynamic Structures

Malloc, Sizeof, and Free
Calloc and Realloc
Linked Lists
Full Program: queue.c
Exercises

Advanced Pointer Topics
Pointers to Pointers
Command line input
Pointers to a Function
Exercises

Low Level Operators and Bit Fields
Bitwise Operators
Bit Fields

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bit Fields
Bit Fields: Practical Example
A note of caution: Portability

Exercises
The C Preprocessor

#define
#undef
#include
#if -- Conditional inclusion
Preprocessor Compiler Control
Other Preprocessor Commands
Exercises

C, UNIX and Standard Libraries
Advantages of using UNIX with C
Using UNIX System Calls and Library Functions

Integer Functions, Random Number, String Conversion, Searching and
Sorting: <stdlib.h>

Arithmetic Functions
Random Numbers
String Conversion
Searching and Sorting
Exercises

Mathematics: <math.h>
Math Functions
Math Constants

Input and Output (I/O):stdio.h
Reporting Errors

perror()
errno
exit()

Streams
Predefined Streams

Redirection
Basic I/O
Formatted I/O

Printf
scanf
Files

Reading and writing files
sprintf and sscanf

Stream Status Enquiries
Low Level I/O
Exercises

String Handling: <string.h>
Basic String Handling Functions

String Searching
Character conversions and testing: ctype.h
Memory Operations: <memory.h>
Exercises

File Access and Directory System Calls
Directory handling functions: <unistd.h>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Directory handling functions: <unistd.h>
Scanning and Sorting Directories: <sys/types.h>,
<sys/dir.h>

File Manipulation Routines: unistd.h, sys/types.h, sys/stat.h
File Access

errno
File Status
File Manipulation:stdio.h, unistd.h
Creating Temporary FIles:<stdio.h>

Exercises
Time Functions

Basic time functions
Example time applications

Example 1: Time (in seconds) to perform some
computation
Example 2: Set a random number seed

Exercises
Process Control: <stdlib.h>,<unistd.h>

Running UNIX Commands from C
execl()
fork()
wait()
exit()
Exerises

Interprocess Communication (IPC), Pipes
Piping in a C program: <stdio.h>
popen() -- Formatted Piping
pipe() -- Low level Piping
Exercises

IPC:Interrupts and Signals: <signal.h>
Sending Signals -- kill(), raise()
Signal Handling -- signal()
sig_talk.c -- complete example program
Other signal functions

IPC:Message Queues:<sys/msg.h>
Initialising the Message Queue
IPC Functions, Key Arguments, and Creation Flags: <sys/ipc.h>
Controlling message queues
Sending and Receiving Messages
POSIX Messages: <mqueue.h>
Example: Sending messages between two processes

message_send.c -- creating and sending to a simple
message queue
message_rec.c -- receiving the above message

Some further example message queue programs
msgget.c: Simple Program to illustrate msget()
msgctl.cSample Program to Illustrate msgctl()
msgop.c: Sample Program to Illustrate msgsnd() and
msgrcv()

Exercises
IPC:Semaphores

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IPC:Semaphores
Initializing a Semaphore Set
Controlling Semaphores
Semaphore Operations
POSIX Semaphores: <semaphore.h>
semaphore.c: Illustration of simple semaphore passing
Some further example semaphore programs

semget.c: Illustrate the semget() function
semctl.c: Illustrate the semctl() function
semop() Sample Program to Illustrate semop()

Exercises
IPC:Shared Memory

Accessing a Shared Memory Segment
Controlling a Shared Memory Segment

Attaching and Detaching a Shared Memory Segment
Example two processes comunicating via shared memory:
shm_server.c, shm_client.c

shm_server.c
shm_client.c

POSIX Shared Memory
Mapped memory

Address Spaces and Mapping
Coherence
Creating and Using Mappings
Other Memory Control Functions

Some further example shared memory programs
shmget.c:Sample Program to Illustrate shmget()
shmctl.c: Sample Program to Illustrate shmctl()
shmop.c: Sample Program to Illustrate shmat() and
shmdt()

Exercises
IPC:Sockets

Socket Creation and Naming
Connecting Stream Sockets
Stream Data Transfer and Closing
Datagram sockets
Socket Options
Example Socket Programs:socket_server.c,socket_client

socket_server.c
socket_client.c

Exercises
Threads: Basic Theory and Libraries

Processes and Threads
Benefits of Threads vs Processes
Multithreading vs. Single threading
Some Example applications of threads

Thread Levels
User-Level Threads (ULT)
Kernel-Level Threads (KLT)
Combined ULT/KLT Approaches

Threads libraries
The POSIX Threads Library:libpthread, <pthread.h>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The POSIX Threads Library:libpthread, <pthread.h>
Creating a (Default) Thread
Wait for Thread Termination
A Simple Threads Example
Detaching a Thread
Create a Key for Thread-Specific Data
Delete the Thread-Specific Data Key
Set the Thread-Specific Data Key
Get the Thread-Specific Data Key
Global and Private Thread-Specific Data Example
Getting the Thread Identifiers
Comparing Thread IDs
Initializing Threads
Yield Thread Execution
Set the Thread Priority
Get the Thread Priority
Send a Signal to a Thread
Access the Signal Mask of the Calling Thread
Terminate a Thread

Solaris Threads: <thread.h>
Unique Solaris Threads Functions

Suspend Thread Execution
Continue a Suspended Thread
Set Thread Concurrency Level
Readers/Writer Locks
Readers/Writer Lock Example

Similar Solaris Threads Functions
Create a Thread
Get the Thread Identifier
Yield Thread Execution
Signals and Solaris Threads
Terminating a Thread
Creating a Thread-Specific Data Key
Example Use of Thread Specific Data:Rethinking
Global Variables

Compiling a Multithreaded Application
Preparing for Compilation
Debugging a Multithreaded Program

Further Threads Programming:Thread Attributes (POSIX)
Attributes
Initializing Thread Attributes
Destroying Thread Attributes
Thread's Detach State
Thread's Set Scope
Thread Scheduling Policy

Thread Inherited Scheduling Policy
Set Scheduling Parameters

Thread Stack Size
Building Your Own Thread Stack

Further Threads Programming:Synchronization
Mutual Exclusion Locks

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Mutual Exclusion Locks
Initializing a Mutex Attribute Object
Destroying a Mutex Attribute Object
The Scope of a Mutex
Initializing a Mutex
Locking a Mutex

Lock with a Nonblocking Mutex
Destroying a Mutex
Mutex Lock Code Examples

Mutex Lock Example
Using Locking Hierarchies: Avoiding Deadlock

Nested Locking with a Singly Linked List
Solaris Mutex Locks

Condition Variable Attributes
Initializing a Condition Variable Attribute
Destoying a Condition Variable Attribute
The Scope of a Condition Variable
Initializing a Condition Variable
Block on a Condition Variable
Destroying a Condition Variable State
Solaris Condition Variables

Threads and Semaphores
POSIX Semaphores
Basic Solaris Semaphore Functions

Thread programming examples
Using thr_create() and thr_join()
Arrays
Deadlock
Signal Handler
Interprocess Synchronization
The Producer / Consumer Problem
A Socket Server
Using Many Threads
Real-time Thread Example
POSIX Cancellation
Software Race Condition
Tgrep: Threadeds version of UNIX grep
Multithreaded Quicksort

Remote Procedure Calls (RPC)
What Is RPC
How RPC Works
RPC Application Development

Defining the Protocol
Defining Client and Server Application Code
Compliling and running the application

Overview of Interface Routines
Simplified Level Routine Function
Top Level Routines

Intermediate Level Routines
Expert Level Routines
Bottom Level Routines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Programmer's Interface to RPC
Simplified Interface
Passing Arbitrary Data Types
Developing High Level RPC Applications

Defining the protocol
Sharing the data

The Server Side
The Client Side

Exercise
Protocol Compiling and Lower Level RPC Programming

What is rpcgen
An rpcgen Tutorial

Converting Local Procedures to Remote Procedures
Passing Complex Data Structures
Preprocessing Directives

cpp Directives
Compile-Time Flags
Client and Server Templates
Example rpcgen compile options/templates

Recommended Reading
Exercises

Writing Larger Programs
Header files
External variables and functions

Scope of externals
Advantages of Using Several Files
How to Divide a Program between Several Files
Organisation of Data in each File
The Make Utility
Make Programming
Creating a makefile
Make macros
Running Make

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

What is a Pointer?
Pointer and Functions
Pointers and Arrays
Arrays of Pointers
Multidimensional arrays and pointers
Static Initialisation of Pointer Arrays
Pointers and Structures
Common Pointer Pitfalls

Not assigning a pointer to memory address before using it
Illegal indirection

Exercise

Pointers
 Pointer are a fundamental part of C. If you cannot use pointers properly then
you have basically lost all the power and flexibility that C allows. The secret
to C is in its use of pointers.

C uses pointers a lot. Why?:

It is the only way to express some computations.
It produces compact and efficient code.
It provides a very powerful tool.

C uses pointers explicitly with:

Arrays,
Structures,
Functions.

NOTE: Pointers are perhaps the most difficult part of C to understand. C's
implementation is slightly different DIFFERENT from other languages.

What is a Pointer?
A pointer is a variable which contains the address in memory of another
variable. We can have a pointer to any variable type.

The unary or monadic operator & gives the ``address of a variable''.

The indirection or dereference operator * gives the ``contents of an object
pointed to by a pointer''.

To declare a pointer to a variable do:

 int *pointer;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE: We must associate a pointer to a particular type: You can't assign the
address of a short int to a long int, for instance.

Consider the effect of the following code:

 int x = 1, y = 2;
 int *ip;

 ip = &x;

y = *ip;

x = ip;

 *ip = 3;

It is worth considering what is going on at the machine level in memory to
fully understand how pointer work. Consider Fig. 9.1. Assume for the sake of
this discussion that variable x resides at memory location 100, y at
200 and ip at 1000. Note A pointer is a variable and thus its
values need to be stored somewhere. It is the nature of the
pointers value that is new.

Fig. 9.1 Pointer, Variables and Memory Now the assignments x = 1
and y = 2 obviously load these values into the variables. ip is
declared to be a pointer to an integer and is assigned to the
address of x (&x). So ip gets loaded with the value 100.

Next y gets assigned to the contents of ip. In this example ip
currently points to memory location 100 -- the location of x. So
y gets assigned to the values of x -- which is 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

y gets assigned to the values of x -- which is 1.

We have already seen that C is not too fussy about assigning
values of different type. Thus it is perfectly legal (although
not all that common) to assign the current value of ip to x. The
value of ip at this instant is 100.

Finally we can assign a value to the contents of a pointer
(*ip).

IMPORTANT: When a pointer is declared it does not point
anywhere. You must set it to point somewhere before you use it.

So ...

 int *ip;

 *ip = 100;

will generate an error (program crash!!).

The correct use is:

 int *ip;
 int x;

 ip = &x;
 *ip = 100;

We can do integer arithmetic on a pointer:

 float *flp, *flq;

 *flp = *flp + 10;

 ++*flp;

 (*flp)++;

 flq = flp;

NOTE: A pointer to any variable type is an address in memory --
which is an integer address. A pointer is definitely NOT an
integer.

The reason we associate a pointer to a data type is so that it
knows how many bytes the data is stored in. When we increment a
pointer we increase the pointer by one ``block'' memory.

So for a character pointer ++ch_ptr adds 1 byte to the address.

For an integer or float ++ip or ++flp adds 4 bytes to the
address.

Consider a float variable (fl) and a pointer to a float (flp) as
shown in Fig. 9.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. 9.2 Pointer Arithmetic Assume that flp points to fl then if
we increment the pointer (++flp) it moves to the position shown
4 bytes on. If on the other hand we added 2 to the pointer then
it moves 2 float positions i.e 8 bytes as shown in the Figure.

Pointer and Functions
Let us now examine the close relationship between pointers and C's other
major parts. We will start with functions.

When C passes arguments to functions it passes them by value.

There are many cases when we may want to alter a passed argument in the
function and receive the new value back once to function has finished. Other
languages do this (e.g. var parameters in PASCAL). C uses pointers
explicitly to do this. Other languages mask the fact that pointers also underpin
the implementation of this.

The best way to study this is to look at an example where we must be able to
receive changed parameters.

Let us try and write a function to swap variables around?

The usual function call:

 swap(a, b) WON'T WORK.

Pointers provide the solution: Pass the address of the variables to the
functions and access address of function.

Thus our function call in our program would look like this:

 swap(&a, &b)

The Code to swap is fairly straightforward:

 void swap(int *px, int *py)

 { int temp;

 temp = *px;
 /* contents of pointer */

 *px = *py;
 *py = temp;
 }

We can return pointer from functions. A common example is when passing
back structures. e.g.:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef struct {float x,y,z;} COORD;

 main()

 { COORD p1, *coord_fn();
 /* declare fn to return ptr of
 COORD type */

 p1 = *coord_fn(...);
 /* assign contents of address returned */

 }

 COORD *coord_fn(...)

 { COORD p;

 p =;
 /* assign structure values */

 return &p;
 /* return address of p */
 }

Here we return a pointer whose contents are immediately
unwrapped into a variable. We must do this straight away as the
variable we pointed to was local to a function that has now
finished. This means that the address space is free and can be
overwritten. It will not have been overwritten straight after
the function ha squit though so this is perfectly safe.

Pointers and Arrays
Pointers and arrays are very closely linked in C.

Hint: think of array elements arranged in consecutive memory locations.

Consider the following:

 int a[10], x;
 int *pa;

 pa = &a[0]; /* pa pointer to address of a[0] */

 x = *pa;
 /* x = contents of pa (a[0] in this case) */

Fig. 9.3 Arrays and Pointers

To get somewhere in the array (Fig. 9.3) using a pointer we could do:

 pa + i a[i]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WARNING: There is no bound checking of arrays and pointers so
you can easily go beyond array memory and overwrite other
things.

C however is much more subtle in its link between arrays and
pointers.

For example we can just type

 pa = a;

instead of

 pa = &a[0]

and

 a[i] can be written as *(a + i).
i.e. &a[i] a + i.

We also express pointer addressing like this:

 pa[i] *(pa + i).

However pointers and arrays are different:

A pointer is a variable. We can do
pa = a and pa++.
An Array is not a variable. a = pa and a++ ARE ILLEGAL.

This stuff is very important. Make sure you understand it. We
will see a lot more of this.

We can now understand how arrays are passed to functions.

When an array is passed to a function what is actually passed is
its initial elements location in memory.

So:

 strlen(s) strlen(&s[0])

This is why we declare the function:

 int strlen(char s[]);

An equivalent declaration is : int strlen(char *s);
since char s[] char *s.

strlen() is a standard library function (Chapter 18) that
returns the length of a string. Let's look at how we may write a
function:

 int strlen(char *s)
 { char *p = s;

 while (*p != `);

 p++;
 return p-s;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now lets write a function to copy a string to another string.
strcpy() is a standard library function that does this.

 void strcpy(char *s, char *t)
 { while ((*s++ = *t++) != `);}

This uses pointers and assignment by value.

Very Neat!!

NOTE: Uses of Null statements with while.

Arrays of Pointers
We can have arrays of pointers since pointers are variables.

Example use:

Sort lines of text of different length.

NOTE: Text can't be moved or compared in a single operation.

Arrays of Pointers are a data representation that will cope efficiently and
conveniently with variable length text lines.

How can we do this?:

Store lines end-to-end in one big char array (Fig. 9.4). n will delimit

lines.
Store pointers in a different array where each pointer points to 1st char
of each new line.
Compare two lines using strcmp() standard library function.
If 2 lines are out of order -- swap pointer in pointer array (not text).

Fig. 9.4 Arrays of Pointers (String Sorting Example)

This eliminates:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

complicated storage management.
high overheads of moving lines.

Multidimensional arrays and
pointers
We should think of multidimensional arrays in a different way in C:

A 2D array is really a 1D array, each of whose elements is itself an array

Hence

 a[n][m] notation.

Array elements are stored row by row.

When we pass a 2D array to a function we must specify the number of
columns -- the number of rows is irrelevant.

The reason for this is pointers again. C needs to know how many columns in
order that it can jump from row to row in memory.

Considerint a[5][35] to be passed in a function:

We can do:

 f(int a[][35]) {.....}

or even:

 f(int (*a)[35]) {.....}

We need parenthesis (*a) since [] have a higher precedence than *

So:

 int (*a)[35]; declares a pointer to an array of 35 ints.

 int *a[35]; declares an array of 35 pointers to ints.

Now lets look at the (subtle) difference between pointers and arrays. Strings
are a common application of this.

Consider:
 char *name[10];

 char Aname[10][20];

We can legally do name[3][4] and Aname[3][4] in C.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

However

Aname is a true 200 element 2D char array.
access elements via
 20*row + col + base_address
in memory.
name has 10 pointer elements.

NOTE: If each pointer in name is set to point to a 20 element array then and
only then will 200 chars be set aside (+ 10 elements).

The advantage of the latter is that each pointer can point to arrays be of
different length.

Consider:

 char *name[] = { ``no month'', ``jan'',
 ``feb'', ... };
 char Aname[][15] = { ``no month'', ``jan'',
 ``feb'', ... };

Fig. 2D Arrays and Arrays of Pointers

Static Initialisation of Pointer
Arrays
Initialisation of arrays of pointers is an ideal application for an internal static
array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

some_fn()
 { static char *months = { ``no month'',
 ``jan'', ``feb'',
 ...};

 }

static reserves a private permanent bit of memory.

Pointers and Structures
These are fairly straight forward and are easily defined. Consider the
following:

 struct COORD {float x,y,z;} pt;
 struct COORD *pt_ptr;

pt_ptr = &pt; /* assigns pointer to pt */

the operator lets us access a member of the structure pointed to by a

pointer.i.e.:

 pt_ptr x = 1.0;

 pt_ptr y = pt_ptr y - 3.0;

Example: Linked Lists

 typedef struct { int value;
 ELEMENT *next;
 } ELEMENT;

ELEMENT n1, n2;

n1.next = &n2;

Fig. Linking Two Nodes NOTE: We can only declare next as a
pointer to ELEMENT. We cannot have a element of the variable
type as this would set up a recursive definition which is NOT
ALLOWED. We are allowed to set a pointer reference since 4 bytes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALLOWED. We are allowed to set a pointer reference since 4 bytes
are set aside for any pointer.

The above code links a node n1 to n2 (Fig. 9.6) we will look at
this matter further in the next Chapter.

Common Pointer Pitfalls
Here we will highlight two common mistakes made with pointers.

Not assigning a pointer to memory address
before using it

 int *x;

 *x = 100;

we need a physical location say: int y;

 x = &y;
 *x = 100;

This may be hard to spot. NO COMPILER ERROR. Also x could some
random address at initialisation.

Illegal indirection
Suppose we have a function malloc() which tries to allocate memory
dynamically (at run time) and returns a pointer to block of memory requested
if successful or a NULL pointer
otherwise.

 char *malloc() -- a standard library function (see later).

Let us have a pointer: char *p;

Consider:

 *p = (char *) malloc(100); /* request 100 bytes of memory */

 *p = `y';

There is mistake above. What is it?

No * in

 *p = (char *) malloc(100);

Malloc returns a pointer. Also p does not point to any address.

The correct code should be:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 p = (char *) malloc(100);

If code rectified one problem is if no memory is available and p is NULL.
Therefore we can't do:
 *p = `y';.

A good C program would check for this:

 p = (char *) malloc(100);
 if (p == NULL)
 { printf(``Error: Out of Memory n'');

 exit(1);
 }
 *p = `y';

Exercise
Exercise 12453

Write a C program to read through an array of any type using pointers. Write
a C program to scan through this array to find a particular value.

Exercise 12454

Write a program to find the number of times that a given word(i.e. a short
string) occurs in a sentence (i.e. a long string!).

Read data from standard input. The first line is a single word, which is
followed by general text on the second line. Read both up to a newline
character, and insert a terminating null before processing.

Typical output should be:

 The word is "the".
 The sentence is "the cat sat on the mat".
 The word occurs 2 times.

Exercise 12455

Write a program that takes three variable (a, b, b) in as separate parameters
and rotates the values stored so that value a goes to be, b, to c and c to a.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Malloc, Sizeof, and Free
Calloc and Realloc
Linked Lists
Full Program: queue.c
Exercises

Dynamic Memory Allocation and
Dynamic Structures
Dynamic allocation is a pretty unique feature to C (amongst high level
languages). It enables us to create data types and structures of any size and
length to suit our programs need within the program.

We will look at two common applications of this:

dynamic arrays
dynamic data structure e.g. linked lists

Malloc, Sizeof, and Free
The Function malloc is most commonly used to attempt to ``grab'' a
continuous portion of memory. It is defined by:

 void *malloc(size_t number_of_bytes)

That is to say it returns a pointer of type void * that is the start in memory of
the reserved portion of size number_of_bytes. If memory cannot be allocated
a NULL pointer is returned.

Since a void * is returned the C standard states that this pointer can be
converted to any type. The size_t argument type is defined in stdlib.h and
is an unsigned type.

So:

 char *cp;
 cp = malloc(100);

attempts to get 100 bytes and assigns the start address to cp.

Also it is usual to use the sizeof() function to specify the
number of bytes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int *ip;
 ip = (int *) malloc(100*sizeof(int));

Some C compilers may require to cast the type of conversion. The
(int *) means coercion to an integer pointer. Coercion to the
correct pointer type is very important to ensure pointer
arithmetic is performed correctly. I personally use it as a
means of ensuring that I am totally correct in my coding and use
cast all the time.

It is good practice to use sizeof() even if you know the actual
size you want -- it makes for device independent (portable)
code.

sizeof can be used to find the size of any data type, variable
or structure. Simply supply one of these as an argument to the
function.

SO:

 int i;
 struct COORD {float x,y,z};
 typedef struct COORD PT;

 sizeof(int), sizeof(i),
 sizeof(struct COORD) and
 sizeof(PT) are all ACCEPTABLE

In the above we can use the link between pointers and arrays to
treat the reserved memory like an array. i.e we can do things
like:

 ip[0] = 100;

or

 for(i=0;i<100;++i) scanf("%d",ip++);

When you have finished using a portion of memory you should
always free() it. This allows the memory freed to be aavailable
again, possibly for further malloc() calls

The function free() takes a pointer as an argument and frees the
memory to which the pointer refers.

Calloc and Realloc
There are two additional memory allocation functions, Calloc() and
Realloc(). Their prototypes are given below:

void *calloc(size_t num_elements, size_t element_size};

void *realloc(void *ptr, size_t new_size);

Malloc does not initialise memory (to zero) in any way. If you wish to
initialise memory then use calloc. Calloc there is slightly more

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initialise memory then use calloc. Calloc there is slightly more
computationally expensive but, occasionally, more convenient than malloc.
Also note the different syntax between calloc and malloc in that calloc
takes the number of desired elements, num_elements, and element_size,
element_size, as two individual arguments.

Thus to assign 100 integer elements that are all initially zero you would do:

 int *ip;
 ip = (int *) calloc(100, sizeof(int));

Realloc is a function which attempts to change the size of a
previous allocated block of memory. The new size can be larger
or smaller. If the block is made larger then the old contents
remain unchanged and memory is added to the end of the block. If
the size is made smaller then the remaining contents are
unchanged.

If the original block size cannot be resized then realloc will
attempt to assign a new block of memory and will copy the old
block contents. Note a new pointer (of different value) will
consequently be returned. You must use this new value. If new
memory cannot be reallocated then realloc returns NULL.

Thus to change the size of memory allocated to the *ip pointer
above to an array block of 50 integers instead of 100, simply
do:

 ip = (int *) calloc(ip, 50);

Linked Lists
 Let us now return to our linked list example:

 typedef struct { int value;
 ELEMENT *next;
 } ELEMENT;

We can now try to grow the list dynamically:

 link = (ELEMENT *) malloc(sizeof(ELEMENT));

This will allocate memory for a new link.

If we want to deassign memory from a pointer use the free()
function:

 free(link)

See Example programs (queue.c) below and try exercises for
further practice.

Full Program: queue.c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Full Program: queue.c
A queue is basically a special case of a linked list where one data element
joins the list at the left end and leaves in a ordered fashion at the other end.

The full listing for queue.c is as follows:

/* */
/* queue.c */
/* Demo of dynamic data structures in C */

#include <stdio.h>

#define FALSE 0
#define NULL 0

typedef struct {
 int dataitem;
 struct listelement *link;
} listelement;

void Menu (int *choice);
listelement * AddItem (listelement * listpointer, int data);
listelement * RemoveItem (listelement * listpointer);
void PrintQueue (listelement * listpointer);
void ClearQueue (listelement * listpointer);

main () {
 listelement listmember, *listpointer;
 int data,
 choice;

 listpointer = NULL;
 do {
 Menu (&choice);
 switch (choice) {
 case 1:
 printf ("Enter data item value to add ");
 scanf ("%d", &data);
 listpointer = AddItem (listpointer, data);
 break;
 case 2:
 if (listpointer == NULL)
 printf ("Queue empty!\n");
 else
 listpointer = RemoveItem (listpointer);
 break;
 case 3:
 PrintQueue (listpointer);
 break;

 case 4:
 break;

 default:
 printf ("Invalid menu choice - try again\n");
 break;
 }
 } while (choice != 4);
 ClearQueue (listpointer);
} /* main */

void Menu (int *choice) {

 char local;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 char local;

 printf ("\nEnter\t1 to add item,\n\t2 to remove item\n\
\t3 to print queue\n\t4 to quit\n");
 do {
 local = getchar ();
 if ((isdigit (local) == FALSE) && (local != '\n')) {
 printf ("\nyou must enter an integer.\n");
 printf ("Enter 1 to add, 2 to remove, 3 to print, 4 to quit\n");
 }
 } while (isdigit ((unsigned char) local) == FALSE);
 *choice = (int) local - '0';
}

listelement * AddItem (listelement * listpointer, int data) {

 listelement * lp = listpointer;

 if (listpointer != NULL) {
 while (listpointer -> link != NULL)
 listpointer = listpointer -> link;
 listpointer -> link = (struct listelement *) malloc (sizeof (listelement));
 listpointer = listpointer -> link;
 listpointer -> link = NULL;
 listpointer -> dataitem = data;
 return lp;
 }
 else {
 listpointer = (struct listelement *) malloc (sizeof (listelement));
 listpointer -> link = NULL;
 listpointer -> dataitem = data;
 return listpointer;
 }
}

listelement * RemoveItem (listelement * listpointer) {

 listelement * tempp;
 printf ("Element removed is %d\n", listpointer -> dataitem);
 tempp = listpointer -> link;
 free (listpointer);
 return tempp;
}

void PrintQueue (listelement * listpointer) {

 if (listpointer == NULL)
 printf ("queue is empty!\n");
 else
 while (listpointer != NULL) {
 printf ("%d\t", listpointer -> dataitem);
 listpointer = listpointer -> link;
 }
 printf ("\n");
}

void ClearQueue (listelement * listpointer) {

 while (listpointer != NULL) {
 listpointer = RemoveItem (listpointer);
 }
}

Exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercise 12456

Write a program that reads a number that says how many integer numbers are
to be stored in an array, creates an array to fit the exact size of the data and
then reads in that many numbers into the array.

Exercise 12457

Write a program to implement the linked list as described in the notes above.

Exercise 12458

Write a program to sort a sequence of numbers using a binary tree (Using
Pointers). A binary tree is a tree structure with only two (possible) branches
from each node (Fig. 10.1). Each branch then represents a false or true
decision. To sort numbers simply assign the left branch to take numbers less
than the node number and the right branch any other number (greater than or
equal to). To obtain a sorted list simply search the tree in a depth first fashion.

Fig. 10.1 Example of a binary tree sort Your program should: Create a
binary tree structure. Create routines for loading the tree appropriately. Read
in integer numbers terminated by a zero. Sort numbers into numeric
ascending order. Print out the resulting ordered values, printing ten numbers
per line as far as possible.

Typical output should be

 The sorted values are:
 2 4 6 6 7 9 10 11 11 11
 15 16 17 18 20 20 21 21 23 24
 27 28 29 30

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Pointers to Pointers
Command line input
Pointers to a Function
Exercises

Advanced Pointer Topics
We have introduced many applications and techniques that use pointers. We
have introduced some advanced pointer issues already. This chapter brings
together some topics we have briefly mentioned and others to complete our
study C pointers.

In this chapter we will:

Examine pointers to pointers in more detail.
See how pointers are used in command line input in C.
Study pointers to functions

Pointers to Pointers
We introduced the concept of a pointer to a pointer previously. You can have
a pointer to a pointer of any type.

Consider the following:

char ch; /* a character */
char *pch; /* a pointer to a character */
char **ppch; /* a pointer to a pointer to a character */

We can visualise this in Figure 11.1. Here we can see that **ppch refers to
memory address of *pch which refers to the memory address of the variable
ch. But what does this mean in practice?

Fig. 11.1 Pointers to pointers Recall that char * refers to a (NULL
terminated string. So one common and convenient notion is to declare a
pointer to a pointer to a string (Figure 11.2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. 11.2 Pointer to String Taking this one stage further we can have several
strings being pointed to by the pointer (Figure 11.3)

Fig. 11.3 Pointer to Several Strings We can refer to individual strings by
ppch[0], ppch[1], Thus this is identical to declaring char *ppch[].

One common occurrence of this type is in C command line argument input
which we now consider.

Command line input
C lets read arguments from the command line which can then be used in our
programs.

We can type arguments after the program name when we run the program.

We have seen this with the compiler for example

 c89 -o prog prog.c

c89 is the program, -o prog prog.c the arguments.

In order to be able to use such arguments in our code we must define them as
follows:

 main(int argc, char **argv)

So our main function now has its own arguments. These are the only
arguments main accepts.

argc is the number of arguments typed -- including the program name.
argv is an array of strings holding each command line argument --
including the program name in the first array element.

A simple program example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include<stdio.h>

main (int argc, char **argv)
 { /* program to print arguments
 from command line */

 int i;

 printf(``argc = %d n n'',argc);

 for (i=0;i<argc;++i)
 printf(``argv[%d]: %s n'',

 i, argv[i]);
 }

Assume it is compiled to run it as args.

So if we type:

 args f1 ``f2'' f3 4 stop!

The output would be:

 argc = 6

 argv[0] = args
 argv[1] = f1
 argv[2] = f2
 argv[3] = f3
 argv[4] = 4
 argv[5] = stop!

NOTE: argv[0] is program name.
 argc counts program name
 Embedded `` '' are ignored.
 Blank spaces delimit end of arguments.
 Put blanks in `` '' if needed.

Pointers to a Function

Pointer to a function are perhaps on of the more confusing uses of pointers in
C. Pointers to functions are not as common as other pointer uses. However,
one common use is in a passing pointers to a function as a parameter in a
function call. (Yes this is getting confusing, hold on to your hats for a
moment).

This is especially useful when alternative functions maybe used to perform
similar tasks on data. You can pass the data and the function to be used to
some control function for instance. As we will see shortly the C standard
library provided some basic sorting (qsort) and searching (bsearch)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

library provided some basic sorting (qsort) and searching (bsearch)
functions for free. You can easily embed your own functions.

To declare a pointer to a function do:

int (*pf) ();

This simply declares a pointer *pf to function that returns and int. No actual
function is pointed to yet.

If we have a function int f() then we may simply (!!) write:

pf = &f;

For compiler prototyping to fully work it is better to have full function
prototypes for the function and the pointer to a function:

int f(int);
int (*pf) (int) = &f;

Now f() returns an int and takes one int as a parameter.

You can do things like:

ans = f(5);
ans = pf(5);

which are equivalent.

The qsort standard library function is very useful function that is designed to
sort an array by a key value of any type into ascending order, as long as the
elements of the array are of fixed type.

qsort is prototyped in (stdlib.h):

void qsort(void *base, size_t num_elements, size_t element_size,
 int (*compare)(void const *, void const *));

The argument base points to the array to be sorted, num_elements indicates
how long the array is, element_size is the size in bytes of each array
element and the final argument compare is a pointer to a function.

qsort calls the compare function which is user defined to compare the data
when sorting. Note that qsort maintains it's data type independence by
giving the comparison responsibility to the user. The compare function must
return certain (integer) values according to the comparison result:

less than zero
: if first value is less than the second value

zero
: if first value is equal to the second value

greater than zero
: if first value is greater than the second value

Some quite complicated data structures can be sorted in this manner. For
example, to sort the following structure by integer key:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef struct {
 int key;
 struct other_data;
} Record;

We can write a compare function, record_compare:

int record_compare(void const *a, void const *a)
 { return (((Record *)a)->key - ((Record *)b)->key);
 }

Assuming that we have an array of array_length Records suitably filled
with date we can call qsort like this:

qsort(array, arraylength, sizeof(Record), record_compare);

Further examples of standard library and system calls that use pointers to
functions may be found in Chapters 15.4 and 19.1.

Exercises
Exercise 12476

Write a program last that prints the last n lines of its text input. By default n
should be 5, but your program should allow an optional argument so that

 last -n

prints out the last n lines, where n is any integer. Your program should make
the best use of available storage. (Input of text could be by reading a file
specified from the command or reading a file from standard input)

Exercise 12477

Write a program that sorts a list of integers in ascending order. However if a -
r flag is present on the command line your program should sort the list in
descending order. (You may use any sorting routine you wish)

Exercise 12478

Write a program that reads the following structure and sorts the data by
keyword using qsort

typedef struct {
 char keyword[10];
 int other_data;
} Record;

Exercise 12479

An insertion sort is performed by adding values to an array one by one. The
first value is simply stored at the beginning of the array. Each subsequent
value is added by finding its ordered position in the array, moving data as
needed to accommodate the value and inserting the value in this position.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Write a function called insort that performs this task and behaves in the
same manner as qsort, i.e it can sort an array by a key value of any type and
it has similar prototyping.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Bitwise Operators
Bit Fields

Bit Fields: Practical Example
A note of caution: Portability

Exercises

Low Level Operators and Bit Fields
 We have seen how pointers give us control over low level memory
operations.

Many programs (e.g. systems type applications) must actually operate at a
low level where individual bytes must be operated on.

NOTE: The combination of pointers and bit-level operators makes C useful
for many low level applications and can almost replace assembly code. (Only
about 10 % of UNIX is assembly code the rest is C!!.)

Bitwise Operators
The bitwise operators of C a summarised in the following table:

Table: Bitwise

operators
& AND

OR

XOR

One's Compliment

<< Left shift

>> Right Shift

DO NOT confuse & with &&: & is bitwise AND, && logical AND.
Similarly for and .

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Similarly for and .

 is a unary operator -- it only operates on one argument to right of the
operator.

The shift operators perform appropriate shift by operator on the right to the
operator on the left. The right operator must be positive. The vacated bits are
filled with zero (i.e. There is NO wrap around).

For example: x << 2 shifts the bits in x by 2 places to the left.

So:

if x = 00000010 (binary) or 2 (decimal)

then:

 or 0 (decimal)

Also: if x = 00000010 (binary) or 2 (decimal)

 or 8 (decimal)

Therefore a shift left is equivalent to a multiplication by 2.

Similarly a shift right is equal to division by 2

NOTE: Shifting is much faster than actual multiplication (*) or division (/)
by 2. So if you want fast multiplications or division by 2 use shifts.

To illustrate many points of bitwise operators let us write a function,
Bitcount, that counts bits set to 1 in an 8 bit number (unsigned char)
passed as an argument to the function.

int bitcount(unsigned char x)

 { int count;

 for (count=0; x != 0; x>>=1);
 if (x & 01)
 count++;
 return count;
 }

This function illustrates many C program points:

for loop not used for simple counting operation
x x = x >> 1

for loop will repeatedly shift right x until x becomes 0
use expression evaluation of x & 01 to control if
x & 01 masks of 1st bit of x if this is 1 then count++

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Bit Fields
Bit Fields allow the packing of data in a structure. This is especially useful
when memory or data storage is at a premium. Typical examples:

Packing several objects into a machine word. e.g. 1 bit flags can be
compacted -- Symbol tables in compilers.
Reading external file formats -- non-standard file formats could be read
in. E.g. 9 bit integers.

C lets us do this in a structure definition by putting :bit length after the
variable. i.e.

struct packed_struct {
 unsigned int f1:1;
 unsigned int f2:1;
 unsigned int f3:1;
 unsigned int f4:1;
 unsigned int type:4;
 unsigned int funny_int:9;
} pack;

Here the packed_struct contains 6 members: Four 1 bit flags
f1..f3, a 4 bit type and a 9 bit funny_int.

C automatically packs the above bit fields as compactly as
possible, provided that the maximum length of the field is less
than or equal to the integer word length of the computer. If
this is not the case then some compilers may allow memory
overlap for the fields whilst other would store the next field
in the next word (see comments on bit fiels portability below).

Access members as usual via:

 pack.type = 7;

NOTE:
Only n lower bits will be assigned to an n bit number. So
type cannot take values larger than 15 (4 bits long).
Bit fields are always converted to integer type for
computation.
You are allowed to mix ``normal'' types with bit fields.
The unsigned definition is important - ensures that no
bits are used as a flag.

Bit Fields: Practical Example
Frequently device controllers (e.g. disk drives) and the operating system need
to communicate at a low level. Device controllers contain several registers
which may be packed together in one integer (Figure 12.1).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. 12.1 Example Disk Controller Register We could define this register
easily with bit fields:

struct DISK_REGISTER {
 unsigned ready:1;
 unsigned error_occured:1;
 unsigned disk_spinning:1;
 unsigned write_protect:1;
 unsigned head_loaded:1;
 unsigned error_code:8;
 unsigned track:9;
 unsigned sector:5;
 unsigned command:5;
};

To access values stored at a particular memory address,
DISK_REGISTER_MEMORY we can assign a pointer of the above structure to
access the memory via:

struct DISK_REGISTER *disk_reg = (struct DISK_REGISTER *) DISK_REGISTER_MEMORY;

The disk driver code to access this is now relatively straightforward:

/* Define sector and track to start read */

disk_reg->sector = new_sector;
disk_reg->track = new_track;
disk_reg->command = READ;

/* wait until operation done, ready will be true */

while (! disk_reg->ready) ;

/* check for errors */

if (disk_reg->error_occured)
 { /* interrogate disk_reg->error_code for error type */
 switch (disk_reg->error_code)

 }

A note of caution: Portability
Bit fields are a convenient way to express many difficult operations.
However, bit fields do suffer from a lack of portability between platforms:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integers may be signed or unsigned
Many compilers limit the maximum number of bits in the bit field to
the size of an integer which may be either 16-bit or 32-bit varieties.
Some bit field members are stored left to right others are stored right to
left in memory.
If bit fields too large, next bit field may be stored consecutively in
memory (overlapping the boundary between memory locations) or in
the next word of memory.

If portability of code is a premium you can use bit shifting and masking to
achieve the same results but not as easy to express or read. For example:

unsigned int *disk_reg = (unsigned int *) DISK_REGISTER_MEMORY;

/* see if disk error occured */

disk_error_occured = (disk_reg & 0x40000000) >> 31;

Exercises
Exercise 12507

 Write a function that prints out an 8-bit (unsigned char) number in binary
format.

Exercise 12514

Write a function setbits(x,p,n,y) that returns x with the n bits that begin at
position p set to the rightmost n bits of an unsigned char variable y (leaving
other bits unchanged).

E.g. if x = 10101010 (170 decimal) and y = 10100111 (167 decimal) and n =
3 and p = 6 say then you need to strip off 3 bits of y (111) and put them in x
at position 10xxx010 to get answer 10111010.

Your answer should print out the result in binary form (see Exercise 12.1
although input can be in decimal form.

Your output should be like this:

 x = 10101010 (binary)
 y = 10100111 (binary)
 setbits n = 3, p = 6 gives x = 10111010 (binary)

Exercise 12515

Write a function that inverts the bits of an unsigned char x and stores answer
in y.

Your answer should print out the result in binary form (see Exercise 12.1
although input can be in decimal form.

Your output should be like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 x = 10101010 (binary)
 x inverted = 01010101 (binary)

Exercise 12516

Write a function that rotates (NOT shifts) to the right by n bit positions the
bits of an unsigned char x.ie no bits are lost in this process.

Your answer should print out the result in binary form (see Exercise 12.1
although input can be in decimal form.

Your output should be like this:

 x = 10100111 (binary)
 x rotated by 3 = 11110100 (binary)

Note: All the functions developed should be as concise as possible

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

#define
#undef
#include
#if -- Conditional inclusion
Preprocessor Compiler Control
Other Preprocessor Commands
Exercises

The C Preprocessor
 Recall that preprocessing is the first step in the C program compilation stage
-- this feature is unique to C compilers.

The preprocessor more or less provides its own language which can be a very
powerful tool to the programmer. Recall that all preprocessor directives or
commands begin with a #.

Use of the preprocessor is advantageous since it makes:

programs easier to develop,
easier to read,
easier to modify
C code more transportable between different machine architectures.

The preprocessor also lets us customise the language. For example to replace
{ ... } block statements delimiters by PASCAL like begin ... end we can
do:

 #define begin {
 #define end }

During compilation all occurrences of begin and end get replaced by
corresponding { or } and so the subsequent C compilation stage
does not know any difference!!!.

Lets look at #define in more detail

#define
Use this to define constants or any macro substitution. Use as follows:

 #define <macro> <replacement name>

For Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Example

 #define FALSE 0
 #define TRUE !FALSE

We can also define small ``functions'' using #define. For example max.
of two variables:

 #define max(A,B) ((A) > (B) ? (A):(B))

? is the ternary operator in C.

Note: that this does not define a proper function max.

All it means that wherever we place max(C ,D) the text gets

replaced by the appropriate definition. [= any variable names
- not necessarily C and D]

So if in our C code we typed something like:

 x = max(q+r,s+t);

after preprocessing, if we were able to look at the code it
would appear like this:

 x = ((q+r) > (r+s) ? (q+r) : (s+t));

Other examples of #define could be:

#define Deg_to_Rad(X) (X*M_PI/180.0)
/* converts degrees to radians, M_PI is the value
of pi and is defined in math.h library */

#define LEFT_SHIFT_8 <<8

NOTE: The last macro LEFT_SHIFT_8 is only
valid so long as replacement context is valid i.e.
x = y LEFT_SHIFT_8.

#undef
This commands undefined a macro. A macro must be undefined before being
redefined to a different value.

#include
This directive includes a file into code.

It has two possible forms:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 #include <file>

or

 #include ``file''

<file> tells the compiler to look where system include files are
held. Usually UNIX systems store files in usr include

directory.

``file'' looks for a file in the current directory (where
program was run from)

Included files usually contain C prototypes and declarations
from header files and not (algorithmic) C code (SEE next Chapter
for reasons)

#if -- Conditional inclusion
#if evaluates a constant integer expression. You always need a #endif to
delimit end of statement.

We can have else etc. as well by using #else and #elif -- else if.

Another common use of #if is with:

#ifdef
-- if defined and

#ifndef
-- if not defined

These are useful for checking if macros are set -- perhaps from different
program modules and header files.

For example, to set integer size for a portable C program between TurboC (on
MSDOS) and Unix (or other) Operating systems. Recall that TurboC uses 16
bits/integer and UNIX 32 bits/integer.

Assume that if TurboC is running a macro TURBOC will be defined. So we just
need to check for this:

 #ifdef TURBOC
 #define INT_SIZE 16
 #else
 #define INT_SIZE 32
 #endif

As another example if running program on MSDOS machine we want to
include file msdos.h otherwise a default.h file. A macro SYSTEM is set (by
OS) to type of system so check for this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OS) to type of system so check for this:

 #if SYSTEM == MSDOS
 #include <msdos.h>
 #else
 #include ``default.h''
 #endif

Preprocessor Compiler Control
You can use the cc compiler to control what values are set or defined from
the command line. This gives some flexibility in setting customised values
and has some other useful functions. The -D compiler option is used. For
example:

 cc -DLINELENGTH=80 prog.c -o prog

has the same effect as:

 #define LINELENGTH 80

Note that any #define or #undef within the program (prog.c above)
override command line settings.

You can also set a symbol without a value, for example:

 cc -DDEBUG prog.c -o prog

Here the value is assumed to be 1.

The setting of such flags is useful, especially for debugging. You can put
commands like:

#ifdef DEBUG
 print("Debugging: Program Version 1\");
#else
 print("Program Version 1 (Production)\");
#endif

Also since preprocessor command can be written anywhere in a C program
you can filter out variables etc for printing etc. when debugging:

x = y *3;

#ifdef DEBUG
 print("Debugging: Variables (x,y) = \",x,y);
#endif

The -E command line is worth mentioning just for academic reasons. It is not
that practical a command. The -E command will force the compiler to stop
after the preprocessing stage and output the current state of your program.
Apart from being debugging aid for preprocessor commands and also as a
useful initial learning tool (try this option out with some of the examples
above) it is not that commonly used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other Preprocessor Commands
There are few other preprocessor directives available:

#error
text of error message -- generates an appropriate compiler error
message. e.g

 #ifdef OS_MSDOS
 #include <msdos.h>
 #elifdef OS_UNIX
 #include ``default.h''
 #else
 #error Wrong OS!!
 #endif

line
number "string" -- informs the preprocessor that the
number is the next number of line of input. "string" is
optional and names the next line of input. This is most
often used with programs that translate other languages to
C. For example, error messages produced by the C compiler
can reference the file name and line numbers of the
original source files instead of the intermediate C
(translated) source files.

Exercises
Exercise 12529

Define a preprocessor macro swap(t, x, y) that will swap two arguments x
and y of a given type t.

Exercise 12531

Define a preprocessor macro to select:

the least significant bit from an unsigned char
the nth (assuming least significant is 0) bit from an unsigned char.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Advantages of using UNIX with C
Using UNIX System Calls and Library Functions

C, UNIX and Standard Libraries
There is a very close link between C and most operating systems that run our
C programs. Almost the whole of the UNIX operating system is written in C.

This Chapter will look at how C and UNIX interface together.

We have to use UNIX to maintain our file space, edit, compile and run
programs etc..

However UNIX is much more useful than this:

Advantages of using UNIX with C
Portability -- UNIX, or a variety of UNIX, is available on many
machines. Programs written in standard UNIX and C should run on
any of them with little difficulty.
Multiuser / Multitasking -- many programs can share a machines
processing power.
File handling -- hierarchical file system with many file handling
routines.
Shell Programming -- UNIX provides a powerful command
interpreter that
understands over 200 commands and can also run UNIX and user-
defined programs.

Pipe -- where the output of one program can be made the input of
another. This can done from command line or within a C program.
UNIX utilities -- there over 200 utilities that let you accomplish many
routines without writing new programs. e.g. make, grep, diff, awk,
more
System calls -- UNIX has about 60 system calls that are at the heart of
the operating system or the kernel of UNIX. The calls are actually
written in C. All of them can be accessed from C programs. Basic I/0,
system clock access are examples. The function open() is an example
of a system call.
Library functions -- additions to the operating system.

Using UNIX System Calls and
Library Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use system calls and library functions in a C program we simply call the
appropriate C function.

Examples of standard library functions we have met include the higher level
I/O functions -- fprintf(), malloc() ...

Aritmetic operators, random number generators -- random(), srandom(),
lrand48(), drand48() etc. and basic C types to string conversion are
memebers of the stdlib.h standard library.

All math functions such as sin(), cos(), sqrt() are standard math library
(math.h) functions and others follow in a similar fashion.

For most system calls and library functions we have to include an appropriate
header file. e.g. stdio.h, math.h

To use a function, ensure that you have made the required #includes in your
C file. Then the function can be called as though you had defined it yourself.

It is important to ensure that your arguments have the expected types,
otherwise the function will probably produce strange results. lint is quite
good at checking such things.

Some libraries require extra options before the compiler can support their use.
For example, to compile a program including functions from the math.h
library the command might be

 cc mathprog.c -o mathprog -lm

The final -lm is an instruction to link the maths library with the program. The
manual page for each function will usually inform you if any special compiler
flags are required.

Information on nearly all system calls and library functions is available in
manual pages. These are available on line: Simply type man function name.

e.g. man drand48

would give information about this random number generator.

Over the coming chapters we will be investigating in detail many aspects of
the C Standard Library and also other UNIX libraries.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Arithmetic Functions
Random Numbers
String Conversion
Searching and Sorting
Exercises

Integer Functions, Random
Number, String Conversion,
Searching and Sorting: <stdlib.h>
To use all functions in this library you must:

 #include <stdlib.h>

There are three basic categories of functions:

Arithmetic
Random Numbers
String Conversion

The use of all the functions is relatively straightforward. We only consider
them briefly in turn in this Chapter.

Arithmetic Functions
There are 4 basic integer functions:

int abs(int number);
long int labs(long int number);

div_t div(int numerator,int denominator);
ldiv_t ldiv(long int numerator, long int denominator);

Essentially there are two functions with integer and long integer
compatibility.

abs
functions return the absolute value of its number arguments. For
example, abs(2) returns 2 as does abs(-2).

div
takes two arguments, numerator and denominator and produces a
quotient and a remainder of the integer division. The div_t structure is
defined (in stdlib.h) as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef struct {
 int quot; /* quotient */
 int rem; /* remainder */
} div_t;

(ldiv_t is similarly defined).

Thus:

#include <stdlib.h>
....

int num = 8, den = 3;
div_t ans;

ans = div(num,den);

printf("Answer:\n\t Quotient = %d\n\t Remainder = %d\n", \
ans.quot,ans.rem);

Produces the following output:

Answer:
 Quotient = 2
 Remainder = 2

Random Numbers
Random numbers are useful in programs that need to simulate random events,
such as games, simulations and experimentations. In practice no functions
produce truly random data -- they produce pseudo-random numbers. These
are computed form a given formula (different generators use different
formulae) and the number sequences they produce are repeatable. A seed is
usually set from which the sequence is generated. Therefore is you set the
same seed all the time the same set will be be computed.

One common technique to introduce further randomness into a random
number generator is to use the time of the day to set the seed, as this will
always be changing. (We will study the standard library time functions later
in Chapter 20).

There are many (pseudo) random number functions in the standard library.
They all operate on the same basic idea but generate different number
sequences (based on different generator functions) over different number
ranges.

The simplest set of functions is:

int rand(void);
void srand(unsigned int seed);

rand() returns successive pseudo-random numbers in the range from 0 to
(2^15)-1.
srand() is used to set the seed. A simple example of using the time of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

srand() is used to set the seed. A simple example of using the time of the
day to initiate a seed is via the call:

srand((unsigned int) time(NULL));

The following program card.c illustrates the use of these functions to
simulate a pack of cards being shuffled:

/*
** Use random numbers to shuffle the "cards" in the deck. The second
** argument indicates the number of cards. The first time this
** function is called, srand is called to initialize the random
** number generator.
*/
#include <stdlib.h>
#include <time.h>
#define TRUE 1
#define FALSE 0

void shuffle(int *deck, int n_cards)
{
 int i;
 static int first_time = TRUE;

 /*
 ** Seed the random number generator with the current time
 ** of day if we haven't done so yet.
 */
 if(first_time){
 first_time = FALSE;
 srand((unsigned int)time(NULL));
 }

 /*
 ** "Shuffle" by interchanging random pairs of cards.
 */
 for(i = n_cards - 1; i > 0; i -= 1){
 int where;
 int temp;

 where = rand() % i;
 temp = deck[where];
 deck[where] = deck[i];
 deck[i] = temp;
 }
}

There are several other random number generators available in the standard
library:

double drand48(void);
double erand48(unsigned short xsubi[3]);
long lrand48(void);
long nrand48(unsigned short xsubi[3]);
long mrand48(void);
long jrand48(unsigned short xsubi[3]);
void srand48(long seed);
unsigned short *seed48(unsigned short seed[3]);
void lcong48(unsigned short param[7]);

This family of functions generates uniformly distributed pseudo-random
numbers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Functions drand48() and erand48() return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48() and nrand48() return non-negative long integers
uniformly distributed over the interval [0, 2**31).

Functions mrand48() and jrand48() return signed long integers uniformly
distributed over the interval [-2**31, 2**31).

Functions srand48(), seed48(), and lcong48() set the seeds for drand48(),
lrand48(), or mrand48() and one of these should be called first.

Further examples of using these functions is given is Chapter 20.

String Conversion
There are a few functions that exist to convert strings to integer, long integer
and float values. They are:

double atof(char *string) -- Convert string to floating point value.
int atoi(char *string) -- Convert string to an integer value
int atol(char *string) -- Convert string to a long integer value.
double strtod(char *string, char *endptr) -- Convert string to a
floating point value.
long strtol(char *string, char *endptr, int radix) -- Convert
string to a long integer using a given radix.
unsigned long strtoul(char *string, char *endptr, int radix) --
Convert string to unsigned long.

Most of these are fairly straightforward to use. For example:

char *str1 = "100";
char *str2 = "55.444";
char *str3 = " 1234";
char *str4 = "123four";
char *str5 = "invalid123";

int i;
float f;

i = atoi(str1); /* i = 100 */
f = atof(str2); /* f = 55.44 */
i = atoi(str3); /* i = 1234 */
i = atoi(str4); /* i = 123 */
i = atoi(str5); /* i = 0 */

Note:

Leading blank characters are skipped.
Trailing illegal characters are ignored.
If conversion cannot be made zero is returned and errno (See
Chapter 17) is set with the value ERANGE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Searching and Sorting
 The stdlib.h provides 2 useful functions to perform general searching and
sorting of data on any type. In fact we have already introduced the qsort()
function in Chapter 11.3. For completeness we list the prototype again here
but refer the reader to the previous Chapter for an example.

The qsort standard library function is very useful function that is designed to
sort an array by a key value of any type into ascending order, as long as the
elements of the array are of fixed type.

qsort is prototyped (in stdlib.h):

void qsort(void *base, size_t num_elements, size_t element_size,
 int (*compare)(void const *, void const *));

Similarly, there is a binary search function, bsearch() which is prototyped
(in stdlib.h) as:

void *bsearch(const void *key, const void *base, size_t nel,
 size_t size, int (*compare)(const void *, const void *));

Using the same Record structure and record_compare function as the
qsort() example (in Chapter 11.3):

typedef struct {
 int key;
 struct other_data;
} Record;

int record_compare(void const *a, void const *a)
 { return (((Record *)a)->key - ((Record *)b)->key);
 }

Also, Assuming that we have an array of array_length Records suitably
filled with date we can call bsearch() like this:

Record key;
Record *ans;

key.key = 3; /* index value to be searched for */
ans = bsearch(&key, array, arraylength, sizeof(Record), record_compare);

The function bsearch() return a pointer to the field whose key filed is filled
with the matched value of NULL if no match found.

Note that the type of the key argument must be the same as the array
elements (Record above), even though only the key.key element is required
to be set.

Exercises
Exercise 12534

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Write a program that simulates throwing a six sided die

Exercise 12535

Write a program that simulates the UK National lottery by selecting six
different whole numbers in the range 1 - 49.

Exercise 12536

Write a program that read a number from command line input and generates a
random floating point number in the range 0 - the input number.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Math Functions
Math Constants

Mathematics: <math.h>
Mathematics is relatively straightforward library to use again. You must
#include <math.h> and must remember to link in the math library at
compilation:

 cc mathprog.c -o mathprog -lm

A common source of error is in forgetting to include the <math.h> file (and
yes experienced programmers make this error also). Unfortunately the C
compiler does not help much. Consider:

double x;
x = sqrt(63.9);

Having not seen the prototype for sqrt the compiler (by default) assumes that
the function returns an int and converts the value to a double with
meaningless results.

Math Functions
Below we list some common math functions. Apart from the note above they
should be easy to use and we have already used some in previous examples.
We give no further examples here:

double acos(double x) -- Compute arc cosine of x.
double asin(double x) -- Compute arc sine of x.
double atan(double x) -- Compute arc tangent of x.
double atan2(double y, double x) -- Compute arc tangent of y/x.
double ceil(double x) -- Get smallest integral value that exceeds x.
double cos(double x) -- Compute cosine of angle in radians.
double cosh(double x) -- Compute the hyperbolic cosine of x.
div_t div(int number, int denom) -- Divide one integer by another.
double exp(double x -- Compute exponential of x
double fabs (double x) -- Compute absolute value of x.
double floor(double x) -- Get largest integral value less than x.
double fmod(double x, double y) -- Divide x by y with integral quotient
and return remainder.
double frexp(double x, int *expptr) -- Breaks down x into mantissa
and exponent of no.
labs(long n) -- Find absolute value of long integer n.
double ldexp(double x, int exp) -- Reconstructs x out of mantissa and
exponent of two.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ldiv_t ldiv(long number, long denom) -- Divide one long integer by
another.
double log(double x) -- Compute log(x).
double log10 (double x) -- Compute log to the base 10 of x.
double modf(double x, double *intptr) -- Breaks x into fractional and
integer parts.
double pow (double x, double y) -- Compute x raised to the power y.
double sin(double x) -- Compute sine of angle in radians.
double sinh(double x) - Compute the hyperbolic sine of x.
double sqrt(double x) -- Compute the square root of x.
void srand(unsigned seed) -- Set a new seed for the random number
generator (rand).
double tan(double x) -- Compute tangent of angle in radians.
double tanh(double x) -- Compute the hyperbolic tangent of x.

Math Constants
The math.h library defines many (often neglected) constants. It is always
advisable to use these definitions:

HUGE -- The maximum value of a single-precision floating-point
number.
M_E -- The base of natural logarithms (e).

M_LOG2E -- The base-2 logarithm of e.

M_LOG10E - The base-10 logarithm of e.

M_LN2 -- The natural logarithm of 2.

M_LN10 -- The natural logarithm of 10.

M_PI -- .

M_PI_2 -- /2.

M_PI_4 -- /4.
M_1_PI -- 1/ .

M_2_PI -- 2/ .

M_2_SQRTPI -- 2/ .

M_SQRT2 -- The positive square root of 2.

M_SQRT1_2 -- The positive square root of 1/2.

MAXFLOAT -- The maximum value of a non-infinite single- precision
floating point number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HUGE_VAL -- positive infinity.

There are also a number a machine dependent values defined in #include
<value.h> -- see man value or list value.h for further details.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Reporting Errors
perror()
errno
exit()

Streams
Predefined Streams

Redirection
Basic I/O
Formatted I/O

Printf
scanf
Files

Reading and writing files
sprintf and sscanf

Stream Status Enquiries
Low Level I/O
Exercises

Input and Output (I/O):stdio.h
 This chapter will look at many forms of I/O. We have briefly mentioned
some forms before will look at these in much more detail here.

Your programs will need to include the standard I/O header file so do:

 #include <stdio.h>

Reporting Errors
Many times it is useful to report errors in a C program. The standard library
perror() is an easy to use and convenient function. It is used in conjunction
with errno and frequently on encountering an error you may wish to
terminate your program early. Whilst not strictly part of the stdio.h library
we introduce the concept of errno and the function exit() here. We will
meet these concepts in other parts of the Standard Library also.

perror()
The function perror() is prototyped by:

void perror(const char *message);

perror() produces a message (on standard error output -- see Section 17.2.1),
describing the last error encountered, returned to errno (see below) during a
call to a system or library function. The argument string message is printed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

call to a system or library function. The argument string message is printed
first, then a colon and a blank, then the message and a newline. If message is
a NULL pointer or points to a null string, the colon is not printed.

errno
errno is a special system variable that is set if a system call cannot perform
its set task. It is defined in #include <errno.h>.

To use errno in a C program it must be declared via:

 extern int errno;

It can be manually reset within a C program (although this is uncommon
practice) otherwise it simply retains its last value returned by a system call or
library function.

exit()
The function exit() is prototyped in #include <stdlib> by:

void exit(int status)

Exit simply terminates the execution of a program and returns the exit status
value to the operating system. The status value is used to indicate if the
program has terminated properly:

it exist with a EXIT_SUCCESS value on successful termination
it exist with a EXIT_FAILURE value on unsuccessful termination.

On encountering an error you may frequently call an exit(EXIT_FAILURE) to
terminate an errant program.

Streams
Streams are a portable way of reading and writing data. They provide a
flexible and efficient means of I/O.

A Stream is a file or a physical device (e.g. printer or monitor) which is
manipulated with a pointer to the stream.

There exists an internal C data structure, FILE, which represents all streams
and is defined in stdio.h. We simply need to refer to the FILE structure in C
programs when performing I/O with streams.

We just need to declare a variable or pointer of this type in our programs.

We do not need to know any more specifics about this definition.

We must open a stream before doing any I/O,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

then access it

and then close it.

Stream I/O is BUFFERED: That is to say a fixed ``chunk'' is read from or
written to a file via some temporary storage area (the buffer). This is
illustrated in Fig. 17.1. NOTE the file pointer actually points to this buffer.

Fig. Stream I/O Model This leads to efficient I/O but beware: data
written to a buffer does not appear in a file (or device) until the buffer is
flushed or written out. (n does this). Any abnormal exit of code can cause

problems.

Predefined Streams
 UNIX defines 3 predefined streams (in stdio.h):

 stdin, stdout, stderr

They all use text a the method of I/O.

stdin and stdout can be used with files, programs, I/O devices such as
keyboard, console, etc.. stderr always goes to the console or screen.

The console is the default for stdout and stderr. The keyboard is the default
for stdin.

Predefined stream are automatically open.

Redirection

This how we override the UNIX default predefined I/O defaults.

This is not part of C but operating system dependent. We will do redirection
from the command line.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

> -- redirect stdout to a file.

So if we have a program, out, that usually prints to the screen then

 out > file1

will send the output to a file, file1.

< -- redirect stdin from a file to a program.

So if we are expecting input from the keyboard for a program, in we can read
similar input from a file

 in < file2.

| -- pipe: puts stdout from one program to stdin of another

 prog1 | prog2

e.g. Sent output (usually to console) of a program direct to printer:

 out | lpr

Basic I/O
There are a couple of function that provide basic I/O facilities.

probably the most common are: getchar() and putchar(). They are defined
and used as follows:

int getchar(void) -- reads a char from stdin
int putchar(char ch) -- writes a char to stdout, returns character
written.

 int ch;

 ch = getchar();
 (void) putchar((char) ch);

Related Functions:

 int getc(FILE *stream),
int putc(char ch,FILE *stream)

Formatted I/O
We have seen examples of how C uses formatted I/O already. Let's look at
this in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Printf
 The function is defined as follows:

int printf(char *format, arg list ...) --
prints to stdout the list of arguments according specified format string.
Returns number of characters printed.

The format string has 2 types of object:

ordinary characters -- these are copied to output.
conversion specifications -- denoted by % and listed in Table 17.1.

Table: Printf/scanf format characters

Format Spec (%) Type Result

c char single character

i,d int decimal number

o int octal number

x,X int hexadecimal number

 lower/uppercase notation

u int unsigned int

s char * print string

 terminated by 0

f double/float format -m.ddd...

e,E " Scientific Format

 -1.23e002

g,G " e or f whichever

 is most compact

% - print % character

Between % and format char we can put:

- (minus sign)
-- left justify.

integer number
-- field width.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

m.d
-- m = field width, d = precision of number of digits after decimal point
or number of chars from a string.

So:

 printf("%-2.3f n",17.23478);

The output on the screen is:

 17.235

and:

 printf("VAT=17.5%% n");

...outputs:

 VAT=17.5%

scanf
This function is defined as follows:

 int scanf(char *format, args....) -- reads from stdin and puts input
in address of variables specified in args list. Returns number of chars read.

Format control string similar to printf

Note: The ADDRESS of variable or a pointer to one is required by scanf.

 scanf(``%d'',&i);

We can just give the name of an array or string to scanf since this corresponds
to the start address of the array/string.

 char string[80];
 scanf(``%s'',string);

Files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Files are the most common form of a stream.

The first thing we must do is open a file. The function fopen() does this:

 FILE *fopen(char *name, char *mode)

fopen returns a pointer to a FILE. The name string is the name of the file on
disc that we wish to access. The mode string controls our type of access. If a
file cannot be accessed for any reason a NULL pointer is returned.

Modes include: ``r'' -- read,
 ``w'' -- write and
 ``a'' -- append.

To open a file we must have a stream (file pointer) that points to a FILE
structure.

So to open a file, called myfile.dat for reading we would do:

 FILE *stream, *fopen();
 /* declare a stream and prototype fopen */

 stream = fopen(``myfile.dat'',``r'');

it is good practice to to check file is opened
correctly:

 if ((stream = fopen(``myfile.dat'',
 ``r'')) == NULL)
 { printf(``Can't open %s n'',

 ``myfile.dat'');
 exit(1);
 }

Reading and writing files
The functions fprintf and fscanf a commonly used to access files.

int fprintf(FILE *stream, char *format, args..)
 int fscanf(FILE *stream, char *format, args..)

These are similar to printf and scanf except that data is read from
the stream that must have been opened with fopen().

The stream pointer is automatically incremented with ALL file
read/write functions. We do not have to worry about doing this.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 char *string[80]
 FILE *stream, *fopen();

 if ((stream = fopen(...)) != NULL)
 fscanf(stream,``%s'', string);

Other functions for files:

int getc(FILE *stream), int fgetc(FILE *stream)

int putc(char ch, FILE *s), int fputc(char ch, FILE *s)

These are like getchar, putchar.

getc is defined as preprocessor MACRO in stdio.h. fgetc is a C
library function. Both achieve the same result!!

 fflush(FILE *stream) -- flushes a stream.

 fclose(FILE *stream) -- closes a stream.

We can access predefined streams with fprintf etc.

 fprintf(stderr,``Cannot Compute!! n'');

 fscanf(stdin,``%s'',string);

sprintf and sscanf
These are like fprintf and fscanf except they read/write to a string.

int sprintf(char *string, char *format, args..)

int sscanf(char *string, char *format, args..)

For Example:

 float full_tank = 47.0; /* litres */
 float miles = 300;
 char miles_per_litre[80];

 sprintf(miles_per_litre,``Miles per litre
 = %2.3f'', miles/full_tank);

Stream Status Enquiries
There are a few useful stream enquiry functions, prototyped as follows:

 int feof(FILE *stream);
 int ferror(FILE *stream);
 void clearerr(FILE *stream);
 int fileno(FILE *stream);

Their use is relatively simple:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

feof()
-- returns true if the stream is currently at the end of the file. So to read
a stream,fp, line by line you could do:

while (!feof(fp))
 fscanf(fp,"%s",line);

ferror()
-- reports on the error state of the stream and returns true if an error has
occurred.

clearerr()
-- resets the error indication for a given stream.

fileno()
-- returns the integer file descriptor associated with the named stream.

Low Level I/O
This form of I/O is UNBUFFERED -- each read/write request results in
accessing disk (or device) directly to fetch/put a specific number of bytes.

There are no formatting facilities -- we are dealing with bytes of information.

This means we are now using binary (and not text) files.

Instead of file pointers we use low level file handle or file descriptors
which give a unique integer number to identify each file.

To Open a file use:

 int open(char *filename, int flag, int perms) -- this returns a file
descriptor or -1 for a fail.

The flag controls file access and has the following predefined in fcntl.h:

 O_APPEND, O_CREAT, O_EXCL, O_RDONLY, O_RDWR, O_WRONLY + others
see online man pages or reference manuals.

perms -- best set to 0 for most of our applications.

The function:

 creat(char *filename, int perms)

can also be used to create a file.

int close(int handle) -- close a file

int read(int handle, char *buffer,
unsigned length)

int write(int handle, char *buffer, unsigned length)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are used to read/write a specific number of bytes from/to a file (handle) stored
or to be put in the memory location specified by buffer.

The sizeof() function is commonly used to specify the length.

read and write return the number of bytes read/written or -1 if they fail.

/* program to read a list of floats from a binary file */
/* first byte of file is an integer saying how many */
/* floats in file. Floats follow after it, File name got from */
/* command line */

#include<stdio.h>
#include<fcntl.h>

float bigbuff[1000];

main(int argc, char **argv)

{ int fd;
 int bytes_read;
 int file_length;

 if ((fd = open(argv[1],O_RDONLY)) = -1)
 { /* error file not open */....
 perror("Datafile");
 exit(1);
 }
 if ((bytes_read = read(fd,&file_length,
 sizeof(int))) == -1)
 { /* error reading file */...
 exit(1);
 }
 if (file_length > 999) {/* file too big */}
 if ((bytes_read = read(fd,bigbuff,
 file_length*sizeof(float))) == -1)
 { /* error reading open */...
 exit(1);
 }
}

Exercises
Exercise 12573

Write a program to copy one named file into another named file. The two file
names are given as the first two arguments to the program.

Copy the file a block (512 bytes) at a time.

Check: that the program has two arguments
 or print "Program need two arguments"
 that the first name file is readable
 or print "Cannot open file for reading"
 that the second file is writable
 or print "Cannot open file for writing"

Exercise 12577

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Write a program last that prints the last n lines of a text file, by n and the file
name should be specified form command line input. By default n should be 5,
but your program should allow an optional argument so that

 last -n file.txt

prints out the last n lines, where n is any integer. Your program should make
the best use of available storage.

Exercise 12578

Write a program to compare two files and print out the lines where they
differ. Hint: look up appropriate string and file handling library routines. This
should not be a very long program.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Basic String Handling Functions
String Searching

Character conversions and testing: ctype.h
Memory Operations: <memory.h>
Exercises

String Handling: <string.h>
 Recall from our discussion of arrays (Chapter 6) that strings are defined as
an array of characters or a pointer to a portion of memory containing ASCII
characters. A string in C is a sequence of zero or more characters followed
by a NULL ()character:

It is important to preserve the NULL terminating character as it is how C
defines and manages variable length strings. All the C standard library
functions require this for successful operation.

In general, apart from some length-restricted functions (strncat(),
strncmp,() and strncpy()), unless you create strings by hand you should
not encounter any such problems, . You should use the many useful string
handling functions and not really need to get your hands dirty dismantling
and assembling strings.

Basic String Handling Functions
All the string handling functions are prototyped in:

#include <string.h>

The common functions are described below:

char *stpcpy (const char *dest,const char *src) -- Copy one string
into another.
int strcmp(const char *string1,const char *string2) - Compare
string1 and string2 to determine alphabetic order.
char *strcpy(const char *string1,const char *string2) -- Copy
string2 to stringl.
char *strerror(int errnum) -- Get error message corresponding to
specified error number.
int strlen(const char *string) -- Determine the length of a string.
char *strncat(const char *string1, char *string2, size_t n) --
Append n characters from string2 to stringl.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int strncmp(const char *string1, char *string2, size_t n) --
Compare first n characters of two strings.
char *strncpy(const char *string1,const char *string2, size_t n)
-- Copy first n characters of string2 to stringl .
int strcasecmp(const char *s1, const char *s2) -- case insensitive
version of strcmp().
int strncasecmp(const char *s1, const char *s2, int n) -- case
insensitive version of strncmp().

The use of most of the functions is straightforward, for example:

char *str1 = "HELLO";
char *str2;
int length;

length = strlen("HELLO"); /* length = 5 */
(void) strcpy(str2,str1);

Note that both strcat() and strcopy() both return a copy of their first
argument which is the destination array. Note the order of the arguments is
destination array followed by source array which is sometimes easy to get
the wrong around when programming.

The strcmp() function lexically compares the two input strings and returns:

Less than zero
-- if string1 is lexically less than string2

Zero
-- if string1 and string2 are lexically equal

Greater than zero
-- if string1 is lexically greater than string2

This can also confuse beginners and experience programmers forget this too.

The strncat(), strncmp,() and strncpy() copy functions are string
restricted version of their more general counterparts. They perform a similar
task but only up to the first n characters. Note the the NULL terminated
requirement may get violated when using these functions, for example:

char *str1 = "HELLO";
char *str2;
int length = 2;

(void) strcpy(str2,str1, length); /* str2 = "HE" */

str2 is NOT NULL TERMINATED!! -- BEWARE

String Searching
The library also provides several string searching functions:

char *strchr(const char *string, int c) -- Find first occurrence of
character c in string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

char *strrchr(const char *string, int c) -- Find last occurrence of
character c in string.
char *strstr(const char *s1, const char *s2) -- locates the first
occurrence of the string s2 in string s1.
char *strpbrk(const char *s1, const char *s2) -- returns a pointer to
the first occurrence in string s1 of any character from string s2, or a null
pointer if no character from s2 exists in s1
size_t strspn(const char *s1, const char *s2) -- returns the number
of characters at the begining of s1 that match s2.
size_t strcspn(const char *s1, const char *s2) -- returns the number
of characters at the begining of s1 that do not match s2.
char *strtok(char *s1, const char *s2) -- break the string pointed to
by s1 into a sequence of tokens, each of which is delimited by one or more
characters from the string pointed to by s2.
char *strtok_r(char *s1, const char *s2, char **lasts) -- has the
same functionality as strtok() except that a pointer to a string placeholder lasts
must be supplied by the caller.

strchr() and strrchr() are the simplest to use, for example:

char *str1 = "Hello";
char *ans;

ans = strchr(str1,'l');

After this execution, ans points to the location str1 + 2

strpbrk() is a more general function that searches for the first occurrence of
any of a group of characters, for example:

char *str1 = "Hello";
char *ans;

ans = strpbrk(str1,'aeiou');

Here, ans points to the location str1 + 1, the location of the first e.

strstr() returns a pointer to the specified search string or a null pointer if the
string is not found. If s2 points to a string with zero length (that is, the string
""), the function returns s1. For example,

char *str1 = "Hello";
char *ans;

ans = strstr(str1,'lo');

will yield ans = str + 3.

strtok() is a little more complicated in operation. If the first argument is not
NULL then the function finds the position of any of the second argument
characters. However, the position is remembered and any subsequent calls to
strtok() will start from this position if on these subsequent calls the first
argument is NULL. For example, If we wish to break up the string str1 at each
space and print each token on a new line we could do:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

char *str1 = "Hello Big Boy";
char *t1;

for (t1 = strtok(str1," ");
 t1 != NULL;
 t1 = strtok(NULL, " "))

printf("%s\n",t1);

Here we use the for loop in a non-standard counting fashion:

The initialisation calls strtok() loads the function with the string str1
We terminate when t1 is NULL
We keep assigning tokens of str1 to t1 until termination by calling
strtok() with a NULL first argument.

Character conversions and testing:
ctype.h
We conclude this chapter with a related library #include <ctype.h> which
contains many useful functions to convert and test single characters. The
common functions are prototypes as follows:

Character testing:

int isalnum(int c) -- True if c is alphanumeric.
int isalpha(int c) -- True if c is a letter.
int isascii(int c) -- True if c is ASCII .
int iscntrl(int c) -- True if c is a control character.
int isdigit(int c) -- True if c is a decimal digit
int isgraph(int c) -- True if c is a graphical character.
int islower(int c) -- True if c is a lowercase letter
int isprint(int c) -- True if c is a printable character
int ispunct (int c) -- True if c is a punctuation character.
int isspace(int c) -- True if c is a space character.
int isupper(int c) -- True if c is an uppercase letter.
int isxdigit(int c) -- True if c is a hexadecimal digit

Character Conversion:

int toascii(int c) -- Convert c to ASCII .
tolower(int c) -- Convert c to lowercase.
int toupper(int c) -- Convert c to uppercase.

The use of these functions is straightforward and we do not give examples
here.

Memory Operations: <memory.h>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Memory Operations: <memory.h>
Finally we briefly overview some basic memory operations. Although not
strictly string functions the functions are prototyped in #include
<string.h>:

void *memchr (void *s, int c, size_t n) -- Search for a character in a
buffer .
int memcmp (void *s1, void *s2, size_t n) -- Compare two buffers.
void *memcpy (void *dest, void *src, size_t n) -- Copy one buffer
into another .
void *memmove (void *dest, void *src, size_t n) -- Move a number
of bytes from one buffer lo another.
void *memset (void *s, int c, size_t n) -- Set all bytes of a buffer to
a given character.

Their use is fairly straightforward and not dissimilar to comparable string
operations (except the exact length (n) of the operations must be specified as
there is no natural termination here).

Note that in all case to bytes of memory are copied. The sizeof() function
comes in handy again here, for example:

char src[SIZE],dest[SIZE];
int isrc[SIZE],idest[SIZE];

memcpy(dest,src, SIZE); /* Copy chars (bytes) ok */

memcpy(idest,isrc, SIZE*sizeof(int)); /* Copy arrays of ints */

memmove() behaves in exactly the same way as memcpy() except that the
source and destination locations may overlap.

memcmp() is similar to strcmp() except here unsigned bytes are compared
and returns less than zero if s1 is less than s2 etc.

Exercises
Exercise 12584

Write a function similar to strlen that can handle unterminated strings. Hint:
you will need to know and pass in the length of the string.

Exercise 12585

Write a function that returns true if an input string is a palindrome of each
other. A palindrome is a word that reads the same backwards as it does
forwards e.g ABBA.

Exercise 12586

Suggest a possible implementation of the strtok() function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.
using other string handling functions.

2.
from first pointer principles

How is the storage of the tokenised string achieved?

Exercise 12587

Write a function that converts all characters of an input string to upper case
characters.

Exercise 12591

Write a program that will reverse the contents stored in memory in bytes.
That is to say if we have n bytes in memory byte n becomes byte 0, byte n-1
becomes byte 1 etc.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

The front panel
The file manager
The application manager
The session manager
Other CDE desktop tools
Application development tools
Application integration
Windows and the Window Manager
The Root Menu
Exercises

The Common Desktop Environment

In order to use Solaris and most other Unix Systems you will need to be
familiar with the Common Desktop Environment (CDE). Before embarking
on learning C with briefly introduce the main features of the CDE.

Most major Unix vendors now provide the CDE as standard. Consequently,
most users of the X Window system will now be exposed to the CDE. Indeed,
continuing trends in the development of Motif and CDE will probably lead to
a convergence of these technologies in the near future. This section highlights
the key features of the CDE from a Users perspective.

Upon login, the user is presented with the CDE Desktop (Fig. 1.1). The
desktop includes a front panel (Fig. 1.2) , multiple virtual workspaces, and
window management. CDE supports the running of applications from a file
manager, from an application manager and from the front panel. Each of the
subcomponents of the desktop are described below.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. 1.1 Sample CDE Desktop

The front panel

The front panel (Fig. 1.2) contains a set of icons and popup menus (more like
roll-up menus) that appear at the bottom of the screen, by default (Fig. 1.1).
The front panel contains the most regularly used applications and tools for
managing the workspace. Users can drag-and-drop application icons from the
file manager or application manager to the popups for addition of the
application(s) to the associated menu. The user can also manipulate the
default actions and icons for the popups. The front panel can be locked so that
users can't change it. A user can configure several virtual workspaces -- each
with different backgrounds and colors if desired. Each workspace can have
any number of applications running in it. An application can be set to appear
in one, more than one, or all workspaces simultaneously.

Fig. 1.2 Clients, Servers and Xlib

The file manager

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CDE includes a standard file manager. The functionality is similar to that of
the Microsoft Windows, Macintosh, or Sun Open Look file manager. Users
can directly manipulate icons associated with UNIX files, drag-and-drop
them, and launch associated applications.

The application manager

The user interaction with the application manager is similar to the file
manager except that is is intended to be a list of executable modules available
to a particular user. The user launches the application manager from an icon
in the front panel. Users are notified when a new application is available on a
server by additions (or deletions) to the list of icons in the application
manager window. Programs and icons can be installed and pushed out to
other workstations as an integral part of the installation process. The list of
workstations that new software is installed on is configurable. The application
manager comes preconfigured to include several utilities and programs.

The session manager

The session manager is responsible for the start up and shut down of a user
session. In the CDE, applications that are made CDE aware are warned via
an X Event when the X session is closing down. The application responds by
returning a string that can be used by the session manager at the user's next
login to restart the application. CDE can remember two sessions per user.
One is the current session, where a snapshot of the currently running
applications is saved. These applications can be automatically restarted at the
user's next login. The other is the default login, which is analogous to starting
an X session in the Motif window manager. The user can choose which of the
two sessions to use at the next login.

Other CDE desktop tools

CDE 1.0 includes a set of applications that enable users to become productive
immediately. Many of these are available directly from the front panel, others
from the desktop or personal application managers. Common and productive
desktop tools include:

Mail Tool

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- Used to compose, view, and manage electronic mail through a GUI.
Allows the inclusion of attachments and communications with other
applications through the messaging system.

Calendar Manager
-- Used to manage, schedule, and view appointments, create calendars,
and interact with the Mail Tool.

Editor
-- A text editor with common functionality including data transfer with
other applications via the clipboard, drag and drop, and primary and
quick transfer.

Terminal Emulator
-- An xterm terminal emulator.

Calculator
-- A standard calculator with scientific, financial, and logical modes.

Print Manager
-- A graphical print job manager for the scheduling and management of
print jobs on any available printer.

Help System
-- A context-sensitive graphical help system based on Standard
Generalized Markup Language (SGML).

Style Manager
-- A graphical interface that allows a user to interactively set their
preferences, such as colors, backdrops, and fonts, for a session.

Icon Editor
-- This application is a fairly full featured graphical icon (pixmap)
editor.

Application development tools

CDE includes two components for application development. The first is a
shell command language interpreter that has built-in commands for most X
Window system and CDE functions. The interpreter is based on ksh93 (The
Korn Shell), and should provide anyone familiar with shell scripts the ability
to develop X, Motif, and CDE applications.

To support interactive user interface development, developers can use the
Motif Application Builder. This is a GUI front end for building Motif
applications that generates C source code. The source code is then compiled
and linked with the X and Motif libraries to produce the executable binary.

Application integration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CDE provides a number of tools to ease integration. The overall model of the
CDE session is intended to allow a straightforward integration for virtually all
types of applications. Motif and other X toolkit applications usually require
little integration.

The task of integrating in-house and third party applications into a desktop,
often the most difficult aspect of a desktop installation, is simplified by CDE.
The power and advantage of CDE functionality can be realized in most cases
without recompiling applications.

For example, Open Look applications can be integrated through the use of
scripts that perform front-end execution of the application and scripts that
perform pre- and post-session processing.

After the initial task of integrating applications so that they fit within session
management, further integration can be done to increase their overall
common look-and-feel with the rest of the desktop and to take advantage of
the full range of CDE functionality. Tools that ease this aspect of integration
include an Icon Editor used to create colour and monochrome icons. Images
can be copied from the desktop into an icon, or they can be drawn freehand.

The Action Creation Utility is used to create action entries in the action
database. Actions allow applications to be launched using desktop icons, and
they ease administration by removing an application's specific details from
the user interface.

The Application Gather and Application Integrate routines are used to
control and format the application manager. They simplify installations so
that applications can be accessible from virtually anywhere on the network.

Windows and the Window Manager

From a user's perspective, one of the first distinguishing features of Motif's
look and feel is the window frame (Fig. 1.3). Every application window is
contained inside such a frame. The following items appear in the window
frame:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. 1.3 The Motif Window Frame

Title Bar
 -- This identifies the window by a text string. The string is usually the
name of the application program. However, an application's resource
controls the label (Chapter).

Window Menu
 -- Every window under the control of mwm has a window menu. The
application has a certain amount of control over items that can be
placed in the menu. The Motif Style Guide insists that certain
commands are always available in this menu and that they can be
accessed from either mouse or keyboard selection. Keyboard selections
are called mnemonics and allow routine actions (that may involve
several mouse actions) to be called from the keyboard. The action from
the keyboard usually involves pressing two keys at the same time: the

Meta key and another key. The default window menu items and
mnemonics are listed below and illustrated in Fig. 1.4:

Fig. 1.4 The Window Menu

Restore (Meta+F5) -- Restore window to previous size after
iconification (see below).
Move (Meta+F7) -- Allows the window to be repositioned with a
drag of the mouse.
Size (Meta+F8) -- Allows the size of the window to be changed
by dragging on the corners of the window.
Minimize (Meta+F9) -- Iconify the window.
Maximize (Meta+F10) -- Make the window the size of the root
window, usually the whole of the display size.
Lower (Meta+F3) -- Move the window to the bottom of the
window stack. Windows may be tiled on top of each other (see
below). The front window being the top of the stack.
Close (Meta+F4) -- Quit the program. Some simple applications
(Chapter) provide no internal means of termination. The
Close option being the only means to achieve this.

Minimize Button

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- another way to iconify a window .
Maximize Button

-- another way to make a window the size of the root window .

The window manager must also be able to manage multiple windows from
multiple client applications. There are a few important issues that need to be
resolved. When running several applications together, several windows may
be displayed on the screen. As a result, the display may appear cluttered and
hard to navigate. The window manager provides two mechanisms to help deal
with such problems:

Active Window
-- Only one window can receive input at any time. If you are selecting a
graphical object with a mouse, then it is relatively easy for the window
manager to detect this and schedule appropriate actions related to the
chosen object. It is not so easy when you enter data or make selections
directly from the keyboard. To resolve this only one window at a time
is allowed keyboard focus. This window is called the active window.
The selection of the active window will depend on the system
configuration which the user typically has control over. There are two
common methods for selecting the active window:

Focus follows pointer
-- The active window is the window is the window underneath
mouse pointer.

Click-to-type
-- The active window is selected, by clicking on an area of the
window, and remains active until another window is selected no
matter where the mouse points.

When a window is made active its appearance will change slightly:

Its outline frame will become shaded.
The cursor will change appearance when placed in the window.
The window may jump, or be raised to the top of the window
stack.

The exact appearance of the above may vary from system to system
and may be controlled by the user by setting environment settings in
the window manager.

Window tiling
-- Windows may be stacked on top of each other. The window manager
tries to maintain a three-dimensional look and feel . Apart from the fact
that buttons, dialog boxes appear to be elevated from the screen,
windows are shaded and framed in a three-dimensional fashion. The
top window (or currently active window) will have slightly different
appearance for instance.

The window menu has a few options for controlling the tiling of a
window. Also a window can be brought to the top of the stack, or
raised by clicking a part of its frame.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

raised by clicking a part of its frame.

Iconification
 -- If a window is currently active and not required for input or
displaying output then it may be iconified or minimised thus reducing
the screen clutter. An icon (Fig. 1.5) is a small graphical symbol that
represents the window (or application). It occupies a significantly less
amount of screen area. Icons are usually arranged around the perimeter
(typically bottom or left side) of the screen. The application will still be
running and occupying computer memory. The window related to the
icon may be reverted to by either double clicking on the icon, or
selecting Restore or Maximise from the icon's window menu.

Figure 1.5: Sample

Icon from Xterm
Application

The Root Menu
The Root Menu is the main menu of the window manager. The root menu
typically is used to control the whole display, for example starting up new
windows and quitting the desktop. To display the Root menu:

Move the mouse pointer to the Root Window.
Hold down the left mouse button.

The default Root Menu has the following The root menu can be customised
to start up common applications for example. The root menu for the mwm
(Fig. 1.6) and dtwm (Fig. 1.7) have slightly different appearance but have
broadly similar actions, which are summarised below:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. 1.6 The mwm Root Menu

Fig. 1.7 The CDE dtwm Root Menu

Program
(dtwm) -- A sub-menu is displayed that allows a variety of programs to
be called from the desktop, for example to create a new window. The
list of available programs can be customised from the desktop.

New Window
(mwm) -- Create a new window which is usually an Xterm window.

Shuffle Up
-- Move the bottom of the window stack to the top.

Shuffle Down
-- Move the top of the window stack to the bottom.

Refresh
-- Refresh the current screen display.

Restart
-- Restart the Workspace.

Logout
 (dtwm) -- Quit the Window Manager.

Exercises
Exercise 12158

 Exercise~\ref{ex.cde1}

Add an application to the application manager

Exercise 12159

Practice opening, closing and moving windows around the screen and to/from
the background/foreground. Get used to using the mouse and its buttons for
such tasks.

Exercise 12160

Figure out the function of each of the three mouse buttons. Pay particular
attention to the different functions the buttons in different windows
(applications) and also when the mouse is pointing to the background.

Exercise 12161

Find out how to resize windows etc. and practice this.

Exercise 12162

Fire up the texteditor of your choice (You may use dtpad (basic but
functional), textedit application (SOLARIS basic editor), emacs/Xemacs, or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

functional), textedit application (SOLARIS basic editor), emacs/Xemacs, or
vi) and practice editing text files. Create any files you wish for now. Figure
out basic options like cut and paste of text around the file, saving and loading
files, searching for strings in the text and replacing strings.

Particularly pay attention in getting used to using the Key Strokes and / or
mouse to perform the above tasks.

Exercise 12163

Use Unix Commands to

1.
Copy a file (created by text editor or other means) to another file called
spare.

2.
Rename your original file to b called new.

3.
Delete the file spare.

4.
Display your original file on the terminal.

5.
Print your file out.

Exercise 12164

Familiarise yourself with other UNIX functions by creating various files of
text etc. and trying out the various functions listed in handouts.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Directory handling functions: <unistd.h>
Scanning and Sorting Directories: <sys/types.h>,<sys/dir.h>

File Manipulation Routines: unistd.h, sys/types.h, sys/stat.h
File Access

errno
File Status
File Manipulation:stdio.h, unistd.h
Creating Temporary FIles:<stdio.h>

Exercises

File Access and Directory System
Calls
 There are many UNIX utilities that allow us to manipulate directories and
files. cd, ls, rm, cp, mkdir etc. are examples we have (hopefully) already
met.

We will now see how to achieve similar tasks from within a C program.

Directory handling functions:
<unistd.h>
 This basically involves calling appropriate functions to traverse a directory
hierarchy or inquire about a directories contents.

int chdir(char *path) -- changes directory to specified path string.

Example: C emulation of UNIX's cd command:

#include<stdio.h>
#include<unistd.h>

main(int argc,char **argv)
 {
 if (argc < 2)
 { printf(``Usage: %s
 <pathname n'',argv[0]);

 exit(1);
 }
 if (chdir(argv[1]) != 0)
 { printf(``Error in chdir n'');

 exit(1);
 }
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

char *getwd(char *path) -- get the full pathname of the current
working directory. path is a pointer to a string where the
pathname will be returned. getwd returns a pointer to the string
or NULL if an error occurs.

Scanning and Sorting Directories:
<sys/types.h>,<sys/dir.h>
Two useful functions (On BSD platforms and NOT in multi-threaded
application) are available

scandir(char *dirname, struct direct **namelist, int (*select)
(),
int (*compar)()) -- reads the directory dirname and builds an array of
pointers to directory entries or -1 for an error. namelist is a pointer to an
array of structure pointers.

(*select))() is a pointer to a function which is called with a pointer to a
directory entry (defined in <sys/types> and should return a non zero value if
the directory entry should be included in the array. If this pointer is NULL,
then all the directory entries will be included.

The last argument is a pointer to a routine which is passed to qsort (see man
qsort) -- a built in function which sorts the completed array. If this pointer is
NULL, the array is not sorted.

alphasort(struct direct **d1, **d2) -- alphasort() is a built in routine
which will sort the array alphabetically.

Example - a simple C version of UNIX ls utility

#include <sys/types.h>
#include <sys/dir.h>
#include <sys/param.h>
#include <stdio.h>

#define FALSE 0
#define TRUE !FALSE

extern int alphasort();

char pathname[MAXPATHLEN];

main() { int count,i;
 struct direct **files;
 int file_select();

 if (getwd(pathname) == NULL)
 { printf("Error getting path n");

 exit(0);
 }
 printf("Current Working Directory = %s n",pathname);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 printf("Current Working Directory = %s n",pathname);

 count =
 scandir(pathname, &files, file_select, alphasort);

 /* If no files found, make a non-selectable menu item */
 if (count <= 0)
 { printf(``No files in this directory n'');

 exit(0);
 }
 printf(``Number of files = %d n'',count);

 for (i=1;i<count+1;++i)
 printf(``%s '',files[i-1]->d_name);
 printf(`` n''); /* flush buffer */

 }

int file_select(struct direct *entry)

 {if ((strcmp(entry->d_name, ``.'') == 0) ||
 (strcmp(entry->d_name, ``..'') == 0))
 return (FALSE);
 else
 return (TRUE);
 }

scandir returns the current directory (.) and the directory
above this (..) as well as all files so we need to check for
these and return FALSE so that they are not included in our
list.

Note: scandir and alphasort have definitions in sys/types.h and
sys/dir.h.
MAXPATHLEN and getwd definitions in sys/param.h

We can go further than this and search for specific files: Let's
write a modified
file_select() that only scans for files with a .c, .o or .h
suffix:

int file_select(struct direct *entry)

 {char *ptr;
 char *rindex(char *s, char c);

 if ((strcmp(entry->d_name, ``.'')== 0) ||
 (strcmp(entry->d_name, ``..'') == 0))
 return (FALSE);

 /* Check for filename extensions */
 ptr = rindex(entry->d_name, '.')
 if ((ptr != NULL) &&
 ((strcmp(ptr, ``.c'') == 0)
 (strcmp(ptr, ``.h'') == 0)

 (strcmp(ptr, ``.o'') == 0)))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (strcmp(ptr, ``.o'') == 0)))

 return (TRUE);
 else
 return(FALSE);
 }

NOTE: rindex() is a string handling function that returns a
pointer to the last occurrence of character c in string s, or a
NULL pointer if c does not occur in the string. (index() is
similar function but assigns a pointer to 1st occurrence.)

The function struct direct *readdir(char *dir) also exists in
<sys/dir.h>> to return a given directory dir listing.

File Manipulation Routines:
unistd.h, sys/types.h, sys/stat.h
There are many system calls that can applied directly to files stored in a
directory.

File Access
int access(char *path, int mode) -- determine accessibility of file.

path points to a path name naming a file. access() checks the named file for
accessibility according to mode, defined in #include <unistd.h>:

R_OK
- test for read permission

W_OK
- test for write permission

X_OK
- test for execute or search permission

F_OK
- test whether the directories leading to the file can be searched and the
file exists.

access() returns: 0 on success, -1 on failure and sets errno to indicate the
error. See man pages for list of errors.

errno

errno is a special system variable that is set if a system call cannot perform
its set task.

To use errno in a C program it must be declared via:

 extern int errno;

It can be manually reset within a C program other wise it simply retains its
last value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int chmod(char *path, int mode) change the mode of access of a file.
specified by path to the given mode.

chmod() returns 0 on success, -1 on failure and sets errno to indicate the
error. Errors are defined in #include <sys/stat.h>

The access mode of a file can be set using predefined macros in sys/stat.h -
- see man pages -- or by setting the mode in a a 3 digit octal number.

The rightmost digit specifies owner privileges, middle group privileges and
the leftmost other users privileges.

For each octal digit think of it a 3 bit binary number. Leftmost bit = read
access (on/off) middle is write, right is executable.

So 4 (octal 100) = read only, 2 (010) = write, 6 (110) = read and write, 1
(001) = execute.

so for access mode 600 gives user read and write access others no access. 666
gives everybody read/write access.

NOTE: a UNIX command chmod also exists

File Status
Two useful functions exist to inquire about the files current status. You can
find out how large the file is (st_size) when it was created (st_ctime) etc.
(see stat structure definition below. The two functions are prototyped in
<sys/stat.h>

int stat(char *path, struct stat *buf),
int fstat(int fd, struct
stat *buf)

stat() obtains information about the file named by path. Read, write or
execute permission of the named file is not required, but all directories listed
in the path name leading to the file must be searchable.

fstat() obtains the same information about an open file referenced by the
argument descriptor, such as would be obtained by an open call (Low level
I/O).

stat(), and fstat() return 0 on success, -1 on failure and sets errno to
indicate the error. Errors are again defined in #include <sys/stat.h>

buf is a pointer to a stat structure into which information is placed concerning
the file. A stat structure is define in #include <sys/types.h>, as follows

struct stat {
 mode_t st_mode; /* File mode (type, perms) */
 ino_t st_ino; /* Inode number */
 dev_t st_dev; /* ID of device containing */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dev_t st_dev; /* ID of device containing */
 /* a directory entry for this file */
 dev_t st_rdev; /* ID of device */
 /* This entry is defined only for */
 /* char special or block special files */
 nlink_t st_nlink; /* Number of links */
 uid_t st_uid; /* User ID of the file's owner */
 gid_t st_gid; /* Group ID of the file's group */
 off_t st_size; /* File size in bytes */
 time_t st_atime; /* Time of last access */
 time_t st_mtime; /* Time of last data modification */
 time_t st_ctime; /* Time of last file status change */
 /* Times measured in seconds since */
 /* 00:00:00 UTC, Jan. 1, 1970 */
 long st_blksize; /* Preferred I/O block size */
 blkcnt_t st_blocks; /* Number of 512 byte blocks allocated*/
}

File Manipulation:stdio.h, unistd.h
There are few functions that exist to delete and rename files. Probably the
most common way is to use the stdio.h functions:

int remove(const char *path);
int rename(const char *old, const char *new);

Two system calls (defined in unistd.h) which are actually used by remove()
and rename() also exist but are probably harder to remember unless you are
familiar with UNIX.

int unlink(cons char *path) -- removes the directory entry named by
path

unlink() returns 0 on success, -1 on failure and sets errno to indicate the
error. Errors listed in #include <sys/stat.h>

A similar function link(const char *path1, const char *path2) creates
a linking from an existing directory entry path1 to a new entry path2

Creating Temporary FIles:<stdio.h>
Programs often need to create files just for the life of the program. Two
convenient functions (plus some variants) exist to assist in this task.
Management (deletion of files etc) is taken care of by the Operating System.

The function FILE *tmpfile(void) creates a temporary file and opens a
corresponding stream. The file will automatically be deleted when all
references to the file are closed.

The function char *tmpnam(char *s) generate file names that can safely be
used for a temporary file. Variant functions char *tmpnam_r(char *s) and
char *tempnam(const char *dir, const char *pfx) also exist

NOTE: There are a few more file manipulation routines not listed here see
man pages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Exercise 12675

Write a C program to emulate the ls -l UNIX command that prints all files
in a current directory and lists access privileges etc. DO NOT simply exec ls
-l from the program.

Exercise 12676

Write a program to print the lines of a file which contain a word given as the
program argument (a simple version of grep UNIX utility).

Exercise 12677

Write a program to list the files given as arguments, stopping every 20 lines
until a key is hit.(a simple version of more UNIX utility)

Exercise 12678

Write a program that will list all files in a current directory and all files in
subsequent sub directories.

Exercise 12679

Write a program that will only list subdirectories in alphabetical order.

Exercise 12680

Write a program that shows the user all his/her C source programs and then
prompts interactively as to whether others should be granted read permission;
if affirmative such permission should be granted.

Exercise 12681

Write a program that gives the user the opportunity to remove any or all of
the files in a current working directory. The name of the file should appear
followed by a prompt as to whether it should be removed.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Basic time functions
Example time applications

Example 1: Time (in seconds) to perform some computation
Example 2: Set a random number seed

Exercises

Time Functions
 In this chapter we will look at how we can access the clock time with UNIX
system calls.

There are many more time functions than we consider here - see man pages
and standard library function listings for full details. In this chapter we
concentrate on applications of timing functions in C

Uses of time functions include:

telling the time.
timing programs and functions.
setting number seeds.

Basic time functions
Some of thge basic time functions are prototypes as follows:

time_t time(time_t *tloc) -- returns the time since 00:00:00 GMT, Jan.
1, 1970, measured in seconds.

If tloc is not NULL, the return value is also stored in the location to which
tloc points.

time() returns the value of time on success.

On failure, it returns (time_t) -1. time_t is typedefed to a long (int) in
<sys/types.h> and <sys/time.h> header files.

int ftime(struct timeb *tp) -- fills in a structure pointed to by tp, as
defined in <sys/timeb.h>:

 struct timeb
 { time_t time;
 unsigned short millitm;
 short timezone;
 short dstflag;
 };

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The structure contains the time since the epoch in seconds, up to 1000
milliseconds of more precise interval, the local time zone (measured in
minutes of time westward from Greenwich), and a flag that, if nonzero,
indicates that Day light Saving time applies locally during the appropriate
part of the year.

On success, ftime() returns no useful value. On failure, it
returns -1.

Two other functions defined etc. in #include <time.h>

char *ctime(time_t *clock),
char *asctime(struct tm *tm)

ctime() converts a long integer, pointed to by clock, to a 26-
character string of the form produced by asctime(). It first
breaks down clock to a tm structure by calling localtime(), and
then calls asctime() to convert that tm structure to a string.

asctime() converts a time value contained in a tm structure to a
26-character string of the form:

 Sun Sep 16 01:03:52 1973

asctime() returns a pointer to the string.

Example time applications
we mentioned above three possible uses of time functions (there are many
more) but these are very common.

Example 1: Time (in seconds) to perform some
computation

This is a simple program that illustrates that calling the time function at
distinct moments and noting the different times is a simple method of timing
fragments of code:

/* timer.c */

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()
 { int i;
 time_t t1,t2;

 (void) time(&t1);
 for (i=1;i<=300;++i)
 printf(``%d %d %d n'',i, i*i, i*i*i);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 printf(``%d %d %d n'',i, i*i, i*i*i);

 (void) time(&t2);
 printf(`` n Time to do 300 squares and

 cubes= %d seconds n'', (int) t2-t1);

 }

Example 2: Set a random number seed
We have seen a similar example previously, this time we use the lrand48()
function to generate of number sequence:

/* random.c */
#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()
 { int i;
 time_t t1;

 (void) time(&t1);
 srand48((long) t1);
 /* use time in seconds to set seed */
 printf(``5 random numbers
 (Seed = %d): n'',(int) t1);

 for (i=0;i<5;++i)
 printf(``%d '', lrand48());
 printf(`` n n''); /* flush print buffer */

 }

lrand48() returns non-negative long integers uniformly
distributed over the interval (0, 2**31).

A similar function drand48() returns double precision numbers in
the range [0.0,1.0).

srand48() sets the seed for these random number generators. It
is important to have different seeds when we call the functions
otherwise the same set of pseudo-random numbers will generated.
time() always provides a unique seed.

Exercises
Exercise 12708

Write a C program that times a fragment of code in milliseconds.

Exercise 12709

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Write a C program to produce a series of floating point random numbers in
the ranges (a) 0.0 - 1.0 (b) 0.0 - n where n is any floating point value. The
seed should be set so that a unique sequence is guaranteed.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Running UNIX Commands from C
execl()
fork()
wait()
exit()
Exerises

Process Control: <stdlib.h>,
<unistd.h>
A process is basically a single running program. It may be a ``system''
program (e.g login, update, csh) or program initiated by the user (textedit,
dbxtool or a user written one).

When UNIX runs a process it gives each process a unique number - a process
ID, pid.

The UNIX command ps will list all current processes running on your
machine and will list the pid.

The C function int getpid() will return the pid of process that called this
function.

A program usually runs as a single process. However later we will see how
we can make programs run as several separate communicating processes.

Running UNIX Commands from C
We can run commands from a C program just as if they were from the UNIX
command line by using the system() function. NOTE: this can save us a lot
of time and hassle as we can run other (proven) programs, scripts etc. to do
set tasks.

 int system(char *string) -- where string can be the name of a unix
utility, an executable shell script or a user program. System returns the exit
status of the shell. System is prototyped in <stdlib.h>

Example: Call ls from a program

main()
{ printf(``Files in Directory are: n'');

 system(``ls -l'');
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

system is a call that is made up of 3 other system calls:
execl(), wait() and fork() (which are prototyed in <unistd>)

execl()
execl has 5 other related functions -- see man pages.

execl stands for execute and leave which means that a process will get
executed and then terminated by execl.

It is defined by:

execl(char *path, char *arg0,...,char *argn, 0);

The last parameter must always be 0. It is a NULL terminator. Since the
argument list is variable we must have some way of telling C when it is to
end. The NULL terminator does this job.

where path points to the name of a file holding a command that is to be
executed, argo points to a string that is the same as path (or at least its last
component.

arg1 ... argn are pointers to arguments for the command and 0 simply
marks the end of the (variable) list of arguments.

So our above example could look like this also:

main()
{ printf(``Files in Directory are: n'');

 execl(`/bin/ls'',``ls'', ``-l'',0);
}

fork()
int fork() turns a single process into 2 identical processes, known as the
parent and the child. On success, fork() returns 0 to the child process and
returns the process ID of the child process to the parent process. On failure,
fork() returns -1 to the parent process, sets errno to indicate the error, and no
child process is created.

NOTE: The child process will have its own unique PID.

The following program illustrates a simple use of fork, where two copies are
made and run together (multitasking)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

main()
{ int return_value;

 printf(``Forking process n'');

 fork();
 printf(``The process id is %d
 and return value is %d n",

 getpid(), return_value);
 execl(``/bin/ls/'',``ls'',``-l'',0);
 printf(``This line is not printed n'');

}

The Output of this would be:

Forking process
The process id is 6753 and return value is 0
The process id is 6754 and return value is 0
two lists of files in current directory

NOTE: The processes have unique ID's which will be different at
each run.

It also impossible to tell in advance which process will get to
CPU's time -- so one run may differ from the next.

When we spawn 2 processes we can easily detect (in each process)
whether it is the child or parent since fork returns 0 to the
child. We can trap any errors if fork returns a -1. i.e.:

int pid; /* process identifier */

pid = fork();
if (pid < 0)
 { printf(``Cannot fork!! n'');

 exit(1);
 }
if (pid == 0)
 { /* Child process */ }
else
 { /* Parent process pid is child's pid */
 }

wait()
int wait (int *status_location) -- will force a parent process to wait for
a child process to stop or terminate. wait() return the pid of the child or -1
for an error. The exit status of the child is returned to status_location.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exit()
void exit(int status) -- terminates the process which calls this function
and returns the exit status value. Both UNIX and C (forked) programs can
read the status value.

By convention, a status of 0 means normal termination any other value
indicates an error or unusual occurrence. Many standard library calls have
errors defined in the sys/stat.h header file. We can easily derive our own
conventions.

A complete example of forking program is originally titled fork.c:

/* fork.c - example of a fork in a program */
/* The program asks for UNIX commands to be typed and inputted to a string*/
/* The string is then "parsed" by locating blanks etc. */
/* Each command and sorresponding arguments are put in a args array */
/* execvp is called to execute these commands in child process */
/* spawned by fork() */

/* cc -o fork fork.c */

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

main()
{
 char buf[1024];
 char *args[64];

 for (;;) {
 /*
 * Prompt for and read a command.
 */
 printf("Command: ");

 if (gets(buf) == NULL) {
 printf("\n");
 exit(0);
 }

 /*
 * Split the string into arguments.
 */
 parse(buf, args);

 /*
 * Execute the command.
 */
 execute(args);
 }
}

/*
 * parse--split the command in buf into
 * individual arguments.
 */
parse(buf, args)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parse(buf, args)
char *buf;
char **args;
{
 while (*buf != NULL) {
 /*
 * Strip whitespace. Use nulls, so
 * that the previous argument is terminated
 * automatically.
 */
 while ((*buf == ' ') || (*buf == '\t'))
 *buf++ = NULL;

 /*
 * Save the argument.
 */
 *args++ = buf;

 /*
 * Skip over the argument.
 */
 while ((*buf != NULL) && (*buf != ' ') && (*buf != '\t'))
 buf++;
 }

 *args = NULL;
}

/*
 * execute--spawn a child process and execute
 * the program.
 */
execute(args)
char **args;
{
 int pid, status;

 /*
 * Get a child process.
 */
 if ((pid = fork()) < 0) {
 perror("fork");
 exit(1);

 /* NOTE: perror() produces a short error message on the standard
 error describing the last error encountered during a call to
 a system or library function.
 */
 }

 /*
 * The child executes the code inside the if.
 */
 if (pid == 0) {
 execvp(*args, args);
 perror(*args);
 exit(1);

 /* NOTE: The execv() vnd execvp versions of execl() are useful when the
 number of arguments is unknown in advance;
 The arguments to execv() and execvp() are the name
 of the file to be executed and a vector of strings contain-
 ing the arguments. The last argument string must be fol-
 lowed by a 0 pointer.

 execlp() and execvp() are called with the same arguments as
 execl() and execv(), but duplicate the shell's actions in
 searching for an executable file in a list of directories.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 searching for an executable file in a list of directories.
 The directory list is obtained from the environment.
 */
 }

 /*
 * The parent executes the wait.
 */
 while (wait(&status) != pid)
 /* empty */ ;
}

Exerises
Exercise 12727

Use popen() to pipe the rwho (UNIX command) output into more (UNIX
command) in a C program.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Piping in a C program: <stdio.h>
popen() -- Formatted Piping
pipe() -- Low level Piping
Exercises

Interprocess Communication (IPC),
Pipes
We have now began to see how multiple processes may be running on a
machine and maybe be controlled (spawned by fork() by one of our
programs.

In numerous applications there is clearly a need for these processes to
communicate with each exchanging data or control information. There are a
few methods which can accomplish this task. We will consider:

Pipes
Signals
Message Queues
Semaphores
Shared Memory
Sockets

In this chapter, we will study the piping of two processes. We will study the
others in turn in subsequent chapters.

Piping in a C program: <stdio.h>
Piping is a process where the input of one process is made the input of
another. We have seen examples of this from the UNIX command line using
.

We will now see how we do this from C programs.

We will have two (or more) forked processes and will communicate between
them.

We must first open a pipe

UNIX allows two ways of opening a pipe.

popen() -- Formatted Piping

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

popen() -- Formatted Piping
FILE *popen(char *command, char *type) -- opens a pipe for I/O where
the command is the process that will be connected to the calling process thus
creating the pipe. The type is either ``r'' - for reading, or ``w'' for writing.

popen() returns is a stream pointer or NULL for any errors.

A pipe opened by popen() should always be closed by pclose(FILE
*stream).

We use fprintf() and fscanf() to communicate with the pipe's stream.

pipe() -- Low level Piping
int pipe(int fd[2]) -- creates a pipe and returns two file descriptors,
fd[0], fd[1]. fd[0] is opened for reading, fd[1] for writing.

pipe() returns 0 on success, -1 on failure and sets errno accordingly.

The standard programming model is that after the pipe has been set up, two
(or more) cooperative processes will be created by a fork and data will be
passed using read() and write().

Pipes opened with pipe() should be closed with close(int fd).

Example: Parent writes to a child

int pdes[2];

pipe(pdes);
if (fork() == 0)
 { /* child */
 close(pdes[1]); /* not required */
 read(pdes[0]); /* read from parent */

 }
else
 { close(pdes[0]); /* not required */
 write(pdes[1]); /* write to child */

 }

An futher example of piping in a C program is plot.c and subroutines
and it performs as follows:

The program has two modules plot.c (main) and plotter.c.
The program relies on you having installed the freely
gnuplot graph drawing program in the directory
/usr/local/bin/ (in the listing below at least) -- this
path could easily be changed.
The program plot.c calls gnuplot
Two Data Stream is generated from Plot

y = sin(x)
y = sin(1/x)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

y = sin(1/x)
2 Pipes created -- 1 per Data Stream.
°Gnuplot produces ``live'' drawing of output.

The code listing for plot.c is:

/* plot.c - example of unix pipe. Calls gnuplot graph drawing package to draw
 graphs from within a C program. Info is piped to gnuplot */
/* Creates 2 pipes one will draw graphs of y=0.5 and y = random 0-1.0 */
/* the other graphs of y = sin (1/x) and y = sin x */

/* Also user a plotter.c module */
/* compile: cc -o plot plot.c plotter.c */

#include "externals.h"
#include <signal.h>

#define DEG_TO_RAD(x) (x*180/M_PI)

double drand48();
void quit();

FILE *fp1, *fp2, *fp3, *fp4, *fopen();

main()
{ float i;
 float y1,y2,y3,y4;

 /* open files which will store plot data */
 if (((fp1 = fopen("plot11.dat","w")) == NULL) ||
 ((fp2 = fopen("plot12.dat","w")) == NULL) ||
 ((fp3 = fopen("plot21.dat","w")) == NULL) ||
 ((fp4 = fopen("plot22.dat","w")) == NULL))
 { printf("Error can't open one or more data files\n");
 exit(1);
 }

 signal(SIGINT,quit); /* trap ctrl-c call quit fn */
 StartPlot();
 y1 = 0.5;
 srand48(1); /* set seed */
 for (i=0;;i+=0.01) /* increment i forever use ctrl-c to quit prog */
 { y2 = (float) drand48();
 if (i == 0.0)
 y3 = 0.0;
 else
 y3 = sin(DEG_TO_RAD(1.0/i));
 y4 = sin(DEG_TO_RAD(i));

 /* load files */
 fprintf(fp1,"%f %f\n",i,y1);
 fprintf(fp2,"%f %f\n",i,y2);
 fprintf(fp3,"%f %f\n",i,y3);
 fprintf(fp4,"%f %f\n",i,y4);

 /* make sure buffers flushed so that gnuplot */
 /* reads up to data file */
 fflush(fp1);
 fflush(fp2);
 fflush(fp3);
 fflush(fp4);

 /* plot graph */
 PlotOne();
 usleep(250); /* sleep for short time */
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
}

void quit()
{ printf("\nctrl-c caught:\n Shutting down pipes\n");
 StopPlot();

 printf("closing data files\n");
 fclose(fp1);
 fclose(fp2);
 fclose(fp3);
 fclose(fp4);

 printf("deleting data files\n");
 RemoveDat();
}

The plotter.c module is as follows:

/* plotter.c module */
/* contains routines to plot a data file produced by another program */
/* 2d data plotted in this version */
/**/

#include "externals.h"

static FILE *plot1,
 *plot2,
 *ashell;

static char *startplot1 = "plot [] [0:1.1]'plot11.dat' with lines,
 'plot12.dat' with lines\n";

static char *startplot2 = "plot 'plot21.dat' with lines,
 'plot22.dat' with lines\n";

static char *replot = "replot\n";
static char *command1= "/usr/local/bin/gnuplot> dump1";
static char *command2= "/usr/local/bin/gnuplot> dump2";
static char *deletefiles = "rm plot11.dat plot12.dat plot21.dat plot22.dat";
static char *set_term = "set terminal x11\n";

void
StartPlot(void)
 { plot1 = popen(command1, "w");
 fprintf(plot1, "%s", set_term);
 fflush(plot1);
 if (plot1 == NULL)
 exit(2);
 plot2 = popen(command2, "w");
 fprintf(plot2, "%s", set_term);
 fflush(plot2);
 if (plot2 == NULL)
 exit(2);
 }

void
RemoveDat(void)
 { ashell = popen(deletefiles, "w");
 exit(0);
 }

void
StopPlot(void)
 { pclose(plot1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { pclose(plot1);
 pclose(plot2);
 }

void
PlotOne(void)
 { fprintf(plot1, "%s", startplot1);
 fflush(plot1);

 fprintf(plot2, "%s", startplot2);
 fflush(plot2);
 }

void
RePlot(void)
 { fprintf(plot1, "%s", replot);
 fflush(plot1);
 }

The header file externals.h contains the following:

/* externals.h */
#ifndef EXTERNALS
#define EXTERNALS

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* prototypes */

void StartPlot(void);
void RemoveDat(void);
void StopPlot(void);
void PlotOne(void);
void RePlot(void);
#endif

Exercises
Exercise 12733

Setup a two-way pipe between parent and child processes in a C program. i.e.
both can send and receive signals.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Sending Signals -- kill(), raise()
Signal Handling -- signal()
sig_talk.c -- complete example program
Other signal functions

IPC:Interrupts and Signals:
<signal.h>
 In this section will look at ways in which two processes can communicate.
When a process terminates abnormally it usually tries to send a signal
indicating what went wrong. C programs (and UNIX) can trap these for
diagnostics. Also user specified communication can take place in this way.

Signals are software generated interrupts that are sent to a process when a
event happens. Signals can be synchronously generated by an error in an
application, such as SIGFPE and SIGSEGV, but most signals are asynchronous.
Signals can be posted to a process when the system detects a software event,
such as a user entering an interrupt or stop or a kill request from another
process. Signals can also be come directly from the OS kernel when a
hardware event such as a bus error or an illegal instruction is encountered.
The system defines a set of signals that can be posted to a process. Signal
delivery is analogous to hardware interrupts in that a signal can be blocked
from being delivered in the future. Most signals cause termination of the
receiving process if no action is taken by the process in response to the signal.
Some signals stop the receiving process and other signals can be ignored.
Each signal has a default action which is one of the following:

The signal is discarded after being received
The process is terminated after the signal is received
A core file is written, then the process is terminated
Stop the process after the signal is received

Each signal defined by the system falls into one of five classes:

Hardware conditions
Software conditions
Input/output notification
Process control
Resource control

Macros are defined in <signal.h> header file for common signals.

These include:

SIGHUP 1 /* hangup */ SIGINT 2 /* interrupt */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SIGQUIT 3 /* quit */ SIGILL 4 /* illegal instruction */
SIGABRT 6 /* used by abort */ SIGKILL 9 /* hard kill */
SIGALRM 14 /* alarm clock */
SIGCONT 19 /* continue a stopped process */
SIGCHLD 20 /* to parent on child stop or exit */

Signals can be numbered from 0 to 31.

Sending Signals -- kill(), raise()
There are two common functions used to send signals

int kill(int pid, int signal) - a system call that send a signal to a
process, pid. If pid is greater than zero, the signal is sent to the process whose
process ID is equal to pid. If pid is 0, the signal is sent to all processes, except
system processes.

kill() returns 0 for a successful call, -1 otherwise and sets errno
accordingly.

int raise(int sig) sends the signal sig to the executing program. raise()
actually uses kill() to send the signal to the executing program:

 kill(getpid(), sig);

There is also a UNIX command called kill that can be used to send signals
from the command line - see man pages.

NOTE: that unless caught or ignored, the kill signal terminates the process.
Therefore protection is built into the system.

Only processes with certain access privileges can be killed off.

Basic rule: only processes that have the same user can send/receive
messages.

The SIGKILL signal cannot be caught or ignored and will always terminate a
process.

For examplekill(getpid(),SIGINT); would send the interrupt signal to the
id of the calling process.

This would have a similar effect to exit() command. Also ctrl-c typed
from the command sends a SIGINT to the process currently being.

unsigned int alarm(unsigned int seconds) -- sends the signal SIGALRM
to the invoking process after seconds seconds.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Signal Handling -- signal()
An application program can specify a function called a signal handler to be
invoked when a specific signal is received. When a signal handler is invoked
on receipt of a signal, it is said to catch the signal. A process can deal with a
signal in one of the following ways:

The process can let the default action happen
The process can block the signal (some signals cannot be ignored)
the process can catch the signal with a handler.

Signal handlers usually execute on the current stack of the process. This lets
the signal handler return to the point that execution was interrupted in the
process. This can be changed on a per-signal basis so that a signal handler
executes on a special stack. If a process must resume in a different context
than the interrupted one, it must restore the previous context itself

Receiving signals is straighforward with the function:

int (*signal(int sig, void (*func)()))() -- that is to say the function
signal() will call the func functions if the process receives a signal sig.
Signal returns a pointer to function func if successful or it returns an error to
errno and -1 otherwise.

func() can have three values:

SIG_DFL
-- a pointer to a system default function SID_DFL(), which will
terminate the process upon receipt of sig.

SIG_IGN
-- a pointer to system ignore function SIG_IGN() which will disregard
the sig action (UNLESS it is SIGKILL).

A function address
-- a user specified function.

SIG_DFL and SIG_IGN are defined in signal.h (standard library) header file.

Thus to ignore a ctrl-c command from the command line. we could do:

 signal(SIGINT, SIG_IGN);

TO reset system so that SIGINT causes a termination at any place in our
program, we would do:

 signal(SIGINT, SIG_DFL);

So lets write a program to trap a ctrl-c but not quit on this signal. We have a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

So lets write a program to trap a ctrl-c but not quit on this signal. We have a
function sigproc() that is executed when we trap a ctrl-c. We will also set
another function to quit the program if it traps the SIGQUIT signal so we can
terminate our program:

#include <stdio.h>

void sigproc(void);

void quitproc(void);

main()
{ signal(SIGINT, sigproc);
 signal(SIGQUIT, quitproc);
 printf(``ctrl-c disabled use ctrl- to quit n'');

 for(;;); /* infinite loop */}

void sigproc()
{ signal(SIGINT, sigproc); /* */
 /* NOTE some versions of UNIX will reset signal to default
 after each call. So for portability reset signal each time */

 printf(``you have pressed ctrl-c n'');

}

void quitproc()
{ printf(``ctrl- pressed to quit n'');

 exit(0); /* normal exit status */
}

sig_talk.c -- complete example
program
Let us now write a program that communicates between child and parent
processes using kill() and signal().

fork() creates the child process from the parent. The pid can be checked to
decide whether it is the child (== 0) or the parent (pid = child process id).

The parent can then send messages to child using the pid and kill().

The child picks up these signals with signal() and calls appropriate
functions.

An example of communicating process using signals is sig_talk.c:

/* sig_talk.c --- Example of how 2 processes can talk */
/* to each other using kill() and signal() */
/* We will fork() 2 process and let the parent send a few */
/* signals to it`s child */

/* cc sig_talk.c -o sig_talk */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* cc sig_talk.c -o sig_talk */

#include <stdio.h>
#include <signal.h>

void sighup(); /* routines child will call upon sigtrap */
void sigint();
void sigquit();

main()
{ int pid;

 /* get child process */

 if ((pid = fork()) < 0) {
 perror("fork");
 exit(1);
 }

 if (pid == 0)
 { /* child */
 signal(SIGHUP,sighup); /* set function calls */
 signal(SIGINT,sigint);
 signal(SIGQUIT, sigquit);
 for(;;); /* loop for ever */
 }
 else /* parent */
 { /* pid hold id of child */
 printf("\nPARENT: sending SIGHUP\n\n");
 kill(pid,SIGHUP);
 sleep(3); /* pause for 3 secs */
 printf("\nPARENT: sending SIGINT\n\n");
 kill(pid,SIGINT);
 sleep(3); /* pause for 3 secs */
 printf("\nPARENT: sending SIGQUIT\n\n");
 kill(pid,SIGQUIT);
 sleep(3);
 }
}

void sighup()

{ signal(SIGHUP,sighup); /* reset signal */
 printf("CHILD: I have received a SIGHUP\n");
}

void sigint()

{ signal(SIGINT,sigint); /* reset signal */
 printf("CHILD: I have received a SIGINT\n");
}

void sigquit()

{ printf("My DADDY has Killed me!!!\n");
 exit(0);
}

Other signal functions
There are a few other functions defined in signal.h:

int sighold(int sig) -- adds sig to the calling process's signal mask

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int sigrelse(int sig) -- removes sig from the calling process's signal
mask

int sigignore(int sig) -- sets the disposition of sig to SIG_IGN

int sigpause(int sig) -- removes sig from the calling process's signal
mask and suspends the calling process until a signal is received

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Initialising the Message Queue
IPC Functions, Key Arguments, and Creation Flags: <sys/ipc.h>
Controlling message queues
Sending and Receiving Messages
POSIX Messages: <mqueue.h>
Example: Sending messages between two processes

message_send.c -- creating and sending to a simple message
queue
message_rec.c -- receiving the above message

Some further example message queue programs
msgget.c: Simple Program to illustrate msget()
msgctl.cSample Program to Illustrate msgctl()
msgop.c: Sample Program to Illustrate msgsnd() and msgrcv()

Exercises

IPC:Message Queues:<sys/msg.h>
The basic idea of a message queue is a simple one.

Two (or more) processes can exchange information via access to a common
system message queue. The sending process places via some (OS) message-
passing module a message onto a queue which can be read by another process
(Figure 24.1). Each message is given an identification or type so that
processes can select the appropriate message. Process must share a common
key in order to gain access to the queue in the first place (subject to other
permissions -- see below).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. 24.1 Basic Message Passing IPC messaging lets processes send and
receive messages, and queue messages for processing in an arbitrary order.
Unlike the file byte-stream data flow of pipes, each IPC message has an
explicit length. Messages can be assigned a specific type. Because of this, a
server process can direct message traffic between clients on its queue by
using the client process PID as the message type. For single-message
transactions, multiple server processes can work in parallel on transactions
sent to a shared message queue.

Before a process can send or receive a message, the queue must be initialized
(through the msgget function see below) Operations to send and receive
messages are performed by the msgsnd() and msgrcv() functions,
respectively.

When a message is sent, its text is copied to the message queue. The
msgsnd() and msgrcv() functions can be performed as either blocking or
non-blocking operations. Non-blocking operations allow for asynchronous
message transfer -- the process is not suspended as a result of sending or
receiving a message. In blocking or synchronous message passing the sending
process cannot continue until the message has been transferred or has even
been acknowledged by a receiver. IPC signal and other mechanisms can be
employed to implement such transfer. A blocked message operation remains
suspended until one of the following three conditions occurs:

The call succeeds.
The process receives a signal.
The queue is removed.

Initialising the Message Queue
The msgget() function initializes a new message queue:

int msgget(key_t key, int msgflg)

It can also return the message queue ID (msqid) of the queue corresponding
to the key argument. The value passed as the msgflg argument must be an
octal integer with settings for the queue's permissions and control flags.

The following code illustrates the msgget() function.

#include <sys/ipc.h>;
#include <sys/msg.h>;

...

key_t key; /* key to be passed to msgget() */
int msgflg /* msgflg to be passed to msgget() */
int msqid; /* return value from msgget() */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int msqid; /* return value from msgget() */

...
key = ...
msgflg = ...

if ((msqid = msgget(key, msgflg)) == –1)
 {
 perror("msgget: msgget failed");
 exit(1);
 } else
 (void) fprintf(stderr, “msgget succeeded");
...

IPC Functions, Key Arguments, and
Creation Flags: <sys/ipc.h>
Processes requesting access to an IPC facility must be able to identify it. To
do this, functions that initialize or provide access to an IPC facility use a
key_t key argument. (key_t is essentially an int type defined in
<sys/types.h>

The key is an arbitrary value or one that can be derived from a common seed
at run time. One way is with ftok() , which converts a filename to a key
value that is unique within the system. Functions that initialize or get access
to messages (also semaphores or shared memory see later) return an ID
number of type int. IPC functions that perform read, write, and control
operations use this ID. If the key argument is specified as IPC_PRIVATE, the
call initializes a new instance of an IPC facility that is private to the creating
process. When the IPC_CREAT flag is supplied in the flags argument
appropriate to the call, the function tries to create the facility if it does not
exist already. When called with both the IPC_CREAT and IPC_EXCL flags, the
function fails if the facility already exists. This can be useful when more than
one process might attempt to initialize the facility. One such case might
involve several server processes having access to the same facility. If they all
attempt to create the facility with IPC_EXCL in effect, only the first attempt
succeeds. If neither of these flags is given and the facility already exists, the
functions to get access simply return the ID of the facility. If IPC_CREAT is
omitted and the facility is not already initialized, the calls fail. These control
flags are combined, using logical (bitwise) OR, with the octal permission
modes to form the flags argument. For example, the statement below
initializes a new message queue if the queue does not exist.

msqid = msgget(ftok("/tmp",
key), (IPC_CREAT | IPC_EXCL | 0400));

The first argument evaluates to a key based on the string ("/tmp"). The second
argument evaluates to the combined permissions and control flags.

Controlling message queues
The msgctl() function alters the permissions and other characteristics of a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The msgctl() function alters the permissions and other characteristics of a
message queue. The owner or creator of a queue can change its ownership or
permissions using msgctl() Also, any process with permission to do so can
use msgctl() for control operations.

The msgctl() function is prototypes as follows:

int msgctl(int msqid, int cmd, struct msqid_ds *buf)

The msqid argument must be the ID of an existing message queue. The cmd
argument is one of:

IPC_STAT
-- Place information about the status of the queue in the data structure
pointed to by buf. The process must have read permission for this call
to succeed.

IPC_SET
-- Set the owner's user and group ID, the permissions, and the size (in
number of bytes) of the message queue. A process must have the
effective user ID of the owner, creator, or superuser for this call to
succeed.

IPC_RMID
-- Remove the message queue specified by the msqid argument.

The following code illustrates the msgctl() function with all its various
flags:

#include<sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
...
if (msgctl(msqid, IPC_STAT, &buf) == -1) {
perror("msgctl: msgctl failed");
exit(1);
}
...
if (msgctl(msqid, IPC_SET, &buf) == -1) {
perror("msgctl: msgctl failed");
exit(1);
}
...

Sending and Receiving Messages
The msgsnd() and msgrcv() functions send and receive messages,
respectively:

int msgsnd(int msqid, const void *msgp, size_t msgsz,
 int msgflg);

int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp,
 int msgflg);

The msqid argument must be the ID of an existing message queue. The msgp
argument is a pointer to a structure that contains the type of the message and
its text. The structure below is an example of what this user-defined buffer
might look like:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 struct mymsg {
 long mtype; /* message type */
 char mtext[MSGSZ]; /* message text of length MSGSZ */
}

The msgsz argument specifies the length of the message in bytes.

The structure member msgtype is the received message's type as specified by
the sending process.

The argument msgflg specifies the action to be taken if one or more of the
following are true:

The number of bytes already on the queue is equal to msg_qbytes.
The total number of messages on all queues system-wide is equal to the
system-imposed limit.

These actions are as follows:

If (msgflg & IPC_NOWAIT) is non-zero, the message will not be sent
and the calling process will return immediately.
If (msgflg & IPC_NOWAIT) is 0, the calling process will suspend
execution until one of the following occurs:

The condition responsible for the suspension no longer exists, in
which case the message is sent.
The message queue identifier msqid is removed from the system;
when this occurs, errno is set equal to EIDRM and -1 is returned.
The calling process receives a signal that is to be caught; in this
case the message is not sent and the calling process resumes
execution.

Upon successful completion, the following actions are taken with
respect to the data structure associated with msqid:

msg_qnum is incremented by 1.
msg_lspid is set equal to the process ID of the calling process.
msg_stime is set equal to the current time.

The following code illustrates msgsnd() and msgrcv():

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

...

int msgflg; /* message flags for the operation */
struct msgbuf *msgp; /* pointer to the message buffer */
int msgsz; /* message size */
long msgtyp; /* desired message type */
int msqid /* message queue ID to be used */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int msqid /* message queue ID to be used */

...

msgp = (struct msgbuf *)malloc((unsigned)(sizeof(struct msgbuf)
- sizeof msgp->mtext + maxmsgsz));

if (msgp == NULL) {
(void) fprintf(stderr, "msgop: %s %d byte messages.\n",
"could not allocate message buffer for", maxmsgsz);
exit(1);

...

msgsz = ...
msgflg = ...

if (msgsnd(msqid, msgp, msgsz, msgflg) == -1)
perror("msgop: msgsnd failed");
...
msgsz = ...
msgtyp = first_on_queue;
msgflg = ...
if (rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg) == -1)
perror("msgop: msgrcv failed");
...

POSIX Messages: <mqueue.h>
The POSIX message queue functions are:

mq_open() -- Connects to, and optionally creates, a named message queue.

mq_close() -- Ends the connection to an open message queue.

mq_unlink() -- Ends the connection to an open message queue and causes
the queue to be removed when the last process closes it.

mq_send() -- Places a message in the queue.

mq_receive() -- Receives (removes) the oldest, highest priority message
from the queue.

mq_notify() -- Notifies a process or thread that a message is available in the
queue.

mq_setattr() -- Set or get message queue attributes.

The basic operation of these functions is as described above. For full function
prototypes and further information see the UNIX man pages

Example: Sending messages
between two processes
The following two programs should be compiled and run at the same time to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following two programs should be compiled and run at the same time to
illustrate basic principle of message passing:

message_send.c
-- Creates a message queue and sends one message to the queue.

message_rec.c
-- Reads the message from the queue.

message_send.c -- creating and sending to a
simple message queue
The full code listing for message_send.c is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdio.h>
#include <string.h>

#define MSGSZ 128

/*
 * Declare the message structure.
 */

typedef struct msgbuf {
 long mtype;
 char mtext[MSGSZ];
 } message_buf;

main()
{
 int msqid;
 int msgflg = IPC_CREAT | 0666;
 key_t key;
 message_buf sbuf;
 size_t buf_length;

 /*
 * Get the message queue id for the
 * "name" 1234, which was created by
 * the server.
 */
 key = 1234;

(void) fprintf(stderr, "\nmsgget: Calling msgget(%#lx,\
%#o)\n",
key, msgflg);

 if ((msqid = msgget(key, msgflg)) < 0) {
 perror("msgget");
 exit(1);
 }
 else
 (void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid);

 /*
 * We'll send message type 1
 */

 sbuf.mtype = 1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sbuf.mtype = 1;

 (void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid);

 (void) strcpy(sbuf.mtext, "Did you get this?");

 (void) fprintf(stderr,"msgget: msgget succeeded: msqid = %d\n", msqid);

 buf_length = strlen(sbuf.mtext) + 1 ;

 /*
 * Send a message.
 */
 if (msgsnd(msqid, &sbuf, buf_length, IPC_NOWAIT) < 0) {
 printf ("%d, %d, %s, %d\n", msqid, sbuf.mtype, sbuf.mtext, buf_length);
 perror("msgsnd");
 exit(1);
 }

 else
 printf("Message: \"%s\" Sent\n", sbuf.mtext);

 exit(0);
}

The essential points to note here are:

The Message queue is created with a basic key and message flag
msgflg = IPC_CREAT | 0666 -- create queue and make it read and
appendable by all.
A message of type (sbuf.mtype) 1 is sent to the queue with the
message ``Did you get this?''

message_rec.c -- receiving the above message
The full code listing for message_send.c's companion process,
message_rec.c is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdio.h>

#define MSGSZ 128

/*
 * Declare the message structure.
 */

typedef struct msgbuf {
 long mtype;
 char mtext[MSGSZ];
} message_buf;

main()
{
 int msqid;
 key_t key;
 message_buf rbuf;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 message_buf rbuf;

 /*
 * Get the message queue id for the
 * "name" 1234, which was created by
 * the server.
 */
 key = 1234;

 if ((msqid = msgget(key, 0666)) < 0) {
 perror("msgget");
 exit(1);
 }

 /*
 * Receive an answer of message type 1.
 */
 if (msgrcv(msqid, &rbuf, MSGSZ, 1, 0) < 0) {
 perror("msgrcv");
 exit(1);
 }

 /*
 * Print the answer.
 */
 printf("%s\n", rbuf.mtext);
 exit(0);
}

The essential points to note here are:

The Message queue is opened with msgget (message flag 0666) and the
same key as message_send.c.
A message of the same type 1 is received from the queue with the
message ``Did you get this?'' stored in rbuf.mtext.

Some further example message
queue programs
The following suite of programs can be used to investigate interactively a
variety of massage passing ideas (see exercises below).

The message queue must be initialised with the msgget.c program. The
effects of controlling the queue and sending and receiving messages can be
investigated with msgctl.c and msgop.c respectively.

msgget.c: Simple Program to illustrate msget()
/*
 * msgget.c: Illustrate the msgget() function.
 * This is a simple exerciser of the msgget() function. It prompts
 * for the arguments, makes the call, and reports the results.
 */

#include <stdio.h>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

extern void exit();
extern void perror();

main()
{
 key_t key; /* key to be passed to msgget() */
 int msgflg, /* msgflg to be passed to msgget() */
 msqid; /* return value from msgget() */

 (void) fprintf(stderr,
 "All numeric input is expected to follow C conventions:\n");
 (void) fprintf(stderr,
 "\t0x... is interpreted as hexadecimal,\n");
 (void) fprintf(stderr, "\t0... is interpreted as octal,\n");
 (void) fprintf(stderr, "\totherwise, decimal.\n");
 (void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
 (void) fprintf(stderr, "Enter key: ");
 (void) scanf("%li", &key);
 (void) fprintf(stderr, "\nExpected flags for msgflg argument
are:\n");
 (void) fprintf(stderr, "\tIPC_EXCL =\t%#8.8o\n", IPC_EXCL);
 (void) fprintf(stderr, "\tIPC_CREAT =\t%#8.8o\n", IPC_CREAT);
 (void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);
 (void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);
 (void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);
 (void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);
 (void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);
 (void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);
 (void) fprintf(stderr, "Enter msgflg value: ");
 (void) scanf("%i", &msgflg);

 (void) fprintf(stderr, "\nmsgget: Calling msgget(%#lx,
%#o)\n",
 key, msgflg);
 if ((msqid = msgget(key, msgflg)) == -1)
 {
 perror("msgget: msgget failed");
 exit(1);
 } else {
 (void) fprintf(stderr,
 "msgget: msgget succeeded: msqid = %d\n", msqid);
 exit(0);
 }
}

msgctl.cSample Program to Illustrate msgctl()
/*
 * msgctl.c: Illustrate the msgctl() function.
 *
 * This is a simple exerciser of the msgctl() function. It allows
 * you to perform one control operation on one message queue. It
 * gives up immediately if any control operation fails, so be
careful
 * not to set permissions to preclude read permission; you won't
be
 * able to reset the permissions with this code if you do.
 */
#include <stdio.h>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <time.h>

static void do_msgctl();
extern void exit();
extern void perror();
static char warning_message[] = "If you remove read permission
for \
 yourself, this program will fail frequently!";

main()
{
 struct msqid_ds buf; /* queue descriptor buffer for IPC_STAT
 and IP_SET commands */
 int cmd, /* command to be given to msgctl() */
 msqid; /* queue ID to be given to msgctl() */

 (void fprintf(stderr,
 "All numeric input is expected to follow C conventions:\n");
 (void) fprintf(stderr,
 "\t0x... is interpreted as hexadecimal,\n");
 (void) fprintf(stderr, "\t0... is interpreted as octal,\n");
 (void) fprintf(stderr, "\totherwise, decimal.\n");

 /* Get the msqid and cmd arguments for the msgctl() call. */
 (void) fprintf(stderr,
 "Please enter arguments for msgctls() as requested.");
 (void) fprintf(stderr, "\nEnter the msqid: ");
 (void) scanf("%i", &msqid);
 (void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);
 (void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);
 (void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);
 (void) fprintf(stderr, "\nEnter the value for the command: ");
 (void) scanf("%i", &cmd);

 switch (cmd) {
 case IPC_SET:
 /* Modify settings in the message queue control structure.
*/
 (void) fprintf(stderr, "Before IPC_SET, get current
values:");
 /* fall through to IPC_STAT processing */
 case IPC_STAT:
 /* Get a copy of the current message queue control
 * structure and show it to the user. */
 do_msgctl(msqid, IPC_STAT, &buf);
 (void) fprintf(stderr,]
 "msg_perm.uid = %d\n", buf.msg_perm.uid);
 (void) fprintf(stderr,
 "msg_perm.gid = %d\n", buf.msg_perm.gid);
 (void) fprintf(stderr,
 "msg_perm.cuid = %d\n", buf.msg_perm.cuid);
 (void) fprintf(stderr,
 "msg_perm.cgid = %d\n", buf.msg_perm.cgid);
 (void) fprintf(stderr, "msg_perm.mode = %#o, ",
 buf.msg_perm.mode);
 (void) fprintf(stderr, "access permissions = %#o\n",
 buf.msg_perm.mode & 0777);
 (void) fprintf(stderr, "msg_cbytes = %d\n",
 buf.msg_cbytes);
 (void) fprintf(stderr, "msg_qbytes = %d\n",
 buf.msg_qbytes);
 (void) fprintf(stderr, "msg_qnum = %d\n", buf.msg_qnum);
 (void) fprintf(stderr, "msg_lspid = %d\n",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (void) fprintf(stderr, "msg_lspid = %d\n",
 buf.msg_lspid);
 (void) fprintf(stderr, "msg_lrpid = %d\n",
 buf.msg_lrpid);
 (void) fprintf(stderr, "msg_stime = %s", buf.msg_stime ?
 ctime(&buf.msg_stime) : "Not Set\n");
 (void) fprintf(stderr, "msg_rtime = %s", buf.msg_rtime ?
 ctime(&buf.msg_rtime) : "Not Set\n");
 (void) fprintf(stderr, "msg_ctime = %s",
 ctime(&buf.msg_ctime));
 if (cmd == IPC_STAT)
 break;
 /* Now continue with IPC_SET. */
 (void) fprintf(stderr, "Enter msg_perm.uid: ");
 (void) scanf ("%hi", &buf.msg_perm.uid);
 (void) fprintf(stderr, "Enter msg_perm.gid: ");
 (void) scanf("%hi", &buf.msg_perm.gid);
 (void) fprintf(stderr, "%s\n", warning_message);
 (void) fprintf(stderr, "Enter msg_perm.mode: ");
 (void) scanf("%hi", &buf.msg_perm.mode);
 (void) fprintf(stderr, "Enter msg_qbytes: ");
 (void) scanf("%hi", &buf.msg_qbytes);
 do_msgctl(msqid, IPC_SET, &buf);
 break;
 case IPC_RMID:
 default:
 /* Remove the message queue or try an unknown command. */
 do_msgctl(msqid, cmd, (struct msqid_ds *)NULL);
 break;
 }
 exit(0);
}

/*
 * Print indication of arguments being passed to msgctl(), call
 * msgctl(), and report the results. If msgctl() fails, do not
 * return; this example doesn't deal with errors, it just reports
 * them.
 */
static void
do_msgctl(msqid, cmd, buf)
struct msqid_ds *buf; /* pointer to queue descriptor buffer */
int cmd, /* command code */
 msqid; /* queue ID */
{
 register int rtrn; /* hold area for return value from msgctl()
*/

 (void) fprintf(stderr, "\nmsgctl: Calling msgctl(%d, %d,
%s)\n",
 msqid, cmd, buf ? "&buf" : "(struct msqid_ds *)NULL");
 rtrn = msgctl(msqid, cmd, buf);
 if (rtrn == -1) {
 perror("msgctl: msgctl failed");
 exit(1);
 } else {
 (void) fprintf(stderr, "msgctl: msgctl returned %d\n",
 rtrn);
 }
}

msgop.c: Sample Program to Illustrate msgsnd()
and msgrcv()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/*
 * msgop.c: Illustrate the msgsnd() and msgrcv() functions.
 *
 * This is a simple exerciser of the message send and receive
 * routines. It allows the user to attempt to send and receive as
many
 * messages as wanted to or from one message queue.
 */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

static int ask();
extern void exit();
extern char *malloc();
extern void perror();

char first_on_queue[] = "-> first message on queue",
 full_buf[] = "Message buffer overflow. Extra message text\
 discarded.";

main()
{
 register int c; /* message text input */
 int choice; /* user's selected operation code */
 register int i; /* loop control for mtext */
 int msgflg; /* message flags for the operation */
 struct msgbuf *msgp; /* pointer to the message buffer */
 int msgsz; /* message size */
 long msgtyp; /* desired message type */
 int msqid, /* message queue ID to be used */
 maxmsgsz, /* size of allocated message buffer */
 rtrn; /* return value from msgrcv or msgsnd */
 (void) fprintf(stderr,
 "All numeric input is expected to follow C conventions:\n");
 (void) fprintf(stderr,
 "\t0x... is interpreted as hexadecimal,\n");
 (void) fprintf(stderr, "\t0... is interpreted as octal,\n");
 (void) fprintf(stderr, "\totherwise, decimal.\n");
 /* Get the message queue ID and set up the message buffer. */
 (void) fprintf(stderr, "Enter msqid: ");
 (void) scanf("%i", &msqid);
 /*
 * Note that <sys/msg.h> includes a definition of struct
msgbuf
 * with the mtext field defined as:
 * char mtext[1];
 * therefore, this definition is only a template, not a
structure
 * definition that you can use directly, unless you want only
to
 * send and receive messages of 0 or 1 byte. To handle this,
 * malloc an area big enough to contain the template - the size
 * of the mtext template field + the size of the mtext field
 * wanted. Then you can use the pointer returned by malloc as a
 * struct msgbuf with an mtext field of the size you want. Note
 * also that sizeof msgp->mtext is valid even though msgp
isn't
 * pointing to anything yet. Sizeof doesn't dereference msgp,
but
 * uses its type to figure out what you are asking about.
 */
 (void) fprintf(stderr,
 "Enter the message buffer size you want:");
 (void) scanf("%i", &maxmsgsz);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (void) scanf("%i", &maxmsgsz);
 if (maxmsgsz < 0) {
 (void) fprintf(stderr, "msgop: %s\n",
 "The message buffer size must be >= 0.");
 exit(1);
 }
 msgp = (struct msgbuf *)malloc((unsigned)(sizeof(struct
msgbuf)
 - sizeof msgp->mtext + maxmsgsz));
 if (msgp == NULL) {
 (void) fprintf(stderr, "msgop: %s %d byte messages.\n",
 "could not allocate message buffer for", maxmsgsz);
 exit(1);
 }
 /* Loop through message operations until the user is ready to
 quit. */
 while (choice = ask()) {
 switch (choice) {
 case 1: /* msgsnd() requested: Get the arguments, make the
 call, and report the results. */
 (void) fprintf(stderr, "Valid msgsnd message %s\n",
 "types are positive integers.");
 (void) fprintf(stderr, "Enter msgp->mtype: ");
 (void) scanf("%li", &msgp->mtype);
 if (maxmsgsz) {
 /* Since you've been using scanf, you need the loop
 below to throw away the rest of the input on the
 line after the entered mtype before you start
 reading the mtext. */
 while ((c = getchar()) != '\n' && c != EOF);
 (void) fprintf(stderr, "Enter a %s:\n",
 "one line message");
 for (i = 0; ((c = getchar()) != '\n'); i++) {
 if (i >= maxmsgsz) {
 (void) fprintf(stderr, "\n%s\n", full_buf);
 while ((c = getchar()) != '\n');
 break;
 }
 msgp->mtext[i] = c;
 }
 msgsz = i;
 } else
 msgsz = 0;
 (void) fprintf(stderr,"\nMeaningful msgsnd flag is:\n");
 (void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",
 IPC_NOWAIT);
 (void) fprintf(stderr, "Enter msgflg: ");
 (void) scanf("%i", &msgflg);
 (void) fprintf(stderr, "%s(%d, msgp, %d, %#o)\n",
 "msgop: Calling msgsnd", msqid, msgsz, msgflg);
 (void) fprintf(stderr, "msgp->mtype = %ld\n",
 msgp->mtype);
 (void) fprintf(stderr, "msgp->mtext = \"");
 for (i = 0; i < msgsz; i++)
 (void) fputc(msgp->mtext[i], stderr);
 (void) fprintf(stderr, "\"\n");
 rtrn = msgsnd(msqid, msgp, msgsz, msgflg);
 if (rtrn == -1)
 perror("msgop: msgsnd failed");
 else
 (void) fprintf(stderr,
 "msgop: msgsnd returned %d\n", rtrn);
 break;
 case 2: /* msgrcv() requested: Get the arguments, make the
 call, and report the results. */
 for (msgsz = -1; msgsz < 0 || msgsz > maxmsgsz;
 (void) scanf("%i", &msgsz))
 (void) fprintf(stderr, "%s (0 <= msgsz <= %d): ",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (void) fprintf(stderr, "%s (0 <= msgsz <= %d): ",
 "Enter msgsz", maxmsgsz);
 (void) fprintf(stderr, "msgtyp meanings:\n");
 (void) fprintf(stderr, "\t 0 %s\n", first_on_queue);
 (void) fprintf(stderr, "\t>0 %s of given type\n",
 first_on_queue);
 (void) fprintf(stderr, "\t<0 %s with type <= |msgtyp|\n",
 first_on_queue);
 (void) fprintf(stderr, "Enter msgtyp: ");
 (void) scanf("%li", &msgtyp);
 (void) fprintf(stderr,
 "Meaningful msgrcv flags are:\n");
 (void) fprintf(stderr, "\tMSG_NOERROR =\t%#8.8o\n",
 MSG_NOERROR);
 (void) fprintf(stderr, "\tIPC_NOWAIT =\t%#8.8o\n",
 IPC_NOWAIT);
 (void) fprintf(stderr, "Enter msgflg: ");
 (void) scanf("%i", &msgflg);
 (void) fprintf(stderr, "%s(%d, msgp, %d, %ld, %#o);\n",
 "msgop: Calling msgrcv", msqid, msgsz,
 msgtyp, msgflg);
 rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);
 if (rtrn == -1)
 perror("msgop: msgrcv failed");
 else {
 (void) fprintf(stderr, "msgop: %s %d\n",
 "msgrcv returned", rtrn);
 (void) fprintf(stderr, "msgp->mtype = %ld\n",
 msgp->mtype);
 (void) fprintf(stderr, "msgp->mtext is: \"");
 for (i = 0; i < rtrn; i++)
 (void) fputc(msgp->mtext[i], stderr);
 (void) fprintf(stderr, "\"\n");
 }
 break;
 default:
 (void) fprintf(stderr, "msgop: operation unknown\n");
 break;
 }
 }
 exit(0);
}

/*
 * Ask the user what to do next. Return the user's choice code.
 * Don't return until the user selects a valid choice.
 */
static
ask()
{
 int response; /* User's response. */

 do {
 (void) fprintf(stderr, "Your options are:\n");
 (void) fprintf(stderr, "\tExit =\t0 or Control-D\n");
 (void) fprintf(stderr, "\tmsgsnd =\t1\n");
 (void) fprintf(stderr, "\tmsgrcv =\t2\n");
 (void) fprintf(stderr, "Enter your choice: ");

 /* Preset response so "^D" will be interpreted as exit. */
 response = 0;
 (void) scanf("%i", &response);
 } while (response < 0 || response > 2);

 return(response);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Exercise 12755

Write a 2 programs that will both send and messages and construct the
following dialog between them

(Process 1) Sends the message "Are you hearing me?"
(Process 2) Receives the message and replies "Loud and Clear".
(Process 1) Receives the reply and then says "I can hear you too".

Exercise 12756

Compile the programs msgget.c, msgctl.c and msgop.c and then

investigate and understand fully the operations of the flags (access,
creation etc. permissions) you can set interactively in the programs.
Use the programs to:

Send and receive messages of two different message types.
Place several messages on the queue and inquire about the state
of the queue with msgctl.c. Add/delete a few messages (using
msgop.c and perform the inquiry once more.
Use msgctl.c to alter a message on the queue.
Use msgctl.c to delete a message from the queue.

Exercise 12757

Write a server program and two client programs so that the server can
communicate privately to each client individually via a single message
queue.

Exercise 12758

Implement a blocked or synchronous method of message passing using
signal interrupts.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Initializing a Semaphore Set
Controlling Semaphores
Semaphore Operations
POSIX Semaphores: <semaphore.h>
semaphore.c: Illustration of simple semaphore passing
Some further example semaphore programs

semget.c: Illustrate the semget() function
semctl.c: Illustrate the semctl() function
semop() Sample Program to Illustrate semop()

Exercises

IPC:Semaphores
 Semaphores are a programming construct designed by E. W. Dijkstra in the
late 1960s. Dijkstra's model was the operation of railroads: consider a stretch
of railroad in which there is a single track over which only one train at a time
is allowed. Guarding this track is a semaphore. A train must wait before
entering the single track until the semaphore is in a state that permits travel.
When the train enters the track, the semaphore changes state to prevent other
trains from entering the track. A train that is leaving this section of track must
again change the state of the semaphore to allow another train to enter. In the
computer version, a semaphore appears to be a simple integer. A process (or a
thread) waits for permission to proceed by waiting for the integer to become
0. The signal if it proceeds signals that this by performing incrementing the
integer by 1. When it is finished, the process changes the semaphore's value
by subtracting one from it.

Semaphores let processes query or alter status information. They are often
used to monitor and control the availability of system resources such as
shared memory segments.

Semaphores can be operated on as individual units or as elements in a set.
Because System V IPC semaphores can be in a large array, they are
extremely heavy weight. Much lighter weight semaphores are available in the
threads library (see man semaphore and also Chapter 30.3) and POSIX
semaphores (see below briefly). Threads library semaphores must be used
with mapped memory . A semaphore set consists of a control structure and an
array of individual semaphores. A set of semaphores can contain up to 25
elements.

In a similar fashion to message queues, the semaphore set must be initialized
using semget(); the semaphore creator can change its ownership or
permissions using semctl(); and semaphore operations are performed via the
semop() function. These are now discussed below:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Initializing a Semaphore Set
The function semget() initializes or gains access to a semaphore. It is
prototyped by:

int semget(key_t key, int nsems, int semflg);

When the call succeeds, it returns the semaphore ID (semid).

The key argument is a access value associated with the semaphore ID.

The nsems argument specifies the number of elements in a semaphore array.
The call fails when nsems is greater than the number of elements in an
existing array; when the correct count is not known, supplying 0 for this
argument ensures that it will succeed.

The semflg argument specifies the initial access permissions and creation
control flags.

The following code illustrates the semget() function.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

...
key_t key; /* key to pass to semget() */
int semflg; /* semflg to pass tosemget() */
int nsems; /* nsems to pass to semget() */
int semid; /* return value from semget() */

...

key = ...
nsems = ...
semflg =
if ((semid = semget(key, nsems, semflg)) == -1) {
 perror("semget: semget failed");
 exit(1); }
else
 ...

Controlling Semaphores
semctl() changes permissions and other characteristics of a semaphore set. It
is prototyped as follows:

int semctl(int semid, int semnum, int cmd, union semun arg);

It must be called with a valid semaphore ID, semid. The semnum value selects
a semaphore within an array by its index. The cmd argument is one of the
following control flags:

GETVAL
-- Return the value of a single semaphore.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SETVAL
-- Set the value of a single semaphore. In this case, arg is taken as
arg.val, an int.

GETPID
-- Return the PID of the process that performed the last operation on the
semaphore or array.

GETNCNT
-- Return the number of processes waiting for the value of a semaphore
to increase.

GETZCNT
-- Return the number of processes waiting for the value of a particular
semaphore to reach zero.

GETALL
-- Return the values for all semaphores in a set. In this case, arg is
taken as arg.array, a pointer to an array of unsigned shorts (see
below).

SETALL
-- Set values for all semaphores in a set. In this case, arg is taken as
arg.array, a pointer to an array of unsigned shorts.

IPC_STAT
-- Return the status information from the control structure for the
semaphore set and place it in the data structure pointed to by arg.buf,
a pointer to a buffer of type semid_ds.

IPC_SET
-- Set the effective user and group identification and permissions. In
this case, arg is taken as arg.buf.

IPC_RMID
-- Remove the specified semaphore set.

A process must have an effective user identification of owner, creator, or
superuser to perform an IPC_SET or IPC_RMID command. Read and write
permission is required as for the other control commands. The following code
illustrates semctl ().

The fourth argument union semun arg is optional, depending upon the
operation requested. If required it is of type union semun, which must be
explicitly declared by the application program as:

 union semun {
 int val;
 struct semid_ds *buf;
 ushort *array;
 } arg;

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

union semun {
 int val;
 struct semid_ds *buf;
 ushort *array;
 } arg;

int i;
int semnum =;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int semnum =;
int cmd = GETALL; /* get value */

...
i = semctl(semid, semnum, cmd, arg);
if (i == -1) {
 perror("semctl: semctl failed");
 exit(1);
 }
else
...

Semaphore Operations
semop() performs operations on a semaphore set. It is prototyped by:

int semop(int semid, struct sembuf *sops, size_t nsops);

The semid argument is the semaphore ID returned by a previous semget()
call. The sops argument is a pointer to an array of structures, each containing
the following information about a semaphore operation:

The semaphore number
The operation to be performed
Control flags, if any.

The sembuf structure specifies a semaphore operation, as defined in
<sys/sem.h>.

struct sembuf {
 ushort_t sem_num; /* semaphore number */
 short sem_op; /* semaphore operation */
 short sem_flg; /* operation flags */
};

The nsops argument specifies the length of the array, the maximum size of
which is determined by the SEMOPM configuration option; this is the maximum
number of operations allowed by a single semop() call, and is set to 10 by
default. The operation to be performed is determined as follows:

A positive integer increments the semaphore value by that amount.
A negative integer decrements the semaphore value by that amount. An
attempt to set a semaphore to a value less than zero fails or blocks,
depending on whether IPC_NOWAIT is in effect.
A value of zero means to wait for the semaphore value to reach zero.

There are two control flags that can be used with semop():

IPC_NOWAIT
-- Can be set for any operations in the array. Makes the function return
without changing any semaphore value if any operation for which
IPC_NOWAIT is set cannot be performed. The function fails if it tries to
decrement a semaphore more than its current value, or tests a nonzero
semaphore to be equal to zero.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SEM_UNDO
-- Allows individual operations in the array to be undone when the
process exits.

This function takes a pointer, sops, to an array of semaphore operation
structures. Each structure in the array contains data about an operation to
perform on a semaphore. Any process with read permission can test whether
a semaphore has a zero value. To increment or decrement a semaphore
requires write permission. When an operation fails, none of the semaphores is
altered.

The process blocks (unless the IPC_NOWAIT flag is set), and remains blocked
until:

the semaphore operations can all finish, so the call succeeds,
the process receives a signal, or
the semaphore set is removed.

Only one process at a time can update a semaphore. Simultaneous requests by
different processes are performed in an arbitrary order. When an array of
operations is given by a semop() call, no updates are done until all operations
on the array can finish successfully.

If a process with exclusive use of a semaphore terminates abnormally and
fails to undo the operation or free the semaphore, the semaphore stays locked
in memory in the state the process left it. To prevent this, the SEM_UNDO
control flag makes semop() allocate an undo structure for each semaphore
operation, which contains the operation that returns the semaphore to its
previous state. If the process dies, the system applies the operations in the
undo structures. This prevents an aborted process from leaving a semaphore
set in an inconsistent state. If processes share access to a resource controlled
by a semaphore, operations on the semaphore should not be made with
SEM_UNDO in effect. If the process that currently has control of the resource
terminates abnormally, the resource is presumed to be inconsistent. Another
process must be able to recognize this to restore the resource to a consistent
state. When performing a semaphore operation with SEM_UNDO in effect, you
must also have it in effect for the call that will perform the reversing
operation. When the process runs normally, the reversing operation updates
the undo structure with a complementary value. This ensures that, unless the
process is aborted, the values applied to the undo structure are cancel to zero.
When the undo structure reaches zero, it is removed.

NOTE:Using SEM_UNDO inconsistently can lead to excessive resource
consumption because allocated undo structures might not be freed until the
system is rebooted.

The following code illustrates the semop() function:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

...
int i;
int nsops; /* number of operations to do */
int semid; /* semid of semaphore set */
struct sembuf *sops; /* ptr to operations to perform */

...

if ((semid = semop(semid, sops, nsops)) == -1)
{
 perror("semop: semop failed");
 exit(1);
}
else
(void) fprintf(stderr, "semop: returned %d\n", i);
...

POSIX Semaphores:
<semaphore.h>
POSIX semaphores are much lighter weight than are System V semaphores.
A POSIX semaphore structure defines a single semaphore, not an array of up
to twenty five semaphores. The POSIX semaphore functions are:

sem_open() -- Connects to, and optionally creates, a named semaphore

sem_init() -- Initializes a semaphore structure (internal to the calling
program, so not a named semaphore).

sem_close() -- Ends the connection to an open semaphore.

sem_unlink() -- Ends the connection to an open semaphore and causes the
semaphore to be removed when the last process closes it.

sem_destroy() -- Initializes a semaphore structure (internal to the calling
program, so not a named semaphore).

sem_getvalue() -- Copies the value of the semaphore into the specified
integer.

sem_wait(), sem_trywait() -- Blocks while the semaphore is held by other
processes or returns an error if the semaphore is held by another process.

sem_post() -- Increments the count of the semaphore.

The basic operation of these functions is essence the same as described above,
except note there are more specialised functions, here. These are not
discussed further here and the reader is referred to the online man pages for
further details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

semaphore.c: Illustration of simple
semaphore passing
/* semaphore.c --- simple illustration of dijkstra's semaphore analogy
 *
 * We fork() a child process so that we have two processes running:
 * Each process communicates via a semaphore.
 * The respective process can only do its work (not much here)
 * When it notices that the semaphore track is free when it returns to 0
 * Each process must modify the semaphore accordingly
 */

 #include <stdio.h>
 #include <sys/types.h>
 #include <sys/ipc.h>
 #include <sys/sem.h>

 union semun {
 int val;
 struct semid_ds *buf;
 ushort *array;
 };

main()
{ int i,j;
 int pid;
 int semid; /* semid of semaphore set */
 key_t key = 1234; /* key to pass to semget() */
 int semflg = IPC_CREAT | 0666; /* semflg to pass to semget() */
 int nsems = 1; /* nsems to pass to semget() */
 int nsops; /* number of operations to do */
 struct sembuf *sops = (struct sembuf *) malloc(2*sizeof(struct sembuf));
 /* ptr to operations to perform */

 /* set up semaphore */

 (void) fprintf(stderr, "\nsemget: Setting up seamaphore: semget(%#lx, %\
%#o)\n",key, nsems, semflg);
 if ((semid = semget(key, nsems, semflg)) == -1) {
 perror("semget: semget failed");
 exit(1);
 } else
 (void) fprintf(stderr, "semget: semget succeeded: semid =\
%d\n", semid);

 /* get child process */

 if ((pid = fork()) < 0) {
 perror("fork");
 exit(1);
 }

if (pid == 0)
 { /* child */
 i = 0;

 while (i < 3) {/* allow for 3 semaphore sets */

 nsops = 2;

 /* wait for semaphore to reach zero */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* wait for semaphore to reach zero */

 sops[0].sem_num = 0; /* We only use one track */
 sops[0].sem_op = 0; /* wait for semaphore flag to become zero */
 sops[0].sem_flg = SEM_UNDO; /* take off semaphore asynchronous */

 sops[1].sem_num = 0;
 sops[1].sem_op = 1; /* increment semaphore -- take control of track */
 sops[1].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore

 /* Recap the call to be made. */

 (void) fprintf(stderr,"\nsemop:Child Calling semop(%d, &sops, %d) with:", semid, nsops);
 for (j = 0; j < nsops; j++)
 {
 (void) fprintf(stderr, "\n\tsops[%d].sem_num = %d, ", j, sops[j].sem_num);
 (void) fprintf(stderr, "sem_op = %d, ", sops[j].sem_op);
 (void) fprintf(stderr, "sem_flg = %#o\n", sops[j].sem_flg);
 }

 /* Make the semop() call and report the results. */
 if ((j = semop(semid, sops, nsops)) == -1) {
 perror("semop: semop failed");
 }
 else
 {
 (void) fprintf(stderr, "\tsemop: semop returned %d\n", j);

 (void) fprintf(stderr, "\n\nChild Process Taking Control of Track:
 sleep(5); /* DO Nothing for 5 seconds */

 nsops = 1;

 /* wait for semaphore to reach zero */
 sops[0].sem_num = 0;
 sops[0].sem_op = -1; /* Give UP COntrol of track */
 sops[0].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore, asynchronous

 if ((j = semop(semid, sops, nsops)) == -1) {
 perror("semop: semop failed");
 }
 else
 (void) fprintf(stderr, "Child Process Giving up Control of Track: %d/3 times\n", i+1);
 sleep(5); /* halt process to allow parent to catch semaphor change first
 }
 ++i;
 }

 }
 else /* parent */
 { /* pid hold id of child */

 i = 0;

 while (i < 3) { /* allow for 3 semaphore sets */

 nsops = 2;

 /* wait for semaphore to reach zero */
 sops[0].sem_num = 0;
 sops[0].sem_op = 0; /* wait for semaphore flag to become zero */
 sops[0].sem_flg = SEM_UNDO; /* take off semaphore asynchronous */

 sops[1].sem_num = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sops[1].sem_num = 0;
 sops[1].sem_op = 1; /* increment semaphore -- take control of track */
 sops[1].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore */

 /* Recap the call to be made. */

 (void) fprintf(stderr,"\nsemop:Parent Calling semop(%d, &sops, %d) with:", semid, nsops);
 for (j = 0; j < nsops; j++)
 {
 (void) fprintf(stderr, "\n\tsops[%d].sem_num = %d, ", j, sops[j].sem_num);
 (void) fprintf(stderr, "sem_op = %d, ", sops[j].sem_op);
 (void) fprintf(stderr, "sem_flg = %#o\n", sops[j].sem_flg);
 }

 /* Make the semop() call and report the results. */
 if ((j = semop(semid, sops, nsops)) == -1) {
 perror("semop: semop failed");
 }
 else
 {
 (void) fprintf(stderr, "semop: semop returned %d\n", j);

 (void) fprintf(stderr, "Parent Process Taking Control of Track: %d/3 times\n", i+1);
 sleep(5); /* Do nothing for 5 seconds */

 nsops = 1;

 /* wait for semaphore to reach zero */
 sops[0].sem_num = 0;
 sops[0].sem_op = -1; /* Give UP COntrol of track */
 sops[0].sem_flg = SEM_UNDO | IPC_NOWAIT; /* take off semaphore, asynchronous */

 if ((j = semop(semid, sops, nsops)) == -1) {
 perror("semop: semop failed");
 }
 else
 (void) fprintf(stderr, "Parent Process Giving up Control of Track: %d/3 times\n",
 sleep(5); /* halt process to allow child to catch semaphor change first */
 }
 ++i;

 }

 }
}

The key elements of this program are as follows:

After a semaphore is created with as simple key 1234, two prcesses are
forked.
Each process (parent and child) essentially performs the same
operations:

Each process accesses the same semaphore track (
sops[].sem_num = 0).
Each process waits for the track to become free and then
attempts to take control of track

This is achieved by setting appropriate sops[].sem_op values in
the array.

Once the process has control it sleeps for 5 seconds (in reality
some processing would take place in place of this simple
illustration)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The process then gives up control of the track sops[1].sem_op
= -1
an additional sleep operation is then performed to ensure that the
other process has time to access the semaphore before a
subsequent (same process) semaphore read.

Note: There is no synchronisation here in this simple example an
we have no control over how the OS will schedule the processes.

Some further example semaphore
programs
The following suite of programs can be used to investigate interactively a
variety of semaphore ideas (see exercises below).

The semaphore must be initialised with the semget.c program. The effects of
controlling the semaphore queue and sending and receiving semaphore can be
investigated with semctl.c and semop.c respectively.

semget.c: Illustrate the semget() function
/*
 * semget.c: Illustrate the semget() function.
 *
 * This is a simple exerciser of the semget() function. It prompts
 * for the arguments, makes the call, and reports the results.
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

extern void exit();
extern void perror();

main()
{
 key_t key; /* key to pass to semget() */
 int semflg; /* semflg to pass to semget() */
 int nsems; /* nsems to pass to semget() */
 int semid; /* return value from semget() */

 (void) fprintf(stderr,
 "All numeric input must follow C conventions:\n");
 (void) fprintf(stderr,
 "\t0x... is interpreted as hexadecimal,\n");
 (void) fprintf(stderr, "\t0... is interpreted as octal,\n");
 (void) fprintf(stderr, "\totherwise, decimal.\n");
 (void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
 (void) fprintf(stderr, "Enter key: ");
 (void) scanf("%li", &key);

 (void) fprintf(stderr, "Enter nsems value: ");
 (void) scanf("%i", &nsems);
 (void) fprintf(stderr, "\nExpected flags for semflg are:\n");
 (void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);
 (void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n",
IPC_CREAT);
 (void) fprintf(stderr, "\towner read = \t%#8.8o\n", 0400);
 (void) fprintf(stderr, "\towner alter = \t%#8.8o\n", 0200);
 (void) fprintf(stderr, "\tgroup read = \t%#8.8o\n", 040);
 (void) fprintf(stderr, "\tgroup alter = \t%#8.8o\n", 020);
 (void) fprintf(stderr, "\tother read = \t%#8.8o\n", 04);
 (void) fprintf(stderr, "\tother alter = \t%#8.8o\n", 02);
 (void) fprintf(stderr, "Enter semflg value: ");
 (void) scanf("%i", &semflg);
 (void) fprintf(stderr, "\nsemget: Calling semget(%#lx, %
 %#o)\n",key, nsems, semflg);
 if ((semid = semget(key, nsems, semflg)) == -1) {
 perror("semget: semget failed");
 exit(1);
 } else {
 (void) fprintf(stderr, "semget: semget succeeded: semid =
%d\n",
 semid);
 exit(0);
 }
}

semctl.c: Illustrate the semctl() function
/*
 * semctl.c: Illustrate the semctl() function.
 *
 * This is a simple exerciser of the semctl() function. It lets you
 * perform one control operation on one semaphore set. It gives up
 * immediately if any control operation fails, so be careful not
to
 * set permissions to preclude read permission; you won't be able
to
 * reset the permissions with this code if you do.
 */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <time.h>

struct semid_ds semid_ds;

static void do_semctl();
static void do_stat();
extern char *malloc();
extern void exit();
extern void perror();

char warning_message[] = "If you remove read permission\
 for yourself, this program will fail frequently!";

main()
{
 union semun arg; /* union to pass to semctl() */
 int cmd, /* command to give to semctl() */
 i, /* work area */
 semid, /* semid to pass to semctl() */
 semnum; /* semnum to pass to semctl() */

 (void) fprintf(stderr,
 "All numeric input must follow C conventions:\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "All numeric input must follow C conventions:\n");
 (void) fprintf(stderr,
 "\t0x... is interpreted as hexadecimal,\n");
 (void) fprintf(stderr, "\t0... is interpreted as octal,\n");
 (void) fprintf(stderr, "\totherwise, decimal.\n");
 (void) fprintf(stderr, "Enter semid value: ");
 (void) scanf("%i", &semid);

 (void) fprintf(stderr, "Valid semctl cmd values are:\n");
 (void) fprintf(stderr, "\tGETALL = %d\n", GETALL);
 (void) fprintf(stderr, "\tGETNCNT = %d\n", GETNCNT);
 (void) fprintf(stderr, "\tGETPID = %d\n", GETPID);
 (void) fprintf(stderr, "\tGETVAL = %d\n", GETVAL);
 (void) fprintf(stderr, "\tGETZCNT = %d\n", GETZCNT);
 (void) fprintf(stderr, "\tIPC_RMID = %d\n", IPC_RMID);
 (void) fprintf(stderr, "\tIPC_SET = %d\n", IPC_SET);
 (void) fprintf(stderr, "\tIPC_STAT = %d\n", IPC_STAT);
 (void) fprintf(stderr, "\tSETALL = %d\n", SETALL);
 (void) fprintf(stderr, "\tSETVAL = %d\n", SETVAL);
 (void) fprintf(stderr, "\nEnter cmd: ");
 (void) scanf("%i", &cmd);

 /* Do some setup operations needed by multiple commands. */
 switch (cmd) {
 case GETVAL:
 case SETVAL:
 case GETNCNT:
 case GETZCNT:
 /* Get the semaphore number for these commands. */
 (void) fprintf(stderr, "\nEnter semnum value: ");
 (void) scanf("%i", &semnum);
 break;
 case GETALL:
 case SETALL:
 /* Allocate a buffer for the semaphore values. */
 (void) fprintf(stderr,
 "Get number of semaphores in the set.\n");
 arg.buf = &semid_ds;
 do_semctl(semid, 0, IPC_STAT, arg);
 if (arg.array =
 (ushort *)malloc((unsigned)
 (semid_ds.sem_nsems * sizeof(ushort)))) {
 /* Break out if you got what you needed. */
 break;
 }
 (void) fprintf(stderr,
 "semctl: unable to allocate space for %d values\n",
 semid_ds.sem_nsems);
 exit(2);
 }

 /* Get the rest of the arguments needed for the specified
 command. */
 switch (cmd) {
 case SETVAL:
 /* Set value of one semaphore. */
 (void) fprintf(stderr, "\nEnter semaphore value: ");
 (void) scanf("%i", &arg.val);
 do_semctl(semid, semnum, SETVAL, arg);
 /* Fall through to verify the result. */
 (void) fprintf(stderr,
 "Do semctl GETVAL command to verify results.\n");
 case GETVAL:
 /* Get value of one semaphore. */
 arg.val = 0;
 do_semctl(semid, semnum, GETVAL, arg);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 do_semctl(semid, semnum, GETVAL, arg);
 break;
 case GETPID:
 /* Get PID of last process to successfully complete a
 semctl(SETVAL), semctl(SETALL), or semop() on the
 semaphore. */
 arg.val = 0;
 do_semctl(semid, 0, GETPID, arg);
 break;
 case GETNCNT:
 /* Get number of processes waiting for semaphore value to
 increase. */
 arg.val = 0;
 do_semctl(semid, semnum, GETNCNT, arg);
 break;
 case GETZCNT:
 /* Get number of processes waiting for semaphore value to
 become zero. */
 arg.val = 0;
 do_semctl(semid, semnum, GETZCNT, arg);
 break;
 case SETALL:
 /* Set the values of all semaphores in the set. */
 (void) fprintf(stderr,
 "There are %d semaphores in the set.\n",
 semid_ds.sem_nsems);
 (void) fprintf(stderr, "Enter semaphore values:\n");
 for (i = 0; i < semid_ds.sem_nsems; i++) {
 (void) fprintf(stderr, "Semaphore %d: ", i);
 (void) scanf("%hi", &arg.array[i]);
 }
 do_semctl(semid, 0, SETALL, arg);
 /* Fall through to verify the results. */
 (void) fprintf(stderr,
 "Do semctl GETALL command to verify results.\n");
 case GETALL:
 /* Get and print the values of all semaphores in the
 set.*/
 do_semctl(semid, 0, GETALL, arg);
 (void) fprintf(stderr,
 "The values of the %d semaphores are:\n",
 semid_ds.sem_nsems);
 for (i = 0; i < semid_ds.sem_nsems; i++)
 (void) fprintf(stderr, "%d ", arg.array[i]);
 (void) fprintf(stderr, "\n");
 break;
 case IPC_SET:
 /* Modify mode and/or ownership. */
 arg.buf = &semid_ds;
 do_semctl(semid, 0, IPC_STAT, arg);
 (void) fprintf(stderr, "Status before IPC_SET:\n");
 do_stat();
 (void) fprintf(stderr, "Enter sem_perm.uid value: ");
 (void) scanf("%hi", &semid_ds.sem_perm.uid);
 (void) fprintf(stderr, "Enter sem_perm.gid value: ");
 (void) scanf("%hi", &semid_ds.sem_perm.gid);
 (void) fprintf(stderr, "%s\n", warning_message);
 (void) fprintf(stderr, "Enter sem_perm.mode value: ");
 (void) scanf("%hi", &semid_ds.sem_perm.mode);
 do_semctl(semid, 0, IPC_SET, arg);
 /* Fall through to verify changes. */
 (void) fprintf(stderr, "Status after IPC_SET:\n");
 case IPC_STAT:
 /* Get and print current status. */
 arg.buf = &semid_ds;
 do_semctl(semid, 0, IPC_STAT, arg);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 do_semctl(semid, 0, IPC_STAT, arg);
 do_stat();
 break;
 case IPC_RMID:
 /* Remove the semaphore set. */
 arg.val = 0;
 do_semctl(semid, 0, IPC_RMID, arg);
 break;
 default:
 /* Pass unknown command to semctl. */
 arg.val = 0;
 do_semctl(semid, 0, cmd, arg);
 break;
 }
 exit(0);
}

/*
 * Print indication of arguments being passed to semctl(), call
 * semctl(), and report the results. If semctl() fails, do not
 * return; this example doesn't deal with errors, it just reports
 * them.
 */
static void
do_semctl(semid, semnum, cmd, arg)
union semun arg;
int cmd,
 semid,
 semnum;
{
 register int i; /* work area */

 void) fprintf(stderr, "\nsemctl: Calling semctl(%d, %d, %d,
",
 semid, semnum, cmd);
 switch (cmd) {
 case GETALL:
 (void) fprintf(stderr, "arg.array = %#x)\n",
 arg.array);
 break;
 case IPC_STAT:
 case IPC_SET:
 (void) fprintf(stderr, "arg.buf = %#x)\n", arg.buf);
 break;
 case SETALL:
 (void) fprintf(stderr, "arg.array = [", arg.buf);
 for (i = 0;i < semid_ds.sem_nsems;) {
 (void) fprintf(stderr, "%d", arg.array[i++]);
 if (i < semid_ds.sem_nsems)
 (void) fprintf(stderr, ", ");
 }
 (void) fprintf(stderr, "])\n");
 break;
 case SETVAL:
 default:
 (void) fprintf(stderr, "arg.val = %d)\n", arg.val);
 break;
 }
 i = semctl(semid, semnum, cmd, arg);
 if (i == -1) {
 perror("semctl: semctl failed");
 exit(1);
 }
 (void) fprintf(stderr, "semctl: semctl returned %d\n", i);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (void) fprintf(stderr, "semctl: semctl returned %d\n", i);
 return;
}

/*
 * Display contents of commonly used pieces of the status
structure.
 */
static void
do_stat()
{
 (void) fprintf(stderr, "sem_perm.uid = %d\n",
 semid_ds.sem_perm.uid);
 (void) fprintf(stderr, "sem_perm.gid = %d\n",
 semid_ds.sem_perm.gid);
 (void) fprintf(stderr, "sem_perm.cuid = %d\n",
 semid_ds.sem_perm.cuid);
 (void) fprintf(stderr, "sem_perm.cgid = %d\n",
 semid_ds.sem_perm.cgid);
 (void) fprintf(stderr, "sem_perm.mode = %#o, ",
 semid_ds.sem_perm.mode);
 (void) fprintf(stderr, "access permissions = %#o\n",
 semid_ds.sem_perm.mode & 0777);
 (void) fprintf(stderr, "sem_nsems = %d\n",
semid_ds.sem_nsems);
 (void) fprintf(stderr, "sem_otime = %s", semid_ds.sem_otime ?
 ctime(&semid_ds.sem_otime) : "Not Set\n");
 (void) fprintf(stderr, "sem_ctime = %s",
 ctime(&semid_ds.sem_ctime));
}

semop() Sample Program to Illustrate semop()
/*
 * semop.c: Illustrate the semop() function.
 *
 * This is a simple exerciser of the semop() function. It lets you
 * to set up arguments for semop() and make the call. It then
reports
 * the results repeatedly on one semaphore set. You must have read
 * permission on the semaphore set or this exerciser will fail.
(It
 * needs read permission to get the number of semaphores in the set
 * and to report the values before and after calls to semop().)
 */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

static int ask();
extern void exit();
extern void free();
extern char *malloc();
extern void perror();

static struct semid_ds semid_ds; /* status of semaphore set */

static char error_mesg1[] = "semop: Can't allocate space for %d\
 semaphore values. Giving up.\n";
static char error_mesg2[] = "semop: Can't allocate space for %d\
 sembuf structures. Giving up.\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sembuf structures. Giving up.\n";

main()
{
 register int i; /* work area */
 int nsops; /* number of operations to do */
 int semid; /* semid of semaphore set */
 struct sembuf *sops; /* ptr to operations to perform */

 (void) fprintf(stderr,
 "All numeric input must follow C conventions:\n");
 (void) fprintf(stderr,
 "\t0x... is interpreted as hexadecimal,\n");
 (void) fprintf(stderr, "\t0... is interpreted as octal,\n");
 (void) fprintf(stderr, "\totherwise, decimal.\n");
 /* Loop until the invoker doesn't want to do anymore. */
 while (nsops = ask(&semid, &sops)) {
 /* Initialize the array of operations to be performed.*/
 for (i = 0; i < nsops; i++) {
 (void) fprintf(stderr,
 "\nEnter values for operation %d of %d.\n",
 i + 1, nsops);
 (void) fprintf(stderr,
 "sem_num(valid values are 0 <= sem_num < %d): ",
 semid_ds.sem_nsems);
 (void) scanf("%hi", &sops[i].sem_num);
 (void) fprintf(stderr, "sem_op: ");
 (void) scanf("%hi", &sops[i].sem_op);
 (void) fprintf(stderr,
 "Expected flags in sem_flg are:\n");
 (void) fprintf(stderr, "\tIPC_NOWAIT =\t%#6.6o\n",
 IPC_NOWAIT);
 (void) fprintf(stderr, "\tSEM_UNDO =\t%#6.6o\n",
 SEM_UNDO);
 (void) fprintf(stderr, "sem_flg: ");
 (void) scanf("%hi", &sops[i].sem_flg);
 }

 /* Recap the call to be made. */
 (void) fprintf(stderr,
 "\nsemop: Calling semop(%d, &sops, %d) with:",
 semid, nsops);
 for (i = 0; i < nsops; i++)
 {
 (void) fprintf(stderr, "\nsops[%d].sem_num = %d, ", i,
 sops[i].sem_num);
 (void) fprintf(stderr, "sem_op = %d, ", sops[i].sem_op);
 (void) fprintf(stderr, "sem_flg = %#o\n",
 sops[i].sem_flg);
 }

 /* Make the semop() call and report the results. */
 if ((i = semop(semid, sops, nsops)) == -1) {
 perror("semop: semop failed");
 } else {
 (void) fprintf(stderr, "semop: semop returned %d\n", i);
 }
 }
}

/*
 * Ask if user wants to continue.
 *
 * On the first call:
 * Get the semid to be processed and supply it to the caller.
 * On each call:
 * 1. Print current semaphore values.
 * 2. Ask user how many operations are to be performed on the next

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * 2. Ask user how many operations are to be performed on the next
 * call to semop. Allocate an array of sembuf structures
 * sufficient for the job and set caller-supplied pointer to
that
 * array. (The array is reused on subsequent calls if it is big
 * enough. If it isn't, it is freed and a larger array is
 * allocated.)
 */
static
ask(semidp, sopsp)
int *semidp; /* pointer to semid (used only the first time) */
struct sembuf **sopsp;
{
 static union semun arg; /* argument to semctl */
 int i; /* work area */
 static int nsops = 0; /* size of currently allocated
 sembuf array */
 static int semid = -1; /* semid supplied by user */
 static struct sembuf *sops; /* pointer to allocated array */

 if (semid < 0) {
 /* First call; get semid from user and the current state of
 the semaphore set. */
 (void) fprintf(stderr,
 "Enter semid of the semaphore set you want to use: ");
 (void) scanf("%i", &semid);
 *semidp = semid;
 arg.buf = &semid_ds;
 if (semctl(semid, 0, IPC_STAT, arg) == -1) {
 perror("semop: semctl(IPC_STAT) failed");
 /* Note that if semctl fails, semid_ds remains filled
 with zeros, so later test for number of semaphores will
 be zero. */
 (void) fprintf(stderr,
 "Before and after values are not printed.\n");
 } else {
 if ((arg.array = (ushort *)malloc(
 (unsigned)(sizeof(ushort) * semid_ds.sem_nsems)))
 == NULL) {
 (void) fprintf(stderr, error_mesg1,
 semid_ds.sem_nsems);
 exit(1);
 }
 }
 }
 /* Print current semaphore values. */
 if (semid_ds.sem_nsems) {
 (void) fprintf(stderr,
 "There are %d semaphores in the set.\n",
 semid_ds.sem_nsems);
 if (semctl(semid, 0, GETALL, arg) == -1) {
 perror("semop: semctl(GETALL) failed");
 } else {
 (void) fprintf(stderr, "Current semaphore values are:");
 for (i = 0; i < semid_ds.sem_nsems;
 (void) fprintf(stderr, " %d", arg.array[i++]));
 (void) fprintf(stderr, "\n");
 }
 }
 /* Find out how many operations are going to be done in the
next
 call and allocate enough space to do it. */
 (void) fprintf(stderr,
 "How many semaphore operations do you want %s\n",
 "on the next call to semop()?");
 (void) fprintf(stderr, "Enter 0 or control-D to quit: ");
 i = 0;
 if (scanf("%i", &i) == EOF || i == 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (scanf("%i", &i) == EOF || i == 0)
 exit(0);
 if (i > nsops) {
 if (nsops)
 free((char *)sops);
 nsops = i;
 if ((sops = (struct sembuf *)malloc((unsigned)(nsops *
 sizeof(struct sembuf)))) == NULL) {
 (void) fprintf(stderr, error_mesg2, nsops);
 exit(2);
 }
 }
 *sopsp = sops;
 return (i);
}

Exercises
Exercise 12763

Write 2 programs that will communicate both ways (i.e each process can
read and write) when run concurrently via semaphores.

Exercise 12764

Modify the semaphore.c program to handle synchronous semaphore
communication semaphores.

Exercise 12765

Write 3 programs that communicate together via semaphores according to the
following specifications: sem_server.c -- a program that can communicate
independently (on different semaphore tracks) with two clients programs.
sem_client1.c -- a program that talks to sem_server.c on one track.
sem_client2.c -- a program that talks to sem_server.c on another track to
sem_client1.c.

Exercise 12766

Compile the programs semget.c, semctl.c and semop.c and then

investigate and understand fully the operations of the flags (access,
creation etc. permissions) you can set interactively in the programs.
Use the prgrams to:

Send and receive semaphores of 3 different semaphore tracks.
Inquire about the state of the semaphore queue with semctl.c.
Add/delete a few semaphores (using semop.c and perform the
inquiry once more.
Use semctl.c to alter a semaphore on the queue.
Use semctl.c to delete a semaphore from the queue.

Dave Marshall

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Accessing a Shared Memory Segment
Controlling a Shared Memory Segment

Attaching and Detaching a Shared Memory Segment
Example two processes comunicating via shared memory:
shm_server.c, shm_client.c

shm_server.c
shm_client.c

POSIX Shared Memory
Mapped memory

Address Spaces and Mapping
Coherence
Creating and Using Mappings
Other Memory Control Functions

Some further example shared memory programs
shmget.c:Sample Program to Illustrate shmget()
shmctl.c: Sample Program to Illustrate shmctl()
shmop.c: Sample Program to Illustrate shmat() and shmdt()

Exercises

IPC:Shared Memory
Shared Memory is an efficeint means of passing data between programs. One
program will create a memory portion which other processes (if permitted)
can access.

In the Solaris 2.x operating system, the most efficient way to implement
shared memory applications is to rely on the mmap() function and on the
system's native virtual memory facility. Solaris 2.x also supports System V
shared memory, which is another way to let multiple processes attach a
segment of physical memory to their virtual address spaces. When write
access is allowed for more than one process, an outside protocol or
mechanism such as a semaphore can be used to prevent inconsistencies and
collisions.

A process creates a shared memory segment using shmget()|. The original
owner of a shared memory segment can assign ownership to another user
with shmctl(). It can also revoke this assignment. Other processes with
proper permission can perform various control functions on the shared
memory segment using shmctl(). Once created, a shared segment can be
attached to a process address space using shmat(). It can be detached using
shmdt() (see shmop()). The attaching process must have the appropriate
permissions for shmat(). Once attached, the process can read or write to the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

permissions for shmat(). Once attached, the process can read or write to the
segment, as allowed by the permission requested in the attach operation. A
shared segment can be attached multiple times by the same process. A shared
memory segment is described by a control structure with a unique ID that
points to an area of physical memory. The identifier of the segment is called
the shmid. The structure definition for the shared memory segment control
structures and prototypews can be found in <sys/shm.h>.

Accessing a Shared Memory
Segment
shmget() is used to obtain access to a shared memory segment. It is
prottyped by:

int shmget(key_t key, size_t size, int shmflg);

The key argument is a access value associated with the semaphore ID. The
size argument is the size in bytes of the requested shared memory. The
shmflg argument specifies the initial access permissions and creation control
flags.

When the call succeeds, it returns the shared memory segment ID. This call is
also used to get the ID of an existing shared segment (from a process
requesting sharing of some existing memory portion).

The following code illustrates shmget():

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

...

key_t key; /* key to be passed to shmget() */
int shmflg; /* shmflg to be passed to shmget() */
int shmid; /* return value from shmget() */
int size; /* size to be passed to shmget() */

...

key = ...
size = ...
shmflg) = ...

if ((shmid = shmget (key, size, shmflg)) == -1) {
 perror("shmget: shmget failed"); exit(1); } else {
 (void) fprintf(stderr, "shmget: shmget returned %d\n", shmid);
 exit(0);
 }
...

Controlling a Shared Memory Segment
shmctl() is used to alter the permissions and other characteristics of a shared
memory segment. It is prototyped as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

The process must have an effective shmid of owner, creator or superuser to
perform this command. The cmd argument is one of following control
commands:

SHM_LOCK
-- Lock the specified shared memory segment in memory. The process
must have the effective ID of superuser to perform this command.

SHM_UNLOCK
-- Unlock the shared memory segment. The process must have the
effective ID of superuser to perform this command.

IPC_STAT
-- Return the status information contained in the control structure and
place it in the buffer pointed to by buf. The process must have read
permission on the segment to perform this command.

IPC_SET
-- Set the effective user and group identification and access
permissions. The process must have an effective ID of owner, creator
or superuser to perform this command.

IPC_RMID
-- Remove the shared memory segment.

The buf is a sructure of type struct shmid_ds which is defined in
<sys/shm.h>

The following code illustrates shmctl():

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

...

int cmd; /* command code for shmctl() */
int shmid; /* segment ID */
struct shmid_ds shmid_ds; /* shared memory data structure to
 hold results */
...

shmid = ...
cmd = ...
if ((rtrn = shmctl(shmid, cmd, shmid_ds)) == -1) {
 perror("shmctl: shmctl failed");
 exit(1);
 }
...

Attaching and Detaching a Shared
Memory Segment
shmat() and shmdt() are used to attach and detach shared memory segments.
They are prototypes as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

shmat() returns a pointer, shmaddr, to the head of the shared segment
associated with a valid shmid. shmdt() detaches the shared memory segment
located at the address indicated by shmaddr

. The following code illustrates calls to shmat() and shmdt():

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

static struct state { /* Internal record of attached segments. */
 int shmid; /* shmid of attached segment */
 char *shmaddr; /* attach point */
 int shmflg; /* flags used on attach */
 } ap[MAXnap]; /* State of current attached segments. */
int nap; /* Number of currently attached segments. */

...

char *addr; /* address work variable */
register int i; /* work area */
register struct state *p; /* ptr to current state entry */
...

p = &ap[nap++];
p->shmid = ...
p->shmaddr = ...
p->shmflg = ...

p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);
if(p->shmaddr == (char *)-1) {
 perror("shmop: shmat failed");
 nap--;
 } else
 (void) fprintf(stderr, "shmop: shmat returned %#8.8x\n",
p->shmaddr);

...
i = shmdt(addr);
if(i == -1) {
 perror("shmop: shmdt failed");
 } else {
 (void) fprintf(stderr, "shmop: shmdt returned %d\n", i);

for (p = ap, i = nap; i--; p++)
 if (p->shmaddr == addr) *p = ap[--nap];

}
...

Example two processes
comunicating via shared memory:
shm_server.c, shm_client.c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shm_server.c, shm_client.c
We develop two programs here that illustrate the passing of a simple piece of
memery (a string) between the processes if running simulatenously:

shm_server.c
-- simply creates the string and shared memory portion.

shm_client.c
-- attaches itself to the created shared memory portion and uses the
string (printf.

The code listings of the 2 programs no follow:

shm_server.c
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSZ 27

main()
{
 char c;
 int shmid;
 key_t key;
 char *shm, *s;

 /*
 * We'll name our shared memory segment
 * "5678".
 */
 key = 5678;

 /*
 * Create the segment.
 */
 if ((shmid = shmget(key, SHMSZ, IPC_CREAT | 0666)) < 0) {
 perror("shmget");
 exit(1);
 }

 /*
 * Now we attach the segment to our data space.
 */
 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat");
 exit(1);
 }

 /*
 * Now put some things into the memory for the
 * other process to read.
 */
 s = shm;

 for (c = 'a'; c <= 'z'; c++)
 *s++ = c;
 *s = NULL;

 /*
 * Finally, we wait until the other process
 * changes the first character of our memory

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * changes the first character of our memory
 * to '*', indicating that it has read what
 * we put there.
 */
 while (*shm != '*')
 sleep(1);

 exit(0);
}

shm_client.c
/*
 * shm-client - client program to demonstrate shared memory.
 */
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>

#define SHMSZ 27

main()
{
 int shmid;
 key_t key;
 char *shm, *s;

 /*
 * We need to get the segment named
 * "5678", created by the server.
 */
 key = 5678;

 /*
 * Locate the segment.
 */
 if ((shmid = shmget(key, SHMSZ, 0666)) < 0) {
 perror("shmget");
 exit(1);
 }

 /*
 * Now we attach the segment to our data space.
 */
 if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) {
 perror("shmat");
 exit(1);
 }

 /*
 * Now read what the server put in the memory.
 */
 for (s = shm; *s != NULL; s++)
 putchar(*s);
 putchar('\n');

 /*
 * Finally, change the first character of the
 * segment to '*', indicating we have read
 * the segment.
 */
 shm = '';

 exit(0);
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

POSIX Shared Memory
POSIX shared memory is actually a variation of mapped memory. The major
differences are to use shm_open() to open the shared memory object (instead
of calling open()) and use shm_unlink() to close and delete the object
(instead of calling close() which does not remove the object). The options in
shm_open() are substantially fewer than the number of options provided in
open().

Mapped memory
In a system with fixed memory (non-virtual), the address space of a process
occupies and is limited to a portion of the system's main memory. In Solaris
2.x virtual memory the actual address space of a process occupies a file in the
swap partition of disk storage (the file is called the backing store). Pages of
main memory buffer the active (or recently active) portions of the process
address space to provide code for the CPU(s) to execute and data for the
program to process.

A page of address space is loaded when an address that is not currently in
memory is accessed by a CPU, causing a page fault. Since execution cannot
continue until the page fault is resolved by reading the referenced address
segment into memory, the process sleeps until the page has been read. The
most obvious difference between the two memory systems for the application
developer is that virtual memory lets applications occupy much larger address
spaces. Less obvious advantages of virtual memory are much simpler and
more efficient file I/O and very efficient sharing of memory between
processes.

Address Spaces and Mapping
Since backing store files (the process address space) exist only in swap
storage, they are not included in the UNIX named file space. (This makes
backing store files inaccessible to other processes.) However, it is a simple
extension to allow the logical insertion of all, or part, of one, or more, named
files in the backing store and to treat the result as a single address space. This
is called mapping. With mapping, any part of any readable or writable file
can be logically included in a process's address space. Like any other portion
of the process's address space, no page of the file is not actually loaded into
memory until a page fault forces this action. Pages of memory are written to
the file only if their contents have been modified. So, reading from and
writing to files is completely automatic and very efficient. More than one
process can map a single named file. This provides very efficient memory
sharing between processes. All or part of other files can also be shared
between processes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Not all named file system objects can be mapped. Devices that cannot be
treated as storage, such as terminal and network device files, are examples of
objects that cannot be mapped. A process address space is defined by all of
the files (or portions of files) mapped into the address space. Each mapping is
sized and aligned to the page boundaries of the system on which the process
is executing. There is no memory associated with processes themselves.

A process page maps to only one object at a time, although an object address
may be the subject of many process mappings. The notion of a "page" is not a
property of the mapped object. Mapping an object only provides the potential
for a process to read or write the object's contents. Mapping makes the
object's contents directly addressable by a process. Applications can access
the storage resources they use directly rather than indirectly through read and
write. Potential advantages include efficiency (elimination of unnecessary
data copying) and reduced complexity (single-step updates rather than the
read, modify buffer, write cycle). The ability to access an object and have it
retain its identity over the course of the access is unique to this access
method, and facilitates the sharing of common code and data.

Because the file system name space includes any directory trees that are
connected from other systems via NFS, any networked file can also be
mapped into a process's address space.

Coherence
Whether to share memory or to share data contained in the file, when multiple
process map a file simultaneously there may be problems with simultaneous
access to data elements. Such processes can cooperate through any of the
synchronization mechanisms provided in Solaris 2.x. Because they are very
light weight, the most efficient synchronization mechanisms in Solaris 2.x are
the threads library ones.

Creating and Using Mappings
mmap() establishes a mapping of a named file system object (or part of one)
into a process address space. It is the basic memory management function and
it is very simple.

First open() the file, then
mmap() it with appropriate access and sharing options
Away you go.

mmap is prototypes as follows:

#include <sys/types.h>
#include <sys/mman.h>

caddr_t mmap(caddr_t addr, size_t len, int prot, int flags,
 int fildes, off_t off);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int fildes, off_t off);

The mapping established by mmap() replaces any previous mappings for
specified address range. The flags MAP_SHARED and MAP_PRIVATE specify the
mapping type, and one of them must be specified. MAP_SHARED specifies that
writes modify the mapped object. No further operations on the object are
needed to make the change. MAP_PRIVATE specifies that an initial write to the
mapped area creates a copy of the page and all writes reference the copy.
Only modified pages are copied.

A mapping type is retained across a fork(). The file descriptor used in a
mmap call need not be kept open after the mapping is established. If it is
closed, the mapping remains until the mapping is undone by munmap() or be
replacing in with a new mapping. If a mapped file is shortened by a call to
truncate, an access to the area of the file that no longer exists causes a SIGBUS
signal.

The following code fragment demonstrates a use of this to create a block of
scratch storage in a program, at an address that the system chooses.:

int fd;
caddr_t result;
if ((fd = open("/dev/zero", O_RDWR)) == -1)
 return ((caddr_t)-1);

result = mmap(0, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
(void) close(fd);

Other Memory Control Functions
int mlock(caddr_t addr, size_t len) causes the pages in the specified
address range to be locked in physical memory. References to locked pages
(in this or other processes) do not result in page faults that require an I/O
operation. This operation ties up physical resources and can disrupt normal
system operation, so, use of mlock() is limited to the superuser. The system
lets only a configuration dependent limit of pages be locked in memory. The
call to mlock fails if this limit is exceeded.

int munlock(caddr_t addr, size_t len) releases the locks on physical
pages. If multiple mlock() calls are made on an address range of a single
mapping, a single munlock call is release the locks. However, if different
mappings to the same pages are mlocked, the pages are not unlocked until the
locks on all the mappings are released. Locks are also released when a
mapping is removed, either through being replaced with an mmap operation
or removed with munmap. A lock is transferred between pages on the ``copy-
on-write' event associated with a MAP_PRIVATE mapping, thus locks on an
address range that includes MAP_PRIVATE mappings will be retained
transparently along with the copy-on-write redirection (see mmap above for a
discussion of this redirection)

int mlockall(int flags) and int munlockall(void) are similar to
mlock() and munlock(), but they operate on entire address spaces.
mlockall() sets locks on all pages in the address space and munlockall()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mlockall() sets locks on all pages in the address space and munlockall()
removes all locks on all pages in the address space, whether established by
mlock or mlockall.

int msync(caddr_t addr, size_t len, int flags) causes all modified
pages in the specified address range to be flushed to the objects mapped by
those addresses. It is similar to fsync() for files.

long sysconf(int name) returns the system dependent size of a memory
page. For portability, applications should not embed any constants specifying
the size of a page. Note that it is not unusual for page sizes to vary even
among implementations of the same instruction set.

int mprotect(caddr_t addr, size_t len, int prot) assigns the
specified protection to all pages in the specified address range. The protection
cannot exceed the permissions allowed on the underlying object.

int brk(void *endds) and void *sbrk(int incr) are called to add
storage to the data segment of a process. A process can manipulate this area
by calling brk() and sbrk(). brk() sets the system idea of the lowest data
segment location not used by the caller to addr (rounded up to the next
multiple of the system page size). sbrk() adds incr bytes to the caller data
space and returns a pointer to the start of the new data area.

Some further example shared
memory programs
The following suite of programs can be used to investigate interactively a
variety of shared ideas (see exercises below).

The semaphore must be initialised with the shmget.c program. The effects of
controlling shared memory and accessing can be investigated with shmctl.c
and shmop.c respectively.

shmget.c:Sample Program to Illustrate shmget()
/*
 * shmget.c: Illustrate the shmget() function.
 *
 * This is a simple exerciser of the shmget() function. It
prompts
 * for the arguments, makes the call, and reports the results.
 */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

extern void exit();
extern void perror();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extern void perror();

main()
{
 key_t key; /* key to be passed to shmget() */
 int shmflg; /* shmflg to be passed to shmget() */
 int shmid; /* return value from shmget() */
 int size; /* size to be passed to shmget() */

 (void) fprintf(stderr,
 "All numeric input is expected to follow C conventions:\n");
 (void) fprintf(stderr,
 "\t0x... is interpreted as hexadecimal,\n");
 (void) fprintf(stderr, "\t0... is interpreted as octal,\n");
 (void) fprintf(stderr, "\totherwise, decimal.\n");

 /* Get the key. */
 (void) fprintf(stderr, "IPC_PRIVATE == %#lx\n", IPC_PRIVATE);
 (void) fprintf(stderr, "Enter key: ");
 (void) scanf("%li", &key);

 /* Get the size of the segment. */
 (void) fprintf(stderr, "Enter size: ");
 (void) scanf("%i", &size);

 /* Get the shmflg value. */
 (void) fprintf(stderr,
 "Expected flags for the shmflg argument are:\n");
 (void) fprintf(stderr, "\tIPC_CREAT = \t%#8.8o\n",
IPC_CREAT);
 (void) fprintf(stderr, "\tIPC_EXCL = \t%#8.8o\n", IPC_EXCL);
 (void) fprintf(stderr, "\towner read =\t%#8.8o\n", 0400);
 (void) fprintf(stderr, "\towner write =\t%#8.8o\n", 0200);
 (void) fprintf(stderr, "\tgroup read =\t%#8.8o\n", 040);
 (void) fprintf(stderr, "\tgroup write =\t%#8.8o\n", 020);
 (void) fprintf(stderr, "\tother read =\t%#8.8o\n", 04);
 (void) fprintf(stderr, "\tother write =\t%#8.8o\n", 02);
 (void) fprintf(stderr, "Enter shmflg: ");
 (void) scanf("%i", &shmflg);

 /* Make the call and report the results. */
 (void) fprintf(stderr,
 "shmget: Calling shmget(%#lx, %d, %#o)\n",
 key, size, shmflg);
 if ((shmid = shmget (key, size, shmflg)) == -1) {
 perror("shmget: shmget failed");
 exit(1);
 } else {
 (void) fprintf(stderr,
 "shmget: shmget returned %d\n", shmid);
 exit(0);
 }
}

shmctl.c: Sample Program to Illustrate
shmctl()
/*
 * shmctl.c: Illustrate the shmctl() function.
 *
 * This is a simple exerciser of the shmctl() function. It lets you
 * to perform one control operation on one shared memory segment.
 * (Some operations are done for the user whether requested or
not.
 * It gives up immediately if any control operation fails. Be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * It gives up immediately if any control operation fails. Be
careful
 * not to set permissions to preclude read permission; you won't
be
 *able to reset the permissions with this code if you do.)
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <time.h>
static void do_shmctl();
extern void exit();
extern void perror();

main()
{
 int cmd; /* command code for shmctl() */
 int shmid; /* segment ID */
 struct shmid_ds shmid_ds; /* shared memory data structure to
 hold results */

 (void) fprintf(stderr,
 "All numeric input is expected to follow C conventions:\n");
 (void) fprintf(stderr,
 "\t0x... is interpreted as hexadecimal,\n");
 (void) fprintf(stderr, "\t0... is interpreted as octal,\n");
 (void) fprintf(stderr, "\totherwise, decimal.\n");

 /* Get shmid and cmd. */
 (void) fprintf(stderr,
 "Enter the shmid for the desired segment: ");
 (void) scanf("%i", &shmid);
 (void) fprintf(stderr, "Valid shmctl cmd values are:\n");
 (void) fprintf(stderr, "\tIPC_RMID =\t%d\n", IPC_RMID);
 (void) fprintf(stderr, "\tIPC_SET =\t%d\n", IPC_SET);
 (void) fprintf(stderr, "\tIPC_STAT =\t%d\n", IPC_STAT);
 (void) fprintf(stderr, "\tSHM_LOCK =\t%d\n", SHM_LOCK);
 (void) fprintf(stderr, "\tSHM_UNLOCK =\t%d\n", SHM_UNLOCK);
 (void) fprintf(stderr, "Enter the desired cmd value: ");
 (void) scanf("%i", &cmd);

 switch (cmd) {
 case IPC_STAT:
 /* Get shared memory segment status. */
 break;
 case IPC_SET:
 /* Set owner UID and GID and permissions. */
 /* Get and print current values. */
 do_shmctl(shmid, IPC_STAT, &shmid_ds);
 /* Set UID, GID, and permissions to be loaded. */
 (void) fprintf(stderr, "\nEnter shm_perm.uid: ");
 (void) scanf("%hi", &shmid_ds.shm_perm.uid);
 (void) fprintf(stderr, "Enter shm_perm.gid: ");
 (void) scanf("%hi", &shmid_ds.shm_perm.gid);
 (void) fprintf(stderr,
 "Note: Keep read permission for yourself.\n");
 (void) fprintf(stderr, "Enter shm_perm.mode: ");
 (void) scanf("%hi", &shmid_ds.shm_perm.mode);
 break;
 case IPC_RMID:
 /* Remove the segment when the last attach point is
 detached. */
 break;
 case SHM_LOCK:
 /* Lock the shared memory segment. */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* Lock the shared memory segment. */
 break;
 case SHM_UNLOCK:
 /* Unlock the shared memory segment. */
 break;
 default:
 /* Unknown command will be passed to shmctl. */
 break;
 }
 do_shmctl(shmid, cmd, &shmid_ds);
 exit(0);
}

/*
 * Display the arguments being passed to shmctl(), call shmctl(),
 * and report the results. If shmctl() fails, do not return; this
 * example doesn't deal with errors, it just reports them.
 */
static void
do_shmctl(shmid, cmd, buf)
int shmid, /* attach point */
 cmd; /* command code */
struct shmid_ds *buf; /* pointer to shared memory data structure */
{
 register int rtrn; /* hold area */

 (void) fprintf(stderr, "shmctl: Calling shmctl(%d, %d,
buf)\n",
 shmid, cmd);
 if (cmd == IPC_SET) {
 (void) fprintf(stderr, "\tbuf->shm_perm.uid == %d\n",
 buf->shm_perm.uid);
 (void) fprintf(stderr, "\tbuf->shm_perm.gid == %d\n",
 buf->shm_perm.gid);
 (void) fprintf(stderr, "\tbuf->shm_perm.mode == %#o\n",
 buf->shm_perm.mode);
 }
 if ((rtrn = shmctl(shmid, cmd, buf)) == -1) {
 perror("shmctl: shmctl failed");
 exit(1);
 } else {
 (void) fprintf(stderr,
 "shmctl: shmctl returned %d\n", rtrn);
 }
 if (cmd != IPC_STAT && cmd != IPC_SET)
 return;

 /* Print the current status. */
 (void) fprintf(stderr, "\nCurrent status:\n");
 (void) fprintf(stderr, "\tshm_perm.uid = %d\n",
 buf->shm_perm.uid);
 (void) fprintf(stderr, "\tshm_perm.gid = %d\n",
 buf->shm_perm.gid);
 (void) fprintf(stderr, "\tshm_perm.cuid = %d\n",
 buf->shm_perm.cuid);
 (void) fprintf(stderr, "\tshm_perm.cgid = %d\n",
 buf->shm_perm.cgid);
 (void) fprintf(stderr, "\tshm_perm.mode = %#o\n",
 buf->shm_perm.mode);
 (void) fprintf(stderr, "\tshm_perm.key = %#x\n",
 buf->shm_perm.key);
 (void) fprintf(stderr, "\tshm_segsz = %d\n", buf->shm_segsz);
 (void) fprintf(stderr, "\tshm_lpid = %d\n", buf->shm_lpid);
 (void) fprintf(stderr, "\tshm_cpid = %d\n", buf->shm_cpid);
 (void) fprintf(stderr, "\tshm_nattch = %d\n", buf->shm_nattch);
 (void) fprintf(stderr, "\tshm_atime = %s",
 buf->shm_atime ? ctime(&buf->shm_atime) : "Not Set\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 buf->shm_atime ? ctime(&buf->shm_atime) : "Not Set\n");
 (void) fprintf(stderr, "\tshm_dtime = %s",
 buf->shm_dtime ? ctime(&buf->shm_dtime) : "Not Set\n");
 (void) fprintf(stderr, "\tshm_ctime = %s",
 ctime(&buf->shm_ctime));
}

shmop.c: Sample Program to Illustrate shmat()
and shmdt()
/*
 * shmop.c: Illustrate the shmat() and shmdt() functions.
 *
 * This is a simple exerciser for the shmat() and shmdt() system
 * calls. It allows you to attach and detach segments and to
 * write strings into and read strings from attached segments.
 */

#include <stdio.h>
#include <setjmp.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#define MAXnap 4 /* Maximum number of concurrent attaches. */

static ask();
static void catcher();
extern void exit();
static good_addr();
extern void perror();
extern char *shmat();

static struct state { /* Internal record of currently attached
segments. */
 int shmid; /* shmid of attached segment */
 char *shmaddr; /* attach point */
 int shmflg; /* flags used on attach */
} ap[MAXnap]; /* State of current attached segments. */

static int nap; /* Number of currently attached segments. */
static jmp_buf segvbuf; /* Process state save area for SIGSEGV
 catching. */

main()
{
 register int action; /* action to be performed */
 char *addr; /* address work area */
 register int i; /* work area */
 register struct state *p; /* ptr to current state entry */
 void (*savefunc)(); /* SIGSEGV state hold area */
 (void) fprintf(stderr,
 "All numeric input is expected to follow C conventions:\n");
 (void) fprintf(stderr,
 "\t0x... is interpreted as hexadecimal,\n");
 (void) fprintf(stderr, "\t0... is interpreted as octal,\n");
 (void) fprintf(stderr, "\totherwise, decimal.\n");
 while (action = ask()) {
 if (nap) {
 (void) fprintf(stderr,
 "\nCurrently attached segment(s):\n");
 (void) fprintf(stderr, " shmid address\n");
 (void) fprintf(stderr, "------ ----------\n");
 p = &ap[nap];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 p = &ap[nap];
 while (p-- != ap) {
 (void) fprintf(stderr, "%6d", p->shmid);
 (void) fprintf(stderr, "%#11x", p->shmaddr);
 (void) fprintf(stderr, " Read%s\n",
 (p->shmflg & SHM_RDONLY) ?
 "-Only" : "/Write");
 }
 } else
 (void) fprintf(stderr,
 "\nNo segments are currently attached.\n");
 switch (action) {
 case 1: /* Shmat requested. */
 /* Verify that there is space for another attach. */
 if (nap == MAXnap) {
 (void) fprintf(stderr, "%s %d %s\n",
 "This simple example will only allow",
 MAXnap, "attached segments.");
 break;
 }
 p = &ap[nap++];
 /* Get the arguments, make the call, report the
 results, and update the current state array. */
 (void) fprintf(stderr,
 "Enter shmid of segment to attach: ");
 (void) scanf("%i", &p->shmid);

 (void) fprintf(stderr, "Enter shmaddr: ");
 (void) scanf("%i", &p->shmaddr);
 (void) fprintf(stderr,
 "Meaningful shmflg values are:\n");
 (void) fprintf(stderr, "\tSHM_RDONLY = \t%#8.8o\n",
 SHM_RDONLY);
 (void) fprintf(stderr, "\tSHM_RND = \t%#8.8o\n",
 SHM_RND);
 (void) fprintf(stderr, "Enter shmflg value: ");
 (void) scanf("%i", &p->shmflg);

 (void) fprintf(stderr,
 "shmop: Calling shmat(%d, %#x, %#o)\n",
 p->shmid, p->shmaddr, p->shmflg);
 p->shmaddr = shmat(p->shmid, p->shmaddr, p->shmflg);
 if(p->shmaddr == (char *)-1) {
 perror("shmop: shmat failed");
 nap--;
 } else {
 (void) fprintf(stderr,
 "shmop: shmat returned %#8.8x\n",
 p->shmaddr);
 }
 break;

 case 2: /* Shmdt requested. */
 /* Get the address, make the call, report the results,
 and make the internal state match. */
 (void) fprintf(stderr,
 "Enter detach shmaddr: ");
 (void) scanf("%i", &addr);

 i = shmdt(addr);
 if(i == -1) {
 perror("shmop: shmdt failed");
 } else {
 (void) fprintf(stderr,
 "shmop: shmdt returned %d\n", i);
 for (p = ap, i = nap; i--; p++) {
 if (p->shmaddr == addr)
 *p = ap[--nap];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 *p = ap[--nap];
 }
 }
 break;
 case 3: /* Read from segment requested. */
 if (nap == 0)
 break;

 (void) fprintf(stderr, "Enter address of an %s",
 "attached segment: ");
 (void) scanf("%i", &addr);

 if (good_addr(addr))
 (void) fprintf(stderr, "String @ %#x is `%s'\n",
 addr, addr);
 break;

 case 4: /* Write to segment requested. */
 if (nap == 0)
 break;

 (void) fprintf(stderr, "Enter address of an %s",
 "attached segment: ");
 (void) scanf("%i", &addr);

 /* Set up SIGSEGV catch routine to trap attempts to
 write into a read-only attached segment. */
 savefunc = signal(SIGSEGV, catcher);

 if (setjmp(segvbuf)) {
 (void) fprintf(stderr, "shmop: %s: %s\n",
 "SIGSEGV signal caught",
 "Write aborted.");
 } else {
 if (good_addr(addr)) {
 (void) fflush(stdin);
 (void) fprintf(stderr, "%s %s %#x:\n",
 "Enter one line to be copied",
 "to shared segment attached @",
 addr);
 (void) gets(addr);
 }
 }
 (void) fflush(stdin);

 /* Restore SIGSEGV to previous condition. */
 (void) signal(SIGSEGV, savefunc);
 break;
 }
 }
 exit(0);
 /*NOTREACHED*/
}
/*
** Ask for next action.
*/
static
ask()
{
 int response; /* user response */
 do {
 (void) fprintf(stderr, "Your options are:\n");
 (void) fprintf(stderr, "\t^D = exit\n");
 (void) fprintf(stderr, "\t 0 = exit\n");
 (void) fprintf(stderr, "\t 1 = shmat\n");
 (void) fprintf(stderr, "\t 2 = shmdt\n");
 (void) fprintf(stderr, "\t 3 = read from segment\n");
 (void) fprintf(stderr, "\t 4 = write to segment\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (void) fprintf(stderr, "\t 4 = write to segment\n");
 (void) fprintf(stderr,
 "Enter the number corresponding to your choice: ");

 /* Preset response so "^D" will be interpreted as exit. */
 response = 0;
 (void) scanf("%i", &response);
 } while (response < 0 || response > 4);
 return (response);
}
/*
** Catch signal caused by attempt to write into shared memory
segment
** attached with SHM_RDONLY flag set.
*/
/*ARGSUSED*/
static void
catcher(sig)
{
 longjmp(segvbuf, 1);
 /*NOTREACHED*/
}
/*
** Verify that given address is the address of an attached
segment.
** Return 1 if address is valid; 0 if not.
*/
static
good_addr(address)
char *address;
{
 register struct state *p; /* ptr to state of attached
segment */

 for (p = ap; p != &ap[nap]; p++)
 if (p->shmaddr == address)
 return(1);
 return(0);
}

Exercises
Exercise 12771

Write 2 programs that will communicate via shared memory and semaphores.
Data will be exchanged via memory and semaphores will be used to
synchronise and notify each process when operations such as memory loaded
and memory read have been performed.

Exercise 12772

Compile the programs shmget.c, shmctl.c and shmop.c and then

investigate and understand fully the operations of the flags (access,
creation etc. permissions) you can set interactively in the programs.
Use the prgrams to:

Exchange data between two processe running as shmop.c.
Inquire about the state of shared memory with shmctl.c.
Use semctl.c to lock a shared memory segment.
Use semctl.c to delete a shared memory segment.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercise 12773

Write 2 programs that will communicate via mapped memory.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Socket Creation and Naming
Connecting Stream Sockets
Stream Data Transfer and Closing
Datagram sockets
Socket Options
Example Socket Programs:socket_server.c,socket_client

socket_server.c
socket_client.c

Exercises

IPC:Sockets
Sockets provide point-to-point, two-way communication between two
processes. Sockets are very versatile and are a basic component of
interprocess and intersystem communication. A socket is an endpoint of
communication to which a name can be bound. It has a type and one or more
associated processes.

Sockets exist in communication domains. A socket domain is an abstraction
that provides an addressing structure and a set of protocols. Sockets connect
only with sockets in the same domain. Twenty three socket domains are
identified (see <sys/socket.h>), of which only the UNIX and Internet
domains are normally used Solaris 2.x Sockets can be used to communicate
between processes on a single system, like other forms of IPC.

The UNIX domain provides a socket address space on a single system. UNIX
domain sockets are named with UNIX paths. Sockets can also be used to
communicate between processes on different systems. The socket address
space between connected systems is called the Internet domain.

Internet domain communication uses the TCP/IP internet protocol suite.

Socket types define the communication properties visible to the application.
Processes communicate only between sockets of the same type. There are five
types of socket.

A stream socket
-- provides two-way, sequenced, reliable, and unduplicated flow of data
with no record boundaries. A stream operates much like a telephone
conversation. The socket type is SOCK_STREAM, which, in the Internet
domain, uses Transmission Control Protocol (TCP).

A datagram socket
-- supports a two-way flow of messages. A on a datagram socket may
receive messages in a different order from the sequence in which the
messages were sent. Record boundaries in the data are preserved.
Datagram sockets operate much like passing letters back and forth in
the mail. The socket type is SOCK_DGRAM, which, in the Internet domain,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the mail. The socket type is SOCK_DGRAM, which, in the Internet domain,
uses User Datagram Protocol (UDP).

A sequential packet socket
-- provides a two-way, sequenced, reliable, connection, for datagrams
of a fixed maximum length. The socket type is SOCK_SEQPACKET. No
protocol for this type has been implemented for any protocol family.

A raw socket
provides access to the underlying communication protocols.

These sockets are usually datagram oriented, but their exact characteristics
depend on the interface provided by the protocol.

Socket Creation and Naming
int socket(int domain, int type, int protocol) is called to create a
socket in the specified domain and of the specified type. If a protocol is not
specified, the system defaults to a protocol that supports the specified socket
type. The socket handle (a descriptor) is returned. A remote process has no
way to identify a socket until an address is bound to it. Communicating
processes connect through addresses. In the UNIX domain, a connection is
usually composed of one or two path names. In the Internet domain, a
connection is composed of local and remote addresses and local and remote
ports. In most domains, connections must be unique.

int bind(int s, const struct sockaddr *name, int namelen) is
called to bind a path or internet address to a socket. There are three different
ways to call bind(), depending on the domain of the socket.

For UNIX domain sockets with paths containing 14, or fewer
characters, you can:

#include <sys/socket.h>
 ...
bind (sd, (struct sockaddr *) &addr, length);

If the path of a UNIX domain socket requires more characters, use:

#include <sys/un.h>
...
bind (sd, (struct sockaddr_un *) &addr, length);

For Internet domain sockets, use

#include <netinet/in.h>
...
bind (sd, (struct sockaddr_in *) &addr, length);

In the UNIX domain, binding a name creates a named socket in the file
system. Use unlink() or rm () to remove the socket.

Connecting Stream Sockets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Connecting sockets is usually not symmetric. One process usually acts as a
server and the other process is the client. The server binds its socket to a
previously agreed path or address. It then blocks on the socket. For a
SOCK_STREAM socket, the server calls int listen(int s, int backlog) ,
which specifies how many connection requests can be queued. A client
initiates a connection to the server's socket by a call to int connect(int s,
struct sockaddr *name, int namelen) . A UNIX domain call is like this:

struct sockaddr_un server;
...
connect (sd, (struct sockaddr_un *)&server, length);

while an Internet domain call would be:

struct sockaddr_in;
...
connect (sd, (struct sockaddr_in *)&server, length);

If the client's socket is unbound at the time of the connect call, the system
automatically selects and binds a name to the socket. For a SOCK_STREAM
socket, the server calls accept(3N) to complete the connection.

int accept(int s, struct sockaddr *addr, int *addrlen) returns a
new socket descriptor which is valid only for the particular connection. A
server can have multiple SOCK_STREAM connections active at one time.

Stream Data Transfer and Closing
Several functions to send and receive data from a SOCK_STREAM socket. These
are write(), read(), int send(int s, const char *msg, int len,
int flags), and int recv(int s, char *buf, int len, int flags).
send() and recv() are very similar to read() and write(), but have some
additional operational flags.

The flags parameter is formed from the bitwise OR of zero or more of the
following:

MSG_OOB
-- Send "out-of-band" data on sockets that support this notion. The
underlying protocol must also support "out-of-band" data. Only
SOCK_STREAM sockets created in the AF_INET address family support
out-of-band data.

MSG_DONTROUTE
-- The SO_DONTROUTE option is turned on for the duration of the
operation. It is used only by diagnostic or routing pro- grams.

MSG_PEEK
-- "Peek" at the data present on the socket; the data is returned, but not
consumed, so that a subsequent receive operation will see the same
data.

A SOCK_STREAM socket is discarded by calling close().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Datagram sockets
A datagram socket does not require that a connection be established. Each
message carries the destination address. If a particular local address is needed,
a call to bind() must precede any data transfer. Data is sent through calls to
sendto() or sendmsg(). The sendto() call is like a send() call with the
destination address also specified. To receive datagram socket messages, call
recvfrom() or recvmsg(). While recv() requires one buffer for the arriving
data, recvfrom() requires two buffers, one for the incoming message and
another to receive the source address.

Datagram sockets can also use connect() to connect the socket to a specified
destination socket. When this is done, send() and recv() are used to send
and receive data.

accept() and listen() are not used with datagram sockets.

Socket Options
Sockets have a number of options that can be fetched with getsockopt() and
set with setsockopt(). These functions can be used at the native socket level
(level = SOL_SOCKET), in which case the socket option name must be
specified. To manipulate options at any other level the protocol number of the
desired protocol controlling the option of interest must be specified (see
getprotoent() in getprotobyname()).

Example Socket
Programs:socket_server.c,socket_client
These two programs show how you can establish a socket connection using
the above functions.

socket_server.c
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define NSTRS 3 /* no. of strings */
#define ADDRESS "mysocket" /* addr to connect */

/*
 * Strings we send to the client.
 */
char *strs[NSTRS] = {
 "This is the first string from the server.\n",
 "This is the second string from the server.\n",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "This is the second string from the server.\n",
 "This is the third string from the server.\n"
};

main()
{
 char c;
 FILE *fp;
 int fromlen;
 register int i, s, ns, len;
 struct sockaddr_un saun, fsaun;

 /*
 * Get a socket to work with. This socket will
 * be in the UNIX domain, and will be a
 * stream socket.
 */
 if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {
 perror("server: socket");
 exit(1);
 }

 /*
 * Create the address we will be binding to.
 */
 saun.sun_family = AF_UNIX;
 strcpy(saun.sun_path, ADDRESS);

 /*
 * Try to bind the address to the socket. We
 * unlink the name first so that the bind won't
 * fail.
 *
 * The third argument indicates the "length" of
 * the structure, not just the length of the
 * socket name.
 */
 unlink(ADDRESS);
 len = sizeof(saun.sun_family) + strlen(saun.sun_path);

 if (bind(s, &saun, len) < 0) {
 perror("server: bind");
 exit(1);
 }

 /*
 * Listen on the socket.
 */
 if (listen(s, 5) < 0) {
 perror("server: listen");
 exit(1);
 }

 /*
 * Accept connections. When we accept one, ns
 * will be connected to the client. fsaun will
 * contain the address of the client.
 */
 if ((ns = accept(s, &fsaun, &fromlen)) < 0) {
 perror("server: accept");
 exit(1);
 }

 /*
 * We'll use stdio for reading the socket.
 */
 fp = fdopen(ns, "r");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fp = fdopen(ns, "r");

 /*
 * First we send some strings to the client.
 */
 for (i = 0; i < NSTRS; i++)
 send(ns, strs[i], strlen(strs[i]), 0);

 /*
 * Then we read some strings from the client and
 * print them out.
 */
 for (i = 0; i < NSTRS; i++) {
 while ((c = fgetc(fp)) != EOF) {
 putchar(c);

 if (c == '\n')
 break;
 }
 }

 /*
 * We can simply use close() to terminate the
 * connection, since we're done with both sides.
 */
 close(s);

 exit(0);
}

socket_client.c
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define NSTRS 3 /* no. of strings */
#define ADDRESS "mysocket" /* addr to connect */

/*
 * Strings we send to the server.
 */
char *strs[NSTRS] = {
 "This is the first string from the client.\n",
 "This is the second string from the client.\n",
 "This is the third string from the client.\n"
};

main()
{
 char c;
 FILE *fp;
 register int i, s, len;
 struct sockaddr_un saun;

 /*
 * Get a socket to work with. This socket will
 * be in the UNIX domain, and will be a
 * stream socket.
 */
 if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {
 perror("client: socket");
 exit(1);
 }

 /*

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /*
 * Create the address we will be connecting to.
 */
 saun.sun_family = AF_UNIX;
 strcpy(saun.sun_path, ADDRESS);

 /*
 * Try to connect to the address. For this to
 * succeed, the server must already have bound
 * this address, and must have issued a listen()
 * request.
 *
 * The third argument indicates the "length" of
 * the structure, not just the length of the
 * socket name.
 */
 len = sizeof(saun.sun_family) + strlen(saun.sun_path);

 if (connect(s, &saun, len) < 0) {
 perror("client: connect");
 exit(1);
 }

 /*
 * We'll use stdio for reading
 * the socket.
 */
 fp = fdopen(s, "r");

 /*
 * First we read some strings from the server
 * and print them out.
 */
 for (i = 0; i < NSTRS; i++) {
 while ((c = fgetc(fp)) != EOF) {
 putchar(c);

 if (c == '\n')
 break;
 }
 }

 /*
 * Now we send some strings to the server.
 */
 for (i = 0; i < NSTRS; i++)
 send(s, strs[i], strlen(strs[i]), 0);

 /*
 * We can simply use close() to terminate the
 * connection, since we're done with both sides.
 */
 close(s);

 exit(0);
}

Exercises
Exercise 12776

Configure the above socket_server.c and socket_client.c programs for
you system and compile and run them. You will need to set up socket
ADDRESS definition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Processes and Threads
Benefits of Threads vs Processes
Multithreading vs. Single threading
Some Example applications of threads

Thread Levels
User-Level Threads (ULT)
Kernel-Level Threads (KLT)
Combined ULT/KLT Approaches

Threads libraries
The POSIX Threads Library:libpthread, <pthread.h>

Creating a (Default) Thread
Wait for Thread Termination
A Simple Threads Example
Detaching a Thread
Create a Key for Thread-Specific Data
Delete the Thread-Specific Data Key
Set the Thread-Specific Data Key
Get the Thread-Specific Data Key
Global and Private Thread-Specific Data Example
Getting the Thread Identifiers
Comparing Thread IDs
Initializing Threads
Yield Thread Execution
Set the Thread Priority
Get the Thread Priority
Send a Signal to a Thread
Access the Signal Mask of the Calling Thread
Terminate a Thread

Solaris Threads: <thread.h>
Unique Solaris Threads Functions

Suspend Thread Execution
Continue a Suspended Thread
Set Thread Concurrency Level
Readers/Writer Locks
Readers/Writer Lock Example

Similar Solaris Threads Functions
Create a Thread
Get the Thread Identifier
Yield Thread Execution
Signals and Solaris Threads
Terminating a Thread
Creating a Thread-Specific Data Key
Example Use of Thread Specific Data:Rethinking Global
Variables

Compiling a Multithreaded Application
Preparing for Compilation
Debugging a Multithreaded Program

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Threads: Basic Theory and
Libraries
This chapter examines aspects of threads and multiprocessing (and
multithreading). We will firts study a little theory of threads and also look at
how threading can be effectively used to make programs more efficient. The
C thread libraries will then be introduced. The following chapters will look at
further thead issues sucj a synchronisation and practical examples.

Processes and Threads
We can think of a thread as basically a lightweight process. In order to
understand this let us consider the two main characteristics of a process:

Unit of resource ownership
-- A process is allocated:

a virtual address space to hold the process image
control of some resources (files, I/O devices...)

Unit of dispatching
- A process is an execution path through one or more programs:

execution may be interleaved with other processes
the process has an execution state and a dispatching priority

If we treat these two characteristics as being independent (as does modern OS
theory):

The unit of resource ownership is usually referred to as a process or
task. This Processes have:

a virtual address space which holds the process image.
protected access to processors, other processes, files, and I/O
resources.

The unit of dispatching is usually referred to a thread or a lightweight
process. Thus a thread:

Has an execution state (running, ready, etc.)
Saves thread context when not running
Has an execution stack and some per-thread static storage for
local variables
Has access to the memory address space and resources of its
process

all threads of a process share this when one thread alters a (non-private)
memory item, all other threads (of the process) sees that a file open
with one thread, is available to others

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Benefits of Threads vs Processes
If implemented correctly then threads have some advantages of (multi)
processes, They take:

Less time to create a new thread than a process, because the newly
created thread uses the current process address space.
Less time to terminate a thread than a process.
Less time to switch between two threads within the same process,
partly because the newly created thread uses the current process
address space.
Less communication overheads -- communicating between the threads
of one process is simple because the threads share everything: address
space, in particular. So, data produced by one thread is immediately
available to all the other threads.

Multithreading vs. Single threading
Just a we can multiple processes running on some systems we can have
multiple threads running:

Single threading
-- when the OS does not recognize the concept of thread

Multithreading
-- when the OS supports multiple threads of execution within a single
process

Figure 28.1 shows a variety of models for threads and processes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. 28.1 Threads and Processes Some example popular OSs and their
thread support is:

MS-DOS
-- support a single user process and a single thread

UNIX
-- supports multiple user processes but only supports one thread per
process

Solaris
-- supports multiple threads

Multithreading your code can have many benefits:

Improve application responsiveness -- Any program in which many
activities are not dependent upon each other can be redesigned so that
each activity is defined as a thread. For example, the user of a
multithreaded GUI does not have to wait for one activity to complete
before starting another.
Use multiprocessors more efficiently -- Typically, applications that
express concurrency requirements with threads need not take into
account the number of available processors. The performance of the
application improves transparently with additional processors.
Numerical algorithms and applications with a high degree of
parallelism, such as matrix multiplications, can run much faster when
implemented with threads on a multiprocessor.
Improve program structure -- Many programs are more efficiently
structured as multiple independent or semi-independent units of
execution instead of as a single, monolithic thread. Multithreaded
programs can be more adaptive to variations in user demands than
single threaded programs.
Use fewer system resources -- Programs that use two or more processes
that access common data through shared memory are applying more
than one thread of control. However, each process has a full address
space and operating systems state. The cost of creating and maintaining
this large amount of state information makes each process much more
expensive than a thread in both time and space. In addition, the inherent
separation between processes can require a major effort by the
programmer to communicate between the threads in different
processes, or to synchronize their actions.

Figure 28.2 illustrates different process models and thread control in a single
thread and multithreaded application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. 28.2 Single and Multi- Thread Applicatiions

Some Example applications of threads
:

Example : A file server on a LAN

It needs to handle several file requests over a short period
Hence more efficient to create (and destroy) a single thread for each
request
Multiple threads can possibly be executing simultaneously on different
processors

Example 2: Matrix Multiplication

Matrix Multilication essentially involves taking the rows of one matrix and
multiplying and adding corresponding columns in a second matrix i.e:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. 28.3 Matrix Multiplication (3x3 example) Note that each element of
the resultant matrix can be computed independently, that is to say by a
different thread.

We will develop a C++ example program for matrix multiplication later (see
Chapter).

Thread Levels
There are two broad categories of thread implementation:

User-Level Threads -- Thread Libraries.
Kernel-level Threads -- System Calls.

There are merits to both, in fact some OSs allow access to both levels (e.g.
Solaris).

User-Level Threads (ULT)
In this level, the kernel is not aware of the existence of threads -- All thread
management is done by the application by using a thread library. Thread
switching does not require kernel mode privileges (no mode switch) and
scheduling is application specific

Kernel activity for ULTs:

The kernel is not aware of thread activity but it is still managing
process activity
When a thread makes a system call, the whole process will be blocked
but for the thread library that thread is still in the running state
So thread states are independent of process states

Advantages and inconveniences of ULT

Advantages:

Thread switching does not involve the kernel -- no mode switching
Scheduling can be application specific -- choose the best algorithm.
ULTs can run on any OS -- Only needs a thread library

Disadvantages:

Most system calls are blocking and the kernel blocks processes -- So all
threads within the process will be blocked
The kernel can only assign processes to processors -- Two threads
within the same process cannot run simultaneously on two processors

Kernel-Level Threads (KLT)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this level, All thread management is done by kernel No thread library but
an API (system calls) to the kernel thread facility exists. The kernel maintains
context information for the process and the threads, switching between
threads requires the kernel Scheduling is performed on a thread basis.

Advantages and inconveniences of KLT

Advantages

the kernel can simultaneously schedule many threads of the same
process on many processors blocking is done on a thread level
kernel routines can be multithreaded

Disadvantages:

thread switching within the same process involves the kernel, e.g if we
have 2 mode switches per thread switch this results in a significant
slow down.

Combined ULT/KLT Approaches
Idea is to combine the best of both approaches

Solaris is an example of an OS that combines both ULT and KLT
(Figure 28.4:

Thread creation done in the user space
Bulk of scheduling and synchronization of threads done in the user
space
The programmer may adjust the number of KLTs
Process includes the user's address space, stack, and process control
block
User-level threads (threads library) invisible to the OS are the interface
for application parallelism
Kernel threads the unit that can be dispatched on a processor
Lightweight processes (LWP) each LWP supports one or more ULTs
and maps to exactly one KLT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. 28.4 Solaris Thread Implementation

Threads libraries
The interface to multithreading support is through a subroutine library,
libpthread for POSIX threads, and libthread for Solaris threads. They both
contain code for:

creating and destroying threads
passing messages and data between threads
scheduling thread execution
saving and restoring thread contexts

The POSIX Threads
Library:libpthread, <pthread.h>
Creating a (Default) Thread
Use the function pthread_create() to add a new thread of control to the
current process. It is prototyped by:

int pthread_create(pthread_t *tid, const pthread_attr_t *tattr,
void*(*start_routine)(void *), void *arg);

When an attribute object is not specified, it is NULL, and the default thread is
created with the following attributes:

It is unbounded
It is nondetached
It has a a default stack and stack size
It inhetits the parent's priority

You can also create a default attribute object with pthread_attr_init()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also create a default attribute object with pthread_attr_init()
function, and then use this attribute object to create a default thread. See the
Section 29.2.

An example call of default thread creation is:

#include <pthread.h>
pthread_attr_t tattr;
pthread_t tid;
extern void *start_routine(void *arg);
void *arg;
int ret;
/* default behavior*/
ret = pthread_create(&tid, NULL, start_routine, arg);

/* initialized with default attributes */
ret = pthread_attr_init(&tattr);
/* default behavior specified*/
ret = pthread_create(&tid, &tattr, start_routine, arg);

The pthread_create() function is called with attr having the necessary
state behavior. start_routine is the function with which the new thread
begins execution. When start_routine returns, the thread exits with the exit
status set to the value returned by start_routine.

When pthread_create is successful, the ID of the thread created is stored in
the location referred to as tid.

Creating a thread using a NULL attribute argument has the same effect as
using a default attribute; both create a default thread. When tattr is initialized,
it acquires the default behavior.

pthread_create() returns a zero and exits when it completes successfully.
Any other returned value indicates that an error occurred.

Wait for Thread Termination
Use the pthread_join function to wait for a thread to terminate. It is
prototyped by:

int pthread_join(thread_t tid, void **status);

An example use of this function is:

#include <pthread.h>
pthread_t tid;
int ret;
int status;
/* waiting to join thread "tid" with status */
ret = pthread_join(tid, &status);
/* waiting to join thread "tid" without status */
ret = pthread_join(tid, NULL);

The pthread_join() function blocks the calling thread until the specified
thread terminates. The specified thread must be in the current process and
must not be detached. When status is not NULL, it points to a location that is
set to the exit status of the terminated thread when pthread_join() returns

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

set to the exit status of the terminated thread when pthread_join() returns
successfully. Multiple threads cannot wait for the same thread to terminate. If
they try to, one thread returns successfully and the others fail with an error of
ESRCH. After pthread_join() returns, any stack storage associated with the
thread can be reclaimed by the application.

The pthread_join() routine takes two arguments, giving you some
flexibility in its use. When you want the caller to wait until a specific thread
terminates, supply that thread's ID as the first argument. If you are interested
in the exit code of the defunct thread, supply the address of an area to receive
it. Remember that pthread_join() works only for target threads that are
nondetached. When there is no reason to synchronize with the termination of
a particular thread, then that thread should be detached. Think of a detached
thread as being the thread you use in most instances and reserve nondetached
threads for only those situations that require them.

A Simple Threads Example
In this Simple Threads fragment below, one thread executes the procedure at
the top, creating a helper thread that executes the procedure fetch, which
involves a complicated database lookup and might take some time.

The main thread wants the results of the lookup but has other work to do in
the meantime. So it does those other things and then waits for its helper to
complete its job by executing pthread_join(). An argument, pbe, to the new
thread is passed as a stack parameter. This can be done here because the main
thread waits for the spun-off thread to terminate. In general, though, it is
better to malloc() storage from the heap instead of passing an address to
thread stack storage, which can disappear or be reassigned if the thread
terminated.

The source for thread.c is as follows:

void mainline (...)
{
struct phonebookentry *pbe;
pthread_attr_t tattr;
pthread_t helper;
int status;
pthread_create(&helper, NULL, fetch, &pbe);
/* do something else for a while */
pthread_join(helper, &status);
/* it's now safe to use result */
}
void fetch(struct phonebookentry *arg)
{
struct phonebookentry *npbe;
/* fetch value from a database */
npbe = search (prog_name)
if (npbe != NULL)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (npbe != NULL)
*arg = *npbe;
pthread_exit(0);
}
struct phonebookentry {
char name[64];
char phonenumber[32];
char flags[16];
}

Detaching a Thread
The function pthread_detach() is an alternative to pthread_join() to
reclaim storage for a thread that is created with a detachstate attribute set to
PTHREAD_CREATE_JOINABLE. It is prototyped by:

int pthread_detach(thread_t tid);

A simple example of calling this fucntion to detatch a thread is given by:

#include <pthread.h>
pthread_t tid;
int ret;
/* detach thread tid */
ret = pthread_detach(tid);

The pthread_detach() function is used to indicate to the implementation
that storage for the thread tid can be reclaimed when the thread terminates. If
tid has not terminated, pthread_detach() does not cause it to terminate. The
effect of multiple pthread_detach() calls on the same target thread is
unspecified.

pthread_detach() returns a zero when it completes successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions are detected, pthread_detach() fails and returns the an error
value.

Create a Key for Thread-Specific Data
Single-threaded C programs have two basic classes of data: local data and
global data. For multithreaded C programs a third class is added:thread-
specific data (TSD). This is very much like global data, except that it is
private to a thread.

Thread-specific data is maintained on a per-thread basis. TSD is the only way
to define and refer to data that is private to a thread. Each thread-specific data
item is associated with a key that is global to all threads in the process. Using
the key, a thread can access a pointer (void *) that is maintained per-thread.

The function pthread_keycreate() is used to allocate a key that is used to
identify thread-specific data in a process. The key is global to all threads in
the process, and all threads initially have the value NULL associated with the
key when it is created.

pthread_keycreate() is called once for each key before the key is used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pthread_keycreate() is called once for each key before the key is used.
There is no implicit synchronization. Once a key has been created, each
thread can bind a value to the key. The values are specific to the thread and
are maintained for each thread independently. The per-thread binding is
deallocated when a thread terminates if the key was created with a destructor
function. pthread_keycreate() is prototyped by:

int pthread_key_create(pthread_key_t *key, void (*destructor) (void *));

A simple example use of this function is:

#include <pthread.h>
pthread_key_t key;
int ret;
/* key create without destructor */
ret = pthread_key_create(&key, NULL);
/* key create with destructor */
ret = pthread_key_create(&key, destructor);

When pthread_keycreate() returns successfully, the allocated key is stored
in the location pointed to by key. The caller must ensure that the storage and
access to this key are properly synchronized. An optional destructor function,
destructor, can be used to free stale storage. When a key has a non-NULL
destructor function and the thread has a non-NULL value associated with that
key, the destructor function is called with the current associated value when
the thread exits. The order in which the destructor functions are called is
unspecified.

pthread_keycreate() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions occur, pthread_keycreate() fails and returns an error value.

Delete the Thread-Specific Data Key
The function pthread_keydelete() is used to destroy an existing thread-
specific data key. Any memory associated with the key can be freed because
the key has been invalidated and will return an error if ever referenced.
(There is no comparable function in Solaris threads.)

pthread_keydelete() is prototyped by:

int pthread_key_delete(pthread_key_t key);

A simple example use of this function is:

#include <pthread.h>
pthread_key_t key;
int ret;
/* key previously created */
ret = pthread_key_delete(key);

Once a key has been deleted, any reference to it with the
pthread_setspecific() or pthread_getspecific() call results in the
EINVAL error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is the responsibility of the programmer to free any thread-specific resources
before calling the delete function. This function does not invoke any of the
destructors.

pthread_keydelete() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition
occurs, pthread_keycreate() fails and returns the corresponding value.

Set the Thread-Specific Data Key
The function pthread_setspecific() is used to set the thread-specific
binding to the specified thread-specific data key. It is prototyped by :

int pthread_setspecific(pthread_key_t key, const void *value);

A simple example use of this function is:

#include <pthread.h>
pthread_key_t key;
void *value;
int ret;

/* key previously created */
ret = pthread_setspecific(key, value);

pthread_setspecific() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the
following conditions occur, pthread_setspecific() fails and returns an
error value.

Note: pthread_setspecific() does not free its storage. If a new binding is
set, the existing binding must be freed; otherwise, a memory leak can occur.

Get the Thread-Specific Data Key
Use pthread_getspecific() to get the calling thread's binding for key, and
store it in the location pointed to by value. This function is prototyped by:

int pthread_getspecific(pthread_key_t key);

A simple example use of this function is:

#include <pthread.h>
pthread_key_t key;
void *value;
/* key previously created */
value = pthread_getspecific(key);

Global and Private Thread-Specific Data
Example
Thread-Specific Data Global but Private

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Consider the following code:

body() {
...
while (write(fd, buffer, size) == -1) {
if (errno != EINTR) {
fprintf(mywindow, "%s\n", strerror(errno));
exit(1);
}
}
...
}

This code may be executed by any number of threads, but it has references to
two global variables, errno and mywindow, that really should be references to
items private to each thread.

References to errno should get the system error code from the routine called
by this thread, not by some other thread. So, references to errno by one thread
refer to a different storage location than references to errno by other threads.
The mywindow variable is intended to refer to a stdio stream connected to a
window that is private to the referring thread. So, as with errno, references to
mywindow by one thread should refer to a different storage location (and,
ultimately, a different window) than references to mywindow by other
threads. The only difference here is that the threads library takes care of
errno, but the programmer must somehow make this work for mywindow.
The next example shows how the references to mywindow work. The
preprocessor converts references to mywindow into invocations of the
mywindow procedure. This routine in turn invokes pthread_getspecific(),
passing it the mywindow_key global variable (it really is a global variable) and
an output parameter, win, that receives the identity of this thread's window.

Turning Global References Into Private References Now consider this
code fragment:

thread_key_t mywin_key;
FILE *_mywindow(void) {
FILE *win;
pthread_getspecific(mywin_key, &win);
return(win);
}
#define mywindow _mywindow()

void routine_uses_win(FILE *win) {
...
}
void thread_start(...) {
...
make_mywin();
...
routine_uses_win(mywindow)
...
}

The mywin_key variable identifies a class of variables for which each thread
has its own private copy; that is, these variables are thread-specific data. Each
thread calls make_mywin to initialize its window and to arrange for its instance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

thread calls make_mywin to initialize its window and to arrange for its instance
of mywindow to refer to it. Once this routine is called, the thread can safely
refer to mywindow and, after mywindow, the thread gets the reference to its
private window. So, references to mywindow behave as if they were direct
references to data private to the thread.

We can now set up our initial Thread-Specific Data:

void make_mywindow(void) {
FILE **win;
static pthread_once_t mykeycreated = PTHREAD_ONCE_INIT;
pthread_once(&mykeycreated, mykeycreate);
win = malloc(sizeof(*win));
create_window(win, ...);
pthread_setspecific(mywindow_key, win);
}
void mykeycreate(void) {
pthread_keycreate(&mywindow_key, free_key);
}
void free_key(void *win) {
free(win);
}

First, get a unique value for the key, mywin_key. This key is used to identify
the thread-specific class of data. So, the first thread to call make_mywin
eventually calls pthread_keycreate(), which assigns to its first argument a
unique key. The second argument is a destructor function that is used to
deallocate a thread's instance of this thread-specific data item once the thread
terminates.

The next step is to allocate the storage for the caller's instance of this thread-
specific data item. Having allocated the storage, a call is made to the
create_window routine, which sets up a window for the thread and sets the
storage pointed to by win to refer to it. Finally, a call is made to
pthread_setspecific(), which associates the value contained in win (that
is, the location of the storage containing the reference to the window) with the
key. After this, whenever this thread calls pthread_getspecific(), passing
the global key, it gets the value that was associated with this key by this
thread when it called pthread_setspecific(). When a thread terminates,
calls are made to the destructor functions that were set up in
pthread_key_create(). Each destructor function is called only if the
terminating thread established a value for the key by calling
pthread_setspecific().

Getting the Thread Identifiers
The function pthread_self() can be called to return the ID of the calling
thread. It is prototyped by:

pthread_t pthread_self(void);

It is use is very straightforward:

#include <pthread.h>
pthread_t tid;
tid = pthread_self();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tid = pthread_self();

Comparing Thread IDs
The function pthread_equal() can be called to compare the thread
identification numbers of two threads. It is prototyped by:

int pthread_equal(pthread_t tid1, pthread_t tid2);

It is use is straightforward to use, also:

#include <pthread.h>
pthread_t tid1, tid2;
int ret;
ret = pthread_equal(tid1, tid2);

As with other comparison functions, pthread_equal() returns a non-zero
value when tid1 and tid2 are equal; otherwise, zero is returned. When either
tid1 or tid2 is an invalid thread identification number, the result is
unpredictable.

Initializing Threads
Use pthread_once() to call an initialization routine the first time
pthread_once() is called -- Subsequent calls to have no effect. The
prototype of this function is:

int pthread_once(pthread_once_t *once_control,
void (*init_routine)(void));

Yield Thread Execution
The function sched_yield() to cause the current thread to yield its execution
in favor of another thread with the same or greater priority. It is prototyped
by:

int sched_yield(void);

It is clearly a simple function to call:

#include <sched.h>
int ret;
ret = sched_yield();

sched_yield() returns zero after completing successfully. Otherwise -1 is
returned and errno is set to indicate the error condition.

Set the Thread Priority
Use pthread_setschedparam() to modify the priority of an existing thread.
This function has no effect on scheduling policy. It is prototyped as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int pthread_setschedparam(pthread_t tid, int policy,
const struct sched_param *param);

and used as follows:

#include <pthread.h>
pthread_t tid;
int ret;
struct sched_param param;
int priority;
/* sched_priority will be the priority of the thread */
sched_param.sched_priority = priority;
/* only supported policy, others will result in ENOTSUP */

policy = SCHED_OTHER;
/* scheduling parameters of target thread */
ret = pthread_setschedparam(tid, policy, ¶m);

pthread_setschedparam() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When either of the
following conditions occurs, the pthread_setschedparam() function fails
and returns an error value.

Get the Thread Priority
int pthread_getschedparam(pthread_t tid, int policy, struct
schedparam *param) gets the priority of the existing thread.

An example call of this function is:

#include <pthread.h>
pthread_t tid;
sched_param param;
int priority;
int policy;
int ret;
/* scheduling parameters of target thread */
ret = pthread_getschedparam (tid, &policy, ¶m);
/* sched_priority contains the priority of the thread */
priority = param.sched_priority;

pthread_getschedparam() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When the following
condition occurs, the function fails and returns the error value set.

Send a Signal to a Thread
Signal may be sent to threads is a similar fashion to those for process as
follows:

#include <pthread.h>
#include <signal.h>
int sig;
pthread_t tid;
int ret;
ret = pthread_kill(tid, sig);

pthread_kill() sends the signal sig to the thread specified by tid. tid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pthread_kill() sends the signal sig to the thread specified by tid. tid
must be a thread within the same process as the calling thread. The sig
argument must be a valid signal of the same type defined for signal() in <
signal.h> (See Chapter 23)

When sig is zero, error checking is performed but no signal is actually sent.
This can be used to check the validity of tid.

This function returns zero after completing successfully. Any other returned
value indicates that an error occurred. When either of the following
conditions occurs, pthread_kill() fails and returns an error value.

Access the Signal Mask of the Calling Thread
The function pthread_sigmask() may be used to change or examine the
signal mask of the calling thread. It is prototyped as follows:

int pthread_sigmask(int how, const sigset_t *new, sigset_t *old);

Example uses of this function include:

#include <pthread.h>
#include <signal.h>
int ret;
sigset_t old, new;
ret = pthread_sigmask(SIG_SETMASK, &new, &old); /* set new mask */
ret = pthread_sigmask(SIG_BLOCK, &new, &old); /* blocking mask */
ret = pthread_sigmask(SIG_UNBLOCK, &new, &old); /* unblocking */

how determines how the signal set is changed. It can have one of the
following values:

SIG_SETMASK
-- Replace the current signal mask with new, where new indicates the
new signal mask.

SIG_BLOCK
-- Add new to the current signal mask, where new indicates the set of
signals to block.

SIG_UNBLOCK
-- Delete new from the current signal mask, where new indicates the set
of signals to unblock.

When the value of new is NULL, the value of how is not significant and the
signal mask of the thread is unchanged. So, to inquire about currently blocked
signals, assign a NULL value to the new argument. The old variable points to
the space where the previous signal mask is stored, unless it is NULL.

pthread_sigmask() returns a zero when it completes successfully. Any other
returned value indicates that an error occurred. When the following condition
occurs, pthread_sigmask() fails and returns an errro value.

Terminate a Thread
A thread can terminate its execution in the following ways:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By returning from its first (outermost) procedure, the threads start
routine; see pthread_create()
By calling pthread_exit(), supplying an exit status
By termination with POSIX cancel functions; see pthread_cancel()

The void pthread_exit(void *status) is used terminate a thread in a
similar fashion the exit() for a process:

#include <pthread.h>
int status;
pthread_exit(&status); /* exit with status */

The pthread_exit() function terminates the calling thread. All thread-
specific data bindings are released. If the calling thread is not detached, then
the thread's ID and the exit status specified by status are retained until the
thread is waited for (blocked). Otherwise, status is ignored and the thread's ID
can be reclaimed immediately.

The pthread_cancel() function to cancel a thread is prototyped:

int pthread_cancel(pthread_t thread);

and called:

#include <pthread.h>
pthread_t thread;
int ret;
ret = pthread_cancel(thread);

How the cancellation request is treated depends on the state of the target
thread. Two functions,

pthread_setcancelstate() and pthread_setcanceltype() (see man pages
for further information on these functions), determine that state.

pthread_cancel() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition
occurs, the function fails and returns an error value.

Solaris Threads: <thread.h>
Solaris have many similarities to POSIX threads,In this sectionfocus on the
Solaris features that are not found in POSIX threads. Where functionality is
virtually the same for both Solaris threads and for pthreads, (even though the
function names or arguments might differ), only a brief example consisting of
the correct include file and the function prototype is presented. Where return
values are not given for the Solaris threads functions, see the appropriate man
pages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Solaris threads API and the pthreads API are two solutions to the same
problem: building parallelism into application software. Although each API is
complete in itself, you can safely mix Solaris threads functions and pthread
functions in the same program.

The two APIs do not match exactly, however. Solaris threads supports
functions that are not found in pthreads, and pthreads includes functions that
are not supported in the Solaris interface. For those functions that do match,
the associated arguments might not, although the information content is
effectively the same.

By combining the two APIs, you can use features not found in one to enhance
the other. Similarly, you can run applications using Solaris threads,
exclusively, with applications using pthreads, exclusively, on the same
system.

To use the Solaris threads functions described in this chapter, you must link
with the Solaris threads library -lthread and include the <thread.h> in all
programs.

Unique Solaris Threads Functions
Let us begin by looking at some functions that are unique to Solaris threads:

Suspend Thread Execution
Continue a Suspended Thread
Set Thread Concurrency Level
Get Thread Concurrency

Suspend Thread Execution

The function thr_suspend() immediately suspends the execution of the
thread specified by a target thread, (tid below). It is prototyped by:

int thr_suspend(thread_t tid);

On successful return from thr_suspend(), the suspended thread is no longer
executing. Once a thread is suspended, subsequent calls to thr_suspend()
have no effect. Signals cannot awaken the suspended thread; they remain
pending until the thread resumes execution.

A simple example call is as follows:

#include <thread.h>

thread_t tid; /* tid from thr_create() */
/* pthreads equivalent of Solaris tid from thread created */
/* with pthread_create() */
pthread_t ptid;
int ret;
ret = thr_suspend(tid);
/* using pthreads ID variable with a cast */
ret = thr_suspend((thread_t) ptid);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ret = thr_suspend((thread_t) ptid);

Note: pthread_t tid as defined in pthreads is the same as thread_t tid in
Solaris threads. tid values can be used interchangeably either by assignment
or through the use of casts.

Continue a Suspended Thread

The function thr_continue() resumes the execution of a suspended thread.
It is prototypes as follows:

int thr_continue(thread_t tid);

Once a suspended thread is continued, subsequent calls to thr_continue()
have no effect.

A suspended thread will not be awakened by a signal. The signal stays
pending until the execution of the thread is resumed by thr_continue().

thr_continue() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition
occurs, thr_continue() The following code fragment illustrates the use of
the function:

thread_t tid; /* tid from thr_create()*/
/* pthreads equivalent of Solaris tid from thread created */
/* with pthread_create()*/
pthread_t ptid;
int ret;
ret = thr_continue(tid);
/* using pthreads ID variable with a cast */
ret = thr_continue((thread_t) ptid)

Set Thread Concurrency Level

By default, Solaris threads attempt to adjust the system execution resources
(LWPs) used to run unbound threads to match the real number of active
threads. While the Solaris threads package cannot make perfect decisions, it
at least ensures that the process continues to make progress. When you have
some idea of the number of unbound threads that should be simultaneously
active (executing code or system calls), tell the library through
thr_setconcurrency(int new_level). To get the number of threads being
used, use the function thr_getconcurrencyint(void):

thr_setconcurrency() provides a hint to the system about the required level
of concurrency in the application. The system ensures that a sufficient
number of threads are active so that the process continues to make progress,
for example:

#include <thread.h>
int new_level;
int ret;

ret = thr_setconcurrency(new_level);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ret = thr_setconcurrency(new_level);

Unbound threads in a process might or might not be required to be
simultaneously active. To conserve system resources, the threads system
ensures by default that enough threads are active for the process to make
progress, and that the process will not deadlock through a lack of
concurrency. Because this might not produce the most effective level of
concurrency, thr_setconcurrency() permits the application to give the
threads system a hint, specified by new_level, for the desired level of
concurrency. The actual number of simultaneously active threads can be
larger or smaller than new_level. Note that an application with multiple
compute-bound threads can fail to schedule all the runnable threads if
thr_setconcurrency() has not been called to adjust the level of execution
resources. You can also affect the value for the desired concurrency level by
setting the THR_NEW_LW flag in thr_create(). This effectively increments the
current level by one.

thr_setconcurrency() a zero when it completes successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions are detected, thr_setconcurrency() fails and returns the
corresponding value to errno.

Readers/Writer Locks

Readers/Writer locks are another unique feature of Solaris threads. They
allow simultaneous read access by many threads while restricting write access
to only one thread at a time.

When any thread holds the lock for reading, other threads can also acquire the
lock for reading but must wait to acquire the lock for writing. If one thread
holds the lock for writing, or is waiting to acquire the lock for writing, other
threads must wait to acquire the lock for either reading or writing.
Readers/writer locks are slower than mutexes, but can improve performance
when they protect data that are not frequently written but that are read by
many concurrent threads. Use readers/writer locks to synchronize threads in
this process and other processes by allocating them in memory that is writable
and shared among the cooperating processes (see mmap(2)) and by
initializing them for this behavior. By default, the acquisition order is not
defined when multiple threads are waiting for a readers/writer lock. However,
to avoid writer starvation, the Solaris threads package tends to favor writers
over readers. Readers/writer locks must be initialized before use.

Initialize a Readers/Writer Lock

The function rwlock_init() initialises the readers/writer lock. it is
prototypes in <synch.h> or <thread.h> as follows:

int rwlock_init(rwlock_t *rwlp, int type, void * arg);

The readers/writer lock pointed to by rwlp and to set the lock state to
unlocked. type can be one of the following

USYNC_PROCESS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

USYNC_PROCESS
-- The readers/writer lock can be used to synchronize threads in this
process and other processes.

USYNC_THREAD
-- The readers/writer lock can be used to synchronize threads in this
process, only.

Note: that arg is currently ignored.

rwlock_init() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When any of the following
conditions occur, the function fails and returns the corresponding value to
errno.

Multiple threads must not initialize the same readers/writer lock
simultaneously. Readers/writer locks can also be initialized by allocation in
zeroed memory, in which case a type of USYNC_THREAD is assumed. A
readers/writer lock must not be reinitialized while other threads might be
using it.

An example code fragment that initialises Readers/Writer Locks with
Intraprocess Scope is as follows:

#include <thread.h>

rwlock_t rwlp;
int ret;
/* to be used within this process only */
ret = rwlock_init(&rwlp, USYNC_THREAD, 0);
Initializing Readers/Writer Locks with Interprocess Scope
#include <thread.h>
rwlock_t rwlp;
int ret;
/* to be used among all processes */
ret = rwlock_init(&rwlp, USYNC_PROCESS, 0);

Acquire a Read Lock

To acquire a read lock on the readers/writer lock use the rw_rdlock()
function:

int rw_rdlock(rwlock_t *rwlp);

The readers/writer lock pointed to by rwlp. When the readers/writer lock is
already locked for writing, the calling thread blocks until the write lock is
released. Otherwise, the read lock is acquired.

rw_rdlock() returns zero after completing successfully. Any other returned
value indicates that an error occurred. When any of the following conditions
occur, the function fails and returns the corresponding value to errno.

A function rw_tryrdlock(rwlock_t *rwlp) may also be used to attempt to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A function rw_tryrdlock(rwlock_t *rwlp) may also be used to attempt to
acquire a read lock on the readers/writer lock pointed to by rwlp. When the
readers/writer lock is already locked for writing, it returns an error.
Otherwise, the read lock is acquired. This function returns zero after
completing successfully. Any other returned value indicates that an error
occurred.

Acquire a Write Lock

The function rw_wrlock(rwlock_t *rwlp) acquires a write lock on the
readers/writer lock pointed to by rwlp. When the readers/writer lock is
already locked for reading or writing, the calling thread blocks until all the
read locks and write locks are released. Only one thread at a time can hold a
write lock on a readers/writer lock.

rw_wrlock() returns zero after completing successfully. Any other returned
value indicates that an error occurred.

Use rw_trywrlockrwlock_t *rwlp) to attempt to acquire a write lock on the
readers/writer lock pointed to by rwlp. When the readers/writer lock is
already locked for reading or writing, it returns an error.

rw_trywrlock() returns zero after completing successfully. Any other
returned value indicates that an error occurred.

Unlock a Readers/Writer Lock

The function rw_unlock(rwlock_t *rwlp) unlocks a readers/writer lock
pointed to by rwlp. The readers/writer lock must be locked and the calling
thread must hold the lock either for reading or writing. When any other
threads are waiting for the readers/writer lock to become available, one of
them is unblocked.

rw_unlock() returns zero after completing successfully. Any other returned
value indicates that an error occurred.

Destroy Readers/Writer Lock State

The function rwlock_destroy(rwlock_t *rwlp) destroys any state
associated with the readers/writer lock pointed to by rlwp. The space for
storing the readers/writer lock is not freed.

rwlock_destroy() returns zero after completing successfully. Any other
returned value indicates that an error occurred.

Readers/Writer Lock Example

The following example uses a bank account analogy to demonstrate
readers/writer locks. While the program could allow multiple threads to have
concurrent read-only access to the account balance, only a single writer is
allowed. Note that the get_balance() function needs the lock to ensure that
the addition of the checking and saving balances occurs atomically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rwlock_t account_lock;
float checking_balance = 100.0;
float saving_balance = 100.0;
...
rwlock_init(&account_lock, 0, NULL);
...
float
get_balance() {
float bal;
rw_rdlock(&account_lock);
bal = checking_balance + saving_balance;
rw_unlock(&account_lock);
return(bal);
}
void
transfer_checking_to_savings(float amount) {
rw_wrlock(&account_lock);
checking_balance = checking_balance - amount;
saving_balance = saving_balance + amount;
rw_unlock(&account_lock);
}

Similar Solaris Threads Functions
Here we simply list the similar thread functions and their prototype
definitions, except where the complexity of the function merits further
exposition. .

Create a Thread

The thr_create() routine is one of the most elaborate of all the Solaris
threads library routines.

It is prototyped as follows:

int thr_create(void *stack_base, size_t stack_size,
void *(*start_routine) (void *), void *arg, long flags,
thread_t *new_thread);

Thjis function adds a new thread of control to the current process. Note that
the new thread does not inherit pending signals, but it does inherit priority
and signal masks.

stack_base contains the address for the stack that the new thread uses. If
stack_base is NULL then thr_create() allocates a stack for the new thread
with at least stac_size bytes. stack_size Contains the size, in number of
bytes, for the stack that the new thread uses. If stack_size is zero, a default
size is used. In most cases, a zero value works best. If stack_size is not zero,
it must be greater than the value returned by thr_min_stack(void) inquiry
function.

There is no general need to allocate stack space for threads. The threads
library allocates one megabyte of virtual memory for each thread's stack with
no swap space reserved.

start_routine contains the function with which the new thread begins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

start_routine contains the function with which the new thread begins
execution. When start_routine returns, the thread exits with the exit status
set to the value returned by start_routine

arg can be anything that is described by void, which is typically any 4-byte
value. Anything larger must be passed indirectly by having the argument
point to it.

Note that you can supply only one argument. To get your procedure to take
multiple arguments, encode them as one (such as by putting them in a
structure).

flags specifies attributes for the created thread. In most cases a zero value
works best. The value in flags is constructed from the bitwise inclusive OR of
the following:

THR_SUSPENDED
-- Suspends the new thread and does not execute start_routine until
the thread is started by thr_continue(). Use this to operate on the
thread (such as changing its priority) before you run it. The termination
of a detached thread is ignored.

THR_DETACHED
-- Detaches the new thread so that its thread ID and other resources can
be reused as soon as the thread terminates. Set this when you do not
want to wait for the thread to terminate. Note - When there is no
explicit synchronization to prevent it, an unsuspended, detached thread
can die and have its thread ID reassigned to another new thread before
its creator returns from thr_create().

THR_BOUND
-- Permanently binds the new thread to an LWP (the new thread is a
bound thread).

THR_NEW_LWP
-- Increases the concurrency level for unbound threads by one. The
effect is similar to incrementing concurrency by one with
thr_setconcurrency(), although THR_NEW_LWP does not affect the
level set through the thr_setconcurrency() function. Typically,
THR_NEW_LWP adds a new LWP to the pool of LWPs running unbound
threads.

When you specify both THR_BOUND and THR_NEW_LWP, two LWPs are
typically created -- one for the bound thread and another for the pool of
LWPs running unbound threads.

THR_DAEMON
-- Marks the new thread as a daemon. The process exits when all
nondaemon threads exit. Daemon threads do not affect the process exit
status and are ignored when counting the number of thread exits.

A process can exit either by calling exit() or by having every thread
in the process that was not created with the THR_DAEMON flag call
thr_exit(). An application, or a library it calls, can create one or more
threads that should be ignored (not counted) in the decision of whether
to exit. The THR_DAEMONl flag identifies threads that are not counted in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to exit. The THR_DAEMONl flag identifies threads that are not counted in
the process exit criterion.

new_thread points to a location (when new_thread is not NULL) where the ID
of the new thread is stored when thr_create() is successful. The caller is
responsible for supplying the storage this argument points to. The ID is valid
only within the calling process. If you are not interested in this identifier,
supply a zero value to new_thread.

thr_create() returns a zero and exits when it completes successfully. Any
other returned value indicates that an error occurred. When any of the
following conditions are detected, thr_create() fails and returns the
corresponding value to errno.

Get the Thread Identifier

The int thr_self(void) to get the ID of the calling thread.

Yield Thread Execution

void thr_yield(void) causes the current thread to yield its execution in
favor of another thread with the same or greater priority; otherwise it has no
effect. There is no guarantee that a thread calling thr_yield() will do so.

Signals and Solaris Threads

The following functions exist and operate as do pthreads.

int thr_kill(thread_t target_thread, int sig) sends a signal to a
thread.

int thr_sigsetmask(int how, const sigset_t *set, sigset_t *oset)
to change or examine the signal mask of the calling thread.

Terminating a Thread

The void th_exit(void *status) to terminates a thread.

The int thr_join(thread_t tid, thread_t *departedid, void
**status) function to wait for a thread to terminate.

Therefore to join specific threads one would do:

#include <thread.h>
thread_t tid;
thread_t departedid;
int ret;
int status;
/* waiting to join thread "tid" with status */
ret = thr_join(tid, &departedid, (void**)&status);
/* waiting to join thread "tid" without status */
ret = thr_join(tid, &departedid, NULL);
/* waiting to join thread "tid" without return id and status */
ret = thr_join(tid, NULL, NULL);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ret = thr_join(tid, NULL, NULL);

When the tid is (thread_t) 0, then thread_join() waits for any
undetached thread in the process to terminate. In other words, when no thread
identifier is specified, any undetached thread that exits causes thread_join()
to return.

To join any threads:

#include <thread.h>
thread_t tid;
thread_t departedid;
int ret;
int status;
/* waiting to join thread "tid" with status */
ret = thr_join(NULL, &departedid, (void **)&status);

By indicating NULL as thread id in the thr_join(), a join will take place
when any non detached thread in the process exits. The departedid will
indicate the thread ID of exiting thread.

Creating a Thread-Specific Data Key

Except for the function names and arguments, thread specific data is the same
for Solaris as it is for POSIX.

int thr_keycreate(thread_key_t *keyp, void (*destructor) (void
*value)) allocates a key that is used to identify thread-specific data in a
process.

int thr_setspecific(thread_key_t key, void *value) binds value to
the thread-specific data key, key, for the calling thread.

int thr_getspecific(thread_key_t key, void **valuep) stores the
current value bound to key for the calling thread into the location pointed to
by valuep.

In Solaris threads, if a thread is to be created with a priority other than that of
its parent's, it is created in SUSPEND mode. While suspended, the threads
priority is modified using the int thr_setprio(thread_t tid, int
newprio) function call; then it is continued.

An unbound thread is usually scheduled only with respect to other threads in
the process using simple priority levels with no adjustments and no kernel
involvement. Its system priority is usually uniform and is inherited from the
creating process.

The function thr_setprio() changes the priority of the thread, specified by
tid, within the current process to the priority specified by newprio.

By default, threads are scheduled based on fixed priorities that range from
zero, the least significant, to the largest integer. The tid will preempt lower
priority threads, and will yield to higher priority threads. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <thread.h>
thread_t tid;
int ret;
int newprio = 20;
/* suspended thread creation */
ret = thr_create(NULL, NULL, func, arg, THR_SUSPEND, &tid);
/* set the new priority of suspended child thread */
ret = thr_setprio(tid, newprio);
/* suspended child thread starts executing with new priority */

ret = thr_continue(tid);

Use int thr_getprio(thread_t tid, int *newprio) to get the current priority for
the thread. Each thread inherits a priority from its creator. thr_getprio()
stores the current priority, tid, in the location pointed to by newprio.

Example Use of Thread Specific Data:Rethinking Global
Variables

Historically, most code has been designed for single-threaded programs. This
is especially true for most of the library routines called from C programs. The
following implicit assumptions were made for single-threaded code:

When you write into a global variable and then, a moment later, read
from it, what you read is exactly what you just wrote.
This is also true for nonglobal, static storage.
You do not need synchronization because there is nothing to
synchronize with.

The next few examples discuss some of the problems that arise in
multithreaded programs because of these assumptions, and how you can deal
with them.

Traditional, single-threaded C and UNIX have a convention for handling
errors detected in system calls. System calls can return anything as a
functional value (for example, write returns the number of bytes that were
transferred). However, the value -1 is reserved to indicate that something
went wrong. So, when a system call returns -1, you know that it failed.

Consider the following piece of code:

extern int errno;

...

if (write(file_desc, buffer, size) == -1)
 { /* the system call failed */
 fprintf(stderr, "something went wrong, error code = %d\n", errno);
 exit(1);
 }

Rather than return the actual error code (which could be confused with
normal return values), the error code is placed into the global variable errno.
When the system call fails, you can look in errno to find out what went
wrong.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now consider what happens in a multithreaded environment when two
threads fail at about the same time, but with different errors.

Both expect to find their error codes in errno,
but one copy of errno cannot hold both values.a

This global variable approach simply does not work for multithreaded
programs. Threads solves this problem through a conceptually new storage
class: thread-specific data.

This storage is similar to global storage in that it can be accessed from any
procedure in which a thread might be running. However, it is private to the
thread: when two threads refer to the thread-specific data location of the same
name, they are referring to two different areas of storage.

So, when using threads, each reference to errno is thread-specific because
each thread has a private copy of errno. This is achieved in this
implementation by making errno a macro that expands to a function call.

Compiling a Multithreaded
Application
There are many options to consider for header files, define flags, and linking.

Preparing for Compilation
The following items are required to compile and link a multithreaded
program.

A standard C compiler (cc, gcc etc)
Include files:

<thread.h> and <pthread.h>
<errno.h>, <limits.h>, <signal.h>, <unistd.h>

The Solaris threads library (libthread), the POSIX threads library
(libpthread), and possibly the POSIX realtime library (libposix4)
for semaphores
MT-safe libraries (libc, libm, libw, libintl, libnsl,
libsocket, libmalloc, libmapmalloc, and so on)

The include file <thread.h>, used with the -lthread library, compiles code
that is upward compatible with earlier releases of the Solaris system. This
library contains both interfaces: those with Solaris semantics and those with
POSIX semantics. To call thr_setconcurrency() with POSIX threads, your
program needs to include <thread.h>.

The include file <pthread.h>, used with the -lpthread library, compiles code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The include file <pthread.h>, used with the -lpthread library, compiles code
that is conformant with the multithreading interfaces defined by the POSIX
1003.1c standard. For complete POSIX compliance, the define flag
_POSIX_C_SOURCE should be set to a (long) value , as follows:

cc [flags] file... -D_POSIX_C_SOURCE=N (where N 199506L)

You can mix Solaris threads and POSIX threads in the same application, by
including both <thread.h> and <pthread.h>, and linking with either the -
lthread or -lpthread library. In mixed use, Solaris semantics prevail when
compiling with -D_REENTRANT flag set and linking with -

lthread, whereas POSIX semantics prevail when compiling with
D_POSIX_C_SOURCE flag set and linking with -lpthread.

Defining _REENTRANT or _POSIX_C_SOURCE

Linking With libthread or libpthread

For POSIX threads behavior, load the libpthread library. For Solaris threads
behavior, load the libthread library. Some POSIX programmers might want
to link with -lthreadto preserve the Solaris distinction between fork() and
fork1(). All that -lpthread really does is to make fork() behave the same
way as the Solaris fork1() call, and change the behavior of alarm().

To use libthread, specify -lthread last on the cc command line.

To use libpthread, specify -lpthread last on the cc command line.

Do not link a nonthreaded program with -lthread or -lpthread. Doing so
establishes multithreading mechanisms at link time that are initiated at run
time. These slow down a single-threaded application, waste system resources,
and produce misleading results when you debug your code.

Note: For C++ programs that use threads, use the -mt option, rather than -
lthread, to compile and link your application. The -mt option links with
libthread and ensures proper library linking order. (Using -lthread might
cause your program to crash (core dump).

Linking with -lposix4 for POSIX Semaphores

The Solaris semaphore routines (see Chapter 30.3) are contained in the
libthread library. By contrast, you link with the -lposix4 library to get the
standard POSIX semaphore routines (See Chapter 25)

Debugging a Multithreaded Program
The following list points out some of the more frequent oversights and errors
that can cause bugs in multithreaded programs.

Passing a pointer to the caller's stack as an argument to a new thread.
Accessing global memory (shared changeable state) without the
protection of a synchronization mechanism.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creating deadlocks caused by two threads trying to acquire rights to the
same pair of global resources in alternate order (so that one thread
controls the first resource and the other controls the second resource
and neither can proceed until the other gives up).
Trying to reacquire a lock already held (recursive deadlock).
Creating a hidden gap in synchronization protection. This is caused
when a code segment protected by a synchronization mechanism
contains a call to a function that frees and then reacquires the
synchronization mechanism before it returns to the caller. The result is
that it appears to the caller that the global data has been protected when
it actually has not.
Mixing UNIX signals with threads -- it is better to use the sigwait()
model for handling asynchronous signals.
Forgetting that default threads are created PTHREAD_CREATE_JOINABLE
and must be reclaimed with pthread_join(). Note, pthread_exit()
does not free up its storage space.
Making deeply nested, recursive calls and using large automatic arrays
can cause problems because multithreaded programs have a more
limited stack size than single-threaded programs.
Specifying an inadequate stack size, or using non-default stacks. And,
note that multithreaded programs (especially those containing bugs)
often behave differently in two successive runs, given identical inputs,
because of differences in the thread scheduling order.

In general, multithreading bugs are statistical instead of deterministic. Tracing
is usually a more effective method of finding order of execution problems
than is breakpoint-based debugging.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Creating, Compiling and Running Your Program
Creating the program
Compilation
Running the program

The C Compilation Model
The Preprocessor
C Compiler
Assembler
Link Editor
Some Useful Compiler Options
Using Libraries
UNIX Library Functions
Finding Information about Library Functions

Lint -- A C program verifier
Exercises

C/C++ Program Compilation
In this chapter we begin by outlining the basic processes you need to go
through in order to compile your C (or C++) programs. We then proceed to
formally describe the C compilation model and also how C supports
additional libraries.

Creating, Compiling and Running
Your Program
The stages of developing your C program are as follows. (See Appendix
and exercises for more info.)

Creating the program
Create a file containing the complete program, such as the above example.
You can use any ordinary editor with which you are familiar to create the file.
One such editor is textedit available on most UNIX systems.

The filename must by convention end ``.c'' (full stop, lower case c), e.g.
myprog.c or progtest.c. The contents must obey C syntax. For example, they
might be as in the above example, starting with the line /* Sample (or
a blank line preceding it) and ending with the line } /* end of program */
(or a blank line following it).

Compilation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are many C compilers around. The cc being the default Sun compiler.
The GNU C compiler gcc is popular and available for many platforms. PC
users may also be familiar with the Borland bcc compiler.

There are also equivalent C++ compilers which are usually denoted by CC
(note upper case CC. For example Sun provides CC and GNU GCC. The GNU
compiler is also denoted by g++

Other (less common) C/C++ compilers exist. All the above compilers operate
in essentially the same manner and share many common command line
options. Below and in Appendix we list and give example uses many of
the common compiler options. However, the best source of each compiler is
through the online manual pages of your system: e.g. man cc.

For the sake of compactness in the basic discussions of compiler operation we
will simply refer to the cc compiler -- other compilers can simply be
substituted in place of cc unless otherwise stated.

To Compile your program simply invoke the command cc. The command
must be followed by the name of the (C) program you wish to compile. A
number of compiler options can be specified also. We will not concern
ourselves with many of these options yet, some useful and often essential
options are introduced below -- See Appendix or online manual help for
further details.

Thus, the basic compilation command is:

 cc program.c

where program.c is the name of the file.

If there are obvious errors in your program (such as mistypings, misspelling
one of the key words or omitting a semi-colon), the compiler will detect and
report them.

There may, of course, still be logical errors that the compiler cannot detect.
You may be telling the computer to do the wrong operations.

When the compiler has successfully digested your program, the compiled
version, or executable, is left in a file called a.out or if the compiler option -o
is used : the file listed after the -o.

It is more convenient to use a -o and filename in the compilation as in

 cc -o program program.c

which puts the compiled program into the file program (or any file you name
following the "-o" argument) instead of putting it in the file a.out .

Running the program

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The next stage is to actually run your executable program. To run an
executable in UNIX, you simply type the name of the file containing it, in this
case program (or a.out)

This executes your program, printing any results to the screen. At this stage
there may be run-time errors, such as division by zero, or it may become
evident that the program has produced incorrect output.

If so, you must return to edit your program source, and recompile it, and run
it again.

The C Compilation Model
We will briefly highlight key features of the C Compilation model (Fig. 2.1)
here.

Fig. 2.1 The C Compilation Model

The Preprocessor
We will study this part of the compilation process in greater detail later
(Chapter 13. However we need some basic information for some C programs.

The Preprocessor accepts source code as input and is responsible for

removing comments
interpreting special preprocessor directives denoted by #.

For example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include -- includes contents of a named file. Files usually called
header files. e.g

#include <math.h> -- standard library maths file.
#include <stdio.h> -- standard library I/O file

#define -- defines a symbolic name or constant. Macro substitution.
#define MAX_ARRAY_SIZE 100

C Compiler
The C compiler translates source to assembly code. The source code is
received from the preprocessor.

Assembler
The assembler creates object code. On a UNIX system you may see files with
a .o suffix (.OBJ on MSDOS) to indicate object code files.

Link Editor
If a source file references library functions or functions defined in other
source files the link editor combines these functions (with main()) to create
an executable file. External Variable references resolved here also. More on
this later (Chapter 34).

Some Useful Compiler Options
Now that we have a basic understanding of the compilation model we can
now introduce some useful and sometimes essential common compiler
options. Again see the online man pages and Appendix for further
information and additional options.

-c
Suppress the linking process and produce a .o file for each source file
listed. Several can be subsequently linked by the cc command, for
example:

 cc file1.o file2.o -o executable

-llibrary
Link with object libraries. This option must follow the source file
arguments. The object libraries are archived and can be standard, third
party or user created libraries (We discuss this topic briefly below and
also in detail later (Chapter 34). Probably the most commonly used
library is the math library (math.h). You must link in this library
explicitly if you wish to use the maths functions (note do note forget to
#include <math.h> header file), for example:

 cc calc.c -o calc -lm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Many other libraries are linked in this fashion (see below)

-Ldirectory
Add directory to the list of directories containing object-library
routines. The linker always looks for standard and other system
libraries in /lib and /usr/lib. If you want to link in libraries that you
have created or installed yourself (unless you have certain privileges
and get the libraries installed in /usr/lib) you will have to specify
where you files are stored, for example:

 cc prog.c -L/home/myname/mylibs mylib.a

-Ipathname
Add pathname to the list of directories in which to search for #include
files with relative filenames (not beginning with slash /).

BY default, The preprocessor first searches for #include files in the
directory containing source file, then in directories named with -I
options (if any), and finally, in /usr/include. So to include header files
stored in /home/myname/myheaders you would do:

 cc prog.c -I/home/myname/myheaders

Note: System library header files are stored in a special place
(/usr/include) and are not affected by the -I option. System header
files and user header files are included in a slightly different manner
(see Chapters 13 and 34)

-g
invoke debugging option. This instructs the compiler to produce
additional symbol table information that is used by a variety of
debugging utilities.

-D
define symbols either as identifiers (-Didentifer) or as values (-
Dsymbol=value) in a similar fashion as the #define preprocessor
command. For more details on the use of this argument see Chapter 13.

For further information on general compiler options and the GNU compiler
refer to Appendix .

Using Libraries
C is an extremely small language. Many of the functions of other languages
are not included in C. e.g. No built in I/O, string handling or maths functions.

What use is C then?

C provides functionality through a rich set function libraries.

As a result most C implementations include standard libraries of functions
for many facilities (I/O etc.). For many practical purposes these may be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for many facilities (I/O etc.). For many practical purposes these may be
regarded as being part of C. But they may vary from machine to machine. (cf
Borland C for a PC to UNIX C).

A programmer can also develop his or her own function libraries and also
include special purpose third party libraries (e.g. NAG, PHIGS).

All libraries (except standard I/O) need to be explicitly linked in with the -l
and, possibly, -L compiler options described above.

UNIX Library Functions
The UNIX system provides a large number of C functions as libraries. Some
of these implement frequently used operations, while others are very
specialised in their application.

Do Not Reinvent Wheels: It is wise for programmers to check whether a
library function is available to perform a task before writing their own
version. This will reduce program development time. The library functions
have been tested, so they are more likely to be correct than any function
which the programmer might write. This will save time when debugging the
program.

Later chapters deal with all important standard library issues and other
common system libraries.

Finding Information about Library Functions
The UNIX manual has an entry for all available functions. Function
documentation is stored in section 3 of the manual, and there are many other
useful system calls in section 2. If you already know the name of the function
you want, you can read the page by typing (to find about sqrt):

 man 3 sqrt

If you don't know the name of the function, a full list is included in the
introductory page for section 3 of the manual. To read this, type

 man 3 intro

There are approximately 700 functions described here. This number tends to
increase with each upgrade of the system.

On any manual page, the SYNOPSIS section will include information on the
use of the function. For example:

 #include <time.h>

 char *ctime(time_t *clock)

This means that you must have

 #include <time.h>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 #include <time.h>

in your file before you call ctime. And that function ctime takes a pointer to
type time_t as an argument, and returns a string (char *). time_t will
probably be defined in the same manual page.

The DESCRIPTION section will then give a short description of what the
function does. For example:

 ctime() converts a long integer, pointed to by clock, to a
 26-character string of the form produced by asctime().

Lint -- A C program verifier
You will soon discover (if you have not already) that the C compiler is pretty
vague in many aspects of checking program correctness, particularly in type
checking. Careful use of prototyping of functions can assist modern C
compilers in this task. However, There is still no guarantee that once you
have successfully compiled your program that it will run correctly.

The UNIX utility lint can assist in checking for a multitude of programming
errors. Check out the online manual pages (man lint) for complete details of
lint. It is well worth the effort as it can help save many hours debugging your
C code.

To run lint simply enter the command:

 lint myprog.c.

Lint is particularly good at checking type checking of variable and function
assignments, efficiency, unused variables and function identifiers,
unreachable code and possibly memory leaks. There are many useful options
to help control lint (see man lint).

Exercises
Exercise 12171

Enter, compile and run the following program:

 main()

 { int i;

 printf("\t Number \t\t Square of Number\n\n");

 for (i=0; i<=25;++i)
 printf("\t %d \t\t\t %d \n",i,i*i);

 }

Exercise 12172

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following program uses the math library. Enter compile and run it
correctly.

#include <math.h>

 main()

 { int i;

 printf("\t Number \t\t Square Root of Number\n\n");

 for (i=0; i<=360; ++i)
 printf("\t %d \t\t\t %d \n",i, sqrt((double) i));

 }

Exercise 12173

Look in /lib and /usr/lib and see what libraries are available.

Use the man command to get details of library functions
Explore the libraries to see what each contains by running the
command ar t libfile.

Exercise 12174

Look in /usr/include and see what header files are available.

Use the more or cat commands to view these text files
Explore the header files to see what each contains, note the include,
define, type definitions and function prototypes declared in them

Exercise 12175

Suppose you have a C program whose main function is in main.c and has
other functions in the files input.c and output.c:

What command(s) would you use on your system to compile and link
this program?
How would you modify the above commands to link a library called
process1 stored in the standard system library directory?
How would you modify the above commands to link a library called
process2 stored in your home directory?
Some header files need to be read and have been found to located in a
header subdirectory of your home directory and also in the current
working directory. How would you modify the compiler commands to
account for this?

Exercise 12176

Suppose you have a C program composed of several separate files, and they
include one another as shown below:

Figure 1.5: Sample Icon from Xterm

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1.5: Sample Icon from Xterm
Application

File Include Files
main.c stdio.h, process1.h
input.c stdio.h, list.h
output.c stdio.h

process1.c stdio.h, process1.h
process2.c stdio.h, list.h

Which files have to recompiled after you make changes to
process1.c?
Which files have to recompiled after you make changes to
process1.h?
Which files have to recompiled after you make changes to list.h?

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Attributes
Initializing Thread Attributes
Destroying Thread Attributes
Thread's Detach State
Thread's Set Scope
Thread Scheduling Policy

Thread Inherited Scheduling Policy
Set Scheduling Parameters

Thread Stack Size
Building Your Own Thread Stack

Further Threads
Programming:Thread Attributes
(POSIX)
The previous chapter covered the basics of threads creation using default
attributes. This chapter discusses setting attributes at thread creation time.

Note that only pthreads uses attributes and cancellation, so the API covered in
this chapter is for POSIX threads only. Otherwise, the functionality for
Solaris threads and pthreads is largely the same.

Attributes
Attributes are a way to specify behavior that is different from the default.
When a thread is created with pthread_create() or when a synchronization
variable is initialized, an attribute object can be specified. Note: however that
the default atributes are usually sufficient for most applications.

Impottant Note: Attributes are specified only at thread creation time; they
cannot be altered while the thread is being used.

Thus three functions are usually called in tandem

Thread attibute intialisation -- pthread_attr_init() create a default
pthread_attr_t tattr
Thread attribute value change (unless defaults appropriate) -- a variety
of pthread_attr_*() functions are available to set individual attribute
values for the pthread_attr_t tattr structure. (see below).
Thread creation -- a call to pthread_create() with approriate attribute
values set in a pthread_attr_t tattr structure.

The following code fragment should make this point clearer:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <pthread.h>

pthread_attr_t tattr;
pthread_t tid;
void *start_routine;
void arg
int ret;

/* initialized with default attributes */
ret = pthread_attr_init(&tattr);

/* call an appropriate functions to alter a default value */
ret = pthread_attr_*(&tattr,SOME_ATRIBUTE_VALUE_PARAMETER);

/* create the thread */
ret = pthread_create(&tid, &tattr, start_routine, arg);

In order to save space, code examples mainly focus on the attribute setting
functions and the intializing and creation functions are ommitted. These must
of course be present in all actual code fragtments.

An attribute object is opaque, and cannot be directly modified by
assignments. A set of functions is provided to initialize, configure, and
destroy each object type. Once an attribute is initialized and configured, it has
process-wide scope. The suggested method for using attributes is to configure
all required state specifications at one time in the early stages of program
execution. The appropriate attribute object can then be referred to as needed.
Using attribute objects has two primary advantages:

First, it adds to code portability. Even though supported attributes
might vary between implementations, you need not modify function
calls that create thread entities because the attribute object is hidden
from the interface. If the target port supports attributes that are not
found in the current port, provision must be made to manage the new
attributes. This is an easy porting task though, because attribute objects
need only be initialized once in a well-defined location.
Second, state specification in an application is simplified. As an
example, consider that several sets of threads might exist within a
process, each providing a separate service, and each with its own state
requirements. At some point in the early stages of the application, a
thread attribute object can be initialized for each set. All future thread
creations will then refer to the attribute object initialized for that type of
thread. The initialization phase is simple and localized, and any future
modifications can be made quickly and reliably.

Attribute objects require attention at process exit time. When the object is
initialized, memory is allocated for it. This memory must be returned to the
system. The pthreads standard provides function calls to destroy attribute
objects.

Initializing Thread Attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The function pthread_attr_init() is used to initialize object attributes to
their default values. The storage is allocated by the thread system during
execution.

The function is prototyped by:

int pthread_attr_init(pthread_attr_t *tattr);

An example call to this function is:

#include <pthread.h>
pthread_attr_t tattr;
int ret;
/* initialize an attribute to the default value */
ret = pthread_attr_init(&tattr);

The default values for attributes (tattr) are:

Attribute Value Result

scope PTHREAD_SCOPE_PROCESS New thread is

 unbound -

 not

 permanently

 attached to

 LWP.

detachstate PTHREAD_CREATE_JOINABLE Exit status

 and thread are

 preserved

 after the

 thread

 terminates.

stackaddr NULL New thread

 has

 system-allocated stack

 address.

stacksize 1 megabyte New thread

 has

 system-defined

 stack size.

 priority New thread

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 inherits

 parent thread

 priority.

inheritsched PTHREAD_INHERIT_SCHED New thread

 inherits

 parent thread

 scheduling

 priority.

schedpolicy SCHED_OTHER New thread

 uses

 Solaris-defined

 fixed priority

 scheduling;

 threads run

 until

 preempted by a

 higher-priority

 thread or

 until they

 block or

 yield.

This function zero after completing successfully. Any other returned value
indicates that an error occurred. If the following condition occurs, the
function fails and returns an error value (to errno).

Destroying Thread Attributes
The function pthread_attr_destroy() is used to remove the storage
allocated during initialization. The attribute object becomes invalid. It is
prototyped by:

int pthread_attr_destroy(pthread_attr_t *tattr);

A sample call to this functions is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <pthread.h>
pthread_attr_t tattr;
int ret;
/* destroy an attribute */
ret = pthread_attr_destroy(&tattr);

Attribites are declared as for pthread_attr_init() above.

pthread_attr_destroy() returns zero after completing successfully. Any
other returned value indicates that an error occurred.

Thread's Detach State
When a thread is created detached (PTHREAD_CREATE_DETACHED), its thread
ID and other resources can be reused as soon as the thread terminates.

If you do not want the calling thread to wait for the thread to terminate then
call the function pthread_attr_setdetachstate().

When a thread is created nondetached (PTHREAD_CREATE_JOINABLE), it is
assumed that you will be waiting for it. That is, it is assumed that you will be
executing a pthread_join() on the thread. Whether a thread is created
detached or nondetached, the process does not exit until all threads have
exited.

pthread_attr_setdetachstate() is prototyped by:

int pthread_attr_setdetachstate(pthread_attr_t *tattr,int detachstate);

pthread_attr_setdetachstate() returns zero after completing
successfully. Any other returned value indicates that an error occurred. If the
following condition occurs, the function fails and returns the corresponding
value.

An example call to detatch a thread with this function is:

#include <pthread.h>
pthread_attr_t tattr;
int ret;
/* set the thread detach state */
ret = pthread_attr_setdetachstate(&tattr,PTHREAD_CREATE_DETACHED);

Note - When there is no explicit synchronization to prevent it, a newly
created, detached thread can die and have its thread ID reassigned to another
new thread before its creator returns from pthread_create(). For
nondetached (PTHREAD_CREATE_JOINABLE) threads, it is very important that
some thread join with it after it terminates -- otherwise the resources of that
thread are not released for use by new threads. This commonly results in a
memory leak. So when you do not want a thread to be joined, create it as a
detached thread.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is quite common that you will wish to create a thread which is detatched
from creation. The following code illustrates how this may be achieved with
the standard calls to initialise and set and then create a thread:

#include <pthread.h>
pthread_attr_t tattr;
pthread_t tid;
void *start_routine;
void arg
int ret;

/* initialized with default attributes */
ret = pthread_attr_init(&tattr);
ret = pthread_attr_setdetachstate(&tattr,PTHREAD_CREATE_DETACHED);
ret = pthread_create(&tid, &tattr, start_routine, arg);

The function pthread_attr_getdetachstate() may be used to retrieve the
thread create state, which can be either detached or joined. It is prototyped
by:

int pthread_attr_getdetachstate(const pthread_attr_t *tattr, int *detachstate);

pthread_attr_getdetachstate() returns zero after completing
successfully. Any other returned value indicates that an error occurred.

An example call to this fuction is:

#include <pthread.h>
pthread_attr_t tattr;
int detachstate;
int ret;

/* get detachstate of thread */
ret = pthread_attr_getdetachstate (&tattr, &detachstate);

Thread's Set Scope
A thread may be bound (PTHREAD_SCOPE_SYSTEM) or an unbound
(PTHREAD_SCOPE_PROCESS). Both these types of types are accessible only
within a given process.

The function pthread_attr_setscope() to create a bound or unbound
thread. It is prototyped by:

int pthread_attr_setscope(pthread_attr_t *tattr,int scope);

Scope takes on the value of either PTHREAD_SCOP_SYSTEM or
PTHREAD_SCOPE_PROCESS.

pthread_attr_setscope() returns zero after completing successfully. Any
other returned value indicates that an error occurred and an appropriate value
is returned.

So to set a bound thread at thread creation on would do the following function
calls:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <pthread.h>

pthread_attr_t attr;
pthread_t tid;
void start_routine;
void arg;
int ret;

/* initialized with default attributes */
ret = pthread_attr_init (&tattr);
/* BOUND behavior */
ret = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);
ret = pthread_create (&tid, &tattr, start_routine, arg);

If the following conditions occur, the function fails and returns the
corresponding value.

The function pthread_attr_getscope() is used to retrieve the thread scope,
which indicates whether the thread is bound or unbound. It is prototyped by:

int pthread_attr_getscope(pthread_attr_t *tattr, int *scope);

An example use of this function is:

#include <pthread.h>

pthread_attr_t tattr;
int scope;
int ret;

/* get scope of thread */
ret = pthread_attr_getscope(&tattr, &scope);

If successful the approriate (PTHREAD_SCOP_SYSTEM or
PTHREAD_SCOPE_PROCESS) wil be stored in scope.

pthread_att_getscope() returns zero after completing successfully. Any
other returned value indicates that an error occurred.

Thread Scheduling Policy
The POSIX draft standard specifies scheduling policy attributes of
SCHED_FIFO (first-in-first-out), SCHED_RR (round-robin), or SCHED_OTHER (an
implementation-defined method). SCHED_FIFO and SCHED_RR are optional in
POSIX, and only are supported for real time bound threads.

Howver Note, currently, only the Solaris SCHED_OTHER default value is
supported in pthreads. Attempting to set policy as SCHED_FIFO or SCHED_RR
will result in the error ENOSUP.

The function is used to set the scheduling policy.It is prototyped by:

int pthread_attr_setschedpolicy(pthread_attr_t *tattr, int policy);

pthread_attr_setschedpolicy() returns zero after completing
successfully. Any other returned value indicates that an error occurred.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To set the scheduling policy to SCHED_OTHER simply do:

#include <pthread.h>
pthread_attr_t tattr;
int ret;

/* set the scheduling policy to SCHED_OTHER */
ret = pthread_attr_setschedpolicy(&tattr, SCHED_OTHER);

There is a function pthread_attr_getschedpolicy() that retrieves the
scheduling policy. But, currently, it is not of great use as it can only return the
(Solaris-based) SCHED_OTHER default value

Thread Inherited Scheduling Policy
The function pthread_attr_setinheritsched() can be used to the inherited
scheduling policy of a thread. It is prototyped by:

int pthread_attr_setinheritsched(pthread_attr_t *tattr, int inherit);

An inherit value of PTHREAD_INHERIT_SCHED (the default) means that the
scheduling policies defined in the creating thread are to be used, and any
scheduling attributes defined in the pthread_create() call are to be ignored.
If PTHREAD_EXPLICIT_SCHED is used, the attributes from the
pthread_create() call are to be used.

The function returns zero after completing successfully. Any other returned
value indicates that an error occurred.

An example call of this function is:

#include <pthread.h>
pthread_attr_t tattr;
int ret;

/* use the current scheduling policy */
ret = pthread_attr_setinheritsched(&tattr, PTHREAD_EXPLICIT_SCHED);

The function pthread_attr_getinheritsched(pthread_attr_t *tattr,
int *inherit) may be used to inquire a current threads scheduling policy.

Set Scheduling Parameters
Scheduling parameters are defined in the sched_param structure; only
priority sched_param.sched_priority is supported. This priority is an
integer value the higher the value the higher a thread's proiority for
scehduling. Newly created threads run with this priority. The
pthread_attr_setschedparam() is used to set this stucture appropiately. It
is prototyped by:

int pthread_attr_setschedparam(pthread_attr_t *tattr,
const struct sched_param *param);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const struct sched_param *param);

and returns zero after completing successfully. Any other returned value
indicates that an error occurred.

An example call to pthread_attr_setschedparam() is:

#include <pthread.h>
pthread_attr_t tattr;
int newprio;
sched_param param;

/* set the priority; others are unchanged */
newprio = 30;
param.sched_priority = newprio;

/* set the new scheduling param */
ret = pthread_attr_setschedparam (&tattr, ¶m);

The function pthread_attr_getschedparam(pthread_attr_t *tattr,
const struct sched_param *param) may be used to inquire a current
thread's priority of scheduling.

Thread Stack Size
Typically, thread stacks begin on page boundaries and any specified size is
rounded up to the next page boundary. A page with no access permission is
appended to the top of the stack so that most stack overflows result in sending
a SIGSEGV signal to the offending thread. Thread stacks allocated by the caller
are used as is.

When a stack is specified, the thread should also be created
PTHREAD_CREATE_JOINABLE. That stack cannot be freed until the
pthread_join() call for that thread has returned, because the thread's stack
cannot be freed until the thread has terminated. The only reliable way to
know if such a thread has terminated is through pthread_join().

Generally, you do not need to allocate stack space for threads. The threads
library allocates one megabyte of virtual memory for each thread's stack with
no swap space reserved. (The library uses the MAP_NORESERVE option of
mmap to make the allocations.)

Each thread stack created by the threads library has a red zone. The library
creates the red zone by appending a page to the top of a stack to catch stack
overflows. This page is invalid and causes a memory fault if it is accessed.
Red zones are appended to all automatically allocated stacks whether the size
is specified by the application or the default size is used.

Note: Because runtime stack requirements vary, you should be absolutely
certain that the specified stack will satisfy the runtime requirements needed
for library calls and dynamic linking.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are very few occasions when it is appropriate to specify a stack, its
size, or both. It is difficult even for an expert to know if the right size was
specified. This is because even a program compliant with ABI standards
cannot determine its stack size statically. Its size is dependent on the needs of
the particular runtime environment in which it executes.

Building Your Own Thread Stack
When you specify the size of a thread stack, be sure to account for the
allocations needed by the invoked function and by each function called. The
accounting should include calling sequence needs, local variables, and
information structures.

Occasionally you want a stack that is a bit different from the default stack. An
obvious situation is when the thread needs more than one megabyte of stack
space. A less obvious situation is when the default stack is too large. You
might be creating thousands of threads and not have enough virtual memory
to handle the gigabytes of stack space that this many default stacks require.

The limits on the maximum size of a stack are often obvious, but what about
the limits on its minimum size? There must be enough stack space to handle
all of the stack frames that are pushed onto the stack, along with their local
variables, and so on.

You can get the absolute minimum limit on stack size by calling the macro
PTHREAD_STACK_MIN (defined in <pthread.h>), which returns the amount of
stack space required for a thread that executes a NULL procedure. Useful
threads need more than this, so be very careful when reducing the stack size.

The function pthread_attr_setstacksize() is used to set this a thread's
stack size, it is prototyped by:

int pthread_attr_setstacksize(pthread_attr_t *tattr, int stacksize);

The stacksize attribute defines the size of the stack (in bytes) that the
system will allocate. The size should not be less than the system-defined
minimum stack size.

pthread_attr_setstacksize() returns zero after completing successfully.
Any other returned value indicates that an error occurred.

An example call to set the stacksize is:

#include <pthread.h>

pthread_attr_t tattr;
int stacksize;
int ret;

/* setting a new size */
stacksize = (PTHREAD_STACK_MIN + 0x4000);
ret = pthread_attr_setstacksize(&tattr, stacksize);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ret = pthread_attr_setstacksize(&tattr, stacksize);

In the example above, size contains the size, in number of bytes, for the stack
that the new thread uses. If size is zero, a default size is used. In most cases, a
zero value works best. PTHREAD_STACK_MIN is the amount of stack space
required to start a thread. This does not take into consideration the threads
routine requirements that are needed to execute application code.

The function pthread_attr_getstacksize(pthread_attr_t *tattr,
size_t *size) may be used to inquire about a current threads stack size as
follows:

#include <pthread.h>

pthread_attr_t tattr;
int stacksize;
int ret;
/* getting the stack size */
ret = pthread_attr_getstacksize(&tattr, &stacksize);

The current size of the stack is returned to the variable stacksize.

You may wish tp specify the base adress of thread's stack. The function
pthread_attr_setstackaddr() does this task. It is prototyped by:

int pthread_attr_setstackaddr(pthread_attr_t *tattr,void *stackaddr);

The stackaddr parameter defines the base of the thread's stack. If this is set
to non-null (NULL is the default) the system initializes the stack at that
address.

The function returns zero after completing successfully. Any other returned
value indicates that an error occurred.

This example shows how to create a thread with both a custom stack address
and a custom stack size.

#include <pthread.h>

pthread_attr_t tattr;
pthread_t tid;
int ret;
void *stackbase;
int size = PTHREAD_STACK_MIN + 0x4000;
stackbase = (void *) malloc(size);
/* initialized with default attributes */
ret = pthread_attr_init(&tattr);
/* setting the size of the stack also */
ret = pthread_attr_setstacksize(&tattr, size);
/* setting the base address in the attribute */
ret = pthread_attr_setstackaddr(&tattr, stackbase);
/* address and size specified */
ret = pthread_create(&tid, &tattr, func, arg);

The function pthread_attr_getstackaddr(pthread_attr_t *tattr,void
* *stackaddr) can be used to obtain the base address for a current thread's
stack address.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Mutual Exclusion Locks
Initializing a Mutex Attribute Object
Destroying a Mutex Attribute Object
The Scope of a Mutex
Initializing a Mutex
Locking a Mutex

Lock with a Nonblocking Mutex
Destroying a Mutex
Mutex Lock Code Examples

Mutex Lock Example
Using Locking Hierarchies: Avoiding Deadlock

Nested Locking with a Singly Linked List
Solaris Mutex Locks

Condition Variable Attributes
Initializing a Condition Variable Attribute
Destoying a Condition Variable Attribute
The Scope of a Condition Variable
Initializing a Condition Variable
Block on a Condition Variable
Destroying a Condition Variable State
Solaris Condition Variables

Threads and Semaphores
POSIX Semaphores
Basic Solaris Semaphore Functions

Further Threads
Programming:Synchronization
When we multiple threads running they will invariably need to communicate
with each other in order synchronise their execution. This chapter describes
the synchronization types available with threads and discusses when and how
to use synchronization.

There are a few possible methods of synchronising threads:

Mutual Exclusion (Mutex) Locks
Condition Variables
Semaphores

We wil frequently make use of Synchronization objects: these are variables
in memory that you access just like data. Threads in different processes can
communicate with each other through synchronization objects placed in
threads-controlled shared memory, even though the threads in different
processes are generally invisible to each other.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Synchronization objects can also be placed in files and can have lifetimes
beyond that of the creating process.

Here are some example situations that require or can profit from the use of
synchronization:

When synchronization is the only way to ensure consistency of shared
data.
When threads in two or more processes can use a single
synchronization object jointly. Note that the synchronization object
should be initialized by only one of the cooperating processes, because
reinitializing a synchronization object sets it to the unlocked state.
When synchronization can ensure the safety of mutable data.
When a process can map a file and have a thread in this process get a
record's lock. Once the lock is acquired, any other thread in any process
mapping the file that tries to acquire the lock is blocked until the lock is
released.
Even when accessing a single primitive variable, such as an integer. On
machines where the integer is not aligned to the bus data width or is
larger than the data width, a single memory load can use more than one
memory cycle. While this cannot happen on the SPARC architectures,
portable programs cannot rely on this.

Mutual Exclusion Locks
Mutual exclusion locks (mutexes) are a comon method of serializing thread
execution. Mutual exclusion locks synchronize threads, usually by ensuring
that only one thread at a time executes a critical section of code. Mutex locks
can also preserve single-threaded code.

Mutex attributes may be associated with every thread. To change the default
mutex attributes, you can declare and initialize an mutex attribute object and
then alter specific values much like we have seen in the last chapter on more
general POSIX attributes. Often, the mutex attributes are set in one place at
the beginning of the application so they can be located quickly and modified
easily.

After the attributes for a mutex are configured, you initialize the mutex itself.
Functions are available to initialize or destroy, lock or unlock, or try to lock a
mutex.

Initializing a Mutex Attribute Object
The function pthread_mutexattr_init() is used to initialize attributes
associated with this object to their default values. It is prototyped by:

int pthread_mutexattr_init(pthread_mutexattr_t *mattr);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int pthread_mutexattr_init(pthread_mutexattr_t *mattr);

Storage for each attribute object is allocated by the threads system during
execution. mattr is an opaque type that contains a system-allocated attribute
object. The possible values of mattr's scope are PTHREAD_PROCESS_PRIVATE
(the default) and PTHREAD_PROCESS_SHARED.The default value of the pshared
attribute when this function is called is PTHREAD_PROCESS_PRIVATE, which
means that the initialized mutex can be used within a process.

Before a mutex attribute object can be reinitialized, it must first be destroyed
by pthread_mutexattr_destroy() (see below). The
pthread_mutexattr_init() call returns a pointer to an opaque object. If the
object is not destroyed, a memory leak will result.
pthread_mutexattr_init() returns zero after completing successfully. Any
other returned value indicates that an error occurred.

A simple example of this function call is:

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

/* initialize an attribute to default value */

ret = pthread_mutexattr_init(&mattr);

Destroying a Mutex Attribute Object
The function pthread_mutexattr_destroy() deallocates the storage space
used to maintain the attribute object created by pthread_mutexattr_init().
It is prototyped by:

int pthread_mutexattr_destroy(pthread_mutexattr_t *mattr);

which returns zero after completing successfully. Any other returned value
indicates that an error occurred.

The function is called as follows:

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

/* destroy an attribute */
ret = pthread_mutexattr_destroy(&mattr);

The Scope of a Mutex
The scope of a mutex variable can be either process private (intraprocess) or
system wide (interprocess). The function pthread_mutexattr_setpshared()
is used to set the scope of a mutex atrribute and it is prototype as follows:

int pthread_mutexattr_setpshared(pthread_mutexattr_t *mattr, int pshared);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int pthread_mutexattr_setpshared(pthread_mutexattr_t *mattr, int pshared);

If the mutex is created with the pshared (POSIX) attribute set to the
PTHREAD_PROCESS_SHARED state, and it exists in shared memory, it can be
shared among threads from more than one process. This is equivalent to the
USYNC_PROCESS flag in mutex_init() in Solaris threads. If the mutex
pshared attribute is set to PTHREAD_PROCESS_PRIVATE, only those threads
created by the same process can operate on the mutex. This is equivalent to
the USYNC_THREAD flag in mutex_init() in Solaris threads.

pthread_mutexattr_setpshared() returns zero after completing
successfully. Any other returned value indicates that an error occurred.

A simple example call is:

#include <pthread.h>

pthread_mutexattr_t mattr;
int ret;

ret = pthread_mutexattr_init(&mattr);

/* resetting to its default value: private */
ret = pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_PRIVATE);

The function pthread_mutexattr_getpshared(pthread_mutexattr_t
*mattr, int *pshared) may be used to obtain the scope of a current thread
mutex as follows:

 #include <pthread.h>
pthread_mutexattr_t mattr;
int pshared, ret;

/* get pshared of mutex */ ret =
pthread_mutexattr_getpshared(&mattr, &pshared);

Initializing a Mutex
The function pthread_mutex_init() to initialize the mutex, it is prototyped
by:

int pthread_mutex_init(pthread_mutex_t *mp, const pthread_mutexattr_t *mattr);

Here, pthread_mutex_init() initializes the mutex pointed at by mp to its
default value if mattr is NULL, or to specify mutex attributes that have already
been set with pthread_mutexattr_init().

A mutex lock must not be reinitialized or destroyed while other threads might
be using it. Program failure will result if either action is not done correctly. If
a mutex is reinitialized or destroyed, the application must be sure the mutex is
not currently in use. pthread_mutex_init() returns zero after completing
successfully. Any other returned value indicates that an error occurred.

A simple example call is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <pthread.h>

pthread_mutex_t mp = PTHREAD_MUTEX_INITIALIZER;
pthread_mutexattr_t mattr;
int ret;

/* initialize a mutex to its default value */
ret = pthread_mutex_init(&mp, NULL);

When the mutex is initialized, it is in an unlocked state. The effect of mattr
being NULL is the same as passing the address of a default mutex attribute
object, but without the memory overhead. Statically defined mutexes can be
initialized directly to have default attributes with the macro
PTHREAD_MUTEX_INITIALIZER.

To initialise a mutex with non-default values do something like:

/* initialize a mutex attribute */
ret = pthread_mutexattr_init(&mattr);

/* change mattr default values with some function */
 ret = pthread_mutexattr_*();

/* initialize a mutex to a non-default value */
ret = pthread_mutex_init(&mp, &mattr);

Locking a Mutex
The function pthread_mute_lock() is used to lock a mutex, it is prototyped
by:

int pthread_mutex_lock(pthread_mutex_t *mp);

pthread_mute_lock() locks the mutex pointed to by mp. When the mutex is
already locked, the calling thread blocks and the mutex waits on a prioritized
queue. When pthread_mute_lock() returns, the mutex is locked and the
calling thread is the owner. pthread_mute_lock() returns zero after
completing successfully. Any other returned value indicates that an error
occurred.

Therefor to lock a mutex mp on would do the following:

#include <pthread.h>
pthread_mutex_t mp;
int ret;

ret = pthread_mutex_lock(&mp);

To unlock a mutex use the function pthread_mutex_unlock() whose
prototype is:

int pthread_mutex_unlock(pthread_mutex_t *mp);

Clearly, this function unlocks the mutex pointed to by mp.

The mutex must be locked and the calling thread must be the one that last
locked the mutex (i.e. the owner). When any other threads are waiting for the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

locked the mutex (i.e. the owner). When any other threads are waiting for the
mutex to become available, the thread at the head of the queue is unblocked.
pthread_mutex_unlock() returns zero after completing successfully. Any
other returned value indicates that an error occurred.

A simple example call of pthread_mutex_unlock() is:

#include <pthread.h>

pthread_mutex_t mp;
int ret;

/* release the mutex */
ret = pthread_mutex_unlock(&mp);

Lock with a Nonblocking Mutex

The function pthread_mutex_trylock() to attempt to lock the mutex and is
prototyped by:

int pthread_mutex_trylock(pthread_mutex_t *mp);

This function attempts to lock the mutex pointed to by mp.
pthread_mutex_trylock() is a nonblocking version of
pthread_mutex_lock(). When the mutex is already locked, this call returns
with an error. Otherwise, the mutex is locked and the calling thread is the
owner. pthread_mutex_trylock() returns zero after completing
successfully. Any other returned value indicates that an error occurred.

The function is called as follows:

#include <pthread.h>
pthread_mutex_t mp;

/* try to lock the mutex */
int ret; ret = pthread_ mutex_trylock(&mp);

Destroying a Mutex
The function pthread_mutex_destroy() may be used to destroy any state
associated with the mutex. It is prototyped by:

int pthread_mutex_destroy(pthread_mutex_t *mp);

and destroys a mutex pointed to by mp.

Note: that the space for storing the mutex is not freed.
pthread_mutex_destroy() returns zero after completing successfully. Any
other returned value indicates that an error occurred.

It is called by:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <pthread.h>
pthread_mutex_t mp;
int ret;

/* destroy mutex */
ret = pthread_mutex_destroy(&mp);

Mutex Lock Code Examples
Here are some code fragments showing mutex locking.

Mutex Lock Example

We develop two small functions that use the mutex lock for different
purposes.

The increment_count function() uses the mutex lock simply to
ensure an atomic update of the shared variable, count.
The get_count() function uses the mutex lock to guarantee that the
(long long) 64-bit quantity count is read atomically. On a 32-bit
architecture, a long long is really two 32-bit quantities.

The 2 functions are as follows:

#include <pthread.h>
pthread_mutex_t count_mutex;
long long count;

void increment_count()
 { pthread_mutex_lock(&count_mutex);
 count = count + 1;
 pthread_mutex_unlock(&count_mutex);
 }

long long get_count()
 { long long c;
 pthread_mutex_lock(&count_mutex);
 c = count;
 pthread_mutex_unlock(&count_mutex);
 return (c);
 }

Recall that reading an integer value is an atomic operation because integer is
the common word size on most machines.

Using Locking Hierarchies: Avoiding Deadlock

You may occasionally want to access two resources at once. For instance,
you are using one of the resources, and then discover that the other resource
is needed as well. However, there could be a problem if two threads attempt
to claim both resources but lock the associated mutexes in different orders.

In this example, if the two threads lock mutexes 1 and 2 respectively, then a
deadlock occurs when each attempts to lock the other mutex.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Thread 1 Thread 2
/* use resource 1 */ /* use resource 2 */
pthread_mutex_lock(&m1); pthread_mutex_lock(&m2);

/* NOW use resources 2 + 1 */ /* NOW use resources 1 + 2 */

pthread_mutex_lock(&m2); pthread_mutex_lock(&m1);

pthread_mutex_lock(&m1); pthread_mutex_lock(&m2);

The best way to avoid this problem is to make sure that whenever threads
lock multiple mutexes, they do so in the same order. This technique is known
as lock hierarchies: order the mutexes by logically assigning numbers to
them. Also, honor the restriction that you cannot take a mutex that is assigned
n when you are holding any mutex assigned a number greater than n.

Note: The lock_lint tool can detect the sort of deadlock problem shown in
this example.

The best way to avoid such deadlock problems is to use lock hierarchies.
When locks are always taken in a prescribed order, deadlock should not
occur. However, this technique cannot always be used :

sometimes you must take the mutexes in an order other than prescribed.
To prevent deadlock in such a situation, use
pthread_mutex_trylock(). One thread must release its mutexes when
it discovers that deadlock would otherwise be inevitable.

The idea of Conditional Locking use this approach:

Thread 1:

pthread_mutex_lock(&m1);
pthread_mutex_lock(&m2);

/* no processing */
pthread_mutex_unlock(&m2);
pthread_mutex_unlock(&m1);

Thread 2:

for (; ;) {
 pthread_mutex_lock(&m2);
 if(pthread_mutex_trylock(&m1)==0)
 /* got it! */
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 /* didn't get it */
 pthread_mutex_unlock(&m2);
 }
/* get locks; no processing */
pthread_mutex_unlock(&m1);
pthread_mutex_unlock(&m2);

In the above example, thread 1 locks mutexes in the prescribed order, but
thread 2 takes them out of order. To make certain that there is no deadlock,
thread 2 has to take mutex 1 very carefully; if it were to block waiting for the
mutex to be released, it is likely to have just entered into a deadlock with
thread 1. To ensure this does not happen, thread 2 calls
pthread_mutex_trylock(), which takes the mutex if it is available. If it is
not, thread 2 returns immediately, reporting failure. At this point, thread 2
must release mutex 2, so that thread 1 can lock it, and then release both mutex
1 and mutex 2.

Nested Locking with a Singly Linked List
We have met basic linked structues in Section 10.3, when using threads
which share a linked list structure the possibility of deadlock may arise.

By nesting mutex locks into the linked data structure and a simple
ammendment of the link list code we can prevent deadlock by taking the
locks in a prescribed order.

The modified linked is as follows:

typedef struct node1 {
 int value;
 struct node1 *link;
 pthread_mutex_t lock;
 } node1_t;

Note: we simply ammend a standard singly-linked list structure so that each
node containing a mutex.

Assuming we have created a variable node1_t ListHead.

To remove a node from the list:

first search the list starting at ListHead (which itself is never removed)
until the desired node is found.
To protect this search from the effects of concurrent deletions, lock
each node before any of its contents are accessed.

Because all searches start at ListHead, there is never a deadlock
because the locks are always taken in list order.

When the desired node is found, lock both the node and its predecessor
since the change involves both nodes.

Because the predecessor's lock is always taken first, you are again
protected from deadlock.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The C code to remove an item from a singly linked list with nested locking is
as follows:

node1_t *delete(int value)
 { node1_t *prev,
 *current; prev = &ListHead;

 pthread_mutex_lock(&prev->lock);
 while ((current = prev->link) != NULL)
 { pthread_mutex_lock(¤t->lock);
 if (current->value == value)
 { prev->link = current->link;
 pthread_mutex_unlock(¤t->lock);
 pthread_mutex_unlock(&prev->lock);
 current->link = NULL; return(current);
 }
 pthread_mutex_unlock(&prev->lock);
 prev = current;
 }
 pthread_mutex_unlock(&prev->lock);
 return(NULL);
 }

Solaris Mutex Locks
 Similar mutual exclusion locks exist for in Solaris.

You should include the <synch.h> or <thread.h>libraries.

To initialize a mutex use int mutex_init(mutex_t *mp, int type, void
*arg)). mutex_init() initializes the mutex pointed to by mp. The type can
be one of the following (note that arg is currently ignored).

USYNC_PROCESS
-- The mutex can be used to synchronize threads in this and other
processes.

USYNC_THREAD
-- The mutex can be used to synchronize threads in this process, only.

Mutexes can also be initialized by allocation in zeroed memory, in which
case a type of USYNC_THREAD is assumed. Multiple threads must not initialize
the same mutex simultaneously. A mutex lock must not be reinitialized while
other threads might be using it.

The function int mutex_destroy (mutex_t *mp) destroys any state
associated with the mutex pointed to by mp. Note that the space for storing the
mutex is not freed.

To acquire a mutex lock use the function mutex_lock(mutex_t *mp) which
locks the mutex pointed to by mp. When the mutex is already locked, the
calling thread blocks until the mutex becomes available (blocked threads wait
on a prioritized queue).

To release a mutex use mutex_unlock(mutex_t *mp) which unlocks the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To release a mutex use mutex_unlock(mutex_t *mp) which unlocks the
mutex pointed to by mp. The mutex must be locked and the calling thread
must be the one that last locked the mutex (the owner).

To try to acquire a mutex use mutex_trylock(mutex_t *mp) to attempt to lock
the mutex pointed to by mp. This function is a nonblocking version of
mutex_lock()

Condition Variable Attributes
Condition variables can be usedto atomically block threads until a particular
condition is true. Condition variables are always used in conjunction with
mutex locks:

With a condition variable, a thread can atomically block until a
condition is satisfied.
The condition is tested under the protection of a mutual exclusion lock
(mutex).

When the condition is false, a thread usually blocks on a
condition variable and atomically releases the mutex waiting for
the condition to change.
When another thread changes the condition, it can signal the
associated condition variable to cause one or more waiting
threads to wake up, acquire the mutex again, and reevaluate the
condition.

Condition variables can be used to synchronize threads among processes
when they are allocated in memory that can be written to and is shared by the
cooperating processes.

The scheduling policy determines how blocking threads are awakened. For
the default SCHED_OTHER, threads are awakened in priority order. The
attributes for condition variables must be set and initialized before the
condition variables can be used.

As with mutex locks, The condiotion variable attributes must be initialised
and set (or set to NULL) before an actual condition variable may be initialise
(with appropriat attributes) and then used.

Initializing a Condition Variable Attribute
The function pthread_condattr_init() initializes attributes associated with
this object to their default values. It is prototyped by:

int pthread_condattr_init(pthread_condattr_t *cattr);

Storage for each attribute object, cattr, is allocated by the threads system
during execution. cattr is an opaque data type that contains a system-
allocated attribute object. The possible values of cattr's scope are
PTHREAD_PROCESS_PRIVATE and PTHREAD_PROCESS_SHARED. The default

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PTHREAD_PROCESS_PRIVATE and PTHREAD_PROCESS_SHARED. The default
value of the pshared attribute when this function is called is
PTHREAD_PROCESS_PRIVATE, which means that the initialized condition
variable can be used within a process.

Before a condition variable attribute can be reused, it must first be
reinitialized by pthread_condattr_destroy(). The
pthread_condattr_init() call returns a pointer to an opaque object. If the
object is not destroyed, a memory leak will result.

pthread_condattr_init() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When either of the
following conditions occurs, the function fails and returns the corresponding
value.

A simple example call of this function is :

#include <pthread.h>

pthread_condattr_t cattr;
int ret;

/* initialize an attribute to default value */
ret = pthread_condattr_init(&cattr);

Destoying a Condition Variable Attribute
The function pthread_condattr_destroy() removes storage and renders the
attribute object invalid, it is prototyped by:

int pthread_condattr_destroy(pthread_condattr_t *cattr);

pthread_condattr_destroy() returns zero after completing successfully
and destroying the condition variable pointed to by cattr. Any other returned
value indicates that an error occurred. If the following condition occurs, the
function fails and returns the corresponding value.

The Scope of a Condition Variable
The scope of a condition variable can be either process private (intraprocess)
or system wide (interprocess), as with mutex locks. If the condition variable
is created with the pshared attribute set to the PTHREAD_PROCESS_SHARED
state, and it exists in shared memory, it can be shared among threads from
more than one process. This is equivalent to the USYNC_PROCESS flag in
mutex_init() in the original Solaris threads. If the mutex pshared attribute is
set to PTHREAD_PROCESS_PRIVATE (default value), only those threads created
by the same process can operate on the mutex. Using
PTHREAD_PROCESS_PRIVATE results in the same behavior as with the
USYNC_THREAD flag in the original Solaris threads cond_init() call, which is
that of a local condition variable. PTHREAD_PROCESS_SHARED is equivalent to a
global condition variable.

The function pthread_condattr_setpshared() is used to set the scope of a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The function pthread_condattr_setpshared() is used to set the scope of a
condition variable, it is prototyped by:

int pthread_condattr_setpshared(pthread_condattr_t *cattr, int pshared);

The condition variable attribute cattr must be initialised first and the value
of pshared is either PTHREAD_PROCESS_SHARED or
PTHREAD_PROCESS_PRIVATE.

pthread_condattr_setpshared() returns zero after completing
successfully. Any other returned value indicates that an error occurred.

A sample use of this function is as follows:

#include <pthread.h>

pthread_condattr_t cattr;
int ret;

/* Scope: all processes */
ret = pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_SHARED);

/* OR */
/* Scope: within a process */
ret = pthread_condattr_setpshared(&cattr, PTHREAD_PROCESS_PRIVATE);

The function int pthread_condattr_getpshared(const
pthread_condattr_t *cattr, int *pshared) may be used to obtain the
scope of a given condition variable.

Initializing a Condition Variable
The function pthread_cond_init() initializes the condition variable and is
prototyped as follows:

int pthread_cond_init(pthread_cond_t *cv, const pthread_condattr_t *cattr);

The condition variable which is initialized is pointed at by cv and is set to its
default value if cattr is NULL, or to specific cattr condition variable
attributes that are already set with pthread_condattr_init(). The effect of
cattr being NULL is the same as passing the address of a default condition
variable attribute object, but without the memory overhead.

Statically-defined condition variables can be initialized directly to have
default attributes with the macro PTHREAD_COND_INITIALIZER. This has the
same effect as dynamically allocating pthread_cond_init() with null
attributes. No error checking is done. Multiple threads must not
simultaneously initialize or reinitialize the same condition variable. If a
condition variable is reinitialized or destroyed, the application must be sure
the condition variable is not in use.

pthread_cond_init() returns zero after completing successfully. Any other
returned value indicates that an error occurred.

Sample calls of this function are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <pthread.h>

pthread_cond_t cv;
pthread_condattr_t cattr;
int ret;

/* initialize a condition variable to its default value */
ret = pthread_cond_init(&cv, NULL);

/* initialize a condition variable */ ret =
pthread_cond_init(&cv, &cattr);

Block on a Condition Variable
The function pthread_cond_wait() is used to atomically release a mutex
and to cause the calling thread to block on the condition variable. It is
protoyped by:

int pthread_cond_wait(pthread_cond_t *cv,pthread_mutex_t *mutex);

The mutex that is released is pointed to by mutex and the condition variable
pointed to by cv is blocked.

pthread_cond_wait() returns zero after completing successfully. Any other
returned value indicates that an error occurred. When the following condition
occurs, the function fails and returns the corresponding value.

A simple example call is:

#include <pthread.h>

pthread_cond_t cv;
pthread_mutex_t mutex;
int ret;

/* wait on condition variable */
ret = pthread_cond_wait(&cv, &mutex);

The blocked thread can be awakened by a pthread_cond_signal(), a
pthread_cond_broadcast(), or when interrupted by delivery of a signal.
Any change in the value of a condition associated with the condition variable
cannot be inferred by the return of pthread_cond_wait(), and any such
condition must be reevaluated. The pthread_cond_wait() routine always
returns with the mutex locked and owned by the calling thread, even when
returning an error. This function blocks until the condition is signaled. It
atomically releases the associated mutex lock before blocking, and atomically
acquires it again before returning. In typical use, a condition expression is
evaluated under the protection of a mutex lock. When the condition
expression is false, the thread blocks on the condition variable. The condition
variable is then signaled by another thread when it changes the condition
value. This causes one or all of the threads waiting on the condition to
unblock and to try to acquire the mutex lock again. Because the condition can
change before an awakened thread returns from pthread_cond_wait(), the
condition that caused the wait must be retested before the mutex lock is
acquired.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The recommended test method is to write the condition check as a while loop
that calls pthread_cond_wait(), as follows:

pthread_mutex_lock();

while(condition_is_false)
 pthread_cond_wait();
pthread_mutex_unlock();

No specific order of acquisition is guaranteed when more than one thread
blocks on the condition variable. Note also that pthread_cond_wait() is a
cancellation point. If a cancel is pending and the calling thread has
cancellation enabled, the thread terminates and begins executing its cleanup
handlers while continuing to hold the lock.

To unblock a specific thread use pthread_cond_signal() which is
prototyped by:

int pthread_cond_signal(pthread_cond_t *cv);

This unblocks one thread that is blocked on the condition variable pointed to
by cv. pthread_cond_signal() returns zero after completing successfully.
Any other returned value indicates that an error occurred.

You should always call pthread_cond_signal() under the protection of the
same mutex used with the condition variable being signaled. Otherwise, the
condition variable could be signaled between the test of the associated
condition and blocking in pthread_cond_wait(), which can cause an infinite
wait. The scheduling policy determines the order in which blocked threads
are awakened. For SCHED_OTHER, threads are awakened in priority order.
When no threads are blocked on the condition variable, then calling
pthread_cond_signal()l has no effect.

The folloowing code fragment illustrates how to avoid an infinite problem
described above:

pthread_mutex_t count_lock;
pthread_cond_t count_nonzero;
unsigned count;

decrement_count()
 { pthread_mutex_lock(&count_lock);

 while (count == 0)
 pthread_cond_wait(&count_nonzero, &count_lock);
 count = count - 1;
 pthread_mutex_unlock(&count_lock);
 }

increment_count()
 { pthread_mutex_lock(&count_lock);
 if (count == 0)
 pthread_cond_signal(&count_nonzero);
 count = count + 1;
 pthread_mutex_unlock(&count_lock);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

You can also block until a specified event occurs. The function
pthread_cond_timedwait() is used for this purpose. It is prototyped by:

int pthread_cond_timedwait(pthread_cond_t *cv,
 pthread_mutex_t *mp, const struct timespec *abstime);

pthread_cond_timedwait() is used in a similar manner to
pthread_cond_wait(): pthread_cond_timedwait() blocks until the
condition is signaled or until the time of day, specified by abstime, has
passed. pthread_cond_timedwait() always returns with the mutex, mp,
locked and owned by the calling thread, even when it is returning an error.
pthread_cond_timedwait() is also a cancellation point.

pthread_cond_timedwait() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When either of the
following conditions occurs, the function fails and returns the corresponding
value.

An examle call of this function is:

#include <pthread.h>
#include <time.h>

pthread_timestruc_t to;
pthread_cond_t cv;
pthread_mutex_t mp;
timestruct_t abstime;
int ret;

/* wait on condition variable */

ret = pthread_cond_timedwait(&cv, &mp, &abstime);

pthread_mutex_lock(&m);
to.tv_sec = time(NULL) + TIMEOUT;
to.tv_nsec = 0;

while (cond == FALSE)
 { err = pthread_cond_timedwait(&c, &m, &to);
 if (err == ETIMEDOUT)
 { /* timeout, do something */
 break;
 }
 }
pthread_mutex_unlock(&m);

All threads may be unblocked in one function: pthread_cond_broadcast().
This function is prototyped as follows:

int pthread_cond_broadcast(pthread_cond_t *cv);

pthread_cond_broadcast() unblocks all threads that are blocked on the
condition variable pointed to by cv, specified by pthread_cond_wait().
When no threads are blocked on the condition variable,
pthread_cond_broadcast() has no effect.

pthread_cond_broadcast() returns zero after completing successfully. Any

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pthread_cond_broadcast() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When the following
condition occurs, the function fails and returns the corresponding value.

Since pthread_cond_broadcast() causes all threads blocked on the
condition to contend again for the mutex lock, use carefully. For example, use
pthread_cond_broadcast() to allow threads to contend for varying resource
amounts when resources are freed:

#include <pthread.h>

pthread_mutex_t rsrc_lock;
pthread_cond_t rsrc_add;
unsigned int resources;

get_resources(int amount)
 { pthread_mutex_lock(&rsrc_lock);
 while (resources < amount)
 pthread_cond_wait(&rsrc_add, &rsrc_lock);

 resources -= amount;
 pthread_mutex_unlock(&rsrc_lock);
 }

add_resources(int amount)
 { pthread_mutex_lock(&rsrc_lock);
 resources += amount;
 pthread_cond_broadcast(&rsrc_add);
 pthread_mutex_unlock(&rsrc_lock);
 }

Note: that in add_resources it does not matter whether resources is updated
first or if pthread_cond_broadcast() is called first inside the mutex lock.
Call pthread_cond_broadcast() under the protection of the same mutex that
is used with the condition variable being signaled. Otherwise, the condition
variable could be signaled between the test of the associated condition and
blocking in pthread_cond_wait(), which can cause an infinite wait.

Destroying a Condition Variable State
The function pthread_cond_destroy() to destroy any state associated with
the condition variable, it is prototyped by:

int pthread_cond_destroy(pthread_cond_t *cv);

The condition variable pointed to by cv will be destroyed by this call:

#include <pthread.h>

pthread_cond_t cv;
int ret;

/* Condition variable is destroyed */
ret = pthread_cond_destroy(&cv);

Note that the space for storing the condition variable is not freed.

pthread_cond_destroy() returns zero after completing successfully. Any

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pthread_cond_destroy() returns zero after completing successfully. Any
other returned value indicates that an error occurred. When any of the
following conditions occur, the function fails and returns the corresponding
value.

Solaris Condition Variables
Similar condition variables exist in Solaris. The functions are prototyped in
<thread.h>.

To initialize a condition variable use int cond_init(cond_t *cv, int
type, int arg) which initializes the condition variable pointed to by cv.
The type can be one of USYNC_PROCESS or USYNC_THREAD (See Solaris mutex
(Section 30.1.9 for more details). Note that arg is currently ignored.

Condition variables can also be initialized by allocation in zeroed memory, in
which case a type of USYNC_THREAD is assumed. Multiple threads must not
initialize the same condition variable simultaneously. A condition variable
must not be reinitialized while other threads might be using it.

To destroy a condition variable use int cond_destroy(cond_t *cv) which
destroys a state associated with the condition variable pointed to by cv. The
space for storing the condition variable is not freed.

To wait for a condition use int cond_wait(cond_t *cv, mutex_t *mp)
which atomically releases the mutex pointed to by mp and to cause the calling
thread to block on the condition variable pointed to by cv.

The blocked thread can be awakened by cond_signal(cond_t *cv),
cond_broadcast(cond_t *cv), or when interrupted by delivery of a signal
or a fork. Use cond_signal() to unblock one thread that is blocked on the
condition variable pointed to by cv. Call this function under protection of the
same mutex used with the condition variable being signaled. Otherwise, the
condition could be signaled between its test and cond_wait(), causing an
infinite wait. Use cond_broadcast() to unblock all threads that are blocked
on the condition variable pointed to by cv. When no threads are blocked on
the condition variable then cond_broadcast() has no effect.

Finally, to wait until the condition is signaled or for an absolute time use int
cond_timedwait(cond_t *cv, mutex_t *mp, timestruct_t abstime)
Use cond_timedwait() as you would use cond_wait(), except that
cond_timedwait() does not block past the time of day specified by abstime.
cond_timedwait() always returns with the mutex locked and owned by the
calling thread even when returning an error.

Threads and Semaphores

POSIX Semaphores

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 25 has dealt with semaphore programming for POSIX and System V
IPC semaphores.

Semaphore operations are the same in both POSIX and Solaris. The function
names are changed from sema_ in Solaris to sem_ in pthreads. Solaris
semaphore are defined in <thread.h>.

In this section we give a brief description of Solaris thread semaphores.

Basic Solaris Semaphore Functions
To initialize the function int sema_init(sema_t *sp, unsigned int
count, int type, void *arg) is used. sema. type can be one of the
following):

USYNC_PROCESS
-- The semaphore can be used to synchronize threads in this process
and other processes. Only one process should initialize the semaphore.

USYNC_THREAD
-- The semaphore can be used to synchronize threads in this process.

arg is currently unused.

Multiple threads must not initialize the same semaphore simultaneously. A
semaphore must not be reinitialized while other threads may be using it.

To increment a Semaphore use the function int sema_post(sema_t *sp).
sema_post atomically increments the semaphore pointed to by sp. When any
threads are blocked on the semaphore, one is unblocked.

To block on a Semaphore use int sema_wait(sema_t *sp). sema_wait() to
block the calling thread until the count in the semaphore pointed to by sp
becomes greater than zero, then atomically decrement it.

To decrement a Semaphore count use int sema_trywait(sema_t *sp).
sema_trywait() atomically decrements the count in the semaphore pointed
to by sp when the count is greater than zero. This function is a nonblocking
version of sema_wait().

To destroy the Semaphore state call the function sema_destroy(sema_t
*sp). sema_destroy() to destroy any state associated with the semaphore
pointed to by sp. The space for storing the semaphore is not freed.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Using thr_create() and thr_join()
Arrays
Deadlock
Signal Handler
Interprocess Synchronization
The Producer / Consumer Problem
A Socket Server
Using Many Threads
Real-time Thread Example
POSIX Cancellation
Software Race Condition
Tgrep: Threadeds version of UNIX grep
Multithreaded Quicksort

Thread programming examples
This chapter gives some full code examples of thread programs. These
examles are taken from a variety of sources:

The sun workshop developers web page
http://www.sun.com/workshop/threads/share-code/ on threads is an
excelleny source
The web page http://www.sun.com/workshop/threads/Berg-
Lewis/examples.html where example from the Threads Primer Book
by D. Berg anD B. Lewis are also a major resource.

Using thr_create() and thr_join()
This example exercises the thr_create() and thr_join() calls. There is not
a parent/child relationship between threads as there is for processes. This can
easily be seen in this example, because threads are created and joined by
many different threads in the process. The example also shows how threads
behave when created with different attributes and options.

Threads can be created by any thread and joined by any other.

The main thread: In this example the main thread's sole purpose is to create
new threads. Threads A, B, and C are created by the main thread. Notice that
thread B is created suspended. After creating the new threads, the main thread
exits. Also notice that the main thread exited by calling thr_exit(). If the main
thread had used the exit() call, the whole process would have exited. The
main thread's exit status and resources are held until it is joined by thread C.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Thread A: The first thing thread A does after it is created is to create thread
D. Thread A then simulates some processing and then exits, using
thr_exit(). Notice that thread A was created with the THR_DETACHED flag, so
thread A's resources will be immediately reclaimed upon its exit. There is no
way for thread A's exit status to be collected by a thr_join() call.

Thread B: Thread B was created in a suspended state, so it is not able to run
until thread D continues it by making the thr_continue() call. After thread
B is continued, it simulates some processing and then exits. Thread B's exit
status and thread resources are held until joined by thread E.

Thread C: The first thing that thread C does is to create thread F. Thread C
then joins the main thread. This action will collect the main thread's exit
status and allow the main thread's resources to be reused by another thread.
Thread C will block, waiting for the main thread to exit, if the main thread
has not yet called thr_exit(). After joining the main thread, thread C will
simulate some processing and then exit. Again, the exit status and thread
resources are held until joined by thread E.

Thread D: Thread D immediately creates thread E. After creating thread E,
thread D continues thread B by making the thr_continue() call. This call
will allow thread B to start its execution. Thread D then tries to join thread E,
blocking until thread E has exited. Thread D then simulates some processing
and exits. If all went well, thread D should be the last nondaemon thread
running. When thread D exits, it should do two things: stop the execution of
any daemon threads and stop the execution of the process.

Thread E: Thread E starts by joining two threads, threads B and C. Thread E
will block, waiting for each of these thread to exit. Thread E will then
simulate some processing and will exit. Thread E's exit status and thread
resources are held by the operating system until joined by thread D.

Thread F: Thread F was created as a bound, daemon thread by using the
THR_BOUND and THR_DAEMON flags in the thr_create() call. This means that
it will run on its own LWP until all the nondaemon threads have exited the
process. This type of thread can be used when you want some type of
"background" processing to always be running, except when all the "regular"
threads have exited the process. If thread F was created as a non-daemon
thread, then it would continue to run forever, because a process will continue
while there is at least one thread still running. Thread F will exit when all the
nondaemon threads have exited. In this case, thread D should be the last
nondaemon thread running, so when thread D exits, it will also cause thread F
to exit.

This example, however trivial, shows how threads behave differently, based
on their creation options. It also shows what happens on the exit of a thread,
again based on how it was created. If you understand this example and how it
flows, you should have a good understanding of how to use thr_create()
and thr_join() in your own programs. Hopefully you can also see how easy
it is to create and join threads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The source to multi_thr.c:

#define _REENTRANT
#include <stdio.h>
#include <thread.h>

/* Function prototypes for thread routines */
void *sub_a(void *);
void *sub_b(void *);
void *sub_c(void *);
void *sub_d(void *);
void *sub_e(void *);
void *sub_f(void *);

thread_t thr_a, thr_b, thr_c;

void main()
{
thread_t main_thr;

main_thr = thr_self();
printf("Main thread = %d\n", main_thr);

if (thr_create(NULL, 0, sub_b, NULL, THR_SUSPENDED|THR_NEW_LWP, &thr_b))
 fprintf(stderr,"Can't create thr_b\n"), exit(1);

if (thr_create(NULL, 0, sub_a, (void *)thr_b, THR_NEW_LWP, &thr_a))
 fprintf(stderr,"Can't create thr_a\n"), exit(1);

if (thr_create(NULL, 0, sub_c, (void *)main_thr, THR_NEW_LWP, &thr_c))
 fprintf(stderr,"Can't create thr_c\n"), exit(1);

printf("Main Created threads A:%d B:%d C:%d\n", thr_a, thr_b, thr_c);
printf("Main Thread exiting...\n");
thr_exit((void *)main_thr);
}

void *sub_a(void *arg)
{
thread_t thr_b = (thread_t) arg;
thread_t thr_d;
int i;

printf("A: In thread A...\n");

if (thr_create(NULL, 0, sub_d, (void *)thr_b, THR_NEW_LWP, &thr_d))
 fprintf(stderr, "Can't create thr_d\n"), exit(1);

printf("A: Created thread D:%d\n", thr_d);

/* process
*/
for (i=0;i<1000000*(int)thr_self();i++);
printf("A: Thread exiting...\n");
thr_exit((void *)77);
}

void * sub_b(void *arg)
{
int i;

printf("B: In thread B...\n");

/* process

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* process
*/

for (i=0;i<1000000*(int)thr_self();i++);
printf("B: Thread exiting...\n");
thr_exit((void *)66);
}

void * sub_c(void *arg)
{
void *status;
int i;
thread_t main_thr, ret_thr;

main_thr = (thread_t)arg;

printf("C: In thread C...\n");

if (thr_create(NULL, 0, sub_f, (void *)0, THR_BOUND|THR_DAEMON, NULL))
 fprintf(stderr, "Can't create thr_f\n"), exit(1);

printf("C: Join main thread\n");

if (thr_join(main_thr,(thread_t *)&ret_thr, &status))
 fprintf(stderr, "thr_join Error\n"), exit(1);

printf("C: Main thread (%d) returned thread (%d) w/status %d\n", main_thr, ret_thr, (int) status);

/* process
*/

for (i=0;i<1000000*(int)thr_self();i++);
printf("C: Thread exiting...\n");
thr_exit((void *)88);
}

void * sub_d(void *arg)
{
thread_t thr_b = (thread_t) arg;
int i;
thread_t thr_e, ret_thr;
void *status;

printf("D: In thread D...\n");

if (thr_create(NULL, 0, sub_e, NULL, THR_NEW_LWP, &thr_e))
 fprintf(stderr,"Can't create thr_e\n"), exit(1);

printf("D: Created thread E:%d\n", thr_e);
printf("D: Continue B thread = %d\n", thr_b);

thr_continue(thr_b);
printf("D: Join E thread\n");

if(thr_join(thr_e,(thread_t *)&ret_thr, &status))
 fprintf(stderr,"thr_join Error\n"), exit(1);

printf("D: E thread (%d) returned thread (%d) w/status %d\n", thr_e,
ret_thr, (int) status);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ret_thr, (int) status);

/* process
*/

for (i=0;i<1000000*(int)thr_self();i++);
printf("D: Thread exiting...\n");
thr_exit((void *)55);
}

void * sub_e(void *arg)
{
int i;
thread_t ret_thr;
void *status;

printf("E: In thread E...\n");
printf("E: Join A thread\n");

if(thr_join(thr_a,(thread_t *)&ret_thr, &status))
 fprintf(stderr,"thr_join Error\n"), exit(1);

printf("E: A thread (%d) returned thread (%d) w/status %d\n", ret_thr, ret_thr, (int) status);
printf("E: Join B thread\n");

if(thr_join(thr_b,(thread_t *)&ret_thr, &status))
 fprintf(stderr,"thr_join Error\n"), exit(1);

printf("E: B thread (%d) returned thread (%d) w/status %d\n", thr_b, ret_thr, (int) status);
printf("E: Join C thread\n");

if(thr_join(thr_c,(thread_t *)&ret_thr, &status))
 fprintf(stderr,"thr_join Error\n"), exit(1);

printf("E: C thread (%d) returned thread (%d) w/status %d\n", thr_c, ret_thr, (int) status);

for (i=0;i<1000000*(int)thr_self();i++);

printf("E: Thread exiting...\n");
thr_exit((void *)44);
}

void *sub_f(void *arg)
{
int i;

printf("F: In thread F...\n");

while (1) {
 for (i=0;i<10000000;i++);
 printf("F: Thread F is still running...\n");
 }
}

Arrays
This example uses a data structure that contains multiple arrays of data.
Multiple threads will concurrently vie for access to the arrays. To control this
access, a mutex variable is used within the data structure to lock the entire
array and serialize the access to the data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The main thread first initializes the data structure and the mutex variable. It
then sets a level of concurrency and creates the worker threads. The main
thread then blocks by joining all the threads. When all the threads have
exited, the main thread prints the results.

The worker threads modify the shared data structure from within a loop. Each
time the threads need to modify the shared data, they lock the mutex variable
associated with the shared data. After modifying the data, the threads unlock
the mutex, allowing another thread access to the data.

This example may look quite simple, but it shows how important it is to
control access to a simple, shared data structure. The results can be quite
different if the mutex variable is not used.

The source to array.c:

#define _REENTRANT
#include <stdio.h>
#include <thread.h>

/* sample array data structure */
struct {
 mutex_t data_lock[5];
 int int_val[5];
 float float_val[5];
 } Data;

/* thread function */
void *Add_to_Value();

main()
{
int i;

/* initialize the mutexes and data */
for (i=0; i<5; i++) {
 mutex_init(&Data.data_lock[i], USYNC_THREAD, 0);
 Data.int_val[i] = 0;
 Data.float_val[i] = 0;
 }

/* set concurrency and create the threads */
thr_setconcurrency(4);

for (i=0; i<5; i++)
 thr_create(NULL, 0, Add_to_Value, (void *)(2*i), 0, NULL);

/* wait till all threads have finished */
for (i=0; i<5; i++)
 thr_join(0,0,0);

/* print the results */
printf("Final Values.....\n");

for (i=0; i<5; i++) {
 printf("integer value[%d] =\t%d\n", i, Data.int_val[i]);
 printf("float value[%d] =\t%.0f\n\n", i, Data.float_val[i]);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

return(0);
}

/* Threaded routine */
void *Add_to_Value(void *arg)
{
int inval = (int) arg;
int i;

for (i=0;i<10000;i++){
 mutex_lock(&Data.data_lock[i%5]);
 Data.int_val[i%5] += inval;
 Data.float_val[i%5] += (float) 1.5 * inval;
 mutex_unlock(&Data.data_lock[i%5]);
 }

return((void *)0);
}

Deadlock
This example demonstrates how a deadlock can occur in multithreaded
programs that use synchronization variables. In this example a thread is
created that continually adds a value to a global variable. The thread uses a
mutex lock to protect the global data.

The main thread creates the counter thread and then loops, waiting for user
input. When the user presses the Return key, the main thread suspends the
counter thread and then prints the value of the global variable. The main
thread prints the value of the global variable under the protection of a mutex
lock.

The problem arises in this example when the main thread suspends the
counter thread while the counter thread is holding the mutex lock. After the
main thread suspends the counter thread, it tries to lock the mutex variable.
Since the mutex variable is already held by the counter thread, which is
suspended, the main thread deadlocks.

This example may run fine for a while, as long as the counter thread just
happens to be suspended when it is not holding the mutex lock. The example
demonstrates how tricky some programming issues can be when you deal
with threads.

The source to susp_lock.c

#define _REENTRANT
#include <stdio.h>
#include <thread.h>

/* Prototype for thread subroutine */
void *counter(void *);

int count;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int count;
mutex_t count_lock;

main()
{
char str[80];
thread_t ctid;

/* create the thread counter subroutine */
thr_create(NULL, 0, counter, 0, THR_NEW_LWP|THR_DETACHED, &ctid);

while(1) {
 gets(str);
 thr_suspend(ctid);

 mutex_lock(&count_lock);
 printf("\n\nCOUNT = %d\n\n", count);
 mutex_unlock(&count_lock);

 thr_continue(ctid);
 }

return(0);
}

void *counter(void *arg)
{
int i;

while (1) {
 printf("."); fflush(stdout);

 mutex_lock(&count_lock);
 count++;

 for (i=0;i<50000;i++);

 mutex_unlock(&count_lock);

 for (i=0;i<50000;i++);
 }

return((void *)0);
}

Signal Handler
This example shows how easy it is to handle signals in multithreaded
programs. In most programs, a different signal handler would be needed to
service each type of signal that you wanted to catch. Writing each of the
signal handlers can be time consuming and can be a real pain to debug.

This example shows how you can implement a signal handler thread that will
service all asynchronous signals that are sent to your process. This is an easy
way to deal with signals, because only one thread is needed to handle all the
signals. It also makes it easy when you create new threads within the process,
because you need not worry about signals in any of the threads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

First, in the main thread, mask out all signals and then create a signal
handling thread. Since threads inherit the signal mask from their creator, any
new threads created after the new signal mask will also mask all signals. This
idea is key, because the only thread that will receive signals is the one thread
that does not block all the signals.

The signal handler thread waits for all incoming signals with the sigwait()
call. This call unmasks the signals given to it and then blocks until a signal
arrives. When a signal arrives, sigwait() masks the signals again and then
returns with the signal ID of the incoming signal.

You can extend this example for use in your application code to handle all
your signals. Notice also that this signal concept could be added in your
existing nonthreaded code as a simpler way to deal with signals.

The source to thr_sig.c

#define _REENTRANT
#include <stdio.h>
#include <thread.h>
#include <signal.h>
#include <sys/types.h>

void *signal_hand(void *);

main()
{
sigset_t set;

/* block all signals in main thread. Any other threads that are
 created after this will also block all signals */

sigfillset(&set);

thr_sigsetmask(SIG_SETMASK, &set, NULL);

/* create a signal handler thread. This thread will catch all
 signals and decide what to do with them. This will only
 catch nondirected signals. (I.e., if a thread causes a SIGFPE
 then that thread will get that signal. */

thr_create(NULL, 0, signal_hand, 0, THR_NEW_LWP|THR_DAEMON|THR_DETACHED, NULL);

while (1) {
 /*
 Do your normal processing here....
 */
 } /* end of while */

return(0);
}

void *signal_hand(void *arg)
{
sigset_t set;
int sig;

sigfillset(&set); /* catch all signals */

while (1) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

while (1) {
 /* wait for a signal to arrive */

 switch (sig=sigwait(&set)) {

 /* here you would add whatever signal you needed to catch */
 case SIGINT : {
 printf("Interrupted with signal %d, exiting...\n", sig);
 exit(0);
 }

 default : printf("GOT A SIGNAL = %d\n", sig);
 } /* end of switch */
 } /* end of while */

return((void *)0);
} /* end of signal_hand */

Another example of a signal handler, sig_kill.c:

/*
* Multithreaded Demo Source
*
* Copyright (C) 1995 by Sun Microsystems, Inc.
* All rights reserved.
*
* This file is a product of SunSoft, Inc. and is provided for
* unrestricted use provided that this legend is included on all
* media and as a part of the software program in whole or part.
* Users may copy, modify or distribute this file at will.
*
* THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* This file is provided with no support and without any obligation on
* part of SunSoft, Inc. to assist in its use, correction, modification or
* enhancement.
*
* SUNSOFT AND SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT
* TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS
* FILE OR ANY PART THEREOF.
*
* IN NO EVENT WILL SUNSOFT OR SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY
* LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL
* DAMAGES, EVEN IF THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGES.
*
* SunSoft, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/

/*
 * Rich Schiavi writes: Sept 11, 1994
 *
 * I believe the recommended way to kill certain threads is
 * using a signal handler which then will exit that particular
 * thread properly. I'm not sure the exact reason (I can't remember), but
 * if you take out the signal_handler routine in my example, you will see what
 * you describe, as the main process dies even if you send the
 * thr_kill to the specific thread.

 * I whipped up a real quick simple example which shows this using
 * some sleep()s to get a good simulation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * some sleep()s to get a good simulation.
 */

#include <stdio.h>
#include <thread.h>
#include <signal.h>

static thread_t one_tid, two_tid, main_thread;
static void *first_thread();
static void *second_thread();
void ExitHandler(int);

static mutex_t first_mutex, second_mutex;
int first_active = 1 ;
int second_active = 1;

main()

{
 int i;
 struct sigaction act;

 act.sa_handler = ExitHandler;
 (void) sigemptyset(&act.sa_mask);
 (void) sigaction(SIGTERM, &act, NULL);

 mutex_init(&first_mutex, 0 , 0);
 mutex_init(&second_mutex, 0 , 0);
 main_thread = thr_self();

 thr_create(NULL,0,first_thread,0,THR_NEW_LWP,&one_tid);
 thr_create(NULL,0,second_thread,0,THR_NEW_LWP,&two_tid);

 for (i = 0; i < 10; i++){
 fprintf(stderr, "main loop: %d\n", i);
 if (i == 5) {
 thr_kill(one_tid, SIGTERM);
 }
 sleep(3);
 }
 thr_kill(two_tid, SIGTERM);
 sleep(5);
 fprintf(stderr, "main exit\n");
}

static void *first_thread()
{
 int i = 0;

 fprintf(stderr, "first_thread id: %d\n", thr_self());
 while (first_active){
 fprintf(stderr, "first_thread: %d\n", i++);
 sleep(2);
 }
 fprintf(stderr, "first_thread exit\n");
}

static void *second_thread()
{
 int i = 0;

 fprintf(stderr, "second_thread id: %d\n", thr_self());

 while (second_active){
 fprintf(stderr, "second_thread: %d\n", i++);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fprintf(stderr, "second_thread: %d\n", i++);
 sleep(3);
 }
 fprintf(stderr, "second_thread exit\n");
}

void ExitHandler(int sig)
{
 thread_t id;

 id = thr_self();

 fprintf(stderr, "ExitHandler thread id: %d\n", id);
 thr_exit(0);

}

Interprocess Synchronization
This example uses some of the synchronization variables available in the
threads library to synchronize access to a resource shared between two
processes. The synchronization variables used in the threads library are an
advantage over standard IPC synchronization mechanisms because of their
speed. The synchronization variables in the threads libraries have been tuned
to be very lightweight and very fast. This speed can be an advantage when
your application is spending time synchronizing between processes.

This example shows how semaphores from the threads library can be used
between processes. Note that this program does not use threads; it is just
using the lightweight semaphores available from the threads library.

When using synchronization variables between processes, it is important to
make sure that only one process initializes the variable. If both processes try
to initialize the synchronization variable, then one of the processes will
overwrite the state of the variable set by the other process.

The source to ipc.c

#include <stdio.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <synch.h>
#include <sys/types.h>
#include <unistd.h>

/* a structure that will be used between processes */
typedef struct {
 sema_t mysema;
 int num;
} buf_t;

main()
{
int i, j, fd;
buf_t *buf;

/* open a file to use in a memory mapping */
fd = open("/dev/zero", O_RDWR);

/* create a shared memory map with the open file for the data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* create a shared memory map with the open file for the data
 structure that will be shared between processes */
buf=(buf_t *)mmap(NULL, sizeof(buf_t), PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

/* initialize the semaphore -- note the USYNC_PROCESS flag; this makes
 the semaphore visible from a process level */
sema_init(&buf->mysema, 0, USYNC_PROCESS, 0);

/* fork a new process */
if (fork() == 0) {
 /* The child will run this section of code */
 for (j=0;j<5;j++)
 {
 /* have the child "wait" for the semaphore */

 printf("Child PID(%d): waiting...\n", getpid());
 sema_wait(&buf->mysema);

 /* the child decremented the semaphore */

 printf("Child PID(%d): decrement semaphore.\n", getpid());
 }
 /* exit the child process */
 printf("Child PID(%d): exiting...\n", getpid());
 exit(0);
 }

/* The parent will run this section of code */
/* give the child a chance to start running */

sleep(2);

for (i=0;i<5;i++)
 {
 /* increment (post) the semaphore */

 printf("Parent PID(%d): posting semaphore.\n", getpid());
 sema_post(&buf->mysema);

 /* wait a second */
 sleep(1);
 }

/* exit the parent process */
printf("Parent PID(%d): exiting...\n", getpid());

return(0);
}

The Producer / Consumer Problem
This example will show how condition variables can be used to control access
of reads and writes to a buffer. This example can also be thought as a
producer/consumer problem, where the producer adds items to the buffer and
the consumer removes items from the buffer.

Two condition variables control access to the buffer. One condition variable
is used to tell if the buffer is full, and the other is used to tell if the buffer is
empty. When the producer wants to add an item to the buffer, it checks to see
if the buffer is full; if it is full the producer blocks on the cond_wait() call,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if the buffer is full; if it is full the producer blocks on the cond_wait() call,
waiting for an item to be removed from the buffer. When the consumer
removes an item from the buffer, the buffer is no longer full, so the producer
is awakened from the cond_wait() call. The producer is then allowed to add
another item to the buffer.

The consumer works, in many ways, the same as the producer. The consumer
uses the other condition variable to determine if the buffer is empty. When
the consumer wants to remove an item from the buffer, it checks to see if it is
empty. If the buffer is empty, the consumer then blocks on the cond_wait()
call, waiting for an item to be added to the buffer. When the producer adds an
item to the buffer, the consumer's condition is satisfied, so it can then remove
an item from the buffer.

The example copies a file by reading data into a shared buffer (producer) and
then writing data out to the new file (consumer). The Buf data structure is
used to hold both the buffered data and the condition variables that control the
flow of the data.

The main thread opens both files, initializes the Buf data structure, creates the
consumer thread, and then assumes the role of the producer. The producer
reads data from the input file, then places the data into an open buffer
position. If no buffer positions are available, then the producer waits via the
cond_wait() call. After the producer has read all the data from the input file,
it closes the file and waits for (joins) the consumer thread.

The consumer thread reads from a shared buffer and then writes the data to
the output file. If no buffers positions are available, then the consumer waits
for the producer to fill a buffer position. After the consumer has read all the
data, it closes the output file and exits.

If the input file and the output file were residing on different physical disks,
then this example could execute the reads and writes in parallel. This
parallelism would significantly increase the throughput of the example
through the use of threads.

The source to prod_cons.c:

#define _REEENTRANT
#include <stdio.h>
#include <thread.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>

#define BUFSIZE 512
#define BUFCNT 4

/* this is the data structure that is used between the producer
 and consumer threads */

struct {
 char buffer[BUFCNT][BUFSIZE];
 int byteinbuf[BUFCNT];
 mutex_t buflock;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mutex_t buflock;
 mutex_t donelock;
 cond_t adddata;
 cond_t remdata;
 int nextadd, nextrem, occ, done;
} Buf;

/* function prototype */
void *consumer(void *);

main(int argc, char **argv)
{
int ifd, ofd;
thread_t cons_thr;

/* check the command line arguments */
if (argc != 3)
 printf("Usage: %s <infile> <outfile>\n", argv[0]), exit(0);

/* open the input file for the producer to use */
if ((ifd = open(argv[1], O_RDONLY)) == -1)
 {
 fprintf(stderr, "Can't open file %s\n", argv[1]);
 exit(1);
 }

/* open the output file for the consumer to use */
if ((ofd = open(argv[2], O_WRONLY|O_CREAT, 0666)) == -1)
 {
 fprintf(stderr, "Can't open file %s\n", argv[2]);
 exit(1);
 }

/* zero the counters */
Buf.nextadd = Buf.nextrem = Buf.occ = Buf.done = 0;

/* set the thread concurrency to 2 so the producer and consumer can
 run concurrently */

thr_setconcurrency(2);

/* create the consumer thread */
thr_create(NULL, 0, consumer, (void *)ofd, NULL, &cons_thr);

/* the producer ! */
while (1) {

 /* lock the mutex */
 mutex_lock(&Buf.buflock);

 /* check to see if any buffers are empty */
 /* If not then wait for that condition to become true */

 while (Buf.occ == BUFCNT)
 cond_wait(&Buf.remdata, &Buf.buflock);

 /* read from the file and put data into a buffer */
 Buf.byteinbuf[Buf.nextadd] = read(ifd,Buf.buffer[Buf.nextadd],BUFSIZE);

 /* check to see if done reading */
 if (Buf.byteinbuf[Buf.nextadd] == 0) {

 /* lock the done lock */
 mutex_lock(&Buf.donelock);

 /* set the done flag and release the mutex lock */
 Buf.done = 1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Buf.done = 1;

 mutex_unlock(&Buf.donelock);

 /* signal the consumer to start consuming */
 cond_signal(&Buf.adddata);

 /* release the buffer mutex */
 mutex_unlock(&Buf.buflock);

 /* leave the while looop */
 break;
 }

 /* set the next buffer to fill */
 Buf.nextadd = ++Buf.nextadd % BUFCNT;

 /* increment the number of buffers that are filled */
 Buf.occ++;

 /* signal the consumer to start consuming */
 cond_signal(&Buf.adddata);

 /* release the mutex */
 mutex_unlock(&Buf.buflock);
 }

close(ifd);

/* wait for the consumer to finish */
thr_join(cons_thr, 0, NULL);

/* exit the program */
return(0);
}

/* The consumer thread */
void *consumer(void *arg)
{
int fd = (int) arg;

/* check to see if any buffers are filled or if the done flag is set */
while (1) {

 /* lock the mutex */
 mutex_lock(&Buf.buflock);

 if (!Buf.occ && Buf.done) {
 mutex_unlock(&Buf.buflock);
 break;
 }

 /* check to see if any buffers are filled */
 /* if not then wait for the condition to become true */

 while (Buf.occ == 0 && !Buf.done)
 cond_wait(&Buf.adddata, &Buf.buflock);

 /* write the data from the buffer to the file */
 write(fd, Buf.buffer[Buf.nextrem], Buf.byteinbuf[Buf.nextrem]);

 /* set the next buffer to write from */
 Buf.nextrem = ++Buf.nextrem % BUFCNT;

 /* decrement the number of buffers that are full */
 Buf.occ--;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Buf.occ--;

 /* signal the producer that a buffer is empty */
 cond_signal(&Buf.remdata);

 /* release the mutex */
 mutex_unlock(&Buf.buflock);
 }

/* exit the thread */
thr_exit((void *)0);
}

A Socket Server
The socket server example uses threads to implement a "standard" socket port
server. The example shows how easy it is to use thr_create() calls in the
place of fork() calls in existing programs.

A standard socket server should listen on a socket port and, when a message
arrives, fork a process to service the request. Since a fork() system call
would be used in a nonthreaded program, any communication between the
parent and child would have to be done through some sort of interprocess
communication.

We can replace the fork() call with a thr_create() call. Doing so offers a
few advantages: thr_create() can create a thread much faster then a fork()
could create a new process, and any communication between the server and
the new thread can be done with common variables. This technique makes the
implementation of the socket server much easier to understand and should
also make it respond much faster to incoming requests.

The server program first sets up all the needed socket information. This is the
basic setup for most socket servers. The server then enters an endless loop,
waiting to service a socket port. When a message is sent to the socket port,
the server wakes up and creates a new thread to handle the request. Notice
that the server creates the new thread as a detached thread and also passes the
socket descriptor as an argument to the new thread.

The newly created thread can then read or write, in any fashion it wants, to
the socket descriptor that was passed to it. At this point the server could be
creating a new thread or waiting for the next message to arrive. The key is
that the server thread does not care what happens to the new thread after it
creates it.

In our example, the created thread reads from the socket descriptor and then
increments a global variable. This global variable keeps track of the number
of requests that were made to the server. Notice that a mutex lock is used to
protect access to the shared global variable. The lock is needed because many
threads might try to increment the same variable at the same time. The mutex
lock provides serial access to the shared variable. See how easy it is to share
information among the new threads! If each of the threads were a process,
then a significant effort would have to be made to share this information
among the processes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The client piece of the example sends a given number of messages to the
server. This client code could also be run from different machines by multiple
users, thus increasing the need for concurrency in the server process.

The source code to soc_server.c:

#define _REENTRANT
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include <sys/uio.h>
#include <unistd.h>
#include <thread.h>

/* the TCP port that is used for this example */
#define TCP_PORT 6500

/* function prototypes and global variables */
void *do_chld(void *);
mutex_t lock;
int service_count;

main()
{
 int sockfd, newsockfd, clilen;
 struct sockaddr_in cli_addr, serv_addr;
 thread_t chld_thr;

 if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 fprintf(stderr,"server: can't open stream socket\n"), exit(0);

 memset((char *) &serv_addr, 0, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
 serv_addr.sin_port = htons(TCP_PORT);

 if(bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) <
0)
 fprintf(stderr,"server: can't bind local address\n"), exit(0);

 /* set the level of thread concurrency we desire */
 thr_setconcurrency(5);

 listen(sockfd, 5);

 for(;;){
 clilen = sizeof(cli_addr);
 newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr,
&clilen);

 if(newsockfd < 0)
 fprintf(stderr,"server: accept error\n"), exit(0);

 /* create a new thread to process the incomming request */
 thr_create(NULL, 0, do_chld, (void *) newsockfd, THR_DETACHED,
&chld_thr);

 /* the server is now free to accept another socket request */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /* the server is now free to accept another socket request */
 }
 return(0);
}

/*
 This is the routine that is executed from a new thread
*/

void *do_chld(void *arg)
{
int mysocfd = (int) arg;
char data[100];
int i;

 printf("Child thread [%d]: Socket number = %d\n", thr_self(), mysocfd);

 /* read from the given socket */
 read(mysocfd, data, 40);

 printf("Child thread [%d]: My data = %s\n", thr_self(), data);

 /* simulate some processing */
 for (i=0;i<1000000*thr_self();i++);

 printf("Child [%d]: Done Processing...\n", thr_self());

 /* use a mutex to update the global service counter */
 mutex_lock(&lock);

 service_count++;
 mutex_unlock(&lock);

 printf("Child thread [%d]: The total sockets served = %d\n", thr_self(), service_count);

 /* close the socket and exit this thread */
 close(mysocfd);
 thr_exit((void *)0);
}

Using Many Threads
This example that shows how easy it is to create many threads of execution in
Solaris. Because of the lightweight nature of threads, it is possible to create
literally thousands of threads. Most applications may not need a very large
number of threads, but this example shows just how lightweight the threads
can be.

We have said before that anything you can do with threads, you can do
without them. This may be a case where it would be very hard to do without
threads. If you have some spare time (and lots of memory), try implementing
this program by using processes, instead of threads. If you try this, you will
see why threads can have an advantage over processes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This program takes as an argument the number of threads to create. Notice
that all the threads are created with a user-defined stack size, which limits the
amount of memory that the threads will need for execution. The stack size for
a given thread can be hard to calculate, so some testing usually needs to be
done to see if the chosen stack size will work. You may want to change the
stack size in this program and see how much you can lower it before things
stop working. The Solaris threads library provides the thr_min_stack() call,
which returns the minimum allowed stack size. Take care when adjusting the
size of a threads stack. A stack overflow can happen quite easily to a thread
with a small stack.

After each thread is created, it blocks, waiting on a mutex variable. This
mutex variable was locked before any of the threads were created, which
prevents the threads from proceeding in their execution. When all of the
threads have been created and the user presses Return, the mutex variable is
unlocked, allowing all the threads to proceed.

After the main thread has created all the threads, it waits for user input and
then tries to join all the threads. Notice that the thr_join() call does not care
what thread it joins; it is just counting the number of joins it makes.

This example is rather trivial and does not serve any real purpose except to
show that it is possible to create a lot of threads in one process. However,
there are situations when many threads are needed in an application. An
example might be a network port server, where a thread is created each time
an incoming or outgoing request is made.

The source to many_thr.c:

#define _REENTRANT
#include <stdio.h>
#include <stdlib.h>
#include <thread.h>

/* function prototypes and global varaibles */
void *thr_sub(void *);
mutex_t lock;

main(int argc, char **argv)
{
int i, thr_count = 100;
char buf;

/* check to see if user passed an argument
 -- if so, set the number of threads to the value
 passed to the program */

if (argc == 2) thr_count = atoi(argv[1]);

printf("Creating %d threads...\n", thr_count);

/* lock the mutex variable -- this mutex is being used to
 keep all the other threads created from proceeding */

mutex_lock(&lock);

/* create all the threads -- Note that a specific stack size is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/* create all the threads -- Note that a specific stack size is
 given. Since the created threads will not use all of the
 default stack size, we can save memory by reducing the threads'
 stack size */

for (i=0;i<thr_count;i++) {
 thr_create(NULL,2048,thr_sub,0,0,NULL);
 }

printf("%d threads have been created and are running!\n", i);
printf("Press <return> to join all the threads...\n", i);

/* wait till user presses return, then join all the threads */
gets(&buf);

printf("Joining %d threads...\n", thr_count);

/* now unlock the mutex variable, to let all the threads proceed */
mutex_unlock(&lock);

/* join the threads */
for (i=0;i<thr_count;i++)
 thr_join(0,0,0);

printf("All %d threads have been joined, exiting...\n", thr_count);
return(0);
}

/* The routine that is executed by the created threads */

void *thr_sub(void *arg)
{
/* try to lock the mutex variable -- since the main thread has
 locked the mutex before the threads were created, this thread
 will block until the main thread unlock the mutex */

mutex_lock(&lock);

printf("Thread %d is exiting...\n", thr_self());

/* unlock the mutex to allow another thread to proceed */
mutex_unlock(&lock);

/* exit the thread */
return((void *)0);
}

Real-time Thread Example
This example uses the Solaris real-time extensions to make a single bound
thread within a process run in the real-time scheduling class. Using a thread
in the real-time class is more desirable than running a whole process in the
real-time class, because of the many problems that can arise with a process in
a real-time state. For example, it would not be desirable for a process to
perform any I/O or large memory operations while in realtime, because a real-
time process has priority over system-related processes; if a real-time process
requests a page fault, it can starve, waiting for the system to fault in a new
page. We can limit this exposure by using threads to execute only the
instructions that need to run in realtime.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since this book does not cover the concerns that arise with real-time
programming, we have included this code only as an example of how to
promote a thread into the real-time class. You must be very careful when you
use real-time threads in your applications. For more information on real-time
programming, see the Solaris documentation.

This example should be safe from the pitfalls of real-time programs because
of its simplicity. However, changing this code in any way could have adverse
affects on your system.

The example creates a new thread from the main thread. This new thread is
then promoted to the real-time class by looking up the real-time class ID and
then setting a real-time priority for the thread. After the thread is running in
realtime, it simulates some processing. Since a thread in the real-time class
can have an infinite time quantum, the process is allowed to stay on a CPU as
long as it likes. The time quantum is the amount of time a thread is allowed to
stay running on a CPU. For the timesharing class, the time quantum (time-
slice) is 1/100th of a second by default.

In this example, we set the time quantum for the real-time thread to infinity.
That is, it can stay running as long as it likes; it will not be preempted or
scheduled off the CPU. If you run this example on a UP machine, it will have
the effect of stopping your system for a few seconds while the thread
simulates its processing. The system does not actually stop, it is just working
in the real-time thread. When the real-time thread finishes its processing, it
exits and the system returns to normal.

Using real-time threads can be quite useful when you need an extremely high
priority and response time but can also cause big problems if it not used
properly. Also note that this example must be run as root or have root execute
permissions.

The source to rt_thr.c:

#define _REENTRANT
#include <stdio.h>
#include <thread.h>
#include <string.h>
#include <sys/priocntl.h>
#include <sys/rtpriocntl.h>

/* thread prototype */
void *rt_thread(void *);

main()
{

/* create the thread that will run in realtime */
thr_create(NULL, 0, rt_thread, 0, THR_DETACHED, 0);

/* loop here forever, this thread is the TS scheduling class */
while (1) {
 printf("MAIN: In time share class... running\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 printf("MAIN: In time share class... running\n");
 sleep(1);
 }

return(0);
}

/*
 This is the routine that is called by the created thread
*/

void *rt_thread(void *arg)
{
pcinfo_t pcinfo;
pcparms_t pcparms;
int i;

/* let the main thread run for a bit */
sleep(4);

/* get the class ID for the real-time class */
strcpy(pcinfo.pc_clname, "RT");

if (priocntl(0, 0, PC_GETCID, (caddr_t)&pcinfo) == -1)
 fprintf(stderr, "getting RT class id\n"), exit(1);

/* set up the real-time parameters */
pcparms.pc_cid = pcinfo.pc_cid;
((rtparms_t *)pcparms.pc_clparms)->rt_pri = 10;
((rtparms_t *)pcparms.pc_clparms)->rt_tqnsecs = 0;

/* set an infinite time quantum */
((rtparms_t *)pcparms.pc_clparms)->rt_tqsecs = RT_TQINF;

/* move this thread to the real-time scheduling class */
if (priocntl(P_LWPID, P_MYID, PC_SETPARMS, (caddr_t)&pcparms) == -1)
 fprintf(stderr, "Setting RT mode\n"), exit(1);

/* simulate some processing */
for (i=0;i<100000000;i++);

printf("RT_THREAD: NOW EXITING...\n");
thr_exit((void *)0);
}

POSIX Cancellation
This example uses the POSIX thread cancellation capability to kill a thread
that is no longer needed. Random termination of a thread can cause problems
in threaded applications, because a thread may be holding a critical lock when
it is terminated. Since the lock was help before the thread was terminated,
another thread may deadlock, waiting for that same lock. The thread
cancellation capability enables you to control when a thread can be
terminated. The example also demonstrates the capabilities of the POSIX
thread library in implementing a program that performs a multithreaded
search.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This example simulates a multithreaded search for a given number by taking
random guesses at a target number. The intent here is to simulate the same
type of search that a database might execute. For example, a database might
create threads to start searching for a data item; after some amount of time,
one or more threads might return with the target data item.

If a thread guesses the number correctly, there is no need for the other threads
to continue their search. This is where thread cancellation can help. The
thread that finds the number first should cancel the other threads that are still
searching for the item and then return the results of the search.

The threads involved in the search can call a cleanup function that can clean
up the threads resources before it exits. In this case, the cleanup function
prints the progress of the thread when it was cancelled.

The source to posix_cancel.c:

 #define _REENTRANT
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <pthread.h>

/* defines the number of searching threads */
#define NUM_THREADS 25

/* function prototypes */
void *search(void *);
void print_it(void *);

/* global variables */
pthread_t threads[NUM_THREADS];
pthread_mutex_t lock;
int tries;

main()
{
int i;
int pid;

/* create a number to search for */
pid = getpid();

/* initialize the mutex lock */
pthread_mutex_init(&lock, NULL);
printf("Searching for the number = %d...\n", pid);

/* create the searching threads */
for (i=0;i<NUM_THREADS;i++)
 pthread_create(&threads[i], NULL, search, (void *)pid);

/* wait for (join) all the searching threads */
for (i=0;i<NUM_THREADS;i++)
 pthread_join(threads[i], NULL);

printf("It took %d tries to find the number.\n", tries);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

printf("It took %d tries to find the number.\n", tries);

/* exit this thread */
pthread_exit((void *)0);
}

/*
 This is the cleanup function that is called when
 the threads are cancelled
*/

void print_it(void *arg)
{
int *try = (int *) arg;
pthread_t tid;

/* get the calling thread's ID */
tid = pthread_self();

/* print where the thread was in its search when it was cancelled */
printf("Thread %d was canceled on its %d try.\n", tid, *try);
}

/*
 This is the search routine that is executed in each thread
*/

void *search(void *arg)
{
int num = (int) arg;
int i=0, j;
pthread_t tid;

/* get the calling thread ID */
tid = pthread_self();

/* use the thread ID to set the seed for the random number generator */
srand(tid);

/* set the cancellation parameters --
 - Enable thread cancellation
 - Defer the action of the cancellation
*/

pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);

/* push the cleanup routine (print_it) onto the thread
 cleanup stack. This routine will be called when the
 thread is cancelled. Also note that the pthread_cleanup_push
 call must have a matching pthread_cleanup_pop call. The
 push and pop calls MUST be at the same lexical level
 within the code */

/* pass address of `i' since the current value of `i' is not
 the one we want to use in the cleanup function */

pthread_cleanup_push(print_it, (void *)&i);

/* loop forever */
while (1) {
 i++;

 /* does the random number match the target number? */
 if (num == rand()) {

 /* try to lock the mutex lock --
 if locked, check to see if the thread has been cancelled

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if locked, check to see if the thread has been cancelled
 if not locked then continue */

 while (pthread_mutex_trylock(&lock) == EBUSY)
 pthread_testcancel();

 /* set the global variable for the number of tries */

 tries = i;

 printf("thread %d found the number!\n", tid);

 /* cancel all the other threads */
 for (j=0;j<NUM_THREADS;j++)
 if (threads[j] != tid) pthread_cancel(threads[j]);

 /* break out of the while loop */
 break;
 }

 /* every 100 tries check to see if the thread has been cancelled
 if the thread has not been cancelled then yield the thread's
 LWP to another thread that may be able to run */

 if (i%100 == 0) {
 pthread_testcancel();
 sched_yield();
 }
 }

/* The only way we can get here is when the thread breaks out
 of the while loop. In this case the thread that makes it here
 has found the number we are looking for and does not need to run
 the thread cleanup function. This is why the pthread_cleanup_pop
 function is called with a 0 argument; this will pop the cleanup
 function off the stack without executing it */

pthread_cleanup_pop(0);
return((void *)0);
}

Software Race Condition
This example shows a trivial software race condition. A software race
condition occurs when the execution of a program is affected by the order and
timing of a threads execution. Most software race conditions can be alleviated
by using synchronization variables to control the threads' timing and access of
shared resources. If a program depends on order of execution, then threading
that program may not be a good solution, because the order in which threads
execute is nondeterministic.

In the example, thr_continue() and thr_suspend() calls continue and
suspend a given thread, respectively. Although both of these calls are valid,
use caution when implementing them. It is very hard to determine where a
thread is in its execution. Because of this, you may not be able to tell where
the thread will suspend when the call to thr_suspend() is made. This
behavior can cause problems in threaded code if not used properly.

The following example uses thr_continue() and thr_suspend() to try to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example uses thr_continue() and thr_suspend() to try to
control when a thread starts and stops. The example looks trivial, but, as you
will see, can cause a big problem.

Do you see the problem? If you guessed that the program would eventually
suspend itself, you were correct! The example attempts to flip-flop between
the main thread and a subroutine thread. Each thread continues the other
thread and then suspends itself.

Thread A continues thread B and then suspends thread A; now the continued
thread B can continue thread A and then suspend itself. This should continue
back and forth all day long, right? Wrong! We can't guarantee that each
thread will continue the other thread and then suspend itself in one atomic
action, so a software race condition could be created. Calling
thr_continue() on a running thread and calling thr_suspend() on a
suspended thread has no effect, so we don't know if a thread is already
running or suspended.

If thread A continues thread B and if between the time thread A suspends
itself, thread B continues thread A, then both of the threads will call
thr_suspend(). This is the race condition in this program that will cause the
whole process to become suspended.

It is very hard to use these calls, because you never really know the state of a
thread. If you don't know exactly where a thread is in its execution, then you
don't know what locks it holds and where it will stop when you suspend it.

The source to sw_race.c

Tgrep: Threadeds version of UNIX
grep
Tgrep is a multi-threaded version of grep. Tgrep supports all but the -w
(word search) options of the normal grep command, and a few options that
are only avaliable to Tgrep. The real change from grep, is that Tgrep will
recurse down through sub-directories and search all files for the target string.
Tgrep searches files like the following command:

find <start path> -name "<file/directory pattern>" -exec \ (Line wrapped)
 grep <options> <target> /dev/null {} \;

An example of this would be (run from this Tgrep directory)

% find . -exec grep thr_create /dev/null {} \;
./Solaris/main.c: if (thr_create(NULL,0,SigThread,NULL,THR_DAEMON,NULL)) {
./Solaris/main.c: err = thr_create(NULL,0,cascade,(void *)work,
./Solaris/main.c: err = thr_create(NULL,0,search_thr,(void *)work,
%
Running the same command with timex:
real 4.26
user 0.64
sys 2.81

The same search run with Tgrep would be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The same search run with Tgrep would be

% {\tt Tgrep} thr_create
./Solaris/main.c: if (thr_create(NULL,0,SigThread,NULL,THR_DAEMON,NULL)) {
./Solaris/main.c: err = thr_create(NULL,0,cascade,(void *)work,
./Solaris/main.c: err = thr_create(NULL,0,search_thr,(void *)work,
%
Running the same command with timex:
real 0.79
user 0.62
sys 1.50

Tgrep gets the results almost four times faster. The numbers above where
gathered on a SS20 running 5.5 (build 18) with 4 50MHz CPUs.

You can also filter the files that you want Tgrep to search like you can with
find. The next two commands do the same thing, just Tgrep gets it done
faster.

find . -name "*.c" -exec grep thr_create /dev/null {} \;
and
{\tt Tgrep} -p '.*\.c$' thr_create

The -p option will allow Tgrep to search only files that match the "regular
expression" file pattern string. This option does NOT use shell expression, so
to stop Tgrep from seeing a file named foobar.cyou must add the "$" meta
character to the pattern and escape the real ``.'' character.

Some of the other Tgrep only options are -r, -C, -P, -e, -B, -S and -Z. The -r
option stops Tgrep from searching any sub-directories, in other words, search
only the local directory, but -l was taken. The -C option will search for and
print "continued" lines like you find in Makefile. Note the differences in the
results of grep and Tgrep run in the current directory.

The Tgrep output prints the continued lines that ended with the "character. In
the case of grep I would not have seen the three values assigned to
SUBDIRS, but Tgrep shows them to me (Common, Solaris, Posix).

The -P option I use when I am sending the output of a long search to a file
and want to see the "progress" of the search. The -P option will print a "."
(dot) on stderr for every file (or groups of files depending on the value of the
-P argument) Tgrep searches.

The -e option will change the way Tgrep uses the target string. Tgrep uses
two different patter matching systems. The first (with out the -e option) is a
literal string match call Boyer-Moore. If the -e option is used, then a MT-Safe
PD version of regular expression is used to search for the target string as a
regexp with meta characters in it. The regular expression method is slower,
but Tgrep needed the functionality. The -Z option will print help on the meta
characters Tgrep uses.

The -B option tells Tgrep to use the value of the environment variable called
TGLIMIT to limit the number of threads it will use during a search. This
option has no affect if TGLIMIT is not set. Tgrep can "eat" a system alive, so
the -B option was a way to run Tgrep on a system with out having other users
scream at you.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last new option is -S. If you want to see how things went while Tgrep
was searching, you can use this option to print statistic about the number of
files, lines, bytes, matches, threads created, etc.

Here is an example of the -S options output. (again run in the current
directory)

% {\tt Tgrep} -S zimzap

----------------- {\tt Tgrep} Stats. --------------------
Number of directories searched: 7
Number of files searched: 37
Number of lines searched: 9504
Number of matching lines to target: 0
Number of cascade threads created: 7
Number of search threads created: 20
Number of search threads from pool: 17
Search thread pool hit rate: 45.95%
Search pool overall size: 20
Search pool size limit: 58
Number of search threads destroyed: 0
Max # of threads running concurrenly: 20
Total run time, in seconds. 1
Work stopped due to no FD's: (058) 0 Times, 0.00%
Work stopped due to no work on Q: 19 Times, 43.18%
Work stopped due to TGLIMITS: (Unlimited) 0 Times, 0.00%
--
%

For more information on the usage and options, see the man page Tgrep

The Tgrep.c source code is:

/* Copyright (c) 1993, 1994 Ron Winacott */
/* This program may be used, copied, modified, and redistributed freely */
/* for ANY purpose, so long as this notice remains intact.

#define _REENTRANT

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <assert.h>
#include <errno.h>
#include <signal.h>
#include <ctype.h>
#include <sys/types.h>
#include <time.h>
#include <sys/stat.h>
#ifdef __sparc
#include <note.h> /* warlock/locklint */
#else
#define NOTE(s)
#endif
#include <dirent.h>
#include <fcntl.h>
#include <sys/uio.h>
#include <thread.h>
#include <synch.h>

#include "version.h"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include "version.h"
#include "pmatch.h"
#include "debug.h"

#define PATH_MAX 1024 /* max # of characters in a path name */
#define HOLD_FDS 6 /* stdin,out,err and a buffer */
#define UNLIMITED 99999 /* The default tglimit */
#define MAXREGEXP 10 /* max number of -e options */

#define FB_BLOCK 0x00001
#define FC_COUNT 0x00002
#define FH_HOLDNAME 0x00004
#define FI_IGNCASE 0x00008
#define FL_NAMEONLY 0x00010
#define FN_NUMBER 0x00020
#define FS_NOERROR 0x00040
#define FV_REVERSE 0x00080
#define FW_WORD 0x00100
#define FR_RECUR 0x00200
#define FU_UNSORT 0x00400
#define FX_STDIN 0x00800
#define TG_BATCH 0x01000
#define TG_FILEPAT 0x02000
#define FE_REGEXP 0x04000
#define FS_STATS 0x08000
#define FC_LINE 0x10000
#define TG_PROGRESS 0x20000

#define FILET 1
#define DIRT 2
#define ALPHASIZ 128

/*
 * New data types
 */

typedef struct work_st {
 char *path;
 int tp;
 struct work_st *next;
} work_t;

typedef struct out_st {
 char *line;
 int line_count;
 long byte_count;
 struct out_st *next;
} out_t;

typedef struct bm_pattern { /* Boyer - Moore pattern */
 short p_m; /* length of pattern string */
 short p_r[ALPHASIZ]; /* "r" vector
 short *p_R; /* "R" vector
 char *p_pat; /* pattern string */
} BM_PATTERN;

/*
 * Prototypes
 */

/* bmpmatch.c */
extern BM_PATTERN *bm_makepat(char *);
extern char *bm_pmatch(BM_PATTERN *, register char *);
extern void bm_freepat(BM_PATTERN *);
/* pmatch.c */
extern char *pmatch(register PATTERN *, register char *, int *);
extern PATTERN *makepat(char *string, char *);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

extern PATTERN *makepat(char *string, char *);
extern void freepat(register PATTERN *);
extern void printpat(PATTERN *);

#include "proto.h" /* function prototypes of main.c */

void *SigThread(void *arg);
void sig_print_stats(void);

/*
 * Global data
 */

BM_PATTERN *bm_pat; /* the global target read only after main */
NOTE(READ_ONLY_DATA(bm_pat))

PATTERN *pm_pat[MAXREGEXP]; /* global targets read only for pmatch */
NOTE(READ_ONLY_DATA(pm_pat))

mutex_t global_count_lk;
int global_count = 0;
NOTE(MUTEX_PROTECTS_DATA(global_count_lk, global_count))
NOTE(DATA_READABLE_WITHOUT_LOCK(global_count)) /* see prnt_stats() */

work_t *work_q = NULL;
cond_t work_q_cv;
mutex_t work_q_lk;
int all_done = 0;
int work_cnt = 0;
int current_open_files = 0;
int tglimit = UNLIMITED; /* if -B limit the number of threads */
NOTE(MUTEX_PROTECTS_DATA(work_q_lk, work_q all_done work_cnt \
 current_open_files tglimit))

work_t *search_q = NULL;
mutex_t search_q_lk;
cond_t search_q_cv;
int search_pool_cnt = 0; /* the count in the pool now */
int search_thr_limit = 0; /* the max in the pool */
NOTE(MUTEX_PROTECTS_DATA(search_q_lk, search_q search_pool_cnt))
NOTE(DATA_READABLE_WITHOUT_LOCK(search_pool_cnt)) /* see prnt_stats() */
NOTE(READ_ONLY_DATA(search_thr_limit))

work_t *cascade_q = NULL;
mutex_t cascade_q_lk;
cond_t cascade_q_cv;
int cascade_pool_cnt = 0;
int cascade_thr_limit = 0;
NOTE(MUTEX_PROTECTS_DATA(cascade_q_lk, cascade_q cascade_pool_cnt))
NOTE(DATA_READABLE_WITHOUT_LOCK(cascade_pool_cnt)) /* see prnt_stats() */
NOTE(READ_ONLY_DATA(cascade_thr_limit))

int running = 0;
mutex_t running_lk;
NOTE(MUTEX_PROTECTS_DATA(running_lk, running))

sigset_t set, oldset;
NOTE(READ_ONLY_DATA(set oldset))

mutex_t stat_lk;
time_t st_start = 0;
int st_dir_search = 0;
int st_file_search = 0;
int st_line_search = 0;
int st_cascade = 0;
int st_cascade_pool = 0;
int st_cascade_destroy = 0;
int st_search = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int st_search = 0;
int st_pool = 0;
int st_maxrun = 0;
int st_worknull = 0;
int st_workfds = 0;
int st_worklimit = 0;
int st_destroy = 0;
NOTE(MUTEX_PROTECTS_DATA(stat_lk, st_start st_dir_search st_file_search
 st_line_search st_cascade st_cascade_pool \
 st_cascade_destroy st_search st_pool st_maxrun \
 st_worknull st_workfds st_worklimit st_destroy))

int progress_offset = 1;
NOTE(READ_ONLY_DATA(progress_offset))

mutex_t output_print_lk;
/* output_print_lk used to print multi-line output only */
int progress = 0;
NOTE(MUTEX_PROTECTS_DATA(output_print_lk, progress))

unsigned int flags = 0;
int regexp_cnt = 0;
char *string[MAXREGEXP];
int debug = 0;
int use_pmatch = 0;
char file_pat[255]; /* file patten match */
PATTERN *pm_file_pat; /* compiled file target string (pmatch()) */
NOTE(READ_ONLY_DATA(flags regexp_cnt string debug use_pmatch \
 file_pat pm_file_pat))

/*
 * Locking ording.
 */
NOTE(LOCK_ORDER(output_print_lk stat_lk))

/*
 * Main: This is where the fun starts
 */

int
main(int argc, char **argv)
{
 int c,out_thr_flags;
 long max_open_files = 0l, ncpus = 0l;
 extern int optind;
 extern char *optarg;
 NOTE(READ_ONLY_DATA(optind optarg))
 int prio = 0;
 struct stat sbuf;
 thread_t tid,dtid;
 void *status;
 char *e = NULL, *d = NULL; /* for debug flags */
 int debug_file = 0;
 int err = 0, i = 0, pm_file_len = 0;
 work_t *work;
 int restart_cnt = 10;

 flags = FR_RECUR; /* the default */

 thr_setprio(thr_self(),127); /* set me up HIGH */
 while ((c = getopt(argc, argv, "d:e:bchilnsvwruf:p:BCSZzHP:")) != EOF)
 switch (c) {
#ifdef DEBUG
 case 'd':
 debug = atoi(optarg);
 if (debug == 0)
 debug_usage();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 debug_usage();

 d = optarg;
 fprintf(stderr,"tgrep: Debug on at level(s) ");
 while (*d) {
 for (i=0; i<9; i++)
 if (debug_set[i].level == *d) {
 debug_levels |= debug_set[i].flag;
 fprintf(stderr,"%c ",debug_set[i].level);
 break;
 }
 d++;
 }
 fprintf(stderr,"\n");
 break;
 case 'f':
 debug_file = atoi(optarg);
 break;
#endif /* DEBUG */
 case 'B':
 flags |= TG_BATCH;
 if ((e = getenv("TGLIMIT"))) {
 tglimit = atoi(e);
 }
 else {
 if (!(flags & FS_NOERROR)) /* order dependent! */
 fprintf(stderr,"env TGLIMIT not set, overriding -B\n");
 flags &= ~TG_BATCH;
 }
 break;
 case 'p':
 flags |= TG_FILEPAT;
 strcpy(file_pat,optarg);
 pm_file_pat = makepat(file_pat,NULL);
 break;
 case 'P':
 flags |= TG_PROGRESS;
 progress_offset = atoi(optarg);
 break;
 case 'S': flags |= FS_STATS; break;
 case 'b': flags |= FB_BLOCK; break;
 case 'c': flags |= FC_COUNT; break;
 case 'h': flags |= FH_HOLDNAME; break;
 case 'i': flags |= FI_IGNCASE; break;
 case 'l': flags |= FL_NAMEONLY; break;
 case 'n': flags |= FN_NUMBER; break;
 case 's': flags |= FS_NOERROR; break;
 case 'v': flags |= FV_REVERSE; break;
 case 'w': flags |= FW_WORD; break;
 case 'r': flags &= ~FR_RECUR; break;
 case 'C': flags |= FC_LINE; break;
 case 'e':
 if (regexp_cnt == MAXREGEXP) {
 fprintf(stderr,"Max number of regexp's (%d) exceeded!\n",
 MAXREGEXP);
 exit(1);
 }
 flags |= FE_REGEXP;
 if ((string[regexp_cnt] =(char *)malloc(strlen(optarg)+1))==NULL){
 fprintf(stderr,"tgrep: No space for search string(s)\n");
 exit(1);
 }
 memset(string[regexp_cnt],0,strlen(optarg)+1);
 strcpy(string[regexp_cnt],optarg);
 regexp_cnt++;
 break;
 case 'z':
 case 'Z': regexp_usage();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case 'Z': regexp_usage();
 break;
 case 'H':
 case '?':
 default : usage();
 }
 }

 if (!(flags & FE_REGEXP)) {
 if (argc - optind < 1) {
 fprintf(stderr,"tgrep: Must supply a search string(s) "
 "and file list or directory\n");
 usage();
 }
 if ((string[0]=(char *)malloc(strlen(argv[optind])+1))==NULL){
 fprintf(stderr,"tgrep: No space for search string(s)\n");
 exit(1);
 }
 memset(string[0],0,strlen(argv[optind])+1);
 strcpy(string[0],argv[optind]);
 regexp_cnt=1;
 optind++;
 }

 if (flags & FI_IGNCASE)
 for (i=0; i<regexp_cnt; i++)
 uncase(string[i]);

#ifdef __lock_lint
 /*
 ** This is NOT somthing you really want to do. This
 ** function calls are here ONLY for warlock/locklint !!!
 */
 pm_pat[i] = makepat(string[i],NULL);
 bm_pat = bm_makepat(string[0]);
 bm_freepat(bm_pat); /* stop it from becomming a root */
#else
 if (flags & FE_REGEXP) {
 for (i=0; i<regexp_cnt; i++)
 pm_pat[i] = makepat(string[i],NULL);
 use_pmatch = 1;
 }
 else {
 bm_pat = bm_makepat(string[0]); /* only one allowed */
 }
#endif

 flags |= FX_STDIN;

 max_open_files = sysconf(_SC_OPEN_MAX);
 ncpus = sysconf(_SC_NPROCESSORS_ONLN);
 if ((max_open_files - HOLD_FDS - debug_file) < 1) {
 fprintf(stderr,"tgrep: You MUST have at lest ONE fd "
 "that can be used, check limit (>10)\n");
 exit(1);
 }
 search_thr_limit = max_open_files - HOLD_FDS - debug_file;
 cascade_thr_limit = search_thr_limit / 2;
 /* the number of files that can by open */
 current_open_files = search_thr_limit;

 mutex_init(&stat_lk,USYNC_THREAD,"stat");
 mutex_init(&global_count_lk,USYNC_THREAD,"global_cnt");
 mutex_init(&output_print_lk,USYNC_THREAD,"output_print");
 mutex_init(&work_q_lk,USYNC_THREAD,"work_q");
 mutex_init(&running_lk,USYNC_THREAD,"running");
 cond_init(&work_q_cv,USYNC_THREAD,"work_q");
 mutex_init(&search_q_lk,USYNC_THREAD,"search_q");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mutex_init(&search_q_lk,USYNC_THREAD,"search_q");
 cond_init(&search_q_cv,USYNC_THREAD,"search_q");
 mutex_init(&cascade_q_lk,USYNC_THREAD,"cascade_q");
 cond_init(&cascade_q_cv,USYNC_THREAD,"cascade_q");

 if ((argc == optind) && ((flags & TG_FILEPAT) || (flags & FR_RECUR))) {
 add_work(".",DIRT);
 flags = (flags & ~FX_STDIN);
 }
 for (; optind < argc; optind++) {
 restart_cnt = 10;
 flags = (flags & ~FX_STDIN);
 STAT_AGAIN:
 if (stat(argv[optind], &sbuf)) {
 if (errno == EINTR) { /* try again !, restart */
 if (--restart_cnt)
 goto STAT_AGAIN;
 }
 if (!(flags & FS_NOERROR))
 fprintf(stderr,"tgrep: Can't stat file/dir %s, %s\n",
 argv[optind], strerror(errno));
 continue;
 }
 switch (sbuf.st_mode & S_IFMT) {
 case S_IFREG :
 if (flags & TG_FILEPAT) {
 if (pmatch(pm_file_pat, argv[optind], &pm_file_len))
 add_work(argv[optind],FILET);
 }
 else {
 add_work(argv[optind],FILET);
 }
 break;
 case S_IFDIR :
 if (flags & FR_RECUR) {
 add_work(argv[optind],DIRT);
 }
 else {
 if (!(flags & FS_NOERROR))
 fprintf(stderr,"tgrep: Can't search directory %s, "
 "-r option is on. Directory ignored.\n",
 argv[optind]);
 }
 break;
 }
 }

 NOTE(COMPETING_THREADS_NOW) /* we are goinf threaded */

 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);
 st_start = time(NULL);
 mutex_unlock(&stat_lk);
#ifdef SIGNAL_HAND
 /*
 ** setup the signal thread so the first call to SIGINT will
 ** only print stats, the second will interupt.
 */
 sigfillset(&set);
 thr_sigsetmask(SIG_SETMASK, &set, &oldset);
 if (thr_create(NULL,0,SigThread,NULL,THR_DAEMON,NULL)) {
 thr_sigsetmask(SIG_SETMASK,&oldset,NULL);
 fprintf(stderr,"SIGINT for stats NOT setup\n");
 }
 thr_yield(); /* give the other thread time */
#endif /* SIGNAL_HAND */
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 thr_setconcurrency(3);

 if (flags & FX_STDIN) {
 fprintf(stderr,"tgrep: stdin option is not coded at this time\n");
 exit(0); /* XXX Need to fix this SOON */
 search_thr(NULL); /* NULL is not understood in search_thr() */
 if (flags & FC_COUNT) {
 mutex_lock(&global_count_lk);
 printf("%d\n",global_count);
 mutex_unlock(&global_count_lk);
 }
 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);
 prnt_stats();
 mutex_unlock(&stat_lk);
 }
 exit(0);
 }

 mutex_lock(&work_q_lk);
 if (!work_q) {
 if (!(flags & FS_NOERROR))
 fprintf(stderr,"tgrep: No files to search.\n");
 exit(0);
 }
 mutex_unlock(&work_q_lk);

 DP(DLEVEL1,("Starting to loop through the work_q for work\n"));

 /* OTHER THREADS ARE RUNNING */
 while (1) {
 mutex_lock(&work_q_lk);
 while ((work_q == NULL || current_open_files == 0 || tglimit <= 0) &&
 all_done == 0) {
 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);
 if (work_q == NULL)
 st_worknull++;
 if (current_open_files == 0)
 st_workfds++;
 if (tglimit <= 0)
 st_worklimit++;
 mutex_unlock(&stat_lk);
 }
 cond_wait(&work_q_cv,&work_q_lk);
 }
 if (all_done != 0) {
 mutex_unlock(&work_q_lk);
 DP(DLEVEL1,("All_done was set to TRUE\n"));
 goto OUT;
 }
 work = work_q;
 work_q = work->next; /* maybe NULL */
 work->next = NULL;
 current_open_files--;
 mutex_unlock(&work_q_lk);

 tid = 0;
 switch (work->tp) {
 case DIRT:
 mutex_lock(&cascade_q_lk);
 if (cascade_pool_cnt) {
 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);
 st_cascade_pool++;
 mutex_unlock(&stat_lk);
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
 work->next = cascade_q;
 cascade_q = work;
 cond_signal(&cascade_q_cv);
 mutex_unlock(&cascade_q_lk);
 DP(DLEVEL2,("Sent work to cascade pool thread\n"));
 }
 else {
 mutex_unlock(&cascade_q_lk);
 err = thr_create(NULL,0,cascade,(void *)work,
 THR_DETACHED|THR_DAEMON|THR_NEW_LWP
 ,&tid);
 DP(DLEVEL2,("Sent work to new cascade thread\n"));
 thr_setprio(tid,64); /* set cascade to middle */
 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);
 st_cascade++;
 mutex_unlock(&stat_lk);
 }
 }
 break;
 case FILET:
 mutex_lock(&search_q_lk);
 if (search_pool_cnt) {
 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);
 st_pool++;
 mutex_unlock(&stat_lk);
 }
 work->next = search_q; /* could be null */
 search_q = work;
 cond_signal(&search_q_cv);
 mutex_unlock(&search_q_lk);
 DP(DLEVEL2,("Sent work to search pool thread\n"));
 }
 else {
 mutex_unlock(&search_q_lk);
 err = thr_create(NULL,0,search_thr,(void *)work,
 THR_DETACHED|THR_DAEMON|THR_NEW_LWP
 ,&tid);
 thr_setprio(tid,0); /* set search to low */
 DP(DLEVEL2,("Sent work to new search thread\n"));
 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);
 st_search++;
 mutex_unlock(&stat_lk);
 }
 }
 break;
 default:
 fprintf(stderr,"tgrep: Internal error, work_t->tp no valid\n");
 exit(1);
 }
 if (err) { /* NEED TO FIX THIS CODE. Exiting is just wrong */
 fprintf(stderr,"Cound not create new thread!\n");
 exit(1);
 }
 }

 OUT:
 if (flags & TG_PROGRESS) {
 if (progress)
 fprintf(stderr,".\n");
 else
 fprintf(stderr,"\n");
 }
 /* we are done, print the stuff. All other threads ar parked */
 if (flags & FC_COUNT) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (flags & FC_COUNT) {
 mutex_lock(&global_count_lk);
 printf("%d\n",global_count);
 mutex_unlock(&global_count_lk);
 }
 if (flags & FS_STATS)
 prnt_stats();
 return(0); /* should have a return from main */
}

/*
 * Add_Work: Called from the main thread, and cascade threads to add file
 * and directory names to the work Q.
 */
int
add_work(char *path,int tp)
{
 work_t *wt,*ww,*wp;

 if ((wt = (work_t *)malloc(sizeof(work_t))) == NULL)
 goto ERROR;
 if ((wt->path = (char *)malloc(strlen(path)+1)) == NULL)
 goto ERROR;

 strcpy(wt->path,path);
 wt->tp = tp;
 wt->next = NULL;
 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);
 if (wt->tp == DIRT)
 st_dir_search++;
 else
 st_file_search++;
 mutex_unlock(&stat_lk);
 }
 mutex_lock(&work_q_lk);
 work_cnt++;
 wt->next = work_q;
 work_q = wt;
 cond_signal(&work_q_cv);
 mutex_unlock(&work_q_lk);
 return(0);
 ERROR:
 if (!(flags & FS_NOERROR))
 fprintf(stderr,"tgrep: Could not add %s to work queue. Ignored\n",
 path);
 return(-1);
}

/*
 * Search thread: Started by the main thread when a file name is found
 * on the work Q to be serached. If all the needed resources are ready
 * a new search thread will be created.
 */
void *
search_thr(void *arg) /* work_t *arg */
{
 FILE *fin;
 char fin_buf[(BUFSIZ*4)]; /* 4 Kbytes */
 work_t *wt,std;
 int line_count;
 char rline[128];
 char cline[128];
 char *line;
 register char *p,*pp;
 int pm_len;
 int len = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int len = 0;
 long byte_count;
 long next_line;
 int show_line; /* for the -v option */
 register int slen,plen,i;
 out_t *out = NULL; /* this threads output list */

 thr_setprio(thr_self(),0); /* set search to low */
 thr_yield();
 wt = (work_t *)arg; /* first pass, wt is passed to use. */

 /* len = strlen(string);*/ /* only set on first pass */

 while (1) { /* reuse the search threads */
 /* init all back to zero */
 line_count = 0;
 byte_count = 0l;
 next_line = 0l;
 show_line = 0;

 mutex_lock(&running_lk);
 running++;
 mutex_unlock(&running_lk);
 mutex_lock(&work_q_lk);
 tglimit--;
 mutex_unlock(&work_q_lk);
 DP(DLEVEL5,("searching file (STDIO) %s\n",wt->path));

 if ((fin = fopen(wt->path,"r")) == NULL) {
 if (!(flags & FS_NOERROR)) {
 fprintf(stderr,"tgrep: %s. File \"%s\" not searched.\n",
 strerror(errno),wt->path);
 }
 goto ERROR;
 }
 setvbuf(fin,fin_buf,_IOFBF,(BUFSIZ*4)); /* XXX */
 DP(DLEVEL5,("Search thread has opened file %s\n",wt->path));
 while ((fgets(rline,127,fin)) != NULL) {
 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);
 st_line_search++;
 mutex_unlock(&stat_lk);
 }
 slen = strlen(rline);
 next_line += slen;
 line_count++;
 if (rline[slen-1] == '\n')
 rline[slen-1] = '\0';
 /*
 ** If the uncase flag is set, copy the read in line (rline)
 ** To the uncase line (cline) Set the line pointer to point at
 ** cline.
 ** If the case flag is NOT set, then point line at rline.
 ** line is what is compared, rline is waht is printed on a
 ** match.
 */
 if (flags & FI_IGNCASE) {
 strcpy(cline,rline);
 uncase(cline);
 line = cline;
 }
 else {
 line = rline;
 }
 show_line = 1; /* assume no match, if -v set */
 /* The old code removed */
 if (use_pmatch) {
 for (i=0; i<regexp_cnt; i++) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for (i=0; i<regexp_cnt; i++) {
 if (pmatch(pm_pat[i], line, &pm_len)) {
 if (!(flags & FV_REVERSE)) {
 add_output_local(&out,wt,line_count,
 byte_count,rline);
 continue_line(rline,fin,out,wt,
 &line_count,&byte_count);
 }
 else {
 show_line = 0;
 } /* end of if -v flag if / else block */
 /*
 ** if we get here on ANY of the regexp targets
 ** jump out of the loop, we found a single
 ** match so, do not keep looking!
 ** If name only, do not keep searcthing the same
 ** file, we found a single match, so close the file,
 ** print the file name and move on to the next file.
 */
 if (flags & FL_NAMEONLY)
 goto OUT_OF_LOOP;
 else
 goto OUT_AND_DONE;
 } /* end found a match if block */
 } /* end of the for pat[s] loop */
 }
 else {
 if (bm_pmatch(bm_pat, line)) {
 if (!(flags & FV_REVERSE)) {
 add_output_local(&out,wt,line_count,byte_count,rline);
 continue_line(rline,fin,out,wt,
 &line_count,&byte_count);
 }
 else {
 show_line = 0;
 }
 if (flags & FL_NAMEONLY)
 goto OUT_OF_LOOP;
 }
 }
 OUT_AND_DONE:
 if ((flags & FV_REVERSE) && show_line) {
 add_output_local(&out,wt,line_count,byte_count,rline);
 show_line = 0;
 }
 byte_count = next_line;
 }
 OUT_OF_LOOP:
 fclose(fin);
 /*
 ** The search part is done, but before we give back the FD,
 ** and park this thread in the search thread pool, print the
 ** local output we have gathered.
 */
 print_local_output(out,wt); /* this also frees out nodes */
 out = NULL; /* for the next time around, if there is one */
 ERROR:
 DP(DLEVEL5,("Search done for %s\n",wt->path));
 free(wt->path);
 free(wt);

 notrun();
 mutex_lock(&search_q_lk);
 if (search_pool_cnt > search_thr_limit) {
 mutex_unlock(&search_q_lk);
 DP(DLEVEL5,("Search thread exiting\n"));
 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 mutex_lock(&stat_lk);
 st_destroy++;
 mutex_unlock(&stat_lk);
 }
 return(0);
 }
 else {
 search_pool_cnt++;
 while (!search_q)
 cond_wait(&search_q_cv,&search_q_lk);
 search_pool_cnt--;
 wt = search_q; /* we have work to do! */
 if (search_q->next)
 search_q = search_q->next;
 else
 search_q = NULL;
 mutex_unlock(&search_q_lk);
 }
 }
 /*NOTREACHED*/
}

/*
 * Continue line: Speacial case search with the -C flag set. If you are
 * searching files like Makefiles, some lines may have escape char's to
 * contine the line on the next line. So the target string can be found, but
 * no data is displayed. This function continues to print the escaped line
 * until there are no more "\" chars found.
 */
int
continue_line(char *rline, FILE *fin, out_t *out, work_t *wt,
 int *lc, long *bc)
{
 int len;
 int cnt = 0;
 char *line;
 char nline[128];

 if (!(flags & FC_LINE))
 return(0);

 line = rline;
 AGAIN:
 len = strlen(line);
 if (line[len-1] == '\\') {
 if ((fgets(nline,127,fin)) == NULL) {
 return(cnt);
 }
 line = nline;
 len = strlen(line);
 if (line[len-1] == '\n')
 line[len-1] = '\0';
 *bc = *bc + len;
 *lc++;
 add_output_local(&out,wt,*lc,*bc,line);
 cnt++;
 goto AGAIN;
 }
 return(cnt);
}

/*
 * cascade: This thread is started by the main thread when directory
 * are found on the work Q. The thread reads all the new file, and directory
 * names from the directory it was started when and adds the names
 * work Q. (it finds more work!)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * work Q. (it finds more work!)
 */
void *
cascade(void *arg) /* work_t *arg */
{
 char fullpath[1025];
 int restart_cnt = 10;
 DIR *dp;

 char dir_buf[sizeof(struct dirent) + PATH_MAX];
 struct dirent *dent = (struct dirent *)dir_buf;
 struct stat sbuf;
 char *fpath;
 work_t *wt;
 int fl = 0, dl = 0;
 int pm_file_len = 0;

 thr_setprio(thr_self(),64); /* set search to middle */
 thr_yield(); /* try toi give control back to main thread */
 wt = (work_t *)arg;

 while(1) {
 fl = 0;
 dl = 0;
 restart_cnt = 10;
 pm_file_len = 0;

 mutex_lock(&running_lk);
 running++;
 mutex_unlock(&running_lk);
 mutex_lock(&work_q_lk);
 tglimit--;
 mutex_unlock(&work_q_lk);

 if (!wt) {
 if (!(flags & FS_NOERROR))
 fprintf(stderr,"tgrep: Bad work node passed to cascade\n");
 goto DONE;
 }
 fpath = (char *)wt->path;
 if (!fpath) {
 if (!(flags & FS_NOERROR))
 fprintf(stderr,"tgrep: Bad path name passed to cascade\n");
 goto DONE;
 }
 DP(DLEVEL3,("Cascading on %s\n",fpath));
 if ((dp = opendir(fpath)) == NULL) {
 if (!(flags & FS_NOERROR))
 fprintf(stderr,"tgrep: Can't open dir %s, %s. Ignored.\n",
 fpath,strerror(errno));
 goto DONE;
 }
 while ((readdir_r(dp,dent)) != NULL) {
 restart_cnt = 10; /* only try to restart the interupted 10 X */

 if (dent->d_name[0] == '.') {
 if (dent->d_name[1] == '.' && dent->d_name[2] == '\0')
 continue;
 if (dent->d_name[1] == '\0')
 continue;
 }

 fl = strlen(fpath);
 dl = strlen(dent->d_name);
 if ((fl + 1 + dl) > 1024) {
 fprintf(stderr,"tgrep: Path %s/%s is too long. "
 "MaxPath = 1024\n",
 fpath, dent->d_name);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fpath, dent->d_name);
 continue; /* try the next name in this directory */
 }
 strcpy(fullpath,fpath);
 strcat(fullpath,"/");
 strcat(fullpath,dent->d_name);

 RESTART_STAT:
 if (stat(fullpath,&sbuf)) {
 if (errno == EINTR) {
 if (--restart_cnt)
 goto RESTART_STAT;
 }
 if (!(flags & FS_NOERROR))
 fprintf(stderr,"tgrep: Can't stat file/dir %s, %s. "
 "Ignored.\n",
 fullpath,strerror(errno));
 goto ERROR;
 }

 switch (sbuf.st_mode & S_IFMT) {
 case S_IFREG :
 if (flags & TG_FILEPAT) {
 if (pmatch(pm_file_pat, dent->d_name, &pm_file_len)) {
 DP(DLEVEL3,("file pat match (cascade) %s\n",
 dent->d_name));
 add_work(fullpath,FILET);
 }
 }
 else {
 add_work(fullpath,FILET);
 DP(DLEVEL3,("cascade added file (MATCH) %s to Work Q\n",
 fullpath));
 }
 break;
 case S_IFDIR :
 DP(DLEVEL3,("cascade added dir %s to Work Q\n",fullpath));
 add_work(fullpath,DIRT);
 break;
 }
 }

 ERROR:
 closedir(dp);
 DONE:
 free(wt->path);
 free(wt);
 notrun();
 mutex_lock(&cascade_q_lk);
 if (cascade_pool_cnt > cascade_thr_limit) {
 mutex_unlock(&cascade_q_lk);
 DP(DLEVEL5,("Cascade thread exiting\n"));
 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);
 st_cascade_destroy++;
 mutex_unlock(&stat_lk);
 }
 return(0); /* thr_exit */
 }
 else {
 DP(DLEVEL5,("Cascade thread waiting in pool\n"));
 cascade_pool_cnt++;
 while (!cascade_q)
 cond_wait(&cascade_q_cv,&cascade_q_lk);
 cascade_pool_cnt--;
 wt = cascade_q; /* we have work to do! */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 wt = cascade_q; /* we have work to do! */
 if (cascade_q->next)
 cascade_q = cascade_q->next;
 else
 cascade_q = NULL;
 mutex_unlock(&cascade_q_lk);
 }
 }
 /*NOTREACHED*/
}

/*
 * Print Local Output: Called by the search thread after it is done
 * a single file. If any oputput was saved (matching lines), the lines are
 * displayed as a group on stdout.
 */
int
print_local_output(out_t *out, work_t *wt)
{
 out_t *pp, *op;
 int out_count = 0;
 int printed = 0;
 int print_name = 1;

 pp = out;
 mutex_lock(&output_print_lk);
 if (pp && (flags & TG_PROGRESS)) {
 progress++;
 if (progress >= progress_offset) {
 progress = 0;
 fprintf(stderr,".");
 }
 }
 while (pp) {
 out_count++;
 if (!(flags & FC_COUNT)) {
 if (flags & FL_NAMEONLY) { /* Pint name ONLY ! */
 if (!printed) {
 printed = 1;
 printf("%s\n",wt->path);
 }
 }
 else { /* We are printing more then just the name */
 if (!(flags & FH_HOLDNAME)) /* do not print name ? */
 printf("%s :",wt->path);
 if (flags & FB_BLOCK)
 printf("%ld:",pp->byte_count/512+1);
 if (flags & FN_NUMBER)
 printf("%d:",pp->line_count);
 printf("%s\n",pp->line);
 }
 }
 op = pp;
 pp = pp->next;
 /* free the nodes as we go down the list */
 free(op->line);
 free(op);
 }
 mutex_unlock(&output_print_lk);
 mutex_lock(&global_count_lk);
 global_count += out_count;
 mutex_unlock(&global_count_lk);
 return(0);
}

/*
 * add output local: is called by a search thread as it finds matching
 * the matching line, it's byte offset, line count, etc are stored until the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * the matching line, it's byte offset, line count, etc are stored until the
 * search thread is done searching the file, then the lines are printed as
 * a group. This way the lines from more then a single file are not mixed
 * together.
 */
int
add_output_local(out_t **out, work_t *wt,int lc, long bc, char *line)
{
 out_t *ot,*oo, *op;

 if ((ot = (out_t *)malloc(sizeof(out_t))) == NULL)
 goto ERROR;
 if ((ot->line = (char *)malloc(strlen(line)+1)) == NULL)
 goto ERROR;

 strcpy(ot->line,line);
 ot->line_count = lc;
 ot->byte_count = bc;

 if (!*out) {
 *out = ot;
 ot->next = NULL;
 return(0);
 }
 /* append to the END of the list, keep things sorted! */
 op = oo = *out;
 while(oo) {
 op = oo;
 oo = oo->next;
 }
 op->next = ot;
 ot->next = NULL;
 return(0);
 ERROR:
 if (!(flags & FS_NOERROR))
 fprintf(stderr,"tgrep: Output lost. No space. "
 "[%s: line %d byte %d match : %s\n",
 wt->path,lc,bc,line);
 return(1);
}

/*
 * print stats: If the -S flag is set, after ALL files have been searched,
 * main thread calls this function to print the stats it keeps on how the
 * search went.
 */
void
prnt_stats(void)
{
 float a,b,c;
 float t = 0.0;
 time_t st_end = 0;
 char tl[80];

 st_end = time(NULL); /* stop the clock */
 fprintf(stderr,"\n----------------- Tgrep Stats. --------------------\n");
 fprintf(stderr,"Number of directories searched: %d\n",
 st_dir_search);
 fprintf(stderr,"Number of files searched: %d\n",
 st_file_search);
 c = (float)(st_dir_search + st_file_search) / (float)(st_end - st_start);
 fprintf(stderr,"Dir/files per second: %3.2f\n",
 c);
 fprintf(stderr,"Number of lines searched: %d\n",
 st_line_search);
 fprintf(stderr,"Number of matching lines to target: %d\n",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fprintf(stderr,"Number of matching lines to target: %d\n",
 global_count);

 fprintf(stderr,"Number of cascade threads created: %d\n",
 st_cascade);
 fprintf(stderr,"Number of cascade threads from pool: %d\n",
 st_cascade_pool);
 a = st_cascade_pool; b = st_dir_search;
 fprintf(stderr,"Cascade thread pool hit rate: %3.2f%%\n",
 ((a/b)*100));
 fprintf(stderr,"Cascade pool overall size: %d\n",
 cascade_pool_cnt);
 fprintf(stderr,"Cascade pool size limit: %d\n",
 cascade_thr_limit);
 fprintf(stderr,"Number of cascade threads destroyed: %d\n",
 st_cascade_destroy);

 fprintf(stderr,"Number of search threads created: %d\n",
 st_search);
 fprintf(stderr,"Number of search threads from pool: %d\n",
 st_pool);
 a = st_pool; b = st_file_search;
 fprintf(stderr,"Search thread pool hit rate: %3.2f%%\n",
 ((a/b)*100));
 fprintf(stderr,"Search pool overall size: %d\n",
 search_pool_cnt);
 fprintf(stderr,"Search pool size limit: %d\n",
 search_thr_limit);
 fprintf(stderr,"Number of search threads destroyed: %d\n",
 st_destroy);

 fprintf(stderr,"Max # of threads running concurrenly: %d\n",
 st_maxrun);
 fprintf(stderr,"Total run time, in seconds. %d\n",
 (st_end - st_start));

 /* Why did we wait ? */
 a = st_workfds; b = st_dir_search+st_file_search;
 c = (a/b)*100; t += c;
 fprintf(stderr,"Work stopped due to no FD's: (%.3d) %d Times, %3.2f%%\n",
 search_thr_limit,st_workfds,c);
 a = st_worknull; b = st_dir_search+st_file_search;
 c = (a/b)*100; t += c;
 fprintf(stderr,"Work stopped due to no work on Q: %d Times, %3.2f%%\n",
 st_worknull,c);
#ifndef __lock_lint /* it is OK to read HERE with out the lock ! */
 if (tglimit == UNLIMITED)
 strcpy(tl,"Unlimited");
 else
 sprintf(tl," %.3d ",tglimit);
#endif
 a = st_worklimit; b = st_dir_search+st_file_search;
 c = (a/b)*100; t += c;
 fprintf(stderr,"Work stopped due to TGLIMIT: (%.9s) %d Times, %3.2f%%\n",
 tl,st_worklimit,c);
 fprintf(stderr,"Work continued to be handed out: %3.2f%%\n",
 100.00-t);
 fprintf(stderr,"--\n");
}

/*
 * not running: A glue function to track if any search threads or cascade
 * threads are running. When the count is zero, and the work Q is NULL,
 * we can safly say, WE ARE DONE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * we can safly say, WE ARE DONE.
 */
void
notrun (void)
{
 mutex_lock(&work_q_lk);
 work_cnt--;
 tglimit++;
 current_open_files++;
 mutex_lock(&running_lk);
 if (flags & FS_STATS) {
 mutex_lock(&stat_lk);
 if (running > st_maxrun) {
 st_maxrun = running;
 DP(DLEVEL6,("Max Running has increased to %d\n",st_maxrun));
 }
 mutex_unlock(&stat_lk);
 }
 running--;
 if (work_cnt == 0 && running == 0) {
 all_done = 1;
 DP(DLEVEL6,("Setting ALL_DONE flag to TRUE.\n"));
 }
 mutex_unlock(&running_lk);
 cond_signal(&work_q_cv);
 mutex_unlock(&work_q_lk);
}

/*
 * uncase: A glue function. If the -i (case insensitive) flag is set, the
 * target strng and the read in line is converted to lower case before
 * comparing them.
 */
void
uncase(char *s)
{
 char *p;

 for (p = s; *p != NULL; p++)
 *p = (char)tolower(*p);
}

/*
 * SigThread: if the -S option is set, the first ^C set to tgrep will
 * print the stats on the fly, the second will kill the process.
 */

void *
SigThread(void *arg)
{
 int sig;
 int stats_printed = 0;

 while (1) {
 sig = sigwait(&set);
 DP(DLEVEL7,("Signal %d caught\n",sig));
 switch (sig) {
 case -1:
 fprintf(stderr,"Signal error\n");
 break;
 case SIGINT:
 if (stats_printed)
 exit(1);
 stats_printed = 1;
 sig_print_stats();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sig_print_stats();
 break;
 case SIGHUP:
 sig_print_stats();
 break;
 default:
 DP(DLEVEL7,("Default action taken (exit) for signal %d\n",sig));
 exit(1); /* default action */
 }
 }
}

void
sig_print_stats(void)
{
 /*
 ** Get the output lock first
 ** Then get the stat lock.
 */
 mutex_lock(&output_print_lk);
 mutex_lock(&stat_lk);
 prnt_stats();
 mutex_unlock(&stat_lk);
 mutex_unlock(&output_print_lk);
 return;
}

/*
 * usage: Have to have one of these.
 */
void
usage(void)
{
 fprintf(stderr,"usage: tgrep <options> pattern <{file,dir}>...\n");
 fprintf(stderr,"\n");
 fprintf(stderr,"Where:\n");
#ifdef DEBUG
 fprintf(stderr,"Debug -d = debug level -d <levels> (-d0 for usage)\n");
 fprintf(stderr,"Debug -f = block fd's from use (-f #)\n");
#endif
 fprintf(stderr," -b = show block count (512 byte block)\n");
 fprintf(stderr," -c = print only a line count\n");
 fprintf(stderr," -h = do not print file names\n");
 fprintf(stderr," -i = case insensitive\n");
 fprintf(stderr," -l = print file name only\n");
 fprintf(stderr," -n = print the line number with the line\n");
 fprintf(stderr," -s = Suppress error messages\n");
 fprintf(stderr," -v = print all but matching lines\n");
#ifdef NOT_IMP
 fprintf(stderr," -w = search for a \"word\"\n");
#endif
 fprintf(stderr," -r = Do not search for files in all "
 "sub-directories\n");
 fprintf(stderr," -C = show continued lines (\"\\\")\n");
 fprintf(stderr," -p = File name regexp pattern. (Quote it)\n");
 fprintf(stderr," -P = show progress. -P 1 prints a DOT on stderr\n"
 " for each file it finds, -P 10 prints a DOT\n"
 " on stderr for each 10 files it finds, etc...\n");
 fprintf(stderr," -e = expression search.(regexp) More then one\n");
 fprintf(stderr," -B = limit the number of threads to TGLIMIT\n");
 fprintf(stderr," -S = Print thread stats when done.\n");
 fprintf(stderr," -Z = Print help on the regexp used.\n");
 fprintf(stderr,"\n");
 fprintf(stderr,"Notes:\n");
 fprintf(stderr," If you start tgrep with only a directory name\n");
 fprintf(stderr," and no file names, you must not have the -r option\n");
 fprintf(stderr," set or you will get no output.\n");
 fprintf(stderr," To search stdin (piped input), you must set -r\n");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fprintf(stderr," To search stdin (piped input), you must set -r\n");
 fprintf(stderr," Tgrep will search ALL files in ALL \n");
 fprintf(stderr," sub-directories. (like */* */*/* */*/*/* etc..)\n");
 fprintf(stderr," if you supply a directory name.\n");
 fprintf(stderr," If you do not supply a file, or directory name,\n");
 fprintf(stderr," and the -r option is not set, the current \n");
 fprintf(stderr," directory \".\" will be used.\n");
 fprintf(stderr," All the other options should work \"like\" grep\n");
 fprintf(stderr," The -p patten is regexp, tgrep will search only\n");
 fprintf(stderr," the file names that match the patten\n");
 fprintf(stderr,"\n");
 fprintf(stderr," Tgrep Version %s\n",Tgrep_Version);
 fprintf(stderr,"\n");
 fprintf(stderr," Copy Right By Ron Winacott, 1993-1995.\n");
 fprintf(stderr,"\n");
 exit(0);
}

/*
 * regexp usage: Tell the world about tgrep custom (THREAD SAFE) regexp!
 */
int
regexp_usage (void)
{
 fprintf(stderr,"usage: tgrep <options> -e \"pattern\" <-e ...> "
 "<{file,dir}>...\n");
 fprintf(stderr,"\n");
 fprintf(stderr,"metachars:\n");
 fprintf(stderr," . - match any character\n");
 fprintf(stderr," * - match 0 or more occurrences of pervious char\n");
 fprintf(stderr," + - match 1 or more occurrences of pervious char.\n");
 fprintf(stderr," ^ - match at begining of string\n");
 fprintf(stderr," $ - match end of string\n");
 fprintf(stderr," [- start of character class\n");
 fprintf(stderr,"] - end of character class\n");
 fprintf(stderr," (- start of a new pattern\n");
 fprintf(stderr,") - end of a new pattern\n");
 fprintf(stderr," @(n)c - match <c> at column <n>\n");
 fprintf(stderr," | - match either pattern\n");
 fprintf(stderr," \\ - escape any special characters\n");
 fprintf(stderr," \\c - escape any special characters\n");
 fprintf(stderr," \\o - turn on any special characters\n");
 fprintf(stderr,"\n");
 fprintf(stderr,"To match two diffrerent patterns in the same command\n");
 fprintf(stderr,"Use the or function. \n"
 "ie: tgrep -e \"(pat1)|(pat2)\" file\n"
 "This will match any line with \"pat1\" or \"pat2\" in it.\n");
 fprintf(stderr,"You can also use up to %d -e expresions\n",MAXREGEXP);
 fprintf(stderr,"RegExp Pattern matching brought to you by Marc Staveley\n");
 exit(0);
}

/*
 * debug usage: If compiled with -DDEBUG, turn it on, and tell the world
 * how to get tgrep to print debug info on different threads.
 */
#ifdef DEBUG
void
debug_usage(void)
{
 int i = 0;

 fprintf(stderr,"DEBUG usage and levels:\n");
 fprintf(stderr,"--\n");
 fprintf(stderr,"Level code\n");
 fprintf(stderr,"--\n");
 fprintf(stderr,"0 This message.\n");
 for (i=0; i<9; i++) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for (i=0; i<9; i++) {
 fprintf(stderr,"%d %s\n",i+1,debug_set[i].name);
 }
 fprintf(stderr,"--\n");
 fprintf(stderr,"You can or the levels together like -d134 for levels\n");
 fprintf(stderr,"1 and 3 and 4.\n");
 fprintf(stderr,"\n");
 exit(0);
}
#endif

Multithreaded Quicksort
The following example tquick.cimplements the quicksort algorithm using
threads.

/*
* Multithreaded Demo Source
*
* Copyright (C) 1995 by Sun Microsystems, Inc.
* All rights reserved.
*
* This file is a product of SunSoft, Inc. and is provided for
* unrestricted use provided that this legend is included on all
* media and as a part of the software program in whole or part.
* Users may copy, modify or distribute this file at will.
*
* THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* This file is provided with no support and without any obligation on
* part of SunSoft, Inc. to assist in its use, correction, modification or
* enhancement.
*
* SUNSOFT AND SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT
* TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS
* FILE OR ANY PART THEREOF.
*
* IN NO EVENT WILL SUNSOFT OR SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY
* LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL
* DAMAGES, EVEN IF THEY HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGES.
*
* SunSoft, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/

/*
 * multiple-thread quick-sort. See man page for qsort(3c) for info.
 * Works fine on uniprocessor machines as well.
 *
 * Written by: Richard Pettit (Richard.Pettit@West.Sun.COM)
 */

#include <unistd.h>
#include <stdlib.h>
#include <thread.h>

/* don't create more threads for less than this */
#define SLICE_THRESH 4096

/* how many threads per lwp */
#define THR_PER_LWP 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#define THR_PER_LWP 4

/* cast the void to a one byte quanitity and compute the offset */
#define SUB(a, n) ((void *) (((unsigned char *) (a)) + ((n) * width)))

typedef struct {
 void *sa_base;
 int sa_nel;
 size_t sa_width;
 int (*sa_compar)(const void *, const void *);
} sort_args_t;

/* for all instances of quicksort */
static int threads_avail;

#define SWAP(a, i, j, width) \
{ \
 int n; \
 unsigned char uc; \
 unsigned short us; \
 unsigned long ul; \
 unsigned long long ull; \
 \
 if (SUB(a, i) == pivot) \
 pivot = SUB(a, j); \
 else if (SUB(a, j) == pivot) \
 pivot = SUB(a, i); \
 \
 /* one of the more convoluted swaps I've done */ \
 switch(width) { \
 case 1: \
 uc = *((unsigned char *) SUB(a, i)); \
 *((unsigned char *) SUB(a, i)) = *((unsigned char *) SUB(a, j)); \
 *((unsigned char *) SUB(a, j)) = uc; \
 break; \
 case 2: \
 us = *((unsigned short *) SUB(a, i)); \
 *((unsigned short *) SUB(a, i)) = *((unsigned short *) SUB(a, j)); \
 *((unsigned short *) SUB(a, j)) = us; \
 break; \
 case 4: \
 ul = *((unsigned long *) SUB(a, i)); \
 *((unsigned long *) SUB(a, i)) = *((unsigned long *) SUB(a, j)); \
 *((unsigned long *) SUB(a, j)) = ul; \
 break; \
 case 8: \
 ull = *((unsigned long long *) SUB(a, i)); \
 *((unsigned long long *) SUB(a,i)) = *((unsigned long long *) SUB(a,j)); \
 *((unsigned long long *) SUB(a, j)) = ull; \
 break; \
 default: \
 for(n=0; n<width; n++) { \
 uc = ((unsigned char *) SUB(a, i))[n]; \
 ((unsigned char *) SUB(a, i))[n] = ((unsigned char *) SUB(a, j))[n]; \
 ((unsigned char *) SUB(a, j))[n] = uc; \
 } \
 break; \
 } \
}

static void *
_quicksort(void *arg)
{
 sort_args_t *sargs = (sort_args_t *) arg;
 register void *a = sargs->sa_base;
 int n = sargs->sa_nel;
 int width = sargs->sa_width;
 int (*compar)(const void *, const void *) = sargs->sa_compar;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int (*compar)(const void *, const void *) = sargs->sa_compar;
 register int i;
 register int j;
 int z;
 int thread_count = 0;
 void *t;
 void *b[3];
 void *pivot = 0;
 sort_args_t sort_args[2];
 thread_t tid;

 /* find the pivot point */
 switch(n) {
 case 0:
 case 1:
 return 0;
 case 2:
 if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {
 SWAP(a, 0, 1, width);
 }
 return 0;
 case 3:
 /* three sort */
 if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {
 SWAP(a, 0, 1, width);
 }
 /* the first two are now ordered, now order the second two */
 if ((*compar)(SUB(a, 2), SUB(a, 1)) < 0) {
 SWAP(a, 2, 1, width);
 }
 /* should the second be moved to the first? */
 if ((*compar)(SUB(a, 1), SUB(a, 0)) < 0) {
 SWAP(a, 1, 0, width);
 }
 return 0;
 default:
 if (n > 3) {
 b[0] = SUB(a, 0);
 b[1] = SUB(a, n / 2);
 b[2] = SUB(a, n - 1);
 /* three sort */
 if ((*compar)(b[0], b[1]) > 0) {
 t = b[0];
 b[0] = b[1];
 b[1] = t;
 }
 /* the first two are now ordered, now order the second two */
 if ((*compar)(b[2], b[1]) < 0) {
 t = b[1];
 b[1] = b[2];
 b[2] = t;
 }
 /* should the second be moved to the first? */
 if ((*compar)(b[1], b[0]) < 0) {
 t = b[0];
 b[0] = b[1];
 b[1] = t;
 }
 if ((*compar)(b[0], b[2]) != 0)
 if ((*compar)(b[0], b[1]) < 0)
 pivot = b[1];
 else
 pivot = b[2];
 }
 break;
 }
 if (pivot == 0)
 for(i=1; i<n; i++) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 for(i=1; i<n; i++) {
 if (z = (*compar)(SUB(a, 0), SUB(a, i))) {
 pivot = (z > 0) ? SUB(a, 0) : SUB(a, i);
 break;
 }
 }
 if (pivot == 0)
 return;

 /* sort */
 i = 0;
 j = n - 1;
 while(i <= j) {
 while((*compar)(SUB(a, i), pivot) < 0)
 ++i;
 while((*compar)(SUB(a, j), pivot) >= 0)
 --j;
 if (i < j) {
 SWAP(a, i, j, width);
 ++i;
 --j;
 }
 }

 /* sort the sides judiciously */
 switch(i) {
 case 0:
 case 1:
 break;
 case 2:
 if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {
 SWAP(a, 0, 1, width);
 }
 break;
 case 3:
 /* three sort */
 if ((*compar)(SUB(a, 0), SUB(a, 1)) > 0) {
 SWAP(a, 0, 1, width);
 }
 /* the first two are now ordered, now order the second two */
 if ((*compar)(SUB(a, 2), SUB(a, 1)) < 0) {
 SWAP(a, 2, 1, width);
 }
 /* should the second be moved to the first? */
 if ((*compar)(SUB(a, 1), SUB(a, 0)) < 0) {
 SWAP(a, 1, 0, width);
 }
 break;
 default:
 sort_args[0].sa_base = a;
 sort_args[0].sa_nel = i;
 sort_args[0].sa_width = width;
 sort_args[0].sa_compar = compar;
 if ((threads_avail > 0) && (i > SLICE_THRESH)) {
 threads_avail--;
 thr_create(0, 0, _quicksort, &sort_args[0], 0, &tid);
 thread_count = 1;
 } else
 _quicksort(&sort_args[0]);
 break;
 }
 j = n - i;
 switch(j) {
 case 1:
 break;
 case 2:
 if ((*compar)(SUB(a, i), SUB(a, i + 1)) > 0) {
 SWAP(a, i, i + 1, width);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SWAP(a, i, i + 1, width);
 }
 break;
 case 3:
 /* three sort */
 if ((*compar)(SUB(a, i), SUB(a, i + 1)) > 0) {
 SWAP(a, i, i + 1, width);
 }
 /* the first two are now ordered, now order the second two */
 if ((*compar)(SUB(a, i + 2), SUB(a, i + 1)) < 0) {
 SWAP(a, i + 2, i + 1, width);
 }
 /* should the second be moved to the first? */
 if ((*compar)(SUB(a, i + 1), SUB(a, i)) < 0) {
 SWAP(a, i + 1, i, width);
 }
 break;
 default:
 sort_args[1].sa_base = SUB(a, i);
 sort_args[1].sa_nel = j;
 sort_args[1].sa_width = width;
 sort_args[1].sa_compar = compar;
 if ((thread_count == 0) && (threads_avail > 0) && (i > SLICE_THRESH)) {
 threads_avail--;
 thr_create(0, 0, _quicksort, &sort_args[1], 0, &tid);
 thread_count = 1;
 } else
 _quicksort(&sort_args[1]);
 break;
 }
 if (thread_count) {
 thr_join(tid, 0, 0);
 threads_avail++;
 }
 return 0;
}

void
quicksort(void *a, size_t n, size_t width,
 int (*compar)(const void *, const void *))
{
 static int ncpus = -1;
 sort_args_t sort_args;

 if (ncpus == -1) {
 ncpus = sysconf(_SC_NPROCESSORS_ONLN);

 /* lwp for each cpu */
 if ((ncpus > 1) && (thr_getconcurrency() < ncpus))
 thr_setconcurrency(ncpus);

 /* thread count not to exceed THR_PER_LWP per lwp */
 threads_avail = (ncpus == 1) ? 0 : (ncpus * THR_PER_LWP);
 }
 sort_args.sa_base = a;
 sort_args.sa_nel = n;
 sort_args.sa_width = width;
 sort_args.sa_compar = compar;
 (void) _quicksort(&sort_args);
}

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

What Is RPC
How RPC Works
RPC Application Development

Defining the Protocol
Defining Client and Server Application Code
Compliling and running the application

Overview of Interface Routines
Simplified Level Routine Function
Top Level Routines

Intermediate Level Routines
Expert Level Routines
Bottom Level Routines

The Programmer's Interface to RPC
Simplified Interface
Passing Arbitrary Data Types
Developing High Level RPC Applications

Defining the protocol
Sharing the data

The Server Side
The Client Side

Exercise

Remote Procedure Calls (RPC)
This chapter provides an overview of Remote Procedure Calls (RPC) RPC.

What Is RPC
RPC is a powerful technique for constructing distributed, client-server based
applications. It is based on extending the notion of conventional, or local
procedure calling, so that the called procedure need not exist in the same
address space as the calling procedure. The two processes may be on the
same system, or they may be on different systems with a network connecting
them. By using RPC, programmers of distributed applications avoid the
details of the interface with the network. The transport independence of RPC
isolates the application from the physical and logical elements of the data
communications mechanism and allows the application to use a variety of
transports.

RPC makes the client/server model of computing more powerful and easier to
program. When combined with the ONC RPCGEN protocol compiler
(Chapter 33) clients transparently make remote calls through a local
procedure interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How RPC Works
An RPC is analogous to a function call. Like a function call, when an RPC is
made, the calling arguments are passed to the remote procedure and the caller
waits for a response to be returned from the remote procedure. Figure 32.1
shows the flow of activity that takes place during an RPC call between two
networked systems. The client makes a procedure call that sends a request to
the server and waits. The thread is blocked from processing until either a
reply is received, or it times out. When the request arrives, the server calls a
dispatch routine that performs the requested service, and sends the reply to
the client. After the RPC call is completed, the client program continues. RPC
specifically supports network applications.

Fig. 32.1 Remote Procedure Calling Mechanism A remote procedure is
uniquely identified by the triple: (program number, version number,
procedure number) The program number identifies a group of related remote
procedures, each of which has a unique procedure number. A program may
consist of one or more versions. Each version consists of a collection of
procedures which are available to be called remotely. Version numbers
enable multiple versions of an RPC protocol to be available simultaneously.
Each version contains a a number of procedures that can be called remotely.
Each procedure has a procedure number.

RPC Application Development
Consider an example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A client/server lookup in a personal database on a remote machine. Assuming
that we cannot access the database from the local machine (via NFS).

We use UNIX to run a remote shell and execute the command this way.
There are some problems with this method:

the command may be slow to execute.
You require an login account on the remote machine.

The RPC alternative is to

establish an server on the remote machine that can repond to queries.
Retrieve information by calling a query which will be quicker than
previous approach.

To develop an RPC application the following steps are needed:

Specify the protocol for client server communication
Develop the client program
Develop the server program

The programs will be compiled seperately. The communication protocol is
achieved by generated stubs and these stubs and rpc (and other libraries) will
need to be linked in.

Defining the Protocol
The easiest way to define and generate the protocol is to use a protocol
complier such as rpcgen which we discuss is Chapter 33.

For the protocol you must identify the name of the service procedures, and
data types of parameters and return arguments.

The protocol compiler reads a definitio and automatically generates client and
server stubs.

rpcgen uses its own language (RPC language or RPCL) which looks very
similar to preprocessor directives.

rpcgen exists as a standalone executable compiler that reads special files
denoted by a .x prefix.

So to compile a RPCL file you simply do

rpcgen rpcprog.x

This will generate possibly four files:

rpcprog_clnt.c -- the client stub
rpcprog_svc.c -- the server stub
rpcprog_xdr.c -- If necessary XDR (external data representation)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rpcprog_xdr.c -- If necessary XDR (external data representation)
filters
rpcprog.h -- the header file needed for any XDR filters.

The external data representation (XDR) is an data abstraction needed for
machine independent communication. The client and server need not be
machines of the same type.

Defining Client and Server Application Code
We must now write the the client and application code. They must
communicate via procedures and data types specified in the Protocol.

The service side will have to register the procedures that may be called by the
client and receive and return any data required for processing.

The client application call the remote procedure pass any required data and
will receive the retruned data.

There are several levels of application interfaces that may be used to develop
RPC applications. We will briefly disuss these below before exapnading thhe
most common of these in later chapters.

Compliling and running the application
Let us consider the full compilation model required to run a RPC application.
Makefiles are useful for easing the burden of compiling RPC applications but
it is necessary to understand the complete model before one can assemble a
convenient makefile.

Assume the the client program is called rpcprog.c, the service program is
rpcsvc.c and that the protocol has been defined in rpcprog.x and that
rpcgen has been used to produce the stub and filter files: rpcprog_clnt.c,
rpcprog_svc.c, rpcprog_xdr.c, rpcprog.h.

The client and server program must include (#include "rpcprog.h"

You must then:

compile the client code:

cc -c rpcprog.c

compile the client stub:

cc -c rpcprog_clnt.c

compile the XDR filter:

cc -c rpcprog_xdr.c

build the client executable:

cc -o rpcprog rpcprog.o rpcprog_clnt.o rpcprog_xdr.c

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cc -o rpcprog rpcprog.o rpcprog_clnt.o rpcprog_xdr.c

compile the service procedures:

cc -c rpcsvc.c

compile the server stub:

cc -c rpcprog_svc.c

build the server executable:

cc -o rpcsvc rpcsvc.o rpcprog_svc.o rpcprog_xdr.c

Now simply run the programs rpcprog and rpcsvc on the client and server
respectively. The server procedures must be registered before the client can
call them.

Overview of Interface Routines
RPC has multiple levels of application interface to its services. These levels
provide different degrees of control balanced with different amounts of
interface code to implement. In order of increasing control and complexity.
This section gives a summary of the routines available at each level.
Simplified Interface Routines

The simplified interfaces are used to make remote procedure calls to routines
on other machines, and specify only the type of transport to use. The routines
at this level are used for most applications. Descriptions and code samples
can be found in the section, Simplified Interface @ 3-2.

Simplified Level Routine Function
rpc_reg() -- Registers a procedure as an RPC program on all transports of
the specified type.

rpc_call() -- Remote calls the specified procedure on the specified remote
host.

rpc_broadcast() -- Broadcasts a call message across all transports of the
specified type. Standard Interface Routines The standard interfaces are
divided into top level, intermediate level, expert level, and bottom level.
These interfaces give a developer much greater control over communication
parameters such as the transport being used, how long to wait
beforeresponding to errors and retransmitting requests, and so on.

Top Level Routines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At the top level, the interface is still simple, but the program has to create a
client handle before making a call or create a server handle before receiving
calls. If you want the application to run on all transports, use this interface.
Use of these routines and code samples can be found in Top Level Interface

clnt_create() -- Generic client creation. The program tells clnt_create()
where the server is located and the type of transport to use.

clnt_create_timed() Similar to clnt_create() but lets the programmer
specify the maximum time allowed for each type of transport tried during the
creation attempt.

svc_create() -- Creates server handles for all transports of the specified
type. The program tells svc_create() which dispatch function to use.

clnt_call() -- Client calls a procedure to send a request to the server.

Intermediate Level Routines
The intermediate level interface of RPC lets you control details. Programs
written at these lower levels are more complicated but run more efficiently.
The intermediate level enables you to specify the transport to use.

clnt_tp_create() -- Creates a client handle for the specified transport.

clnt_tp_create_timed() -- Similar to clnt_tp_create() but lets the
programmer specify the maximum time allowed. svc_tp_create() Creates a
server handle for the specified transport.

clnt_call() -- Client calls a procedure to send a request to the server.

Expert Level Routines
The expert level contains a larger set of routines with which to specify
transport-related parameters. Use of these routines

clnt_tli_create() -- Creates a client handle for the specified transport.

svc_tli_create() -- Creates a server handle for the specified transport.

rpcb_set() -- Calls rpcbind to set a map between an RPC service and a
network address.

rpcb_unset() -- Deletes a mapping set by rpcb_set().

rpcb_getaddr() -- Calls rpcbind to get the transport addresses of specified
RPC services.

svc_reg() -- Associates the specified program and version number pair with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

svc_reg() -- Associates the specified program and version number pair with
the specified dispatch routine.

svc_unreg() -- Deletes an association set by svc_reg().

clnt_call() -- Client calls a procedure to send a request to the server.

Bottom Level Routines
The bottom level contains routines used for full control of transport options.

clnt_dg_create() -- Creates an RPC client handle for the specified remote
program, using a connectionless transport.

svc_dg_create() -- Creates an RPC server handle, using a connectionless
transport.

clnt_vc_create() -- Creates an RPC client handle for the specified remote
program, using a connection-oriented transport.

svc_vc_create() -- Creates an RPC server handle, using a connection-
oriented transport.

clnt_call() -- Client calls a procedure to send a request to the server.

The Programmer's Interface to
RPC
This section addresses the C interface to RPC and describes how to write
network applications using RPC. For a complete specification of the routines
in the RPC library, see the rpc and related man pages.

Simplified Interface
The simplified interface is the easiest level to use because it does not require
the use of any other RPC routines. It also limits control of the underlying
communications mechanisms. Program development at this level can be
rapid, and is directly supported by the rpcgen compiler. For most
applications, rpcgen and its facilities are sufficient. Some RPC services are
not available as C functions, but they are available as RPC programs. The
simplified interface library routines provide direct access to the RPC facilities
for programs that do not require fine levels of control.

Routines such as rusers are in the RPC services library librpcsvc.
rusers.c, below, is a program that displays the number of users on a remote
host. It calls the RPC library routine, rusers.

The program.c program listing:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>
#include <stdio.h>

/*
* a program that calls the
* rusers() service
*/

main(int argc,char **argv)

{
int num;
if (argc != 2) {
 fprintf(stderr, "usage: %s hostname\n",
 argv[0]);
 exit(1);
 }

if ((num = rnusers(argv[1])) < 0) {
 fprintf(stderr, "error: rusers\n");
 exit(1);
 }

fprintf(stderr, "%d users on %s\n", num, argv[1]);
exit(0);
}

Compile the program with:

cc program.c -lrpcsvc -lnsl

The Client Side

There is just one function on the client side of the simplified interface
rpc_call().

It has nine parameters:

int
rpc_call (char *host /* Name of server host */,
 u_long prognum /* Server program number */,
 u_long versnum /* Server version number */,
 xdrproc_t inproc /* XDR filter to encode arg */,
 char *in /* Pointer to argument */,
 xdr_proc_t outproc /* Filter to decode result */,
 char *out /* Address to store result */,
 char *nettype /* For transport selection */);

This function calls the procedure specified by prognum, versum, and
procnum on the host. The argument to be passed to the remote procedure is
pointed to by the in parameter, and inproc is the XDR filter to encode this
argument. The out parameter is an address where the result from the remote
procedure is to be placed. outproc is an XDR filter which will decode the
result and place it at this address.

The client blocks on rpc_call() until it receives a reply from the server. If
the server accepts, it returns RPC_SUCCESS with the value of zero. It will
return a non-zero value if the call was unsuccessful. This value can be cast to
the type clnt_stat, an enumerated type defined in the RPC include files
(<rpc/rpc.h>) and interpreted by the clnt_sperrno() function. This function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(<rpc/rpc.h>) and interpreted by the clnt_sperrno() function. This function
returns a pointer to a standard RPC error message corresponding to the error
code. In the example, all "visible" transports listed in /etc/netconfig are
tried. Adjusting the number of retries requires use of the lower levels of the
RPC library. Multiple arguments and results are handled by collecting them
in structures.

The example changed to use the simplified interface, looks like

#include <stdio.h>
#include <utmp.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

/* a program that calls the RUSERSPROG
* RPC program
*/

main(int argc, char **argv)

{
 unsigned long nusers;
 enum clnt_stat cs;
 if (argc != 2) {
 fprintf(stderr, "usage: rusers hostname\n");
 exit(1);
 }

 if(cs = rpc_call(argv[1], RUSERSPROG,
 RUSERSVERS, RUSERSPROC_NUM, xdr_void,
 (char *)0, xdr_u_long, (char *)&nusers,
 "visible") != RPC_SUCCESS) {
 clnt_perrno(cs);
 exit(1);
 }

 fprintf(stderr, "%d users on %s\n", nusers, argv[1]);
 exit(0);
}

Since data types may be represented differently on different machines,
rpc_call() needs both the type of, and a pointer to, the RPC argument
(similarly for the result). For RUSERSPROC_NUM, the return value is an unsigned
long, so the first return parameter of rpc_call() is xdr_u_long (which is for
an unsigned long) and the second is &nusers (which points to unsigned long
storage). Because RUSERSPROC_NUM has no argument, the XDR encoding
function of rpc_call() is xdr_void() and its argument is NULL.

The Server Side

The server program using the simplified interface is very straightforward. It
simply calls rpc_reg() to register the procedure to be called, and then it calls
svc_run(), the RPC library's remote procedure dispatcher, to wait for
requests to come in.

rpc_reg() has the following prototype:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rpc_reg(u_long prognum /* Server program number */,
 u_long versnum /* Server version number */,
 u_long procnum /* server procedure number */,
 char *procname /* Name of remote function */,
 xdrproc_t inproc /* Filter to encode arg */,
 xdrproc_t outproc /* Filter to decode result */,
 char *nettype /* For transport selection */);

svc_run() invokes service procedures in response to RPC call messages. The
dispatcher in rpc_reg() takes care of decoding remote procedure arguments
and encoding results, using the XDR filters specified when the remote
procedure was registered. Some notes about the server program:

Most RPC applications follow the naming convention of appending a
_1 to the function name. The sequence _n is added to the procedure
names to indicate the version number n of the service.
The argument and result are passed as addresses. This is true for all
functions that are called remotely. If you pass NULL as a result of a
function, then no reply is sent to the client. It is assumed that there is no
reply to send.
The result must exist in static data space because its value is accessed
after the actual procedure has exited. The RPC library function that
builds the RPC reply message accesses the result and sends the value
back to the client.
Only a single argument is allowed. If there are multiple elements of
data, they should be wrapped inside a structure which can then be
passed as a single entity.
The procedure is registered for each transport of the specified type. If
the type parameter is (char *)NULL, the procedure is registered for all
transports specified in NETPATH.

You can sometimes implement faster or more compact code than can rpcgen.
rpcgen handles the generic code-generation cases. The following program is
an example of a hand-coded registration routine. It registers a single
procedure and enters svc_run() to service requests.

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

void *rusers();

main()
{
 if(rpc_reg(RUSERSPROG, RUSERSVERS,
 RUSERSPROC_NUM, rusers,
 xdr_void, xdr_u_long,
 "visible") == -1) {
 fprintf(stderr, "Couldn't Register\n");
 exit(1);
 }
 svc_run(); /* Never returns */
 fprintf(stderr, "Error: svc_run returned!\n");
 exit(1);
}

rpc_reg() can be called as many times as is needed to register different
programs, versions, and procedures.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passing Arbitrary Data Types
Data types passed to and received from remote procedures can be any of a set
of predefined types, or can be programmer-defined types. RPC handles
arbitrary data structures, regardless of different machines' byte orders or
structure layout conventions, by always converting them to a standard
transfer format called external data representation (XDR) before sending
them over the transport. The conversion from a machine representation to
XDR is called serializing, and the reverse process is called deserializing. The
translator arguments of rpc_call() and rpc_reg() can specify an XDR
primitive procedure, like xdr_u_long(), or a programmer-supplied routine
that processes a complete argument structure. Argument processing routines
must take only two arguments: a pointer to the result and a pointer to the
XDR handle.

The following XDR Primitive Routines are available:

xdr_int() xdr_netobj() xdr_u_long() xdr_enum()
xdr_long() xdr_float() xdr_u_int() xdr_bool()
xdr_short() xdr_double() xdr_u_short() xdr_wrapstring()
xdr_char() xdr_quadruple() xdr_u_char() xdr_void()

The nonprimitive xdr_string(), which takes more than two parameters, is
called from xdr_wrapstring().

For an example of a programmer-supplied routine, the structure:

struct simple {
 int a;
 short b;
 } simple;

contains the calling arguments of a procedure. The XDR routine
xdr_simple() translates the argument structure as shown below:

#include <rpc/rpc.h>
#include "simple.h"

bool_t xdr_simple(XDR *xdrsp, struct simple *simplep)

{
 if (!xdr_int(xdrsp, &simplep->a))
 return (FALSE);
 if (!xdr_short(xdrsp, &simplep->b))
 return (FALSE);
 return (TRUE);
}

An equivalent routine can be generated automatically by rpcgen (See
Chapter 33).

An XDR routine returns nonzero (a C TRUE) if it completes successfully,
and zero otherwise.

For more complex data structures use the XDR prefabricated routines:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

xdr_array() xdr_bytes() xdr_reference()
xdr_vector() xdr_union() xdr_pointer()
xdr_string() xdr_opaque()

For example, to send a variable-sized array of integers, it is packaged in a
structure containing the array and its length:

struct varintarr {
int *data;
int arrlnth;
} arr;

Translate the array with xdr_array(), as shown below:

bool_t xdr_varintarr(XDR *xdrsp, struct varintarr *arrp)

{
 return(xdr_array(xdrsp, (caddr_t)&arrp->data,
 (u_int *)&arrp->arrlnth, MAXLEN, sizeof(int), xdr_int));
}

The arguments of xdr_array() are the XDR handle, a pointer to the array, a
pointer to the size of the array, the maximum array size, the size of each array
element, and a pointer to the XDR routine to translate each array element. If
the size of the array is known in advance, use xdr_vector() instread as is
more efficient:

int intarr[SIZE];

bool_t xdr_intarr(XDR *xdrsp, int intarr[])
{
 return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int), xdr_int));
}

XDR converts quantities to 4-byte multiples when serializing. For arrays of
characters, each character occupies 32 bits. xdr_bytes() packs characters. It
has four parameters similar to the first four parameters of xdr_array().

Null-terminated strings are translated by xdr_string(). It is like
xdr_bytes() with no length parameter. On serializing it gets the string length
from strlen(), and on deserializing it creates a null-terminated string.

xdr_reference() calls the built-in functions xdr_string() and
xdr_reference(), which translates pointers to pass a string, and struct
simple from the previous examples. An example use of xdr_reference() is
as follows:

struct finalexample {
 char *string;
 struct simple *simplep;
 } finalexample;

bool_t xdr_finalexample(XDR *xdrsp, struct finalexample *finalp)

{ if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))
 return (FALSE);
 if (!xdr_reference(xdrsp, &finalp->simplep, sizeof(struct simple), xdr_simple))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (!xdr_reference(xdrsp, &finalp->simplep, sizeof(struct simple), xdr_simple))
 return (FALSE);
 return (TRUE);
}

Note thatxdr_simple() could have been called here instead of
xdr_reference() .

Developing High Level RPC Applications
Let us now introduce some further functions and see how we develop an
application using high level RPC routines. We will do this by studying an
example.

We will develop a remote directory reading utility.

Let us first consider how we would write a local directory reader. We have
seem how to do this already in Chapter 19.

Consider the program to consist of two files:

lls.c -- the main program which calls a routine in a local module
read_dir.c

/*
 * ls.c: local directory listing main - before RPC
 */
#include <stdio.h>
#include <strings.h>
#include "rls.h"

main (int argc, char **argv)

{
 char dir[DIR_SIZE];

 /* call the local procedure */
 strcpy(dir, argv[1]); /* char dir[DIR_SIZE] is coming and going... */
 read_dir(dir);

 /* spew-out the results and bail out of here! */
 printf("%s\n", dir);

 exit(0);
}

read_dir.c -- the file containing the local routine read_dir().

/* note - RPC compliant procedure calls take one input and
 return one output. Everything is passed by pointer. Return
 values should point to static data, as it might have to
 survive some while. */
#include <stdio.h>
#include <sys/types.h>
#include <sys/dir.h> /* use <xpg2include/sys/dirent.h> (SunOS4.1) or
 <sys/dirent.h> for X/Open Portability Guide, issue 2 conformance */
#include "rls.h"

read_dir(char *dir)
 /* char dir[DIR_SIZE] */
{
 DIR * dirp;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DIR * dirp;
 struct direct *d;
 printf("beginning ");

 /* open directory */
 dirp = opendir(dir);
 if (dirp == NULL)
 return(NULL);

 /* stuff filenames into dir buffer */
 dir[0] = NULL;
 while (d = readdir(dirp))
 sprintf(dir, "%s%s\n", dir, d->d_name);

 /* return the result */
 printf("returning ");
 closedir(dirp);
 return((int)dir); /* this is the only new line from Example 4-3 */
}

the header file rls.h contains only the following (for now at least)

#define DIR_SIZE 8192

Clearly we need to share the size between the files. Later when we
develop RPC versions more information will need to be added to this
file.

This local program would be compiled as follows:

cc lls.c read_dir.c -o lls

Now we want to modify this program to work over a network: Allowing us to
inspect directories of a remote server accross a network.

The following steps will be required:

We will have to convert the read_dir.c, to run on the server.
We will have to register the server and the routine read_dir()
on the server/.

The client lls.c will have to call the routine as a remote procedure.
We will have to define the protocol for communication between the
client and the server programs.

Defining the protocol

We can can use simple NULL-terminated strings for passing and receivong the
directory name and directory contents. Furthermore, we can embed the
passing of these parameters directly in the client and server code.

We therefore need to specify the program, procedure and version numbers for
client and servers. This can be done automatically using rpcgen or relying on
prdefined macros in the simlified interface. Here we will specify them
manually.

The server and client must agree ahead of time what logical adresses thney
will use (The physical addresses do not matter they are hidden from the
application developer)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Program numbers are defined in a standard way:

0x00000000 - 0x1FFFFFFF: Defined by Sun
0x20000000 - 0x3FFFFFFF: User Defined
0x40000000 - 0x5FFFFFFF: Transient
0x60000000 - 0xFFFFFFFF: Reserved

We will simply choose a user deifnined value for our program number. The
version and procedure numbers are set according to standard practice.

We still have the DIR_SIZE definition required from the local version as the
size of the directory buffer is rewquired by bith client and server programs.

Our new rls.h file contains:

#define DIR_SIZE 8192
#define DIRPROG ((u_long) 0x20000001) /* server program (suite) number */
#define DIRVERS ((u_long) 1) /* program version number */
#define READDIR ((u_long) 1) /* procedure number for look-up */

Sharing the data
We have mentioned previously that we can pass the data a simple strings. We
need to define an XDR filter routine xdr_dir() that shares the data. Recall
that only one encoding and decoding argument can be handled. This is easy
and defined via the standard xdr_string() routine.

The XDR file, rls_xrd.c, is as follows:

#include <rpc/rpc.h>

#include "rls.h"

bool_t xdr_dir(XDR *xdrs, char *objp)

{ return (xdr_string(xdrs, &objp, DIR_SIZE)); }

The Server Side

We can use the original read_dir.c file. All we need to do is register the
procedure and start the server.

The procedure is registered with registerrpc() function. This is prototypes
by:

registerrpc(u_long prognum /* Server program number */,
 u_long versnum /* Server version number */,
 u_long procnum /* server procedure number */,
 char *procname /* Name of remote function */,
 xdrproc_t inproc /* Filter to encode arg */,
 xdrproc_t outproc /* Filter to decode result */);

The parameters a similarly defined as in the rpc_reg simplified interface

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The parameters a similarly defined as in the rpc_reg simplified interface
function. We have already discussed the setting of the parametere with the
protocol rls.h header files and the rls_xrd.c XDR filter file.

The svc_run() routine has also been discussed previously.

The full rls_svc.c code is as follows:

#include <rpc/rpc.h>
#include "rls.h"

main()
{
 extern bool_t xdr_dir();
 extern char * read_dir();

 registerrpc(DIRPROG, DIRVERS, READDIR,
 read_dir, xdr_dir, xdr_dir);

 svc_run();
}

The Client Side

At the client side we simply need to call the remote procedure. The function
callrpc() does this. It is prototyped as follows:

callrpc(char *host /* Name of server host */,
 u_long prognum /* Server program number */,
 u_long versnum /* Server version number */,
 char *in /* Pointer to argument */,
 xdrproc_t inproc /* XDR filter to encode arg */,
 char *out /* Address to store result */
 xdr_proc_t outproc /* Filter to decode result */);

We call a local function read_dir() which uses callrpc() to call the remote
procedure that has been registered READDIR at the server.

The full rls.c program is as follows:

/*
 * rls.c: remote directory listing client
 */
#include <stdio.h>
#include <strings.h>
#include <rpc/rpc.h>
#include "rls.h"

main (argc, argv)
int argc; char *argv[];
{
char dir[DIR_SIZE];

 /* call the remote procedure if registered */
 strcpy(dir, argv[2]);
 read_dir(argv[1], dir); /* read_dir(host, directory) */

 /* spew-out the results and bail out of here! */
 printf("%s\n", dir);

 exit(0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 exit(0);
}

read_dir(host, dir)
char *dir, *host;
{
 extern bool_t xdr_dir();
 enum clnt_stat clnt_stat;

 clnt_stat = callrpc (host, DIRPROG, DIRVERS, READDIR,
 xdr_dir, dir, xdr_dir, dir);
 if (clnt_stat != 0) clnt_perrno (clnt_stat);
}

Exercise
Exercise 12833

Compile and run the remote directory example rls.c etc. Run both the client
ande srever locally and if possible over a network.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

What is rpcgen
An rpcgen Tutorial

Converting Local Procedures to Remote Procedures
Passing Complex Data Structures
Preprocessing Directives

cpp Directives
Compile-Time Flags
Client and Server Templates
Example rpcgen compile options/templates

Recommended Reading
Exercises

Protocol Compiling and Lower
Level RPC Programming
 This chapter introduces the rpcgen tool and provides a tutorial with code
examples and usage of the available compile-time flags. We also introduce
some further RPC programming routines.

What is rpcgen
The rpcgen tool generates remote program interface modules. It compiles
source code written in the RPC Language. RPC Language is similar in syntax
and structure to C. rpcgen produces one or more C language source modules,
which are then compiled by a C compiler.

The default output of rpcgen is:

A header file of definitions common to the server and the client
A set of XDR routines that translate each data type defined in the
header file
A stub program for the server
A stub program for the client

rpcgen can optionally generate (although we do not consider these issues
here -- see man pages or receommended reading):

Various transports
A time-out for servers
Server stubs that are MT safe
Server stubs that are not main programs
C-style arguments passing ANSI C-compliant code
An RPC dispatch table that checks authorizations and invokes service
routines

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rpcgen significantly reduces the development time that would otherwise be
spent developing low-level routines. Handwritten routines link easily with the
rpcgen output.

An rpcgen Tutorial
rpcgen provides programmers a simple and direct way to write distributed
applications. Server procedures may be written in any language that observes
procedure-calling conventions. They are linked with the server stub produced
by rpcgen to form an executable server program. Client procedures are
written and linked in the same way. This section presents some basic rpcgen
programming examples. Refer also to the man rpcgen online manual page.

Converting Local Procedures to Remote
Procedures
Assume that an application runs on a single computer and you want to
convert it to run in a "distributed" manner on a network. This example shows
the stepwise conversion of this program that writes a message to the system
console.

Single Process Version of printmesg.c:

/* printmsg.c: print a message on the console */
#include <stdio.h>
main(int argc, char *argv[])

{
 char *message;
 if (argc != 2) {
 fprintf(stderr, "usage: %s <message>\n",argv[0]);
 exit(1);
 }
 message = argv[1];
 if (!printmessage(message)) {
 fprintf(stderr,"%s: couldn¹t print your message\n",argv[0]);
 exit(1);
 }
 printf("Message Delivered!\n");
 exit(0);
}

/* Print a message to the console.
* Return a boolean indicating whether
* the message was actually printed. */

printmessage(char *msg)

{
 FILE *f;
 f = fopen("/dev/console", "w");
 if (f == (FILE *)NULL) {
 return (0);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return (0);
 }
 fprintf(f, "%s\n", msg);
 fclose(f);
 return(1);
}

For local use on a single machine, this program could be compiled and
executed as follows:

$ cc printmsg.c -o printmsg
$ printmsg "Hello, there."
Message delivered!
$

If the printmessage() function is turned into a remote procedure, it can be
called from anywhere in the network. rpcgen makes it easy to do this:

First, determine the data types of all procedure-calling arguments and the
result argument. The calling argument of printmessage() is a string, and the
result is an integer. We can write a protocol specification in RPC language
that describes the remote version of printmessage. The RPC language source
code for such a specification is:

/* msg.x: Remote msg printing protocol */
program MESSAGEPROG {
 version PRINTMESSAGEVERS {
 int PRINTMESSAGE(string) = 1;
 } = 1;
} = 0x20000001;

Remote procedures are always declared as part of remote programs. The code
above declares an entire remote program that contains the single procedure
PRINTMESSAGE.

In this example,

PRINTMESSAGE procedure is declared to be:
the procedure 1,
in version 1 of the remote program

MESSAGEPROG, with the program number 0x20000001.

Version numbers are incremented when functionality is changed in the
remote program. Existing procedures can be changed or new ones can be
added. More than one version of a remote program can be defined and a
version can have more than one procedure defined.

Note: that the program and procedure names are declared with all capital
letters. This is not required, but is a good convention to follow. Note also that
the argument type is string and not char * as it would be in C. This is because
a char * in C is ambiguous. char usually means an array of characters, but it
could also represent a pointer to a single character. In RPC language, a null-
terminated array of char is called a string.

There are just two more programs to write:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The remote procedure itself

Th RPC Version of printmsg.c:

/*
* msg_proc.c: implementation of the
* remote procedure "printmessage"
*/

#include <stdio.h>
#include "msg.h" /* msg.h generated by rpcgen */

int * printmessage_1(char **msg, struct svc_req *req)

{
 static int result; /* must be static! */
 FILE *f;

 f = fopen("/dev/console", "w");
 if (f == (FILE *)NULL) {
 result = 0;
 return (&result);
 }
 fprintf(f, "%s\n", *msg);
 fclose(f);
 result = 1;
 return (&result);
}

Note that the declaration of the remote procedure printmessage_1
differs from that of the local procedure printmessage in four ways:

It takes a pointer to the character array instead of the pointer
itself. This is true of all remote procedures when the '-' N
option is not used: They always take pointers to their arguments
rather than the arguments themselves. Without the '-' N option,
remote procedures are always called with a single argument. If
more than one argument is required the arguments must be
passed in a struct.
It is called with two arguments. The second argument contains
information on the context of an invocation: the program,
version, and procedure numbers, raw and canonical credentials,
and an SVCXPRT structure pointer (the SVCXPRT structure contains
transport information). This information is made available in case
the invoked procedure requires it to perform the request.
It returns a pointer to an integer instead of the integer itself. This
is also true of remote procedures when the '-' N option is not
used: They return pointers to the result. The result should be
declared static unless the '-' M (multithread) or '-' A (Auto
mode) options are used. Ordinarily, if the result is declared local
to the remote procedure, references to it by the server stub are
invalid after the remote procedure returns. In the case of '-' M
and '-' A options, a pointer to the result is passed as a third
argument to the procedure, so the result is not declared in the
procedure.
An _1 is appended to its name. In general, all remote procedures

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

An _1 is appended to its name. In general, all remote procedures
calls generated by rpcgen are named as follows: the procedure
name in the program definition (here PRINTMESSAGE) is converted
to all lowercase letters, an underbar (_) is appended to it, and the
version number (here 1) is appended. This naming scheme allows
multiple versions of the same procedure.

The main client program that calls it:

/*
* rprintmsg.c: remote version
* of "printmsg.c"
*/

#include <stdio.h>
#include "msg.h" /* msg.h generated by rpcgen */

main(int argc, char **argv)

{
 CLIENT *clnt;
 int *result;
 char *server;
 char *message;

 if (argc != 3) {
 fprintf(stderr, "usage: %s host
 message\n", argv[0]);
 exit(1);
 }

 server = argv[1];
 message = argv[2];

 /*
 * Create client "handle" used for
 * calling MESSAGEPROG on the server
 * designated on the command line.
 */

 clnt = clnt_create(server, MESSAGEPROG, PRINTMESSAGEVERS, "visible");

 if (clnt == (CLIENT *)NULL) {
 /*
 * Couldn't establish connection
 * with server.
 * Print error message and die.
 */

 clnt_pcreateerror(server);
 exit(1);
 }

 /*
 * Call the remote procedure
 * "printmessage" on the server
 */

 result = printmessage_1(&message, clnt);
 if (result == (int *)NULL) {
 /*
 * An error occurred while calling
 * the server.
 * Print error message and die.
 */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 clnt_perror(clnt, server);
 exit(1);
 }

 /* Okay, we successfully called
 * the remote procedure.
 */

 if (*result == 0) {

 /*
 * Server was unable to print
 * our message.
 * Print error message and die.
 */

 fprintf(stderr, "%s: could not print your message\n",argv[0]);
 exit(1);
 }

 /* The message got printed on the
 * server's console
 */

 printf("Message delivered to %s\n", server);
 clnt_destroy(clnt);
 exit(0);
}

Note the following about Client Program to Call printmsg.c:

First, a client handle is created by the RPC library routine
clnt_create(). This client handle is passed to the stub routine
that calls the remote procedure. If no more calls are to be made
using the client handle, destroy it with a call to clnt_destroy()
to conserve system resources.
The last parameter to clnt_create() is visible, which specifies
that any transport noted as visible in /etc/netconfig can be
used.
The remote procedure printmessage_1 is called exactly the
same way as it is declared in msg_proc.c, except for the inserted
client handle as the second argument. It also returns a pointer to
the result instead of the result.
The remote procedure call can fail in two ways. The RPC
mechanism can fail or there can be an error in the execution of
the remote procedure. In the former case, the remote procedure
printmessage_1 returns a NULL. In the latter case, the error
reporting is application dependent. Here, the error is returned
through *result.

To compile the remote rprintmsg example:

compile the protocol defined in msg.x: rpcgen msg.x.

This generates the header files (msg.h), client stub (msg_clnt.c), and
server stub (msg_svc.c).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

compile the client executable:

 cc rprintmsg.c msg_clnt.c -o rprintmsg -lnsl

compile the server executable:

 cc msg_proc.c msg_svc.c -o msg_server -lnsl

The C object files must be linked with the library libnsl, which contains all
of the networking functions, including those for RPC and XDR.

In this example, no XDR routines were generated because the application
uses only the basic types that are included in libnsl . Let us consider further
what rpcgen did with the input file msg.x:

It created a header file called msg.h that contained #define statements
for MESSAGEPROG, MESSAGEVERS, and PRINTMESSAGE for use in the
other modules. This filemust be included by both the client and server
modules.
It created the client stub routines in the msg_clnt.c file. Here there is
only one, the printmessage_1 routine, that was called from the
rprintmsg client program. If the name of an rpcgen input file is
prog.x, the client stub's output file is called prog_clnt.c.
It created the server program in msg_svc.c that calls printmessage_1
from msg_proc.c. The rule for naming the server output file is similar
to that of the client: for an input file called prog.x, the output server
file is named prog_svc.c.

Once created, the server program is installed on a remote machine and run. (If
the machines are homogeneous, the server binary can just be copied. If they
are not, the server source files must be copied to and compiled on the remote
machine.)

Passing Complex Data Structures
rpcgen can also be used to generate XDR routines -- the routines that convert
local data structures into XDR format and vice versa.

let us consider dir.x a remote directory listing service, built using rpcgen
both to generate stub routines and to generate the XDR routines.

The RPC Protocol Description File: dir.x is as follows:

/*
* dir.x: Remote directory listing protocol
*
* This example demonstrates the functions of rpcgen.
*/

const MAXNAMELEN = 255; /* max length of directory entry */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

const MAXNAMELEN = 255; /* max length of directory entry */

typedef string nametype<MAXNAMELEN>; /* director entry */

typedef struct namenode *namelist; /* link in the listing */

/* A node in the directory listing */

struct namenode {
 nametype name; /* name of directory entry */
 namelist next; /* next entry */
 };

/*
* The result of a READDIR operation
*
* a truly portable application would use
* an agreed upon list of error codes
* rather than (as this sample program
* does) rely upon passing UNIX errno's
* back.
*
* In this example: The union is used
* here to discriminate between successful
* and unsuccessful remote calls.
*/

union readdir_res switch (int errno) {
 case 0:
 namelist list; /* no error: return directory listing */
 default:
 void; /* error occurred: nothing else to return */
 };

/* The directory program definition */

program DIRPROG {
 version DIRVERS {
 readdir_res
 READDIR(nametype) = 1;
 } = 1;
} = 0x20000076;

You can redefine types (like readdir_res in the example above) using the
struct, union, and enum RPC language keywords. These keywords are not
used in later declarations of variables of those types. For example, if you
define a union, my_un, you declare using only my_un, and not union my_un.
rpcgen compiles RPC unions into C structures. Do not declare C unions
using the union keyword.

Running rpcgen on dir.x generates four output files:

the header file, dir.h,
the client stub, dir_clnt.c,
the server skeleton, dir_svc.c ,and
the XDR routines in the file dir_xdr.c.

This last file contains the XDR routines to convert declared data types from
the host platform representation into XDR format, and vice versa. For each
RPCL data type used in the .x file, rpcgen assumes that libnsl contains a
routine whose name is the name of the data type, prepended by the XDR
routine header xdr_ (for example, xdr_int). If a data type is defined in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

routine header xdr_ (for example, xdr_int). If a data type is defined in the
.x file, rpcgen generates the required xdr_ routine. If there is no data type
definition in the .x source file (for example, msg.x, above), then no _xdr.c
file is generated. You can write a .x source file that uses a data type not
supported by libnsl, and deliberately omit defining the type (in the .x file).
In doing so, you must provide the xdr_ routine. This is a way to provide your
own customized xdr_ routines.

The server-side of the READDIR procedure, dir_proc.c is shown below:

/*
* dir_proc.c: remote readdir
* implementation
*/

#include <dirent.h>
#include "dir.h" /* Created by rpcgen */

extern int errno;

extern char *malloc();
extern char *strdup();

readdir_res *
readdir_1(nametype *dirname, struct svc_req *req)

{
 DIR *dirp;
 struct dirent *d;
 namelist nl;
 namelist *nlp;

 static readdir_res res; /* must be static! */

 /* Open directory */
 dirp = opendir(*dirname);

 if (dirp == (DIR *)NULL) {
 res.errno = errno;
 return (&res);
 }

 /* Free previous result */
 xdr_free(xdr_readdir_res, &res);

 /*
 * Collect directory entries.
 * Memory allocated here is free by
 * xdr_free the next time readdir_1
 * is called
 */

 nlp = &res.readdir_res_u.list;
 while (d = readdir(dirp)) {
 nl = *nlp = (namenode *)
 malloc(sizeof(namenode));
 if (nl == (namenode *) NULL) {
 res.errno = EAGAIN;
 closedir(dirp);
 return(&res);
 }
 nl->name = strdup(d->d_name);
 nlp = &nl->next;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 nlp = &nl->next;
 }

 *nlp = (namelist)NULL;

 /* Return the result */
 res.errno = 0;
 closedir(dirp);
 return (&res);
}

The Client-side Implementation of implementation of the READDIR
procedure, rls.c is given below:

/*
* rls.c: Remote directory listing client
*/

#include <stdio.h>
#include "dir.h" /* generated by rpcgen */

extern int errno;

main(int argc, char *argv[])

{
 CLIENT *clnt;
 char *server;
 char *dir;
 readdir_res *result;
 namelist nl;

 if (argc != 3) {
 fprintf(stderr, "usage: %s host
 directory\n",argv[0]);
 exit(1);
 }

 server = argv[1];
 dir = argv[2];

 /*
 * Create client "handle" used for
 * calling MESSAGEPROG on the server
 * designated on the command line.
 */

 cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");

 if (clnt == (CLIENT *)NULL) {
 clnt_pcreateerror(server);
 exit(1);
 }

 result = readdir_1(&dir, clnt);

 if (result == (readdir_res *)NULL) {
 clnt_perror(clnt, server);
 exit(1);
 }

 /* Okay, we successfully called
 * the remote procedure.
 */

 if (result->errno != 0) {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (result->errno != 0) {
 /* Remote system error. Print
 * error message and die.
 */

 errno = result->errno;
 perror(dir);
 exit(1);
 }

 /* Successfully got a directory listing.
 * Print it.
 */

 for (nl = result->readdir_res_u.list;
 nl != NULL;
 nl = nl->next) {
 printf("%s\n", nl->name);
 }

 xdr_free(xdr_readdir_res, result);
 clnt_destroy(cl);
 exit(0);
}

As in other examples, execution is on systems named local and remote. The
files are compiled and run as follows:

remote$ rpcgen dir.x
remote$ cc -c dir_xdr.c
remote$ cc rls.c dir_clnt.c dir_xdr.o -o rls -lnsl
remote$ cc dir_svc.c dir_proc.c dir_xdr.o -o dir_svc -lnsl
remote$ dir_svc

When you install rls on system local, you can list the contents of
/usr/share/lib on system remote as follows:

local$ rls remote /usr/share/lib
ascii
eqnchar
greek
kbd
marg8
tabclr
tabs
tabs4
local$

rpcgen generated client code does not release the memory allocated for the
results of the RPC call. Call xdr_free() to release the memory when you are
finished with it. It is similar to calling the free() routine, except that you
pass the XDR routine for the result. In this example, after printing the list,
xdr_free(xdr_readdir_res, result); was called.

Note - Use xdr_free() to release memory allocated by malloc(). Failure to
use xdr_free to() release memory results in memory leaks.

Preprocessing Directives
rpcgen supports C and other preprocessing features. C preprocessing is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rpcgen supports C and other preprocessing features. C preprocessing is
performed on rpcgen input files before they are compiled. All standard C
preprocessing directives are allowed in the .x source files. Depending on the
type of output file being generated, five symbols are defined by rpcgen.
rpcgen provides an additional preprocessing feature: any line that begins with
a percent sign (%) is passed directly to the output file, with no action on the
line's content. Caution is required because rpcgen does not always place the
lines where you intend. Check the output source file and, if needed, edit it.

The following symbols may be used to process file specific output:

RPC_HDR
-- Header file output

RPC_XDR
-- XDR routine output

RPC_SVC
-- Server stub output

RPC_CLNT
-- Client stub output

RPC_TB
-- Index table output

The following example illustrates tthe use of rpcgenŒs pre-processing
features.

/*
* time.x: Remote time protocol
*/
program TIMEPROG {
 version TIMEVERS {
 unsigned int TIMEGET() = 1;
 } = 1;
} = 0x20000044;

#ifdef RPC_SVC
%int *
%timeget_1()
%{
% static int thetime;
%
% thetime = time(0);
% return (&thetime);
%}
#endif

cpp Directives
rpcgen supports C preprocessing features. rpcgen defaults to use
/usr/ccs/lib/cpp as the C preprocessor. If that fails, rpcgen tries to use
/lib/cpp. You may specify a library containing a different cpp to rpcgen
with the '-' Y flag.

For example, if /usr/local/bin/cpp exists, you can specify it to rpcgen as
follows:

rpcgen -Y /usr/local/bin test.x

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compile-Time Flags
This section describes the rpcgen options available at compile time. The
following table summarizes the options which are discussed in this section.

Option Flag Comments

C-style '-' N Also called Newstyle mode

ANSI C '-' C Often used with the -N option

MT-Safe code '-' M For use in multithreaded environments

MT Auto mode '-' A -A also turns on -M option

TS-RPC library ' -' b TI-RPC library is default

xdr_inline count '-' i Uses 5 packed elements as default,

 but other number may be specified

Client and Server Templates
rpcgen generates sample code for the client and server sides. Use these
options to generate the desired templates.

Flag Function
'-' a Generate all template files
'-' Sc Generate client-side template
'-' Ss Generate server-side template
'-' Sm Generate makefile template

The files can be used as guides or by filling in the missing parts. These files
are in addition to the stubs generated.

Example rpcgen compile options/templates
A C-style mode server template is generated from the add.x source by the
command:

rpcgen -N -Ss -o add_server_template.c add.x

The result is stored in the file add_server_template.c.

A C-style mode, client template for the same add.x source is generated with
the command line:

rpcgen -N -Sc -o add_client_template.c add.x

The result is stored in the file add_client_template.c.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A make file template for the same add.x source is generated with the
command line:

rpcgen -N -Sm -o mkfile_template add.x

The result is stored in the file mkfile_template. It can be used to compile the
client and the server. If the '-' a flag is used as follows:

rpcgen -N -a add.x

rpcgen generates all three template files. The client template goes into
add_client.c, the server template to add_server.c, and the makefile
template to makefile.a. If any of these files already exists, rpcgen displays an
error message and exits.

Note - When you generate template files, give them new names to avoid the
files being overwritten the next time rpcgen is executed.

Recommended Reading
The book Power Programming with RPC by John Bloomer, O'Reilly and
Associates, 1992, is the most comprehensive on the topic and is essential
reading for further RPC programming.

Exercises
Exercise 12834

Use rpcgen the generate and compile the rprintmsg listing example given in
this chapter.

Exercise 12835

Use rpcgen the generate and compile the dir listing example given in this
chapter.

Exercise 12836

Develop a Remote Procedure Call suite of programs that enables a user to
search for specific files or filtererd files in a remote directory. That is to say
you can search for a named file e.g. file.c or all files named *.c or even *.x.

Exercise 12837

Develop a Remote Procedure Call suite of programs that enables a user to
grep files remotely. You may use code developed previously or unix system
calls to implement grep.

Exercise 12838

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Develop a Remote Procedure Call suite of programs that enables a user to list
the contents of a named remote files.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Header files
External variables and functions

Scope of externals
Advantages of Using Several Files
How to Divide a Program between Several Files
Organisation of Data in each File
The Make Utility
Make Programming
Creating a makefile
Make macros
Running Make

Writing Larger Programs
 This Chapter deals with theoretical and practical aspects that need to be
considered when writing larger programs.

When writing large programs we should divide programs up into modules.
These would be separate source files. main() would be in one file, main.c
say, the others will contain functions.

We can create our own library of functions by writing a suite of subroutines
in one (or more) modules. In fact modules can be shared amongst many
programs by simply including the modules at compilation as we will see
shortly..

There are many advantages to this approach:

the modules will naturally divide into common groups of functions.
we can compile each module separately and link in compiled modules
(more on this later).
UNIX utilities such as make help us maintain large systems (see later).

Header files
If we adopt a modular approach then we will naturally want to keep variable
definitions, function prototypes etc. with each module. However what if
several modules need to share such definitions?

It is best to centralise the definitions in one file and share this file amongst the
modules. Such a file is usually called a header file.

Convention states that these files have a .h suffix.

We have met standard library header files already e.g:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 #include <stdio.h>

We can define our own header files and include then our programs via:

 #include ``my_head.h''

NOTE: Header files usually ONLY contain definitions of data types,
function prototypes and C preprocessor commands.

Consider the following simple example of a large program (Fig. 34.1) .

Fig. Modular structure of a C program The full listings main.c,
WriteMyString.c and header.h as as follows:

main.c:

/*
 * main.c
 */
#include "header.h"
#include <stdio.h>

char *AnotherString = "Hello Everyone";

main()
{
 printf("Running...\n");

 /*
 * Call WriteMyString() - defined in another file
 */
 WriteMyString(MY_STRING);

 printf("Finished.\n");
}

WriteMyString.c:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/*
 * WriteMyString.c
 */
extern char *AnotherString;

void WriteMyString(ThisString)
char *ThisString;
{
 printf("%s\n", ThisString);
 printf("Global Variable = %s\n", AnotherString);
}

header.h:

/*
 * header.h
 */
#define MY_STRING "Hello World"

void WriteMyString();

We would usually compile each module separately (more later).

Some modules have a #include ``header.h'' that share common
definitions.

Some, like main.c, also include standard header files also.

main calls the function WriteMyString() which is in WriteMyString.c
module.

The function prototype void for WriteMyString is defined in Header.h

NOTE that in general we must resolve a tradeoff between having a desire for
each .c module to have access to the information it needs solely for its job
and the practical reality of maintaining lots of header files.

Up to some moderate program size it is probably best to one or two header
files that share more than one modules definitions.

For larger programs get UNIX to help you (see later).

One problem left with module approach:

SHARING VARIABLES

If we have global variables declared and instantiated in one module how can
pass knowledge of this to other modules.

We could pass values as parameters to functions, BUT:

this can be laborious if we pass the same parameters to many functions
and / or if there are long argument lists involved.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

very large arrays and structures are difficult to store locally -- memory
problems with stack.

External variables and functions
``Internal'' implies arguments and functions are defined inside functions --
Local

``External'' variables are defined outside of
functions -- they are potentially available to the whole program (Global) but
NOT necessarily.

External variables are always permanent.

NOTE: That in C, all function definitions are external. We CANNOT have
embedded function declarations like in PASCAL.

Scope of externals
An external variable (or function) is not always totally global.

C applies the following rule:

The scope of an external variable (or function) begins at its point of
declaration and lasts to the end of the file (module) it is declared in.

Consider the following:

main()
 { }

int what_scope;
float end_of_scope[10]

void what_global()
 { }

char alone;

float fn()
 { }

main cannot see what_scope or end_of_scope but the functions
what_global and fn can. ONLY fn can see alone.

This is also the one of the reasons why we should prototype
functions before the body of code etc. is given.

So here main will not know anything about the functions
what_global and fn. what_global does not know about fn but fn
knows about what_global since it is declared above.

NOTE: The other reason we prototype functions is that some

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE: The other reason we prototype functions is that some
checking can be done the parameters passed to functions.

If we need to refer to an external variable before it is
declared or if it is defined in another module we must declare
it as an extern variable. e.g.

 extern int what_global

So returning to the modular example. We have a global string
AnotherString declared in main.c and shared with WriteMyString.c
where it is declared extern.

BEWARE the extern prefix is a declaration NOT a definition. i.e
NO STORAGE is set aside in memory for an extern variable -- it
is just an announcement of the property of a variable.

The actual variable must only be defined once in the whole
program -- you can have as many extern declarations as needed.

Array sizes must obviously be given with
declarations but are not needed with extern declarations. e.g.:

 main.c: int arr[100]:

 file.c: extern int arr[];

Advantages of Using Several Files
The main advantages of spreading a program across several files are:

Teams of programmers can work on programs. Each programmer
works on a different file.
An object oriented style can be used. Each file defines a particular type
of object as a datatype and operations on that object as functions. The
implementation of the object can be kept private from the rest of the
program. This makes for well structured programs which are easy to
maintain.
Files can contain all functions from a related group. For Example all
matrix operations. These can then be accessed like a function library.
Well implemented objects or function definitions can be re-used in
other programs, reducing development time.
In very large programs each major function can occupy a file to itself.
Any lower level functions used to implement them can be kept in the
same file. Then programmers who call the major function need not be
distracted by all the lower level work.
When changes are made to a file, only that file need be re-compiled to
rebuild the program. The UNIX make facility is very useful for
rebuilding multi-file programs in this way.

How to Divide a Program between
Several Files

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Where a function is spread over several files, each file will contain one or
more functions. One file will include main while the others will contain
functions which are called by others. These other files can be treated as a
library of functions.

Programmers usually start designing a program by dividing the problem into
easily managed sections. Each of these sections might be implemented as one
or more functions. All functions from each section will usually live in a single
file.

Where objects are implemented as data structures, it is usual to to keep all
functions which access that object in the same file. The advantages of this
are:

The object can easily be re-used in other programs.
All related functions are stored together.
Later changes to the object require only one file to be modified.

Where the file contains the definition of an object, or functions which return
values, there is a further restriction on calling these functions from another
file. Unless functions in another file are told about the object or function
definitions, they will be unable to compile them correctly.

The best solution to this problem is to write a header file for each of the C
files. This will have the same name as the C file, but ending in .h. The header
file contains definitions of all the functions used in the C file.

Whenever a function in another file calls a function from our C file, it can
define the function by making a #include of the appropriate .h file.

Organisation of Data in each File
Any file must have its data organised in a certain order. This will typically be:

A preamble consisting of #defined constants, #included header files
and typedefs of important datatypes.
Declaration of global and external variables. Global variables may also
be initialised here.
One or more functions.

The order of items is important, since every object must be defined before it
can be used. Functions which return values must be defined before they are
called. This definition might be one of the following:

Where the function is defined and called in the same file, a full
declaration of the function can be placed ahead of any call to the
function.
If the function is called from a file where it is not defined, a prototype
should appear before the call to the function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A function defined as

 float find_max(float a, float b, float c)
 { /* etc */

would have a prototype of

 float find_max(float a, float b, float c);

The prototype may occur among the global variables at the start of the source
file. Alternatively it may be declared in a header file which is read in using a
#include.

It is important to remember that all C objects should be declared before use.

The Make Utility
The make utility is an intelligent program manager that maintains integrity of
a collection of program modules, a collection of programs or a complete
system -- does not have be programs in practice can be any system of files (
e.g. chapters of text in book being typeset).

Its main use has been in assisting the development of software systems.

Make was originally developed on UNIX but it is now available on most
systems.

NOTE: Make is a programmers utility not part of C language or any
language for that matter.

Consider the problem of maintaining a large collection of source files:

 main.c f1.c fn.c

We would normally compile our system via:

 cc -o main main.c f1.c fn.c

However, if we know that some files have been compiled previously and their
sources have not changed since then we could try and save overall
compilation time by linking in the object code from those files say:

 cc -o main main.c f1.c ... fi.o .. fj.o ... fn.c

We can use the C compiler option (Appendix) -c to create a .o for a
given module. For example:

 cc -c main.c

will create a main.o file. We do not need to supply any library links here as
these are resolved at the linking stage of compilation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We have a problem in compiling the whole program in this long hand way
however:

 It is time consuming to compile a .c module -- if the module has been
compiled before and not been altered there is no need to recompiled it. We
can just link the object files in. However, it will not be easy to remember
which files are in fact up to date. If we link in an old object file our final
executable program will be wrong.

 It is error prone and laborious to type a long compile sequence on the
command line. There may be many of our own files to link as well as many
system library files. It may be very hard to remember the correct sequence.
Also if we make a slight change to our system editing command line can be
error prone.

If we use the make utility all this control is taken care by make. In general
only modules that have older object files than source files will be recompiled.

Make Programming
Make programming is fairly straightforward. Basically, we write a sequence
of commands which describes how our program (or system of programs) can
be constructed from source files.

The construction sequence is described in
makefiles which contain dependency rules and construction rules.

A dependency rule has two parts - a left and right side separated by a :

 left side : right side

The left side gives the names of a target(s) (the names of the program or
system files) to be built, whilst the right side gives names of files on which
the target depends (eg. source files, header files, data files)

If the target is out of date with respect to the constituent parts, construction
rules following the dependency rules are obeyed.

So for a typical C program, when a make file is run the following tasks are
performed:

1.
The makefile is read. Makefile says which object and library files need
to be linked and which header files and sources have to be compiled to
create each object file.

2.
Time and date of each object file are checked against source and header
files it depends on. If any source, header file later than object file then
files have been altered since last compilation THEREFORE recompile
object file(s).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.
Once all object files have been checked the time and date of all object
files are checked against executable files. If any later object files will
be recompiled.

NOTE: Make files can obey any commands we type from command line.
Therefore we can use makefiles to do more than just compile a system source
module. For example, we could make backups of files, run programs if data
files have been changed or clean up directories.

Creating a makefile
This is fairly simple: just create a text file using any text editor. The makefile
just contains a list of file dependencies and commands needed to satisfy them.

Lets look at an example makefile:

prog: prog.o f1.o f2.o
 c89 prog.o f1.o f2.o -lm etc.

prog.o: header.h prog.c
 c89 -c prog.c

f1.o: header.h f1.c
 c89 -c f1.c

f2.o: ---

Make would interpret the file as follows:

1.
prog depends on 3 files: prog.o, f1.o and f2.o. If any of the object
files have been changed since last compilation the files must be
relinked.

2.
prog.o depends on 2 files. If these have been changed prog.o must be
recompiled. Similarly for f1.o and f2.o.

The last 3 commands in the makefile are called explicit rules -- since the files
in commands are listed by name.

We can use implicit rules in our makefile which let us generalise our rules
and save typing.

We can take

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

f1.o: f1.c
 cc -c f1.c

f2.o: f2.c
 cc -c f2.c

and generalise to this:

.c.o: cc -c $<

We read this as .source_extension.target_extension: command

$< is shorthand for file name with .c extension.

We can put comments in a makefile by using the # symbol. All
characters following # on line are ignored.

Make has many built in commands similar to or actual UNIX
commands. Here are a few:

 break date mkdir

> type chdir mv (move or rename)
 cd rm (remove) ls
 cp (copy) path

There are many more see manual pages for make (online and
printed reference)

Make macros
We can define macros in make -- they are typically used to store source file
names, object file names, compiler options and library links.

They are simple to define, e.g.:

SOURCES = main.c f1.c f2.c
CFLAGS = -g -C
LIBS = -lm
PROGRAM = main
OBJECTS = (SOURCES: .c = .o)

where (SOURCES: .c = .o) makes .c extensions of SOURCES .o
extensions.

To reference or invoke a macro in make do $(macro_name).e.g.:

$(PROGRAM) : $(OBJECTS)
$(LINK.C) -o $@ $(OBJECTS) $(LIBS)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOTE:
$(PROGRAM) : $(OBJECTS) - makes a list of
dependencies and targets.
The use of an internal macros i.e. $@.

There are many internal macros (see manual pages) here a few
common ones:

$*
-- file name part of current dependent (minus .suffix).

$@
-- full target name of current target.

$<
-- .c file of target.

An example makefile for the WriteMyString modular program
discussed in the above is as follows:

#
Makefile
#
SOURCES.c= main.c WriteMyString.c
INCLUDES=
CFLAGS=
SLIBS=
PROGRAM= main

OBJECTS= $(SOURCES.c:.c=.o)

.KEEP_STATE:

debug := CFLAGS= -g

all debug: $(PROGRAM)

$(PROGRAM): $(INCLUDES) $(OBJECTS)
 $(LINK.c) -o $@ $(OBJECTS) $(SLIBS)

clean:
 rm -f $(PROGRAM) $(OBJECTS)

Running Make
Simply type make from command line.

UNIX automatically looks for a file called Makefile (note: capital M rest
lower case letters).

So if we have a file called Makefile and we type make from command line.
The Makefile in our current directory will get executed.

We can override this search for a file by typing make -f make_filename

e.g. make -f my_make

There are a few more -options for makefiles -- see manual pages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

About this document ...
Hands On: C/C++ Programming and
Unix Application Design:
UNIX System Calls and Subroutines using C,
Motif, C++

This document was generated using the LaTeX2HTML translator Version 97.1
(release) (July 13th, 1997)

Copyright © 1993, 1994, 1995, 1996, 1997, Nikos Drakos, Computer Based
Learning Unit, University of Leeds.

The command line arguments were:
latex2html -split 3 -no_navigation C.

The translation was initiated by Dave Marshall on 1/5/1999

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

History of C
Characteristics of C
C Program Structure
Variables

Defining Global Variables
Printing Out and Inputting Variables

Constants
Arithmetic Operations
Comparison Operators
Logical Operators
Order of Precedence
Exercises

C Basics
 Before we embark on a brief tour of C's basic syntax and structure we offer
a brief history of C and consider the characteristics of the C language.

In the remainder of the Chapter we will look at the basic aspects of C
programs such as C program structure, the declaration of variables, data types
and operators. We will assume knowledge of a high level language, such as
PASCAL.

It is our intention to provide a quick guide through similar C principles to
most high level languages. Here the syntax may be slightly different but the
concepts exactly the same.

C does have a few surprises:

Many High level languages, like PASCAL, are highly disciplined and
structured.
However beware -- C is much more flexible and free-wheeling. This
freedom gives C much more power that experienced users can employ.
The above example below (mystery.c) illustrates how bad things
could really get.

History of C
The milestones in C's development as a language are listed below:

UNIX developed c. 1969 -- DEC PDP-7 Assembly Language
BCPL -- a user friendly OS providing powerful development tools
developed from BCPL. Assembler tedious long and error prone.
A new language ``B'' a second attempt. c. 1970.
A totally new language ``C'' a successor to ``B''. c. 1971

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By 1973 UNIX OS almost totally written in ``C''.

Characteristics of C
We briefly list some of C's characteristics that define the language and also
have lead to its popularity as a programming language. Naturally we will be
studying many of these aspects throughout the course.

Small size
Extensive use of function calls
Loose typing -- unlike PASCAL
Structured language
Low level (BitWise) programming readily available
Pointer implementation - extensive use of pointers for memory, array,
structures and functions.

C has now become a widely used professional language for various reasons.

It has high-level constructs.
It can handle low-level activities.
It produces efficient programs.
It can be compiled on a variety of computers.

Its main drawback is that it has poor error detection which can make it off
putting to the beginner. However diligence in this matter can pay off
handsomely since having learned the rules of C we can break them. Not many
languages allow this. This if done properly and carefully leads to the power
of C programming.

As an extreme example the following C code (mystery.c) is actually legal C
code.

#include <stdio.h>

main(t,_,a)
char *a;
{return!0<t?t<3?main(-79,-13,a+main(-87,1-_,
main(-86, 0, a+1)+a)):1,t<_?main(t+1, _, a):3,main (-94, -27+t, a
)&&t == 2 ?_<13 ?main (2, _+1, "%s %d %d\n"):9:16:t<0?t<-72?main(_,
t,"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n{n+\
,/+#n+,/#;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l q#'+d'K#!/\
+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;#){n\
l]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#\
n'wk nw' iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \
;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;\
#'rdq#w! nr'/ ') }+}{rl#'{n' ')# }'+}##(!!/")
:t<-50?_==*a ?putchar(a[31]):main(-65,_,a+1):main((*a == '/')+t,_,a\
+1):0<t?main (2, 2 , "%s"):*a=='/'||main(0,main(-61,*a, "!ek;dc \
i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1);}

It will compile and run and produce meaningful output. Try this program out.
Try to compile and run it yourself. Alternatively you may run it from here
and see the output.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Clearly nobody ever writes code like or at least should never. This piece of
code actually one an international Obfuscated C Code Contest
http://reality.sgi.com/csp/iocc The standard for C programs was originally the
features set by Brian Kernighan. In order to make the language more
internationally acceptable, an international standard was developed, ANSI C
(American National Standards Institute).

C Program Structure
A C program basically has the following form:

Preprocessor Commands
Type definitions
Function prototypes -- declare function types and variables passed to
function.
Variables
Functions

We must have a main() function.

A function has the form:

type function_name (parameters)
 {
 local variables

 C Statements

 }

If the type definition is omitted C assumes that function returns an integer
type. NOTE: This can be a source of problems in a program.

So returning to our first C program:

 /* Sample program */

 main()
 {

 printf(``I Like C n'');

 exit (0);

 }
NOTE:

C requires a semicolon at the end of every statement.
printf is a standard C function -- called from main.
n signifies newline. Formatted output -- more later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

n signifies newline. Formatted output -- more later.
exit() is also a standard function that causes the program to
terminate. Strictly speaking it is not needed here as it is the last
line of main() and the program will terminate anyway.

Let us look at another printing statement:
printf(``. n.1 n..2 n...3 n'');

The output of this would be:

 .
 .1
 ..2
 ...3

Variables
C has the following simple data types:

The Pascal Equivalents are:

On UNIX systems all ints are long ints unless specified as short int
explicitly.

NOTE: There is NO Boolean type in C -- you should use char, int or
(better) unsigned char.

Unsigned can be used with all char and int types.

To declare a variable in C, do:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 var_type list variables;

e.g. int i,j,k;
 float x,y,z;
 char ch;

Defining Global Variables
Global variables are defined above main() in the following way:-

 short number,sum;
 int bignumber,bigsum;
 char letter;

 main()
 {

 }

It is also possible to pre-initialise global variables using the = operator for
assignment.

NOTE: The = operator is the same as := is Pascal.
For example:-

 float sum=0.0;
 int bigsum=0;
 char letter=`A';

 main()
 {

 }

This is the same as:-

 float sum;
 int bigsum;
 char letter;

 main()
 {

 sum=0.0;
 bigsum=0;
 letter=`A';

 }

...but is more efficient.

C also allows multiple assignment statements using =, for
example:

 a=b=c=d=3;

...which is the same as, but more efficient than:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

...which is the same as, but more efficient than:

 a=3;
 b=3;
 c=3;
 d=3;

This kind of assignment is only possible if all the variable
types in the statement are the same.

You can define your own types use typedef. This will have
greater relevance later in the course when we learn how to
create more complex data structures.

As an example of a simple use let us consider how we may define
two new types real and letter. These new types can then be used
in the same way as the pre-defined C types:

 typedef real float;
 typedef letter char;

Variables declared:
 real sum=0.0;
 letter nextletter;

Printing Out and Inputting Variables
C uses formatted output. The printf function has a special formatting
character (%) -- a character following this defines a certain format for a
variable:

 %c -- characters
 %d -- integers
 %f -- floats

 e.g. printf(``%c %d %f'',ch,i,x);

NOTE: Format statement enclosed in ``...'', variables follow after. Make sure
order of format and variable data types match up.

scanf() is the function for inputting values to a data structure: Its format is
similar to printf:

 i.e. scanf(``%c %d %f'',&ch,&i,&x);

NOTE: & before variables. Please accept this for now and remember to
include it. It is to do with pointers which we will meet later (Section 17.4.1).

Constants
ANSI C allows you to declare constants. When you declare a constant it is a
bit like a variable declaration except the value cannot be changed.

The const keyword is to declare a constant, as shown below:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int const a = 1;
const int a =2;

Note:

You can declare the const before or after the type. Choose one an stick
to it.
It is usual to initialise a const with a value as it cannot get a value any
other way.

The preprocessor #define is another more flexible (see Preprocessor
Chapters) method to define constants in a program.

You frequently see const declaration in function parameters. This says simply
that the function is not going to change the value of the parameter.

The following function definition used concepts we have not met (see
chapters on functions, strings, pointers, and standard libraries) but for
completenes of this section it is is included here:

void strcpy(char *buffer, char const *string)

The second argiment string is a C string that will not be altered by the string
copying standard library function.

Arithmetic Operations
As well as the standard arithmetic operators (+ - * /) found in most
languages, C provides some more operators. There are some notable
differences with other languages, such as Pascal.

Assignment is = i.e. i = 4; ch = `y';

Increment ++, Decrement - which are more efficient than their long hand
equivalents, for example:- x++ is faster than x=x+1.

The ++ and - operators can be either in post-fixed or pre-fixed. With pre-fixed
the value is computed before the expression is evaluated whereas with post-
fixed the value is computed after the expression is evaluated.

In the example below, ++z is pre-fixed and the w- is post-fixed:

 int x,y,w;

 main()
 {

 x=((++z)-(w-)) % 100;

 }

This would be equivalent to:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int x,y,w;

 main()
 {

 z++;
 x=(z-w) % 100;
 w-;

 }

The % (modulus) operator only works with integers.

Division / is for both integer and float division. So be
careful.

The answer to: x = 3 / 2 is 1 even if x is declared a float!!

RULE: If both arguments of / are integer then do integer
division.

So make sure you do this. The correct (for division) answer to
the above is x = 3.0 / 2 or x= 3 / 2.0 or (better) x = 3.0 /
2.0.

There is also a convenient shorthand way to express computations
in C.

It is very common to have expressions like: i = i + 3 or x = x*
(y + 2)

This can written in C (generally) in a shorthand form like this:

which is equivalent to (but more efficient than):

So we can rewrite i = i + 3 as i += 3

and x = x*(y + 2) as x *= y + 2.

NOTE: that x *= y + 2 means x = x*(y + 2) and NOT x = x*y + 2.

Comparison Operators
To test for equality is ==

A warning: Beware of using ``='' instead of ``=='', such as writing
accidentally

 if (i = j)

This is a perfectly LEGAL C statement (syntactically speaking) which copies
the value in "j" into "i", and delivers this value, which will then be interpreted
as TRUE if j is non-zero. This is called assignment by value -- a key feature
of C.

Not equals is: !=

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Other operators < (less than) , > (grater than), <= (less than or equals), >=
(greater than or equals) are as usual.

Logical Operators
Logical operators are usually used with conditional statements which we shall
meet in the next Chapter.

The two basic logical operators are:

&& for logical AND, || for logical OR.

Beware & and | have a different meaning for bitwise AND and OR (more on
this later in Chapter 12).

Order of Precedence
It is necessary to be careful of the meaning of such expressions as a + b * c

We may want the effect as either

 (a + b) * c

or

 a + (b * c)
All operators have a priority, and high priority operators are evaluated before
lower priority ones. Operators of the same priority are evaluated from left to
right, so that

 a - b - c

is evaluated as

 (a - b) - c

as you would expect.

From high priority to low priority the order for all C operators (we have not
met all of them yet) is:

 () [] -> .
 ! - * & sizeof cast ++ -
 (these are right->left)
 * / %
 + -
 < <= >= >
 == !=
 &
 |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 |
 &&
 ||
 ?: (right->left)
 = += -= (right->left)
 , (comma)

Thus

 a < 10 && 2 * b < c

is interpreted as
 (a < 10) && ((2 * b) < c)

and

 a =

 b =
 spokes / spokes_per_wheel
 + spares;

as

 a =

 (b =
 (spokes / spokes_per_wheel)
 + spares
);

Exercises
Write C programs to perform the following tasks.

Exercise 12270

Input two numbers and work out their sum, average and sum of the squares of
the numbers.

Exercise 12271

Input and output your name, address and age to an appropriate structure.

Exercise 12272

Write a program that works out the largest and smallest values from a set of
10 inputted numbers.

Exercise 12273

Write a program to read a "float" representing a number of degrees Celsius,
and print as a "float" the equivalent temperature in degrees Fahrenheit. Print
your results in a form such as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

100.0 degrees Celsius converts to 212.0 degrees Fahrenheit.

Exercise 12274

Write a program to print several lines (such as your name and address). You
may use either several printf instructions, each with a newline character in it,
or one printf with several newlines in the string.

Exercise 12275

Write a program to read a positive integer at least equal to 3, and print out all
possible permutations of three positive integers less or equal to than this
value.

Exercise 12276

Write a program to read a number of units of length (a float) and print out the
area of a circle of that radius. Assume that the value of pi is 3.14159 (an
appropriate declaration will be given you by ceilidh - select setup).

Your output should take the form: The area of a circle of radius ... units is
units.

If you want to be clever, and have looked ahead in the notes, print the
message Error: Negative values not permitted. if the input value is negative.

Exercise 12277

Given as input a floating (real) number of centimeters, print out the
equivalent number of feet (integer) and inches (floating, 1 decimal), with the
inches given to an accuracy of one decimal place.

Assume 2.54 centimeters per inch, and 12 inches per foot.

If the input value is 333.3, the output format should be:

333.3 centimeters is 10 feet 11.2 inches.

Exercise 12278

Given as input an integer number of seconds, print as output the equivalent
time in hours, minutes and seconds. Recommended output format is
something like

7322 seconds is equivalent to 2 hours 2 minutes 2 seconds.

Exercise 12279

Write a program to read two integers with the following significance.

The first integer value represents a time of day on a 24 hour clock, so that
1245 represents quarter to one mid-day, for example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The second integer represents a time duration in a similar way, so that 345
represents three hours and 45 minutes.

This duration is to be added to the first time, and the result printed out in the
same notation, in this case 1630 which is the time 3 hours and 45 minutes
after 12.45.

Typical output might be Start time is 1415. Duration is 50. End time is 1505.

There are a few extra marks for spotting.

Start time is 2300. Duration is 200. End time is 100.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

The if statement
The ? operator
The switch statement
Exercises

Conditionals
This Chapter deals with the various methods that C can control the flow of
logic in a program. Apart from slight syntactic variation they are similar to
other languages.

As we have seen following logical operations exist in C:

 ==, !=, , &&.

One other operator is the unitary - it takes only one argument - not !.

These operators are used in conjunction with the following statements.

The if statement
The if statement has the same function as other languages. It has three basic
forms:

 if (expression)
 statement

...or:

 if (expression)
 statement1
 else
 statement2

...or:

 if (expression)
 statement1
 else if (expression)
 statement2
 else
 statement3

For example:-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 int x,y,w;

 main()
 {

 if (x>0)
 {
 z=w;

 }
 else
 {
 z=y;

 }

 }

The ? operator
The ? (ternary condition) operator is a more efficient form for expressing
simple if statements. It has the following form:

 expression1 ? expression2: expression3

It simply states:

if expression1 then expression2 else expression3

For example to assign the maximum of a and b to z:

 z = (a>b) ? a : b;

which is the same as:

 if (a>b)
 z = a;
 else
 z=b;

The switch statement
The C switch is similar to Pascal's case statement and it allows multiple
choice of a selection of items at one level of a conditional where it is a far
neater way of writing multiple if statements:

 switch (expression) {
 case item1:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 case item1:
 statement1;
 break;
 case item2:
 statement2;
 break;

 case itemn:
 statementn;
 break;
 default:
 statement;
 break;
 }

In each case the value of itemi must be a constant, variables are not allowed.

The break is needed if you want to terminate the switch after execution of
one choice. Otherwise the next case would get evaluated. Note: This is unlike
most other languages.

We can also have null statements by just including a ; or let the switch
statement fall through by omitting any statements (see e.g. below).

The default case is optional and catches any other cases.

For example:-

 switch (letter)
 {
 case `A':
 case `E':
 case `I':
 case `O':
 case `U':
 numberofvowels++;
 break;

 case ` ':
 numberofspaces++;
 break;

 default:
 numberofconstants++;
 break;
 }

In the above example if the value of letter is `A', `E', `I', `O' or
`U' then numberofvowels is incremented.

If the value of letter is ` ' then numberofspaces is
incremented.

If none of these is true then the default condition is executed,
that is numberofconstants is incremented.

Exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercise 12304

Write a program to read two characters, and print their value when interpreted
as a 2-digit hexadecimal number. Accept upper case letters for values from 10
to 15.

Exercise 12305

Read an integer value. Assume it is the number of a month of the year; print
out the name of that month.

Exercise 12306

Given as input three integers representing a date as day, month, year, print out
the number day, month and year for the following day's date.

Typical input: 28 2 1992 Typical output: Date following 28:02:1992 is
29:02:1992

Exercise 12307

Write a program which reads two integer values. If the first is less than the
second, print the message up. If the second is less than the first, print the
message down If the numbers are equal, print the message equal If there is an
error reading the data, print a message containing the word Error and perform
exit(0);

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

The for statement
The while statement
The do-while statement
break and continue
Exercises

Looping and Iteration
This chapter will look at C's mechanisms for controlling looping and
iteration. Even though some of these mechanisms may look familiar and
indeed will operate in standard fashion most of the time. NOTE: some non-
standard features are available.

The for statement
The C for statement has the following form:

 for (expression1; 2; expression3)
 statement;
 or {block of statements}

expression1 initialises; expression2 is the terminate test; expression3 is the
modifier (which may be more than just simple increment);

NOTE: C basically treats for statements as while type loops

For example:

 int x;

 main()
 {
 for (x=3;x>0;x-)
 {
 printf("x=%d n",x);

 }
 }

...outputs:

 x=3
 x=2
 x=1

...to the screen

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All the following are legal for statements in C. The practical
application of such statements is not important here, we are
just trying to illustrate peculiar features of C for that may be
useful:-

 for (x=0;((x>3) && (x<9)); x++)

 for (x=0,y=4;((x>3) && (y<9)); x++,y+=2)

 for (x=0,y=4,z=4000;z; z/=10)

The second example shows that multiple expressions can be
separated a ,.

In the third example the loop will continue to iterate until z
becomes 0;

The while statement
The while statement is similar to those used in other languages although
more can be done with the expression statement -- a standard feature of C.

The while has the form:

 while (expression)
 statement

For example:

 int x=3;

 main()
 { while (x>0)
 { printf("x=%d n",x);

 x-;
 }
 }

...outputs:

 x=3
 x=2
 x=1

...to the screen.

Because the while loop can accept expressions, not just
conditions, the following are all legal:-

 while (x-);
 while (x=x+1);
 while (x+=5);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using this type of expression, only when the result of x-,
x=x+1, or x+=5, evaluates to 0 will the while condition fail and
the loop be exited.

We can go further still and perform complete operations within
the while expression:

 while (i++ < 10);

 while ((ch = getchar()) != `q')
 putchar(ch);

The first example counts i up to 10.

The second example uses C standard library functions (See
Chapter 18) getchar() - reads a character from the keyboard -
and putchar() - writes a given char to screen. The while loop
will proceed to read from the keyboard and echo characters to
the screen until a 'q' character is read. NOTE: This type of
operation is used a lot in C and not just with character
reading!! (See Exercises).

The do-while statement
C's do-while statement has the form:

 do
 statement;
 while (expression);

It is similar to PASCAL's repeat ... until except do while expression is
true.

For example:

 int x=3;

 main()
 { do {
 printf("x=%d n",x-);

 }
 while (x>0);
 }

..outputs:-

 x=3
 x=2
 x=1

NOTE: The postfix x- operator which uses the current value of x
while printing and then decrements x.

break and continue

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

break and continue
C provides two commands to control how we loop:

break -- exit form loop or switch.
continue -- skip 1 iteration of loop.

Consider the following example where we read in integer values and process
them according to the following conditions. If the value we have read is
negative, we wish to print an error message and abandon the loop. If the value
read is great than 100, we wish to ignore it and continue to the next value in
the data. If the value is zero, we wish to terminate the loop.

 while (scanf(``%d'', &value) == 1 && value != 0) {

 if (value < 0) {
 printf(``Illegal value n'');

 break;
 /* Abandon the loop */
 }

 if (value > 100) {
 printf(``Invalid value n'');

 continue;
 /* Skip to start loop again */
 }

 /* Process the value read */
 /* guaranteed between 1 and 100 */
 ;

 ;
 } /* end while value != 0 */

Exercises
Exercise 12327

Write a program to read in 10 numbers and compute the average, maximum
and minimum values.

Exercise 12328

Write a program to read in numbers until the number -999 is encountered.
The sum of all number read until this point should be printed out.

Exercise 12329

Write a program which will read an integer value for a base, then read a
positive integer written to that base and print its value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Read the second integer a character at a time; skip over any leading non-valid
(i.e. not a digit between zero and ``base-1'') characters, then read valid
characters until an invalid one is encountered.

 Input Output
 ========== ======
 10 1234 1234
 8 77 63 (the value of 77 in base 8, octal)
 2 1111 15 (the value of 1111 in base 2, binary)

The base will be less than or equal to 10.

Exercise 12330

Read in three values representing respectively

a capital sum (integer number of pence),

a rate of interest in percent (float),

and a number of years (integer).

Compute the values of the capital sum with compound interest added over the
given period of years. Each year's interest is calculated as

interest = capital * interest_rate / 100;

and is added to the capital sum by

capital += interest;

Print out money values as pounds (pence / 100.0) accurate to two decimal
places.

Print out a floating value for the value with compound interest for each year
up to the end of the period.

Print output year by year in a form such as:

Original sum 30000.00 at 12.5 percent for 20 years

Year Interest Sum
----+-------+--------
 1 3750.00 33750.00
 2 4218.75 37968.75
 3 4746.09 42714.84
 4 5339.35 48054.19
 5 6006.77 54060.96
 6 6757.62 60818.58
 7 7602.32 68420.90
 8 8552.61 76973.51
 9 9621.68 86595.19
 10 10824.39 97419.58

Exercise 12331

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Read a positive integer value, and compute the following sequence: If the
number is even, halve it; if it's odd, multiply by 3 and add 1. Repeat this
process until the value is 1, printing out each value. Finally print out how
many of these operations you performed.

Typical output might be:

 Inital value is 9
 Next value is 28
 Next value is 14
 Next value is 7
 Next value is 22
 Next value is 11
 Next value is 34
 Next value is 17
 Next value is 52
 Next value is 26
 Next value is 13
 Next value is 40
 Next value is 20
 Next value is 10
 Next value is 5
 Next value is 16
 Next value is 8
 Next value is 4
 Next value is 2
 Final value 1, number of steps 19

If the input value is less than 1, print a message containing the word

 Error

and perform an

 exit(0);

Exercise 12332

Write a program to count the vowels and letters in free text given as standard
input. Read text a character at a time until you encounter end-of-data.

Then print out the number of occurrences of each of the vowels a, e, i, o and u
in the text, the total number of letters, and each of the vowels as an integer
percentage of the letter total.

Suggested output format is:

 Numbers of characters:
 a 3 ; e 2 ; i 0 ; o 1 ; u 0 ; rest 17
 Percentages of total:
 a 13%; e 8%; i 0%; o 4%; u 0%; rest 73%

Read characters to end of data using a construct such as

 char ch;
 while(
 (ch = getchar()) >= 0
) {
 /* ch is the next character */
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

to read characters one at a time using getchar() until a negative value is
returned.

Exercise 12333

Read a file of English text, and print it out one word per line, all punctuation
and non-alpha characters being omitted.

For end-of-data, the program loop should read until "getchar" delivers a value
<= 0. When typing input, end the data by typing the end-of-file character,
usually control-D. When reading from a file, "getchar" will deliver a negative
value when it encounters the end of the file.

Typical output might be

Read
a
file
of
English
text
and
print
it
out
one

etc.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Single and Multi-dimensional Arrays
Strings
Exercises

Arrays and Strings
 In principle arrays in C are similar to those found in other languages. As we
shall shortly see arrays are defined slightly differently and there are many
subtle differences due the close link between array and pointers. We will look
more closely at the link between pointer and arrays later in Chapter 9.

Single and Multi-dimensional
Arrays
Let us first look at how we define arrays in C:

 int listofnumbers[50];

BEWARE: In C Array subscripts start at 0 and end one less than the array
size. For example, in the above case valid subscripts range from 0 to 49. This
is a BIG difference between C and other languages and does require a bit of
practice to get in the right frame of mind.

Elements can be accessed in the following ways:-

 thirdnumber=listofnumbers[2];
 listofnumbers[5]=100;

Multi-dimensional arrays can be defined as follows:

 int tableofnumbers[50][50];

for two dimensions.

For further dimensions simply add more []:

 int bigD[50][50][40][30]......[50];

Elements can be accessed in the following ways:

 anumber=tableofnumbers[2][3];
 tableofnumbers[25][16]=100;

Strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In C Strings are defined as arrays of characters. For example, the following
defines a string of 50 characters:

 char name[50];

C has no string handling facilities built in and so the following are all illegal:

 char firstname[50],lastname[50],fullname[100];

 firstname= "Arnold"; /* Illegal */
 lastname= "Schwarznegger"; /* Illegal */
 fullname= "Mr"+firstname
 +lastname; /* Illegal */

However, there is a special library of string handling routines
which we will come across later.

To print a string we use printf with a special %s control
character:

 printf(``%s'',name);

NOTE: We just need to give the name of the string.

In order to allow variable length strings the 0 character is

used to indicate the end of a string.

So we if we have a string, char NAME[50]; and we store the
``DAVE'' in it its contents will look like:

Exercises
Exercise 12335

Write a C program to read through an array of any type. Write a C program to
scan through this array to find a particular value.

Exercise 12336

Read ordinary text a character at a time from the program's standard input,
and print it with each line reversed from left to right. Read until you
encounter end-of-data (see below).

You may wish to test the program by typing

 prog5rev | prog5rev

to see if an exact copy of the original input is recreated.

To read characters to end of data, use a loop such as either

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 char ch;
 while(ch = getchar(), ch >= 0) /* ch < 0 indicates end-of-data */

or

 char ch;
 while(scanf("%c", &ch) == 1) /* one character read */

Exercise 12337

Write a program to read English text to end-of-data (type control-D to
indicate end of data at a terminal, see below for detecting it), and print a count
of word lengths, i.e. the total number of words of length 1 which occurred,
the number of length 2, and so on.

Define a word to be a sequence of alphabetic characters. You should allow
for word lengths up to 25 letters.

Typical output should be like this:

 length 1 : 10 occurrences
 length 2 : 19 occurrences
 length 3 : 127 occurrences
 length 4 : 0 occurrences
 length 5 : 18 occurrences

To read characters to end of data see above question.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

void functions
Functions and Arrays
Function Prototyping
Exercises

Functions
C provides functions which are again similar most languages. One difference
is that C regards main() as function. Also unlike some languages, such as
Pascal, C does not have procedures -- it uses functions to service both
requirements.

Let us remind ourselves of the form of a function:

 returntype fn_name(1, parameterdef2,)

 {

 localvariables

 functioncode

 }

Let us look at an example to find the average of two integers:

 float findaverage(float a, float b)
 { float average;

> average=(a+b)/2;
 return(average);
 }

We would call the function as follows:

 main()
 { float a=5,b=15,result;

 result=findaverage(a,b);
 printf("average=%f n",result);

 }

Note: The return statement passes the result back to the main
program.

void functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void functions
The void function provide a way of emulating PASCAL type procedures.

If you do not want to return a value you must use the return type void and
miss out the return statement:

 void squares()
 { int loop;

 for (loop=1;loop<10;loop++);
 printf("%d n",loop*loop);

 }

 main()

 { squares();
 }

NOTE: We must have () even for no parameters unlike some languages.

Functions and Arrays
Single dimensional arrays can be passed to functions as follows:-

 float findaverage(int size,float list[])

 { int i;
 float sum=0.0;

 for (i=0;i<size;i++)
 sum+=list[i];
 return(sum/size);
 }

Here the declaration float list[] tells C that list is an array of
float. Note we do not specify the dimension of the array when it
is a parameter of a function.

Multi-dimensional arrays can be passed to
functions as follows:

 void printtable(int xsize,int ysize,
 float table[][5])

 { int x,y;

 for (x=0;x<xsize;x++)
 { for (y=0;y<ysize;y++)
 printf(" t%f",table[x][y]);

 printf(" n");

 }
 }

Here float table[][5] tells C that table is an array of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here float table[][5] tells C that table is an array of
dimension N 5 of float. Note we must specify the second (and
subsequent) dimension of the array BUT not the first dimension.

Function Prototyping
Before you use a function C must have knowledge about the type it returns
and the parameter types the function expects.

The ANSI standard of C introduced a new (better) way of doing this than
previous versions of C. (Note: All new versions of C now adhere to the ANSI
standard.)

The importance of prototyping is twofold.

It makes for more structured and therefore easier to read code.
It allows the C compiler to check the syntax of function calls.

How this is done depends on the scope of the function (See Chapter 34).
Basically if a functions has been defined before it is used (called) then you
are ok to merely use the function.

If NOT then you must declare the function. The declaration simply states the
type the function returns and the type of parameters used by the function.

It is usual (and therefore good) practice to prototype all functions at the start
of the program, although this is not strictly necessary.

To declare a function prototype simply state the type the function returns, the
function name and in brackets list the type of parameters in the order they
appear in the function definition.

e.g.

 int strlen(char []);

This states that a function called strlen returns an integer value and accepts
a single string as a parameter.

NOTE: Functions can be prototyped and variables defined on the same line
of code. This used to be more popular in pre-ANSI C days since functions are
usually prototyped separately at the start of the program. This is still perfectly
legal though: order they appear in the function definition.

e.g.

 int length, strlen(char []);

Here length is a variable, strlen the function as before.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exercises
Exercise 12346

Write a function ``replace'' which takes a pointer to a string as a parameter,
which replaces all spaces in that string by minus signs, and delivers the
number of spaces it replaced.

Thus

 char *cat = "The cat sat";
 n = replace(cat);

should set

 cat to "The-cat-sat"

and

 n to 2.

Exercise 12347

Write a program which will read in the source of a C program from its
standard input, and print out all the starred items in the following statistics for
the program (all as integers). (Note the comment on tab characters at the end
of this specification.)

Print out the following values:

 Lines:
 * The total number of lines
 * The total number of blank lines
 (Any lines consisting entirely of white space should be
 considered as blank lines.)
 The percentage of blank lines (100 * blank_lines / lines)

 Characters:
 * The total number of characters after tab expansion
 * The total number of spaces after tab expansion
 * The total number of leading spaces after tab expansion
 (These are the spaces at the start of a line, before any visible
 character; ignore them if there are no visible characters.)
 The average number of
 characters per line
 characters per line ignoring leading spaces
 leading spaces per line
 spaces per line ignoring leading spaces

 Comments:
 * The total number of comments in the program
 * The total number of characters in the comments in the program
 excluding the "/*" and "*/" thenselves
 The percentage of number of comments to total lines
 The percentage of characters in comments to characters

 Identifiers:
 We are concerned with all the occurrences of "identifiers" in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 We are concerned with all the occurrences of "identifiers" in the
 program where each part of the text starting with a letter,
 and continuing with letter, digits and underscores is considered
 to be an identifier, provided that it is not
 in a comment,
 or in a string,
 or within primes.
 Note that
 "abc\"def"
 the internal escaped quote does not close the string.
 Also, the representation of the escape character is
 '\\'
 and of prime is
 '\''
 Do not attempt to exclude the fixed words of the language,
 treat them as identifiers. Print
 * The total number of identifier occurrences.
 * The total number of characters in them.
 The average identifier length.

 Indenting:
 * The total number of times either of the following occurs:
 a line containing a "}" is more indented than the preceding line
 a line is preceded by a line containing a "{" and is less
 indented than it.
 The "{" and "}" must be ignored if in a comment or string or
 primes, or if the other line involved is entirely comment.
 A single count of the sum of both types of error is required.

NOTE: All tab characters ('') on input should be interpreted as multiple spaces
using the rule:

 "move to the next modulo 8 column"
 where the first column is numbered column 0.
 col before tab | col after tab
 ---------------+--------------
 0 | 8
 1 | 8
 7 | 8
 8 | 16
 9 | 16
 15 | 16
 16 | 24

To read input a character at a time the skeleton has code incorporated to read
a line at a time for you using

 char ch;
 ch = getchar();

Which will deliver each character exactly as read. The "getline" function then
puts the line just read in the global array of characters "linec", null
terminated, and delivers the length of the line, or a negative value if end of
data has been encountered.

You can then look at the characters just read with (for example)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 switch(linec[0]) {
 case ' ': /* space */
 break;
 case '\t': /* tab character */
 break;
 case '\n': /* newline ... */
 break;

 } /* end switch */

End of data is indicated by scanf NOT delivering the value 1.

Your output should be in the following style:

 Total lines 126
 Total blank lines 3
 Total characters 3897
 Total spaces 1844
 Total leading spaces 1180
 Total comments 7
 Total chars in comments 234
 Total number of identifiers 132
 Total length of identifiers 606
 Total indenting errors 2

You may gather that the above program (together with the unstarred items)
forms the basis of part of your marking system! Do the easy bits first, and
leave it at that if some aspects worry you. Come back to me if you think my
solution (or the specification) is wrong! That is quite possible!

Exercise 12348

It's rates of pay again!

Loop performing the following operation in your program:

Read two integers, representing a rate of pay (pence per hour) and a number
of hours. Print out the total pay, with hours up to 40 being paid at basic rate,
from 40 to 60 at rate-and-a-half, above 60 at double-rate. Print the pay as
pounds to two decimal places.

Terminate the loop when a zero rate is encountered. At the end of the loop,
print out the total pay.

The code for computing the pay from the rate and hours is to be written as a
function.

The recommended output format is something like:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Pay at 200 pence/hr for 38 hours is 76.00 pounds
 Pay at 220 pence/hr for 48 hours is 114.40 pounds
 Pay at 240 pence/hr for 68 hours is 206.40 pounds
 Pay at 260 pence/hr for 48 hours is 135.20 pounds
 Pay at 280 pence/hr for 68 hours is 240.80 pounds
 Pay at 300 pence/hr for 48 hours is 156.00 pounds
 Total pay is 928.80 pounds

The ``program features'' checks that explicit values such as 40 and 60 appear
only once, as a #define or initialised variable value. This represents good
programming practice.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subsections

Structures
Defining New Data Types

Unions
Coercion or Type-Casting
Enumerated Types
Static Variables
Exercises

Further Data Types
This Chapter discusses how more advanced data types and structures can be
created and used in a C program.

Structures
Structures in C are similar to records in Pascal. For example:

 struct gun
 {
 char name[50];
 int magazinesize;
 float calibre;
 };

 struct gun arnies;

defines a new structure gun and makes arnies an instance of it.

NOTE: that gun is a tag for the structure that serves as
shorthand for future declarations. We now only need to say
struct gun and the body of the structure is implied as we do to
make the arnies variable. The tag is optional.

Variables can also be declared between the } and ; of a struct
declaration, i.e.:

 struct gun
 {
 char name[50];
 int magazinesize;
 float calibre;
 } arnies;

struct's can be pre-initialised at declaration:

 struct gun arnies={"Uzi",30,7};

which gives arnie a 7mm. Uzi with 30 rounds of ammunition.

To access a member (or field) of a struct, C provides the .
operator. For example, to give arnie more rounds of ammunition:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

operator. For example, to give arnie more rounds of ammunition:

 arnies.magazineSize=100;

Defining New Data Types
typedef can also be used with structures. The following creates a new type
agun which is of type struct gun and can be initialised as usual:

 typedef struct gun
 {
 char name[50];
 int magazinesize;
 float calibre;
 } agun;

 agun arnies={"Uzi",30,7};

Here gun still acts as a tag to the struct and is optional.
Indeed since we have defined a new data type it is not really of
much use,

agun is the new data type. arnies is a variable of type agun
which is a structure.

C also allows arrays of structures:

 typedef struct gun
 {
 char name[50];
 int magazinesize;
 float calibre;
 } agun;

 agun arniesguns[1000];

This gives arniesguns a 1000 guns. This may be used in the
following way:

 arniesguns[50].calibre=100;

gives Arnie's gun number 50 a calibre of 100mm, and:

 itscalibre=arniesguns[0].calibre;

assigns the calibre of Arnie's first gun to itscalibre.

Unions
A union is a variable which may hold (at different times) objects of different
sizes and types. C uses the union statement to create unions, for example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 union number
 {
 short shortnumber;
 long longnumber;
 double floatnumber;
 } anumber

defines a union called number and an instance of it called anumber.
number is a union tag and acts in the same way as a tag for a
structure.

Members can be accessed in the following way:

 printf("%ld n",anumber.longnumber);

This clearly displays the value of longnumber.

When the C compiler is allocating memory for unions it will
always reserve enough room for the largest member (in the above
example this is 8 bytes for the double).

In order that the program can keep track of the type of union
variable being used at a given time it is common to have a
structure (with union embedded in it) and a variable which flags
the union type:

An example is:

 typedef struct
 { int maxpassengers;
 } jet;

 typedef struct
 { int liftcapacity;
 } helicopter;

 typedef struct
 { int maxpayload;
 } cargoplane;

 typedef union
 { jet jetu;
 helicopter helicopteru;
 cargoplane cargoplaneu;
 } aircraft;

 typedef struct
 { aircrafttype kind;
 int speed;
 aircraft description;
 } an_aircraft;

This example defines a base union aircraft which may either be
jet, helicopter, or
cargoplane.

In the an_aircraft structure there is a kind member which
indicates which structure is being held at the time.

Coercion or Type-Casting

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C is one of the few languages to allow coercion, that is forcing one variable
of one type to be another type. C allows this using the cast operator (). So:

 int integernumber;
 float floatnumber=9.87;

 integernumber=(int)floatnumber;

assigns 9 (the fractional part is thrown away) to integernumber.

And:

 int integernumber=10;
 float floatnumber;

 floatnumber=(float)integernumber;

assigns 10.0 to floatnumber.

Coercion can be used with any of the simple data types including
char, so:

 int integernumber;
 char letter='A';

 integernumber=(int)letter;

assigns 65 (the ASCII code for `A') to integernumber.

Some typecasting is done automatically -- this is mainly with
integer compatibility.

A good rule to follow is: If in doubt cast.
Another use is the make sure division behaves as requested: If
we have two integers internumber and anotherint and we want the
answer to be a float then :

e.g.
 floatnumber =
 (float) internumber / (float) anotherint;

ensures floating point division.

Enumerated Types
Enumerated types contain a list of constants that can be addressed in integer
values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We can declare types and variables as follows.

 enum days {mon, tues, ..., sun} week;

 enum days week1, week2;

NOTE: As with arrays first enumerated name has index value 0. So mon has
value 0, tues 1, and so on.

week1 and week2 are variables.

We can define other values:

 enum escapes { bell = ` a',

 backspace = ` b', tab = ` t',

 newline = ` n', vtab = ` v',

 return = ` r'};

We can also override the 0 start value:

 enum months {jan = 1, feb, mar,, dec};

Here it is implied that feb = 2 etc.

Static Variables
A static variable is local to particular function. However, it is only
initialised once (on the first call to function).

Also the value of the variable on leaving the function remains intact. On the
next call to the function the the static variable has the same value as on
leaving.

To define a static variable simply prefix the variable declaration with the
static keyword. For example:

 void stat(); /* prototype fn */

 main()
 { int i;

 for (i=0;i<5;++i)
 stat();
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stat()
 { int auto_var = 0;
 static int static_var = 0;

 printf(``auto = %d, static = %d n'',

 auto_var, static_var);
 ++auto_var;
 ++static_var;
 }

Output is:

 auto_var = 0, static_var= 0
 auto_var = 0, static_var = 1
 auto_var = 0, static_var = 2
 auto_var = 0, static_var = 3
 auto_var = 0, static_var = 4

Clearly the auto_var variable is created each time. The
static_var is created once and remembers its value.

Exercises
Exercise 12386

Write program using enumerated types which when given today's date will
print out tomorrow's date in the for 31st January, for example.

Exercise 12387

Write a simple database program that will store a persons details such as age,
date of birth, address etc.

Dave Marshall
1/5/1999

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Running Make Up: Writing Larger Programs Previous: Creating a makefile

Make macros
We can define macros in make - they are typically used to store source file names, object file
names, compiler options and library links.

They are simple to define, e.g.:

where (SOURCES: .c = .o) makes .c extensions of SOURCES .o extensions.

To reference or invoke a macro in make do $(macro_name).e.g.:

NOTE:

$(PROGRAM) : $(OBJECTS) - makes a list of dependencies and targets.

The use of an internal macros i.e. $@.

There are many internal macros (see manual pages) here a few common ones:

$star
- file name part of current dependent (minus .suffix).

$@
- full target name of current target.

$<
- .c file of target.

Appendix contains an example makefile for the WriteMyString modular
program discussed in the last Chapter.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: UNIX and C Up: Writing Larger Programs Previous: Make macros

Running Make
Simply type make from command line.

UNIX automatically looks for a file called Makefile (note: capital M rest lower case letters).

So if we have a file called Makefile and we type make from command line. The Makefile in
our current directory will get executed.

We can override this search for a file by typing make -f make_filename

e.g. ~ make -f my_make

There are a few more -options for makefiles - see manual pages.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Using UNIX System Calls and Library Functions Up: UNIX and C Previous: UNIX
and C

Advantages of using UNIX with C
Portability - UNIX, or a variety of UNIX, is available on many machines. Programs
written in standard UNIX and C should run on any of them with little difficulty.
Multiuser / Multitasking - many programs can share a machines processing power.
File handling - hierarchical file system with many file handling routines.
Shell Programming - UNIX provides a powerful command interpreter that understands
over 200 commands and can also run UNIX and user-defined programs.

Pipe - where the output of one program can be made the input of another. This can done
from command line or within a C program.
UNIX utilities - there over 200 utilities that let you accomplish many routines without
writing new programs. e.g. make, grep, diff, awk, more
System calls - UNIX has about 60 system calls that are at the heart of the operating
system or the kernel of UNIX. The calls are actually written in C. All of them can be
accessed from C programs. Basic I/0, system clock access are examples. The function
open() is an example of a system call.
Library functions - additions to the operating system.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: File and Directory Manipulation Up: UNIX and C Previous: Advantages of using
UNIX with C

Using UNIX System Calls and Library
Functions
To use system calls and library functions in a C program we simply call the appropriate C
function (Appendix).

We have already met some system calls when dealing with low level I O - open(), creat(),
read(), write() and close() are examples.

Examples of standard library functions we have met include the higher level I/O functions -
fopen(), fprintf(), sprintf(), malloc() ...

All math functions such as sin(), cos(), sqrt() and random number generators -
random(), seed(), lrand48(), drand48() etc. are standard math library functions.

NOTE: most standard library functions will use system calls within them.

For most system calls and library functions we have to include an appropriate header file. e.g.
stdio.h, math.h

Information on nearly all system calls and library functions is available in manual pages.
These are available on line: Simply type man function name.

e.g. ~man drand48

would give information about this random number generator.

All system calls and library functions have been listed in a previous handout.

We have already seen examples of string handling library functions. For the rest of this course
we will study the application of a few more system and library functions.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Directory handling functions Up: UNIX and C Previous: Using UNIX System Calls
and Library Functions

File and Directory Manipulation
There are many UNIX utilities that allow us to manipulate directories and files. cd, ls, rm,
cp, mkdir etc. are examples we have (hopefully) already met.

We will now see how to achieve similar tasks from within a C program.

Directory handling functions
File Manipulation Routines
errno

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Running UNIX Commands from C Up: UNIX and C Previous: errno

Process Control and Management
A process is basically a single running program. It may be a ``system'' program (e.g login,
update, csh) or program initiated by the user (textedit, dbxtool or a user written one).

When UNIX runs a process it gives each process a unique number - a process ID, pid.

The UNIX command ps will list all current processes running on your machine and will list
the pid.

The C function int getpid() will return the pid of process that called this function.

A program usually runs as a single process. However later we will see how we can make
programs run as several separate communicating processes.

Running UNIX Commands from C
execl()
fork()
wait()
exit()

Piping in a C program
popen() - Formatted Piping
pipe() - Low level Piping

Interrupts and Signals
Sending Signals - kill()
Receiving signals - signal()

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Exercises Up: UNIX and C Previous: Receiving signals - signal()

Times Up!!
The last topic we will at in this course is how we can access the clock time with UNIX system
calls.

There are many more time functions - see man pages and handouts.

Uses of time functions include:

telling the time.
timing programs and functions.
setting random number seeds.

time_ttime(time_t*tloc) - returns the time since 00:00:00 GMT, Jan. 1, 1970, measured
in seconds.

If tloc is not NULL, the return value is also stored in the location to which tloc points.

time() returns the value of time on success.

On failure, it returns (time_t) -1. time_t is typedefed to a long (int) in <sys/types.h> and
<sys/time.h> header files.

int ftime(struct timeb *tp) - fills in a structure pointed to by tp, as defined in
<sys/timeb.h>:

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more
precise interval, the local time zone (measured in minutes of time westward from Greenwich),
and a flag that, if nonzero, indicates that Day light Saving time applies locally during the
appropriate part of the year.

On success, ftime() returns no useful value. On failure, it returns -1.

Two other functions defined etc. in #include <time.h>

char *ctime(time_t*clock), char *asctime(struct tm *tm)

ctime() converts a long integer, pointed to by clock, to a 26-character
string of the form produced by asctime(). It first breaks down clock to a tm
structure by calling localtime(), and then calls asctime() to convert that tm
structure to a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

structure to a string.

asctime() converts a time value contained in a tm structure to a 26-character
string of the form:

Sun Sep 16 01:03:52 1973

asctime() returns a pointer to the string.

Example 1: Time (in seconds) to perform some computation:

Example 2: Set a random number seed

lrand48() returns non-negative long integers uniformly distributed over the
interval (0, 2**31).

A similar function drand48() returns double precision numbers in the range
[0.0,1.0).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[0.0,1.0).

srand48() sets the seed for these random number generators. It is important
to have different seeds when we call the functions otherwise the same set of
pseudo-random numbers will generated. time() always provides a unique seed.

Next: Exercises Up: UNIX and C Previous: Receiving signals - signal()

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Ceilidh - On Line C Tutoring System Up: UNIX and C Previous: Times Up!!

Exercises
1. Write a program to print the lines of a file which contain a word given as the program

argument (a simple version of grep UNIX utility).
View Solution

(unit8:File Input/Output:ex.grp)

2. Write a program to list the files given as arguments, stopping every 20 lines until a key
is hit.(a simple version of more UNIX utility)
View Solution

3. Use popen() to pipe the rwho (UNIX command) output into more (UNIX command) in
a C program.
View Solution

4. Setup a two-way communication between parent and child processes in a C program.
i.e. both can send and receive signals.
View Solution

5. Write a C program to emulate the ls -l UNIX command that prints all files in a current
directory and lists access privileges etc. DO NOT simply exec ls -l from the program.
View Solution

6. Write a C program to produce a series of floating point random numbers in the ranges
(a) 0.0 - 1.0
View Solution

(b) 0.0 - n where n is any floating point value. The seed should be set so that a unique
sequence is guaranteed.
View Solution

7. Write a C program that times a fragment of code in milliseconds.
View Solution

8. Write a program that will list all files in a current directory and all files in subsequent
sub directories.
View Solution

9. Write a program that will only list subdirectories in alphabetical order.
View Solution

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10. Write a program that shows the user all his/her C source programs and then prompts
interactively as to whether others should be granted read permission; if affirmative such
permission should be granted.
View Solution

11. Write a program that gives the user the opportunity to remove any or all of the files in a
current working directory. The name of the file should appear followed by a prompt as
to whether it should be removed.
View Solution

Next: Ceilidh - On Line C Tutoring System Up: UNIX and C Previous: Times Up!!

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Introduction Up: Ceilidh - On Line C Tutoring System Previous: Ceilidh - On Line C
Tutoring System

Why Use CEILIDH ?
CEILIDH provides the following:

On line course notes

Automatic Assessment of C programs

Template programs are provided to start you on an exercise. This means less typing.

Automatic Compilation of programs

Programs can be run against test data and user specified data

CEILIDH will be used to help mark your coursework.

You are allowed to resubmit your program for marking by CEILIDH. This lets you try
to improve your mark.

PLEASE NOTE:

CEILIDH marks a program in many ways: it analyses style, efficiency, `prettiness' and
output.

It is fussy about its output. TO GET FULL MARKS you will need to emulate the output
almost exactly as the question requests. So read the questions CAREFULLY.
Get plenty of practice using CEILIDH and submitting and marking exercise before your
first assessments are due.
If used properly CEILIDH should be very useful in helping you learn C.

A C++ module is also available.(Not covered by this lecture course).

What follows is a modified version of student notes provided with system from Nottingham
University. The Xwindow bits are new.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Using Ceilidh as a Student Up: Ceilidh - On Line C Tutoring System Previous: Why
Use CEILIDH ?

Introduction
Ceilidh is an on-line coursework administration and auto-marking facility designed to help
both students and staff with programming courses. It helps students by informing them of the
coursework required of them, and by permitting them to submit their work on the computer,
instead of having to print things out and hand them in. It also marks programs directly, and
informs the student and teacher of the mark awarded. The marking uses a comprehensive
variety of static and dynamic metrics to assess the quality of submitted programs, of which
details are in the paper by Zin and Foxley[1] (a copy of which may be stored on-line in
Ceilidh, see below). Ceilidh also provides students with on-line access to notes, examples and
solutions, and provides tutors with extensive course monitoring and tracking facilities.

This document is a guide for student users of the Ceilidh system.

The Ceilidh system acts in a number of ways for students, tutors and teachers, and can support
a variety of different courses.

There are different facilities for students (reading notes and coursework definitions, looking at
examples, developing programs, submitting and marking work), and tutors (observing
submitted work and marks) and teachers (amending course material, setting up exercises,
performing plagiarism tests). The appropriate facilities are offered to appropriate users by the
Ceilidh system itself, which takes note of the login identification of the user and compares it
with lists of authorised users.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: The course and unit level Up: Ceilidh - On Line C Tutoring System Previous:
Introduction

Using Ceilidh as a Student
There are two ways of calling the Ceilidh system. Ceilidh may be used to support several
courses in your department. You can either enter the system at a general level, and then choose
the particular course you are studying, or you can enter directly into the particular course you
are interested in.

To enter the system at the general level, the appropriate command (which should have been set
up by your computer systems administrator) is

 xceilidh (Xwindows version --- recommended)

or

 ceilidh (text based version)

Upon issuing the command xceilidh (or ceilidh) you will be greeted with the menu shown in
figure .

Note: Example menus are shown in this document. Menus seen in practice may vary slightly
from those shown, since the actual menu you are offered reflects only those facilities available
at the time.

xceilidh is the X-Windows based version which you should use as it is easier and more
intuitive. However, the text based version ceilidh does have a few more features. These are not
that important though. I will list features of both. ceilidh uses abbreviations for commands.
xceilidh has buttons to press

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(text version is like this)

 CEILIDH system level menu
 lc list course titles | sc move to named course
 vp view papers | pp print papers
 clp change printer | h for more help
 co make a comment to teacher | q quit this session
 fs find student | ft find tutees
 ===
 System level command:

Fig. System Level Ceilidh Menu

This is the "system" level of Ceilidh and represents a department wide view of the system.

The commands which are available at this point are as follows.

lc
(text ceilidh only) in X the courses available appear on main window.This command
tells you which courses are available and supported by the Ceilidh system, their full title
and their abbreviation.

vp
(text ceilidh only) If you are interested, you can use the vp command to view various
papers describing the workings of the Ceilidh system. A typical response to this
command would be The stored papers are:

 ASQA : Automated Software Quality Assessment
 CAL : The Ceilidh Courseware System
 CLI : The command line interface ceilidh
 Courseware : Courseware to support the teaching of programming
 Install : Installer's Guide
 Oracle : The "oracle" output recogniser
 Qu-ans : The question/answer marking program

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Qu-ans : The question/answer marking program
 Student : Student Guide to Ceilidh
 Teacher : Teacher Guide to Ceilidh

Choose a paper :

which lists a selection of the available papers. If you reply with the short name of the
paper (the first word on the line), the paper will be shown on the screen a page at a time
through a paging command such as "more". Diagrams may not appear correctly.

It is possible to print a given paper which looks interesting using the pp command.
Some papers containing diagrams may not view or print nicely on devices without
appropriate facilities.

h
(Help button) The h command offers a little more information on the significance of the
different commands available to you in the Ceilidh system. This command is available
at various points when you are using Ceilidh, and should give help relevant at the time.

q
(Exit button) This is the "quit" command to leave the Ceilidh system, and to return to
your ordinary UNIX shell.

For courses with student registers, the following commands are also available

fs
(Find Student Button) To find details about any student registered on any of the courses
supported by the system.

ft
(Find Tutor) To find details of the tutees of a specified tutor.

See below for discussion of the clp and co commands, both of which occur at many places in
Ceilidh.

In general you will wish to move fairly soon to work on a specific course which you are
studying. A particular course is entered using the sc (select course) command highlighting c
course in window or by typing for example

 sc

followed by return to enter the course "c" in text based version. (You must use lower
case/upper case (small and capital) letters exactly as requested. If the given name is not a valid
course, all available course names will be listed and a valid one should be selected.)

The course and unit level
The exercise level
Interpreted language exercises
Question/answer exercises

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: The course and unit level Up: Ceilidh - On Line C Tutoring System Previous:
Introduction

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Advantages of the command line interface Up: Ceilidh - On Line C Tutoring System
Previous: Question/answer exercises

The command line interface (TEXT
CEILIDH ONLY)
This is a completely new interface in which, instead of using menus, each Ceilidh facility is
represented by a UNIX command. It can be used on any terminal. Because there are no menus
in this system, it is recommended that you use it only after some experience of the menu
system.

To use this facility, there are two things you must do. First execute

 ~ceilidh/bin.cli/set.env

to set up an appropriate environment. You will need to check with your teacher just where the
~ceilidh directory is on the machine. This needs to be done once only (unless at a later stage
you wish to reset your environment).

In order to use these commands, the directory containing them must be included in your
PATH variable. To do this, type

 source ~ceilidh/bin.cli/source.csh

at the start of each logged-on session during which you wish to use Ceilidh.

From here on, type

 commands

to get a list of Ceilidh commands currently available, or

 status

to show the currently set course, unit and exercise. The commands follow generally the pattern
of the menu commands, but a few have had to be renamed to avoid clashes with existing
commands. A typical starting sequence might be

 Command Purpose

 commands See commands available
 set.cse pr1 Select course "pr1"
 commands See extra course commands
 lu List unit titles
 set.unit 4 Set a particular unit
 lx List exercise titles
 set.ex 4 Select exercise to solve

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 set.ex 4 Select exercise to solve
 vq View question
 setup Set up program skeleton
 ep Edit program
 cm Compile program
 run Run program
 sub Submit
 cks Check submitted

Advantages of the command line interface
General points

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: How Ceilidh worksCeilidh Course Notes, User Up: Ceilidh - On Line C Tutoring
System Previous: General points

Conclusions
The Ceilidh system is an essential part of your learning process; learn to make good use of it.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: References Up: Ceilidh - On Line C Tutoring System Previous: Conclusions

How Ceilidh works, Ceilidh Course Notes,
User Guides etc.

Ceilidh Licence Details
Ceilidh papers --- How Ceilidh works, marks etc.
Ceilidh C Course Notes --- Alternative to what you have been reading.
Ceilidh User Guides

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Common C Compiler Options Up: Ceilidh - On Line C Tutoring System Previous:
How Ceilidh worksCeilidh Course Notes, User

References
1. Abdullah Mohd Zin and Eric Foxley, "Automatic Program Quality
 Assessment System", Proceedings of the IFIP Conference on Software
 Quality, S P University, Vidyanagar, INDIA (March 1991).

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: C Standard Library Functions Up: Common C Compiler Options Previous: Common C
Compiler Options

Compiler Options
 -c Suppress linking with ld(1) and produce a .o file
 for each source file. A single object file can be
 named explicitly using the -o option.

 -C Prevent the C preprocessor from removing
 comments.

 -E Run the source file through the C preprocessor,
 only. Sends the output to the standard output, or
 to a file named with the -o option. Includes the
 cpp line numbering information. (See also, the -P
 option.)

 -g Produce additional symbol table information for
 dbx(1) and dbxtool(1). When this option is given,
 the -O and -R options are suppressed.

 -help Display helpful information about compiler.

 -Ipathname
 Add pathname to the list of directories in which
 to search for #include files with relative
 filenames (not beginning with slash /). The
 preprocessor first searches for #include files in
 the directory containing sourcefile, then in
 directories named with -I options (if any), and
 finally, in /usr/include.

 -llibrary Link with object library library (for ld(1)).
 This option must follow the sourcefile arguments.

 -Ldirectory
 Add directory to the list of directories contain-
 ing object-library routines (for linking using
 ld(1).

 -M Run only the macro preprocessor on the named C
 programs, requesting that it generate makefile
 dependencies and send the result to the standard
 output (see make(1) for details about makefiles
 and dependencies).

 -o outputfile
 Name the output file outputfile. outputfile must
 have the appropriate suffix for the type of file
 to be produced by the compilation (see FILES,
 below). outputfile cannot be the same as source-
 file (the compiler will not overwrite the source
 file).

 -O[level] Optimize the object code. Ignored when either -g
 or -a is used. -O with the level omitted is
 equivalent to -O2. level is one of:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 equivalent to -O2. level is one of:

 1 Do postpass assembly-level optimization
 only.

 2 Do global optimization prior to code
 generation, including loop optimiza-
 tions, common subexpression elimination,
 copy propagation, and automatic register
 allocation. -O2 does not optimize refer-
 ences to or definitions of external or
 indirect variables.

 If the optimizer runs out of memory, it tries to
 recover by retrying the current procedure at a
 lower level of optimization and resumes subsequent
 procedures at the original level.

 -P Run the source file through the C preprocessor,
 only. Puts the output in a file with a .i suffix.
 Does not include cpp-type line number information
 in the output

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Character Classification and Conversion Up: C Standard Library Functions Previous:
C Standard Library Functions

Buffer Manipulation
#include <memory.h>

void *memchr (void *s, int c, size_t n) - Search for a character in a buffer.

int memcmp (void *s1, void *s2, size_t n) - Compare two buffers.

void *memcpy (void *dest, void *src, size_t n) - Copy one buffer into another .

void *memmove (void *dest, void *src, size_t n) - Move a number of bytes from one buffer lo
another.

void *memset (void *s, int c, size_t n) - Set all bytes of a buffer to a given character.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: String Manipulation Up: C Standard Library Functions Previous: Process Control

Searching and Sorting
#include <stdlib.h>

void *bsearch(void *key, void *base, size_t num, size_t width, int (*compare)(void *elem1,
void *elem2)) - Perform binary search.

void qsort(void *base, size_t num, size_t width, int (*compare)(void *elem1, void *elem2)) -
Use the quicksort algorithm to sort an array.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Time Up: C Standard Library Functions Previous: Searching and Sorting

String Manipulation
#include <string.h>

char *stpcpy (char *dest, char *src) - Copy one string into another.

int strcmp(char *string1, char *string2) - Compare string1 and string2 to determine alphabetic
order.

char *strcpy(char *string1, char *string2) - Copy string2 to stringl.

char *strerror(int errnum) - Get error message corresponding to specified error number.

int strlen(char *string) - Determine the length of a string.

char *strncat(char *string1, char *string2, size_t n) - Append n characters from string2 to
stringl.

int strncmp(char *string1, char *string2, size_t n) - Compare first n characters of two strings.

char *strncpy(char *string1, char *string2, size_t n) - Copy first n characters of string2 to
stringl .

char *strnset(char *string, int c, size _t n) - Set first n characters of string to c.

char *strrchr(char *string, int c) - Find last occurrence of character c in string.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Program Listings Up: C Standard Library Functions Previous: String Manipulation

Time
#include <time.h>

char *asctime (struct tm *time) - Convert time from struct tmto string.

clock_t clock(void) - Get elapsed processor time in clock ticks.

char *ctime(time_t *time) - Convert binary time to string. double difftime(time_t time2, time_t
time1) - Compute the difference between two times in seconds.

st ruct_tm *gmtime (time_t *time) - Get Greenwich Mean Time (GMT) in a tm structure.

struct tm *localtime(time_t *time) - Get the local time in a tm structure.

time_t time(time_t *timeptr) - Get current times as seconds elapsed since 0 hours GMT 1/1/70.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Data Conversion Up: C Standard Library Functions Previous: Buffer Manipulation

Character Classification and Conversion
#include <ctype.h>

int isalnum(int c) - True if c is alphanumeric.

int isalpha(int c) - True if c is a letter.

int isascii(int c) - True if c is ASCII .

int iscntrl(int c) - True if c is a control character.

int isdigit(int c) - True if c is a decimal digit.

int isgraph(int c) - True if c is a graphical character.

int islower(int c) - True if c is a lowercase letter.

int isprint(int c) - True if c is a printable character.

int ispunct (int c) - True if c is a punctuation character.

int isspace(int c) - True if c is a space character.

int isupper(int c) - True if c is an uppercase letter.

int isxdigit(int c) - True if c is a hexadecimal digit.

int toascii(int c) - Convert c to ASCII .

tolower(int c) - Convert c to lowercase.

int toupper(int c) - Convert c to uppercase.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Directory Manipulation Up: C Standard Library Functions Previous: Character
Classification and Conversion

Data Conversion
#include <stdlib.h>

double atof(char *string) - Convert string to floating point value.

int atoi(char *string) - Convert string to an integer value.

int atol(char *string) - Convert string to a long integer value.

char *itoa(int value, char *string, int radix) - Convert an integer value to a string using given
radix.

char *ltoa(long value, char *string, int radix) - Convert long integer to string in a given radix.

double strtod(char *string, char *endptr) - Convert string to a floating point value.

long strtol(char *string, char *endptr, int radix) - Convert string to a long integer using a given
radix.

unsigned long strtoul(char *string, char *endptr, int radix) - Convert string to unsigned long.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: File Manipulation Up: C Standard Library Functions Previous: Data Conversion

Directory Manipulation
#include <dir.h>

int chdir(char *path) - Change current directory to given path.

char *getcwd(char *path, int numchars) - Returns name of current working directory.

int mkdir(char *path) - Create a directory u sing given path name.

int rmdir(char *path) - Delete a specified directory.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Input and Output Up: C Standard Library Functions Previous: Directory Manipulation

File Manipulation
#include <sys/stat.h> and #include <sys/types.h>

int chmod(char *path, int pmode) - Change permission settings of a file.

int fstat(int handle, struct stat *buffer) - Get file status information.

int remove(char *path) - Delete a named file.

int rename(char *oldname, char *newname) - rename a file.

int stat(char *path, struct stat *buffer) - Get file status information of named file.

unsigned umask(unsigned pmode) - Set file permission mask.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Stream 1/0 Up: C Standard Library Functions Previous: File Manipulation

Input and Output

Stream 1/0
Low level I/O

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Memory Allocation Up: C Standard Library Functions Previous: Low level I/O

Mathematics
#include <math.h>

int abs (int n) - Get absolute value of an integer.

double acos(double x) - Compute arc cosine of x.

double asin(double x) - Compute arc sine of x.

double atan(double x) - Compute arc tangent of x.

double atan2(double y, double x) - Compute arc tangent of y/x.

double ceil(double x) - Get smallest integral value that exceeds x.

double cos(double x) - Compute cosine of angle in radians.

double cosh(double x) - Compute the hyperbolic cosine of x.

div_t div(int number, int denom) - Divide one integer by another.

double exp(double x - Compute exponential of x.

double fabs (double x) - Compute absolute value of x.

double floor(double x) - Get largest integral value less than x.

double fmod(double x, double y) - Divide x by y with integral quotient and return remainder.

double frexp(double x, int *expptr) - Breaks down x into mantissa and exponent of no.

labs(long n) - Find absolute v alue of long integer n.

double ldexp(double x, int exp) - Reconstructs x out of mantissa and exponent of two.

ldiv_t ldiv(long number, long denom) - Divide one long integer by another.

double log(double x) - Compute log(x).

double log10 (double x) - Compute log to the base 10 of x.

double modf(double x, double *intptr) - Breaks x into fractional and integer parts.

double pow (double x, double y) - Compute x raised to the power y.

int rand (void) - Get a random integer between 0 and 32.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int random(int max_num) - Get a random integer between 0 and max_num.

void randomize(void) - Set a random seed for the random number generator.

double sin(double x) - Compute sine of angle in radians.

double sinh(double x) - Compute the hyperbolic sine of x.

double sqrt(double x) - Compute the square root of x.

void srand(unsigned seed) - Set a new seed for the random number generator (rand).

double tan(double x) - Compute tangent of angle in radians.

double tanh(double x) - Compute the hyperbolic tangent of x.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Process Control Up: C Standard Library Functions Previous: Mathematics

Memory Allocation
#include <malloc.h>

void *calloc(size_t num elems, size_t elem_size) - Allocate an array and initialise all elements
to zero .

void free(void *mem address) - Free a block of memory.

void *malloc(size_t num bytes) - Allocate a block of memory.

void *realloc(void *mem address, size_t news i ze) - Reallocate (adjust size) a block of
memory.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Searching and Sorting Up: C Standard Library Functions Previous: Memory
Allocation

Process Control
include <stdlib.h>

void abort(void) - Abort a process.

int execl(char *path, char *argO, char *arg1,..., NULL) - Launch a child process (pass
command line).

int execlp(char *path, char *argO, char *arg1,..., NULL) - Launch child (use PATH pass
command line).

int execv(char *path, char *argv[]) - Launch child (pass argument vector).

int execvp(char *path, char *argv[]) - Launch child (use PATH, pass argument vector).

void exit(int status) - Terminate process after flushing all buffers.

char *getenv(char *varname) - Get definition of environment variable,

void perror(char *string) - Print error message corresponding to last system error.

int putenv(char *envstring) - Insert new definition into environment table.

int raise(int signum) - Generate a C signal (exception).

void (*signat(int signum, void(*func)(jnt signum [, int subcode])))(int signum) - Establish a
signal handler for signal number signum.

int system(char *string) - Execute a UNIX (or resident operating system) command.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: printf.c Up: Program Listings Previous: Program Listings

hello.c
#include <stdio.h>
main()
{
 (void) printf("Hello World\n");
 return (0);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Modular Example Up: Program Listings Previous: power.c

ptr_arr.c
#define ARRAY_SIZE 10 /* Number of characters in array */
/* Array to print */
char array[ARRAY_SIZE] = "012345678";

main()
{
 int index; /* Index into the array */

 for (index = 0; index < ARRAY_SIZE; index++) {
 (void)printf(
 "&array[index]=0x%x (array+index)=0x%x array[index]=0x%x\n",
 &array[index], (array+index), array[index]);
 }
 return (0);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: main.c Up: Program Listings Previous: ptr_arr.c

Modular Example
We list here three C modules that comprise of the large program example. The Makefile is
also included.

main.c
WriteMyString.c
header.h
Makefile

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: malloc.c Up: Program Listings Previous: Makefile

static.c
#include <stdio.h>

void stat();

main() {
 int counter; /* loop counter */

 for (counter = 0; counter < 5; counter++) {
 stat();
 }

}

void stat()

{ int temporary = 1;
 static int permanent = 1;

 (void)printf("Temporary %d Permanent %d\n",
 temporary, permanent);
 temporary++;
 permanent++;
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: queue.c Up: Program Listings Previous: static.c

malloc.c
#include <stdlib.h> /* using ANSI C standard libraries */
#include <malloc.h>

main()
{
 char *string_ptr;

 string_ptr = malloc(80);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: bitcount.c Up: Program Listings Previous: malloc.c

queue.c
/* Corrected 19/3/90 - nolonger leaves queue in memory! */
/* Note UNIX would clear the dynamically allocated memory */
/* when the program ends */
/* */
/* queue.c */
/* Demo of dynamic data structures in C */

#include <stdio.h>

#define FALSE 0
#define NULL 0

typedef struct {
 int dataitem;
 struct listelement *link;
} listelement;

void Menu (int *choice);
listelement * AddItem (listelement * listpointer, int data);
listelement * RemoveItem (listelement * listpointer);
void PrintQueue (listelement * listpointer);
void ClearQueue (listelement * listpointer);

main () {
 listelement listmember, *listpointer;
 int data,
 choice;

 listpointer = NULL;
 do {
 Menu (&choice);
 switch (choice) {
 case 1:
 printf ("Enter data item value to add ");
 scanf ("%d", &data);
 listpointer = AddItem (listpointer, data);
 break;
 case 2:
 if (listpointer == NULL)
 printf ("Queue empty!\n");
 else
 listpointer = RemoveItem (listpointer);
 break;
 case 3:
 PrintQueue (listpointer);
 break;

 case 4:
 break;

 default:
 printf ("Invalid menu choice - try again\n");
 break;
 }
 } while (choice != 4);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 } while (choice != 4);
 ClearQueue (listpointer);
} /* main */

void Menu (int *choice) {

 char local;

 printf ("\nEnter\t1 to add item,\n\t2 to remove item\n\
\t3 to print queue\n\t4 to quit\n");
 do {
 local = getchar ();
 if ((isdigit (local) == FALSE) && (local != '\n')) {
 printf ("\nyou must enter an integer.\n");
 printf ("Enter 1 to add, 2 to remove, 3 to print, 4 to quit\n");
 }
 } while (isdigit ((unsigned char) local) == FALSE);
 *choice = (int) local - '0';
}

listelement * AddItem (listelement * listpointer, int data) {

 listelement * lp = listpointer;

 if (listpointer != NULL) {
 while (listpointer -> link != NULL)
 listpointer = listpointer -> link;
 listpointer -> link = (struct listelement *) malloc (sizeof (listelement));
 listpointer = listpointer -> link;
 listpointer -> link = NULL;
 listpointer -> dataitem = data;
 return lp;
 }
 else {
 listpointer = (struct listelement *) malloc (sizeof (listelement));
 listpointer -> link = NULL;
 listpointer -> dataitem = data;
 return listpointer;
 }
}

listelement * RemoveItem (listelement * listpointer) {

 listelement * tempp;
 printf ("Element removed is %d\n", listpointer -> dataitem);
 tempp = listpointer -> link;
 free (listpointer);
 return tempp;
}

void PrintQueue (listelement * listpointer) {

 if (listpointer == NULL)
 printf ("queue is empty!\n");
 else
 while (listpointer != NULL) {
 printf ("%d\t", listpointer -> dataitem);
 listpointer = listpointer -> link;
 }
 printf ("\n");
}

void ClearQueue (listelement * listpointer) {

 while (listpointer != NULL) {
 listpointer = RemoveItem (listpointer);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: lowio.c Up: Program Listings Previous: queue.c

bitcount.c
/* binary counting exampple -counts bits set to 1 in an 8 bit number */

/* acc -o bitcount bitcount.c on SUNS */

/* c89 -o bitcount bitcount.c on DECS */

#include <stdio.h>

unsigned char bitcount(unsigned char); /* prototype */

main()

{ unsigned char i8,count;
 int i;

 printf("Enter number (0 - 255 decimal)\n");
 scanf("%d",&i);

 if ((i < 0) || (i > 255))
 { printf("Error:Number out of range = %d\n", i);
 exit(1);
 }

 i8 = (unsigned char) i;

 count = bitcount(i8);

 printf("\n\nNumber of bits set to 1 in %d = %d\n",i,count);

}

unsigned char bitcount(unsigned char x)

{ unsigned char count;

 for (count = 0; x!=0; x>>=1)
 if (x & 01)
 ++count;

 return count;
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: print.c Up: Program Listings Previous: bitcount.c

lowio.c
/*** lowio.c ********/

#include <fcntl.h>
#include <stdio.h>
#define PERMS 0600 /* r,w permission owner only (octal no.)*/

void inputtext (char *buf, int fd);
void display (char *buf, int fd);

main () {
 char buf[BUFSIZ];
 int fd1,
 fd2,
 t;

 if ((fd1 = creat ("iotest", PERMS)) == -1) {
 printf ("Cannot open file with creat\n");
 exit (1);
 }

 inputtext (buf, fd1);

 close (fd1);

 if ((fd2 = open ("iotest", 0, O_RDONLY)) == -1) {
 printf ("Cannot open file\n");
 exit (1);
 }
 display (buf, fd2);
 close (fd2);
}

void inputtext (char *buf, int fd1) {
 register int t;

 printf ("Enter lines of text, end with quit\n");
 do {
 for (t = 0; t < BUFSIZ; t++)
 buf[t] = '\0';
 gets (buf);

 if (write (fd1, buf, BUFSIZ) != BUFSIZ) {
 printf ("Error in writing\n");
 exit (1);
 }
 } while (strcmp (buf, "quit"));
}

void display (char *buf, int fd2) {
 for (;;) {
 if (read (fd2, buf, BUFSIZ) == 0)
 return;
 printf ("%s\n", buf);
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: cdir.c Up: Program Listings Previous: lowio.c

print.c
/**
 * print -- format files for printing *
 **/
#include <stdio.h>
#include <stdlib.h> /* ANSI Standard only */

int verbose = 0; /* verbose mode (default = false) */
char *out_file = "print.out"; /* output filename */
char *program_name; /* name of the program (for errors) */
int line_max = 66; /* number of lines per page */

main(int argc, char *argv[])
{
 void do_file(char *); /* print a file */
 void usage(void); /* tell user how to use the program */

 /* save the program name for future use */
 program_name = argv[0];

 /*
 * loop for each option.
 * Stop if we run out of arguments
 * or we get an argument without a dash.
 */
 while ((argc > 1) && (argv[1][0] == '-')) {
 /*
 * argv[1][1] is the actual option character.
 */
 switch (argv[1][1]) {
 /*
 * -v verbose
 */
 case 'v':
 verbose = 1;
 break;
 /*
 * -o<name> output file
 * [0] is the dash
 * [1] is the "o"
 * [2] starts the name
 */
 case 'o':
 out_file = &argv[1][2];
 break;
 /*
 * -l<number> set max number of lines
 */
 case 'l':
 line_max = atoi(&argv[1][2]);
 break;
 default:
 (void)fprintf(stderr,"Bad option %s\n", argv[1]);
 usage();
 }
 /*

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 /*
 * move the argument list up one
 * move the count down one
 */
 argv++;
 argc--;
 }

 /*
 * At this point all the options have been processed.
 * Check to see if we have no files in the list
 * and if so, we need to process just standard in.
 */
 if (argc == 1) {
 do_file("print.in");
 } else {
 while (argc > 1) {
 do_file(argv[1]);
 argv++;
 argc--;
 }
 }
 return (0);
}
/**
 * do_file -- dummy routine to handle a file *
 * *
 * Parameter *
 * name -- name of the file to print *
 **/
void do_file(char *name)
{
 (void)printf("Verbose %d Lines %d Input %s Output %s\n",
 verbose, line_max, name, out_file);
}
/**
 * usage -- tell the user how to use this program and *
 * exit *
 **/
void usage(void)
{
 (void)fprintf(stderr,"Usage is %s [options] [file-list]\n",
 program_name);
 (void)fprintf(stderr,"Options\n");
 (void)fprintf(stderr," -v verbose\n");
 (void)fprintf(stderr," -l<number> Number of lines\n");
 (void)fprintf(stderr," -o<name> Set output filename\n");
 exit (8);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: list.c Up: Program Listings Previous: print.c

cdir.c
/* cdir.c program to emulate unix cd command */

/* cc -o cdir cdir.c */

#include<stdio.h>
/* #include<sys/dir.h> */

main(int argc,char **argv)
{
 if (argc < 2)
 { printf("Usage: %s <pathname>\n",argv[0]);
 exit(1);
 }

 if (chdir(argv[1]) != 0)
 { printf("Error in \"chdir\"\n");
 exit(1);
 }
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: list_c.c Up: Program Listings Previous: cdir.c

list.c
/* list.c - C version of a simple UNIX ls utility */

/* c89 list.c -o list */

/* need types.h and dir.h for definitions of scandir and alphasort */
#include <sys/types.h>
#include <sys/dir.h>

/* definition for getwd ie MAXPATHLEN etc */
#include <sys/param.h>

#include <stdio.h>

#define FALSE 0
#define TRUE !FALSE

/* prototype std lib functions */
extern int alphasort();

/* variable to store current path */
char pathname[MAXPATHLEN];

main()
{ int count,i;
 struct direct **files;
 int file_select();

 if (getwd(pathname) == NULL)
 { printf("Error getting path\n);
 exit(1);
 }
 printf("Current Working Directory = %s\n",pathname);

 count =
 scandir(pathname, &files, file_select, alphasort);

 /* If no files found, make a non-selectable menu item */
 if (count <= 0) {
 printf("No files in this directory\n");
 exit(0);
 }

 printf("Number of files = %d\n",count);

 for (i=1;i<count+1;++i)
 { printf("%s ",files[i-1]->d_name);
 if ((i % 4) == 0) printf("\n");
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 printf("\n"); /* flush buffer */
}

int
file_select(struct direct *entry)
{ /* ignore . and .. entries */
 if ((strcmp(entry->d_name, ".") == 0) ||
 (strcmp(entry->d_name, "..") == 0))
 return (FALSE);
 else
 return (TRUE);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: swap.c Up: Program Listings Previous: hello.c

printf.c
#include <stdio.h>

char char1; /* first character */
char char2; /* second character */
char char3; /* third character */

main()
{
 char1 = 'A';
 char2 = 'B';
 char3 = 'C';
 (void)printf("%c%c%c reversed is %c%c%c\n",
 char1, char2, char3,
 char3, char2, char1);
 return (0);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: fork_eg.c Up: Program Listings Previous: list.c

list_c.c
/* list_c.c - list C realted files ie .c .o .h files */

/* c89 list_c.c -o list_c */

#include <sys/types.h>
#include <sys/dir.h>
#include <sys/param.h>
#include <stdio.h>

#define FALSE 0
#define TRUE !FALSE

extern int alphasort();
char *rindex(char *s, char c);

char pathname[MAXPATHLEN];

main()
{ int count,i;
 struct direct **files;
 int file_select();

(char *) getwd(pathname);
 printf("Current Working Directory = %s\n",pathname);

 count =
 scandir(pathname, &files, file_select, alphasort);

 /* If no files found, make a non-selectable menu item */
 if (count <= 0) {
 printf("No files in this directory\n");
 exit(0);
 }

 printf("Number of files = %d\n",count);

 for (i=0;i<count;++i)
 { printf("%s ",files[i]->d_name);
 if ((i % 4) == 0) printf("\n");
 }

 printf("\n"); /* flush buffer */
}

int
file_select(struct direct *entry)
{
 char *ptr;
 char tmp[MAXPATHLEN];

 if ((strcmp(entry->d_name, ".") == 0) ||
 (strcmp(entry->d_name, "..") == 0))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (strcmp(entry->d_name, "..") == 0))
 return (FALSE);

 /* Check for .c or .o or .h filename extensions */
 ptr = rindex(entry->d_name, '.');
 if ((ptr != NULL) &&
 ((strcmp(ptr, ".c") == 0) || (strcmp(ptr, ".h") == 0) || (strcmp(ptr, ".o") == 0)))
 return (TRUE);

}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: fork.c Up: Program Listings Previous: list_c.c

fork_eg.c
/* fork_eg.c --- simple eg of fork in UNIX */

main()
{ int return_value;

 printf("Forking process\n");
 fork();
 printf("The process id is %d and return value is %d\n",getpid(),return_value);
 execl("/bin/ls/","ls","-l",0);
 printf("This line is not printed\n");
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: signal.c Up: Program Listings Previous: fork_eg.c

fork.c
/* fork.c - example of a fork in a program */
/* The program asks for UNIX commands to be typed and inputted to a string*/
/* The string is then "parsed" by locating blanks etc. */
/* Each command and sorresponding arguments are put in a args array */
/* execvp is called to execute these commands in child process */
/* spawned by fork() */

/* c89 -o fork fork.c */

#include <stdio.h>

main()
{
 char buf[1024];
 char *args[64];

 for (;;) {
 /*
 * Prompt for and read a command.
 */
 printf("Command: ");

 if (gets(buf) == NULL) {
 printf("\n");
 exit(0);
 }

 /*
 * Split the string into arguments.
 */
 parse(buf, args);

 /*
 * Execute the command.
 */
 execute(args);
 }
}

/*
 * parse--split the command in buf into
 * individual arguments.
 */
parse(buf, args)
char *buf;
char **args;
{
 while (*buf != NULL) {
 /*
 * Strip whitespace. Use nulls, so
 * that the previous argument is terminated
 * automatically.
 */
 while ((*buf == ' ') || (*buf == '\t'))
 *buf++ = NULL;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 *buf++ = NULL;

 /*
 * Save the argument.
 */
 *args++ = buf;

 /*
 * Skip over the argument.
 */
 while ((*buf != NULL) && (*buf != ' ') && (*buf != '\t'))
 buf++;
 }

 *args = NULL;
}

/*
 * execute--spawn a child process and execute
 * the program.
 */
execute(args)
char **args;
{
 int pid, status;

 /*
 * Get a child process.
 */
 if ((pid = fork()) < 0) {
 perror("fork");
 exit(1);

 /* NOTE: perror() produces a short error message on the standard
 error describing the last error encountered during a call to
 a system or library function.
 */
 }

 /*
 * The child executes the code inside the if.
 */
 if (pid == 0) {
 execvp(*args, args);
 perror(*args);
 exit(1);

 /* NOTE: The execv() vnd execvp versions of execl() are useful when the
 number of arguments is unknown in advance;
 The arguments to execv() and execvp() are the name
 of the file to be executed and a vector of strings contain-
 ing the arguments. The last argument string must be fol-
 lowed by a 0 pointer.

 execlp() and execvp() are called with the same arguments as
 execl() and execv(), but duplicate the shell's actions in
 searching for an executable file in a list of directories.
 The directory list is obtained from the environment.
 */
 }

 /*
 * The parent executes the wait.
 */
 while (wait(&status) != pid)
 /* empty */ ;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: sig_talk.c Up: Program Listings Previous: fork.c

signal.c
#include <signal.h>

main()
{
 signal(SIGINT, SIG_IGN);

 /*
 * pause() just suspends the process until a
 * signal is received.
 */
 pause();
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Piping Up: Program Listings Previous: signal.c

sig_talk.c
/* sig_talk.c --- Example of how 2 processes can talk */
/* to each other using kill() and signal() */
/* We will fork() 2 process and let the parent send a few */
/* signals to it`s child */

/* acc sig_talk.c -o sig_talk on SUNS */
/* c89 sig_talk.c -o sig_talk on DECS */

#include <stdio.h>
#include <signal.h>

void sighup(); /* routines child will call upon sigtrap */
void sigint();
void sigquit();

main()
{ int pid;

 /* get child process */

 if ((pid = fork()) < 0) {
 perror("fork");
 exit(1);
 }

 if (pid == 0)
 { /* child */
 signal(SIGHUP,sighup); /* set function calls */
 signal(SIGINT,sigint);
 signal(SIGQUIT, sigquit);
 for(;;); /* loop for ever */
 }
 else /* parent */
 { /* pid hold id of child */
 printf("\nPARENT: sending SIGHUP\n\n");
 kill(pid,SIGHUP);
 sleep(3); /* pause for 3 secs */
 printf("\nPARENT: sending SIGINT\n\n");
 kill(pid,SIGINT);
 sleep(3); /* pause for 3 secs */
 printf("\nPARENT: sending SIGQUIT\n\n");
 kill(pid,SIGQUIT);
 sleep(3);
 }
}

void sighup()

{ signal(SIGHUP,sighup); /* reset signal */
 printf("CHILD: I have received a SIGHUP\n");
}

void sigint()

{ signal(SIGINT,sigint); /* reset signal */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{ signal(SIGINT,sigint); /* reset signal */
 printf("CHILD: I have received a SIGINT\n");
}

void sigquit()

{ printf("My DADDY has Killed me!!!\n");
 exit(0);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: plot.c Up: Program Listings Previous: sig_talk.c

Piping
Three modules make up a program that pipes output to a graphdrawing package, gnuplot To
Run this system you must have gnupolt installed.

plot.c
plotter.c
externals.h

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: time.c Up: Program Listings Previous: externals.h

random.c
/* random.c - simple example of setting random number seeds with time */

/* c89 random.c -o random */

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()
{ int i;
 time_t t1;

 (void) time(&t1);

 srand48((long) t1); /* use time in seconds to set seed */

 printf("5 random numbers (Seed = %d):\n",(int) t1);
 for (i=0;i<5;++i)
 printf("%d ", lrand48());
 printf("\n\n"); /* flush print buffer */

 /* lrand48() returns non-negative long integers
 uniformly distributed over the interval (0, ~2**31)
 */
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: timer.c Up: Program Listings Previous: random.c

time.c
#include <sys/types.h>
#include <sys/times.h>

main()
{
 struct tms before, after;

 times(&before);

 /* ... place code to be timed here ... */

 times(&after);

 printf("User time: %ld seconds\n", after.tms_utime -
 before.tms_utime);
 printf("System time: %ld seconds\n", after.tms_stime -
 before.tms_stime);

 exit(0);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Using Dec Workstations and Unix Up: Program Listings Previous: time.c

timer.c
/* timer.c - simple example of timing a piece of code */

/* c89 timer.c -o timer */

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()
{ int i;
 time_t t1,t2;

 (void) time(&t1);

 for (i=1;i<=300;++i) printf("%d %d %d\n",i, i*i, i*i*i);

 (void) time(&t2);

 printf("\nTime to do 300 squares and cubes= %d seconds\n", (int) t2-t1);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: args.c Up: Program Listings Previous: printf.c

swap.c
/* exchange values */

#include <stdio.h>

void swap(float *x, float *y);

main()
{
 float x, y;

 printf("Please input 1st value: ");
 scanf("%f", &x);
 printf("Please input 2nd value: ");
 scanf("%f", &y);
 printf("Values BEFORE 'swap' %f, %f\n", x, y);
 swap(&x, &y); /* address of x, y */
 printf("Values AFTER 'swap' %f, %f\n", x, y);
 return 0;
}

/* exchange values within function */

void swap(float *x, float *y)
{
 float t;

 t = *x; /* *x is value pointed to by x */
 *x = *y;
 *y = t;
 printf("Values WITHIN 'swap' %f, %f\n", *x, *y);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: arg.c Up: Program Listings Previous: swap.c

args.c
#include <stdio.h>

main(int argc, char **argv)

{ /* program to print arguments from command line */

 int i;

 printf("argc = %d\n\n",argc);
 for (i=0;i<argc;++i)
 printf("argv[%d]: %s\n",i, argv[i]);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: average.c Up: Program Listings Previous: args.c

arg.c

* program to read command line input and open files specified */

#include <stdio.h>

main(argc, argv)
int argc;
char **argv;
{
 int c;
 FILE *from, *to;

 /*
 * Check our arguments.
 */
 if (argc != 3) {
 fprintf(stderr, "Usage: %s from-file to-file\n", *argv);
 exit(1);
 }

 /*
 * Open the from-file for reading.
 */
 if ((from = fopen(argv[1], "r")) == NULL) {
 perror(argv[1]);
 exit(1);
 }

 /*
 * Open the to-file for appending. If to-file does
 * not exist, fopen will create it.
 */
 if ((to = fopen(argv[2], "a")) == NULL) {
 perror(argv[2]);
 exit(1);
 }

 /*
 * Now read characters from from-file until we
 * hit end-of-file, and put them onto to-file.
 */
 while ((c = getc(from)) != EOF)
 putc(c, to);

 /*
 * Now close the files.
 */
 fclose(from);
 fclose(to);
 exit(0);
}

Dave.Marshall@cm.cf.ac.uk

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: cio.c Up: Program Listings Previous: arg.c

average.c
#include <stdio.h>

float data[5]; /* data to average and total */
float total; /* the total of the data items */
float average; /* average of the items */

main()
{
 data[0] = 34.0;
 data[1] = 27.0;
 data[2] = 45.0;
 data[3] = 82.0;
 data[4] = 22.0;

 total = data[0] + data[1] + data[2] + data[3] + data[4];
 average = total / 5.0;
 (void)printf("Total %f Average %f\n", total, average);
 return (0);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: factorial Up: Program Listings Previous: average.c

cio.c
* program to echo keyboard input to screen */

#include <stdio.h>

/* copy input to output */

main()
{
 int c;

 while ((c = getchar()) != EOF)
 putchar(c);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: power.c Up: Program Listings Previous: cio.c

factorial

* e.g use of functions factorials *\
* fact(n) = n*(n-1)*....2*1 *\

#include <stdio.h>

main()
{
 int n, m;

 printf("Enter a number: ");
 scanf("%d", &n);

 m = fact(n);
 printf("The factorial of %d is %d.\n", n, m);
 exit(0);
}

fact(n)
int n;
{
 if (n == 0)
 return(1);

 return(n * fact(n-1));
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: ptr_arr.c Up: Program Listings Previous: factorial

power.c
#include <stdio.h>

int power (int m, int n);

main () {
 int i;

 printf ("power\t 2^power\t -3^power\n");
 for (i = 0; i < 10; ++i)
 printf ("%5d \t%8d \t%8d\n", i, power (2, i), power (-3, i));
 return 0;
}

int power (int base, int n) {
 int i,
 p;
 p = 1;
 for (i = 1; i <= n; ++i)
 p *= base;
 return p;
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Exercises - Using X WindowsEditing and Up: About This Course Previous: About
This Course

Course Material and On-line facilities
Obviously you have been provided with the course notes that you are reading.

In addition several on line facilities will be employed in this course.

Ceilidh - an online tutoring and program marking facility (see Appendix for details.
All exercises given can be answered in Ceilidh. Some alternative C course notes are also
available. Ceilidh will mark any exercise submitted very quickly.

All program listings are available in the /well/dave/C/EXAMPLES directory. Feel free to
copy these to help speed up your writing of programs. Mind Ceilidh helps with this also
by providing skeleton programs.

The course notes are also on-line. Run the mosaic program and select comma lecture
notes.

We will be using the departments Dec Workstations which are unix based.

If you have not use unix or a workstation before do not worry the first tutorial session is to be
used for this purpose.

Details on how to use the system are in Appendix . Also try the exercises that follow.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: The C Program Up: About This Course Previous: Course Material and On-line
facilities

Exercises - Using X Windows, Editing and
UNIX Basics

1. Practice opening, closing and moving windows around the screen and to/from the
background/foreground. Get used to using the mouse and its buttons for such tasks.

2. Figure out the function of each of the three mouse buttons. Pay particular attention to
the different functions the buttons in different windows (applications) and also when the
mouse is pointing to the background.

3. Find out how to resize windows etc. and practice this.

4. Fire up textedit application and practice editing text files. Create any files you wish
for now. Figure out basic options like cut and paste of text around the file, saving and
loading files, searching for strings in the text and replacing strings.

Particularly pay attention in getting used to using the Key Strokes and / or mouse to
perform the above tasks.

5. Use Unix Commands (see Appendix) to
1. Copy a file (created by text editor or other means) to another file called spare.
2. Rename your original file to b called new.
3. Delete the file spare.
4. Display your original file on the terminal.
5. Print your file out.

6. Familiarise yourself with other UNIX functions by creating various files of text etc. and
trying out the various functions listed in handouts.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: File Manipulation Routines Up: File and Directory Manipulation Previous: File and
Directory Manipulation

Directory handling functions
This basically involves calling appropriate functions.

int chdir(char path) - changes directory to specified path string.

Example: C emulation of UNIX's cd command:

char getwd(char path) - get the full pathname of the current working
directory. path is a pointer to a string where the pathname will be returned.
getwd returns a pointer to the string or NULL if an error occurs.

scandir(char dirname, struct direct namelist, int (*select)(), int (
compar)()) - reads the directory dirname and builds an array of pointers to
directory entries or -1 for an error. namelist is a pointer to an array of
structure pointers.

(*select))() is a pointer to a function which is called with a pointer to a
directory entry (defined in <sys/types> and should return a non zero value if
the directory entry should be included in the array. If this pointer is NULL,
then all the directory entries will be included.

The last argument is a pointer to a routine which is passed to qsort (see man
qsort) - a built in function which sorts the completed array. If this pointer
is NULL, the array is not sorted.

alphasort(struct direct d1, d2) - alphasort() is a built in routine which
will sort the array alphabetically.

Example - a simple C version of UNIX ls utility

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scandir returns the current directory (.) and the directory above this (..)
as well as all files so we need to check for these and return FALSE so that
they are not included in our list.

Note: scandir and alphasort have definitions in sys/types.h and sys/dir.h.
MAXPATHLEN and getwd definitions in sys/param.h

We can go further than this and search for specific files: Let's write a
modified file_select() that only scans for files with a .c, .o or .h suffix:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

modified file_select() that only scans for files with a .c, .o or .h suffix:

NOTE: rindex() is a string handling function that returns a pointer to the
last occurrence of character c in string s, or a NULL pointer if c does not
occur in the string. (index() is similar function but assigns a pointer to
1st occurrence.)

Next: File Manipulation Routines Up: File and Directory Manipulation Previous: File and
Directory Manipulation

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: errno Up: File and Directory Manipulation Previous: Directory handling functions

File Manipulation Routines
int access(char *path, int mode) - determine accessibility of file.

path points to a path name naming a file. access() checks the named file for accessibility
according to mode, defined in #include <unistd.h>:

R_OK
- test for read permission

W_OK
- test for write permission

X_OK
- test for execute or search permission

F_OK
- test whether the directories leading to the file can be searched and the file exists.

access() returns: 0 on success, -1 on failure and sets errno to indicate the error. See man
pages for list of errors.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Process Control and Management Up: File and Directory Manipulation Previous: File
Manipulation Routines

errno
errno is a special system variable that is set if a system call cannot perform its set task.

To use errno in a C program it must be declared via:

extern int errno;

It can be manually reset within a C program other wise it simply retains its last value.

int chmod(char *path, int mode) change the mode of access of a file. specified by path
to the given mode.

chmod() returns 0 on success, -1 on failure and sets errno to indicate the error. Errors are
defined in #include <sys/stat.h>

The access mode of a file can be set using predefined macros in sys/stat.h - see man pages -
or by setting the mode in a a 3 digit octal number.

The rightmost digit specifies owner privileges, middle group privileges and the leftmost other
users privileges.

For each octal digit think of it a 3 bit binary number. Leftmost bit = read access (on/off)
middle is write, right is executable.

So 4 (octal 100) = read only, 2 (010) = write, 6 (110) = read and write, 1 (001) = execute.

so for access mode 600 gives user read and write access others no access. 666 gives everybody
read/write access.

NOTE: a UNIX command chmod also exists

int stat(char *path, struct stat *buf), int fstat(int fd, struct stat *buf)

stat() obtains information about the file named by path. Read, write or execute permission of
the named file is not required, but all directories listed in the path name leading to the file must
be searchable.

fstat() obtains the same information about an open file referenced by the argument
descriptor, such as would be obtained by an open call (Low level I/O).

buf is a pointer to a stat structure into which information is placed concerning the file. A stat
structure is define in #include <sys/types.h>, see man pages for more information.

stat(), and fstat() return 0 on success, -1 on failure and sets errno to indicate the error.
Errors are again defined in #include <sys/stat.h>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int unlink(char *path) - removes the directory entry named by path

unlink() returns 0 on success, -1 on failure and sets errno to indicate the error. Errors listed
in #include <sys/stat.h>

NOTE: There are a few more file manipulation routines (Appendix).

Next: Process Control and Management Up: File and Directory Manipulation Previous: File
Manipulation Routines

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: execl() Up: Process Control and Management Previous: Process Control and
Management

Running UNIX Commands from C
We can run commands from a C program just as if they were from the UNIX command line
by using the system() function. NOTE: this can save us a lot of time and hassle as we can
run other (proven) programs, scripts etc. to do set tasks.

int system(char *string) - where string can be the name of a unix utility, an executable
shell script or a user program. System returns the exit status of the shell.

Example: Call ls from a program

system is a call that is made up of 3 other commands: execl(), wait() and
fork()

execl()
fork()
wait()
exit()

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: popen() - Formatted Piping Up: Process Control and Management Previous: exit()

Piping in a C program
Piping is a process where the input of one process is made the input of another. We have seen
examples of this from the UNIX command line using .

We will now see how we do this from C programs.

We will have two (or more) forked processes and will communicate between them.

We must first open a pipe

UNIX allows two ways of opening a pipe.

popen() - Formatted Piping
pipe() - Low level Piping

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Sending Signals - kill() Up: Process Control and Management Previous: pipe() - Low
level Piping

Interrupts and Signals
In this section will look at ways in which two processes can communicate. When a process
terminates abnormally it usually tries to send a signal indicating what went wrong. C programs
(and UNIX) can trap these for diagnostics. Also user specified communication can take place
in this way.

The process uses signals which can be numbered 0 to 31. Macros are defined in signal.h
header file for common signals.

These include:

Sending Signals - kill()
Receiving signals - signal()

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: The exercise level Up: Using Ceilidh as a Student Previous: Using Ceilidh as a Student

The course and unit level
In the X based version these are both in the main window

In the text based version: When you have selected a particular course, the menu shown in
figure should now be displayed on the screen.

This menu is identical whether it is obtained from the system level of Ceilidh using the sc
command, or by entering Ceilidh with a -c argument.

We are now in a chosen course. The various possible commands have the following
significance.

lu
(text only - list unit :the units are automatically listed in X version once the course has
been selected)

Each course is divided into a number of units, rather like the chapters of a book. This
option lists the name of each unit, giving you a brief outline of the course as a whole.
Typical output might be

 Units in course pr1
 Unit 1: Background
 Unit 2: Elementary programming
 Unit 3: Conditionals
 Unit 4: Loops
 Unit 5: Functions
 Unit 6: Miscellany
 Unit 7: Arrays and structures
 Unit 8: File input and output
 Unit 9: Pointers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Unit 9: Pointers

lux
(text only) This command lists all units and exercises within these units.

csum
(Course Summary button) If the teacher remembers to keep the information up-to-date,
this command gives you a summary of the timetable for your course, with

details of the courseworks to be set, and the hand-in dates for each one.

state
(text only - See message of the day MOTD) As a course progresses exercises are
opened, made late and then closed. This command gives a summary of the state of each
exercise.

Select Unit Button (su)
This command enables you to select a chosen unit of the course. The menu remains the
same, apart from the currently selected unit number which is included at the top of the
menu. Commands below which relate to a specific unit use the currently selected unit
number.

Unit Summary Button (usum)
This will list a brief summary of the currently selected unit, usually at the level of
section headings in the notes.

View Notes Button (vn)
This command (view notes) allows you to view on-line the notes for the current unit of
the course.

q
(text only) This is the command to quit the system. If you entered Ceilidh at the course
level with a command such as

 ceilidh -c pr1

the quit will return you to your shell. If you entered the course level from the system
level using first

 ceilidh

and then

 sc pr1

for example, the quit returns you to the system level of Ceilidh, and you will need
another quit to return to your shell.

Your current unit and exercise will be noted, so that when you re-enter Ceilidh, you will
default to the same unit and exercise as when you left. If you wish to quit without
saving your current state, use q!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instead.

Make Comment Button (co)
At many points in the Ceilidh system, the system allows you to make comments to the
course teacher. Comments are always welcome. Comments may be a request for help
("What do you mean by in this week's question?"), a criticism of the system ("I think
the mark it gave me was not fair"), or an apology for the late hand-in of work ("Sorry
but I had an examination ..."). Please feel free to use this facility; the teacher will try to
answer most queries. The comments are sent using email to the teacher in charge of the
course.

Change Printer (clp)
- may not work !! Whenever you use a command which involves printing some
information, the computer chooses the printer which it thinks is most convenient. This is
done by looking at where you are on campus. Sometimes the computer chooses the
wrong printer (it cannot always tell exactly where you are on a network), so there is a
facility for you to choose a particular printer by name. You will be told appropriate
printer names in class.

To work on your coursework, you will need to move from the "unit" level of Ceilidh into the
"exercise" level.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. Example of X version view notes window

Next: The exercise level Up: Using Ceilidh as a Student Previous: Using Ceilidh as a Student

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Interpreted language exercises Up: Using Ceilidh as a Student Previous: The course
and unit level

The exercise level
If, for a given coursework, you are asked to solve a nominated coursework exercise in a this
week's unit of the course, you will perhaps first select the appropriate unit using the, Select
Unit (su) command, then list the names of all the exercises in this unit appear in the main
window (or using the command

 lx

at the course/unit level, and then enter the required exercise using

 sx 2

for example, to select exercise 2 of the current unit.)

In X highlight the exercise you want and press Select Unit button.

IN X: Do Exercise moves you to a new level and a new window: The exercise level.

IN TEXT VERSION: It is worth noting that at the course level, while the sx (select a
particular exercise) command moves you to another level, the "exercise level" with another
menu, the su (select a unit) command leaves you at the course level with the same menu. You
can move around the different units in a course at will without changing your level in the
system. To attempt exercises you must enter the exercise level, which has different menus
depending on the type of exercise you are asked to complete. These exercises include
compiled language exercises, interpreted language exercises, question/answer exercises and
text submission (essay) exercises. For the moment will will consider the compiled language
exercise menu.

If you type

 sx 1

to select exercise 1 in the current unit of the course you will see the menu given in Fig. .

This is the level at which most of your work will be undertaken. Each exercise will have been
set up by the teacher, and will include a question, a skeleton solution, and all the necessary
testing information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(text version ceilidh looks like this)

Compiled language menu for course "pr1" unit "1" exercise "1"
 vq view question on the screen | pq print question on draft13
 co make a comment to teacher | set set up coursework
 h for context help | H for general help
 q to return to calling menu |
 ed edit your program | cm compile your program
 cv compile verbose | cks check whether submitted OK
 run run your executable | rut run yours against test data
 sub submit/mark your program | std look at the test data
 vs view solution program | ps print sol'n program on draft13
 cp get copy of solution |
 rex run solution executable | rxt run sol'n against test data
 ===
 Type compiled language command:

Fig. Exercise Level Ceilidh Menu

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fig. Exercise Level Ceilidh Menu

Your normal sequence of activity at this level might be as follows. First use view question
(vq) to look at the question, or print question (pq) to print it out. You may need to study the
question for a while before attempting its solution on the computer. It may be sensible to view
or print it at least a day before the laboratory session during which you solve the problem.

You will then use

 setup (set)

to set up a skeleton solution. This command typically puts an outline of the required program
into your directory, to give you a flying start in solving the problem. In more complex
exercises later in the course, it may set up other data files as well.

A textedit window will be brought up to edit it.

At this stage you can start to develop your program, using the commands

Edit (ed)
to edit your program,

Compile (cm)
to compile it (if the compilation fails, go back to ed to correct the error with the editor,
and then try compilation again), and

Run
to try running your program. It is up to you to think of appropriate tests when running
your program, to convince yourself that it is running correctly.

cv
(Text only - see Options button in X Version to set verbose compilation) This command
is given as an alternative to the cm command. When used it will compile your program
more verbosely, giving compiler

warning messages which can help identify problems in your solution.

db
(text only) If this option has been set up by the course developer, it offers debugging
facilities to you.

Note: Not all of the options in the menu will appear on the at all times; if there is no
executable, for example, the running options will not appear or appear ghosted in XCEILIDH.
If you have not executed set to obtain an outline program, the ed command for editing your
program will not be shown.

Once you have successfully compiled your program and tested it to your satisfaction, the
system is ready to mark and submit it. It does this by looking at your program source code
(checking that it is indented correctly, for example), and running your compiled program
against various sets of test data and seeing that it produces the correct results. At this stage you
may wish to use the following commands.

rut

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(text only - see OPTIONS button to set this in X version) This runs your compiled
program against the first set of test data used by the marking process, and enables you to
see whether it appears to produce sensible answers.

std (show test data)
This shows you each set of test data being used by the marking process. The teacher
reserves the right to change the test data at any time, since your program should
generally work on absolutely any data which it receives.

When you have performed enough tests to convince you that your program is correct (and
only then) you should ask the system to mark and submit it using the

 submit button (sub command).

The computer's response will be something like that shown in figure .

The significance of this output is as follows.

Firstly your compiled program is run against several sets of test data. The system looks in the
output generated by your program for evidence that you have produced the correct answer;
this can be a non-trivial operation if your program does not print its results clearly! Each test
produces one line of output, giving you a brief summary of the test, and the score you have
been awarded. Different tests will be marked out of different totals, depending on the
importance of the test.

The marks from these runs against test data are then combined into a single "dynamic test"
result for your program. This result is then scaled out of a particular value, and the next few
lines give marks for various "static tests" (tests performed by looking at your program source,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lines give marks for various "static tests" (tests performed by looking at your program source,
rather than by executing it) such as "typographic style" (your program layout, choice of
identifiers, use of comments, etc, see the ASQA paper[1] for details, a copy is stored on the
Ceilidh system) "complexity" (the complexity of your program is compared with the
complexity of the course developer's model solution; the two should not differ by too large a
factor) and lastly "features" (the computer looks for specific good or bad programming
features associated with this particular coursework).

All these marks are then combined with their weightings into a single mark which you are
awarded. The Ceilidh system retains a copy of your program and of the mark awarded for
future reference.

If you are happy with the mark awarded, you can quit at this stage. Alternatively, you may try
to improve your mark and try again. It is your last mark which is recorded as your actual mark
for this coursework.

To check that the mark has been correctly stored by the computer, use the command

 check submission button (cks)

which will show you what the computer has recorded. You should always use this checking
facility after every exercise.

There is also a command at the course/unit level vm which lets you view ALL your marks
submitted so far.

Note:

Do not waste hours trying to obtain an extra mark ar two. It is a misguided waste of
your time. Once you have achieved a good overall mark, leave the Ceilidh system and
work on your other courses!

Do not use the system to find bugs in your program. Design and test your program
thoroughly yourself before you submit it to Ceilidh for marking.

Other commands at this level are:

View Solution (vs), Print Solution (ps), Copy Solution (cp)
: These commands are available only after the hand-in date of the coursework, and let
you view the solution (vs) to the coursework, print the solution (ps), and copy the
solution into your own directory (cp) so that you can try it out yourself.

rex, rxt
(text only - see OPTIONS Button): These commands allow you to run the course
developer's compiled program interactively (rex) to see that it works the way you
expected, and to run it against the first set of test data (rxt) to see the output which it
gives. This may give you ideas on how to layout your output. These options may not
exist if there is insufficient space on the disc for the teacher to store executable versions
of all the solutions.

When you quit (q) from the exercise level of Ceilidh, you return to the course level of
Ceilidh, where you may perform other activities, or execute another quit to leave Ceilidh
completely.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Interpreted language exercises Up: Using Ceilidh as a Student Previous: The course
and unit level

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Question/answer exercises Up: Using Ceilidh as a Student Previous: The exercise level

Interpreted language exercises
The menu and process for interpreted language exercises is similar to the compiled language
menu described in the previous section. The compilation commands are, of course, excluded.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: The command line interface (TEXT CEILIDH ONLY) Up: Using Ceilidh as a Student
Previous: Interpreted language exercises

Question/answer exercises
The exercise level menu for these exercises is completely different from that of the Compiled
Language menu shown above.

For Question/Answer exercises you are given the following menu.

__
 Question/answer exercise menu for course "tst" unit "1" exercise "qu":
 vq view questions | pq print questions
 ans answer questions and submit | cks check submitted
 h help | q return to calling menu
 Type question/answer command:
__

The X windows one is similar We will not use this much in our course.

The options have significance as follows.

vq
This allows you to view the questions before attempting to answer them. The pq
command can then be used to obtain a printout of these questions.

ans
When you are happy you know the answers to the questions set, you can enter your
solutions using the ans command. This will then ask you the questions one at a time and
read your response. Answers may be a choice between a few options, a word or a short
sentence. To quit the exercise before answering all the questions type q as your answer.

cks
This command allows you to check that your mark has been submitted correctly, and to
check your answers.

Some question/answer exercises are purely for collecting answers, such as those to the end-of-
course questionnaire. Other will involve answers which are marked. The questions should
make clear which of these cases holds.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: General points Up: The command line interface (TEXT CEILIDH ONLY) Previous:
The command line interface (TEXT CEILIDH ONLY)

Advantages of the command line interface
With this interface, you can execute other non-Ceilidh commands or even log out at any point.
When you resume, the course, unit and exercise will remain set just as when you last issued a
Ceilidh command (although you may choose to execute "status" to check the settings). This
interface will be particularly useful for the "pr2" course, in which you need to perform all
compilations yourself.

With this interface there is never any need to use "q" to quit the various levels of Ceilidh.

At any time, type

 commands

to remind yourself of the commands currently available. The command

 status

shows the currently set course, unit and exercise.

Typing

 ~ceilidh/bin.cli/set.env

will clear out the currently set values for course, unit and exercise. You will then need to use
"set.cse", "set.unit" etc to reset them to the values you require.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Conclusions Up: The command line interface (TEXT CEILIDH ONLY) Previous:
Advantages of the command line interface

General points
At certain times, the teacher may close a complete course, or a unit, or an exercise. These
perhaps represent parts of the course which are under development, or which must be kept
unmodified for administrative reasons.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Low level I/O Up: Input and Output Previous: Input and Output

Stream 1/0
#include <stdio.h>

void clearerr(FlLE *file_pointer) - Clear error indicator of stream,

int fclose(FlLE *file_pointer) - Close a file,

int feof(FlLE *file_pointer) - Check if end of file occurred on a stream.

int ferror(FlLE *file_pointer) - Check if any error occurred during file I/0.

int fflush(FlLE *file_pointer) - Write out (flush) buffer to file.

int fgetc(FlLE *file_pointer) - Get a character from a stream.

int fgetpos(FlLE *file_pointer, fpos_t current_pos) - Get the current position in a stream.

char *fgets(char *string, int maxchar, FILE *file_pointer) - Read a string from a file.

FILE *fopen(char *filename, char *access_mode) - Open a file for buffered I/0.

int fprintf(FlLE *file_pointer, char *format_string, args) - Write formatted output to a file,

int fputc(int c, FILE *file_pointer) - Write a character to a stream.

int fputchar(int c) - Write a character to stdout.

int fputs(char *string, FILE *file_pointer) - Write a string to a stream.

size_t fread(char *buffer, size_t size size_t count, FILE *file_pointer) - Read unformatted data
from a stream into a buffer.

FILE *freopen(char *filename, char *access mode, FILE *file_pointer) - Reassign a file
pointer to a different file.

int fscanf(FlLE *file_pointer, char *format string, args) - Read formatted input from a stream.

int fseek(FlLE *file_pointer, long offset, int origin) - Set current position in file to a new
location.

int fsetpos(FlLE *file pointer, fpos_t *current pos) - Set current position in file to a new
location.

long ftell(FlLE *file_pointer) - Get current location in file.

size_t fwrite(char *buffer, size_t size, size_t count FILE *file_pointer) - Write unformatted
data from a buffer to a stream.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

int getc(FlLE *file_pointer) - Read a character from a stream.

int getchar(void) - Read a character from stdin.

char *gets(char *buffer) - Read a line from stdin into a buffer.

int printf(char *format _string, args) - Write formatted output to stdout.

int putc(int c, FILE *file_pointer) - Write a character to a stream.

int putchar(int c) - Write a character to stdout.

int puts(char *string) - Write a string to stdout.

void rewind(FlLE *file_pointer) - Rewind a file.

int scanf(char *format_string, args) - Read formatted input from stdin.

void setbuf(FlLE *file_pointer, char *buffer) - Set up a new buffer for the stream.

int setvbuf(FlLE *file_pointer, char *buffer, int buf_type, size_t buf size) - Set up new buffer
and control the level of buffering on a stream.

int sprintf(char *string, char *format_string, args) - Write formatted output to a string.

int sscanf(char *buffer, char *format_string, args) - Read formatted input from a string.

FILE *tmpfile(void) - Open a temporary file.

char *tmpnam(char *file_name) - Get temporary file name.

int ungetc(int c, FILE *file_pointer) - Push back character into stream' s buffer

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Mathematics Up: Input and Output Previous: Stream 1/0

Low level I/O
#include <stdio.h> and may also need some of #include <stdarg.h>, #include <sys/types.h>,
#include <sys/stat.h>, #include <fcntl.h>.

int close (int handle) - Close a file opened for unbuffered I/O.

int creat(char *filename, int pmode) - Create a new file with specified permission setting.

int eof (int handle) - Check for end of file.

long lseek(int handle, long offset, int origin) - Go to a specific position in a file.

int open(char *filename, int oflag, unsigned pmode) - Open a file for low-level I/O.

int read(int handle, char *buffer, unsigned length) - Read binary data from a file into a buffer.

int Write(int handle, char *buffer, unsigned count) - Write binary data from a buffer to a file.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: WriteMyString.c Up: Modular Example Previous: Modular Example

main.c

/*
 * main.c
 */
#include "header.h"
#include <stdio.h>

char *AnotherString = "Hello Everyone";

main()
{
 printf("Running...\n");

 /*
 * Call WriteMyString() - defined in another file
 */
 WriteMyString(MY_STRING);

 printf("Finished.\n");
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: header.h Up: Modular Example Previous: main.c

WriteMyString.c

/*
 * WriteMyString.c
 */
extern char *AnotherString;

void WriteMyString(ThisString)
char *ThisString;
{
 printf("%s\n", ThisString);
 printf("Global Variable = %s\n", AnotherString);
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Makefile Up: Modular Example Previous: WriteMyString.c

header.h

/*
 * header.h
 */
#define MY_STRING "Hello World"

void WriteMyString();

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: static.c Up: Modular Example Previous: header.h

Makefile

#
Makefile
#
SOURCES.c= main.c WriteMyString.c
INCLUDES=
CFLAGS=
SLIBS=
PROGRAM= main

OBJECTS= $(SOURCES.c:.c=.o)

.KEEP_STATE:

debug := CFLAGS= -g

all debug: $(PROGRAM)

$(PROGRAM): $(INCLUDES) $(OBJECTS)
 $(LINK.c) -o $@ $(OBJECTS) $(SLIBS)

clean:
 rm -f $(PROGRAM) $(OBJECTS)

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: plotter.c Up: Piping Previous: Piping

plot.c

/* plot.c - example of unix pipe. Calls gnuplot graph drawing package to draw
 graphs from within a C program. Info is piped to gnuplot */
/* Creates 2 pipes one will draw graphs of y=0.5 and y = random 0-1.0 */
/* the other graphs of y = sin (1/x) and y = sin x */
/* c89 -o plot plot.c plotter.c - ON DECS */
/* acc -o plot plot.c plotter.c - ON SUNS */

#include "externals.h"
#include <signal.h>

#define DEG_TO_RAD(x) (x*180/M_PI)

double drand48();
void quit();

FILE *fp1, *fp2, *fp3, *fp4, *fopen();

main()
{ float i;
 float y1,y2,y3,y4;

 /* open files which will store plot data */
 if (((fp1 = fopen("plot11.dat","w")) == NULL) ||
 ((fp2 = fopen("plot12.dat","w")) == NULL) ||
 ((fp3 = fopen("plot21.dat","w")) == NULL) ||
 ((fp4 = fopen("plot22.dat","w")) == NULL))
 { printf("Error can't open one or more data files\n");
 exit(1);
 }

 signal(SIGINT,quit); /* trap ctrl-c call quit fn */
 StartPlot();
 y1 = 0.5;
 srand48(1); /* set seed */
 for (i=0;;i+=0.01) /* increment i forever use ctrl-c to quit prog */
 { y2 = (float) drand48();
 if (i == 0.0)
 y3 = 0.0;
 else
 y3 = sin(DEG_TO_RAD(1.0/i));
 y4 = sin(DEG_TO_RAD(i));

 /* load files */
 fprintf(fp1,"%f %f\n",i,y1);
 fprintf(fp2,"%f %f\n",i,y2);
 fprintf(fp3,"%f %f\n",i,y3);
 fprintf(fp4,"%f %f\n",i,y4);

 /* make sure buffers flushed so that gnuplot reads up to data file */
 fflush(fp1);
 fflush(fp2);
 fflush(fp3);
 fflush(fp4);

 /* plot graph */
 PlotOne();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PlotOne();
 usleep(250); /* sleep for short time */
 }
}

void quit()
{ printf("\nctrl-c caught:\n Shutting down pipes\n");
 StopPlot();

 printf("closing data files\n");
 fclose(fp1);
 fclose(fp2);
 fclose(fp3);
 fclose(fp4);

 printf("deleting data files\n");
 RemoveDat();
}

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: externals.h Up: Piping Previous: plot.c

plotter.c

/* plotter.c module */
/* contains routines to plot a data file produced by another program */
/* 2d data plotted in this version */
/**/

#include "externals.h"

static FILE *plot1,
 *plot2,
 *ashell;

static char *startplot1 = "plot [] [0:1.1]'plot11.dat' with lines, 'plot12.dat'
 with lines\n";

static char *startplot2 = "plot 'plot21.dat' with lines, 'plot22.dat' with lines\n";
static char *replot = "replot\n";
static char *command1= "/usr/local/bin/gnuplot> dump1";
static char *command2= "/usr/local/bin/gnuplot> dump2";
static char *deletefiles = "rm plot11.dat plot12.dat plot21.dat plot22.dat";
static char *set_term = "set terminal x11\n";

void
StartPlot(void)
 { plot1 = popen(command1, "w");
 fprintf(plot1, "%s", set_term);
 fflush(plot1);
 if (plot1 == NULL)
 exit(2);
 plot2 = popen(command2, "w");
 fprintf(plot2, "%s", set_term);
 fflush(plot2);
 if (plot2 == NULL)
 exit(2);
 }

void
RemoveDat(void)
 { ashell = popen(deletefiles, "w");
 exit(0);
 }

void
StopPlot(void)
 { pclose(plot1);
 pclose(plot2);
 }

void
PlotOne(void)
 { fprintf(plot1, "%s", startplot1);
 fflush(plot1);

 fprintf(plot2, "%s", startplot2);
 fflush(plot2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fflush(plot2);
 }

void
RePlot(void)
 { fprintf(plot1, "%s", replot);
 fflush(plot1);
 }

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: random.c Up: Piping Previous: plotter.c

externals.h

/* externals.h */
#ifndef EXTERNALS
#define EXTERNALS

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* prototypes */

void StartPlot(void);
void RemoveDat(void);
void StopPlot(void);
void PlotOne(void);
void RePlot(void);
#endif

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: fork() Up: Running UNIX Commands from C Previous: Running UNIX Commands
from C

execl()

execl has 5 other related functions - see man pages.

execl stands for execute and leave which means that a process will get executed and then
terminated by execl.

It is defined by:

execl(char *path, char *arg0,...,char *argn, 0);

The last parameter must always be 0. It is a NULL terminator. Since the argument list is
variable we must have some way of telling C when it is to end. The NULL terminator does
this job.

where path points to the name of a file holding a command that is to be executed, argo points
to a string that is the same as path (or at least its last component.

arg1 ... argn are pointers to arguments for the command and 0 simply marks the end of the
(variable) list of arguments.

So our above example could look like this also:

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: wait() Up: Running UNIX Commands from C Previous: execl()

fork()

int fork() turns a single process into 2 identical processes, known as the parent and the
child. On success, fork() returns 0 to the child process and returns the process ID of the child
process to the parent process. On failure, fork() returns -1 to the parent process, sets errno to
indicate the error, and no child process is created.

NOTE: The child process will have its own unique PID.

The following program illustrates a simple use of fork, where two copies are made and run
together (multitasking)

The Output of this would be:

NOTE: The processes have unique ID's which will be different at each run.

It also impossible to tell in advance which process will get to CPU's time - so one run may
differ from the next.

When we spawn 2 processes we can easily detect (in each process) whether it is the child or
parent since fork returns 0 to the child. We can trap any errors if fork returns a -1. i.e.:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: exit() Up: Running UNIX Commands from C Previous: fork()

wait()

int wait (int *status_location) - will force a parent process to wait for a child process
to stop or terminate. wait() return the pid of the child or -1 for an error. The exit status of the
child is returned to status_location.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Piping in a C program Up: Running UNIX Commands from C Previous: wait()

exit()

int exit(int status) - terminates the process which calls this function and returns the exit
status value. Both UNIX and C (forked) programs can read the status value.

By convention, a status of 0 means normal termination any other value indicates an error or
unusual occurrence. Many standard library calls have errors defined in the sys/stat.h header
file. We can easily derive our own conventions.

A complete example of forking program is in Appendix and is originally titled fork.c

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: pipe() - Low level Piping Up: Piping in a C program Previous: Piping in a C program

popen() - Formatted Piping

FILE *popen(char *command, char *type) - opens a pipe for I/O where the command is
the process that will be connected to the calling process thus creating the pipe. The type is
either ``r'' - for reading, or ``w'' for writing.

popen() returns is a stream pointer or NULL for any errors.

A pipe opened by popen() should always be closed by pclose(FILE *stream).

We use fprintf() and fscanf() to communicate with the pipe's stream.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Interrupts and Signals Up: Piping in a C program Previous: popen() - Formatted Piping

pipe() - Low level Piping

int pipe(int fd[2]) - creates a pipe and returns two file descriptors, fd[0], fd[1]. fd[0]
is opened for reading, fd[1] for writing.

pipe() returns 0 on success, -1 on failure and sets errno accordingly.

The standard programming model is that after the pipe has been set up, two (or more)
cooperative processes will be created by a fork and data will be passed using read() and
write().

Pipes opened with pipe() should be closed with close(int fd).

Example: Parent writes to a child

An example of piping in a C program is plot.c and subroutines and is detailed in
Appendix .

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Receiving signals - signal() Up: Interrupts and Signals Previous: Interrupts and Signals

Sending Signals - kill()

int kill(int pid, int signal) - send a signal to a process, pid. If pid is greater than
zero, the signal is sent to the process whose process ID is equal to pid. If pid is 0, the signal is
sent to all processes, except system processes.

kill() returns 0 for a successful call, -1 otherwise and sets errno accordingly.

There is also a UNIX command called kill - see man pages.

NOTE: that unless caught or ignored, the kill signal terminates the process. Therefore
protection is built into the system.

Only processes with certain access privileges can be killed off.

Basic rule: only processes that have the same user can send/receive messages.

The SIGKILL signal cannot be caught or ignored and will always terminate a process.

For examplekill(getpid(),SIGINT); would send the interrupt signal to the id of the calling
process.

This would have a similar effect to exit() command. Also ctrl-c typed from the command
sends a SIGINT to the process currently being.

unsigned int alarm(unsigned int seconds) - sends the signal SIGALRM to the invoking
process after seconds seconds.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next: Times Up!! Up: Interrupts and Signals Previous: Sending Signals - kill()

Receiving signals - signal()

int (*signal(int sig, void (*func)()))() - that is to say the function signal() will
call the func functions if the process receives a signal sig. Signal returns a pointer to function
func if successful or it returns an error to errno and -1 otherwise.

func() can have three values:

SIG_DFL
- a pointer to a system default function SID_DFL(), which will terminate the process
upon receipt of sig.

SIG_IGN
- a pointer to system ignore function SIG_IGN() which will disregard the sig action
(UNLESS it is SIGKILL).

A function address
- a user specified function.

SIG_DFLand SIG_IGN are defined in signal.h (standard library) header file.

Thus to ignore a ctrl-c command from the command line. we could do:

signal(SIGINT, SIG_IGN);

TO reset system so that SIGINT causes a termination at any place in our program, we would
do:

signal(SIGINT, SIG_DFL);

So lets write a program to trap a ctrl-c but not quit on this signal. We have a function
sigproc() that is executed when we trap a ctrl-c. We will also set another function to quit
the program if it traps the SIGQUIT signal so we can terminate our program:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally lets write a program that communicates between child and parent processes using
kill() and signal().

fork() creates the child process from the parent. The pid can be checked to
decide whether it is the child (== 0) or the parent (pid = child process id).

The parent can then send messages to child using the pid and kill().

The child picks up these signals with signal() and calls appropriate
functions.

An example of communicating process using signals is sig_talk.c in Appendix
.

Dave.Marshall@cm.cf.ac.uk
Wed Sep 14 10:06:31 BST 1994

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

