
This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2003 by Richard Grimes

All rights reserved. No part of the contents of this book may be reproduced or transmitted
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Grimes, Richard, 1964-
Programming with Managed Extensions for Microsoft Visual C++ .NET / Richard Grimes.
p. cm.
Includes index.
ISBN 0-7356-1724-4
1. Microsoft Visual C++. 2. C++ (Computer program language) 3. Microsoft .NET. I.
Title.
QA76.73.C153 G7428 2002
005.26'8--dc21 2002071751

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.
Microsoft Press books are available through booksellers and distributors worldwide.
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to mspinput@microsoft.com.

ActiveX, DirectX, IntelliSense, Microsoft, Microsoft Press, MS-DOS, MSDN, Visual Basic, Visual C++,
Visual SourceSafe, Visual Studio, Win32, Windows, and Windows NT are either
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and
company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: Danielle Bird
Project Editor: Sally Stickney
Technical Editor: Jim Fuchs

Body Part No. X08-81826

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments
As with any technical book, there are many people who have contributed to this book other
than those beneath the byline. First I have to mention Danielle Bird, acquisitions editor at
Microsoft Press, who helped to get this book started and smoothed its development. The ink
would never have found its way to the paper without the steady hand of project editor, Sally
Stickney, or without my copy editor, Holly Viola, who ensured that my English became an
English that you could read and understand. On the technical side, I am indebted to Jim Fuchs,
my technical editor at Microsoft Press, and to Christophe Nasarre, for reviewing the
manuscript and pointing out when my code would fail to compile or produce results that I did
not expect. I am also grateful to Ronald Laermans, Mike Hall, and Jeff Peil from the Visual
C++ team at Microsoft for answering my questions about the C++ compiler.

Finally, no book would issue from my PC without my wife. Ellinor provides love, support,
and copious quantities of tea while I write.

Richard Grimes

Kenilworth, United Kingdom

June 2002

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Introduction
The most immediately obvious feature of .NET is the runtime, which Microsoft calls the
common language runtime. The concept of a runtime is not new to Microsoft technologies—
Visual Basic applications have always carried around the baggage of the Visual Basic runtime,
and Microsoft’s foray into Java brought about the Microsoft Java Virtual Machine (JVM). But
unlike the Visual Basic runtime and the JVM, the .NET runtime is not constrained to a specific
language. Both Microsoft and third-party companies have produced several languages that can
produce code to run under the .NET runtime. Some, such as C#, are new languages, and others
use the syntax of existing languages. Microsoft Visual C++ .NET is an existing language that
has been extended to produce .NET code, and these extensions are called the Managed
Extensions for C++.

The Managed Extensions allow C++ classes to take advantage of .NET garbage collection and
memory protection. More important, they enable C++ code to access the .NET Framework
class library and libraries written by any of the other .NET-enabled languages; and other
languages can use managed libraries written in C++. No longer do C++ developers need to use
myriad technologies such as COM, DLL exported functions, and template libraries to get
access to the libraries they need to create a fully featured application; just about all the
necessary library code is available as .NET classes in the .NET Framework class library.

The Managed Extensions essentially define a subset of the C++ language—it looks like C++,
and it smells like C++, but it is really .NET. You might be asking yourself, “If .NET allows
me to choose between a multitude of languages, why should I use C++ to write my .NET
code?” C++ has always been a systems language, and it gives you the power and flexibility to
produce truly innovative solutions. This ethos has been carried over to the Managed
Extensions, in which you have not only the complete features of the .NET runtime and class
library but also the full power of the unmanaged language. Indeed, C++ is the only language
in which you can mix .NET code and unmanaged code in the same source file. The compiler
also allows you to seamlessly access all your unmanaged libraries: static-link libraries,
template libraries, COM objects, and DLLs. This easy access means that you can reuse all
your existing code and, in the few cases in which the .NET Framework class library does not
have suitable classes, use existing unmanaged libraries. Again, no other language gives you
these facilities, so no other language can be regarded as the .NET systems language.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Contents of This Book

This book is organized to take you end-to-end through the development process. I start by
describing the basic features of the language, and then I progress through .NET features such
as interop, delegates, and GUI applications. The last two chapters of the book focus on the
project management and debugging features, respectively, of Visual Studio .NET. You do not
need Visual Studio .NET to develop .NET code in C++, but as you’ll see from Chapter 6 and
Chapter 7, your work will be far easier if you use it. A more detailed description of the
contents of each chapter follows.

Chapter 1

In this first chapter, I cover the basic features of the Managed Extensions. I start by explaining
how to develop managed types and how these differ from unmanaged types, both in their
declaration and their use. I cover how to use managed arrays, interfaces, and exceptions. C++
written with the Managed Extensions follows the .NET model rather than the C++ model in
terms of inheritance and casts, so I conclude this chapter by describing how .NET differs from
unmanaged C++ in these respects.

Chapter 2

One of the reasons for using C++ is that it allows you to use existing unmanaged code in your
.NET projects. The Managed Extensions compiler has a technology quaintly called It Just
Works! (IJW). This technology allows you to use unmanaged libraries in managed projects
and to intermingle managed and unmanaged classes. In this chapter, I tell you how to use IJW
and give some insights into how it works.

.NET also has an attribute-based technology called platform invoke that allows any .NET-
enabled language to access code exported from a DLL. I explain how you can use platform
invoke and describe how you can customize the marshaling it performs. A variation of
platform invoke is COM interop, which is the final subject of this chapter. COM interop
allows managed code to use COM objects as if they were .NET objects, and it allows
unmanaged code to use .NET objects as if they were COM objects. I go over how COM
interop works and how you can register classes and generate the attributes required by COM
interop.

Chapter 3

Function pointers are useful in unmanaged projects because they allow function binding to be
performed at run time rather than at compile time. C++ virtual functions and COM interfaces
are based on function pointers, and function pointers also enable you to define notification
systems. .NET has its own version of function pointers—called delegates—that are type-safe,
eliminating one big disadvantage of unmanaged function pointers: namely, casting between
function pointer types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this chapter, I show you how to use delegates with C++, how this approach compares with
unmanaged function pointers, and how you can use delegates with unmanaged code. I also
explain how to make asynchronous calls through delegates (using a system-provided thread)
and talk about how to write multithreaded code with .NET. Finally, I clarify how .NET uses
delegates to implement a formal notification mechanism called .NET events.

Chapter 4

The .NET Framework augments Windows with a new graphics library called GDI+. This is an
unmanaged library, but the .NET Framework comes with .NET wrapper classes. The
windowing technology in .NET is called Windows Forms. You can draw on a form with
GDI+, and you can use a form as a container for controls. In this chapter, I explain how you
can create GUI applications in C++ with Windows Forms and describe how to implement
such applications using Win32 windows. I also show how to handle Windows messages
through .NET events and how to bypass this mechanism to get the most control over a
window’s behavior.

I also go over how to use managed resources and native resources efficiently in a managed
class so that resources are released when your application no longer needs them. Finally, I
define “managed” resources and explain how to add a managed resource to your application,
and discuss how to localize resources.

Chapter 5

In this chapter, I delineate how .NET code is stored in executable files. I start by explaining
the format of .NET assemblies and describing how they are implemented as Win32 portable
executable (PE) files. I then discuss how you can get information about .NET metadata and
code within an assembly by using COM objects the .NET Framework supplies. The .NET
runtime is implemented with unmanaged code, and Microsoft has designed the runtime so that
unmanaged code can get access to the runtime through COM objects. In this chapter, I explain
how to use these objects to access and configure the runtime from unmanaged code and how
to instruct the runtime to run managed code.

A managed application can be configured through an XML file associated with the
application. The runtime reads the configuration file when the application starts so that it can
get information about the facilities that the application requires. One of the big advantages of
the runtime is that it will load only the libraries that your application was specifically built to
use. You can configure the rules that the runtime uses to locate those libraries via the
configuration file. Your code can also access the information in a configuration file, and in this
chapter, I show you how to do this and how to extend configuration files and the API to read
them.

Finally, I describe code access security and demonstrate how to use it in your code. I also
show the default permissions that are required by .NET code written with Managed
Extensions for C++.

Chapter 6

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio .NET is a mixed managed and unmanaged application that integrates various
application-development tools. In this chapter, I explain how you can use the environment to
develop your projects. I cover the facilities of the editor and the tools that are provided to
allow you to manage your projects. I talk about the Visual Studio .NET project wizards and
the types of C++ projects that you can develop. I conclude the chapter with examples of the
types of managed projects that you can develop and describe how to customize the code
provided by the project wizard.

Chapter 7

The last stage of your development cycle is typically the testing stage: you need to test the
project to ensure that it works the way you intend it to, and when it does not work as expected,
you will need to debug the code to determine where the problem lies. Although the testing
stage often comes at the end of a development cycle, you can save yourself a lot of effort by
writing code up front that provides diagnostic information. In this chapter, I describe the
facilities that the .NET Framework offers to allow you to diagnose problems in your code and
explain how you can collect this diagnostic information.

Visual Studio .NET has an integrated managed and native code debugger, so once you have
identified a problem you can step through your code to pinpoint the source. I explain how to
use the debugger and its various facilities. I also talk about the special issues you need to
consider when debugging multithreaded code and applications that consist of more than one
process. Finally, I show you how to profile code. Visual Studio .NET does not provide a code
profiler, but the .NET Framework has support for providing profiling information through a
user-supplied COM object. I give an example of such a profiling object.

Appendix A

The .NET Framework class library is very comprehensive, and you’ll find code in it to
perform just about any task you could do previously with the C runtime library (CRT) or the
standard C++ library. In this appendix, I present, in a series of tables, the .NET code that is
equivalent to the most useful CRT functions and standard library classes. The intention of this
appendix is to provide a starting point for when you ask the inevitable question, “How do I do
this in .NET?”

Appendix B

This appendix is a personal list of further resources. This list is not exhaustive, and I am sure
that it is not the best list of .NET resources. However, I have provided the resources that were
particularly useful to me, and I hope that you’ll benefit from them too.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System Requirements

The first five chapters require only the C++ compiler (version 13). The .NET Framework SDK
is a free download from Microsoft (msdn.microsoft.com/netframework). The C++ compiler
supplied as part of the Framework SDK does not produce optimized code, nor does it provide
extensions like the unmanaged ATL Attribute Provider, but it is a fully featured C++ compiler
that can be used for both managed and unmanaged C++ development. If you want to learn
about the .NET Framework, the C++ compiler is the place to start.

The last two chapters use features of Visual Studio .NET. Visual Studio .NET includes the full
optimizing C++ compiler, and it also comes with unmanaged libraries: the complete CRT
library, the standard C++ library, and the combined ATL (ActiveX Template Library) and
MFC (Microsoft Foundation Class) libraries, all of which you can access from .NET code
(msdn.microsoft.com/vstudio). Visual Studio .NET also provides code wizards to create the
initial files of your application, tools to manage your projects, a fully featured editor, and an
integrated debugger. If you intend to develop projects larger than a handful of classes, you
should use Visual Studio .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Support

Every effort has been made to ensure the accuracy of this book. Microsoft Press provides
corrections for books through the World Wide Web at the following address:

http://www.microsoft.com/mspress/support/

To connect directly to the Microsoft Press Knowledge Base and enter a query regarding a
question or issue that you might have, go to:

http://www.microsoft.com/mspress/support/search.asp

If you have comments, questions, or ideas regarding this book, please send them to Microsoft
Press using either of the following methods:

Postal Mail:

Microsoft Press

Attn: Programming with Managed Extensions for Microsoft Visual C++ .NET Editor

One Microsoft Way

Redmond, WA 98052-6399

E-Mail:

MSPINPUT@MICROSOFT.COM

Please note that product support is not offered through the above mail addresses. For support
information regarding C++, Visual Studio .NET, or the .NET Framework, visit the Microsoft
Product Standard Support Web site at:

http://support.microsoft.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1
Managed Types
The Managed Extensions for C++ are extensions to the C++ compiler and linker to allow them
to create .NET code. The Managed Extensions use C++ keywords and syntax, but they follow
.NET rules for types and facilities. So, in effect, you have a language within a language. In
some cases, .NET has concepts that are not available in standard C++, and in other cases, it
has items that have similar names to items in C++ but with totally different behavior. To
extend the language for these new facilities and to distinguish between .NET and native C++
items, some new keywords have been added to the language. These new keywords , some new
syntax, two new pragmas, and a compiler switch constitute the Managed Extensions, which
colloquially gives us managed C++.

The Managed Extensions are extensions—that is, you can continue to use native C++, and the
standard rules of C++ will still apply to that code. Indeed, all of your existing code works with
code compiled for .NET: native C++, static libraries, and template libraries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

New Keywords in Visual C++ .NET

To allow you to distinguish between code written for the .NET runtime and code that will not
be managed by the runtime, Microsoft has introduced extensions to the C++ language with the
keywords in Table 1-1.

In addition, the compiler and linker have new switches for compiling .NET code; these will be
explained in more detail in Chapter 6. The most important new compiler switch is /clr. This
switch tells the compiler to compile all code to Microsoft intermediate language (MSIL),
regardless of whether the code is managed by the .NET garbage collector.

Table 1-1. New Keywords in C++ to Support Managed Code
Keyword Description

__abstract
Indicates that the class is abstract—that is, not all methods have an
implementation, and to use the class, you must derive from it.

__box
Used to box a value type. Boxing creates an object with the value of
the value type that has been boxed. (See the section “Boxing” later in
this chapter for more detailed information about boxing.)

__delegate
Declares a delegate type. Delegates are essentially type-safe function
pointers.

__event
Declares an event, a notification mechanism as part of a class. This
keyword indicates that the class can generate the event, and it adds
code to store the delegates invoked when the event is raised.

__gc
Identifies that a class is managed by the .NET garbage collector or that
a pointer points to a managed object.

__identifier
Used when the name of a type or member is a keyword in C++ and
indicates to the compiler to ignore the C++ meaning of the word.

__interface
When combined with the __gc keyword, the __interface keyword
allows you to declare a managed interface.

__nogc
Used to indicate that the type is not managed by the .NET garbage
collector or to indicate that a pointer points to a non–managed object.

__pin
Used on a pointer to pin the object it points to. This pinning means
that for the scope of the pointer the object will not be moved in the
managed heap during garbage collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__property
Indicates that a method is the get or set method for a property.

__sealed
Used on a class to indicate that the class is complete and cannot be
extended through class derivation.

__try_cast
This cast operator performs a run-time type check and throws a
managed exception if the cast fails.

__typeof
Operator used to obtain the Type object for a particular type.

__value
Indicates that the type is lightweight and is created on the stack rather
than on the managed heap.

When you use the /clr compiler switch, you also should have the following #using statement
somewhere in the project:

#using <mscorlib.dll>

This statement has two functions. First, it gives access to the metadata in the identified
assembly, which means that you can use the public types defined in the assembly. Second,
#using indicates to the linker to generate metadata in the output assembly to identify the
assemblies that the output assembly uses. Every assembly must use the types in mscorlib, and
that’s why you must include the previous #using <mscorlib.dll> statement. Notice that the
name given in the #using statement is the name of the file that contains the metadata, not the
name of the assembly.

The complete name of an assembly contains the culture, version, and public key token, as well
as the short assembly name. If available, all of this information for an assembly that your
assembly depends upon must be added to the dependent’s manifest. If you are likely to use an
assembly that will be installed in the global assembly cache (GAC)—a container for shared
assemblies—then it is important that the correct, full name of the assembly is placed in the
assembly that you are creating. There can be several versions of an assembly in the GAC, so
the .NET Fusion technology uses metadata in the dependent assembly to determine which
version to load. (Fusion is the system that handles locating and binding to assemblies.) The
#using statement does not look in the GAC for a metadata container, so you have to give the
name of (and possibly the full path to) a copy of this assembly outside of the GAC. The
system assemblies (mscorlib, System, System.Windows.Forms, and so on) are installed in the
GAC, but there are copies of their DLLs in the .NET Framework folder in the
%SYSTEMROOT% folder. The #using statement checks this folder automatically.

The #using statement takes the name of the metadata container in either angle brackets or

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The #using statement takes the name of the metadata container in either angle brackets or
quotes; it does not matter which you use. If you specify a path, the compiler will use this
information to locate the metadata. The exception is the mscorlib assembly. If you provide a
path to the mscorlib.dll file, the compiler will ignore your path information.

The search order is:

1. The full path specified in #using

2. The current working folder

3. The .NET Framework folder in %SYSTEMROOT%

4. The folders mentioned on the command line with the /AI compiler switch

5. The folders mentioned in the LIBPATH environment variable

The .NET Fusion technology uses specific rules (probing) to locate assemblies at run time
(which I will explain in Chapter 5). The #using search order is not the same as the Fusion
probing rules.

Note that I have been careful to say that #using takes the name of a file that contains metadata
rather than saying that you must provide an assembly. Metadata can be found in assemblies,
modules, and .obj files, and you can specify any of these files with #using. If you provide the
name of an assembly, the details of the assembly will be added to the manifest of the assembly
you are creating, so Fusion will be able to probe for, and bind to, the assembly at run time.
Provide the name of a module when you intend to use types in the imported module in your
assembly and you want the module to be part of your assembly. As a consequence, the
manifest of the assembly you are creating will have metadata for the module. Finally, you can
use an .obj file in the #using directive. Whenever you compile a source file, the .obj file will
have metadata for the types in the .obj file. If you want to use the types in an .obj file, the file
will also have to be linked to the assembly that you are creating. In this respect, #using is
similar to #include for native C++. When you specify a library assembly with #using, you will
get access to only the public types defined in the assembly. (I’ll explain how to declare public
types later in this chapter.) If you use #using on an .obj file, you will have access to both
public and private types.

Executables are assemblies in .NET and can export types. However, don’t be tempted to use
#using on an executable. Although the C++ compiler will compile the code, the .NET runtime
will complain when your code runs because when it loads the assembly, the runtime will see
that the assembly is not a library assembly (a DLL) and will throw a
BadImageFormatException exception.

To compile C++ to MSIL, the compiler must be invoked with the /clr switch. The #using
<mscorlib.dll> statement and the /clr switch go hand in hand—if you have one, you have to
use the other. This switch tells the compiler that the code should be compiled as MSIL. All
managed code will be compiled as MSIL, but most native (nonmanaged) code will also be
compiled as MSIL. This means that if you have classes that will be created on the unmanaged
C++ heap, the code will still be MSIL and will be run by the .NET runtime. There are
exceptions (which I will outline later), but essentially all code will be compiled to MSIL.

MSIL and Native Code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The C++ compiler will compile the code in all C++ functions—managed and nonmanaged
classes—to MSIL, with a few exceptions. The first case is when you specifically identify that
you do not want code to be MSIL, and you do this with a pragma. One gripe often made about
.NET is that assemblies have metadata and IL that can be readily viewed with the IL
disassembler and hence your algorithms are an open secret. One way that you can get around
this problem is to compile the code to native x86.

#pragma unmanaged
char Encrypt(char cClear, char cKey)
{
 return cClear ^ cKey;
}
#pragma managed

The code that encrypts a string can pass each character to Encrypt. The following code shows
a simple use of this function. This code assumes that no data is lost when the characters in the
managed string strClear are converted from the 16-bit Unicode characters that System::String
uses internally to the 8 bit char.

// encrypt.cpp
// strClear is the string to encrypt.
// strKey is the key to encrypt the data.
// bEncrypted is an array with the encrypted data.
// Create an array to hold the encrypted data.
Byte bEncrypted[] = new Byte[strClear->Length];
int posKey = 0;
for (int pos = 0; pos < strClear->Length; pos++)
{
 // String::Chars[] returns the character
 // at the specified position.
 bEncrypted[pos] = Encrypt(strClear->Chars[pos],
 strKey->Chars[posKey]);
 posKey++;
 if (posKey == strKey->Length) posKey = 0;
}

You could use code such as this if you wanted to encrypt data before passing the byte array to
a stream—for example, FileStream to write to a file or NetworkStream to pass the data to a
socket. My simple encryption algorithm XORs each character of the cleartext with the
corresponding character in the secret key. Because I do not want my secret algorithm to be
widely known, I have compiled it as native code. When a snooper uses ILDASM to view my
assembly, he will see the following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.method public static pinvokeimpl(/* No map */)
int8 modopt([Microsoft.VisualC]Microsoft.VisualC.NoSign
SpecifiedModifier)
 modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)
Encrypt(
 int8 modopt(
 [Microsoft.VisualC]Microsoft.VisualC.NoSign
SpecifiedModifier) A_0,
 int8 modopt(
 [Microsoft.VisualC]Microsoft.VisualC.NoSign
SpecifiedModifier) A_1) native unmanaged preservesig
{
 .custom instance void
 [mscorlib]System.Security.SuppressUnmanagedCode
SecurityAttribute::
 .ctor() = (01 00 00 00)
 // Embedded native code
 // Disassembly of native methods is not supported.
 // Managed TargetRVA = 0x1000
} // end of method 'Global Functions'::Encrypt

I will explain the modopt modifier in Chapter 2. In essence, the C++ compiler has generated a
managed function that wraps the unmanaged function. Because ILDASM cannot disassemble
x86 machine code, the snooper does not get to see my secret algorithm.

Of course, a determined hacker could access the native code referenced in the managed
function and use an x86 disassembler to get the assembly code for the algorithm, as shown
here:

Encrypt:
00401010 push ebp
00401011 mov ebp,esp
00401013 movsx eax,byte ptr [cClear]
00401017 movsx ecx,byte ptr [cKey]
0040101B xor eax,ecx
0040101D pop ebp
0040101E ret

It is interesting to compare this with the IL that would be generated if the method had been
compiled to IL, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.maxstack 2
IL_0000: ldarg.0
IL_0001: ldarg.1
IL_0002: xor
IL_0003: conv.i1
IL_0004: br.s IL_0006
IL_0006: ret

In this simple example, it is clear in both cases what the algorithm does. In a more complicated
algorithm—one that makes library calls, makes Boolean checks, or performs loops—there will
be a marked difference between the disassembled x86 and IL. The main difference will be that
without symbols there will be no indication in the disassembled x86 about the procedure calls
that are made, whereas in IL, metadata identifies the calls.

The compiler will check the code that you are compiling to see whether the code can be
compiled to MSIL. This check is important if you are compiling existing C++ code. If a
function contains code that cannot be compiled to MSIL, the entire function will be compiled
to x86 native code. The cases when this compilation to x86 native code happen are:

Functions that have __asm blocks

Functions that have varargs parameters In fact, there is an equivalent of varargs in
.NET, and C++ can call such methods. However, the current version of C++ cannot
compile methods that have vararg parameters.

Functions that call setjmp

Functions with intrinsics such as _ReturnAddress and _AddressOfReturnAddress that
directly access the machine code.

Functions with variables that are aligned types (using __declspec(aligned))

With these rules taken into account, most code will compile to MSIL and the remaining code
will compile to native x86.

C++ Primitive Types

The .NET Framework defines value types for all the primitive types used in C++. (Value types
will be explained later in this chapter, in the section “Managed Types and Value Types.”) You
can continue to use C++ types, and the compiler will ensure that the correct .NET type is used.
These types are shown in Table 1-2. All of these types are defined in the System namespace,
and I have given the corresponding value from System::TypeCode enumeration. If you use the
C++ equivalent type (other than void*, std::time_t, and std::wstring<>), the compiler will use
the equivalent .NET type. If your code uses void*, std::time_t, or std::wstring<> and you
want to pass the values to .NET code, you will have to change your code to the equivalent
.NET type.

I have included the basic types in the .NET Framework for which there are no equivalents in
C++ or the C++ standard library: DBNull and Decimal, which are used to represent a NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C++ or the C++ standard library: DBNull and Decimal, which are used to represent a NULL
value in a database and a decimal value with 29 significant digits, respectively. In addition, I
have listed the nearest equivalent in C++ terms for three types: DateTime, to hold a time;
String, which is a string type that holds a Unicode string; and Object, which is the top class in
all class hierarchies in .NET and hence an Object* is used in the situations when a void* is
typically used in C++.

Table 1-2. Primitive .NET Value Types and Their Equivalent C++ Types
.NET Type Size

(Bits)
TypeCode C++

Equivalent
Types

Boolean 8 0x03 bool

Char 16 0x04 wchar_t

Byte 8 0x06 unsigned char

SByte If you use the /J compiler switch, a C++ char
is compiled as a Byte.

8 0x05 char

Int16 16 0x07 short

UInt16 16 0x08 unsigned short

Int32 32 0x09 int

UInt32 32 0x0a unsigned int

Int32 32 0x09 long

UInt32 32 0x0a unsigned long

Int64 64 0x0b __int64

UInt64 64 0x0c unsigned
__int64

Single 32 0x0d float

Double 64 0x0e double

DateTime — 0x10 std::time_t

DBNull — 0x02 —

Decimal — 0x0f —

Object — 0x01 void*

String — 0x12 std::wstring<>

Notice that int and long have the same underlying .NET Framework type: Int32. Thus, the
same code will be generated for int as for long, and this behavior might appear to imply that a
method cannot be overloaded on long and int. However, the C++ compiler will use a special
modifier (Microsoft::VisualC::IsLongModifier) to indicate that the type is long rather than int,
so the runtime will treat methods overloaded with the long and int parameters as being
different.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Each of the .NET types for primitive types derives from System::ValueType. These .NET
types have methods to convert to other primitive types, to compare values, to create a value
from a string, and to convert to a formatted string; and they each have a method named
GetTypeCode that returns a TypeCode enumerated type. This TypeCode is used to identify the
particular type, so you can pass a primitive type through a ValueType pointer and use the
TypeCode to identify which type is being passed. Here are some examples:

// Use a .NET primitive type.
Int32 i32 = 99;
// Convert to a string.
String* s = i32.ToString();
// Use as a C++ primitive type.
int i = i32;

The compiler will automatically convert C++ primitive types to the .NET primitive types, so
you can assign an int to an Int32 and vice versa. To call the other conversion methods (for
example, ToSingle and ToDecimal), the call must be made on a managed interface and this
requires that the type be boxed. I’ll cover boxing in the section “Boxing” later in this chapter.
This interface is called IConvertible.

The System::Convert class can be used to convert from one primitive type to another. You can
use the generic ChangeType method, which takes Object* pointers to the value you want
converted and the type you want to convert the value to, but since most primitive types are
value types, this operation will involve boxed values. The Convert class also has overloaded
methods to convert between specific types:

int i = 0;
// true is nonzero.
bool b = Convert::ToBoolean(i);
String* s = Convert::ToString(i);

In addition, most .NET types will have a ToString method to get a string version of the object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Managed Types and Value Types

.NET languages are described as consumers or extenders. A consumer language can merely
use existing .NET types whereas an extender—such as C++—can create new types. .NET
defines two different sorts of types, depending on where instances of the type are allocated
and how they are used. Reference types are created on the garbage collector managed heap,
where allocation and deallocation is cheap but heap cleanup during garbage collection is
expensive. Reference types are usually passed to methods by reference. Value types are
typically created on the stack and are passed to methods by value.

Garbage collected reference types appear to solve the problem of leaking memory—your code
merely has to allocate the objects, and the garbage collector does the deallocation. However,
garbage collection is more important than merely solving memory leaks within client code. In
a distributed application, memory allocation is extremely important because objects can be
accessed across process or machine boundaries, which introduces the issue of which code has
the responsibility to perform the cleanup. Furthermore, when data is passed from one context
to another by value, the data has to be serialized into a form that can be transmitted and then
deserialized at the other end in the form that the receiving code expects to get. In both cases,
memory allocation has to be performed, and this brings into question how long these memory
buffers should exist and who has the responsibility of releasing them.

In synchronous code, the issues were straightforward because both sides of the call know
when a buffer is no longer being used. COM provided rules about who had the responsibility
of managing memory based on parameter attributes, and this strategy worked well in most
cases. However, when you passed variable-length buffers out of a method, the code got a little
messy and involved using a global memory manager. (Allocations are performed with
CoTaskMemAlloc, and memory is freed with CoTaskMemFree.) With asynchronous COM
code, memory management started to get more complicated and required a final clean-up call
to be made when it was clear that the call was completed. .NET makes asynchronous calls
easy (as you will see in Chapter 3), and you can decide to ignore any return values from the
call, in which case the final clean-up call is not made, but because memory is allocated on the
managed heap, this lack of a clean-up call is not a problem. When I cover asynchronous
methods in Chapter 3, you’ll see the great power of using managed types.

If your application uses many small objects with short lifetimes, individually allocating these
objects on the heap can be a significant performance hit. For this reason, the .NET Framework
provides value types. Value types are short-lived, small objects that are usually created on the
stack. Allocating them is cheap: when you declare a value type variable, the stack pointer is
merely moved to provide space. Deallocation is also cheap and is automatic—when the
variable goes out of scope, the stack pointer is moved to indicate that the space is now
available. Furthermore, accessing the data members involves direct access, so a dereference is
not required. Because value types are normally created on the stack, their lifetime is short
(except, of course, for those created in the entry point method).

Managed Objects

In C++ you identify that a class is managed by the garbage collector by using the __gc
modifier. This modifier can be used on classes and structs, and it can be used on pointers to
explicitly specify that the pointer is to a managed object. All __gc class members are private

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

explicitly specify that the pointer is to a managed object. All __gc class members are private
by default; __gc struct members are public. This scheme follows the usual C++ meaning of
these types, and I will refer only to classes in the following discussion.

Here is an example of a managed type:

__gc class DataFile
{
 System::String* name;
public:
 DataFile(System::String* n) : name(n){}
 // Other members omitted
};

This class is named DataFile. I have used the C++ public keyword to indicate that the
constructor can be accessed by any code outside of the class, and I have used the default
member access to indicate that the name field can be accessed only by code within the class.
The name field is a managed string, and in this example I have given the fully qualified name,
including its namespace. I will return to System::String and to namespaces in the section
“Managed Strings” later in this chapter.

The name field is initialized in the initializer list of the constructor, and the syntax here is
similar to native C++: the pointer of the name field is initialized with the pointer n, but it does
not mean that a constructor is called. Because the string is a reference type, all that occurs is
an assignment of the reference. This behavior is important because when an instance of
DataFile is created with this constructor, the name field is initialized with a reference to a
managed string.

Instances of this class can be created only on the managed heap, as shown in the following
code:

// strFile is a managed string initialized elsewhere.
DataFile* df = __gc new DataFile(strFile);

You cannot create instances of a __gc class on the stack. If you attempt to create a stack-based
instance, the compiler will issue an error (C3149). Notice that I have explicitly used the __gc
modifier on the new operator to indicate that the managed operator is used. You do not have to
use this syntax. If you omit this modifier, the compiler will still use the managed new operator
because the class that is being created is managed.

If you omit the __gc modifier from the class declaration or you use the __nogc modifier, a
native C++ class will be created, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Must compile with /EHsc to enable unmanaged exception handling
__nogc class natDataFile
{
 std::wstring name;
public:
 natDataFile(std::wstring n) : name(n){}
 // Other members omitted
};

This code can exist in the same source file as DataFile, and as you’ll see in Chapter 2, you can
use pointers to native C++ objects in __gc classes and pointers to __gc objects in native C++
objects. I will leave the details until Chapter 2, but note that you cannot use a raw __gc pointer
as a data member of a native C++ object. The reason is that the native object will not be
allocated on the managed heap and the pointers to the object will not be managed. (You can
explicitly identify them as __nogc pointers.) This arrangement means the garbage collector
will not be able to identify when the native object is destroyed and thus when the reference to
the managed data member is freed. Instead, the native class must manage the reference itself
and tell the runtime when the reference should be treated as being freed. I’ll explain how to do
this in Chapter 2.

All __gc classes look similar to native C++ classes, but they are subject to the .NET rules of
reference types. Some of these rules are similar to C++; others apply more restrictions. The
most significant restriction is that .NET allows only single-implementation inheritance, which
means you cannot derive a class from more than one other class.

Methods on Managed Types

Managed types can have methods, and methods contain code. There are several types of
methods that can be called—for example, the metadata devices, properties, and events are
really descriptions of methods that can be called (respectively, to get or set a property value;
and to add or remove a delegate from an event and to raise that event). Methods can be called
on a type (static methods) or on an instance. The default is for a method to be an instance
method, but this can be changed with the static keyword. Methods are called with a special
calling convention named __clrcall. You do not specify this (because the compiler will not
recognize the keyword), and the only time that you will see this mentioned is in the error that
is generated if you attempt to apply a different calling convention on a class method.
However, you can apply other calling conventions to global functions, as I’ll explain in
Chapter 2. Note also that __gc class methods cannot be marked using the C++ const or volatile
keywords.

Class methods can be overloaded. The .NET specification allows methods to be overloaded by
return type as well as parameters, but this has not been carried over to the Managed
Extensions. Instead, the normal C++ rules apply: methods can be overloaded only on the
parameters. There is an exception to this C++ rule: if you define a static operator named
op_Explicit or op_Implicit to perform conversions between managed types, the operator can
be overloaded on the return value. Native C++ methods can have default values for parameters
so that the method can be called without mentioning the parameter. Default parameters are not
legal in .NET. A method on a __gc type with a default parameter will not compile and will

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

legal in .NET. A method on a __gc type with a default parameter will not compile and will
generate the error C3222.

Methods can be implemented inline in the class, or you can separate the declaration and the
implementation into separate header and .cpp files. The concept of inlining is redundant for
several reasons. First, if a method is public, it could be used by another assembly unknown to
the compiler at compile time, so the method must be available as a single item. Second,
inlining code is actually performed by the JIT compiler. The first time a method is called, the
JITter will analyze the code, and it can decide to optimize the JITted method by compiling
small methods as inline code. This decision is not yours to make; it is purely the choice of the
JITter, so the C++ inline keyword has no effect.

The method parameters can be an instance of any .NET type, and they can be in, out, or in/out.
By default a parameter is an in parameter, which means that it is passed from the calling
method to the called method via the stack. If the parameter is an instance of a __gc reference
type, the parameter will be passed via a pointer, so it is possible that the called method can
change the instance by accessing its members through the pointer. It is the pointer that is
treated as an in parameter.

The parameter is in/out if it is passed in both directions, that is, initialized in the calling
method and then used in the called method before being reinitialized and passed back to the
calling method. To use an in/out parameter in managed C++, the parameter should be passed
by reference, which means that a C++ reference or a pointer to a __gc reference type pointer
should be used, as shown here:

void UseDataFile(DataFile __gc*& file)
{
 if (file == 0)
 file = new DataFile(S"Default.dat");
 // Use file here.
}
void PassDataFile()
{
 DataFile __gc* df; // Initialized to zero automatically
 UseDataFile(df);
 // Use df here.
}

UseDataFile takes a reference to a DataFile __gc* variable, and if this value is zero, the
method creates an instance. Because the parameter is a reference, the variable in the calling
code, PassDataFile, will be initialized with this new object, so this method can call the
members of the new object. In this code, I have explicitly called the pointer DataFile __gc*&,
but because the class is a __gc type, it is perfectly acceptable to omit the __gc modifier and
call the parameter DataFile *&.

C++ references are fine, but in this situation I think that the call to UseDataFile is confusing
because it is not obvious that an instance can be returned; hence, I prefer to use the equivalent
syntax using pointers and the address-of operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void UseDataFile(DataFile __gc* __gc* file)
{
 if (*file == 0)
 *file = new DataFile(S"Default.dat");
 // Use file here.
}
void PassDataFile()
{
 DataFile __gc* df; // Initialized to zero automatically
 UseDataFile(&df);
 // Use df here.
}

Again, it is acceptable to omit the __gc modifier on the pointer declarations. Although it
appears that PassDataFile calls the address-of operator, the address is not obtained in this call.
The compiler recognizes the use of & here to mean that the parameter is passed as in/out. The
same IL will be generated whether you use a reference or a pointer, but if the code is in the
same C++ file, you cannot mix the two—the C++ compiler will refuse to allow you to pass a
pointer to a method that requires a reference. If you call UseDataFile (either version) from C#,
the parameter should be passed using the ref modifier. The runtime does not distinguish
between parameters passed as in/out or passed as out within the same context. However, some
languages do make a distinction; C#, for example, uses the out and ref modifiers. The
preceding examples pass the parameter as in/out. To indicate that the parameter should be
passed as an out-only parameter, you should use the [Out] attribute of the
System::Runtime::InteropServices namespace. When it sees the [Out] attribute, the compiler
adds the [out] Note that the attribute you add in C++ has an uppercase O whereas the metadata
attribute that is applied has a lowercase o. metadata attribute to the parameter.

In a similar way, by default a value type is passed as an in parameter. Value types, of course,
are not passed through a pointer. To pass a value type as in/out, you have to use a managed
pointer, and to pass the parameter as an out parameter, you have to apply the [Out] attribute.
In this code, I have explicitly used __gc on the pointer because int is a primitive C++ type, and
without __gc an unmanaged pointer will be used. It is interesting to note that in MSIL a
managed pointer is identified with & whereas an unmanaged pointer is identified by a *.

void PassValueTypes(int inParam, int __gc* inoutParam,
 [Out] int __gc* outParam);

.NET classes can have virtual methods, so the runtime determines, from the type of this
pointer when a method is called, which particular implementation of the method will be called.
In fact, the runtime can call a virtual method virtually or nonvirtually, and the compiler
decides which. When your code calls a method on a type that is declared as virtual, the C++
compiler will always call those methods virtually. Virtual methods are usually identified with
the C++ virtual keyword. Additionally, .NET classes can be abstract—that is, you do not
intend that instances of the class should be created and you do intend that it should be used
only as a base class. There are two ways to do this. The first way is to use the __abstract

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

only as a base class. There are two ways to do this. The first way is to use the __abstract
keyword on the class declaration, as shown here:

// abstract.cpp
__gc __abstract class FileBase
{
protected:
 Stream* stm;
public:
 // Get a stream to read/write to the disk.
 virtual Stream* GetStream(){ return stm; }
 // Other methods omitted
};

Because FileBase has the __abstract modifier the class is abstract, even though the method
has an implementation. The compiler puts the abstract metadata attribute on the class in the
assembly so that code in other languages is also aware that the class cannot be created. A class
derived from FileBase can override the GetStream method, or the derived class can leave the
method as-is and allow client code to access the method through the pointer to an instance of
the derived class. This pattern is useful for providing partial implementations of classes, and
the documentation should indicate the extra code that should be implemented.

You do not have to use the __abstract keyword. If one or more virtual methods have no
implementation, the compiler will generate the metadata to indicate that the class is abstract
(although it is useful to use __abstract because it gives a visual clue in your code what your
intentions are).

// abstract.cpp
__gc class FileBase2
{
protected:
 Stream* stm;
public:
 // Get a stream to read/write to the disk.
 virtual Stream* GetStream() = 0;
 // Other methods omitted
};

In this case, I have used the C++ syntax to identify a pure virtual method. In C++, any class
that has a pure virtual method is abstract. The compiler also adds the metadata attribute
abstract to the method to indicate that it has no implementation, and the pure virtual syntax is
the only way that you can get this attribute applied. To use FileBase2, you not only have to
derive a class from it, but you also have to implement the pure virtual methods. In this case,
the pure virtual methods indicate an interface that derived classes should support. This system
was how the C++ bindings for COM interfaces were implemented in versions of Visual C++
prior to the .NET Framework SDK and Visual Studio .NET. The new version of the compiler
introduces a new keyword, __interface, that enforces the semantics of interfaces, which I will

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

introduces a new keyword, __interface, that enforces the semantics of interfaces, which I will
explain in the section “Managed Interfaces” later in this chapter. .NET allows multiple
interface inheritance, but unlike native C++, abstract classes are not treated as interfaces. So,
the rule is that a class can derive from at most one class and from any number of __interfaces.
Methods that are used to implement interfaces are virtual (but you do not have to mark them as
such).

The antithesis of __abstract is __sealed. This keyword can be applied to virtual methods and
to classes. When applied to an overridden virtual method, it indicates that the method is
complete; the implementation cannot be overridden in a derived class. It is nonsensical to
make a method both virtual and sealed because virtual implies that the method can be
overridden, but sealed prevents overriding. However, the compiler does allow this usage.
When one method is sealed, the class is marked as sealed in its metadata. If you apply the
__sealed keyword to a class, all the methods are considered to be sealed. Think carefully when
you apply the sealed keyword to a class because the keyword means that another developer
cannot extend your code, and do you know about all uses other developers might have for
your code? The only reason that I can think of for using sealed on a class is to prevent other
developers from accessing protected members.

Constructors

Constructors are used to initialize a newly created instance of a class. In managed C++,
constructors of __gc classes are declared in the same way as in native C++: the name of the
class is used as if it is a method without a return type. In metadata, a constructor has the
special name of .ctor. Constructors can be overloaded, but like methods, they do not permit
you to define default values for parameters. You are able to pass in/out and out parameters to
constructors, although returning a value from a constructor goes against the reason to call the
constructor—which is to construct the object.

Classes can also have a static constructor (also known as a type constructor). A static
constructor of a .NET class created with C++ is called just before the first access is made to a
member. The static constructor is called by the runtime and thus you are not able to pass any
parameters to it. This arrangement means that only one, parameterless static constructor is
allowed on each class. In metadata, a static constructor is named .cctor. If your class has a
static field and you initialize this inline, the compiler will generate a static constructor with the
code to initialize the field; if you define a static constructor, the compiler will put the
initialization code before your code.

public __gc class Data
{
 static Data()
 {
 Console::WriteLine(S"we are called {0}", str);
 }
public:
 static String* str = S"the Data class";
};

In this code, there is a static member named str; this member is initialized to a string within the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this code, there is a static member named str; this member is initialized to a string within the
class. (Contrast this behavior to native C++, where only constant static integral members can
be initialized like this.) The class also has a static constructor that prints out the value of the
static field. This class is fine because the compiler will inject code before the call to WriteLine
to initialize the string to the specified value.

ldstr "the Data class" // Initialize the string...
stsfld string Data::str // ... and store it in the
 // static field.
ldstr "we are called {0}" // Load the format string.
ldsfld string Data::str // Load the parameter,
 // and call WriteLine().
call void [mscorlib]System.Console::WriteLine(string, object)

Finally, it is worth pointing out that because reference types are created on the managed heap
and the garbage collector tracks the pointers that are used, you cannot define a copy
constructor on a class. If you want to make an exact copy of an object, you should implement
ICloneable and call the Clone method.

Operators

Managed types can implement .NET operators, but I will leave the details until much later in
the chapter, in the section “Managed Operators.” In this section, I will make a few comments
about C++ operators. Class instances are created using the operator new. For a __gc managed
class, this operator is defined by the runtime, so you cannot create your own operator new on
the class. Similarly, because objects are removed from the heap by the garbage collector, you
cannot implement operator delete, and because the garbage collector manages pointers, you
cannot define operator &.

Your access to a managed object should be through its members. You cannot change the
pointer to the object, and you cannot increment a whole object pointer. Thus, the C++ sizeof
and offsetof operators do not work. There are cases when you might need to know the size of
an unmanaged type represented by a .NET value type or the position of a member within that
class (for example, if you are defining custom interop marshalling). In this case, you can use
Marshal::SizeOf and Marshal::OffsetOf (in the System::Runtime::InteropServices
namespace). However, these do not work on managed objects.

Value Types

I mentioned earlier that value types are typically small, short-lived objects and they are usually
created on the stack. In managed C++, you can define a value type as a class or a struct. The
important point is that the value type is marked with __value, as shown here:

__value class Point
{
public:
 int x;
 int y;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

You cannot create a value type directly on the managed heap. Typically, they are created on
the stack.

Point p = {100, 200};

This example shows an initializer list used for the value type. The compiler will generate code
to pass 100 to the first member (x) and 200 to the second member (y). If an initializer list is not
used, the members will be initialized to their default values, which is zero for primitive types.
A value type can also implement constructors (including a static constructor), but if you define
a constructor, you cannot use an initializer list to initialize an instance.

__value class Point
{
public:
 int x;
 int y;
 Point(int i, int j) : x(i), y(j) {}
 // Default constructor to define the default value of this type
 Point() : x(-1), y(-1) {}
};
void Useit()
{
 Point p(100, 200);
}

A value type is implicitly sealed; you do not have to apply the __sealed modifier. A value type
cannot derive from a __gc type. Thus, the only methods that you can override in the value
type are the methods of System::ValueType, which is the base class of all value types.
Methods inherited from System::ValueType are virtual, but other than these, it makes no sense
to define new virtual methods on a value type.

Value types are typically used as records of data—much as you would use a struct in C. By
default, the items are sequential—that is, in memory the fields appear in the order that they are
declared, but the amount of memory taken up by each member is determined according to the
.pack metadata for the method. (The default is a packing of eight.) You can change this
behavior with the [StructLayout] pseudo custom attribute (in the
System::Runtime::InteropServices namespace). This attribute can take one of the three
members of the LayoutKind enumeration: if you use Auto (the default for reference types), the
runtime determines the order and amount of memory taken up by each member (this amount
will be at least as large as the size of the member); if you use Sequential (the default for value
types), just the order is defined, the actual space taken up is determined by the size of the
member and the packing specified. The final value you can use is Explicit, which means that
you specify the exact layout of members—their byte location within the type and the size of
each member—and you do this with the [FieldOffset] attribute. The [StructLayout] pseudo
custom attribute adds the auto, explicit, or sequential metadata attribute to the type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here is an example of using LayoutKind::Explicit:

// union.cpp
[StructLayout(LayoutKind::Explicit)]
__value class LargeInteger
{
public:
 [FieldOffset(0)] int lowPart;
 [FieldOffset(4)] int highPart;
 [FieldOffset(0)] __int64 quadPart;
};

The first two members are 32-bit integers. Thus, the first member appears at offset 0 within the
type and the second member appears at offset 4. However, notice that I have also intentionally
put the third member (quadPart) at offset 0. There are no unions in .NET, but by using
[StructLayout(LayoutKind::Explicit)] and [FieldOffset] like this you can simulate a union.
Here, the quadPart member will be a 64-bit integer. The lower 32-bits can be obtained
through the lowPart member, and the higher 32-bits through the highPart member.

Value types are typically small, which usually means that they contain primitive types. There
are no restrictions to the types that you can use. A value type can contain pointers to __gc
types, which will be allocated on the managed heap. If the value type does not contain __gc
pointers, it can be created on the unmanaged heap by calling __nogc new. (Of course, you
have to remember to delete these allocated members.) Value types cannot be created directly
on the managed heap. There are two cases when a value type will appear on the managed
heap: when it is in a managed array or when it is a member of a __gc type.

Enumerations

Enumerations are value types and have similar characteristics (allocated on the stack,
implicitly sealed). However, enumerations do have some distinct differences. For a start,
enumerations are derived from System::Enum (derived from System::ValueType), which gives
access to methods to convert enumerated values to other types, to get the names and values of
members, and to create an enumerated value from a string. Further, you cannot provide
implementations of methods on enums.

Enumerated values are integral types. You can specify the underlying type that will be used.
The syntax looks like inheritance, but you do not specify an access level.

// enums.cpp
__value enum Color : unsigned int {RED=0xff0000,
 GREEN=0xff00, BLUE=0xff};

Here I have defined a new enum named Color that has 32-bit values. The enumeration has

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here I have defined a new enum named Color that has 32-bit values. The enumeration has
three items, and I have explicitly given them values. If you omit a value, the item will have the
incremented value of the previous item (or zero for the first item). Of course, the items in the
enum are not members in the same sense as other value types. The items are named values for
the enum. Thus, an instance of Color can be initialized using an integral value or the named
value.

Color red = Color::RED;
Color white = (Color)0xffffff;
Color cyan = (Color)(Color::BLUE │ Color::GREEN);
Color gray = (Color)0x010101;

Here I have qualified the name of the enumerated value with the name of the enum; this means
that there is no ambiguity. It is possible to omit the enum name (to get a weak enumerator
name), and the compiler will search for an appropriate value. If the compiler finds another
symbol with the same name, you might not get the result you expect. For example:

Color red = RED;

This will initialize red with a value of 0xff as long as RED is not defined as a symbol. If you
define another enum, then there will be a problem.

__value enum UKTrafficLight {RED, AMBER, GREEN};

Then the compiler will complain because it does not know whether RED refers to Color or
UKTrafficLight. Further, if you declare a variable with the same name

int RED;

the compiler will attempt to convert the integer variable to an enum, and because no implicit
conversion exists, you will get an error. I find this error dangerous because as I have shown
previously, you can assign an integral value to an enum variable as long as you cast to the
enum type. (See the earlier white and cyan examples.) The error caused by using a weak
enumerator name indicates that an explicit cast will solve the problem, but in fact it makes the
problem worse. It is always better to use qualified names for enumerators. The compiler
allows you to define anonymous enums and will generate a name for you. However, an
anonymous enum implies that you will use weak enumerator names.

Normally, when you call System::Object::ToString on an object you will get the string version
of the value of the object returned. ToString called on an enum does a little more work. First
ToString checks to see whether the [Flags] attribute has been applied. The documentation
says that the members of such an enum can be combined with the bitwise OR operator, but
C++ still treats the value as the underlying integral type and (as I showed earlier) you have to
cast to the enum type. However, without the [Flags] attribute, ToString expects the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cast to the enum type. However, without the [Flags] attribute, ToString expects the
enumerated value to be a single item from the enum. If this is the case, the enum item name
will be returned. If I call ToString on the red variable I mentioned earlier (I’ll mention how in
a moment), the string “RED” will be returned. If ToString cannot find a single item that
matches (for example, white, cyan, and gray defined earlier), a string is returned that
represents the number. When ToString sees the [Flags] attribute, the method will attempt to
build a string made up of a comma-separated list of the names of the items in the enum that
constitute the value. If the number cannot be represented completely by the items in the enum,
the string representation of the number is returned. So if Color had the [Flags] attribute, the
formatted string for white will be “RED, GREEN, BLUE” whereas gray will return 65793 (if
the default formatting is used).

Boxing

Value types can have methods, and you access these through the dot operator just like any
other member of the value type. Value types also derive from System::ValueType (directly, or
in the case of enums, indirectly through System::Enum). However, if you look up ValueType,
you’ll see that it is a __gc type and not a value type, which means that its members should be
accessed through a __gc pointer and not a value type instance. .NET allows you to convert a
value type to a __gc object through a process named boxing. Boxing is explicit in C++ (unlike
other languages supported by .NET) because the operation is not without a performance issue,
so you have to specify that a boxed value is being used rather than the value. When you box a
value type, the runtime creates an object on the managed heap that has an exact copy of the
value type being boxed. The type of this object on the heap is called the boxed type. Here is an
example using the Color enum declared in the last section:

Color cyan = (Color)(Color::GREEN │ Color::BLUE);
__box Color* boxedCyan = __box(cyan);
Console::WriteLine(boxedCyan->ToString());

Here I have used the __box operator on the cyan value to get a pointer to an object of type
__box Color. This object is on the managed heap, so I can call ToString using pointer syntax,
and I can access any of the other public members defined on the value type. If the value type
overrides a method in ValueType, then I have the choice of accessing the method through the
value type (with the dot operator) or through the boxed type (through the -> operator).

Primitive types are value types, and they implement methods that allow you to convert
instances to other types. These methods are part of the IConvertible interface, and to get
access to this interface, you have to box the object first, as shown here:

Int32 i = 42;
__box Int32* b = __box(i);
IConvertible* cvt = b;
Double d = cvt->ToDouble(new NumberFormatInfo);
Console::WriteLine(d);

Note that if a value type is boxed, a copy of its fields are made. The boxed object is a clone of
the value type but located on the managed heap. Consider the Point class I showed earlier.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Point p1(100, 200);
__box Point* p2 = __box(p1);
p2->x = 300;
Trace::Assert(p1.x != p2->x);

When a change is made to a member of the boxed object, it affects the value on the managed
heap, not the value type, which is why I have performed an assert. (See Chapter 7 for a
description of asserts.) In this case, the assertion is true because p1.x is not equal to p2->x.
This behavior is one reason why it is important that the C++ team has decided to provide
boxing through an operator. If you intend to call a method of System::Object on the boxed
object, you can make the type of the pointer Object*; however, I would advise against this
practice because you cannot specify that the pointer is a boxed type. (You cannot use __box
Object* because you can box only value types.)

You will have to box a value type whenever you pass a value type to a method that takes an
Object* pointer. The most frequent occasion when you will box a value type is when you pass
value types to Console::WriteLine or when you put value types into a collection.
Console::WriteLine has many overloads, some of which take value types, so the following
statement will compile and run because there is an overload that takes an Int32 parameter:

Console::WriteLine(999);

If I want to pass a format string to print the integer in hex, I could try this:

// Does not compile
Console::WriteLine(S"{0:x}", 999);

This statement will not compile because no overload exists that takes a string and an Int32.
The nearest version takes a string and an Object* pointer, so you can get the line to compile
by boxing the value type.

The System::Collection namespace has various general-purpose classes. These classes are
generic, so they contain Object* pointers. Thus, you have to box value types to create an
object on the heap. If you have many items that you want to put into a collection, boxing each
one is inefficient. (Value types exist precisely to avoid having many small items on the heap.)
The alternative is to use an array.

Once a value type has been boxed, you can obtain a managed pointer to the value type from
the boxed object, and you can initialize a value by dereferencing the pointer. (Pointers to value
types obtained through the address-of operator (&) are __nogc pointers.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Implicit conversion from pointer to boxed type
// to a managed pointer to a value type
Point __gc* p3 = p2;
// Dereference pointer to initialize a value type.
Point p4 = *p2;
Point p5 = *p3;

Dereferencing a pointer to a boxed value is called unboxing. If the type of the boxed value is a
boxed type, no cast is required during unboxing. If the object type is Object, you have to cast
to the appropriate value type. For example, System::Enum has a method named Parse that you
can use to pass either the name of an item in the enum or an absolute value, as shown here:

Color red;
Object* o = Enum::Parse(__typeof(Color), S"RED");
red = *static_cast<__box Color*>(o);

Parse takes the type of the boxed object to return, but the method actually returns an Object*
pointer. I know that the type of the object is __box Color, so I can use static_cast<> to get a
pointer, and then I can dereference this pointer to unbox the object and initialize the value
type.

Reference types can have value types as members, and the memory for the value type will
actually be allocated on the heap. However, this memory behaves like a stack frame insofar as
the lifetime of the value type depends on the lifetime of the reference type object. Contrast this
behavior to a reference type pointer within a reference type: the lifetime of this referred-to
object might depend on the lifetime of the containing object, but there could be other pointers
to the same object and those pointers could also have an effect on the lifetime of this object.

Managed Pointers

Reference types are accessed through managed pointers. There are a couple of types of
managed pointers, depending on what they point to, and the rules for these differ significantly
from the rules applied to unmanaged pointers. Managed pointers must point to an object. You
cannot initialize them to some arbitrary section of memory because unlike C pointers,
managed pointers are strongly typed and can be initialized only with a pointer to the specified
type. You can use casts to fool the compiler like this:

int* p = reinterpret_cast<int*>(0x1000000);
String* s = reinterpret_cast<String*>(p);

This code is perverse, and you should avoid ever getting into the position of writing such
code. Here I am using reinterpret_cast<> to initialize an unmanaged pointer with a value.
(The compiler does not even allow direct initialization of unmanaged pointers.) Then I cast the
unmanaged pointer to a String* pointer. At run time, the code that uses this String* pointer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unmanaged pointer to a String* pointer. At run time, the code that uses this String* pointer
will throw an exception. If you have a managed array (which I will describe in the section
“Managed Arrays” later in this chapter), the pointer is to the array object and not to the
memory that the array uses. In general, if you have a managed pointer to an object, you cannot
perform pointer arithmetic.

When you declare a managed pointer, the compiler will generate code that initializes the
pointer to zero, so it is redundant to do this operation yourself. In general, an untyped pointer
to a reference type (for example, a member of a collection, or if you want to write a generic
algorithm) is an Object* pointer. For unboxed value types, the equivalent is Void __gc *.
However, be wary of pointers to value types because when you cast from an address of a value
type to a Void __gc*, you get a managed pointer but you do not get a boxed object.

// pointers.cpp
// Don't do this!
__gc class BadCast
{
 Queue* q;
public:
 BadCast()
 {
 q = new Queue;
 int i = 99;
 q->Enqueue(reinterpret_cast<Object*>((Void __gc*)&i));
 }
 int Pop();
};

In this case, the address of the local variable is obtained, cast to a managed pointer, and then
cast to an Object* pointer so that it can be put in Queue. This code will compile and run, but it
has an inherent problem. The lifetime of the value type is determined by the stack frame, but
the array’s lifetime is determined by the lifetime of the instance of BadCast. Take a look at
Pop:

// pointers.cpp
int BadCast::Pop()
{
 return *reinterpret_cast<int __gc*>(q->Dequeue());
}

This code obtains the first item in Queue and treats the item as a pointer to an int. However,
the original address was the address on the stack, which will now have changed—the original
int had been lost well before this method was called. The value returned from Pop will be
some random value. The message is clear: be wary of pointers to value types; in most cases,
they refer to an address on the stack frame and should be considered only temporary.

If a __gc type has a data member (__value or __gc types), the member will be allocated on the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If a __gc type has a data member (__value or __gc types), the member will be allocated on the
managed heap, and the lifetime of the member will be determined by the lifetime of the
containing object. You can create a pointer to such a member, but again you have to be careful
because the pointer is not to a whole object, but only to part of the object, so it is called an
interior pointer. The ECMA specification talks about object references (O types) and managed
pointers (& types). An object reference is equivalent to what I call a whole object pointer, and
what the ECMA spec calls a managed pointer is what I call an interior pointer. In both cases,
they point to memory on the managed heap, which is why I call them, collectively, managed
pointers.

An interior pointer can be a stack variable, passed as a method parameter or returned from a
method. However, interior pointers cannot be stored as fields in a __gc or __value class, in a
static variable or in an array, in order to guarantee that the lifetime of the pointer is not longer
than the item it points to. In general, any __gc pointer to a __value type will be an interior
pointer and the compiler will issue an error if you try to store the pointer as described earlier.
Interior pointers are special in that the runtime allows certain limited pointer arithmetic to
occur, but this code will not be verifiable by the runtime. (Verifiable code is covered in
Chapter 5). Interior pointers can be incremented or decremented, or you can subtract one
interior pointer from another to get the offset between the two members. Subtraction of
interior pointers in IL gives the number of bytes between the pointers, but the C++ compiler
inserts code to divide this by the size of the item pointed to by the interior pointers so that the
result mirrors the behavior in C++.

Of course, you always have to be careful when you get free access to memory.

// pointers.cpp
// Don't do this!
__gc class BadInteriorPointers
{
 __int64 x;
 __int64 y;
 String* s;
public:
 BadInteriorPointers()
 { x=1; y=2; s=S"Test"; }
 void KillMe()
 {
 Dump(); // Initial values
 __int64 __gc * p = &x;
 *p = 3;
 Dump(); // Changed x
 p++;
 *p = 4;
 Dump(); // Changed y
 p++;
 *p = 5;
 Dump(); // Oops! Changed s
 }
 void Dump()
 {
 Console::WriteLine(S"{0} {1} {2}", __box(x), __box(y), s);
 }
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

Here I have two 64-bit integers and a __gc String member. The Dump method just prints out
the values of these members to the console. I call this method in the KillMe method and then
obtain an interior pointer to the first item. After that, I write a value through this pointer,
which will change the value of the member x. The next code changes member y, and then I do
something that is fatal to this code: I increment the pointer again so that some of the memory
that the pointer points to is the memory occupied by the string pointer s. (I have used 64-bit
integers for x and y so that the interior pointer will be __int64 __gc*, and thus incrementing
the pointer after it points to y will make the pointer refer to memory other than the packing
between members.) No exception will be thrown when I change the memory pointed to by this
interior pointer, but when I access the member s through the pointer (and hence treat it as a
String* pointer), an exception will occur. Here are the results that I get:

1 2 Test
3 2 Test
3 4 Test

Fatal execution engine error.

The error is so serious that I cannot catch this error, and there is no automatic stack dump.

Pinning Pointers

Managed pointers are managed by the garbage collector so that when copies are made—or the
pointer is assigned to zero—the garbage collector knows that references are created or lost.
When a pointer is passed to native code, the garbage collector cannot track its usage and so
cannot determine any change in object references. Furthermore, if a garbage collection occurs,
the object can be moved in memory, so the garbage collector changes all managed pointers
(including interior pointers) so that they point to the new location. Because the garbage
collector does not have access to the pointers passed to native code, potentially a pointer used
in native code could suddenly become invalid. The runtime does not allow managed pointers
to be passed to native code; instead, a pinned pointer must be used. (I will come back to
pinning pointers in Chapter 2, where I will cover interop in more depth.)

When a managed pointer is pinned, the garbage collector is informed and this pinned pointer
represents an extra object reference; in addition, pinning a pointer tells the garbage collector
that during the lifetime of the pointer the object will be pinned in memory, which means that
the garbage collector cannot move the object. Note that the lifetime of the pointer is the entire
method where the object is used, not just the scope of the C++ pinned pointer (although if you
assign a pinning pointer to zero, the object will no longer be pinned).

An interior pointer will always be a __gc pointer even if the member pointed to is a __value
type with no __gc pointers. To convert an interior pointer to a __nogc pointer, you must pin
the pointer, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// pinning.cpp
#pragma unmanaged
void print(int* p)
{
 printf("%ld\n", *p);
}
#pragma managed

__gc struct Test{int i;};

void main()
{
 Test* t = new Test;
 int __pin* p = &t->i;
 print(p);
}

In this example, I have a function that is compiled to native code (it could be a method called
through platform invoke, for instance), and I want to pass an interior pointer to this function.
To do this, I create a pinning pointer, p, and assign it to the interior pointer. During the
lifetime of the pinning pointer, the entire object, t, will be pinned.

Passing by Reference and by Value

When you pass parameters to a method, a copy of those parameters are made on the stack. If
the parameter is a __gc type, the parameter will be a pointer to the instance. If the parameter is
a __value type, a bitwise copy is made of __value type members and copies are made of
object reference members. If a change is made to a __value type or to its __value type
members, the change is made to the copy on the stack and will not affect the original.

This code will work fine for calls within the same application domain. (An application
domain, or, as more commonly called by its class name, an AppDomain, is a unit of code
isolation used within a .NET process. More details are given in Chapter 5.) However, if you
pass the value across application boundaries, the type must be serializable. The simplest way
to do this is to apply the [Serializable] attribute to the type, as shown in the following code:

[Serializable]
__value struct Point
{
 int x; int y;
};

This attribute instructs the runtime, when an instance of this type is passed across context
boundaries, to serialize all members that are not marked with [NotSerialized] and transmit

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

boundaries, to serialize all members that are not marked with [NotSerialized] and transmit
these to the new context where a new (uninitialized) instance will be created on the stack and
initialized with the serialized data. Again, if you make changes to the value instance, the
change will be made to the copy on the stack in the method.

A __value type can be passed by reference, in which case you have to pass a pointer to the
object (a C++ pointer or a C++ reference).

void MirrorX(Point& p)
{
 p.y = -p.y;
}

This code will work if the call is made within the same process, although it is interesting that
even though the parameter is accessed through the C++ reference (a pointer) the type still has
to be serializable. This code cannot be called across a process boundary because .NET
remoting does not support passing pointers to value types via remoting. The reason is that if
you want to pass a parameter by reference, it must be derived from MarshalByRefObject, and
of course value types cannot be derived from this class (or any class).

A reference type is usually passed by reference, so if, in a method, you change the parameter’s
members through the pointer, the original object will be changed. This works fine for calls
within the same application domain, but if the call is made outside of the domain (either in the
same process or in another process), the __gc type must derive from MarshalByRefObject,
which will mean that the object will be created and will live in one domain, but it can be
accessed by code in other domains.

You can also pass __gc types by value, in which case you have to apply the [Serialization]
attribute. The object will be serialized only if remoting is used—that is, if the call is made into
another application domain.

Properties

Both __gc types and __value types can have properties. Strictly speaking, a property is not
really a member of a type. It is a description—metadata—that identifies methods on the type
that can be called through property access. Data members of a type are called fields by .NET
and can have any type that you choose, including arrays. Fields have the disadvantage that
they allow the data member to be read and written, and they have no mechanism to perform
validation. On the other hand, properties are implemented using methods, which means that
you can determine whether a property is read-only, write-only, or read/write by the methods
that you implement. Furthermore, the property methods can perform validation on the values
passed to them or returned from them, so they can take evasive action if the values are invalid.

Properties are implemented with get_ and set_ methods. The get_ method is used to return the
property, so its return type should be the same as the property. The set_ method is used to
initialize the property, so the method should not have a return type and its last parameter
should be the same type as the property. To tell the compiler to generate the .property
metadata, you use the __property modifier on the property methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__gc class GrimesPerson
{
 String* name;
public:
 __property String* get_Name()
 {
 if (name == 0) name = S"the man with no name";
 return name;
 }
 __property void set_Name(String* n)
 {
 if (n == 0)
 throw new ArgumentException(S"name cannot be null");
 name = n;
 }
};

This class has a string property named Name. The name of the property is the name after the
get_ or the set_. In this case, the property methods change the private field name, but this
behavior is an implementation detail of my class. The property could generate a name
dynamically, or it could read the name from a database or a file. The choice is entirely yours.

The metadata for the property looks like this:

.property specialname instance string Name()
{
 .get instance string GrimesPerson::get_Name()
 .set instance void GrimesPerson::set_Name(string)
}

The European Computer Manufacturer’s Association (ECMA) spec says that the property can
also have a method marked with .other, but there is no way that you can define these methods
in C++, nor is it clear how such methods are called other than directly through their name.

Code that uses the property treats the property as if it is a data member. The compiler will
convert the property access to one of the methods mentioned in the .property metadata, for
example:

GrimesPerson* me = new GrimesPerson, *you = new GrimesPerson;
me->Name = S"Richard";
you->set_Name(S"Ellinor");
Console::WriteLine(S"{0} and {1}", me->Name, you->get_Name());

I hope that you agree that the syntax used with the me variable is more readable than the
syntax used with the you variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties can be static or instance members, they can be virtual, and an abstract class can
have pure virtual implementations for either access method.

__property static String* get_SurName()
{
 return S"Grimes";
}

The access methods cannot differ by the static specifier, but they can differ by the virtual
specifier and the member accessibility.

When you declare a property, you do not automatically add storage to a type. (As I mentioned
previously, this decision is an implementation detail.) This behavior, coupled with the fact that
properties can be pure virtual, means that properties can be members of interfaces. Thus, any
class that implements the interface must implement the property. The interface can mention
only one of the accessor methods, but any class can implement both accessors, meaning that
the other accessor can be accessed only through an object reference.

Properties can have indexes, which means that they look (in code) similar to arrays. To add an
index, you have to add a parameter to the get_ and set_ methods. The last parameter of the
set_ method, of course, is the value that you are passing to the property. The index can be any
type that you want.

// properties.cpp
public __gc class FileStore
{
public:
 __property StreamReader* get_Document(String* name)
 {
 return File::OpenText(name);
 }
 // Other members
};

void main()
{
 FileStore* fs = new FileStore();
 StreamReader* stm = fs->Document[S"readme.txt"];
 Console::WriteLine(stm->ReadToEnd());
 stm->Close();
}

Here the Document property is indexed with a string parameter. To call this property, I give
the name of the property followed by the index value in square brackets. Properties with
parameters can be overloaded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__property StreamReader* get_Document(String* name);
__property StreamReader* get_Document(int i);

In this case, there are two properties, one indexed with a file name and the other indexed with
an integer (which might be an index into some other list maintained by the object). This
declaration will result in two .property metadata descriptions.

However, note that not all languages support indexed properties. As it stands, the
FileStore::Document property can be accessed in C# only through the accessor methods
directly.

// C#
FileStore fs = new FileStore();
StreamReader sr = fs.get_Document("readme.txt");

This code is quite ugly and is not what C# developers expect to see. In C#, indexed properties
are called indexers. C# does not allow access to indexed properties through indexer syntax
unless you add the [DefaultMember] attribute to your class identifying the indexed property.

[DefaultMember("Document")]
public __gc class FileStore
{
public:
 __property StreamReader* get_Document(String* name);
};

Now the C# code will look like this:

// C#
// puser.cs
FileStore fs = new FileStore();
StreamReader sr = fs["readme.txt"];

Because no name is specified, the C# compiler looks for the default value and accesses the
specified property. This syntax means that only one indexed property can be accessed in this
way. All others have to be accessed directly through their accessor methods. The converse is a
little odd: C# can define indexers, but by default the C# compiler calls the property Item. The
C# developer can change the name of the property using the [IndexerName] attribute.

In C++, a property with an integer index looks as if it is an array field. Indexed properties can
have more than one index, and in this case, the syntax looks like native C++ array syntax
because the calling code has to enclose each parameter with square brackets, so for this code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// arrayprop.cpp
__gc class Multiplier
{
public:
 __property int get_Value(int x, int y)
 { return x*y; }
};

the calling code looks like this:

Multiplier* m = new Multiplier;
int i = m->Value[5][6];
Console::WriteLine(i);

Of course, you can use any type for the indexes. C# can handle indexed properties with more
than one index as long as they are treated as indexers—that is, the property is the default
member. The C# code for accessing Multiplier::Value looks like this:

// C#
Multiplier m = new Multiplier();
int i = m[5,6];
Console.WriteLine(i);

I regret to admit that, in my eyes, this syntax looks better than the syntax in C++.

Delegates and Events

I will cover delegates and events in more depth in Chapter 3, so in this section, I will just
introduce the syntax and explain a little about what they are. Delegates are simply type-safe
function pointers. When defined, a delegate can be initialized with the address of a static or an
instance method, but the method must have the same signature as the delegate or a run-time
exception will be thrown. This restriction protects you from some of the nastier bugs in Win32
that occur when the wrong method is imported from a DLL using ::GetProcAddress and cast
to an inappropriate function pointer.

Delegates are declared in C++ using the __delegate keyword on the signature of the method
that can be called through the delegate. The declaration can be within a class or outside of a
class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// delegates.cpp
public __delegate int CallMethod(String*);

public __gc class ActiveClass
{
public:
 __delegate void ActionStarted(String*);
};

The compiler generates a class from the declaration, so if the delegate is declared within a
class, the delegate class will be nested within that class. For the preceding code, the compiler
will generate a class named CallMethod and another class named ActiveClass::ActionStarted.
The IL for CallMethod looks like this:

.class public auto ansi sealed CallMethod
 extends [mscorlib]System.MulticastDelegate
{
 .method public specialname rtspecialname instance void
 .ctor(object __unnamed000,
 native int __unnamed001) runtime managed forwardref
 {}
 .method public newslot virtual instance int32
 Invoke(string __unnamed000) runtime managed forwardref
 {}
 .method public newslot virtual instance
 class [mscorlib]System.IAsyncResult
 BeginInvoke(string __unnamed000,
 class [mscorlib]System.AsyncCallback __unnamed001,
 object __unnamed002) runtime managed forwardref
 {}
 .method public newslot virtual instance int32
 EndInvoke(class [mscorlib]System.IAsyncResult __unnamed000)
 runtime managed forwardref
 {}
}

I will go into more depth about these methods in Chapter 3, but the points pertinent to this
discussion are that the class derives from MulticastDelegate and that the methods are empty,
but they are marked as forwardref and runtime. The modifiers forwardref and runtime mean
that the methods are not declared in this class because they are implemented by the runtime.
The base class MulticastDelegate holds a linked list of delegates. Delegates are combined into
this list with a static method named Combine that takes two delegates as parameters. This
method creates a new delegate whose linked list is the combination of the lists from the two
delegates. In a similar way, there is a static method named Remove that will create a new
delegate whose linked list is the difference between the lists of the two delegates passed as its
parameters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A delegate is created by passing a function pointer to the constructor of the compiler-
generated delegate class, so given this class

// delegates.cpp
__gc class Caller
{
public:
 int CallMe (String* s)
 { Console::WriteLine(s); return s->Length; }
 static int CallMeToo(String* s)
 { Console::WriteLine(S"static: {0}", s); return s->Length; }
};

I can create a delegate that calls either the instance method or the static method.

Caller* c = new Caller;
CallMethod* m1 = new CallMethod(c, &Caller::CallMe);
int i = m1(S"Hello");
CallMethod* m2 = new CallMethod(0, &Caller::CallMeToo);
int j = m2(S"Hello");

The variable m1 is created using an instance of Caller, which is passed as the first parameter
to the delegate class constructor. The second parameter indicates the method to call: the
instance method CallMe. The delegate is invoked by treating it as if it is a function pointer, so
I call m1, passing it a string parameter, and under the covers, the C++ compiler calls
CallMethod::Invoke, which will go through the linked list the delegate class holds and call
Invoke on each one. In this case, there is only one delegate in the list, and thus Caller::CallMe
is called. The variable m2 is created from a static method, so the first parameter is zero
because there is no object to call. The delegate is invoked in the same way.

This code might look a little redundant, but be aware that because CallMethod is a class, an
object reference could be passed as a method parameter, even to another process. And of
course, the delegates can be combined, as shown in the following code:

CallMethod* m3;
m3 = dynamic_cast<CallMethod*>(Delegate::Combine(m1, m2));
int k = m3(S"Hello, again");

Delegate is the base class of MulticastDelegate. When the combined delegate is invoked, the
m1 delegate is called first, and then the m2 delegate is called. So what value is returned in k?
Well, it is the value returned from m2. The rule is that when a multicast delegate is invoked,
the result from the last delegate added to the delegate is returned. In this code, I have called
Delegate::Combine directly. Because this method returns a Delegate*, I have to cast the
pointer to my typed delegate. The C++ compiler allows you to use the += and -= operators on
delegates, which it will translate as calls to Combine and Remove. The advantage of these

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

delegates, which it will translate as calls to Combine and Remove. The advantage of these
operators is that the cast is not required in your code.

CallMethod* m3;
m3 += m1;
m3 += m2;
int k = m3(S"Hello, again");

If you want to get the return value from all the delegates, you can call the inherited member
GetInvocationList, which will return an array of delegates. You can then call each member in
the array in any order that you want.

Delegate* d[] = m3->GetInvocationList();
IEnumerator* e = d->GetEnumerator();
while (e->MoveNext())
{
 CallMethod* m = dynamic_cast<CallMethod*>(e->Current);
 int i = m(S"another call");
}

Another interesting thing that you can do with delegates is use them as fields to another class,
as shown here:

// events.cpp
public __gc class Worker
{
public:
 CallMethod* m;
 void AddMethod(CallMethod* m1)
 {
 m += m1;
 }
 void DoSomething()
 {
 // Do some work here.
 m(S"something was done");
 }
};

The methods in the Worker class can be called as shown in the following code:

Worker* w = new Worker;
w->AddMethod(m1);
w->AddMethod(m2);
w->DoSomething();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This code represents a notification mechanism. The Worker class could perform some work in
DoSomething and then inform the delegates m1 and m2 when that work has completed. Events
are a formalization of this notification mechanism. They are declared in C++ with the __event
keyword.

public __gc class Worker
{
public:
 __event CallMethod* m;
 void DoSomething()
 {
 // Do some work here.
 m(S"something was done");
 }
};

When you use the __event keyword, the compiler adds a private member for the delegate,
three methods to the class, and the .event metadata. The methods have the name of the event
prefixed with add_, remove_, and raise_. These methods are used to combine a delegate with
the delegate field, to remove a delegate from that field, and to invoke the delegate. For this
event, the compiler will add this metadata:

.event specialname CallMethod m
{
 .addon instance void Worker::add_m(class CallMethod)
 .removeon instance void Worker::remove_m(class CallMethod)
 .fire instance int32 Worker::raise_m(string)
}

In general, you should make the event public, in which case the compiler will make the
delegate field private so that access to the field will be only through the methods added by the
compiler. The add_ and remove_ methods will be made public, so external code can add
delegates, but the raise_ method will be protected. This scheme fits in with the idea that events
are used for notifications because it means that the notification can be generated only by the
class containing the event (and derived classes). The C++ compiler allows you to use the +=
and -= operators on the event to add and remove events. The compiler translates calls to these
operators to calls to the add_ and remove_ methods. Note that although the += operator is
made on what appears to be a delegate field (admittedly one marked with __event), the code
generated does not call Delegate::Combine on that field. Instead, it calls the add_ method on
the class that contains the field.

Worker* w = new Worker;
w->m += m1;
w->m += m2;
w->DoSomething();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

w->DoSomething();

If you want to perform some special processing in the add_, remove_, and raise_ methods,
you can provide implementations and inform the compiler. To do this task, you should not
declare __event on a delegate field; instead, you should decorate the methods with the __event
keyword. So that the compiler knows which methods are used to add and remove the delegates
and which method is used to raise the event, you should use the convention of prefixing the
event name with add_, remove_, and raise_.

public __gc class Worker
{
 CallMethod* m1;
public:
 __event void add_m(CallMethod* d) { m1 += d; }
 __event void remove_m(CallMethod* d) { m1 -= d; }
 __event int raise_m(String* s) { return m1(s); }
 void DoSomething()
 {
 // Do some work here.
 m(S"something was done");
 }
};

I have added a private delegate field to hold the delegates that are added to the event. It is
important to give this a name different from the event (that is, the name after the raise_
prefix). Chapter 4 shows a real-life example of providing custom event methods: the Control
class. The problem with the default implementation of events provided by the compiler is that
for each event, the class will have a delegate field. An instance will have storage for each
delegate even if no clients have provided event handlers. The Control class stores all delegates
in an instance of EventHandlerList, which allocates only sufficient memory for the delegates
added to the object that can generate events.

Events can be declared as static, and the compiler-generated methods and the delegate field
will also be static, in which case the event is treated as a notification mechanism for the type—
that is, when the event is raised, all delegates added through all instances of the type are
informed. Furthermore, events can also be virtual. If you write the individual event methods,
you must ensure that you are consistent with the static and virtual keywords.

Attributes

Metadata is vital to .NET code. All types are described in metadata within the assembly where
they are defined. Code that uses those types has metadata that describes exactly which code
they will call. The runtime uses this information when executing your code, and if the exact
method (in the exact assembly) you ask to be executed cannot be found, the runtime will
throw an exception.

Compilers generate metadata when they compile your code. They also read the metadata in the
assemblies that you use (which you specify in C++ with #using). In some cases, you might

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

assemblies that you use (which you specify in C++ with #using). In some cases, you might
decide that you want the compiler to apply a particular .NET metadata to your type. To do this
task, you use an attribute, such as the [Serializable] attribute that I introduced earlier. If you
add this attribute to a type, the compiler will add the serializable metadata to the type, which
you can view in ILDASM.

[Serializable]
__gc struct Square
{
 int x;
 int y;
 int w;
 int h;
};

For the purpose of this discussion, I will make this type a __gc type, which means that objects
are passed through object references. A type this size would normally be a __value type, in
which case the data is always passed by value. The [Serializable] attribute is a pseudo custom
attribute because strictly speaking it is not a custom attribute—a custom attribute is used to
extend metadata, whereas [Serializable] applies existing metadata that can be added to the
class.

The syntax that you see here is the standard syntax for custom attributes. The astute reader
will notice that pseudo custom attributes are not the only way to add metadata to a type. The
__abstract keyword adds the abstract metadata, __sealed adds the sealed metadata, and
__value adds the value metadata to a type. Furthermore, __event and __property are used to
identify code that will be used to create the .event and .property metadata. Pseudo custom
attributes allow other languages to add metadata to their types. Custom attributes are
implemented by __gc classes derived from System::Attribute. These classes can have
constructors, fields, and properties, and you can pass data to a constructor to initialize the
attribute. If an attribute class has a constructor with parameters, the parameters are passed
through positional, unnamed parameters.

[CLSCompliant(true)] __gc class Test{};

This custom attribute indicates that the class is compliant with the Common Language
Specification (CLS), meaning that its public members use types that can be used by any .NET
language. The value of true is passed to the constructor of the class CLSCompliantAttribute.
The convention is that the name of a custom attribute class has the suffix Attribute, but the
C++ compiler allows you to call it either with or without the suffix. There are a few cases in
which you must use the suffix. The most obvious is [GuidAttribute] in
System::Runtime::InteropServices, which is used to apply a COM GUID to a type. You can
also use GUIDs in your code, and for this you can use System::Guid. To avoid the compiler
mistaking one for the other, you should use the complete attribute name. Named, optional
attribute parameters are implemented through properties or public fields, for example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[ObjectPooling(true, CreationTimeout=10000)]
__gc class MyComp : public ServicedComponent{};

The [ObjectPooling] attribute in System::EnterpriseServices is used to indicate the properties
of object pooling that should be used for this class. The first parameter is not optional, and it
indicates that object pooling is enabled. CreationTimeout is a property and is used to indicate
the maximum amount of time that a client should wait for an object until an exception is
thrown. There is no constructor that takes the timeout as a value, so if you want to specify this
value, you have to do it through the property. If you omit this parameter, a default value is
used. The syntax looks a little odd. It looks like you are calling a constructor and naming one
of the parameters. In fact, the information that you give in a custom attribute is stored in
metadata as a list of instructions. So in effect, this attribute says: “create for me an instance of
ObjectPoolingAttribute by calling the constructor that takes a Boolean and pass true for this
parameter, and then give the CreationTimeout property a value of 10000”. I’ll come back to
this issue in a moment.

If you want to apply multiple attributes to an item, you can either use a pair of square brackets
for each attribute or use one pair of square brackets and give the attributes in a comma-
separated list. Attributes can be placed on any item that can generate metadata, before any
other modifier that can be applied to the item. However, there are some cases when the
compiler will not know where you intend the attribute to be applied. Here’s one example:

[Test] int MyMethod();

When the compiler sees this code, it will not know whether the attribute should be applied to
the return value or to the method. (The compiler does not allow the attribute to be applied
between the return type and the method name.) In this case, the attribute will be applied to the
method. If you want to apply the attribute to the return value, you’ll need to specify a target
specifier.

[returnvalue: Test] int MyMethod();

Table 1-3 lists the target specifiers that you can use. Some attributes appear redundant, for
example:

[delegate: Test] __delegate void delOne();
[method: Test] __delegate void delTwo();

In this example, the [Test] attribute is applied to both the delOne and delTwo delegates.
However, in your C++ code it is more readable to use the delegate target because the
__delegate directive actually declares a delegate class (which the compiler will generate) and
not a method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 1-3. Target Specifiers Used to Specify the Item an Attribute Should Be Applied To
Target
Specifier

Description

assembly For attributes applied to anonymous blocks that will generate assembly
metadata.

class For attributes applied to a C++ class.

constructor The attribute is applied to a constructor.

delegate The attribute is applied to the delegate (as opposed to the return value); this is
the same as using the method target.

enum The attribute is applied to the enum.

event The attribute is applied to the .event metadata. If you want the attribute to be
applied to the add_, raise_, or remove_ method, use the method target.

field The attribute is applied to the field.

interface The attribute is applied to the managed interface.

method The attribute is applied to a global or member method; the add_, raise_, or
remove_ methods of an event or the get_ or set_ methods of a property.

module For attributes applied to anonymous blocks that will generate module
metadata.

parameter The attribute is applied to a method parameter.

property The attribute is applied to the property (as opposed to the get_ or set_ methods,
in which case you should use the method target); this is the same as using the
returnvalue target.

returnvalue The attribute is applied to the return value of a method or to a property.

struct The attribute is applied to a struct.

Another situation in which the target specifier is vital is when you want to apply an attribute to
an assembly or to a module. In .NET, the unit of deployment and versioning is the assembly.
An assembly can be made up of one or more code and resource files. Code and embedded
resources can be in files called modules. To specify that an attribute should be applied to the
assembly rather than to a module, you should use the assembly or module target specifier, as
shown in this example:

[assembly: ApplicationName("My COM+ Application")];

This code gives the name of the COM+ application that the assembly is used for. When the
assembly is registered with RegAsm (or a ServicedComponent type defined in the assembly is
used for the first time), this string will be used as the name of the COM+ application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is interesting to look at the metadata generated for a custom attribute. Let’s go back to the
ObjectPooling example given earlier. The metadata for the class looks like this:

.class public auto ansi MyComp
 extends [System.EnterpriseServices]
 System.EnterpriseServices.ServicedComponent
{
 .custom instance void [System.EnterpriseServices]
 System.EnterpriseServices.ObjectPoolingAttribute::.ctor(bool)
 = (01 00 01 01 00 54 08 0F //T..
 43 72 65 61 74 69 6F 6E // Creation
 54 69 6D 65 6F 75 74 10 // Timeout.
 27 00 00) // '..
}

The custom attribute is applied through the .custom directive. This gives the name of the
constructor that is used to create the attribute (whenever that is—I will cover this issue in a
moment) followed by binary data that gives the information about the data that will be passed
to the constructor. This data starts with 0x0001 (all attribute data appear to start with this
value) followed by one byte (0x01), which is the serialized value of true. Next it gives the
number of properties or fields that should be set (0x0001), and after this the properties and
fields are listed in the order that they were declared. The binary data has an identifier to
indicate whether the item is a property (0x54) or a field (0x53) and then the name of the
property. This name is made up of a single byte string prefixed with the number of characters
in the string. The property name is then followed by the value of the property (0x00002710).

The name of the property is stored as single-byte characters, but if you pass a string for the
value of a parameter of an attribute (either positional parameters or named parameters), the
data is stored as a serialized managed string—that is, as Unicode characters. It makes no
difference whether you provide the string value as ANSI (""), as Unicode (L""), or through
managed string syntax (S"") in your code because the compiler will always store it as a
serialized managed string.

As I mentioned before, the attribute is stored in metadata as a list of instructions used to create
the attribute, but the question is: when is this attribute object created? A custom attribute is not
necessarily created when an object instance is created. Custom attributes are created only
when code attempts to access the attributes on an item. This action is performed by calling the
static method Attribute::GetCustomAttribute to get a specified attribute on an assembly,
module, class member, or method parameter; or by calling the instance method
MemberInfo::GetCustomAttributes to get a list of custom attributes on any item. System::Type
derives from MemberInfo, so you are likely to get the custom attributes for an object through
the Type object.

When one of these methods is called, the runtime will create the attribute object using the
instructions in the .custom directive. If you call GetType() >GetCustomAttributes twice on one
object, two attribute objects will be created. Note also that GetCustomAttributes returns
custom attributes; pseudo custom attributes are not returned by this method because they
represent standard metadata. Pseudo custom attributes such as [Serializable] can be obtained
through reflection (in this case, Type::IsSerializable). For more information on reflection see

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

through reflection (in this case, Type::IsSerializable). For more information on reflection see
Jeffrey Richter’s Applied Microsoft .NET Framework Programming (Microsoft Press, 2002).

MemberInfo::GetCustomAttributes returns an array of Object pointers. There are several ways
that you can determine the type of each member. First, you could perform a dynamic_cast<>
for the attribute type that you are interested in, and if the cast succeeds, the attribute has been
applied to the item. Note that the type that you will cast to is the full name of the attribute
class; you can use the abbreviated name (without the Attribute suffix) in square brackets only
when you are applying an attribute. Second, you can test the type object against the type
object obtained from the class; the type object returned from GetType and __typeof is a static
object for each type. Finally, you could compare the name of the type object returned from
GetType()->ToString, but remember that if the attribute is in a namespace, the scope
resolution operator will be the dot, not ::, thus:

Test* t = new Test;
Object* attrs[] = t->GetType()->GetCustomAttributes(false);
IEnumerator* e = attrs->GetEnumerator();
while (e->MoveNext())
{
 if (e->Current->GetType()->ToString()
 ->Equals(S"System.ObsoleteAttribute")
 {
 Console::WriteLine(S"this class is obsolete");
 }
}

Here’s another assembly attribute:

[assembly: AssemblyVersion("1.0.*")];

This attribute is interesting because the information is a request to the compiler and the
information in the attribute is not placed in the assembly as a custom attribute. Instead, the
compiler interprets the information and uses it to create information that it puts in the
assembly’s .ver metadata. In this case, the compiler creates a version of the form 1.0.xx.yy,
where xx is the build number that the compiler will create from the number of days since the
first day of the year 2000, and yy is the revision number that the compiler will create from the
number of seconds since midnight modulo 2.

Creating your own attribute classes is straightforward: you derive from System::Attribute and
apply the [AttributeUsage] attribute to indicate where the attribute can be used. In addition,
[AttributeUsage] also allows you to indicate whether the attribute can be used more than once
on the same item and whether the attribute is inherited when it is applied to a __gc type and
that type is the base for another type. Any mandatory parameters should be constructor
parameters, whereas optional parameters can be passed through fields or properties. The
attribute classes in the .NET Framework class library often accommodate optional parameters
through overloaded constructors, but I think it is clearer to use constructors only for
mandatory parameters. Whatever you decide on this issue, you should ensure that all
constructors initialize fields and properties to a suitable default value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You are restricted to the types that you can use for constructor parameters, fields, and
properties on attribute classes. The acceptable types are listed below the following code.
Because integers are allowed, you can also use enumerated values. You are also allowed to
use arrays of the types given in this list, in which case when you apply the attribute, you
should use an initializer list.

[AttributeUsage(AttributeTargets::All)]
__gc class UsersAttribute : public Attribute
{
public:
 String* names[];
};

[Users(names = { S"Paul", S"John", S"George" })]
__gc class ThisClass
{
public:
};

Here are the types that can be used for constructor parameters, fields, and properties of
attribute classes:

bool

char

unsigned char

wchar_t

short

unsigned short

int

unsigned int

__int64

float

double

Object *

String *

char *

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

wchar_t *

Managed Interfaces

The new C++ compiler supports a new keyword named __interface. This keyword is
supported for both managed and unmanaged code, so for a managed interface, you have to use
__gc. Interfaces add metadata that describe behavior. They do not contain implementation.
Indeed, all interfaces are implicitly abstract (you can use __abstract on an interface, but it is
not necessary), and all members are implicitly pure virtual (again, you can use =0 on methods,
but it is not necessary). Interfaces can contain methods, properties, and events, and all
members are implicitly public. They cannot contain any implementation and cannot contain
any storage, so they cannot contain fields. However, interfaces can contain __value enums
because these do not represent storage. They are named values. Furthermore, interfaces cannot
contain constructors, destructors, or operators, and because they are used to generate vtables,
they cannot contain static members. Finally, __gc interfaces cannot derive from classes, but
they can derive from other __gc interfaces. .NET supports multiple interface inheritance.

// interfaces.cpp
__gc __interface IPrint
{
 void Print();
 __property unsigned get_Pages();
 __property void set_Pages(unsigned);
 __event OnPrinted* printed;
};

This interface has a property named Pages, a method named Print, and an event named
OnPrinted. The intention is that the interface will be implemented by a class that can print
documents, and when the print job has completed, it informs interested parties by raising the
OnPrinted event.

__delegate void OnPrinted(String*);

__gc class PrintedDoc : public IPrint
{
 unsigned pages;
 String* doc;
public:
 PrintedDoc(String* s, unsigned p) : doc(s), pages(p){}
 void Print()
 {
 for (int i = 1; i <= pages; i++)
 Console::WriteLine(S"printing page {0}", __box(i));
 printed(doc);
 }
 __property unsigned get_Pages() { return pages; }
 __property void set_Pages(unsigned num) { pages = num; }
 __event virtual OnPrinted* printed;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 __event virtual OnPrinted* printed;
};

Because the event is a member of the interface, it is declared as virtual. The PrintedDoc class
needs to declare the event as virtual so that the generated methods are also virtual.

Here is a class that uses an instance of PrintedDoc:

__gc class Book
{
 ArrayList* chapters;
public:
 Book()
 {
 chapters = new ArrayList;
 PrintedDoc* doc;
 doc = new PrintedDoc(S"Chapter1.doc", 90);
 doc->printed += new OnPrinted(0, Notify);
 chapters->Add(doc);
 doc = new PrintedDoc(S"Chapter2.doc", 67);
 doc->printed += new OnPrinted(0, Notify);
 chapters->Add(doc);
 doc = new PrintedDoc(S"Chapter3.doc", 87);
 doc->printed += new OnPrinted(0, Notify);
 chapters->Add(doc);
 }
 static void Notify(String* doc)
 {
 Console::WriteLine(S"{0} printed", doc);
 }
 void PrintAll()
 {
 IEnumerator* e = chapters->GetEnumerator();
 while(e->MoveNext())
 {
 IPrint* doc = dynamic_cast<IPrint*>(e->Current);
 if (doc != 0) doc->Print();
 }
 }
};

The PrintAll method iterates through the collection of documents and prints each one. The
collection contains Object* pointers, so I cast to IPrint* because the only behavior that I want
to get from the entry is its printable behavior. The collection could contain items other than
PrintedDoc, but as long as those items implement IPrint, they will still be printed in PrintAll.

This feature of interface programming—defining behavior—is often overlooked. Types can
derive from more than one interface, which means that a type can have more than one
behavior, so you can choose which behavior you want from an object—a document could be
both printable (rendered on paper) and persistent (saved to persistent storage, such as to disk).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__gc class Document : public IPrint, public IPersistent
{ /* other members */ };

An interface can derive from one or more interfaces.

__gc __interface IOne
{
 void One();
};
__gc __interface ITwo
{
 void Two();
};
__gc __interface IThree : IOne, ITwo
{
 void Three();
};

A class that derives from IThree must implement the three methods One, Two, and Three, and
it is treated as if it derives from IOne, ITwo, and IThree. A pointer to this class can be
implicitly converted to any of the interfaces, and an IThree* pointer can be implicitly
converted to an IOne* or ITwo*. If you have an IOne* pointer on a class that implements
IThree, there is no implicit conversion from IOne* to ITwo*, but because the class implements
both interfaces, you can explicitly cast between these interfaces with static_cast<>.

One issue you might come across with multiple interfaces is if your class implements two
interfaces that have a method with the same signature.

// interfaces2.cpp
__gc __interface IOarsman
{
 void Row();
};
__gc __interface IArgumentative
{
 void Row();
};
__gc class Rower : public IOarsman, public IArgumentative
{
public:
 void Row(){ Console::WriteLine(S"pull oar or shout?"); }
};

Both interfaces have a method named Row. The class implements both interfaces and hence
implements Row. Because interfaces represent different behaviors, you do not necessarily

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

implements Row. Because interfaces represent different behaviors, you do not necessarily
intend to have a single implementation of Row. As it stands, I can create an instance of Rower
and call Row through a pointer to Rower, to IOarsman, or to IArgumentative.

The C++ compiler allows you to specify that a method implementation is for a specific
interface.

__gc class Rower : public IOarsman, public IArgumentative
{
public:
 void IOarsman::Row(){ Console::WriteLine(S"pull oar"); }
 void IArgumentative::Row(){ Console::WriteLine(S"shout"); }
};

Now a user of the class can specify which version of Row should be called. To specify the
version the user must obtain the appropriate interface pointer and call the following method:

IOarsman* o = new Rower;
o->Row();

Providing an explicit interface implementation such as this on a class has a side effect: you can
call these methods only through interface pointers; you cannot call these methods through a
pointer to the class. The compiler is rather coy about this: Rower* r = new Rower; r-
>IOarsman::Row(); will result in an error telling me that the method call will fail at run
time, rather than telling me that the code is just plain wrong. This side effect is useful, and
classes in the .NET Framework use explicit interface implementation even when the class
implements only one interface, to prevent the methods being called through a class pointer.
For example, classes can be passed by value if they are serializable. I have already mentioned
one way to indicate this: simply apply the [Serializable] attribute to the class, and all fields not
marked as [NotSerialized] will be serialized. If you want to customize the way that
serialization works, you can implement ISerializable on your class.

// serialize.cpp
__gc class MyFile : public IDisposable
{
 FileStream* f;
public:
 MyFile(String* name)
 {
 f = new FileStream(name, FileMode::OpenOrCreate,
 FileAccess::ReadWrite);
 }
 FileStream* GetStream()
 { return f; }
 void Close()
 { if (f != 0) f->Close(); }
 void Dispose()
 { Close(); }
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

This class encapsulates a FileStream object, and the constructor takes a string with the name
of the file and opens the file for read/write access. Client code can call GetStream to get access
to this stream to read or write data through the GetStream method. I have indicated that the
class implements IDisposable, which indicates to users of the class that it holds a resource that
should be released as soon as possible by calling the Close method.

I might decide that I want to serialize this object and store it somewhere (perhaps in a
database). The intention being that when I deserialize the object, it will be initialized in such a
way that I can call GetStream to get access to a stream on the original file and use the object as
if it had never been serialized. The first approach is to add [Serializable] to the class and
attempt to serialize the object with the following code:

// Create the file.
MyFile* f = new MyFile(S"data.txt");
// Write to the file using a StreamWriter.
StreamWriter* sw = new StreamWriter(f->GetStream());
sw->Write(S"this is data");
sw->Close();

// Now serialize the object.
SoapFormatter* sf = new SoapFormatter();
Stream* txt = File::Create(S"MyFile.soap");
sf->Serialize(txt, f);
txt->Close();
f->Close();

This code will fail. The reason is that the SoapFormatter will attempt to serialize the
FileStream object, which is not serializable. Let’s take another approach and instead of
serializing the fields in the class, let’s serialize the name of the file. To do this, the class needs
to turn off standard serialization and implement custom serialization. This task is done by
implementing ISerializable.

The ISerializable interface is interesting: it has just one method named GetObjectData, which
is called by the formatter to ask the object to serialize itself. This method is passed a
SerializationInfo object that acts like a collection of name-value pairs. This object can be used
to store enough information to identify the file that the FileStream object is based on. The
interesting point is that if you implement this interface, you also have to implement a
constructor that takes the same parameters as GetObjectData. This constructor is called by the
formatter when an object is deserialized. Interfaces cannot declare constructors, so the only
way that you know about this is to read the documentation. Here is the class with custom
serialization:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[Serializable]
__gc class MyFile : public ISerializable, public IDisposable
{
 FileStream* f;
public:
 MyFile(String* name)
 {
 f = new FileStream(name, FileMode::OpenOrCreate,
 FileAccess::ReadWrite);
 }
 FileStream* GetStream()
 { return f; }
 void Close()
 { if (f != 0) f->Close(); }
 void Dispose()
 { Close(); }
protected:
 MyFile(SerializationInfo* info, StreamingContext context)
 {
 String* machine = Environment::MachineName;
 if (!info->GetString(S"__MachineName")->Equals(machine))
 throw new Exception(S"must be on the same machine!");
 if (info->GetString(S"__FileName") == S"<null>")
 throw new Exception(S"file has no name!");
 f = new FileStream(info->GetString(S"__FileName"),
 FileMode::Open, FileAccess::ReadWrite);
 }
 void ISerializable::GetObjectData(
 SerializationInfo* info, StreamingContext context)
 {
 info->AddValue(S"__MachineName", Environment::MachineName);
 info->AddValue(S"__FileName", f==0 ? S"<null>" : f->Name);
 }
};

I have made the new constructor protected so that users are not tempted to call it. I have also
made the GetObjectData protected, but for added safety, I have identified that the method
should be called only on an ISerializable interface pointer so that the user of this class is not
tempted to call this method unless he specifically wants to serialize the object.

There is one final property that I ought to mention about interfaces: default implementation. A
class can derive from another class and one or more interfaces. If the base class has a member
that has the same signature as a member of one of the interfaces it implements, that member
can be used to provide the interface member, even if the base class does not implement the
interface, as shown in this example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__gc class Base
{
public:
 virtual void f()
 { Console::WriteLine(S"default impl"); }
};

__gc __interface ITest
{
 void f();
};

__gc class Test : public Base, public ITest
{
};

Base does not implement ITest, but it does provide an implementation of a method that has the
same signature as an interface method (including the implicit virtual). The Test class derives
from Base and gets the implementation of ITest::f from this base class.

Managed Strings

In .NET, strings are managed objects. The System::String class encapsulates most of the
actions that you will want to do on a string: compare strings; test for substrings and individual
characters; create new strings by concatenating strings; split up existing strings; add padding
spaces or trim them; and insert, replace, or remove substrings. However, it is important to
realize that a System::String is immutable. If you call any of its methods that change a string,
you do not get back the original string modified; instead, you get a completely new string. For
example, if you call ToLower on a string, you do not affect the string that you are calling.
Instead, you get a new string that has the lowercase characters.

If you want to create a string buffer that can be modified, you should use a StringBuilder
object (in the System::Text namespace), which has methods to insert, remove, and replace
substrings in a buffer and add the string representations of various primitive types to the end of
the buffer.

The String class holds data as Unicode characters. Each one is a Char data type. You can
access each character through the Chars indexed property, as shown here:

String* str = S"Hello";
// Get the fourth character.
Char c = str->Chars[3];

The String class implements the Chars property so that the first character in the string is at
index zero. Also notice the syntax for declaring a literal string. The S prefix indicates that the
string is a managed string. The String class has constructors that take an unmanaged pointer to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string is a managed string. The String class has constructors that take an unmanaged pointer to
a char buffer (String(SByte*)) and an unmanaged pointer to a wide char buffer
(String(Char*)), which will convert the strings to the managed string. However, to do so
requires the compiler to generate extra code, so if possible, you should always use managed
string literals.

For example, this code:

String* str = L"Hello";

generates this IL:

ldsflda valuetype $ArrayType$0xe68a7113
 '?A0xcfbb78fe.unnamed-global-0'
newobj instance void [mscorlib]System.String::.ctor(char*)
stloc.0

The first line loads the address of a static, global field named ?A0xcfbb78fe.unnamed-global-
0. This array is passed to the String constructor that takes an unmanaged pointer to a wide
char buffer. The constructor string (in this case) is stored as the local variable 0. The static
field looks like this:

.field public static valuetype $ArrayType$0xe68a7113
 '?A0xcfbb78fe.unnamed-global-0' at D_00008030

The type of the field is $ArrayType$0xe68a7113, another compiler-generated name that looks
like this:

.class private explicit ansi sealed $ArrayType$0xe68a7113
 extends [mscorlib]System.ValueType
{
 .pack 1
 .size 12
 // Other items omitted
}

The type has no code and no members. It merely indicates that the type takes up 12 bytes—the
size of the literal string in Unicode characters. The static field ?A0xcfbb78fe.unnamed-global-
0 is stored in the initialized data section of the PE file at location 0x8030.

.data D_00008030
 = bytearray (48 00 65 00 6C 00
 6C 00 6F 00 00 00) // H.e.l.l.o...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 6C 00 6F 00 00 00) // H.e.l.l.o...

A similar data item and field will be created if you initialize the string with an ANSI string. So
in both of these cases, you will have a static field initialized with data in the initialized data
section of the PE file and this field is then passed to the constructor of System::String.
Compare this to the situation when the literal is a managed string. The IL generated is this:

ldstr "Hello" /* 70000001 */
stloc.0

In other words, the string is stored in the user strings section (#US stream This is the ‘user
string’ metadata stream held within the PE file; items in this stream are identified by metadata
tokens. MSIL is composed of opcodes and metadata tokens. The various metadata streams are
documented in the ECMA spec, “Partition II Metadata,” Chapter 23, “Metadata Physical
Layout.”) of the metadata section of the PE file (this is part of the PE .text section), which is
loaded as a managed string and pushed onto the stack all in one IL statement. The value in
comments after the string literal is the metadata token for the literal (which you can view by
using the /token switch of ILDASM). The token is actually a 1-based index into a table. The
top byte (0x70) indicates that the metadata table is the string table. Consider this code:

String* s1 = S"Hello";
String* s2 = S"Hello";

The two references are initialized with the same literal string. The IL looks like this:

ldstr "Hello" /* 70000001 */
stloc.1
ldstr "Hello" /* 70000001 */
stloc.0

As you can see, the compiler has noticed that the same literal is used for both, so the metadata
#US stream has only one copy. Furthermore, the object references will be the same
(Object::Equals will return true) because when the first string is created, the runtime will
intern the managed string. The next time a string with the same metadata token is loaded, the
runtime will return the same interned object.

You have to be wary about comparing strings—especially if, like me, you write some code in
C#. My thanks to Jeroen Frijters for clarifying some of my confusions over the string
comparison methods. There are several ways to compare strings: some compare string
references, some compare the actual strings, and some compare both. The C++ == operator,
when used with string references, tests to see if they are the same reference—that is, the
operator is the same as in unmanaged C++. You get a comparison of the references and not a
comparison of what the objects contain. Be careful here because in C# the operator == for
System::String checks both the references for equality, and if they are not the same object, the
operator checks the value of the objects for equality. Thus, the code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Managed C++
String* s1 = S"X";
String* s2 = S"XX";
// Get substring so we do not get the interned string
String* s3 = s2->Substring(0, 1);

if (s1 == s3) Console::WriteLine(S"same");
else Console::WriteLine(S"not the same");

will indicate that the strings are not the same because the comparison of the string references
fails. The C# code

// C#
string s1 = "X";
string s2 = "XX";
// get substring so we do not get the interned string
string s3 = s2.Substring(0, 1);

if (s1 == s3) Console.WriteLine("same");
else Console.WriteLine("not the same");

indicates that the strings are the same. The reason is because == in C# actually calls the
String::op_Equality method, which calls the static String::Equals(String*, String*) method.
You can call this method in C++ explicitly.

if (String::Equals(s1, s3))
 Console::WriteLine(S"same");
else
 Console::WriteLine(S"not the same");

The == operator first checks to see whether the references are the same (which is a quick
check for equality), and if they are not, it checks to see whether either is a null pointer. If this
check fails, the operator calls the instance method String::Equals(String*), which does the
more costly comparison of the values of the strings. It is better to call the static Equals rather
than the instance Equals because the former is potentially faster if you are likely to compare
strings that could be the same object reference.

String::Equals does a case-sensitive comparison. If you want to do a case-insensitive
comparison, call the static String::Compare overload that takes two strings and a Boolean. A
value of true for the Boolean does a case-insensitive comparison. However, be wary of this
method (and the associated CompareOrdinal and CompareTo) because the return value is not
a Boolean; it is an integer with a similar meaning as the integer returned from the CRT strcmp.
So if the strings are the same, CompareTo will return zero, which, of course, C++ will treat as
a Boolean false.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You cannot pass a managed string to a C++ standard library or a CRT function. Instead, you
can use the Marshal::StringToHGlobalUni method in the System::Runtime::InteropServices
namespace to convert a managed string to a Unicode native string allocated on the LocalAlloc
heap. After using the string, you must free the string with a call to FreeHGlobal. For better
performance, Visual C++ provides the following function to give access to the internal buffer
of wchar_t characters in a managed string:

// From vcclr.h
inline const System::Char * PtrToStringChars(
 const System::String *s)
{
 // Pin to avoid one-instruction GC hole in reinterpret_cast.
 const System::String __pin*pps = s;
 const System::Byte __pin*bp
 = reinterpret_cast<const System::Byte*>(s);
 if (bp != 0)
 {
 unsigned offset = System::Runtime::CompilerServices::
 RuntimeHelpers::OffsetToStringData;
 bp += offset;
 }
 return reinterpret_cast<const System::Char*>(bp);
}

Each managed string has a character buffer at a fixed offset from the beginning of the object.
The OffsetToStringData property has this offset value, so the function pins the object and
obtains a pointer to the first byte of the string object. The function then increments this byte
pointer by the standard offset, which will give access to the character buffer. The function
returns a Char_gc* pointer because the pinning only lasts as long as the scope of the function.
The code that uses OffsetToStringData has to pin the return value before passing it to an
unmanaged function, as shown here:

String* s = S"hello";
const Char __pin* p= PtrToStringChars(s);
_putws(p);

Managed Arrays

In .NET, arrays are managed types—that is, each array is an object and is allocated on the
managed heap. The syntax to declare a managed array is slightly different from the syntax for
declaring native arrays, and similarly the syntax to access the array, and to use the array as
parameters for methods or return types from methods, is different than that of native arrays. If
you come from a C++ background, you have to be careful with managed arrays because a
native array variable is essentially a pointer into memory and the square brackets are used to
perform memory arithmetic and dereference the pointer. With managed code, you should not
normally access memory directly, and the .NET Framework classes actively prevent this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

normally access memory directly, and the .NET Framework classes actively prevent this
access. This restriction means that some of the tricks that you are used to performing with
native arrays and pointers you will not be able to perform with managed arrays. However,
although some of these tricks are useful (for example, using negative indexes), the extra
checks performed by the runtime mean that you gain enormously by having the safety of index
validation and garbage collection that ensures that your code does not leak memory.

Declaring a one-dimensional array is straightforward:

// arrays.cpp
String* names[] = __gc new String*[3];
names[0] = S"Richard";
names[1] = S"Thomas";
names[2] = S"Grimes";

The first line allocates an array of String* pointers. The type of this variable is String*[],
which is not the same as String** (which is the type you would use to return a String reference
as an in/out parameter). You can test the type of the array with this code:

Type* t = names->GetType();
while (t != 0)
{
 Console::WriteLine(t->ToString());
 t = t->BaseType;
}

The output actually shows the type of the variable as System.String[], which is the IL format
that the runtime uses. This code also shows that the base class of the variable is System::Array.
Thus, an array can be accessed through a typed array variable (String[]), a pointer to Array, or
to Object, so all three of these declarations are allowed:

String* a1[] = names;
Array* a2 = names;
Object* a3 = names;

Of course, when you have an Array* pointer, you do not get the advantage of using the square
bracket syntax, but it is possible to cast between the types. The Array class is abstract, so if
you want to create an instance, you use the static method CreateInstance, which allows you to
identify the type of the Array you want created. Our string array could be created like this:

Array* a = Array::CreateInstance(__typeof(String), 3);
String* names2[] = dynamic_cast<String*[]>(a);
names2[0] = S"Richard";
names2[1] = S"Thomas";
names2[2] = S"Grimes";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

names2[2] = S"Grimes";

CreateInstance creates an array of the specified type, and the __typeof operator returns the
static Type object for the type (the same object that is returned from GetType when called on
an instance).

When the array is created, the items are assigned to zero (for primitive types and __gc types)
or the default constructor is called (for __value types), so you do not have to worry about the
random values that occur in native C++. The runtime does not create the objects in the array
when you declare it, so you have to allocate each item, as I have shown in the preceding code.
The index of the array is always zero-based. If you use an index outside of the range 0 <=
index < names->Length, where the Length property is one less than the value given in the
declaration, a run-time exception of IndexOutOfRangeException will be thrown.

In this example, I have called the overloaded version of CreateInstance that creates a single-
dimension array—a vector. There are overloads that can create multidimensional arrays and
can specify the lower bounds of the array, for example:

int dims __gc[] = {3};
int idx __gc[] = {1};
Array* a = Array::CreateInstance(__typeof(String), dims, idx);

Here I have declared two int arrays, and to indicate that I want a managed array rather than a
native array, I have to explicitly mention that the array is a __gc array. The dims array is used
to specify the size of each dimension, and because this declaration has a single value, the array
that I want created should have a single dimension of three items. The idx array gives the
lower bound of each dimension. Here I have decided that the index of the first dimension
should be 1-based (like default arrays in Visual Basic 6).

This code will compile, and it will work at run time. However, if I attempt to use
dynamic_cast<> to cast the Array* variable to a String*[] variable, I will get a zero pointer. I
can use static_cast<> and the cast will succeed, but when I try to access indexes out of the
range 0 through 2, I get an IndexOutOfRangeException exception:

String* names3[] = dynamic_cast<String*[]>(a);

names3[1] = S"Richard";
names3[2] = S"Thomas";
names3[3] = S"Grimes";

The reason is that the runtime sees that I want to use square brackets to access the array, and
when I use dynamic_cast<>, the runtime check determines that the indexes of the dimensions
make them incompatible with square bracket syntax. When I decide that I know better than the
runtime by using static_cast<>, the cast succeeds, but whenever I access an item, the runtime
performs an index bounds check, and it always assumes that the lower bound is zero. If you
want to access an array with a lower bound other than zero, you have to use the methods on
the Array class: GetValue and SetValue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In the previous example, I used an initializer list for the dims and idx arrays. You can create
arrays of value types and __gc types with an initializer list, for example, using this __gc class:

__gc struct Person
{
 unsigned short age;
 String* name;
 Person(String* n, unsigned short a) : name(n),age(a){}
};

I can create the following arrays:

String* names[] = { S"Richard", S"Ellinor" };
Person* people[] =
 { new Person(S"Richard", 37), new Person(S"Ellinor", 38) };

You still have to allocate the members of the array using __gc new. String* arrays are an
exception because when you give a string literal, the compiler will generate the code to use it
to initialize a managed string.

As I indicated earlier, managed arrays can contain value types and pointers to __gc types. An
array of value types will actually contain the values. You will get a contiguous buffer of
memory containing the items. If you obtain an interior pointer to this buffer, you can access
the items through pointer arithmetic.

// System::Char array can be initialized with characters or
// with unsigned short values. In this example, I ensure that the
// last item is zero.
Char c __gc [] = {'R', 0x0069, 0x0063, 'h', 'a', 'r', 'd', 0};
Char __gc* p = &c[0];
for (int i = 0; i < c->Length-1; i++, p++)
 Console::Write(__box(*p));

The second line gets an interior pointer to the first item in the array, and then, in the for loop, I
dereference the pointer to get the item and then increment the pointer with each loop. This
code, naturally, prints Richard at the console. If you want to pass this array to unmanaged
code, you have to pin the array first. If you pin a single item in an array, the entire array is
pinned.

Char __pin* p2 = &c[0];
// Pass this to _putws; this is the reason why the last
// item is zero.
_putws(static_cast<wchar_t*>(p2));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The syntax for allocating and accessing a one-dimensional array is not too different than the
syntax for unmanaged arrays. The syntax to allocate and access multidimensional arrays looks
quite different to native C++.

// multiarray.cpp
String* books[,] = new String*[3,2];
books[0,0] = S"Professional ATL COM Programming";
books[0,1] = S"1-861001-40-1";
books[1,0] = S"Professional Visual C++ 6 MTS Programming";
books[1,1] = S"1-861002-39-1";
books[2,0] = S"Developing Applications with Visual Studio .NET";
books[2,1] = S"0-201-70852-3";

This code creates a String array with two columns and three rows. C++ does not support
initializer lists for multidimensional arrays, so I have to initialize each item individually. Note
that the array is a rectangle—that is, there are six elements arranged as two columns and three
rows.

In native C++, you can interchange pointer and square bracket syntax. a[n] is equivalent to *
(a+n), so you can treat an array of three rows and two columns as an array of three rows
where each item is a single-dimensional array with two items. Furthermore, arrays are
allocated from contiguous memory, so you can play tricks with indexes (for example, for an
array int[4][2], item [2][2] is the same as item [3][0]). When you use the square bracket
syntax with managed arrays, you are restricted to the dimensions that you used when you
declared the array. If you use an index out of this range, you’ll get an exception at run time.
C++ does not allow you to cast between an Array* and a multidimensional array in square
bracket syntax, so you cannot allocate using CreateInstance and then have the convenience of
accessing the elements with the square bracket syntax.

The memory for a multidimensional managed array is allocated as a contiguous block of
memory, and you can take advantage of this layout with interior pointers. For example, I can
allocate an array of integers like this:

// Create a multidimensional array.
int i __gc[,] = new int __gc[5,5];
for (int j=0; j<=i->GetUpperBound(0); j++)
{
 for (int k=0; k<=i->GetUpperBound(1); k++)
 {
 // Initialize the elements.
 i[j,k] = (j*10) + k;
 }
}

Here I use the inherited GetUpperBound to get the highest value of the index of the specified

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here I use the inherited GetUpperBound to get the highest value of the index of the specified
dimension, which for an array allocated using the square bracket syntax is one less than the
size of the dimension given in the array declaration. I can then obtain an interior pointer to the
array like this:

// Get an interior pointer to the first element.
int __gc* p = &i[0,0];
// Obtain all the elements.
for (int j = 0;
 j < (i->GetUpperBound(0) + 1)*(i->GetUpperBound(1) + 1);
 j++, p++)
{
 Console::WriteLine(S"{0}={1}", __box(j), __box(*p));
}

This code will print out all the items in the array without an index check. If I miscalculate the
size of the array, I will obtain memory that does not belong to the array. As I mentioned
earlier, you must be careful when you use interior pointers. Because you could have free
access to the managed heap, such code is not verifiable.

When you have an array, you can call any of the inherited members from System::Array.
Array implements IEnumerable, so you can call GetEnumerator to return an IEnumerator
interface.

IEnumerator* e = i->GetEnumerator();
while (e->MoveNext())
{
 Console::WriteLine(e->Current->ToString());
}

The class has various methods that allow you to search for items in a one-dimensional array.
The static methods IndexOf and LastIndexOf take the array and an object. IndexOf returns the
index of the first element that matches the object, and LastIndexOf returns the index of the last
element that matches the object passed to the method. (You can also pass the range of indexes
to search.) The method calls Equals on the items in the array, which is usually implemented as
a bitwise test for value types and a test of identity equality (the references are to the same
physical object) for __gc types. These methods return the index of the first item that is found
(the array can contain several references to the same object) or GetLowerBound(0)-1. (Usually
the lower bound is zero, but it is better to explicitly check the value because in the future C++
might support arrays with lower bounds that are not zero.)

Now consider this code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// checkcmd.cpp
__gc struct Item
{
 int i;
 Item(int j) : i(j){}
 // Other methods omitted
};

void main()
{
 String* args[] = Environment::GetCommandLineArgs();
 Item* items[] = new Item*[args->Length - 1];
 for (int j = args->GetLowerBound(0) + 1;
 j <= args->GetUpperBound(0); j++)
 {
 items[j-1] = new Item(Int32::Parse(args[j]));
 }

 int i = Array::IndexOf(items, new Item(42));
 if (i < args->GetLowerBound(0))
 Console::WriteLine(S"42 must be on the command line!");
 // Other code...
}

The intention is to take the parameters passed to the command line and use each one to create
an Item object. My code needs to have at least one item initialized with the value of 42. As it
stands, this code will always print the error message regardless of the items put on the
command line. The reason is that the search is performed by passing a new instance of Item
initialized to the value of 42 to IndexOf. The default implementation of Object::Equals will
check for object identity, so even if a user types 42 at the command line, the object created
from that command line argument will always be a different object from the one passed to
Equals.

If Item were a __value type, this problem would not occur because the default implementation
of Equals for a __value type is a bitwise comparison. If I performed the same search on the
String* array (args), looking for the string “42”, the problem would not occur because
String::Equals does a string comparison. I could implement Item::Equals to perform a
comparison of the fields of the objects, but I might have other code that relies on Equals to be
an identity check. The solution is to implement IComparable and to use Array::BinarySearch.

// checkcmd.cpp
__gc struct Item : IComparable
{
 int i;
 Item(int j) : i(j){}
 int CompareTo(Object* obj)
 {
 Item* item = dynamic_cast<Item*>(obj);
 if (i == item->i) return 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (i == item->i) return 0;
 if (i > item->i) return 1;
 return -1;
 }
};

BinarySearch will go through each item in the array and check for the IComparable interface
on each. (If none of the items implement this interface, an exception is thrown.) BinarySearch
then calls CompareTo on each item, passing the object with which to make the comparison. If
the return value is zero, the objects are considered to have the same value. The change to the
call to search the array looks like this:

int i = Array::BinarySearch(items, new Item(42));

You can also sort one-dimensional arrays with the Sort and Reverse static methods. Reverse
takes an existing array and reverses the order of items in the array or within a range in the
array. Sort is more interesting—it uses a quick sort algorithm to sort the items in the array or
items within a range of the array. The items should implement IComparable, in which case
CompareTo will be called on each item to perform the sort; or if the items do not implement
this interface (or the implementation is not suitable), a separate comparer object (that
implements IComparer) can be used:

// checkcmd.cpp
__gc struct ItemComparer : IComparer
{
 int Compare(Object* x, Object* y)
 {
 Item* item1 = dynamic_cast<Item*>(x);
 Item* item2 = dynamic_cast<Item*>(y);
 if (item1->i == item2->i) return 0;
 if (item1->i > item2->i) return 1;
 return -1;
 }
};

IComparer::Compare should return zero if the parameters are equal (using whatever criteria
the comparer decides equals means; in this case, the state held by the objects). If the first
object is greater than the second object, IComparer::Compare returns a number greater than
zero, and if the first object is less than the second object, it returns a number less than zero.
The array can be sorted like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array::Sort(items, new ItemComparer);
for (int k = items->GetLowerBound(0);
 k <= items->GetUpperBound(0); k++)
{
 Console::WriteLine(S"item {0} = {1}",
 __box(k), __box(items[k]->i));
}

You can pass arrays as method parameters, either as an Array* pointer, as a pointer to one of
the interfaces that it implements (IList, IEnumerable), or as a typed array. Passing an IList or
IEnumerable pointer allows you to write generic routines that can be used with a whole range
of containers. Declaring the method parameter as a typed array means that you can use the
square bracket syntax in the method.

// arrayparams.cpp
void TimesTwo(int i __gc [])
{
 for (int j = i->GetLowerBound(0); j <= i->GetUpperBound(0);
 j++)
 i[j] *= 2;
}

Note that it is always a good idea to test the array size in the method. Methods can also return
arrays using the standard C++ syntax, but the current version of the Visual C++ compiler
allows only this syntax for managed code. (Unmanaged code must use pointers.)

// arrayparams.cpp
int CreateArray(int size) __gc[]
{
 int i __gc[] = new int __gc [size];
 for (int j = i->GetLowerBound(0); j <= i->GetUpperBound(0);
 j++)
 i[j] = j;
 return i;
}

The .NET Framework class library has an attribute named [ParamArray], which is used on an
array parameter to indicate that languages can treat the method as having a variable number of
parameters, similar to the ... syntax in unmanaged C++. One overload of the
Console::WriteLine uses this attribute.

[ParamArray]
static void WriteLine(String* format, Object* arg __gc[]);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If this method is called in C#, the language allows any number of parameters to be placed after
the format string and the language will generate an object array to pass to the method. You can
write a similar method in C++ using [ParamArray], but note that if you call this method in
C++, you will have to construct the array in your code. You might wonder how you can call
WriteLine in C++ and pass more than four parameters. In this case, C++ will call another
method that has a method signature that looks like this in IL:

.method public hidebysig static vararg void WriteLine(
 string format, object arg0, object arg1,
 object arg2, object arg3) cil managed;

This method truly does have a variable number of arguments because it has the varargs
metadata attribute; in the implementation, the method obtains the parameters through the
System::ArgIterator class. Clearly, C++ can call methods with the varargs attribute, but at
present the only way to write such a method is if you write it in IL. C# neither has the facility
to write, nor attempts to call, varargs methods.

Exceptions and Managed Code

.NET finally removes the need for old-style C error reporting mechanisms. C code typically
used function return values to report errors, And even static variables to hold the last reported
error. with the associated problem of maintaining a list of what each error value means. This
system persisted into C++ through COM programming, where HRESULTs were the main
error-reporting mechanism. In .NET, method return values are just that—they are intended to
return results. Errors are reported through exceptions.

All .NET exceptions should be instances of System::Exception or derived classes; there is no
concept of throwing a primitive type or throwing a C++ reference. System::Exception looks
like this:

[Serializable]
__gc class Exception : public ISerializable
{
public:
 Exception();
 Exception(String*);
 Exception(String*, Exception*);
 Exception(SerializationInfo*, StreamingContext*);
 virtual String* get_HelpLink();
 virtual void set_HelpLink(String*);
protected:
 int get_HResult();
 void set_HResult(int);
public:
 virtual Exception* get_InnerException();
 virtual String* get_Message();
 virtual String* get_Source();
 virtual String* get_StackTrace();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 virtual String* get_StackTrace();
 virtual Exception* GetBaseException();
 virtual void GetObjectData(SerializationInfo* info,
 StreamingContext* ctx);
};

You have seen ISerializable. Because Exception implements ISerializable (and has an
appropriate constructor), exceptions can be serialized. When you call a remote object via
.NET remoting and that object throws an exception, the exception is serialized and passed via
the remoting channel to the calling code, where it is rethrown.

Exceptions can be created based on other exceptions. This arrangement means that if your
code catches an exception that it cannot handle, it can create a new exception based on the
exception it has caught and add its own description string. This system allows code to build up
a list of exceptions, each of which can be accessed through the InnerException property.

// Get Exception* e from somewhere.
while (e != 0)
{
 Console::WriteLine(e->Message);
 e = e->InnerException;
}

Managed C++ uses the same keywords as native C++ to guard code that can generate
exceptions.

StreamReader* txt;
try
{
 txt = File::OpenText(S"file.txt");
}
catch(FileNotFoundException* fnfe)
{
 Console::WriteLine(S"cannot find file");
 throw new Exception(S"cannot process file", fnfe);
}
catch(Exception* e)
{
 Console::WriteLine(S"some other reason");
 throw;
}

If the file data.txt does not exist, a FileNotFoundException will be thrown. This exception is
caught by the first catch clause, which prints out a diagnostic message and then throws a new
exception based on the caught exception. The second catch clause behaves like the unmanaged
C++ catch(...) to catch all exceptions not caught by the earlier catch clause. Clearly, you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C++ catch(...) to catch all exceptions not caught by the earlier catch clause. Clearly, you
should arrange exception handling so that the more generic exceptions are caught lower down
in the list of handlers, and the C++ compiler will warn you if you catch an exception type that
is higher in the inheritance tree than other exceptions caught lower in the catch handler list.
Managed C++ allows you to use exception specification on methods, but there is no concept
of exception specifications in .NET, so they are ignored. However, I find exception
specifications a great documentation device.

__gc class Test()
{
public:
 Test() throw()
 {}
 void f(int x) throw(ArgumentException*)
 {
 if (x < 0)
 throw new ArgumentException(S"x must be >= 0");
 // Use x.
 }
};

Earlier I deliberately ignored the issue of throwing __value types as exceptions. You can
throw __value types as long as you box the value first, as shown here:

try
{
 throw __box(42);
}
catch(Object* o)
{
}

Notice that to catch the exception, the catch handler catches an Object* pointer. I do not like
this code because the exception is not based on System::Exception, which means that you lose
the ability to nest exceptions. Another drawback is that because most code will have an
exception handler for Exception*, most code will miss your boxed __value type exception,
which means that your exception will propagate up the stack. It is best not to throw exceptions
like this.

Constructors cannot return values, so if a constructor does not succeed, the only way that you
can inform the caller is to throw an exception. If you throw an exception from the constructor
of a managed class, the instance will not be created. Thus, the caller will get a null pointer. It
is important that if a class’s constructor could throw an exception, you check the pointer
returned to make sure that it is not null.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileInfo* info;
try
{
 info = new FileInfo(strFileName);
}
catch(Exception*)
{
 // Handle the exception.
}
if (info != 0)
{
 Console::WriteLine(S"{0} is {1} bytes",
 info->Name, __box(info->Length));
}

In this code, information about a file strFileName can be obtained through a
System::IO::FileInfo object. If the variable strFileName is the empty string, the constructor of
this class will throw an ArgumentException exception and the info variable will be zero.

Once caught in a catch handler, the exception will not propagate further. To propagate the
exception outside of this guarded block, you need to rethrow it, using either a new exception
or the same one.

StreamReader* txt;
try
{
 txt = File::OpenText(S"file.txt");
}
catch(Exception* e)
{
 Console::WriteLine(S"some other reason");
 throw;
}

The handler in this example prints out a diagnostic message, but because it does not want to
handle the exception, the code rethrows the exception by calling throw with no parameter.
Managed C++ does not support rethrowing an exception outside of a catch handler, and if you
try to do so, the exception will be treated as a generic exception and will be caught as an
SEHException.

void ThrowException()
{
 throw;
}
void Test(Object* o)
{
 try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 try
 {
 try
 {
 if (o == 0)
 throw new NullReferenceException;
 // Use o here.
 }
 catch(Exception*)
 {
 ThrowException();
 }
 }
 catch(SEHException* e)
 {
 }
 catch(NullReferenceException* e)
 {
 }
}

In this code, a separate method is used to rethrow the exception. However, although the
exception would appear to be a NullReferenceException, it will actually be thrown as an
SEHException. If the exception is rethrown from the original catch handler, it will be rethrown
as the original type NullReferenceException.

It is usually a good idea to rethrow exceptions if the method returns values. The reason can be
seen in this code:

void Errant(int& i)
{
 i = 99;
 throw new Exception("ignore my results");
}
void CallErrant()
{
 int j = 0;
 try
 {
 Errant(j);
 }
 catch (Exception*)
 {
 }
 Console::WriteLine("j has the value {0}", __box(j));
}

The code calling Errant passes a parameter by reference. The method initializes this reference
and then throws an exception. Because Errant has thrown an exception, any results from this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and then throws an exception. Because Errant has thrown an exception, any results from this
method are suspect—something exceptional has happened. This code is bad because it catches
the exception and then attempts to use the results.

You can also define a finally handler. This is code that is called whenever code guarded by try
is left, regardless of whether this is due to an exception, a call to return from the method, or
the end of the try block being reached. Managed C++ reuses the __finally keyword from
Win32 structured exception handling.

StreamReader* txt;
try
{
 txt = File::OpenText(S"file.txt");
 Console::WriteLine(txt->ReadToEnd());
}
catch(FileNotFoundException* fnfe)
{
 Console::WriteLine(S"cannot find file");
 throw new Exception(S"cannot process file", fnfe);
}
catch(Exception* e)
{
 Console::WriteLine(S"some other reason");
 throw;
}
__finally
{
 if (txt != 0) txt->Close();
}

This code ensures that the file is closed when it is no longer being used. If an exception is
thrown during the call to OpenText, the txt reference will be zero but the __finally clause will
still be executed, hence the reason for the check on this pointer. If the file is successfully
opened but an exception is thrown when reading the file, the catch handler will be executed
first before the __finally clause is executed. If the file is successfully opened and the call to
read from the file succeeds, __finally is still called. This means that the file is always closed
correctly.

The alternative is to call Close outside of the guarded block, but this arrangement means that if
an exception is thrown, Close will not be called (because the exception handlers rethrow the
exception). Instead, the reference to the object will be lost when the stack frame is unwound,
and eventually the garbage collector will do a collection, which will result in a call to the
Finaliser on the StreamReader object, which will eventually call Close.

This behavior of the stack unwinding differs from unmanaged C++. If you have stack
instances of __nogc classes, the destructors of these objects will be called when the stack
frame is unwound. .NET objects do not really have destructors, so although the local reference
to the object will disappear when the stack is unwound, the objects created by code in that
stack frame will not necessarily be destroyed. This destruction occurs when the garbage
collector decides to perform garbage collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can specify a generic function to catch unhandled unmanaged exceptions with the
_set_se_translator method. .NET has an equivalent of this method through the
AppDomain::UnhandledException event. As the name suggests, this event will catch any
exception thrown from any thread that is running in the application domain that has not been
caught. The event is really a case of post-mortem handling. There is little chance of allowing
your process to continue running, but it does at least allow you to prevent the standard
exception handling from generating a dialog that might frighten your users. If an exception is
thrown by the main thread of your process, it will be passed to the JIT debugger before being
passed to the unhandled exception handler. These concepts are described in Chapter 3 and
Chapter 7.

Unmanaged Exceptions

If you call unmanaged code, for example, through platform invoke (PInvoke), that code might
throw an exception. This exception will be propagated as a native structured exception. Your
code can catch these exceptions. The .NET Framework tests the type of exception that is
thrown and attempts to create a suitable .NET Framework exception object. If there is not a
suitable .NET Framework exception, SEHException is used. This exception class does very
little work for you. It does have a member named ErrorCode, but this merely returns
0x80004004 (HRESULT E_FAIL). You can call Marshal::GetExceptionCode, which will
return the SEH exception code, and Marshal::GetExceptionPointers to get the Win32
EXCEPTION_POINTERS structure, which enables you to determine the code that threw the
exception and the state of the CPU registers. Be aware that this method returns an IntPtr, so
you are responsible for extracting the information out of an unmanaged structure. More details
will be given in Chapter 2 (in the section “Exceptions”).

Your code can throw and catch native C++ exceptions.

try
{
 f();
 throw 42;
}
catch(int x)
{
}
catch(Exception* e)
{
}

The compiler will generate both .NET and native C++ handling for this code. If method f is
managed and throws an exception, the exception will be caught by the final exception handler.
If f does not throw an exception, the native exception will be thrown (through a method named
_CxxThrowException that the compiler adds to your assembly). By default, the /GX- switch is
used when the compiler is invoked from the command line—that is, unwind semantics are not
enabled, so code such as this example will have to use one of the /EH switches. Because the
Standard Template Library (STL) can catch and throw exceptions, you must use one of the
/EH switches if you use STL in your unmanaged code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Implementing .NET Types

So far in this chapter, I have explained the basic features of .NET, how they relate to C++, and
how to implement them in managed C++. In this section, I will look at details of implementing
hierarchies of .NET objects in C++.

Namespaces

Both C++ and .NET use namespaces for expressing logical grouping. Declaring a namespace
is straightforward, as shown here:

namespace RTG
{
 namespace Diagnostics
 {
 __gc class Log {};
 }
}

This code declares a class with the .NET name of RTG.Diagnostics.Log. Note that I say this is
the .NET name of the class: if you get the type object of the class and call ToString, you’ll get
RTG.Diagnostics.Log with dots separating the items in the name.

Type* t = __typeof(RTG::Diagnostics::Log);
Console::WriteLine(t->ToString()); // prints RTG.Diagnostics.Log
Console::WriteLine(t->Namespace); // prints RTG.Diagnostics
Console::WriteLine(t->Name); // prints Log

The Log class is declared in the RTG::Diagnostics namespace. To declare aggregated names
like this, you have to use this nested syntax; you can declare types in the outer declared
namespaces.

namespace RTG
{
 __gc class Utility{};
 namespace Diagnostics
 {
 __gc class Log{};
 }
}

Now I have two namespaces, RTG and RTG::Diagnostics. To use a class, you have to use the
C++ name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RTG::Diagnostics::Log* log = new RTG::Diagnostics::Log;

This requirement is true of the classes that you define and of .NET Framework classes. C++
provides several ways to reduce your typing—for example, you can use the using statement to
indicate the default namespace for the compiler to check for items, as shown here:

using namespace RTG;
using namespace RTG::Diagnostics;

Again, the name is the C++ name for the namespace, not the .NET name. Incidentally, you
cannot split namespaces, so although I have used using on the namespace RTG, I cannot refer
to Log as Diagnostics::Log. C++ allows you to define namespace aliases.

namespace interop = System::Runtime::InteropServices;

void main()
{
 int bytes = interop::Marshal::SystemDefaultCharSize;
 Console::WriteLine(S"characters on this system are {0} bytes",
 __box(bytes));
}

Here I have defined interop as an alias for a .NET namespace, which saves me typing a long
line to access the static property Marshal::SystemDefaultCharSize, but it also protects me
because I am using the fully qualified name. C++ also allows you to group classes from
different namespaces in a new namespace.

namespace Utility
{
 using interop::Marshal;
 using System::Type;
}

Now I can call Marshal and Type through the new namespace Utility. However, I think this
strategy is confusing, especially for .NET Framework classes.

Namespaces are logical groupings. They do not give an indication of the actual location of the
code. Namespaces can span assemblies—for example, most of the classes in the System
namespace are in the mscorlib assembly, but other types in the namespace are implemented in
other assemblies. For example, the System::Uri class is implemented in the System assembly,
so if you want to use this class, you have to make sure that you have an appropriate #using
statement. If you compile code and you get errors that certain types are undeclared identifiers,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

statement. If you compile code and you get errors that certain types are undeclared identifiers,
you have two possible reasons: either the compiler cannot find the type from the namespaces
mentioned in the using namespace statements you have given (test this possibility by using the
fully qualified name for the type), or you do not have the metadata for the type. In the latter
case, you have to check the documentation to determine the assembly in which the type is
implemented. Consider this example:

#using <mscorlib.dll>

void main()
{
 System::Uri* url =
 new System::Uri(S"http://www.microsoft.com");
 System::Console::WriteLine(S"The host is {0}", url->Host);
}

This code will not compile. The compiler will give errors indicating that Uri is an undeclared
identifier. Because I use fully qualified names, the problem must be due to metadata. In fact,
the Uri class is implemented in the system assembly, so the errors will go away if I add this
line to the source file:

#using <system.dll>

Inheritance

.NET supports only single implementation inheritance, which means that any __gc classes that
you define can have only one __gc base class (although it can implement more than one __gc
interface). All class derivation in .NET is public; there is no concept of private or protected
inheritance as there is in unmanaged C++. However, you still have to explicitly specify that
you are deriving from a base class or implementing an interface through public inheritance.

// bases.cpp
__gc __interface IInterface
{ };
__gc class BaseWithItf
 : public IInterface // Interfaces only supported through
 // public inheritance
{ };
__gc class DerivedWithItf
 : public BaseWithItf // Base classes only supported through
 // public inheritance
{ };

Class hierarchies are useful because they allow you to put common code in base classes.
These base classes can be concrete or they can be abstract through the __abstract keyword or
through C++ pure virtual syntax, which still results in an abstract .NET class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the base class has no constructors, the compiler will generate a default constructor (one
without parameters) that calls System::Object. The compiler will add code in the derived class
constructors to call the default base class constructor. (The default base class constructor will
be called first, before the call to System::Object.) You can choose to call a nondefault
constructor in the same way that you do in unmanaged C++.

// bases.cpp
__gc class Base
{
 int m_i;
public:
 Base() : m_i(0){}
 Base(int i) : m_i(i) {}
};

__gc class Derived : public Base
{
public:
 Derived(int i) : Base(i){}
};

If a derived class overrides a base class method, the derived class can call the base class
version of the method as long as the derived class has a suitable access. To call the base class
version of the method, you call the method qualified with the base class name. Visual C++
introduces a new keyword for calling a method on the immediate base class: __super, shown
here:

__gc class Base
{
public:
 void f() {}
};

__gc class Derived : public Base
{
public:
 f()
 {
 __super::f();
 // Same as calling Base::f();
 }
};

This keyword is more useful for unmanaged Active Template Library (ATL) attribute-injected
code, and the keyword will allow you to call only the immediate base class, but it is a syntax
that you might see in managed code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The C++ rules of converting derived class pointers to base class pointers apply to __gc
classes: the conversion is implicit. However, if you have a base class pointer, you must cast it
to get a derived class pointer. I’ll cover the C++ cast operators in the section “Cast Operators”
later in this chapter. Of course, managed arrays are .NET objects. As I mentioned earlier, a
pointer to an array is typed according to the items in the array. A pointer to an array of a
derived class can be cast to an array pointer of the base type. However, assigning a member of
the array uses the runtime type. For example:

void CreateControls(Control* ctrls[])
{
 ctrls[0] = new Button;
 ctrls[1] = new TextBox;
 ctrls[2] = new Control;
}

This code uses the System::Windows::Forms classes. The Button and TextBox class both
derive from Control, so the code in CreateControls looks fine because a Button* or a
TextBox* can be implicitly converted to a Control*. The compiler is happy. However, a
Button*[] can also be converted to a Control*[], so calling code could do this:

// calling code
Button* buttons[] = new Button*[3];
CreateControls(buttons);

The compiler is still happy: this code creates an array of Button* and passes this array to
CreateControls where there is an implicit conversion to a Control*[]. The runtime type of
each element of the array is Button*, so in CreateControls, a run-time error will occur when
attempting to put a TextBox* and even a Control* into the array.

.NET allows you to derive from a type in another assembly, and that assembly can be written
in any .NET language. Indeed, other languages can derive from the non __sealed classes you
write in C++. Of course, for other languages to be able to do this derivation, the type has to be
accessible outside of the assembly.

Exporting and Importing Types

You can create executable assemblies and library assemblies—also known as EXEs and
DLLs. A DLL is useful only if the types are visible to code outside of the assembly. There are
three categories of types in .NET: public types, which are visible outside of an assembly,
private types, which are accessible only within the assembly, and nested types (types nested
within other types), in which the visibility is controlled by its enclosing type.

Visibility

In C++, you specify that a type is a public or private type by applying either the public
keyword or the private keyword, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public __gc class A{};
private __gc class B{};
__gc class C{};

The default visibility is private, so in the previous code, only the type A is visible outside of
the assembly. When I say visible, I do not mean that you will never be able to “see” a private
type. The visibility of a type is a .NET attribute accessible through reflection; for a public non-
nested type, Type::IsPublic is true, whereas for a private non-nested type, Type::IsNotPublic
is true. Thus, if you use ILDASM to look at an assembly, you’ll be able to see any private
types in the assembly. The C++ linker uses .NET visibility when determining which code to
put in the final assembly. All public types will be linked, but only private types used by a
public type (directly or indirectly) will be linked. So, if you view your assembly with
ILDASM and see that a private type is not in the assembly, it is because it is not used in your
code.

Private types will not be accessible outside of the assembly when called using metadata. You
use #using to import metadata from an assembly, but only public types will be imported. Note
that I said only public types from the assembly can be imported using the #using statement.
Modules (usually housed in .netmodule files) are part of an assembly, so if you specify a
module with #using, all types in the module are available to the code in the file in which the
#using statement resides. Similarly, if you specify an .obj file with #using, you’ll get access to
all types in the file, which will be linked into the final assembly.

Because private types are available through reflection, if you are willing to write the reflection
code, you will have access to it. For example, here’s the code for a library DLL:

//compile with cl /clr /LD lib.cpp
#using <mscorlib.dll>
private __gc class B
{
public:
 void f()
 { System::Console::WriteLine(S"called B"); }
};
public __gc class A
{
 // Reference an instance of B so that the optimizer does
 // not remove the type from the DLL.
 A(){B* b = new B;}
};

On the surface, this code implies that only type A is accessible outside of the assembly.
However, the following code accesses the type through reflection:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Compile with cl /clr libuser.cpp.
#using <mscorlib.dll>
using namespace System;
using namespace System::Reflection;

void main()
{
 AppDomain* ad = AppDomain::CurrentDomain;
 Object* obj;
 obj = ad->CreateInstanceAndUnwrap(S"lib", S"B");
 Type* t = obj->GetType();
 MethodInfo* m;
 BindingFlags bf = (BindingFlags)(BindingFlags::Instance
 │ BindingFlags::Public);
 m = t->GetMethod(S"f", bf);
 m->Invoke(obj, 0);
}

The CreateInstanceAndUnwrap method on the application domain will load the specified type
in the specified assembly. The name used is the display name of the assembly. Because in this
example I have not given the library assembly a version or a culture and I have not signed the
assembly, the display name is simply the name of the DLL without the extension. (I will
explain in detail how to apply a version, a culture, and a public key to an assembly in Chapter
5.) CreateInstanceAndUnwrap accesses the type whether or not it is public, and once an
instance has been created, it is relatively easy to access the members of the class. Note that the
BindingFlags used in GetMethod refers to the member, not the type.

What you cannot do is call the type through a typed pointer. You cannot use a B* pointer
because the metadata for this type is not available. (Only metadata from public types can be
imported from a library assembly through #using.)

I am not suggesting that you regularly call code in this manner. The point I am trying to make
is that even though the type is private, it is still accessible if you are willing to write the code.

Member Access

Visibility of a type is only part of the information needed to determine if you can access
members of the type. .NET defines six The ECMA spec actually gives seven levels, but the
level that I have left out of Table 1 5, privatescope, is not put on class members by the C++
compiler. levels of access on members of a class. All levels are available to C++ code.
Member access is specified using the C++ public, protected, and private keywords. Clearly
there are not enough keywords for the number of access levels, so C++ uses a combination of
these three keywords. Table 1-4 shows these combinations.

Table 1-4. Member Access Specifiers in C++
Access Level Metadata Attribute Assembly Accessibility External Accessibility

public public public public public

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public protected famorassem public protected

public private assembly public private

protected protected family protected protected

protected private famandassem protected private

private private private private private

If the access level has a repeated keyword, you can omit the second word. Thus, public can be
used instead of public public. As you can see, there are only six of the possible nine
combinations. In fact, the order that you give the keywords in the access level is unimportant:
the most restrictive accessibility always determines the visibility to code outside the assembly.

Consider this code:

public __gc class Base
{
protected protected:
 void f(){}
protected private:
 void g(){}
};

This class can be used as a base class for a class within this assembly or within another
assembly. This ability is controlled by the public keyword on the type. If I had used the
private keyword on the type, only classes within this assembly would be able to derive from
this class. The member f is marked as protected protected (or simply, protected), which means
that code within the same assembly as this class can access this member as long as that code is
part of a class that derives from this class. The protected protected keywords also mean that if
a class in another assembly derives from this class, that class can also access this member.
This type of access is why the metadata for this access level is named family: any code that is
part of the family can access this member. The member g is marked as protected private,
which means that only code in a class derived from this class that is in the same assembly as
this class can access this member. This type of access is why this access level is named
famandassem (in the same family and in the same assembly).

C++ has keywords that bend the C++ rules of member accessibility. These keywords, such as
the friend keyword, are not allowed in managed C++. Friends are not allowed, and you cannot
change the accessibility with the using directive. However, you can change accessibility by
deriving from a class—a member of a derived class can have a wider accessibility than the
member it overrides.

Finally, access levels are applicable only to code used through normal binding. If you decide
to call code through reflection, you can access nonpublic members.

Nested Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can define a type within an existing type. The new type is a nested type. Nested types do
not have a visibility; they take the visibility of the enclosing type, which means that a nested
type cannot be more accessible than the type that it is defined in. Because a nested type is a
member of its enclosing type, you can apply a member access specifier to the nested type.
Thus, you can make the nested type less accessible than its enclosing type.

All __gc and __value types can have __gc types, __value types, enums, and delegates as
nested types. Managed interfaces cannot be a nested type, neither in a __gc or __value type,
nor in another managed interface; managed interfaces cannot have a nested __gc or __value
type, other than an enum. The name of a nested type is scoped by the enclosing type, not the
assembly, so two enclosing types can have nested types with the same name.

public __gc class Outer
{
public:
 __gc class Inner
 {
 public:
 __value enum VALUES {One, Two};
 };
protected protected:
 __gc class Inner2
 {
 };
};

In this example, there is a public class named Outer, which is visible to code outside of this
assembly. Within this class is another class named Inner, which is also visible outside of the
assembly, but because it is a public member of the class, it is also accessible outside of the
assembly. The Outer class also has a member named Inner2, which is declared as protected
protected, so it too is visible outside of the assembly (it gets this visibility from its enclosing
type’s visibility), but Inner2 is accessible only by code derived from the enclosing type
(within the same assembly or in another assembly).

In C++, the name of the nested type is scoped by the C++ resolution operator, ::. Thus,
VALUES is named Outer::Inner::VALUES, and code outside of the enclosing type must use
this qualified name. However, metadata uses a different naming scheme. The code

Type* t = __typeof(Outer::Inner::VALUES);
Console::WriteLine(t->ToString());

will print

Outer+Inner+VALUES

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

at the command line. If you are likely to access members through reflection, you should be
aware that metadata uses + as the scoping operator. Furthermore, MSIL uses a forward slash
as the scoping operator for nested types, so the MSIL for the previous code looks like this:

ldtoken Outer/Inner/VALUES
call class [mscorlib]System.Type
 [mscorlib]System.Type::GetTypeFromHandle(
 valuetype [mscorlib]System.RuntimeTypeHandle)
callvirt instance string [mscorlib]System.Type::ToString()
call void [mscorlib]System.Console::WriteLine(string)

The accessibility of a nested type is given by the accessibility of the member within the
enclosing type. Thus, VALUES has the metadata nested public applied to it because it is a
nested member of Inner and it is a public member of this type. If you test the metadata of a
nested type, you should test the appropriate IsNested metadata.

Type* t = __typeof(Outer::Inner::VALUES);
Console::WriteLine(S"IsPublic {0}", __box(t->IsPublic));
Console::WriteLine(S"IsNotPublic {0}", __box(t->IsNotPublic));
Console::WriteLine(S"IsNestedPublic {0}", __box(t->IsNestedPublic));

This code gives true for IsNestedPublic but false for the other two tests.

Nested types can derive from the outer type, but in C++, the nested type must be defined
outside of the class.

public __gc class OuterClass
{
public:
 __gc class InnerClass; // Forward reference
};

public __gc class OuterClass::InnerClass : public OuterClass
{
};

A nested type has access to all the members of the enclosing type. Thus, a nested type has
access to private and protected static members, and if a nested type has an instance of the
enclosing type, it has access to instance members too. However, the converse is not true: the
enclosing type does not get access to protected and private members of nested types.

A __gc type can define a __nogc type as a nested type, but although you can access the nested
type in your C++ code, it will not be visible nor accessible to any other code.

Using Types from Other Languages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you import metadata from another assembly, you have no indication about the language
that was used to write the code. This ability to use code written in other languages is one of the
significant features of .NET. However, different languages have different keywords, so a C#
developer can export a type that has the same name as a C++ keyword. C++ has a mechanism
to use such types, to identify that the compiler treats them as types and not as the C++
keyword. For example, I could define this class in C#:

// C#
public class friend
{
 private string name;
 public friend(string n) {name = n;}
 // Other members
}

The problem is that friend is a C++ keyword, so the following code will not compile:

friend* f = new friend;

The C++ compiler will interpret the type name as the C++ friend keyword and will issue
errors indicating that the use is incorrect. To get around this problem, C++ has the __identifier
keyword, shown here:

__identifier(friend)* f = new __identifier(friend);

Now the C++ compiler treats these instances of the word friend as being the name of a type.
The code will compile.

You can use __identifier anywhere a symbol is used, so you can use it on type names and
members of types. You can also use it on type declarations within your own code.

Casts and Conversions

Much of the code you will write will be through typed pointers. However, some of the time
you will get a generic pointer or a pointer to a base class. If this is the case, you will need to
convert the pointer to a more specific pointer so that you can access the functionality that you
require. .NET is strongly typed: object references are to a specific object of a specific type.
You will not be able to call an object through a reference other than one in its class hierarchy.

Cast Operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The most generic cast is a C-style cast. The C++ compiler will warn you whenever you use a
C-style cast on object references. The reason for the warning is that no compile-time check is
performed. If you attempt to cast to a pointer of another object type, at run time .NET will
throw an exception. C-style casts are so simple and tempting to use, but .NET is the ideal
reason to banish them in favor of C++ casts. Because C-style casts are so dangerous, the
compiler will warn you (warning message C4303) when you use them on managed pointers.
You should take this opportunity to use an appropriate C++ cast.

There are two types of casts that you’ll perform. The first case is when you absolutely, utterly,
and definitely know the type of the object and that the cast will succeed, in which case no run-
time check is required. The other case is when you are not so sure, in which case you are
happy for .NET to perform a type check for you.

The C++ dynamic_cast<> operator is used to convert pointers of related types. The runtime
will check the type of the object to see whether the pointer that you request is to the object
type or to a base class. If the cast fails, dynamic_cast<> will return 0. If you use
dynamic_cast<>, you should ensure that you check the return value.

Managed C++ has a new operator named __try_cast<>. This operator behaves like
dynamic_cast<>, except if the cast fails, an exception of type InvalidCastException is thrown.
In terms of implementation, the only difference between dynamic_cast<> and __try_cast<>
is that the former uses the IL isinst, whereas the latter uses castclass.

If you are sure that you know the runtime type of an object, you can use static_cast<>. This
operator will convert between pointer types with no check at run time. (In the intermediate
language, the object reference being cast is merely copied into the reference it is being cast to.)
If the object being cast is a __value type, you can use static_cast<> only to convert it to a
System::Void* pointer.

Finally, C++ provides reinterpret_cast<> to convert between unrelated pointers. In general,
this operator should not be used for object references. The C++ compiler will issue warning
C4669 if you use this cast on a __gc pointer, which you should use as an indication that you
should change the cast operator. This operator is useful for casts on pinned pointers, where
your intention is usually to get an unmanaged pointer access to managed memory.

The const modifier is a C++ism, so although you can use it on your variables and method
parameters, it has no effect on the .NET code generated. You use const to get the compiler to
perform checks on how you use pointers.

void UseDataObject(const Data* pdata)
{
 pdata->x = 88; // Error: object cannot be modified
}

In this code, I have decided that the method cannot modify the object passed to it. Making the
object constant (prefixing the pointer with const) tells the compiler to check to see whether I
make any attempt to modify the object. This code will not compile, but it is perfectly fine in
terms of .NET. (If the parameter was declared Data* const pdata, the pointer, rather than the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

terms of .NET. (If the parameter was declared Data* const pdata, the pointer, rather than the
object, is constant.) When C++ sees const, it applies Microsoft::VisualC::IsConstModifier to
the parameter, although interestingly, it is applied to the parameter in the same way whether
const is used to make the pointer constant or to make the object constant. C++ allows you to
cast away the effect of const using the const_cast<> operator.

Conversion Operators

The Common Language Specification defines two operators with the special names
op_Explicit and op_Implicit. These operators are used for the conversion of one type to
another type. op_Explicit is used when the conversion will lose data, and op_Implicit is used
when no data is lost during the conversion. In most cases, in C++ code you will have to
explicitly call these operators. Other CLS languages (such as C#) will call op_Explicit when a
cast operator is used, and op_Implicit when it is not used.

These conversion operators are always static members of a class and either take an instance of
the class as a parameter or return an instance of the class, depending on whether you are
converting to another type or from another type. (Of course, conversion from another type can
also be achieved with a constructor that takes a parameter of that type.) These operators are
interesting because you can overload them based only on the return type.

Managed Operators

As I mentioned earlier, operators are used by CLS-compliant languages to implement certain
language features. Languages are not required to implement nor are they required to call the
operators if they exist (as can be seen with the conversion operators and C++). Operators are
static members of a class, and they return the result of the operation, which is an instance of
the class.

Operators defined on __value types behave as you would expect: the compiler will convert the
use of the C++ operator into the appropriate method call. Operators on __gc types typically
have to be called directly in C++ (through a method call), but other languages might allow you
to use language operators.

Unary Operators

Unary operators have a single parameter. Because operators are static, the ++ and -- are
equivalent to the prefix ++ and -- operators—that is, they return the new value. Table 1-5 lists
the unary operators available in managed C++.

Table 1-5. Unary Operators
Operator Description

op_Decrement
Decrement the object, equivalent to ++.

op_Increment
Increment the object, equivalent to --.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

op_LogicalNot
Used for Boolean types to reverse the value.

op_UnaryNegation
Make the item negative (+).

op_UnaryPlus
Unary +.

Binary Operators

Binary operators take two parameters that are being combined with the operator. For example:

// operators.cpp
__value struct Complex
{
 int x; int y;
 Complex(int i, int j) : x(i), y(j) {}
 static Complex op_Addition(Complex lhs, Complex rhs)
 { return Complex(lhs.x + rhs.x, lhs.y + rhs.y); }
 String* ToString()
 {
 return String::Format(S"({0} + {1}j)", __box(x), __box(y));
 }
};

void main()
{
 Complex c1(1,2);
 Complex c2(2,3);
 Complex c3 = c1 + c2;
 Console::WriteLine(S"{0} + {1} = {2}",
 c1.ToString(), c2.ToString(), c3.ToString());
}

Table 1-6 lists the binary operators available in managed C++.

Table 1-6. Common Binary Operators
Operator Description

op_Addition
Add two objects.

op_Assign
Create a new object with the value of another one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

op_Assign

op_BitwiseAnd
Perform a bitwise AND (&) on two objects.

op_BitwiseOr
Perform a bitwise OR (│) on two objects.

op_Division
Divide one object by another.

op_Equality
Test the value of two objects for equality.

op_ExclusiveOr
Perform a logical XOR (^) on two objects.

op_GreaterThan
Test to see if one object is greater than another.

op_GreaterThanOrEqual
Test to see if one object is greater than or equal to
another.

op_Inequality
Test the value of two objects for inequality.

op_LeftShift
Left-shift the value the specified number of places.

op_LessThan
Test to see if one object is less than another.

op_LessThanOrEqual
Test to see if one object is less than or equal to another.

op_LogicalAnd
Perform a logical AND (&&) on two objects.

op_LogicalOr
Perform a logical OR (││) on two objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

op_LogicalOr

op_Modulus
Return the remainder after dividing one object by
another (%).

op_Multiply
Multiply one object by another.

op_RightShift
Right-shift the value the specified number of places.

op_Subtraction
Subtract one object from another.

Creating and Destroying Objects

All __gc types must be created with __gc new. All __gc types can have a C++ destructor.
__value types cannot have destructors. The C++ compiler will implement this as the method
with the special name of __dtor that has the special purpose of being called when the operator
delete is called. If your class does not have a destructor, you cannot call delete on that type.
The destructor on a __gc type does not have the same meaning as a destructor on a __nogc
type, and correspondingly, calling delete on a __gc type does not mean the same as calling
delete on a __nogc type.

When you create an instance of a __gc type with __gc new, the instance is created on the
managed heap and your code will get a pointer to that object, which represents a reference to
the object. While you use that pointer, the garbage collector knows that a reference is held to
the object. When that pointer goes out of scope or if you assign zero to it, the garbage
collector knows that the reference no longer exists to that object. If you copy the pointer in
some way (pass the pointer to a method or do a pointer assignment), you have made another
reference to the object. The lifetime of an object depends on the extant references and the
amount of time until the garbage collector decides to perform garbage collection. (You can
explicitly tell the garbage collector to perform garbage collection by calling
System::GC::Collect.)

When the garbage collector determines that an object on the heap is no longer reachable from
any pointer in your code, the object is a candidate for collection. In most cases, the garbage
collector will merely reuse the object’s memory. However, if the object implements
Object::Finalize, there is some code that the object needs to have run just before the object is
freed. During the collection, the garbage collector will identify such objects and schedule them
to be called on a separate thread (the finalizer thread). This thread will go through each of
these objects (in no specific order) and call its Finalize method. This action delays the final
demise of these object still further.

In C++, you cannot define a Finalize method on an object; instead, you declare a destructor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In C++, you cannot define a Finalize method on an object; instead, you declare a destructor.
When the compiler sees that your class has a destructor, it generates two methods, a public
method named __dtor and the protected override of Finalize. Whatever way you declare your
destructor, the compiler will always make __dtor virtual. This method is called when your
code calls the delete operator or when your code calls the destructor directly—for example,
with this class:

__gc class Test
{
public:
 void f(){}
 ~Test(){/* dtor code */}
};

I can call this code:

Test* t = new Test;
t->f();
delete t;
t->~Test();
t->__dtor();
t->f();

Notice that after I call delete on the pointer, the pointer is still valid. Indeed, it still remains
valid after I call the destructor using C++ syntax and through the compiler-generated method.
Unlike native C++, delete does not affect the pointer. In Managed C++, delete merely calls the
destructor code. Of course, the code that you have in your destructor might invalidate the state
of the object, so calling other methods on the object will have inherent dangers, but the object
itself is still valid.

The compiler places the code that you write in your destructor into the generated Finalize
method. Thus, this code will be called when the object is eventually called by the finalizer
thread. The __dtor method looks like this:

virtual void __dtor()
{
 System::GC::SuppressFinalize(this);
 Finalize();
}

This code calls the Finalize method (which contains the code that you put in the destructor).
When this method is called, it means that your cleanup code has already been called, so you
do not want the garbage collector to do this again. This is why __dtor calls SuppressFinalize.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

do not want the garbage collector to do this again. This is why __dtor calls SuppressFinalize.
Because the object still exists after the destructor has been called (and indeed, unless you
assign the pointer to zero, a reference will still exist to the object), you can still access the
object. If the object relies on resources that might have been released in the destructor, you
will need to reinitialize these resources before object methods can be called, but because
SuppressFinalize has been called, the garbage collector will not now call the Finalize method.
The solution to this issue is to call ReRegisterForFinalize in the method that reinitializes these
resources. It is a good idea not to allow objects to be used like this. Indeed, as you will see in
Chapter 4, objects that hold onto resources should implement an interface called IDisposable,
and once disposed, such an object should throw an ObjectDisposedException.

If your class has a base class that also has a Finalize method (for example, if it was written in
C++ with a destructor), the destructor for your class will call the base class Finalize after your
class’s Finalize has been called.

This behavior of the destructor, prolonging the lifetime of your objects, is a problem, and you
should try to avoid it where possible. To do so often requires rethinking the problem to avoid
holding onto resources for the lifetime of the object. Instead, retain the resources only as long
as you need them. Another trick that you can employ—which I will investigate further in
Chapter 2—is that destructors on unmanaged classes are called just as you will expect them to
be. So you can create temporary objects on the stack, and when the object is destroyed, its
destructor is called. You can write unmanaged classes that hold managed pointers as data
members—obtained in the constructor and released in the destructor, but I will leave details
about that for Chapter 2.

Like native C++, when a __gc class is created, an appropriate constructor is called on the base
class. (This will be the default constructor, but you can specify another constructor.) The
default constructor on System::Object will be called before any code that you specify in your
class’s constructor is called. If your class has virtual methods and a base class constructor calls
these methods, there will be no problems even though officially the object has not been called
yet. The reason is that the object’s members will be initialized to zero before any constructors
are called, so they will have valid values. Indeed, in contrast to native C++, the vtable for an
object is created before a constructor is called, so it is safe to call virtual methods.

Entry Points

When you compile your code, the compiler will assume that you will use the CRT, in which
case the entry point will be mainCRTStartup. This function calls your main function, passing
the command-line arguments. The command-line arguments will be available through a char*
pointer or wchar_t* pointer array depending on whether the code was compiled with the
UNICODE symbol defined. These parameters are always unmanaged, so if you want to use
them in your code, you will have to convert these strings to managed strings. (System::String
has two constructors that take a char* pointer or a wchar_t* pointer parameter.) Because main
is the function that you are used to using in traditional C programs, you can expect to get the
same parameters. For example, the following are all valid signatures for the entry point of a
managed console process:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void main();
int main();
int main(int argc, char* argv[]);
int wmain(int argc, wchar_t* argv[]);
int main(int argc, char* argv[], char* envp[]);
int wmain(int argc, wchar_t* argv[], wchar_t* envp[]);

Also, you can link with setargv.obj, and the command-line arguments will be treated as file
specifications with the wildcards * and ? expanded.

If you will not use the CRT and do not have any global native C++ objects, you do not need to
initialize the CRT and you can make main your entry point.

cl /clr mycode.cpp /link /entry:main

The code that loads the application will assume that the main function takes no parameters, so
you do not have access to the traditional parameters of the C main function: argc and argv. If
you want to get the command line, you can call Environment::CommandLine to get the
command line as one string, and Environment::GetCommandLineArgs to get an array of the
command-line arguments. In both cases, the first argument will be the command name that
you used to start the process. You can call Environment::GetEnvironmentVariables to get a
dictionary (a name-value associative container) of the environment variables.

Command-line processes can return an integer to the operating system that is often used as an
error level. If you forget to return a value from the entry point, the compiler will automatically
return zero. I don’t recommend that you use this facility. You can return a value back from
your managed entry point, or you can call the managed Environment::Exit with the error level.

Your assembly can be a GUI application, which means that the PE file must be marked as
such so that a console is not created when it is run, and your application must have a WinMain
entry point. I will leave a more detailed description until Chapter 4, but here I will simply say
that if you add WinMain to your code, the compiler will use this function as the entry point
and the linker will ensure that it uses the /SUBSYSTEM:WINDOWS switch. If the assembly is
a library, your code does not need an entry point—the assembly is loaded by the .NET Fusion
technology and not the LoadLibraryEx function. In fact, if your library assembly has a
DllMain it will be called but only when the assembly is first loaded, when it is passed a value
of DLL_PROCESS_ATTACH. So you do not need a DllMain. By default, you’ll get a
_DllMainCRTStartup function to initialize the CRT. If you do not need the CRT, you can use
the /noentry linker switch to remove the _DllMainCRTStartup function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Summary

.NET is touted as having a common language runtime. In fact, the runtime will execute only
one language, Microsoft intermediate language, but the assemblies that contain the MSIL can
be created by any .NET language and any .NET language can use types in .NET assemblies.
The Managed Extensions for C++ allow you to use C++ to write .NET code—code that
implements and uses .NET types.

Managed C++ extends the language with new keywords that allow you to specify that a class
is a .NET class and allow you to add metadata to the class and its members. Code that does not
have these new keywords will be native C++, and instances of these types will not be
managed by the .NET garbage collector, although in most cases, their code will be compiled to
MSIL.

Managed C++ gives you all the .NET features that are available to other .NET languages, but
it has all the power of a language that has always been regarded as the language of choice for
power programming. The significant point about C++ is that it allows you to compile both
managed and unmanaged types and to use native code all in the same project. This ability will
be the topic of Chapter 2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2
Interop
The current shipping version of .NET is built upon Win32, and the Microsoft .NET
Framework classes make calls through to Win32 to perform their work. You, too, will
sometimes need to make calls to Win32 or to your own native code exposed as COM objects,
as C functions exported from a DLL, or as code in a static-link library. The .NET Framework
supplies most of the facilities that you’ll want to use, but some features have not found their
way into the .NET Framework and you’ll have to access native code to use them.

Native code runs outside of the control of the .NET runtime, so when you make calls to native
code, you have to take into account that pointers are not tracked, memory is not garbage
collected, and the .NET context is not available. Thus, object references cannot be passed to
native code; instead, they have to be marshaled into a form that is suitable for native code.
Collectively this process is named interop, and it allows you to call code outside of the
embracing arms of .NET.

You might have your own libraries, and these could be written in a variety of languages and
provided as COM, DLL-exported functions, static-link libraries, or even C++ template
libraries. If this code is provided by a third party, you’ll often have little choice other than to
access that code through interop. If these libraries are written by your company, an argument
is needed to port such code over to .NET. However, porting is not always a viable solution
because you’ll multiply the amount of effort that you’ll put into testing and debugging the
code—not only do you have to test your new code, but you also have to test your ported code.
Furthermore, the .NET Framework is based on different paradigms than most Win32 code,
and there is rarely a one-to-one equivalence. It is almost always better to use this code in the
environment where it was originally designed and access it through interop.

When you execute code through interop, the native code has direct access to memory. This
access is not tracked by the garbage collector, and code access security is not applied; code
access security gives code permissions based on evidence provided by the code, which
includes the code’s source location. (See Chapter 5 for more details about code access
security.) You get the advantage of increased performance because the .NET Framework does
not make checks on native code (run-time type checks, code access checks, bounds checks on
array indices, and so on), but you risk the associated danger that because these run-time
checks are not performed, the code can modify memory that it does not own.

You can use interop in several ways, as described in the following list. I’ll cover each
approach in detail in the rest of this chapter.

It Just Works! (IJW)

This technology is available only through the Managed Extensions for C++. With IJW,
you use native code directly. You do not need to add any other code; the compiler
generates all the code to call to make the transition to native code.

Platform invoke

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Platform invoke

This technology is accessed through custom attributes, and it allows you to access code
exported as C functions from a DLL.

COM interop

This technology allows you to access COM objects as if they were .NET objects and
.NET objects as if they were COM objects.

COM interop allows you to use .NET types from unmanaged code as if they were COM
objects. The .NET code will run in an apartment in the native process—the client code does
not have to be compiled with a .NET-specific library. Of course, if the .NET code runs on the
same machine as the client, you have to make sure that the code and the .NET Framework are
deployed on the client machine. If the code is accessed remotely Through sockets, SOAP, or
ASP.NET, but not through .NET remoting, which requires the runtime on the client. or if it is
installed as part of a COM+ application on a remote machine, the client machine need know
nothing at all about .NET.

If you want to have more control in your native client, you can decide to create your own
application domain and call .NET code from there. This strategy really makes sense only if
you want to have more control over how application domains are created and over their run-
time properties. I will cover the details of creating application domains and calling .NET
components in those domains in Chapter 5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It Just Works!

Try this: Take any C++ application for which you have the source code, and in the make file,
add the /clr switch to the rule for C++ files. Compile the project. Now look at the application
using ILDASM. You’ll see that the code has compiled even though it knows nothing about
.NET. You’ll also see that the code will compile (mostly) to Microsoft intermediate language
(MSIL) even though the code does not have managed types. The application will also run.
You have not had to make any changes to your code to make it compile to MSIL and to be
linked into a .NET assembly.

The compiler has ensured that IL calls native code from static-link libraries and functions
imported from DLLs without any additions to the source code. You do not have to worry
about the security aspects of accessing memory directly because the compiler marks your
assembly in such a way that ensures that the user of the assembly must be explicitly deemed as
being safe to use such code. (This process sounds dangerous, but as I’ll explain in Chapter 5, it
is not.) The compiler does all of this work for you; there is nothing else for you to do because
It Just Works!

Let’s take a closer look at how IJW achieves all of this.

Native C++ Classes

I mentioned in Chapter 1 that the compiler will attempt to compile all C++ to MSIL. (There
are exceptions, which I listed in that chapter.) When the compiler comes across a type
definition that is either marked explicitly as __nogc or a type not marked as __gc, the compiler
knows that instances of this type are not managed by the garbage collector. Instances of this
type can be created on the stack, can be passed either by value or by reference to native code,
and can be created with the unmanaged new operator and deleted with the unmanaged delete
operator. If you use the new or delete operators with these types, the compiler will add the
unmanaged new and delete operators to the assembly—either the operators provided by the
standard library or, if you define your own, your custom operators. If you provide custom
operators as C++ source code, the compiler will attempt to add them as MSIL; if you use the
standard library new operator, this operator will be added to your assembly as native code.

Although these native classes are compiled as MSIL, they are not managed. Thus, the normal
rules of C++ apply: you must ensure that when the instance is no longer needed, you delete it,
and that any memory held by the instance (or any COM pointers) should also be freed (most
likely in the class destructor). Indeed, the destructor of a __nogc class created on the stack is
called when the variable goes out of scope, just as you would expect with native C++, so you
can use the destructor of a __nogc class to manage resources. The methods in these
unmanaged classes can call any code in the .NET Framework and use managed types. They
can also have managed types for parameters and return values. There is no issue here with the
garbage collector because the managed pointers (and hence the lifetime of the reference they
represent) passed to the methods are created on the stack, as are the pointers for managed
types created in the methods. Because this code is MSIL, the runtime controls the stack.
Unmanaged classes can have __value types or __nogc pointers to __value types as data
members (as long as they follow the guidelines I give later in the section “Native Types”)
because the garbage collector does not track __value types. However, because the garbage

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

because the garbage collector does not track __value types. However, because the garbage
collector cannot track pointers held as data members in unmanaged types, unmanaged types
cannot have managed pointers as data members. I will return to this issue in the section
“Managed Pointers in Unmanaged Types.”

Unmanaged C++ is normal C++, so you can use multiple inheritance and you can define copy
constructors, destructors, and conversion operators. However, if you use metadata from an
assembly, those managed types will be available to your code (as long as your code can be
compiled to MSIL). So long as you do not use managed types as data members, you can write
unmanaged types that have managed types as function parameters and return values. For
example, imagine that you have a method that looks like this:

// envvars.cpp
void DumpStrings(String* s[])
{
 for (int i = 0; i < s->Length; i++)
 {
 Console::WriteLine(s[i]);
 }
}

This code could be a global function or a member of a managed class. The method takes an
array of strings and prints out each one. I could call the method like this:

String* str[] = {S"one", S"two", S"three"};
DumpStrings(str);

There is nothing new here; I have merely created a managed array of strings and passed it to
the method. Now what happens if you have an array of unmanaged strings? The first issue is
what is meant by an array of unmanaged strings. This term usually means an array of string
pointers. Although the process of converting an unmanaged string pointer to a managed string
pointer is straightforward (you simply pass the unmanaged string pointer to the constructor of
System::String), there is the problem that an unmanaged array cannot be used in place of a
managed array. Another interpretation of an array of strings could be a contiguous buffer that
contains the actual characters of the strings; such a buffer is actually an array of characters.
The Win32 function ::GetEnvironmentStrings returns a buffer in this format. The buffer
contains the current environment variables in the format Name=Value, where Name is the
name of the variable and Value is its value. Each string is NULL terminated; the end of the
array is identified by an empty string.

With this information, I can use the following class to convert such a buffer to an array of
managed strings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// envvars.cpp
__nogc class EnvVars
{
 typedef String* StrArray [];
 LPTSTR pv;
 int count;
public:
 EnvVars()
 {
 pv= static_cast<LPTSTR>(::GetEnvironmentStrings());
 LPTSTR str = pv;
 count = 0;
 while (true)
 {
 if (*str == 0) break;
 while (*str != 0) str++;
 str++;
 count++;
 }
 }
 ~EnvVars()
 {
 ::FreeEnvironmentStrings(pv);
 }
 operator StrArray()
 {
 String* strs[] = new String*[count];
 LPTSTR str = pv;
 for(int i = 0; i < count; i++)
 {
 strs[i] = new String(str);
 while (*str != 0) str++;
 str++;
 }
 return strs;
 }
};

The first point to make is that the class is __nogc and hence does not have any managed data
members. The class is designed to convert the unmanaged buffer returned from
::GetEnvironmentStrings. (This buffer is allocated in the constructor and freed in the
destructor.) I want to use this class whenever a String*[] is expected, so I define a typedef for
this type named StrArray and then declare a conversion operator. The conversion operator
creates an array of the appropriate size and initializes each member with a managed string.
The conversion from the unmanaged string to the managed string is performed using the
System::String constructor.

Now I can pass an instance of EnvVars wherever a String*[] parameter is expected:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EnvVars vars;
DumpStrings(vars);

or I can even pass a temporary variable:

DumpStrings(EnvVars());

It is interesting to take a look at the code that the compiler generates for this class. Take a look
at the method generated for the conversion operator:

.method public static string[] modopt(
 [mscorlib]System.Runtime.CompilerServices.CallConvThiscall)
 EnvVars..P$01AP$AAVString@System@@(
 valuetype EnvVars* modopt(
 [Microsoft.VisualC]Microsoft.VisualC.IsConstModifier)
 modopt([Microsoft.VisualC]
 Microsoft.VisualC.IsConstModifier) A_0)
 cil managed

The .NET Framework has specific naming rules about conversion operators on .NET types
(op_Explicit and op_Implicit), which I covered in Chapter 1. Because this is not a .NET type, I
have not followed these rules, so the compiler has treated the operator as an ordinary method.
Also, because I have not given this method a name, the compiler has generated one. This
method is named EnvVars..P$01AP$AAVString@System@@( ) and (like all methods on
__nogc types) is declared as a static method at global scope, so to allow this method to have
access to the this pointer of the object, a parameter of EnvVars* is passed as the first
parameter.

Native Types

In the previous section, a __nogc type that had data members was declared. Those data
members were native types. In fact, you can use .NET types as data members as long as you
follow some rules. Basically, an instance of a __nogc type can be passed to native (non-MSIL)
code in which the garbage collector has no knowledge of what is happening to the instance.
This arrangement could mean that the instance is copied or even deleted; therefore, __nogc
types cannot hold managed types because the garbage collector will not be able to determine
when object references are created or released. So there is an absolute rule that __nogc types
cannot contain __gc pointers.

A __nogc type can contain a __nogc pointer to a __value type because a __nogc pointer
means that the type is created on the unmanaged heap, so the memory is not the responsibility
of the garbage collector. In practice, this also means that the __value type cannot have __gc
pointers. The compiler does not warn you when you declare such a __value type in a __nogc
type, but it will generate an error when you use __nogc new to create an instance of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type, but it will generate an error when you use __nogc new to create an instance of the
__value type to initialize the __nogc pointer.

The default layout for a __value type is LayoutKind::Auto, which means that the runtime
determines the format the type has in memory, how many bytes are taken up by each member,
and the order of the members. Such a type cannot be an embedded data member in a __nogc
type because the runtime will not have control over the enclosing object. Thus, if you want to
have an embedded __value type in a __nogc type, you have to declare the __value type as
LayoutKind::Explicit or LayoutKind::Sequential, as shown here:

__value struct A
{ int i; };
__value struct B
{ String* s; };
[StructLayout(LayoutKind::Sequential)]
__value struct C
{ int i; };
__nogc struct Unmanaged
{
 A __nogc* a; // OK
 B __nogc* b; // Compiles, but you cannot initialize it
 A p; // Error, wrong layout
 C c; // OK
};

If this code is compiled, you will get the rather unhelpful error C3265: “cannot declare a
managed ‘p’ in an unmanaged ‘Unmanaged’”. Clearly, this message is not the complete reason
because I was able to declare the member c in the unmanaged type. In this case, managed
refers not to the garbage collector but to the fact that the layout specified indicates that the
runtime manages its format in memory.

It is also worth pointing out that there is a bug in the current version of Visual C++ that
requires the custom attribute [StructLayout] to be used on the classes of members of __nogc
types. Even if the type has a sequential layout (ILDASM reports the sequential attribute on the
type), the compiler will issue the C3265 error. This means that types such as Int32, IntPtr, and
GCHandle (described in the section “Managed Pointers in Unmanaged Types”) cannot be
members of a __nogc type.

Implementation in Assemblies

When the compiler sees a __nogc type, it will compile it as MSIL, subject to the guidelines I
gave in Chapter 1. However, the type will not be a class in .NET terms, so let’s take a deeper
look into what the compiler is actually doing.

An instance method of a native C++ class is called with thiscall calling convention You
cannot declare a method with this calling convention; the compiler uses it automatically. —
that is, when the method is called, the first parameter will be the this pointer to the instance on
which the call is made. The method can then use this pointer to access the other members of
the instance. Members of .NET types (__value and __gc types) are called using __clrcall, the
.NET runtime calling convention. Again, you do not declare this. Consider this class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__nogc class Test
{
 int x;
 int y;
public:
 Test(int i) : x(0), y(i) {}
 void f(int i){ y = i; }
};

The Test class is unmanaged, and so it cannot be created on the managed heap. In .NET,
__value types are not created on the managed heap, and thus the C++ compiler declares the
__nogc type Test as a __value type.

.class private sequential ansi sealed Test
 extends [mscorlib]System.ValueType
{
 .pack 1
 .size 8
 .custom instance void [Microsoft.VisualC]
 Microsoft.VisualC.DebugInfoInPDBAttribute::.ctor() =
 (01 00 00 00)
}

The type has no methods! It has been declared merely to allocate the memory required by the
data members of the type. The .size directive gives the number of bytes required, but it
“flattens” out the memory. There are no explicit data members. To allow the class’s methods
to be called with thiscall, the compiler makes the __nogc class’s methods global and simulates
the calling convention by passing a pointer to the class as the first parameter.

.method public specialname static valuetype Test* modopt(
 [mscorlib]System.Runtime.CompilerServices.CallConvThiscall)
 Test.__ctor(valuetype Test* modopt(
 [Microsoft.VisualC]Microsoft.VisualC.IsConstModifier)
 modopt([Microsoft.VisualC]
 Microsoft.VisualC.IsConstModifier) A_0,
 int32 y) cil managed
{
 IL_0000: ldarg.0
 IL_0001: ldc.i4.0
 IL_0002: stind.i4
 IL_0003: ldarg.0
 IL_0004: ldc.i4.4
 IL_0005: add
 IL_0006: ldarg.1
 IL_0007: stind.i4
 IL_0008: ldarg.0
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

.method public static void modopt(
 [mscorlib]System.Runtime.CompilerServices.CallConvThiscall)
 Test.f(valuetype Test* modopt(
 [Microsoft.VisualC]Microsoft.VisualC.IsConstModifier)
 modopt([Microsoft.VisualC]
 Microsoft.VisualC.IsConstModifier) A_0,
 int32 i) cil managed
{
 .maxstack 2
 IL_0000: ldarg.0
 IL_0001: ldc.i4.4
 IL_0002: add
 IL_0003: ldarg.1
 IL_0004: stind.i4
 IL_0005: ret
}

The names of these global methods are Test.__ctor and Test.f. In .NET terms, they are not
members of the Test class. The constructor is used to initialize an existing instance of the Test
class, which is why Test.__ctor has a pointer to a Test as the first parameter. Similarly, the
Test.f method takes a pointer to a Test as its first parameter, which is in effect the this pointer.
In both cases, the second parameter of the method is the data that the method will use. The IL
in these methods loads the Test* parameter onto the stack first so that the methods can access
the members of the object. Because this parameter is a pointer, the runtime can perform
pointer arithmetic with it. The f method uses the second parameter to initialize Test::y, the
second member of the class, so the IL increments the this pointer by 4 bytes before storing the
second parameter into the memory that the incremented pointer points to.

These methods are public; however, because they are global methods, the process to access
them is not straightforward since #using imports only types. (I’ll show you how to access
these methods in the section “Global Methods.”) These public static methods are effectively
inaccessible to code outside the assembly, and furthermore, the type that is used for the first
parameter, Test, is marked as private and so cannot be accessed outside the assembly.

I could have declared the Test class as a nested class within a __gc type. Again, the compiler
will make the methods public global methods, but even if I give the __nogc class public
access, the compiler will change the access to nested assembly. The reason for this change is
that if the __gc type is public, #using can import the __gc type. If the nested assembly access
was not applied, it would mean that code from outside the assembly would be able to access
the unmanaged type.

Inheritance and Native Classes

The previous example shows that native C++ classes are implemented as value types, but
value types are always sealed, so how is native class inheritance implemented? The C++
compiler will create a separate value type for each class in the hierarchy. These classes have
no relationship in .NET terms. When an IL unmanaged pointer is cast, no type check is made,
so a pointer to an instance of one unmanaged type can be passed when a pointer to the type’s
base class is needed, as shown in this example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__nogc class TestChild : public Test
{
public:
 TestChild(int i) : Test(i) {}
};

The constructor needs to initialize the base class part of the instance, and the constructor does
this by calling the base class constructor. When the constructor is called, it is passed a pointer
to a TestChild. The IL generated by the compiler passes this pointer to Test.__ctor with no
type check because it knows that in C++ terms the two types are related.

Native Virtual Methods

Native virtual methods are called at run time through a vtable. Each class will have a vtable
that is initialized with pointers to the class’s virtual methods. Each object will have a pointer to
its vtable. When a virtual method is called through a pointer at run time, the vtable is obtained
and the appropriate function pointer is located and invoked. It does not matter whether the
pointer is the same type as the object or if the pointer is a base class pointer. To implement this
behavior in IL, the C++ compiler creates a new value type that represents the vtable and adds
a pointer to the vtable as the first data member of the value types that the compiler generates
for your classes. (This pointer is essentially a vptr.) When your code makes a call to a virtual
method, the IL accesses the vtable through this vptr and locates the method pointer. This
pointer is then called with the MSIL opcode calli.

C++ Run-Time Type Information

If you use native code that calls dynamic_cast<>, run-time type information (RTTI) will be
used to determine whether the cast is allowed. By default, RTTI is not enabled for compiling
to MSIL, so you have to enable RTTI by using the /GR switch. The compiler will add a value
type named _TypeDescriptor and create static instances of this type, one instance for each
unmanaged type that has RTTI. An address to the appropriate instance is stored in the vtable
for the object. The cast at run time is performed by a function named __RTDynamicCast,
which is added to your assembly as a native function. This function compares the values
stored in the vtable for each object against the address of the static instances of the
_TypeDescriptor objects to determine the object’s type. This mechanism is the same as that
used with native C++.

Templates

You cannot write templated code with managed types because .NET does not currently
support generic programming. You can write templated code with unmanaged types, and those
types will be compiled as MSIL. The mechanism is the same as with nontemplated classes: the
compiler generates a value type to hold the data members, and the methods are added as global
methods to the module.

Here’s a very simple templated class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// strtemp.cpp
template <typename charType>
class String
{
public:
 charType* ptr;
 String(charType* s)
 {
 ptr = new charType[strlen(s) + 1];
 strcpy(ptr, s);
 }
 ~String() { delete [] ptr; }
 int strlen(){ return strlen(ptr); }
 static int strlen(charType* s)
 {
 int len = 0;
 while (s[len] != 0) len++;
 return len;
 }
 static void strcpy(charType* dest, charType* src)
 {
 while (*src != 0)
 {
 *dest = *src;
 dest++; src++;
 }
 *dest = *src;
 }
 void strrev()
 {
 int len = strlen();
 for (int i = 0; i < len/2; i++)
 {
 charType c = ptr[i];
 ptr[i] = ptr[len-i-1];
 ptr[len-i-1] = c;
 }
 }
};

If I use this class like so:

String<char> string("Hello");
string.strrev();
puts(string.ptr);
String<wchar_t> wstring(L"Hello");
wstring.strrev();
_putws(wstring.ptr);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the compiler will generate two value types, String<char> and String<unsigned short>, to
hold the data members of the unmanaged types. For each type there will be a global member
equivalent to the member in the C++ templated class—for example, the strcpy for the
specialization based on wchar_t looks like this:

.method public static void modopt(
 [mscorlib]System.Runtime.CompilerServices.CallConvCdecl)
 'String<unsigned short>.strcpy'(unsigned int16* dest,
 unsigned int16* src) cil managed;

The important point is the name of the method, String<unsigned short>.strcpy. The
specialization based on char has a similar method, named String<char>.strcpy. In other
words, the unmanaged type is treated as part of the name of the method, but apart from that,
there is nothing special about the global method.

CRT and Static-Link Libraries

The C run-time library (CRT) is provided through static-link libraries. These libraries either
contain the actual CRT code that will be statically linked or are an import library for the DLL
version of the CRT. You do have the source for the library, which will be loaded when you
debug CRT code, but the actual build process links to the CRT static-link libraries. All .NET
code is compiled as multithreaded, but you do have the option of using the CRT through
static-linking the multithreaded CRT library or through the MSVCR70.dll library, so your
code can be compiled with /MD or /MT (or the debug versions /MDd or /MTd). Code compiled
with /clr cannot be compiled with the single-threaded CRT, so you cannot use /ML or /MLd.
Take a look at the following code:

#include <stdio.h>
void main()
{
 puts("Called Me");
}

ILDASM shows that the assembly has the following members:

.vtfixup [1] int32 fromunmanaged at D_0000904C // 06000001

.class private explicit ansi sealed $ArrayType$0x26c5351f
 extends [mscorlib]System.ValueType
.field public static valuetype $ArrayType$0x26c5351f
 '?A0x077cbc20.unnamed-global-0' at D_00009040
.method public static pinvokeimpl(/* No map */)
 unsigned int32 _mainCRTStartup() native unmanaged preservesig
.method public static int32 modopt(
 [mscorlib]System.Runtime.CompilerServices.CallConvCdecl)
 main() cil managed
.method public static pinvokeimpl(/* No map */)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.method public static pinvokeimpl(/* No map */)
 int32 modopt([mscorlib]
 System.Runtime.CompilerServices.CallConvCdecl)
 puts(int8 modopt(
 [Microsoft.VisualC]
 Microsoft.VisualC.NoSignSpecifiedModifier)
 modopt([Microsoft.VisualC]
 Microsoft.VisualC.IsConstModifier)* A_0)
 native unmanaged preservesig

From the discussion of strings in Chapter 1, you’ll recognize the first two members as being,
respectively, the declaration for the storage needed for the literal string and the actual instance
that is initialized from the initialized data section of the PE file.

Let’s return to the other members of the assembly. The first is the entry point
_mainCRTStartup, which is added to initialize the CRT and global class instances. Your C++
entry point code is provided in main, which is called by _mainCRTStartup. Finally, there is
puts, which is the CRT function you call. It does not matter whether you link to the static
version of the CRT or the DLL version. You will get a method declared in your assembly with
the same signature as puts. The calls to modopt indicate that the function has the __cdecl
calling convention and that the parameter is a const char* pointer. These modifiers are
optional and are not used by the runtime other than to distinguish between two signatures
where one has a modopt and the other does not. (You can use these modifiers to overload a
C++ function with long and int. Both functions will give an int32 parameter, but the compiler
will add IsLongModifier to the long parameter through modopt.)

The manifest for the assembly (which contains global information about the assembly) gives a
single .vtfixup directive. This directive indicates that at the specified location (here, 0x904c) is
a table of method metadata tokens. (In this example, the value in square brackets indicates that
there is just one token, 0x6000001. I will explain metadata tokens in Chapter 5.) The runtime
will read this data and create a method pointer to the methods identified in the table. In this
example, the .vtfixup directive has the fromunmanaged attribute, which means that the runtime
will generate a thunk to convert the unmanaged call to a managed call. The fixup is for the
method with the metadata token 0x06000001, which identifies the main function. (The fixup is
required when _mainCRTStartup calls main.) The _mainCRTStartup function is unmanaged
and is provided by the CRT.

C++ Standard Library

You can use the C++ standard library, but be aware that you cannot use it with managed types.
So you can neither put managed objects directly into Standard Template Library (STL)
containers, nor write stream operators for managed types. If you want to integrate managed
objects and native objects, you have to write wrapper classes, either managed wrappers around
your native types so that they can be put into a managed container or a native wrapper so that
a managed type can be put into an STL container. STL code can generate C++ exceptions, so
if your code uses STL, you have to enable exception handling with the /EH switch.

Managed Pointers in Unmanaged Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I mentioned earlier that an unmanaged type cannot contain a managed pointer because the
garbage collector will not be able to track the managed pointer. However, there are cases when
it is useful for an unmanaged type to treat a managed type as a “data member,” and to do this,
the unmanaged type must explicitly handle the lifetime of the managed object.

The .NET Framework has a class named GCHandle that represents a reference on a managed
object. A GCHandle is a value type that has sequential layout and does not have managed
members, but because of the bug I mentioned earlier (the compiler ignores the sequential
layout attribute), GCHandle cannot be a member of a __nogc type. A GCHandle can be
converted to an IntPtr—in other words, as a platform specified integer—which can be
converted to an int, and hence, a GCHandle can be stored indirectly in a __nogc type.

GCHandle does not have an accessible constructor; instead, you initialize an instance by
calling the Alloc method. This method is overloaded, and both versions take an object
reference from which the GCHandle will be initialized. The value in the GCHandle instance
acts like a pinning pointer: while the value exists, the object will be pinned, so it will not be
moved in memory or collected. However, unlike a pinning pointer, you must take explicit
steps to unpin the object by calling GCHandle::Free, as shown in this example:

// filewriter.cpp
__nogc class FileWriter
{
public:
 FileWriter(String* name)
 {
 StreamWriter* sw = File::AppendText(name);
 GCHandle h = GCHandle::Alloc(sw);
 IntPtr ptr = GCHandle::op_Explicit(h);
 writer = ptr.ToInt32();
 }
 ~FileWriter()
 {
 StreamWriter* sw = GetStream();
 sw->Close();

 GCHandle h = GCHandle::op_Explicit(IntPtr(writer));
 h.Free();
 }
 void Write(String* s)
 {
 StreamWriter* sw = GetStream();
 if (sw) sw->Write(s);
 }
private:
 int writer;
 StreamWriter* GetStream()
 {
 GCHandle h = GCHandle::op_Explicit(IntPtr(writer));
 return static_cast<StreamWriter*>(h.Target);
 }
 // Prevent copying, see later

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Prevent copying, see later
 FileWriter(const FileWriter&){}
 operator=(const FileWriter&){}
};

This unmanaged class wraps a StreamWriter object; the object is created in the constructor,
and it is released in the destructor. Because this class is unmanaged, it can be created on the
stack. Therefore, it allows you to hold onto the managed resource only as long as the stack
frame survives.

The constructor takes a managed string as a parameter. This arrangement is fine because the
managed string reference lives only as long as the stack frame of the method call. The
constructor uses this reference to create a StreamWriter object. The constructor then creates a
GCHandle based on this object—which effectively pins the object. The handle is first
converted to an IntPtr and then converted to an int so that the handle can be stored in the
unmanaged type.

The instance of the unmanaged FileWriter class must release its managed resources when it is
destroyed. The first action the object performs is to close the file. The object then unpins the
StreamWriter object by converting the integer to an IntPtr, converting the IntPtr to a
GCHandle, and then calling Free. The private method GetStream returns the StreamWriter
object by accessing the GCHandle::Target property, which is the object that has been pinned.

You might decide to hold more than one managed type in an unmanaged class. However, the
code to access these objects and their GCHandle structures would get rather messy. To help
out, the C++ team has provided the unmanaged template gcroot<> in gcroot.h, as shown here:

template <class T> struct gcroot
{
 gcroot();
 gcroot(T t);
 gcroot(const gcroot& r);
 ~gcroot();
 gcroot& operator=(T t);
 gcroot& operator=(const gcroot &r);
 operator T () const;
 T operator->() const;
};

The template parameter, T, is a managed pointer type. The class will always create a
GCHandle for the managed object passed to the constructor; the copy constructor and
assignment operator also create new handles based on the object that the gcroot<> instance
wraps. This arrangement is so that if an instance of a class that uses a gcroot<> is copied,
there will be two separate GCHandle structures for the same object. This duplication is needed
because if both instances of gcroot<> had the same handle, destroying one of the instances
would invalidate the other instance of gcroot<>. (In the preceding FileWriter example, I have
ignored this issue by making the copy constructor and assignment operator private.)

The gcroot<> template has conversion operators that return the object wrapped by the handle
and an operator-> so that you can treat the gcroot<> as a smart pointer class. The FileWriter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and an operator-> so that you can treat the gcroot<> as a smart pointer class. The FileWriter
class using gcroot<> looks like this:

// filewriter2.cpp
__nogc class FileWriter
{
 gcroot<StreamWriter*> writer;
 FileWriter(const FileWriter&){}
 operator=(const FileWriter&){}
public:
 FileWriter(String* name)
 {
 writer = File::AppendText(name);
 }
 ~FileWriter()
 {
 writer->Close();
 }
 void Write(String* s)
 {
 writer->Write(s);
 }
};

I think you’ll agree that this code is far clearer than the previous version.

Global Methods

Managed C++ allows you to write global methods. Other languages supported by the .NET
Framework insist that all methods (even static methods) are part of a class. This code, when
compiled as a DLL:

#using <mscorlib.dll>
void f()
{
 System::Console::WriteLine(S"Called f()");
}

will have the following global methods:

.module test.dll

.method public static void modopt(
 [mscorlib]System.Runtime.CompilerServices.CallConvCdecl)
 f() cil managed;
.method public static pinvokeimpl(/* No map */) int32
 __DllMainCRTStartup@12(void* A_0, unsigned int32
 modopt([mscorlib]
 System.Security.Permissions.SecurityAction) A_1,
 void* A_2) native unmanaged preservesig;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 void* A_2) native unmanaged preservesig;

The compiler adds the call to __DllMainCRTStartup@12 to initialize the CRT and global C++
unmanaged objects. This function is marked as the Win32 entry point and is called by the
system when the DLL is loaded into a process or unloaded from a process, or when a thread is
created or destroyed in a process in which the DLL is loaded. If your code does not use the
CRT or does not have global C++ objects, you don’t need DllMainCRTStartup. You can
remove this function by passing /noentry to the linker.

The method f is marked as public and static, so how can you call it? I want to cover two
situations: calling a global method from unmanaged code and calling it from managed code. In
Win32, the usual way to export a function from a DLL is as a C entry point, by mentioning the
function in the EXPORTS section of the .def file or by using __declspec(dllexport), as shown
here:

// expfunc.cpp
extern "C" __declspec(dllexport) void func()
{
 System::Console::WriteLine(S"Called func()");
}

I have also used extern “C” so that the name of the exported function is not mangled. The
modifier adds the following metadata to the method:

.vtentry 1 : 1

.export [1] as func

Neither of these directives is documented in the ECMA specification, but it is easy to
speculate that the .export directive indicates that the function is exported with the name func
and the ordinal 1. (You can confirm this information with DUMPBIN.) When you compile
C++ code for a DLL, the compiler conveniently creates an import library, so assuming func is
exported from expfunc.dll, I can write this unmanaged code:

// usefunc.cpp
// Do not use /clr.
#pragma comment(lib, "expfunc.lib")
extern "C" void func();
void main()
{
 func();
}

When this code is run, the message Called func( ) is printed at the command line. Stop a
moment and think about what is happening. This message is printed using the
System::Console class, yet the DLL is loaded from an unmanaged client. The client does

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System::Console class, yet the DLL is loaded from an unmanaged client. The client does
nothing to initialize the .NET runtime. (DUMPBIN shows that only test.dll and kernel32.dll
are imported.) If you take a look at expfunc.dll with DUMPBIN, you’ll see that the assembly
imports the runtime shim DLL (a shim is a thin piece of code that accepts a version number
and other startup parameters from the host and starts the common language runtime),
mscoree.dll, so when expfunc.dll is loaded, the .NET runtime is initialized so that the managed
code can run. Isn’t managed C++ wonderful?

You can call func from managed code in three ways. First, because the function is exported
from a DLL, you can use platform invoke (described in the next section) to call the method.
Second, you can link to the import library and call the method through IJW. In both cases, this
process will involve treating the method as an unmanaged method. It seems like overkill to
have an extra managed/unmanaged transition when calling the method—it would be far better
to treat the method as a managed method (which indeed it is).

The problem is that a global method does not appear to have a class and imported methods can
be called only as instance or static methods of a class. However, global methods are members
of a class: they are members of the module that they are compiled into. If you create a DLL,
the module will have the name of the DLL file (in this example, expfunc.dll). Unfortunately,
.NET does not allow you to access the module directly, which is a pity. Your only recourse is
to use reflection, the third way to get access to the function, as shown here:

// reffunc.cpp
Assembly* assem = Assembly::LoadFrom(S"expfunc.dll");
Module* module = assem->GetModule(S"expfunc.dll");
MethodInfo* info = module->GetMethod(S"func");
info->Invoke(module, 0);

Note that even if func were declared in a namespace, the fully qualified name would still be
func because I exported it with extern “C”.

The #using directive will be able to ascertain the global methods exported from the assembly,
so it would be nice if the C++ compiler would allow you to call global methods in an imported
assembly. This feature is on my wish list for the next version of the compiler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Platform Invoke

The Windows API is essentially a C API with functions exported from DLLs. Win32 code
loads these DLLs either by static linking or dynamic linking. When you link to a library such
as User32.lib or Kernel32.lib, you are actually linking with an import library for the DLL.
When you statically link to an import library, the linker adds information about the DLL and
the functions that you import in a section of the PE file called the import address table (IAT,
which you can view with DUMPBIN /imports or the Platform SDK tool Depends). The linker
forwards calls to each imported API to its entry in the appropriate IAT. When Windows loads
the PE file, it determines the DLLs that the file uses, and as it loads each DLL, the loader goes
through the entries in the IAT and stores the actual address of the function in the DLL, a
process known as performing fixups. In C++, a method call to an imported function appears
the same as if the function was linked from a static-link library.

To dynamically link a DLL, your code must call ::LoadLibraryEx and then use
::GetProcAddress to get the address of the exported function. The ::GetProcAddress function
returns a void*, so you have the added complication of casting this pointer to an appropriate
function pointer and then calling the function through this pointer. (In a way, COM interfaces
are a simple way to cast an array of such void pointers to an array of function pointers through
which those interface methods can be called.)

The problem with DLLs is that no version information is passed to ::LoadLibraryEx nor is
there any present in the import library. So both mechanisms of loading DLLs could load the
wrong version of a DLL. A process could get around this problem by passing an absolute path
to ::LoadLibraryEx and then testing the version resource of the loaded DLL, but the
VERSIONINFO API is far from straightforward to use. COM inproc servers were the first big
effort from Microsoft to solve this issue with DLL versioning (in which a central repository—
the system registry—is used to associate class names with the DLLs that implement them), but
this technology also had its problems with versioning. The .NET solution is far more robust,
and I’ll cover this issue in Chapter 5. Whichever way a DLL is loaded, its entry point function
(usually named DllMain) is called. Furthermore, when a new thread is created or destroyed in
the process, the entry point function of each DLL is also informed (although this behavior can
be turned off with ::DisableThreadLibraryCalls).

Functions can be exported from a DLL through a module definition file (.DEF) or by applying
the __declspec(dllexport) to the function. To keep the number of possible clients as wide as
possible, DLL functions are typically exported as C functions, so they have the C calling
convention (__cdecl) and the names are not C++ mangled (extern “C”). Of course, the DLL
does not have any information about the exported functions, so the client must know the types
of the parameters and what they are used for. (This restriction can be regarded as an advantage
of DLLs.)

DllImport

Platform invoke is used to call functions exported from a DLL. The mechanism involves
supplying a prototype of the function that you want to call decorated with the [DllImport]
attribute. This attribute has the name of the DLL that exports the function and, optionally, the
name of the exported function. The platform invoke mechanism is essentially a managed
version of dynamic linking. When you call a method marked with [DllImport], the runtime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

version of dynamic linking. When you call a method marked with [DllImport], the runtime
will load the DLL (if the DLL is not already loaded) and then locate the exported function and
run it, marshaling parameters you pass to the function and marshaling back any return values.
If your DLL has an entry point, the runtime will call this function, and once the runtime has
loaded the DLL, the entry point will also be called whenever an operating system thread is
created or dies. Although the documentation does not explicitly say so, in the current version
of .NET, all threads are operating system threads. Furthermore, the runtime appears to use an
algorithm similar to ::LoadLibraryEx to locate DLLs mentioned in [DllImport]: you can give
an absolute or a relative path, but if no path is specified, platform invoke looks in the current
folder and in the folders mentioned in the PATH environment variable. However, although the
evidence appears to suggest that platform invoke uses ::LoadLibraryEx to load the DLL, this
is not the mechanism that platform invoke actually uses. You can verify this statement by
putting a breakpoint on ::LoadLibraryEx. When you debug the process, you will see that the
breakpoint will be hit when the process loads (to load required DLLs such as ole32.dll and
kernel32.dll). However, the breakpoint will not be hit when an imported function is called
through platform invoke.

To use platform invoke, you use the [DllImport] pseudo custom attribute in
System::Runtime::InteropServices. The following code shows some simple examples:

// Imported function as part of a type
__nogc struct Win32
{
 [DllImport("user32")]
 static unsigned MessageBeep(unsigned uType);
};

// Imported function declared globally
[DllImport("kernel32")]
extern unsigned GetLogicalDrives();

The attribute is given the name of the DLL (with or without the extension), and this name can
have an absolute or a relative path. I do not recommend that you use an absolute path with
[DllImport] because you will not be able to guarantee that the same path will exist on the
deployment machine. Microsoft makes a big noise about XCOPY deployment—that is, you
can deploy an application merely by copying the files that constitute the application. You can
bet that users will take this to heart and will regularly copy .NET applications from folder to
folder on the same machine or between machines. The imported function can be a static
member of a type (__gc, __nogc, or __value type), but it should have no implementation. If
you declare the function outside of a type, you should declare it as extern. The linker
recognizes that the [DllImport] attribute was used, so it does not complain that there is no
implementation in the project when this attribute is applied to an extern function or a static
member of a type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The declaration of the imported function should have a .NET signature using .NET data types
as close as possible to the unmanaged types. The signature is the managed method that will be
called by managed code. If there is no direct mapping between an unmanaged type and an
existing .NET type, you can define a new type or you can specify metadata that gives
information about how a parameter should be marshaled. In these examples, I have assumed
that the exported function has the same name as the managed signature, but you might decide
to use a different name, in which case you should use the EntryPoint field of [DllImport] to
specify the actual name. Table 2-1 gives the fields of the [DllImport] attribute.

Table 2-1. The Fields of the [DllImport] Attribute
Field Description

CallingConvention The calling convention of the method that specifies how parameters are
put on the stack and how the stack is cleaned up after the method is
called.

CharSet The default character set of the function. This field specifies how
System::String and System::Text::StringBuilder parameters are
marshaled and might be used to determine the entry point name.

EntryPoint The name of the function exported by the DLL. If ExactSpelling is
false, CharSet is used to determine whether the entry point name is
appended with A or W.

ExactSpelling If this field is true, the EntryPoint is the name regardless of the CharSet
used.

PreserveSig If this field is true, the function is treated as a COM method, so failure
HRESULT values are converted to managed exceptions and the
managed method will return the final parameter as the return value of
the method.

SetLastError If this field is true, platform invoke calls ::GetLastError when the
method has completed to determine whether an error occurred in the
method. The error value can be accessed in managed code through
Marshal::GetLastWin32Error.

The name of the entry point is actually created from the EntryPoint, CharSet, and
ExactSpelling fields. (If you do not specify EntryPoint, the name of the managed method will
be used.) If ExactSpelling is true, you are making the assertion that you know exactly the
spelling, and platform invoke will use the name that you suggest. If this field is set to false,
platform invoke will consult the CharSet field—even if the method has no string parameters—
and will use the value to determine the entry point name suffix. If the character set is
CharSet::Ansi, platform invoke will first look for an exported function with EntryPoint; if this
function is not exported, platform invoke will append an A to EntryPoint and attempt to find
this name. The process for CharSet::Unicode is the reverse: first platform invoke will append
a W to EntryPoint, and if this function cannot be found, platform invoke will look for
EntryPoint. If the CharSet is set to CharSet::Auto, the native character set for the current
operating system (which you can determine by the value returned from
Marshal::SystemDefaultCharSize) will be used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you know the ordinal of the method that you want to call, you can use this ordinal instead of
the name of the function, as shown in the following code. However, you do not get the
advantage of .NET choosing the best version for the default character set supported by your
operating system (CharSet::Auto).

__nogc struct Win32
{
 [DllImport("user32", EntryPoint="#451")]
 static unsigned MessageBeep(unsigned uType);
};

The CallingConvention field is interesting. The default for the C++ compiler is to compile all
global functions as __cdecl (/Gd), and C++ non-static member functions will be compiled as
thiscall. You can change the calling convention of global functions using __cdecl, __fastcall,
or __stdcall. The latter convention is the standard calling convention for Windows API
functions and is the default setting for [DllImport]. The __cdecl and __stdcall calling
conventions differ only by the name decoration that is used on the exported function: functions
exported with __declspec(dllexport) with the __cdecl calling convention will have no prefix or
suffix, whereas exported functions with the __stdcall calling convention will have the function
name prefixed with an underscore and appended with @ followed by the number of bytes (in
decimal) consumed by all the parameters.

It is possible to use platform invoke to import an unmanaged class. However, you can import
the class only as individual functions. For example, the following class is declared and
exported from an unmanaged DLL:

// expclass.cpp
class __declspec(dllexport) MyClass
{
 int x;
public:
 MyClass(int y)
 {
 x=y;
 return;
 }
 int GetX(){return x;}
};

Using the DUMPBIN tool (which is a wrapper for the linker—you can use LINK /DUMP in
place of DUMPBIN), I get the mangled names shown in Table 2-2.

Table 2-2. C++ Decorated (“Mangled”) Name for the
Members of MyClass

C++ Decorated Name Class Member

??0MyClass@@QAE@H@Z MyClass::MyClass(int)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

?GetX@MyClass@@QAEHXZ MyClass::GetX

Bearing in mind that a class should be called through thiscall (and hence the first parameter is
the this pointer of the object), the class can be used like this:

// useclass.cpp
__nogc class TestClass
{
public:
 int x;
 [DllImport("expclass",
 EntryPoint="??0MyClass@@QAE@H@Z",
 CallingConvention=CallingConvention::ThisCall)]
 static void ctor(TestClass*, int);
 [DllImport("expclass",
 EntryPoint="?GetX@MyClass@@QAEHXZ",
 CallingConvention=CallingConvention::ThisCall)]
 static int GetX(TestClass*);
};

The unmanaged TestClass is used to provide the storage that will be initialized by the
constructor and accessed by the other methods in the class. I have also taken the opportunity to
add the prototypes of the methods that will be called through platform invoke. In each case,
the first parameter is a pointer to an object instance (or at least, memory that is the same size
as the exported class). Here’s code that uses it:

// useclass.cpp
void main()
{
 TestClass t;
 // Construct the object.
 TestClass::ctor(&t, 42);
 // Access a function.
 Console::WriteLine(TestClass::GetX(&t));
 // Access the data member directly.
 Console::WriteLine(t.x);
}

First I create an instance of TestClass, which I then initialize by calling the exported
constructor of MyClass, passing the instance of the object as the first parameter and then the
constructor parameter as the second parameter. This method will initialize the object, and the
data member can be accessed either through TestClass::x or through the imported method
GetX.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the class has virtual methods (or derives from a class with virtual methods), it will have a
vtable, which means that each object will contain a 32-bit pointer as its first member. You will
have to explicitly allocate storage for such a member. Also note that if the exported class has a
destructor, you will have to call this method explicitly in the code that imports the class. All in
all, this would involve writing a lot of code and would be very difficult to debug. In general,
you should not import unmanaged classes through platform invoke; other mechanisms are far
better (for example, as a COM class, or just include the code and use the class through IJW).

Platform Invoke Under the Covers

The implementation details of platform invoke are not included in the ECMA specifications
for .NET, so I will give only a brief overview about what is happening. Basically, every call
your IL makes to unmanaged code occurs through a thunk created by the compiler. This thunk
does the necessary transition from managed to unmanaged contexts and marshals any
parameters that are passed. When the call returns from the unmanaged function, the thunk is
responsible for unmarshaling the return value and any out parameters and doing the transition
from unmanaged to managed contexts. This thunk is not visible in ILDASM, and it is not
visible in the debugger. Indeed, when you step into a call to an unmanaged function (for which
you have source code and symbols) in the debugger, the execution point will appear
immediately in the unmanaged function. Even if you single-step through disassembly view in
the debugger, the thunk code will be hidden from you.

The GetX method shown in the previous section is imported through this MSIL:

.method public static
pinvokeimpl("expclass" as "\?GetX@MyClass@@QAEHXZ" thiscall)
int32 GetX(valuetype TestClass* __unnamed000)
 cil managed preservesig
{
}

From this MSIL, you can see that the fields of the pseudo custom attribute [DllImport] are
used to provide values for the pinvokeimpl modifier and other attributes applied to the method.
The pinvokeimpl modifier gives details about the platform-specific description of where the
implementation is located (in this case, a DLL named expclass.dll) and the name of the
implementation. If you give an absolute or relative path to the DLL, this path will appear in
the first parameter of pinvokeimpl.

Platform Invoke and Parameters

When you use platform invoke, you provide a managed signature of the method, which your
MSIL will call. The parameters of this method should match as closely as possible to the
parameters of the unmanaged function that will be called. In most cases, you need do no more,
and the platform invoke thunk will marshal the parameters. However, there are some situations
when extra attention will have to be given.

Return Values and Exceptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

From the first version of Windows, all developers have had to adhere to the strict rule that
exceptions should not be allowed to leak out of a code module. The reason is that until .NET it
was not possible to guarantee that the client would be able to catch the exception. Of course,
.NET means that library code can throw exceptions (and Microsoft encourages you to throw
exceptions when they are appropriate), but you should do so only if the code throwing the
exception is managed and exported from an assembly. Clearly, developers will have to learn
new habits.

An unmanaged function exported from a DLL should not throw exceptions (there might be
cases when this can happen, and I’ll cover this later in the section “Exceptions”), and instead,
the function will use return values to return errors. For example, an unmanaged function could
look like this:

HRESULT GetNumber(int* p);

This method will return a number through the pointer parameter and will return an error
HRESULT if it cannot obtain the result. The managed signature might look like this:

[DllImport("dllexp", PreserveSig=false)]
extern int GetNumber();

The runtime interprets the last parameter as a return value, so in the managed signature, this
value will be returned from the method. The PreserveSig field indicates whether the signature
that you give corresponds to the unmanaged function. If the unmanaged function returns an
error value, the runtime will convert this value to a managed exception. If there isn’t a suitable
exception type in the .NET Framework, the runtime will throw a COMException containing
the HRESULT.

This arrangement might initially appear convenient, but it has problems. In particular, the
unmanaged function must return 0 (S_OK) for the runtime to treat the call as being successful,
and most Win32 APIs use the convention of returning non-zero to indicate that a method is
successful (TRUE). Furthermore, if a method returns a success code (for example S_FALSE),
these codes are ignored. It usually makes better sense to handle error values yourself and set
PreserveSig to true.

Strings

Managed strings are immutable, so they can be passed as in parameters via interop, as shown
here:

[DllImport("kernel32", CharSet=CharSet::Auto)]
extern bool DeleteFile(String* file);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In managed code, the method is passed a managed string, and the thunk will convert this string
to an unmanaged buffer according to the CharSet field. In this example, the runtime is asked
to determine the default character set of the operating system.

The System::String type is implemented internally as a buffer of Unicode characters, so if a
managed string is passed to a method that takes an ANSI string, a conversion must occur. The
runtime will allocate a buffer large enough for the ANSI string using CoTaskMemAlloc,
convert the Unicode string to an ANSI string, and then pass this buffer to the function. When
the unmanaged function returns, the runtime will do the necessary cleanup and call
CoTaskMemFree. If the managed string is to be passed to a method that takes a Unicode
string, the runtime will get an interior pointer to the string’s buffer and pass this pointer to the
function.

If an unmanaged function returns a string, the function will return the string by writing to a
string buffer allocated by the caller. For example, the Win32 ::GetCurrentDirectory is passed
a caller allocated buffer and the API will fill that buffer with the name of the current folder. If
a System::String is passed to a Unicode method, you get the same behavior as you would if the
caller had been unmanaged—that is, a pointer to a buffer allocated in the caller is passed to the
called method. To take advantage of this behavior, you need to allocate a managed string of
sufficient size to the function, as shown in the following code:

// strings.cpp
// This technique only works with Unicode parameters.
[DllImport("kernel32", EntryPoint="GetCurrentDirectory",
 CharSet=CharSet::Unicode)]
extern unsigned GetCurrentDirectoryUnicode(unsigned, String*);

This function can be called by code like this:

// strings.cpp
// Get the required size.
unsigned size = GetCurrentDirectoryUnicode(0, 0);
// Allocate a string big enough.
String* strReply = new String(' ', size);
// Now get the string.
GetCurrentDirectoryUnicode(strReply->Length, strReply);
Console::WriteLine(strReply);

This technique works because the Win32 API takes a LPWSTR parameter and there is no
indication about the direction of data flow, so platform invoke will assume that the data is
going from the caller to the function. Since the function is Unicode, platform invoke will pass
an interior pointer to the actual data in the System::String (which holds the string as a Unicode
character array). In this code, the strReply string is initialized with spaces, which platform
invoke assumes is the data to be sent to the API, but in fact, it merely serves to allocate
enough space for the returned data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

However, this technique will not work when the ANSI version is called because the runtime
will convert the String parameter to an ANSI and pass this intermediate buffer to the API. This
intermediate buffer will be discarded when the unmanaged function returns because platform
invoke assumes that the data is passed to the function via the String parameter and not
returned through it. The solution is to use the .NET Framework class StringBuilder, which can
be used to construct mutable string buffers. This class can be used for methods that return
strings, as shown here:

// strings.cpp
// This technique works with both Unicode and ANSI parameters.
[DllImport("kernel32", CharSet=CharSet::Auto)]
extern unsigned GetCurrentDirectory(unsigned, StringBuilder*);

This function can be called by the following code:

// Get the required size.
unsigned size = GetCurrentDirectory(0, 0);
// Allocate a string big enough.
StringBuilder* sbReply = new StringBuilder(size);
// Now get the string.
GetCurrentDirectory(sbReply->Capacity, sbReply);
Console::WriteLine(sbReply->ToString());

This time the Capacity property of the StringBuilder is passed to the unmanaged function
because at this point the object will not be initialized, so Length will return zero. If the call to
the unmanaged function is successful, the value of StringBuilder::Length will correctly return
the length of the string. Contrast this behavior to the previous example, where calling
String::Length after calling the unmanaged function will return the size of the string that you
originally allocated.

Arrays

Arrays are ordered containers of items of the same type. In unmanaged C++, an array is
implemented as a contiguous block of memory. Consider this unmanaged function:

void PassIntArray(int size, int* array);

The idea is that an array of integers is passed to the function; the size of the array is passed as
the first parameter, and a pointer to the first item in the array is passed as the second
parameter. In C and C++, if an array is passed to a function, the actual data is passed by
reference—that is, the buffer for the array is allocated in the calling function and then a
pointer to this buffer is passed to the function. This arrangement was a problem with RPC (and
hence, COM) because access to the data from the called function could involve a network call.
So IDL (used to defined RPC proxies) used attributes to define the data direction flow and
hence allow the proxy to copy data. In .NET, the [In] and [Out] attributes are suggestions to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hence allow the proxy to copy data. In .NET, the [In] and [Out] attributes are suggestions to
the marshaler and are not necessarily acted upon, so you cannot use these attributes to specify
how parameters are marshaled. Instead, you use the [MarshalAs] pseudo custom attribute,
which adds the marshal attribute to the parameter’s metadata in the assembly. Thus, the
managed signature for the PassIntArray function will be:

[DllImport("dllexp")]
static void PassIntArray(int size,
 [MarshalAs(UnmanagedType::LPArray, SizeParamIndex=0)]
 int array __gc[]);

The [MarshalAs] attribute indicates that the parameter is a C-type array and that the number
of members in the array is given by the first parameter of the method. (SizeParamIndex is 0-
based.) The marshaler used by the managed/unmanaged thunk will create an unmanaged array
based on the metadata provided. The marshaler knows that the array holds int values, and it
knows that the size of the array is given by the size parameter; the marshaler can then copy the
data from the managed array to the unmanaged array. The parameters are very non-.NET-like.
The array parameter contains its own size, so why does the managed signature have to have
the extra parameter for the array size? Well, the marshaler needs to know which of the
unmanaged parameters takes the size of the array (if at all), and the only way that this
determination can be done is by the managed signature having a parameter for the array size.

Structures

In the .NET signature for a method called through platform invoke, you can use the .NET
primitives types in place of the C primitives. However, if the unmanaged function takes a
struct as a parameter, you have to ensure that a buffer big enough to take the structure is
passed. If you want to read the fields of this structure, it makes sense to allocate a structure
that has members equivalent to the unmanaged type. Here you have two options: if the data is
to be used in your code only, you can use an unmanaged structure; if the data is to be used
outside of your assembly, you can define a __value type to take the data.

If you declare an unmanaged type as a parameter of your managed type, the managed type
becomes inaccessible. Consider this:

__nogc struct POINT{int x; int y;};
public __gc class Square
{
public:
// Other members omitted
 __property void set_Position(POINT p) {};
};

The Square class has a property named Position that is initialized with an unmanaged type
POINT. This code can be used within the same assembly, but when you attempt to compile
code in another assembly that uses Square, you will get the error that the type POINT is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

code in another assembly that uses Square, you will get the error that the type POINT is
inaccessible (error C3376) because the metadata for the unmanaged type indicates that it is
private.

The solution in this example is to make the POINT structure a public __value type, but this
strategy means that you have a new type. In the example, I have defined a new unmanaged
type, but I could have used the Windows POINT, so redefining the structure as a managed
type will result in an error unless you prevent the name conflict by defining the new type in a
namespace.

Defining a __value type to represent an unmanaged struct is straightforward. The most
important point to remember is that the __value type is at least as large as the struct. Of
course, you also have to ensure that the members in the __value type are in the same position
in the record as the members of the unmanaged struct; otherwise, you will get nonsensical
values when you read the values. I mentioned in Chapter 1 the mechanism that you use to do
this ordering: the [StructLayout] attribute.

.NET does not guarantee the positioning or order of members within a type unless you tell it
specifically to do so. To do this positioning, you use the LayoutKind::Explicit value in
[StructLayout] and apply the [FieldOffset] attribute on each member to indicate the position
of the member with respect to the start of the __value type. You have to be careful and keep a
running count of the size of each member. If the unmanaged struct has a union, you can
simulate this union in your __value type by using [FieldOffset] to allow members to overlap
as described in Chapter 1.

Structures can contain embedded instances of other structures, in which case you have to
ensure that the right amount of storage is reserved. So, you can define __value type and add an
instance of this storage to your enclosing structure, or you can simply add suitable members to
the enclosing structure. If a structure contains a pointer to an instance of a structure, you need
to declare this pointer as being a __nogc pointer because you cannot pass __gc pointers to
unmanaged code.

// Unmanaged
struct Inner { int i; };
struct Outer { Inner* inner; };
// Managed
__value struct Inner { int i; };
__value struct Outer { Inner __nogc* inner; };

If Outer is passed as a method parameter (as opposed to a pointer to Outer), the structure will
be passed by value to the unmanaged code. However, access to the Inner instance will be by
reference because the copy of Outer placed on the stack will be a shallow copy. In general,
you cannot put a __gc pointer in a structure to be passed to unmanaged code; the exception is
strings. Here is an example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Unmanaged
struct Person{ TCHAR* name; USHORT age; };
// Managed
__value struct Person
{
 String* name;
 unsigned short age;
};

The CharSet field used on the declaration of the method will determine whether an
intermediate buffer is created so that the string can be converted from Unicode to ANSI. Some
structures hold the actual string rather than a pointer to a string buffer. In this case, a fixed
amount of memory has to be allocated, as shown here:

// Unmanaged
struct Person{ USHORT age; TCHAR name[50]; };
// Managed
__value struct Person
{
 unsigned short age;
 [MarshalAs(UnmanagedType::ByValTStr, SizeConst=50)]
 String* name;
};

This time the marshaler knows that it has to allocate an array of characters and embed this in
the structure (UnmanagedType::ByValTStr). The type of the characters is determined by
CharSet, and the size of the character array is given by SizeConst.

Other Win32 Types

When you access Win32 APIs, you will use Win32 types. In most cases, these Win32 types
correspond directly to the C++ primitive types that you are used to using. However, there are
some types that you will have to be wary of.

The first Win32 type I want to cover is BOOL. Win32 defines this type as a long with FALSE
defined as 0 and TRUE as 1. If an unmanaged function returns a BOOL, the managed
signature can return a bool. .NET will convert 0 to a value of false and 1 to a value of true.
However, COM methods return an HRESULT, which means that the top bit of the return value
determines whether the value is a success code (0) or a failure code (1). The value of S_OK is
0, so you must not convert an HRESULT to a bool in the managed signature. If you use
PreserveSig=false, the return value will be automatically converted to an exception for failure
values.

Some APIs return a HANDLE type or some equivalent type (for example, FILE* for CRT file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some APIs return a HANDLE type or some equivalent type (for example, FILE* for CRT file
functions). These handle types are meant to be opaque—that is, you are to treat them as a mere
number and the API will interpret what that number means. In this case, you have two options:
either you treat the HANDLE parameter as an unsigned int or as an IntPtr. IntPtr is a general
purpose __value type that can be used to hold pointers. The nice thing about IntPtr is that it
will hold the pointer in a buffer according to the operating system: a 32-bit buffer for a 32-bit
operating system and a 64-bit buffer for a 64-bit operating system. The type has conversion
operators that allow you to copy between the various formats: void*, __int64, or int. Although
this type might seem wonderful—you simply use IntPtr and the compiler will ensure that the
parameter is assigned with the correct pointer type—there is a problem: you cannot return a
.NET type from a method that is used for interop. For example, if you were to call the Win32
kernel event API through interop, you could define the following methods:

struct Win32Events
{
 [DllImport("kernel32", CharSet=CharSet::Auto)]
 static int CreateEvent(IntPtr sec, bool bManual, bool bInit,
 String* name);
 [DllImport("kernel32", CharSet=CharSet::Auto)]
 static int OpenEvent(unsigned access, bool inherit,
 String* name);
 [DllImport("kernel32")]
 static bool SetEvent(IntPtr handle);
 [DllImport("kernel32")]
 static bool ResetEvent(IntPtr handle);
 [DllImport("kernel32")]
 static bool CloseHandle(IntPtr handle);
};

I said that you can treat handles as unsigned int, and yet in this code, I convert the handle
returned from these methods to a signed int. Why? For a handle to be totally opaque, it should
just be a jumble of bits that mean nothing to the caller who receives that handle. It makes no
sense to treat a handle as signed. However, some languages can accept only signed types, so
IntPtr can be initialized only with a signed Int32. I don’t like this behavior, but if I want to use
an IntPtr, I have to accept this restriction. Using these definitions, I can write code like this:

IntPtr h(Win32Events::CreateEvent(IntPtr::Zero, true,
 false, S"EVENT"));
Win32Events::SetEvent(h);
Win32Events::CloseHandle(h);

Some .NET Framework classes are built over Win32, and these classes usually give access to
the Win32 handle so that you can pass it to Win32 via interop. For example, the
System::IO::FileStream class is the .NET Framework class used to read and write to files, and
the Win32 file handle is accessible through a property named Handle. Similarly, the
System::Windows::Forms::Control class is a managed wrapper around a Win32 window, and
the HWND is accessed through a property named Handle. In each case, the property is an
IntPtr, so the data the property holds is an opaque handle. However, the property is a member

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IntPtr, so the data the property holds is an opaque handle. However, the property is a member
of a managed type, so if you pass such a handle to an unmanaged function, you must ensure
that the managed object that provides the handle lives as long as the unmanaged code has
access to the handle. If the managed object is garbage collected, its finalizer is typically used
to free the unmanaged resource. In many cases, you do not have to worry about this detail
because most functions are called synchronously, so the stack frame that calls the unmanaged
function will exist (and hence the object references defined on that stack frame) until the
unmanaged method returns. Some Win32 APIs are designed to be called asynchronously (for
example, the file APIs, which use an OVERLAPPED structure), and in this case, the API will
return immediately, and the caller has the responsibility of checking to see whether the action
has completed, which could be in another stack frame.

To prevent such a wrapper-managed object from being garbage collected, you can pass a
HandleRef instead of an IntPtr or an unsigned for the HANDLE parameter. This __value type
is initialized with the handle and a pointer to the object that wraps it. Platform invoke will
ensure that the HandleRef (and the object it refers to) will not be garbage collected while the
call is active.

Of course, such code is quite unnecessary when you have IJW, which leads me to the next
section.

Calling Win32 APIs Using IJW

Why bother to declare the Win32 methods you want to call in your code using [DllImport]
when there are header files that have already done this? As I mentioned earlier, the Windows
header files have the prototypes for all the Win32 functions, and the static-link libraries
contain the information that the linker uses to create the import address table. As we have
seen, IJW will create a wrapper function that will take into account the transition from
managed to unmanaged code, so calls to Win32 should be as simple as adding an #include
statement for the appropriate header files, linking to the appropriate import library, and calling
the method.

Calling a Win32 function is not that simple. The first problem you will get is a name clash.
Try compiling this code:

#using <mscorlib.dll>
using namespace System;
#include <windows.h>
void main()
{
}

You will get a series of errors caused by an ambiguous symbol IServiceProvider. The reason
for this name clashing is that ServProv.h is included through Windows.h, and this header file
holds a definition for IServiceProvider, a COM interface. There is also a .NET interface
System::IServiceProvider, and I have indicated that I want to access the members of the
System namespace without using fully qualified names, which means that the compiler can
also access these types, and hence the name clash. In this simple case, the solution is to make
sure that the names the compiler sees when processing the header file do not clash, as shown
here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#using <mscorlib.dll>
#include <windows.h>
using namespace System;
void main()
{
}

Here the compiler will see the name of the managed interface as System::IServiceProvider
when it is processing Windows.h, but I have the convenience of not using fully qualified
names in the main function. Although this arrangement will work in most cases, it will cause
problems if I want to use the IServiceProvider COM interface in main because the compiler
will not know whether I want to use the managed or the COM interface. It makes sense in this
case to simply remove the using namespace line and use fully qualified names throughout.

Now consider this code:

#using <mscorlib.dll>
#using <system.windows.forms.dll>
#include <windows.h>

void main()
{
 System::Windows::Forms::MessageBox::Show(S"Hello");
}

This code will not compile. The compiler will complain that MessageBoxA is not a member of
the System::Windows::Forms namespace. The reason for this error is that the preprocessor has
gone through your code making the text substitutions that the Windows header files has told it
to do.

#ifdef UNICODE
#define MessageBox MessageBoxW
#else
#define MessageBox MessageBoxA
#endif

The preprocessor is dumb; it makes no distinction between the Win32 function name and the
.NET class; it merely makes a text substitution. The only solution to this problem is to undo
the effect of the preprocessor, as shown here:

#undef MessageBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you choose to use the Win32 method in your code, you will have to ensure that you use the
appropriate version for the character set you are using, rather than rely on the MessageBox
macro.

With a simple example such as this, it is easy to say that name clashes are simple to remove.
However, with a large project, this simple solution will not be the case. The name clashes
occur because .NET Framework classes have been used in the same translation unit as Win32
functions. To a certain extent, you can avoid this situation by separating your code so that the
files that call Win32 functions do not call .NET Framework classes, in which case there is no
need to have a #using statement in those files (not even for mscorlib.dll). However, if you use
a precompiled header for the Win32 headers, you will have to ensure that you turn off
precompiled headers for the files that have .NET Framework classes. I’ll return to precompiled
headers in Chapter 6.

Calling Win32 functions initially looks inviting, but the function prototypes that you include
through the Windows headers will use unmanaged types, so the compiler will ensure that you
use these types. This restriction means that either your code uses unmanaged code or, if your
code has data in managed types, you’ll have to convert between the two types, as shown here:

String* name = WindowsIdentity::GetCurrent()->Name;
IntPtr ptrName = Marshal::StringToCoTaskMemAnsi(name);
LPCTSTR strName;
strName = static_cast<LPCTSTR>(static_cast<void*>(ptrName));
// Call ANSI version of MessageBox
::MessageBoxA(NULL, strName, NULL, MB_OK);
Marshal::FreeCoTaskMem(ptrName);

You have several options about how to convert from managed strings to unmanaged strings.
These options are listed in Table 2-3.

Table 2-3. .NET Framework Classes and Visual C++ Methods to Obtain Unmanaged
Strings

Convert
To

Use Explanation

Wide
Char
String

PtrToStringChars Get an interior pointer to a managed string.

Marshal::StringToCoTaskMemUni
Marshal::StringToHGlobalUni

Create a new buffer with the converted
string. This requires that you free the buffer
when you have finished with the buffer.

ANSI
String

Marshal::StringToCoTaskMemAnsi
Marshal::StringToHGlobalAnsi

Create a new buffer with the converted
string. This requires that you free the buffer.

If you know that the function requires a constant wide character string (wchar_t const *), you
should use PtrToStringChars because that function is quicker than the methods in Marshal
and does not involve a separate buffer that you will need to remember to free later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the API returns data through a string buffer, you have two options. The first option is to
create an unmanaged buffer using either Marshal::AllocCoTaskMem or
Marshal::AllocHGlobalMem, pass this buffer to the API by casting the returned IntPtr, and
then remember to free the buffer afterwards, as shown in the following code:

String* GetDir()
{
 DWORD len = ::GetCurrentDirectory(0, 0);
 IntPtr dir = Marshal::AllocCoTaskMem(len * sizeof(TCHAR));
 LPTSTR strDir = static_cast<LPTSTR>(static_cast<void*>(dir));
 String* str = 0;
 if (::GetCurrentDirectory(len, strDir) != 0)
 {
 str = new String(strDir);
 }
 Marshal::FreeCoTaskMem(dir);
 return str;
}

If the API you are calling uses wide characters, you can allocate the buffer using a String or
StringBuilder, as shown here:

String* GetDir()
{
 DWORD len = ::GetCurrentDirectoryW(0, 0);
 String* str = new String(' ', len);
 wchar_t __pin* strDir = PtrToStringChars(str);
 if (::GetCurrentDirectoryW(len, strDir) == 0) return 0;
 return str;
}

A managed string can be created from a char* or a wchar_t* pointer, so your second option is
to simply allocate unmanaged buffers and use these buffers to create the managed string, as
shown here:

String* GetDir()
{
 DWORD len = ::GetCurrentDirectory(0, 0);
 TCHAR* strDir = new TCHAR [len];
 String* str = 0;
 if (::GetCurrentDirectory(len, strDir) != 0)
 {
 str = new String(strDir);
 }
 delete [] strDir;
 return str;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

If a Win32 function takes a structure as a parameter, it is almost always simpler to use the
Win32 structure rather than go through the effort of declaring a managed value type and
marshaling this type to the unmanaged function.

Typically, Win32 structures that return data either have pointers to buffers that you allocate or
have fixed-sized string buffers. In the latter case, to initialize such a parameter from a
managed string, you will have to convert the managed string to an unmanaged string and use
strcpy or wcscpy to initialize the buffer. Of course, if the string contains wide characters, you
avoid a lot of effort by using PtrToStringChars. If the structure takes a string buffer allocated
by you (for example, SHFILEOPSTRUCT used by SHFileOperation) either to pass data to a
function or to receive data from the function, you have to use one of the string conversion
routines given in Table 2-3.

Some Win32 APIs (for example, ::LookupAccountSid) require that you allocate a buffer and
pass it to the API, and then the API will fill the buffer with data. This type of API raises the
question of how you should allocate the buffer: should you use the CRT malloc or the C++
new operator; should you use one of the Win32 heap or HGLOBAL APIs; or should you use
the managed methods in the Marshal class?

The methods in the Marshal class are a managed wrapper around the unmanaged APIs, and
their purpose is to allow languages that do not have direct access to unmanaged code to be
able to allocate unmanaged buffers. If you access such a buffer beyond its bounds, you will
get an unpredictable result: the memory pointers you use are unmanaged, so there are no
bounds checks. If you forget to free this memory, you’ll get a memory leak. There are no
diagnostic classes in the .NET Framework that allow you to determine such problems, so
unless you are writing in C# or a similar language, it is best to avoid the memory allocation
APIs in Marshal.

The CRT memory allocation method malloc is integrated with the CRT debugging functions.
You can use these functions to detect leaked memory. The debug version of malloc will
allocate the memory with guard blocks, and the CRT debugging APIs can check for changes
in these guard blocks for an indication that the buffer was written to outside of its bounds. The
debug version of the unmanaged operator new is also integrated with the CRT debugging
mechanism, so you can also catch leaks allocated with this operator.

ATL 7 provides a header file named atldbgmem.h that provides additional support, which is
great for unmanaged code. However, this file uses the preprocessor to redefine operator new
with the placement operator new, and because there is no managed placement operator new,
you cannot use this file with code that will use the managed new operator. However, because
this file has some interesting code, it is worth taking a look at and learning from the coding
techniques in the file. In particular, near the bottom of atldbgmem.h is a series of definitions,
as shown in this example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#define HeapCreate(flOptions, dwInitialSize, dwMaximumSize) \
 ATL::_AtlHeapCreate(flOptions, dwInitialSize, \
 dwMaximumSize, __FILE__, __LINE__)

#define HeapFree(hHeap, dwFlags, lpMem) \
 ATL::_AtlHeapFree(hHeap, dwFlags, lpMem, __FILE__, __LINE__)

These methods are called as if the developer were using a private Win32 heap. The actual
implementation of the methods will create buffers on the CRT heap, which means that these
allocations will be tracked. ATL provides definitions for the private heap API and for the
virtual memory API. If you want to use these macros in your code, you will have to make a
copy of this header file and remove the definitions of new. The advantage of using macros
such as these is that you get diagnostics about your memory usage in your debug builds, but in
the release build, you can have the advantage of the appropriate Win32 memory allocator.

Marshaling

You can apply the [DllImport] pseudo custom attribute to static methods in a class or to global
extern methods. When you apply this attribute, the compiler adds the pinvokeimpl modifier,
which specifies the code that implements the method. You can use the [MarshalAs] pseudo
custom attribute on the parameters and the return value of a method with the [DllImport]
attribute and on fields of __value types. The [MarshalAs] attribute gives the .NET marshaler
information about how to marshal the item. [MarshalAs] is a pseudo custom attribute because
there is .NET metadata named marshal that is set with this attribute. For example, for this
code:

[DllImport("dllexp")]
static void PassIntArray(int size,
 [MarshalAs(UnmanagedType::LPArray, SizeParamIndex=0)]
 int array __gc[]);

the compiler generates this IL:

.method public static pinvokeimpl("dllexp" winapi)
 void PassIntArray(int32 size,
 int32[] marshal([+ 0]) 'array')
 cil managed preservesig forwardref

The square brackets in the marshal attribute indicate that the data type is an array, and the + 0
value indicates that the size is given by the first parameter (parameter zero).

You can define custom marshaling code by defining a class that implements
ICustomMarshaler and mentioning it in the MarshalType field of the [MarshalAs] attribute.
Custom marshaling occurs on parameters and not on the method, which means that the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Custom marshaling occurs on parameters and not on the method, which means that the
method must have the same number of parameters as the unmanaged function. One trick that
the .NET Framework uses is to hide the platform Invoked method and provide wrapper
methods that call the hidden method; such wrapper methods can have whatever parameters
you want.

For example, let’s return to the Win32 ::GetEnvironmentStrings API that I showed earlier.
This function returns a buffer with each environment string in the form name=value. This
buffer is read-only and is allocated by the system. After you have finished using the buffer,
you should release it by calling ::FreeEnvironmentStrings. Because environment strings are
name-value pairs, it makes more sense to access them through an associative container such as
NameValueCollection. I have chosen to use a wrapper class for this function:

// envvars2.cpp
__gc class EnvStrings
{
 [DllImport("kernel32", CharSet=CharSet::Unicode)]
 [returnvalue: MarshalAs(UnmanagedType::CustomMarshaler,
 MarshalType="StringArrayMarshaler")]
 static NameValueCollection* GetEnvironmentStrings();
 NameValueCollection* vars;
public:
 __property NameValueCollection* get_Var()
 {
 if (vars != 0) return vars;
 vars = GetEnvironmentStrings();
 return vars;
 }
};

void main()
{
 EnvStrings* env = new EnvStrings;
 IEnumerator* en = env->Var->AllKeys->GetEnumerator();
 while (en->MoveNext())
 {
 Console::WriteLine(S"{0}={1}",
 en->Current,
 env->Var->Item[en->Current->ToString()]);
 }
}

Here I define a class named EnvStrings that has a property that gives access to the
NameValueCollection of environment strings. The Win32 ::GetEnvironmentStrings function
returns an LPVOID parameter. I want to marshal this parameter so that it is converted into a
NameValueCollection. To do this conversion, the return value is marked with the [MarshalAs]
attribute, which mentions the marshaler class StringArrayMarshaler. I have used the
MarshalType field to give the name of the class. (This field should be the fully qualified name,
but in this case, the class is declared in the same assembly as the code that will use the class,
so there’s no need to specify the fully qualified name.) I could have used the MarshalTypeRef
field instead, in which case I would pass the Type object of the marshaler class rather than the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

field instead, in which case I would pass the Type object of the marshaler class rather than the
name. The marshaler class looks like this:

// envvars2.cpp
public __gc class StringArrayMarshaler : public ICustomMarshaler
{
 [DllImport("kernel32", CharSet=CharSet::Unicode)]
 static bool FreeEnvironmentStrings(const wchar_t*);
 const wchar_t* buffer;
 // Make ctor private so that instances are only created
 // by calling GetInstance().
 StringArrayMarshaler(){}
public:
 static ICustomMarshaler* GetInstance(String* pstrCookie)
 { return new StringArrayMarshaler; }
 void CleanUpManagedData(Object* ManagedObj) {}
 int GetNativeDataSize()
 { return 0; }
 IntPtr MarshalManagedToNative(Object* ManagedObj)
 { return IntPtr::Zero; }
 Object* MarshalNativeToManaged(IntPtr pNativeData)
 {
 buffer = static_cast<const wchar_t*>(
 static_cast<void*>(pNativeData));
 const wchar_t* pv = buffer;
 NameValueCollection* arr = new NameValueCollection;
 while (*pv)
 {
 String* name = new String(pv);
 int idx = name->IndexOf('=');
 String* value = name->Substring(idx + 1);
 name = name->Substring(0, idx);
 arr->Add(name, value);
 while (*pv) pv++;
 pv++;
 }

 return arr;
 }
 void CleanUpNativeData(IntPtr pNativeData)
 {
 FreeEnvironmentStrings(buffer);
 buffer = 0;
 }
};

The marshaler class implements ICustomMarshaler and also implements a static method
named GetInstance. This example demonstrates deficiency with the way that the runtime uses
some interfaces because the documentation says that any class that implements
ICustomMarshaler must also implement GetInstance, but static methods are not allowed as
members of __gc __interfaces. It would be nice if the .NET Framework had a custom attribute

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

members of __gc __interfaces. It would be nice if the .NET Framework had a custom attribute
that indicated a noninterface method that must be implemented by a class that implements the
specified interface, which a compiler could check.

When the system sees a custom marshaling class that contains a parameter marked with
[MarshalAs], the system calls the GetInstance method on that class, passing a marshaling
cookie. This cookie can be specified via the MarshalCookie field of [MarshalAs]. The
GetInstance method can use the value of this cookie to determine how the marshal class will
work (and pass appropriate information to the marshaler class’s constructor), or indeed,
whether to create an instance of a totally different class.

Because this particular marshaler is used only to marshal data from the native to the managed
worlds, only two methods are implemented: MarshalNativeToManaged, which is called when
the parameter is marshaled and is expected to return the managed object initialized by the
parameter; and CleanUpNativeData, which gives the marshaler an opportunity to release any
native buffers allocated by the native function. In this code, I use MarshalNativeToManaged
to access the string buffer and then iterate through the strings, separating them into name-value
pairs and inserting them into the collection. The following [MarshalAs] pseudo custom
attribute adds the marshal attribute to the method:

.method private static pinvokeimpl("kernel32" unicode winapi)
 class [System]
 System.Collections.Specialized.NameValueCollection
 marshal(custom ("StringArrayMarshaler",""))
 GetEnvironmentStrings() cil managed
 preservesig forwardref
{
}

The custom modifier mentions the name of the class and the cookie (in this case, an empty
string).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Exceptions

Unmanaged code can throw software exceptions (typically C++ exceptions) or structured
exceptions. Structured exceptions are purposely thrown with the Win32 ::RaiseException
function, but they might also be thrown by the system due to faults in the unmanaged code.
When you guard managed code with a try-catch block, the runtime will catch any exceptions
thrown by native code, and it will attempt to translate the exception into a managed exception.
So, if native code tries to dereference a NULL pointer, the managed code will catch this error
as a NullReferenceException.

If there is no managed exception that corresponds to the native exception, the runtime will
throw an SEHException. This class is underwhelming—the only members in addition to those
provided by Exception are CanResume and ErrorCode. If native code throws an exception,
can you guarantee that this exception has not been caused by writing over vital memory? My
advice is to ignore whatever CanResume returns and assume that you should not resume
execution. ErrorCode is not much better; it always returns 0x80004005 (E_FAIL).

So how do you make any sense about exceptions that have been thrown by native code? The
Marshal class has two static methods that you can use to get more information:
GetExceptionCode and GetExceptionPointers. Logically, these methods should have been part
of SEHException because you will access them only if you catch a native exception. Indeed,
these two methods will return meaningful information only if they are called in a catch
handler.

GetExceptionCode and GetExceptionPointers are essentially wrappers around the Win32
functions ::GetExceptionCode and ::GetExceptionInformation. The value returned by
GetExceptionCode makes a lot more sense than SEHException::ErrorCode because the value
actually corresponds to the exception that was thrown. The Win32 exception codes are defined
in winbase.h using symbols defined in winnt.h (do a search for
STATUS_ACCESS_VIOLATION to see where the exception code symbols are defined), but
user code can define its own exception codes and pass a code through the first parameter of
::RaiseException. Here’s some code used to handle native exceptions in managed code:

// exceptions.cpp
try
{
 CallNativeCode();
}
catch (Exception* /* ignore exception */)
{
 switch(Marshal::GetExceptionCode())
 {
 case EXCEPTION_ACCESS_VIOLATION:
 Console::WriteLine(
 S"access attempted through an invalid pointer");
 break;
 case EXCEPTION_INT_DIVIDE_BY_ZERO:
 Console::WriteLine(
 S"code has attempted to divide by zero");
 break;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 break;
 case EXCEPTION_INT_OVERFLOW:
 Console::WriteLine(
 S"number too big to fit into an integer");
 break;
 default:
 Console::WriteLine(S"some other native exception");
 }
}

You can get a further list of exception codes Exceptions thrown by native C++ will have an
exception code of 0xe06d7363. through the Exceptions dialog in Visual Studio .NET (through
the Debug menu or the Debug.Exceptions command). The codes in the example above are
listed under the Win32 Exceptions node.

You can use Marshal::GetExceptionPointers to get more detailed information about the native
exception that was thrown. This method returns an IntPtr that holds the address of an
unmanaged EXCEPTION_POINTERS structure. This structure is documented in winnt.h,
which will be included through windows.h. However, note that the preprocessor will attempt
to redefine the symbol GetExceptionCode as the intrinsic _exception_code, which will cause
errors in your code. To remove these errors, you can simply add the following line of code
after winnt.h is included:

#undef GetExceptionCode

The EXCEPTION_POINTERS structure is declared as follows:

// winnt.h
typedef struct _EXCEPTION_RECORD
{
 DWORD ExceptionCode;
 DWORD ExceptionFlags;
 struct _EXCEPTION_RECORD *ExceptionRecord;
 PVOID ExceptionAddress;
 DWORD NumberParameters;
 ULONG_PTR ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS];
} EXCEPTION_RECORD;
typedef EXCEPTION_RECORD *PEXCEPTION_RECORD;

typedef struct _EXCEPTION_POINTERS
{
 PEXCEPTION_RECORD ExceptionRecord;
 PCONTEXT ContextRecord;
} EXCEPTION_POINTERS, *PEXCEPTION_POINTERS;

The first member of EXCEPTION_POINTERS is platform independent, and the second
member gives the state of the CPU and is platform dependent. SEH exceptions can be nested,
so EXCEPTION_RECORD acts as a linked list with a pointer to the next item in the list. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

so EXCEPTION_RECORD acts as a linked list with a pointer to the next item in the list. The
members in which you are perhaps the most interested are the ExceptionAddress and
ExceptionInformation members. ExceptionAddress will give you the address in the native code
where the exception was thrown, as shown here:

// exceptions.cpp
EXCEPTION_POINTERS* pointers;
pointers = static_cast<EXCEPTION_POINTERS*>(
 static_cast<void*>(Marshal::GetExceptionPointers()));
void __nogc* address =
 pointers->ExceptionRecord->ExceptionAddress;
Console::WriteLine(S"the exception was thrown at 0x{0:x}",
 __box((int)address));

If the call to RaiseException passed parameters for the exception, the NumberParameters will
give the number of parameters and ExceptionInformation will be an array in which each item
points to an exception parameter.

The ContextRecord member of EXCEPTION_POINTERS is a CONTEXT structure that holds
information about the state of the CPU at the point that the exception occurred. Again, winnt.h
has definitions for this structure, but because this information is CPU-specific, there are
versions for Alpha and x86 (32-bit and 64-bit) CPUs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM Interop

.NET interop would be only half complete if it did not include interop with COM. Before

.NET, COM was the only effective way to develop components, and it is still used by many
parts of Windows. (The shell uses COM-like interfaces for its UI elements, and APIs such as
DirectX are accessible through COM.) In spite of the claims from some .NET commentators,
COM will not disappear while .NET exists. The reason is that most of the access to the .NET
runtime from native code is through COM: profiling code, debugging code, access to
metadata, and hosting the runtime. I will come back to these APIs in Chapter 5 and Chapter 7.

.NET and COM Objects

With COM interop, a COM object can be used in managed code as if it is a .NET object, and a
.NET object can be used in native code as if it is a COM object. This particular piece of
programming magic requires marshaling code and type information. Unmanaged code requires
type information in the form of type library (ITypeInfo) data to determine the methods (and the
types of the parameters) implemented on a .NET object so that the type library marshaler can
perform inter-apartment marshaling and so that tools such as Visual Basic 6 can generate
client code. Managed code requires type information in the form of metadata for all code that
the managed code accesses. Most COM servers have type libraries, and all .NET assemblies
have metadata, so it makes sense for Microsoft to provide tools to generate metadata from type
libraries and to generate type libraries from metadata. If a type library is not available for a
COM server, you can generate the metadata in managed code using custom attributes.

When .NET code calls a COM object, a managed/native transition will occur when a method
is called, and a corresponding transition will occur when the method returns. If the COM
method has parameters that are COM types, the .NET code will have to pass a .NET
equivalent (most likely a COM interface pointer that resides in the .NET context), and there
must be marshaling to convert from the .NET type to a COM type. A COM object will call a
.NET object through a COM interface, so there will be managed/native transitions during the
method call, and the parameters will require marshaling through these transitions.

The lifetime of a .NET object is determined by the .NET garbage collector, which during a
collection will use the references to an object to determine whether the memory assigned to an
object can be freed. Clearly, any COM code that has access to a .NET object represents such a
reference. The identity of .NET objects are defined in terms of object references: two object
references are to the same object if the result of passing the references to
Object::ReferenceEquals returns true. Any code that gives access to COM objects must take
this condition into account.

On the other hand, the lifetime of a COM object is determined by the number of reference
counts on the object; these reference counts are changed through the methods of IUnknown.
.NET objects do not have reference counts, so when native code calls the reference counting
methods of IUnknown, these methods must ultimately result in events that affect the object
references tracked by the garbage collector. The identity of a COM object is defined in terms
of IUnknown: two interface pointers point to the same object if the absolute value of the
IUnknown interface obtained on one interface pointer is identical to the absolute value of the
IUnknown interface obtained on the other interface pointer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.NET objects are created through the managed new operator, and the .NET type loader will
use .NET Fusion and the metadata in the calling code to locate the assembly that contains the
type and then create a new instance of the type. COM objects are created through calls to
::CoCreateInstanceEx, which uses the CLSID of the object to search the system registry for
the COM server; for inproc servers, ::CoCreateInstanceEx uses the registered path for the
server. If the server does not have a path, ::CoCreateInstanceEx uses the Win32 module
loading rules (in other words, the same DLL location rules as used by ::LoadLibraryEx) to
locate the DLL and load it. The actual COM object is created by a class factory that is
intimately involved with the COM object because only the class factory knows how to create
and initialize the COM object, and only the COM object knows how to destroy itself and free
the resources it uses.

Clearly, .NET must supply a class factory that can be used to create .NET objects that are
accessible through COM. The native “face” to the .NET runtime is the file mscoree.dll, which
exports DllGetClassObject. DllGetClassObject can access the class factories for all .NET
classes. When a .NET object is registered as accessible by native code as a COM object (I’ll
explain how in a moment), the InprocServer32 registry key will specify mscoree.dll as the
server DLL and will have registry keys that identify the .NET class, the name of the .NET
assembly that contains the class, and (optionally) an absolute path to the assembly.

Note that I specifically said the InprocServer32 registry key because .NET does not support
local (EXE) servers; it only supports giving access to .NET objects through COM for library
assemblies. .NET does support out-of-process activation, but this ability requires the use of a
surrogate. If you use out-of-process activation, however, you do not need to derive the .NET
class from MarshalByRefObject even though the object will be accessed from another
AppDomain. If you access a .NET object in another AppDomain through .NET remoting, the
remote .NET class must derive from MarshalByRefObject.

NOTE
If a class is accessed through COM+, the class has to be derived from
ServicedComponent, which is derived from MarshalByRefObject.

Interfaces

COM objects are always accessed through interfaces; COM only knows how to marshal
interfaces. A COM interface pointer is effectively a pointer to a vtable. The vtable holds a
series of “slots,” each of which contains a function pointer to a member of the interface. The
COM contract implicit in interfaces is that when a COM client obtains a COM interface
(through ::CoCreateInstanceEx, IUnknown::QueryInterface, or some other COM API), the
vtable will have the correct number of slots (one for each member of the interface), and each
of these slots will have a valid function pointer associated with the member in the same
position in the interface. Put simply, the client is guaranteed that when it calls an interface
member through an interface pointer it will make the call through a valid function pointer. In
effect, COM interface marshaling transposes the vtable of a C++ object from one context
(apartment) to another.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ECMA specification for .NET does not mention how interface references are
implemented. The ECMA specification says that interface methods are virtual and are called
with the callvirt opcode (although as with other virtual methods, they can also be called non-
virtually). The callvirt opcode calls the method based on the run-time type of the object rather
than the compile-time class visible in the method metadata token, but the specification gives
no indication how this is achieved. If you step into a call through an interface reference, you
will find that the interface is implemented through a vtable—just as COM interfaces are. This
information is important because it means that the order that you declare members in an
interface is significant. Normally, when you use .NET interfaces, you will not be aware of this
order because .NET type safety ensures that you can use an interface reference only on an
object that implements that specific interface. However, as you’ll see later (the section “.NET
COM Attributes”), when you manually declare interfaces used in COM interop, the runtime
cannot perform such stringent type checks, and consequently you have the responsibility to
ensure that the interfaces are declared correctly.

COM is based on interface programming—that is, all access to a COM class is through the
interfaces that the class implements. The .NET designers decided to follow the example of
Visual Basic and Common Object Request Broker Architecture (CORBA) and to prefer access
via class members rather than via interfaces. The .NET designers also bowed to the Java
model and allowed the developer to use interface programming as a secondary approach.
Interface programming is a great model because developers select the behavior that they want;
when you access an object through its class, you have a mish-mash of all the behaviors
implemented by the object. Because .NET gives preferences to accessing an object through
class members, it has some incompatibilities with pure-COM interface programming. How do
you handle code that expects access to class-based methods with a mechanism that expects
methods to be members of interfaces?

Visual Basic 6 could use COM objects through class (as opposed to interface) methods if such
objects implemented IDispatch. IDispatch uses late binding—that is, the method is determined
at run time based on an identifier passed to IDispatch::Invoke. Of course, this system means
that there is an extra performance issue of carrying out this dispatch, and there is the implicit
possibility that the identifier will be invalid, so the method will not be able to be called. Earlier
bound, vtable-based interfaces always guarantee that if the interface pointer is valid, all of the
methods in the interface will be valid.

The problem with the .NET approach, from the COM point of view, is that an external class
can access the public members of another class even in the case when those methods are not
members of interfaces. You can understand that a one-to-one mapping could be performed
between .NET interfaces and COM interfaces, but how do public non-interface methods fit
into this scheme? To address this problem, .NET has a concept of a “class” interface. This
interface is an amalgamation of all the public methods on the class—methods on interfaces
and non-interface methods and the accessor methods for properties. Interfaces contain only
methods, so public fields of a .NET class are not accessible through COM interop. This
interface is provided as a named implementation of IDispatch. The interface takes the name of
the class prefixed with an underscore (for example, the class interface for MyObject is
_MyObject). Depending on the attributes that you use on your managed class, you can indicate
that the class interface is implemented solely through IDispatch or through a dual interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Versioning in COM is performed through interfaces; early bound interfaces are immutable,
which preserves the layout of the interface vtable. If a COM coclass changes, its COM name
(its CLSID) must also change, and the changes are expressed through the coclass
implementing a new interface. Old clients are supported because the old interfaces are
supported. If a .NET class changes, the class interface will also change, and hence the vtable
will change, which will break clients that are early bound to this interface. For this reason, the
default for .NET classes accessed through COM interop is not to allow the class interface to be
accessible through a dual interface (and be early bound) but to allow the class to be accessible
through late-bound clients (by explicitly calling IDispatch::GetIDsOfNames and
IDispatch::Invoke). The message is clear: for versioning to work with .NET classes accessible
through COM interop, those classes should implement interfaces.

Note also that .NET interface inheritance does not have the same meaning in COM as it does
in .NET: COM interfaces can have only a single base interface. If a .NET interface inherits
from more than one .NET interface, this relationship cannot be reflected in the COM world.
COM clients do not use the inheritance relationship between interfaces. If you want to cast
from one COM interface to another, you use IUnknown::QueryInterface. Thus, a .NET class
that implements an interface that has two base interfaces will appear to a COM client as a class
that implements three interfaces: the relationship has been “flattened.”

COM Callable and Runtime Callable Wrappers

When you create a COM object in .NET code through COM interop, you will get an object
reference. (If you use IJW, you will be able to use unmanaged COM pointers.) The object
reference will be to a managed wrapper around the COM object. This object will implement
managed interfaces equivalent to the COM interfaces that are requested. This wrapper is called
by code running under the runtime, so it is known as the runtime callable wrapper (RCW).
There will be an RCW for each COM object accessed through COM interop.

The RCW is a .NET object, so everything that you expect on a .NET object will be available.
If you use reflection on an RCW, you will get information about the methods on the COM
class The class: you will get all the members on the class even if you call reflection on an
interface reference. in addition to some extra methods provided by the RCW. (The RCW
derives from MarshalByRefObject.) The RCW gets this information from the type library and
does not appear to call IDispatch::GetTypeInfo.

The RCW provides a method stub for each interface method. The method stub performs the
transition from managed to unmanaged context and marshals the parameters. When the
method completes, the stub catches any exceptions thrown by the COM method and checks
the HRESULT for failure values. The stub then translates these values to managed exceptions.
If the method has a parameter marked as [out, retval], the RCW will use this parameter as the
return value to the method.

When COM code calls a .NET object through COM interop, the code will get a wrapper
object named a COM Callable Wrapper (CCW). The CCW implements the interfaces
supported by the .NET object as well as the class interface. The vtables for these interfaces are
tear-off interfaces: they are created dynamically by IUnknown::QueryInterface of the CCW.
The methods in the tear-off do the transition from unmanaged to managed context and marshal
the parameters. If the .NET object throws an exception, the CCW will convert this exception
to an appropriate HRESULT and to a COM error object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COM Servers

COM servers accessed through COM interop can be inproc (DLL), local servers (EXE),
hosted by a surrogate (DllHost.exe, with or without COM+), or remote. The RCW is the
“interface” to COM on the local machine that will load the appropriate proxy to allow the
RCW to access the COM object.

.NET types can be accessed through COM interop only if they are implemented in DLLs—
that is, the .NET assembly will be accessed in-process or via a surrogate; .NET will not load
the assembly as a local server. When a COM client releases its last reference count on a CCW,
the .NET object becomes available for collection. COM clients expect that in-apartment
objects will be released as soon as the last reference count is removed. (Out-of-apartment
objects will not necessarily go away immediately because the stub manager will actually hold
references to the object, and the stub manager, not the client, ultimately decides when the
object is no longer being accessed.) However, the occurrence of garbage collection will
depend on the state of the managed heap. Rest assured: when the .NET assembly unloads from
memory, a garbage collection will be triggered, and the COM client process will not be
allowed to terminate until all the finalizers of the .NET objects have completed.

Tools

So far I have mentioned wrappers and the registration of .NET objects as COM objects, but I
have not mentioned how this process happens. The .NET Framework SDK provides tools to
help you do this.

Exporting Types

If you want to use a .NET class from a COM client, you need to register the .NET class so that
the object is co-creatable. You also need to provide type information so that the COM client
has interface information. To register a COM class, you use a tool named RegAsm (and
optionally, another tool named GacUtil), and to generate the type information, you use
TlbExp.

The TlbExp tool will generate a type library (.tlb) based on the metadata in an assembly that
you supply. You can then use this type library in a tool such as Visual Basic 6 or pass the
name of the library to the #import directive in Visual C++ to generate the C++ bindings for the
interfaces the type library describes. Type libraries are used by the COM type library
marshaler to describe the types being marshaled and typically are bound as a resource to the
code that uses the interfaces.

When a .NET object is registered, its ThreadingModel is given as Both, which means that if
the object is accessed inproc (in other words, if it is not hosted in a surrogate or in COM+),
COM marshaling will not be used. This lack of COM marshaling means that a proxy will not
be required, so type information is not strictly required. Furthermore, the .NET class could
implement interfaces for which there are standard proxies for the equivalent COM interface.
Bear in mind that although Both COM objects can be created in any apartment type, cross-
apartment access to such an object will require interface marshaling. However, .NET
components accessed through COM interop on a machine that has the runtime installed do not
have to use type library marshaling and do not need a type library to be registered or even
generated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In some cases, you will want to generate type information, if only for the convenience of
having the type information. The TlbExp tool is used like this:

TlbExp myassem.dll

This command will generate a type library named myassem.tlb from the metadata in
myassem.dll. This tool uses the facilities in the TypeLibConverter class, which is a public class
in System::Runtime::InteropServices, so you can call the class in your own code.

You can influence the type information generated by this tool by using custom attributes. I
will cover these attributes in the sections “.NET COM Attributes” and “Using .NET Types
from COM.” If you need to have a type library for an assembly (for example, if the types will
be used by Visual Basic 6 or scripting languages), it makes sense to bind the type library to the
PE file of the assembly so that the type library is always associated with the types it describes.
The .NET Framework SDK has an example named TlbGen. This tool takes the name of an
assembly and generates a type library from the metadata in the assembly. The tool then binds
the type library resource to the assembly and, because this operation will alter the size of the
assembly (and hence the hash generated for the assembly), the tool will re-sign the file if you
indicate that the assembly should have a strong name.

The RegAsm tool searches the metadata of the assembly passed to it for public __gc types that
are not __abstract. For each suitable type that it finds, the tool will generate COM registration
information. If the metadata does not have CLSIDs, this tool will generate a CLSID for the
class; it will do the same for ProgIDs. Note that the tool ignores interfaces; in COM, interfaces
are registered to specify the proxy-stub code used to marshal the interface. The CCW
implements IMarshal, which means that the interfaces are custom marshaled and the CCW
provides the proxy-stub code used to marshal the interfaces on the object.

You too can have the facilities of RegAsm because the RegistrationServices class has static
members to register an assembly (RegisterAssembly), unregister an assembly
(UnregisterAssembly), or register a specific type (RegisterTypeForComClients).

After you have run this tool on an assembly, each public __gc type will have an
InprocServer32 key specifying mscoree.dll as the server and the key will have the additional
values shown in Table 2-4.

Table 2-4. The InprocServer32 Registry Values for a .NET Class Accessed
Through COM Interop

Value Explanation

Assembly The full name of the assembly

Class The fully qualified name of the .NET class

CodeBase Gives the full path to the assembly file

RuntimeVersion The version of the runtime that the class was written for

ThreadingModel The COM threading model of the class, always set to Both

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The whole point of the COM registration values is to provide definitive information about the
location of the server that provides the object. However, the registry values for a class
registered with RegAsm will give only an absolute path to mscoree.dll. The intention is that
.NET assembly location rules will be used to try to avoid the common Win32 problem of
loading the wrong DLL. Fusion will search for the assembly in this order:

1. The folders specified in the DEVPATH environment variable (Clearly, this variable
should be used only on development machines.)

2. The global assembly cache

3. The current folder

4. A subfolder of the current folder that has the short name of the assembly

In general, the assembly should be in the same folder as the client that uses it. One side effect
of this policy is that if you try to create an instance of the object in OleView, you will get the
HRESULT of COR_E_TYPELOAD because the runtime will not find the assembly in the same
folder as OleView. To solve this problem, and if you decide that the types in the assembly are
so useful that you want to allow other COM clients to access them, you have to either make
the assembly shared or make it more accessible. To make the assembly shared, you put it in
the GAC; to make the assembly more accessible, you specify a codebase. The codebase can be
specified in the machine or the application config file, or if you use the /CodeBase switch with
RegAsm, a value named CodeBase will be added to the registry value for the object. To use
this switch, the assembly must be signed, and if you sign the assembly, it makes more sense to
add the assembly to the GAC, in which case the CodeBase value is not needed.

Importing Types

To use a type in .NET, you have to import metadata in the source file so that the compiler has
the information it needs to access the type. To get metadata for a COM object and its
interfaces, either you can declare the metadata yourself (which I will explain in the next
section) or you can use TlbImp, which will create metadata based on a type library. The output
from this tool is an assembly (an interop assembly) that contains only metadata. Creating an
interop assembly is straightforward, as shown here:

tlbimp mylib.tlb /out:mytypes.dll

This command will create an assembly named mytypes with the metadata for the types defined
in the type library. (You too can convert a type library to an interop assembly through the
TypeLibConverter class.) You can use this metadata in an assembly with the #using directive.
Now, imagine that another user of the types uses TlbImp to create another import assembly
named yourtypes. In .NET, the assembly is the boundary of versioning, so the types defined in
mytypes and yourtypes will be different. This difference means that if you have a third
assembly that uses types in the assemblies that use mytypes and yourtypes, you will suffer type
mismatches. The solution is to ensure that you create only one interop assembly from a type
library, and whenever you use the COM types, you always use that official interop assembly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Such an assembly is called the primary interop assembly (PIA) and is created by calling
TlbImp with the /primary switch and providing a key file. The key file is used to sign the PIA
to prove that it is the official interop assembly. When you install Visual Studio .NET, you will
get a folder under Program Files\Microsoft.NET named Primary Interop Assemblies that
contains PIAs for standard Windows type libraries. You are most likely to use these PIAs if
you are creating an interop assembly because a type library often references other type
libraries that define the types the library uses. (In particular, the type library stdole.tlb is
usually referenced.) TlbImp will locate these referenced type libraries and add their definitions
to the interop assembly. Of course, this generates the possibility of the problem I mentioned
earlier, namely having several assemblies with different definitions of the same COM type. To
get around this issue, you should use the /reference switch of TlbImp to specify a PIA that will
be checked first for a type before attempting to add the type from a type library.

When you think about it, an interop assembly is an odd beast—after all, what use is metadata
if the data is not associated with code? However, on closer inspection, interop assemblies do
make sense because the metadata contains information that indicates where the code resides,
namely in a COM server. This information is added through attributes.

.NET COM Attributes

The TlbImp tool will read the types in a type library and generate .NET metadata from those
types. This metadata will have custom attributes that indicate to the runtime the COM types
that the metadata refers to. The .NET code that uses the interop assembly will call the
managed types to access the COM types, and the metadata information is used by the RCW to
make the COM calls. When you call methods on the RCW, your code calls managed code
with managed parameters, so the RCW will need to marshal those parameters. Again, this
information is given via custom attributes.

Let’s look at an example. Here is a type library definition:

[object, dual, uuid(347DEDAC-205E-3987-9AF3-DBB1A0ADAFF2)]
interface ITest : IDispatch
{
 [id(1)] void Method();
 [id(2)] void MethodTwo();
};
[uuid(E5AD6A74-6A89-357A-A571-0D38CBE92ABE), version(1.0)]
coclass Test
{
 [default] interface ITest;
};

TlbImp will generate metadata equivalent to the following pseudo managed C++:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[GuidAttribute("347DEDAC-205E-3987-9AF3-DBB1A0ADAFF2"),
 ComImport]
__gc __interface ITest
{
 [DispId(1)] void Method();
 [DispId(2)] void MethodTwo();
};
[GuidAttribute("E5AD6A74-6A89-357A-A571-0D38CBE92ABE"),
 ComImport]
public __gc __abstract class TestClass : public ITest
{
public:
 TestClass();
 void Method();
 void MethodTwo();
};
[GuidAttribute("347DEDAC-205E-3987-9AF3-DBB1A0ADAFF2"),
 CoClass(__typeof(TestClass)), ComImport]
public __gc __interface Test : public ITest
{
};

The [GuidAttribute] attribute is used to indicate the COM GUID of the specified item. (Names
of items in COM are GUIDs.) ITest is a managed interface that is implemented by the
TestClass class. (This class is abstract, and I’ll come back to it in a moment.) TlbImp also
generates an interface named Test. That interface is the .NET equivalent of the coclass in
COM. In fact, if you create instances of the TestClass in managed C++, the Test class can be
used by other .NET languages. For example, a C# program can create the COM object with
this code:

// C#
Test test = new Test();
test.Method();

At this point, I should say do not try this at home because you cannot create an instance of an
interface. However, this TestClass interface is special because it is marked with the [CoClass]
custom attribute and the [ComImport] pseudo custom attribute. The [ComImport] attribute
indicates that the interface is the result of importing type information, and the [CoClass]
custom attribute indicates an “interface” to the class’s class factory. Together, these attributes
tell the C# compiler to treat the code as a request to create an instance of the class specified as
the parameter to the [CoClass] attribute through a COM class factory.

The implementation of the TestClass constructor and the other methods in the class are
marked as runtime managed internalcall in the assembly, which means that the method is not
provided in the class, but instead is provided by the runtime. I cannot simulate this behavior in
C++, so the only way that you can import a managed version of a coclass is through TlbImp. I
can make a method runtime internalcall using [MethodImpl] in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can make a method runtime internalcall using [MethodImpl] in
System::Runtime::CompilerServices, but creating a type with such a method will throw a run-
time exception. However, although the imported interface methods are also marked runtime
managed internalcall, the runtime appears to ignore this information. Furthermore, the RCW
ignores .NET rules when you tell it to perform interface programming. Thus, the COM object
Test implements ITest, but I can define the following interface in my assembly that imports the
interop assembly for Test:

[GuidAttribute("347DEDAC-205E-3987-9AF3-DBB1A0ADAFF2")]
__gc __interface IAnotherInterface
{
 [DispId(2)] void MethodTwo();
 [DispId(1)] void Method();
};

void main()
{
 IAnotherInterface* test;
 test = dynamic_cast<IAnotherInterface*>(new TestClass);
 test->Method();
}

Note that I have defined a new interface with a totally different name, but the GUID is the
same as the ITest GUID. The cast to this interface will succeed because under the covers the
runtime treats the cast to the interface type as a call to IUnknown::QueryInterface. However,
notice that in my new interface I have switched the declarations of Method and MethodTwo. I
mentioned in the “Interfaces” section earlier in this chapter that the runtime makes managed
interface calls through vtables, so the call to Method in the main method is actually an
instruction to make a call to the second method of the interface, which the RCW will interpret
as a call to the unmanaged ITest::MethodTwo. Thus, it is vitally important that if you define
the managed interface version of a COM interface in your assemblies, you take care to ensure
that you preserve the order of the methods.

But why go to the bother of defining an interface when TlbImp will do it for you? When you
use TlbImp on a type library, it will convert the interface method signatures from COM to
.NET—that is, TlbImp will hide the HRESULT return value that all marshalable methods must
return and it will convert failure HRESULT values to exceptions. If the COM method has a
parameter marked as [out, retval], the managed method will use this parameter as the return
value. Some COM methods use the method return value to return success HRESULT values.
The classic example is an enumerator interface that returns S_FALSE from a call to Next to
indicate success (in other words, no exceptions were thrown), but the interface had no more
data to return. If you have such a method, the value of the success HRESULT is important to
you, but that value is thrown away by the RCW. To overcome this problem, you can redefine
the interface by marking the method with the [PreserveSig] custom attribute and declaring the
method as returning an unsigned int value.

Interfaces Defined by the .NET Framework

If your interfaces are not described by a type library, you can declare them yourself as
managed interfaces, as shown in the previous section. You might have to use the [MarshalAs]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

managed interfaces, as shown in the previous section. You might have to use the [MarshalAs]
attribute to ensure that the parameters are marshaled from the managed types to the COM
types expected by the COM object. In particular, if the COM interface has parameters that are
COM interfaces, you need to indicate how the interface should be marshaled. If the COM
interface expects an IUnknown or an IDispatch pointer, you can use
UnmanagedType::IUnknown or UnmanagedType::IDispatch. If the interface is a custom
interface, you should use UnmanagedType::Interface, which indicates that the proxy used to
marshal the parameter is determined from the [GuidAttribute] of the managed interface.

Furthermore, if the parameter of the COM interface is a SAFEARRAY*, the equivalent
parameter on the managed interface will be a managed array. The [MarshalAs] attribute
indicates that the parameter should be marshaled as a SAFEARRAY by
UnmanagedType::SafeArray, and the field SafeArraySubType indicates the COM type of the
data in the SAFEARRAY.

Finally, the System::Runtime::InteropServices namespace also declares some managed
versions of unmanaged COM interfaces. (These are interfaces with the prefix UCOM.)
However, you are unlikely to use these interfaces unless you access objects through monikers
or access the type information of a COM object.

Using COM Types in .NET

If your .NET code uses COM components, you have the choice between using COM interop
or IJW. If you use COM interop, you have the advantage of using managed types. Managed
types are particularly useful for late binding code because the .NET reflection API is less
complicated to use than COM automation, particularly the code to access type information.
The RCW will hold a reference count to the COM object and will do so until the RCW has
been collected. Consider the following code:

TestClass* test = new TestClass;
test->Method();
test = 0;
// COM object still survives

Assigning the object reference to zero will remove the reference, so the object will be a
candidate for collection. But you cannot guarantee when the collection will occur. You could
add a call to GC::Collect after this code, but the collection could take time, and it is usually
best to make this call only when you know that any performance hit will not affect the
behavior of your application. Instead, the Marshal class provides a static method to tell the
RCW to release its reference count. Consider this code:

TestClass* test = new TestClass;
ITest* testPtr = dynamic_cast<ITest*>(test);
testPtr->Method();
Marshal::ReleaseComObject(test);
test = testPtr = 0;

Here I have called ReleaseComObject on the object reference, but I could have called the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here I have called ReleaseComObject on the object reference, but I could have called the
method on the interface reference to get the same effect. The interesting thing about this call is
that I have two references to the .NET object (through test and testPtr) and yet only one call to
ReleaseComObject is needed to release the COM object. After this call, do not be tempted to
call the RCW; if you do, you will get a NullReferenceException because the RCW will not
have a pointer to the COM object. This behavior is why I have assigned the object and
interface references to zero. The ReleaseComObject method is useful if the COM object holds
onto scarce resources and the object is accessed in-apartment.

If you access COM objects through IJW, you might want to pass an interface pointer from a
.NET object to the COM object. Such a .NET object must be visible to COM code, which
means that the object derives from a managed interface imported through TlbImp. For
example, imagine that you have these COM interfaces:

// See comobj.cpp.
interface ICallback : IDispatch
{
 HRESULT CallMe();
};
interface IInformer : IDispatch
{
 HRESULT InformYou(ICallback* p);
};

A COM object could implement IInformer, and when the object is called with InformYou, it
might do some work and then inform the caller by calling ICallback::CallMe. If you have a
managed version of ICallback (defined in a namespace, say managedItfs), you can create a
managed class to handle the call back. However, if you create the Informed object through
IJW, you have the problem of getting a native interface on the managed object. You can get
the interface by calling Marshal::GetComInterfaceForObject, as shown here:

// usecomobj.cpp
// This class implements managedItfs::ICallback.
CallbackObj* x = new CallbackObj;
IntPtr itf = Marshal::GetComInterfaceForObject(
 x, __typeof(managedItfs::ICallback));
// Create the object through IJW.
IInformer* informed;
hr = ::CoCreateInstance(__uuidof(Informed), NULL,
 CLSCTX_ALL, __uuidof(informed), (void**)&informed);
// Cast to the unmanaged interface to keep the compiler happy.
informed->InformYou(static_cast<ICallback*>(
 static_cast<void*>(itf)));
informed->Release();

GetComInterfaceForObject obtains the COM interface on the managed object based on the
[GuidAttribute] applied to the managed interface. The method returns an IntPtr, so you have
to cast the IntPtr first to a void* to get the encapsulated value and then cast to the unmanaged
interface type before finally passing the interface to the COM object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Marshal also has GetIUnknownForObject and GetIDispatchForObject, which you can call to
get the IUnknown and IDispatch interfaces implemented by the RCW for a .NET object. The
method GetITypeInfoForObject will return the ITypeInfo based on a Type object returned from
the RCW. In some cases, COM methods pass object pointers through a VARIANT, and you
can convert an object to a COM VARIANT by calling GetNativeVariantForObject.

If you have an unmanaged interface pointer obtained through IJW, you can convert the pointer
to a managed interface pointer using GetObjectForIUnknown, GetObjectForNativeVariant, or
GetTypedObjectForIUnknown, depending on how the interface pointer was marshaled and the
.NET format that you want to use.

If you use COM interop, a VARIANT parameter will appear in the managed interface as Object
__gc*. If you pass an object reference through this pointer, the object will be marshaled as
VT_UNKNOWN. This type of marshaling might not be your intention. You might decide that
you want the object passed as an IDispatch pointer (VT_DISPATCH), in which case you can
create an instance of DispatchWrapper, passing your object to the constructor, and then pass
this instance to the COM method. Similarly there are wrapper classes, CurrencyWrapper,
ErrorWrapper, and UnknownWrapper, that explicitly marshal an object as VT_CY,
VT_ERROR, and VT_UNKNOWN, respectively.

Using .NET Types from COM

If your .NET types are likely to be used by COM clients through COM interop, you can apply
some .NET custom attributes to improve the access to those objects. In general, you do not
need to apply the [GuidAttribute] attribute because the TlbExp tool (and RegAsm) will
generate a unique GUID for the type. You can see this GUID by calling
Marshal::GenerateGuidForType. Similarly, a ProgID will be generated for you (which you
can view with GenerateProgIdForType) but this ID might not be of a suitable format, so you
can use [ProgId] to specify your own ProgID.

You can also use the [DispId] attribute to give the DISPID of an interface method. Bear in
mind that the class interface will have methods inherited from System::Object and the
interface will automatically give ToString a DISPID of 0 (the default method). You can use
the [ClassInterface] attribute to indicate how the class interface should be supplied to the
client. (The class interface has all class public members, including members that are not part
of an interface.) The choices are given by the ClassInterfaceType enumeration; the default is
AutoDispatch, which means that the class interface is available only through IDispatch.
AutoDispatch is the safest option because if the .NET class changes, no interface will change,
so existing clients with an old type library will still be able to access the object. Of course, this
means that your clients must use automation, which is a pain to do in C++ and creates
performance issues.

The [ClassInterface] attribute can also take AutoDual, but this member of the
ClassInterfaceType enumeration is not recommended because it will provide a dual interface
with all the public members of the class. If the class changes, this interface will change, and
hence it will have a new IID. Older clients querying for the IID of the previous class interface
will get an error. Finally, you can use None for the [ClassInterface]. I actually prefer this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

will get an error. Finally, you can use None for the [ClassInterface]. I actually prefer this
option for this reason: COM objects are designed for interface programming, so they should
be accessed only through interfaces. It goes against the principles of interface programming to
provide a class interface because there is no grouping of members according to their behavior.
The class interface groups members only by their implementation—that is, they are the
members implemented by a particular class.

You can also determine how other interfaces are exposed to COM. The [InterfaceType]
attribute takes a ComInterfaceType value of either InterfaceIsDual, InterfaceIsIDispatch, or
InterfaceIsIUnknown. The first value indicates that the interface will be available through
IDispatch or through a dual interface (and hence will allow early binding), the second value
means that it will be available only through IDispatch, and the last value supports only early
binding.

TlbExp will make all public members visible through the type library; RegAsm will register
all public classes as co-creatable. This behavior might not be your intention. You might decide
that only a few types defined in your assembly should be visible through the type library, or
you might have a class that is not co-creatable (that is, the class is creatable only as a return
value from another class). To hide types from the type library, you can use the
[ComVisible(false)] attribute. Types with this attribute will not be put in the type library, and
they will be ignored by RegAsm.

With COM, you have to specify explicitly how parameters are marshaled: are they in
parameters or out parameters, or will the data be passed in both directions? The .NET
attributes [In] and [Out] are only suggestions to the runtime for pure .NET methods.
However, for COM interop, they are obeyed by the runtime, and they are used by TlbExp to
determine the COM attributes that will go in the type library.

Exceptions

Throwing exceptions is the accepted .NET way of indicating errors. In COM, HRESULT
values and error objects are the accepted mechanism. Indeed, COM developers are taught
from an early age never to allow an exception to be thrown by a COM method. Thus, the two
mechanisms are incompatible, so the CCW tries to ensure that .NET exceptions are treated in a
way acceptable to COM. The .NET Framework SDK lists the HRESULT values that
correspond to the managed exceptions in the header file CorError.h. It is important to point out
that the .NET runtime facility code is 0x13, so any HRESULT that has 0x8013 as the top
WORD will be a failure HRESULT from .NET. To get additional information, you should
access the error object through the ::GetErrorInfo API, as shown here:

// ptr is a COM interface pointer to a managed object.
HRESULT hr = ptr->Method();
if (FAILED(hr))
{
 printf("Method failed with: %08x\n", hr);
 CComPtr<IErrorInfo> error;
 hr = GetErrorInfo(0, &error);
 if (hr == S_OK)
 {
 CComBSTR bstr;
 error->GetDescription(&bstr);
 printf("Exception: %S\n", bstr.m_str);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 printf("Exception: %S\n", bstr.m_str);
 bstr.Empty();
 error->GetSource(&bstr);
 printf("Assembly: %S\n", bstr.m_str);
 bstr.Empty();
 error->GetHelpFile(&bstr);
 printf("Help file: %S\n", bstr.m_str);
 DWORD dw;
 error->GetHelpContext(&dw);
 printf("Help ctx: %ld\n", dw);
 }
}

The Exception::Message property is accessible through IErrorInfo::GetDescription, whereas
GetSource returns the name of the assembly that contained the type that threw the exception.

You get the “outer” exception only through IErrorInfo; the Exception::InnerException is
effectively thrown away. This behavior is a pity because COM has a perfectly usable
mechanism through IErrorRecords that allows multiple error records to be passed to another
apartment, but sadly, COM interop does not use this interface.

The astute reader will notice that System::Exception has a property named HelpLink that is
expected to be a URL to a description of the error. This URL can be to a page or to an
anchored item on the page. IErrorInfo splits the error location into two parts: a help file and a
help context. During the translation of an Exception to an error object, the runtime examines
HelpLink, and if this property contains a numeric anchor, the anchor is used as the help
context and the URL without an anchor is used as the help file. If the anchor is missing or if
the anchor is not numeric, the help file will merely return the entire string in HelpLink.

Marshaling .NET Objects

The CCW for a .NET object accessed through COM interop will implement the following
interfaces:

IConnectionPointContainer
IDispatch
IManagedObject
IMarshal
IProvideClassInfo
ISupportErrorInfo
IUnknown
_Object

IManagedObject is described in mscoree.tlb, and _Object is described in mscorlib.tlb. If the
.NET object is serializable, the serialized state is returned from
IManagedObject::GetSerializedBuffer. The GetObjectIdentity method returns a BSTR with a
GUID that represents the identity of the .NET object and two integers that represent the
identity of the AppDomain and the CCW. The _Object interface is described in mscorlib.tlb
and is System::Object accessible through COM interop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is interesting that the CCW implements IMarshal because this implementation means that
the CCW manages its own marshaling, so the interfaces supported by the object do not have to
have proxy-stub information in the system registry. When a CCW interface is unmarshaled,
the system calls IMarshal::GetUnmarshalClass. This call will return the CLSID of an object
with the ProgID of CCWU.ComCallWrapper.

The .NET Framework has an attribute named [AutomationProxy], and the .NET Framework
documentation states that you can use this attribute on your .NET classes to indicate that the
class will be marshaled with the automation marshaler. My tests, however, indicate that
whether I use this attribute or not I still get CCWU.ComCallWrapper used as the class to
unmarshal the object.

Threading

COM objects can run only in a COM apartment. If you attempt to call a COM API or access a
COM object through an interface pointer without initializing a COM apartment, you’ll get an
error: CO_E_NOTINITIALIZED. .NET code clearly has to initialize an apartment before you
can call a COM object through COM interop, so how does this initialization happen? Well,
like most things in .NET, the initialization is done automatically. When a COM call is made,
the runtime will initialize an apartment automatically. A native thread initializes itself in an
apartment by calling CoInitializeEx, and the parameter of this API determines which
apartment type: the thread is either initialized in a new STA apartment, or it is initialized in the
process MTA apartment. In .NET, there are two ways to specify the apartment that a .NET
thread runs: attributes and the thread object. When you create a new thread, you can set the
apartment membership through the Thread::ApartmentState property, but you can set this
property only once.

If you do not specify the apartment type that should be used, the runtime will assume an
MTA; before any COM call is made, the runtime will ensure that an apartment is initialized.
This initialization happens whether you access the COM object through COM interop or IJW.
Thus, if you call ::CoCreateInstanceEx, the initialization will succeed whether or not you call
CoInitializeEx. Of course, if the object you access is an inproc object and is marked as being
Apartment threaded, the object will always run in an STA. If you call this object from .NET
code, the call will be from an MTA apartment, so the calls to the object will be marshaled to
the STA apartment through a COM proxy. This code is not very efficient, so to call the COM
object from the apartment for which it is best designed, you should specify the apartment type
before making the COM call, as shown here:

Thread::CurrentThread->ApartmentState = ApartmentState::STA;
IMyInterface* pItf;
::CoCreateInstanceEx(__uuidof(MyObject), NULL, CLSCTX_ALL,
 __uuidof(pItf), (void**)&pItf);
// Use pItf.

COM+ Interop

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

It is worth pointing out here that COM+ Component Services is .NET Component Services
(now known as .NET Enterprise Services). Regardless of what you might read from any other
self-appointed commentator (including this one), you can be assured that Microsoft will
always support both COM and COM+. You can be assured that code written for COM and
COM+ will always work with .NET.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Summary

Interoperation with unmanaged code and COM is vitally important for the .NET Framework,
and interop is also important for your code. If you need to use code that is not part of the .NET
Framework, you must import this code from somewhere else, and this is where interop comes
in.

The term interop is wide, and in this chapter, I have covered the three cases where interop is
used: platform invoke, COM interop, and IJW. Platform invoke is an attribute-based
technology; the developer uses attributes to instruct the compiler to import code from DLLs
and can optionally indicate to the compiler to add metadata that tells the runtime to use a
custom marshaler. COM interop is also attribute based, but unlike platform invoke, COM
interop is two-way: COM clients can access .NET objects through COM interop, and .NET
code can access COM objects through COM interop. The .NET Framework SDK provides the
tools and classes to allow you to generate interop assemblies and type libraries and to register
.NET objects with COM. Finally, managed C++ can access native code (C++ classes or native
static-link libraries) directly. This access does not need any other code, and for this reason, the
technology is called It Just Works! IJW is a great technology because you can write managed
code that uses existing code: if that code is provided through a C++ library, the native C++
will be compiled to MSIL, but the data will be unmanaged and hence allocated on the C++ or
CRT heap or on the stack. Such types behave as C++ types but can interoperate seamlessly
with managed code that uses .NET types.

If you need to interoperate with native code, C++ is the best language to use. I will come back
to interoperation later in this book because this technology is so important. In Chapter 4, I will
show how to interoperate with GDI, and in Chapter 5, I will show how to interoperate with
.NET application domains, and I will explain the security aspects of interoperation. However,
there is one aspect of interop that I have not covered in this chapter: callbacks. Callbacks to
native code and COM use delegates and events, which are the topic of the next chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3
Delegates and Events
This chapter is all about indirect calls to methods. Methods can be instance methods or static
methods, but they have one thing in common: they are code implemented in a .NET type.
Usually when you call a method, you know the class where the object is implemented. Indeed,
.NET requires the class to be known because this knowledge ensures the type safety of the
call. Sometimes you will want to call a method of a particular type, and in native C++, you
will normally make this call through a function pointer of some kind. In .NET, you make the
same type of call through a delegate.

I will explain what delegates are and how .NET type safety is guaranteed through delegate
calls. Delegates are the basic building blocks of many features in .NET, so once I have given
the details about how to use delegates themselves, I will show the application of delegates:
asynchronous calls, notifications through events, and calling threads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Delegates as Type-Safe Function Pointers

One source of errors with native code using dynamic-link libraries (DLLs) was caused by the
incorrect use of function pointers. A pointer to a function in a DLL can be obtained by calling
::GetProcAddress, but because this API is general purpose, it returns a void* pointer that you
have to cast to an appropriate function pointer so that the compiler will set up the stack
correctly to make the function call. Casts are always dangerous, and the worst cast is one that
casts a void* pointer because the compiler has no knowledge about the type pointed to before
the cast and cannot ensure that the cast is correct.

Objects are accessed through pointers. These pointers point to the memory allocated for the
object, which essentially means the data that the object contains. This statement is true for
.NET objects (where the object is created on the managed heap) and for C++ objects (which
are usually created on the C++ heap). When you call a method, you do so through a typed
pointer, and the compiler uses the type of the pointer to determine the method to call. In .NET,
the type information is associated with the intermediate language (IL) through metadata.

Objects can have virtual methods, and when a virtual method is invoked, the runtime will
locate the method based on the type of the object that the pointer points to, rather than the type
of the pointer. In native C++, this locating is done through a vtable, and under the covers, the
current version of the runtime appears to use a vtable also. To confirm this, I created an object,
pinned the pointer, and then dumped the memory pointed to by the pinned pointer. The first
item in this dumped memory is a pointer to a structure that, among other things, contains a
vtable. Obviously, this is an implementation detail and might change with other versions of the
runtime. However, it is interesting that this pointer is not merely a pointer to a vtable. The
structure appears to hold information such as the number of methods and the size of the object.

Thus, when you make a call to an object method through a typed pointer in .NET, information
is added to the code that the runtime uses to ensure that the correct method is called at run
time. This check is performed at compile time for native C++ code; the compiler checks the
type of the pointer and the type of the method.

Function Pointers with Unmanaged Code

Native C++ allows you to declare pointers to methods that are members of a class. This type
of pointer is a C++ pointer to member. Let’s see how the compiler handles this pointer for
native C++ compiled to MSIL. Consider this class:

// fnptr.cpp
__nogc class Test
{
public:
 void f(int i){ Console::WriteLine(S"called f"); }
};
typedef void (Test::* FUNC)(int);

This code defines an unmanaged class and a typedef for a pointer to member that takes an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This code defines an unmanaged class and a typedef for a pointer to member that takes an
integer as a parameter and returns no value. The method uses the .NET Framework class
Console to print a message to the console, so the code should be compiled with the /clr switch.
As I mentioned in Chapter 2, the compiler creates a __value type for the unmanaged class to
hold its data members, and the methods will be added as public static global methods to the
module.

I can use the class like this:

// fnptr.cpp
Test __nogc* test = new Test;
FUNC ptr = &Test::f;
(test->* ptr)(42);

It is interesting to examine how C++ calls methods through the pointer to member. In this
code, I first get a pointer to the method of a specific signature (ptr), but this pointer is for the
class and it is not for a specific object instance. The pointer to member is associated with an
instance only when the call is actually made. This arrangement does not seem to be very C++-
like to me, C++ is all about abstraction and encapsulation, but there is no encapsulation here.

Now let’s design a class to invoke a method that has the same signature as FUNC, as shown in
the following code:

// fnptr.cpp
template<typename T>
class Caller
{
public:
 typedef void (T::* FUNC)(int);
 Caller(void* obj, FUNC f) : m_obj(obj), m_f(f){}
 void Invoke(int i)
 {
 T* obj = static_cast<T*>(m_obj);
 (obj->*m_f)(i);
 }
 void operator()(int i) { Invoke(i); }
private:
 void* m_obj;
 FUNC m_f;
};

The method pointer is invoked by calling the Invoke member, and for convenience I have
declared an operator function (but this function is convenient only if you call it through a
stack instance). Clearly this class will work only with classes that have a method of the form
void f(int). If you want a class like this for another function type, you have to change the
typedef and Invoke (and operator). However, because I have written it as a template, I can use
the class for any class that has a method with the same signature. The code to use this class
looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// fnptr.cpp
Caller<Test> caller(test, &Test::f);
caller.Invoke(42);
caller(42);

This syntax is much easier to use than the previous code with pointer to member syntax. It is
also better C++ because the Caller class encapsulates the object that is being called and the
function pointer that is called on the object. Bear this class in mind when I cover delegates
later.

Let’s return to the code to call a method through a member to pointer, as shown here:

Test __nogc* test = new Test;
FUNC ptr = &Test::f;
(test->* ptr)(42);

The compiler will generate IL to access the function through the pointer, as shown in the
following code:

.locals (int32 V_0, // Pointer to member
 valuetype Test V_1) // The object
ldc.i4.1 // Test has no data, so to have a 'this' pointer,
 // we have to allocate memory (one byte).
call void* modopt(
 [mscorlib]System.Runtime.CompilerServices.CallConvCdecl)
 new(unsigned int32)
stloc.1 // Save the Test instance in V_1.
ldsfld int32** __unep@?f@Test@@$$FQAEXH@Z
stloc.0 // Get the address of Test::f, store it in V_0.
ldloc.1 // Load the 'this' pointer to pass to the method.
ldc.i4.s 42 // Load the parameter to pass to the method.
ldloc.0 // Load the function pointer, and call the method.
calli unmanaged thiscall void modopt([mscorlib]
 System.Runtime.CompilerServices.CallConvThiscall)(int32)

The ptr variable is initialized with the address of the function. There is no MSIL opcode for
loading the address of a native method, so the compiler will calculate this address and put it in
a global static field:

.field public static int32** __unep@?f@Test@@$$FQAEXH@Z
 at D_000060F0
.data D_000060F0 = bytearray (60 10 40 00)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The value stored at location D_000060F0 is the address of the unmanaged function (the PE
header for this file indicates that the function will load at virtual address 0x00400000), so this
is why the field name starts with __unep, (unmanaged entry point). The stack is constructed
with the parameters to be sent to the function followed by the pointer to the unmanaged
function. The this pointer is always treated as the first parameter, which is why it is the first on
the stack. The method is called with the calli opcode. Notice that the metadata for the method
that is called is marked as being __thiscall, which means that the first parameter will be the
this pointer, which is passed as a 32-bit integer.

If you change the Test class from a __nogc type to a __gc type, you’ll find that the compiler
will issue an error. You cannot take the address of a method in a managed class.

Function Pointers and Global Functions

Global functions are usually compiled as MSIL, but they are not members of a class, so they
are not called with a this pointer. Consider this method:

String* GetDate()
{
 return DateTime::Now.ToString();
}
typedef String __gc* (__cdecl *Date)(void);

This function will be compiled as MSIL, but because it is not a member of a class, the calling
convention used will be the default, __cdecl. (You can change this calling convention with the
/Gd, /Gr or /Gz switches.) The function uses .NET Framework code, and it returns a .NET
Framework class, but because the calling convention is one of the unmanaged calling
conventions, you can call it through an unmanaged function pointer.

Calling the method is simple, as shown here:

// global.cpp
Date date = GetDate;
Console::WriteLine(date());

The MSIL generated for this call is similar to the MSIL generated for calling methods on
unmanaged classes: the compiler stores the address of the global method in the .data section,
and this address is accessed through a global field. Because this method is global, there is no
this pointer, so the MSIL merely loads the field that holds the address of the unmanaged entry
point and then executes calli.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.locals (method unmanaged cdecl string modopt(
 [mscorlib]System.Runtime.CompilerServices.CallConvCdecl)
 *() V_0)
ldsfld int32** __unep@?GetDate@@$$FYAP$AAVString@System@@XZ
stloc.0
ldloc.0
calli unmanaged cdecl string modopt(
 [mscorlib]System.Runtime.CompilerServices.CallConvCdecl)()
call void [mscorlib]System.Console::WriteLine(string)
ldc.i4.0
ret

The only notable differences between this and the MSIL I showed earlier are that this time the
function has a typed variable and the local field is marked as method unmanaged cdecl. You
can call static methods on __nogc classes in the same way, and the compiler will generate
essentially the same code.

Delegates

Methods on managed types are called with the __clrcall calling convention. You cannot
declare a function pointer as using this calling convention, so you cannot obtain the address of
a method member of a class using C++. However, as you’ll see in a moment, MSIL has an
opcode named ldftn that places the address of a method pointer as an unmanaged native int on
the stack. Also, the platform invoke marshaler can get an unmanaged pointer to a class
member, and I’ll show you how to do this later. Instead, .NET provides a mechanism called a
delegate that you can use. A delegate works in a similar way to calling through a C++ pointer
to member in that you have a method pointer and an object through which the method pointer
will be invoked. However, unlike C++, a delegate encapsulates the two. You declare a
delegate like this:

// delegates.cpp
__delegate void Caller(int);

This delegate can be declared at global scope, or it can be a nested member of another type.
The compiler will generate a class that looks like this (in which I have converted the MSIL to
pseudo C++):

__gc __sealed class Caller : public MulticastDelegate
{
public:
 Caller(Object* obj, int meth);
 virtual void Invoke(Int32 i);
 virtual IAsyncResult* BeginInvoke(
 Int32 i, AsyncCallback* cb, Object* state);
 virtual void EndInvoke(IAsyncResult* ar);
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

This class derives from MulticastDelegate, but ignore that for a moment because I want to
concentrate on its base class, Delegate. Delegate has the following three members that I want
to explain:

.field private native int _methodPtr

.field private object _target

.field private class System.Reflection.RuntimeMethodInfo _method

These members are initialized with the parameters passed to the delegate constructor and
represent the function pointer, the object, and the type information about the method. As you
can see, there are parallels with the Caller<> class that I showed earlier. Between them,
_methodPtr and _method give enough information for the runtime to make a call on the
appropriate method of the _target object.

As I mentioned in Chapter 1, the delegate is invoked synchronously by calling the Invoke
method; the delegate is invoked asynchronously with BeginInvoke, and cleanup is performed
with EndInvoke. The parameters of Invoke and BeginInvoke depend on the parameters of the
method being invoked, whereas the return value of Invoke and EndInvoke depend on the return
value of the method. Thus, the delegate class has to be generated by the compiler for a specific
method signature.

Using the delegate is simple:

// delegates.cpp
// Class to call
__gc class CallMe
{
public:
 void Call(int i)
 { Console::WriteLine(S"You called me with {0}", __box(i)); }
};
// Code to call the delegate
CallMe* called = new CallMe;
Caller* caller = new Caller(called, &CallMe::Call);
caller->Invoke(42);
caller(42);

The parameters of the constructor are the object to call and the address of the method to call.
Note that the compiler allows you to use the syntax for getting a pointer to member through
the address-of operator (as I have used here), and it also allows you to get the address of the
method as if it is a C function pointer (that is, without the address-of operator). If the method
is overloaded, the compiler will use the delegate type to determine which method is used to
initialize the delegate.

The IL generated to initialize the delegate looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.locals (class Caller V_0,
 class CallMe V_1)
ldnull
stloc.1
ldnull
stloc.0
newobj instance void CallMe::.ctor()
stloc.1
ldloc.1
ldftn instance void CallMe::Call(int32)
newobj instance void Caller::.ctor(object, native int)
stloc.0

The important opcode here is ldftn, which gets the address of the specified method and returns
it as an unmanaged pointer. The .NET Framework equivalent of native int is IntPtr, but the
compiler will not convert the address of a managed method to an IntPtr. The following code
will not compile because the compiler refuses to convert the managed method to an integer:

IntPtr fnPtr(&CallMe::Call);

Clearly, the compiler specifically looks for code that initializes a delegate with the address of a
managed method and calls ldftn in this situation. I will show how you can do this in the
section “Delegates and Interop” later in this chapter. In the example I gave earlier, I showed
calling an instance method on a __gc type; however, you are not restricted to just instance
methods or __gc types. If the Call method was static, the only change to the code to initialize
the delegate is that the method is not called on an instance, so the first parameter to the
delegate constructor should be zero.

The method that is invoked can be an interface method implemented by the object, but note
that the compiler will not allow you to pass the address of the interface method as the method
parameter to the delegate constructor.

__gc __interface ICallback
{
 void Call(int i);
};
__gc class CallMe : public ICallback
{ /* Methods as before */ };

// Code to call it
CallMe* called = new CallMe;
// This code will not compile.
Caller* caller = new Caller(called, &ICallback::Call);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The last line will not compile because the compiler expects the method address to be an
implementation of a method, and an interface does not implement methods.

The type implementing a method can be a __value type, but the type must implement an
interface that has the method, as shown here:

// delegates.cpp
__value class CallMeVal : public ICallback
{
public:
 void Call(int i);
};

// Code to call it
CallMeVal called;
Caller* caller = new Caller(__box(called), &CallMeVal::Call);

Because __value methods called through a delegate have to be part of an interface, you cannot
call __value type static methods through a delegate.

Be aware that when you initialize a delegate you pass the address of the method that will be
called when the delegate is invoked. The address of this method is determined statically, when
the code is compiled. Virtual methods are called through a vtable, determined by the type of
the object that is called; however, delegates bypass this mechanism, so in effect, virtual
methods are not called virtually when called through a delegate. Consider this code:

// delegates.cpp
__gc class Base
{
public:
 virtual void Callback(){Console::WriteLine(S"called Base");}
};
__gc class Derived : public Base
{
public:
 virtual void Callback(){
 Console::WriteLine(S"called Derived");}
};
__delegate void Del();

Here I have declared a delegate and two classes that implement a method that has the same
signature: the Derived class derives from Base. Here’s some code that uses these classes:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Derived* d = new Derived;
Del* d1 = new Del(d, &Base::Callback);
Del* d2 = new Del(d, &Derived::Callback);
d1();
d2();

The first delegate is initialized with the address of the Callback method on the base class, so
when the delegate is invoked, it is this method that is called. It makes no difference that the
method is declared as virtual because the vtable of the object passed to the delegate
constructor is not used.

Dynamic Creation of Delegates

I have shown the usual way to create and invoke a delegate: use new on the delegate class, and
call the Invoke method either directly or indirectly. The developer must know the signature of
the method so that she can declare a delegate. In some situations, the type of the method will
not be known at design time—for example, if your code is a scripting engine. The Delegate
class provides methods that allow you to dynamically create a delegate and invoke it, based on
type information. The class contains a static member named CreateDelegate that you can use
to create delegate instances. If the method you want to invoke is static, you call the version of
CreateDelegate that has a Type pointer and a MethodInfo pointer that you use to indicate the
type of the delegate to create and the method to invoke, as shown here:

// dynamdel.cpp
// Indicate the method to invoke; this is a static method.
MethodInfo* mi;
mi = __typeof(TestClass)->GetMethod (S"StaticMethod");
MyDelegate* d;
// Create a delegate.
d = static_cast<MyDelegate*>(
 Delegate::CreateDelegate(__typeof(MyDelegate), mi));

The Delegate class has a read-only property named Method that returns a MethodInfo object
for the delegate. The class also contains an overload that takes the Type object of the class that
implements the static method and a string with the method name, which saves you a little
typing, as the following code shows:

// dynamdel.cpp
MyDelegate* d;
d = dynamic_cast<MyDelegate*>(
 Delegate::CreateDelegate(
 __typeof(MyDelegate), __typeof(TestClass), S"StaticMethod"));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the method to invoke is an instance method, you have to provide the object that implements
the method. There are two overloads that perform this task, and they differ only by a single
parameter. Here’s the first overload version:

// dynamdel.cpp
TestClass* test = new TestClass;
MyDelegate* d;
d = dynamic_cast<MyDelegate*>(
 Delegate::CreateDelegate(__typeof(MyDelegate), test, S"Method"));

The second version of the overload takes a Boolean that indicates whether the case of the
string should be ignored. The Delegate class has a read-only property named Target that
returns the object that implements the invoked method.

As you can see, all of these overloads take the type of the delegate to create. This arrangement
limits the usefulness of CreateDelegate; I would have hoped that there would be an overload
that would dynamically create the delegate class based on the type information of the method.
Sadly, such an overload does not exist.

Invoking a delegate involves calling the Invoke method on the delegate class. You can also
invoke a delegate at run time using the DynamicInvoke method.

Delegate Parameters

The parameters of a delegate can be primitive types or they can be .NET types, and they can
be passed by value or by reference. Consider this example:

__delegate int Pass_integers(int i1, Int32 i2);

This delegate takes two parameters and returns an integer. Both of the parameters are passed
by value, and so they are in parameters. Notice that the two parameters are 32-bit integer
values, so they represent the same type of data.

Now consider these delegates:

__delegate void Pass_Int32Ptr(Int32*);
__delegate void Pass_intPtr(int*);

The usual intention of passing an integer by reference is to treat it as an out parameter;
however, as you will see in the section on asynchronous programming, the compiler will treat
these two delegates differently in terms of the code it generates. The compiler will treat the
parameter as in/out for Pass_Int32Ptr, but the compiler will treat the parameter as an in
parameter only for Pass_intPtr; that is, Pass_intPtr is treated as if it has a pointer passed as an
in parameter rather than the parameter being used to return an int. I think this behavior is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in parameter rather than the parameter being used to return an int. I think this behavior is
counterintuitive. Notice that I specifically mentioned that the compiler treats these two
delegates differently for the code generated for asynchronous calls because you can still use
these parameters as out parameters for synchronous calls.

Normally, you can treat the primitive types as being synonymous with the corresponding
.NET Framework __value types. However, this behavior is not the case with respect to
pointers, especially when one is used as a parameter to a delegate. Closer inspection of the
pointer types used in these two delegates reveals the difference: Pass_Int32Ptr takes an int
__gc* pointer, whereas Pass_intPtr takes an int __nogc* pointer. Because the two differ by
the pointer type, a method used to initialize one delegate type cannot be used to initialize the
other delegate type. When passing a pointer to a primitive type, it is always a good idea to
specify the pointer type explicitly, and in most cases, this will mean declaring the pointer as a
__gc pointer because __nogc pointers cannot be used with remoting.

A __value type is usually passed by value, but if you pass a __gc pointer to a __value type, the
pointer will be passed by reference. Managed objects are always passed through a __gc
pointer, as shown here:

__delegate void Pass_String(String* s);

This parameter is an object, so it is passed by reference, but bear in mind that System::Strings
are serializable and immutable, so they should be treated as read-only parameters by the
method that is invoked.

Now consider this example:

__gc class [Serializable] MyObject{};
__delegate void Pass_SerObject(MyObject* o);

When you invoke a delegate synchronously, the method is called in the context in which the
delegate was created. So if a delegate is created in one context and then passed to a second
context and invoked, it means that the parameters passed to the method will be marshaled from
the context in which the delegate was invoked, rather than from the context in which the
delegate was created. In this example, the MyObject class is a managed class, and it is marked
as serializable. If there is no marshaling (the delegate is invoked in the same context as the one
in which the method is called), the parameter is passed by reference, so the method can change
the state of the object through the parameter. If the call is across a context boundary, then
because the object is marked with [Serializable], a clone of the object is passed to the invoked
method. This means that if the invoked method changes the state of the object, the original
object is unaffected.

__gc class MyObject2 : public MarshalByRefObject {};
__delegate void Pass_ByRefObject(MyObject2* o);

In this example, the class is derived from MarshalByRefObject, which means that the object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this example, the class is derived from MarshalByRefObject, which means that the object
will be context bound—it can execute only in the context in which it was created—so .NET
remoting will be used if a cross-context call is made. In this case, if the invoked method
changes the state of the object through the parameter, the original object is affected. This is
also the effect if the delegate invocation does not involve a context change.

Multicast Delegates

When you use the __delegate keyword, the compiler will generate a sealed class that derives
from MultiCastDelegate. As the name suggests, this class is a container for multiple Delegate
instances. MultiCastDelegate has a private member named _prev that is the pointer to a
delegate that is the next in a linked list. When a delegate is invoked, the runtime invokes every
delegate in this list. Delegate has a static member named Combine that is used to combine two
Delegates as a new Delegate, as shown in the following code:

MyDelegate* d = new MyDelegate(0, &TestOne::StaticMethod);
d = dynamic_cast<MyDelegate*>(
 Delegate::Combine(d, new MyDelegate(0, &TestTwo::StaticMethod)));
d = dynamic_cast<MyDelegate*>(
 Delegate::Combine(d, new MyDelegate(0, &TestThree::StaticMethod)));

First I create one delegate, and then I combine it with two other delegates. Combine does this
task by calling a protected member named CombineImpl on the first delegate, passing the
second delegate to this method. If a delegate passed to Combine is single cast (derives from
Delegate), an exception will be thrown by Delegate::CombineImpl. Single cast means that
you cannot combine the delegate with another one. All delegates in the current version of
.NET are multicast, but earlier in the beta cycle, C++ did allow you to declare single cast
delegates. If the delegate is multicast, MulticastDelegate::CombineImpl is called, and this
method will clone a new delegate from the parameter passed to CombineImpl and iterate
through the linked list of delegates, adding them to the cloned delegate. Finally the linked list
of delegates of the delegate on which CombineImpl was called is added to the end of the
linked list of the clone. This arrangement is summarized in Figure 3-1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-1. The effect of combining two delegates with Delegate::Combine

In effect, the static Combine method returns a Delegate with the second delegate first in the
list, and then the first delegate after that. This arrangement would appear to imply that the
delegates are invoked in the reverse order that they are combined, but this appearance is not
so. Calling GetInvocationList returns an array of the delegates in the linked list, but if you look
through the IL for this method, you will see that it adds the delegates in reverse order;
presumably, calling Invoke on a delegate does the same thing.

Using Delegate::Combine is a pain because it returns a Delegate pointer that you have to cast
to the delegate type that you are combining. The C++ compiler allows you to combine two
delegates with the += operator, as the following code shows:

MyDelegate* d = new MyDelegate(0, &TestOne::StaticMethod);
d += new MyDelegate(0, &TestTwo::StaticMethod);
d += new MyDelegate(0, &TestThree::StaticMethod);

This code is equivalent to the previous code and is far more readable.

Invoking a multicast delegate is straightforward: you can call the Invoke method the compiler
generates for you, or you can call the delegate object as if it is a method, which the compiler
will convert to a call to Invoke. Because invoking the delegate is done through a single method
call, only the return values from one method can be returned to the caller, and this value will
be the values from the last method called by the delegate. This system is true of the method
return value and any out parameters the method might have, as shown here:

__gc class Called
{
public:
 static int i;
 static int inc(){return ++i;}
};

__delegate int Incrementer();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__delegate int Incrementer();

void main()
{
 Incrementer* inc = new Incrementer(0, &Called::inc);
 inc += new Incrementer(0, &Called::inc);
 inc += new Incrementer(0, &Called::inc);
 Console::WriteLine(inc());
}

This code will print “3” because it is the return value from the third call to Called::inc. The
method designer generally has a reason for providing a return value for a method, but here you
have no choice. The invocation mechanism will throw away all return values except for the
last one. Worse yet, if the delegate has an out parameter, each method called will write data
back through the out parameter, which will then be overwritten by the next method call. If the
call is cross-context, you will have the overhead of marshaling for data that you never see.
There are two points to make about this system: first, you should review whether it makes
sense to invoke a method that returns values via a multicast delegate; if it does make sense,
your second option is to invoke the method in a way that allows you to get access to all the
return values, as shown here:

IEnumerator* e = inc->GetInvocationList()->GetEnumerator();
while (e->MoveNext())
{
 Incrementer* i = dynamic_cast<Incrementer*>(e->Current);
 Console::WriteLine(i());
}

Delegates as Smart Function Pointers

Delegates are great because they encapsulate the method pointer and the object that is called,
all in one object, which is one advantage they have over C++ pointer to member invocation.
Their other main advantage is that they are type-safe. Consider this unmanaged code:

// typechecks.cpp
__nogc class TypeUnsafe
{
public:
 void f(int i){
 Console::WriteLine(S"f called with {0}", __box(i));}
 void g() { Console::WriteLine(S"g called");}
};

We can call these instance methods like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

typedef void (TypeUnsafe::* FUNC)();
TypeUnsafe* t = new TypeUnsafe;
FUNC f1 = reinterpret_cast<FUNC>(&TypeUnsafe::f);
FUNC f2 = &TypeUnsafe::g;
(t->*f1)();
(t->*f2)();
delete t;

I have declared a typedef to make the code a little easier to read. This pointer assumes that the
method takes no parameters and has no return value. Through the wonders of
reinterpret_cast<>, I can cast the pointer to f to this type, so when the f1 variable is invoked,
the method assumes that an integer will be on the stack, but the invoking code does not set up
the stack in this way because FUNC indicates that the function has no parameters. As a
consequence, the method will extract some meaningless value. In this case, the bug is fairly
harmless, but you can imagine that such a bug could easily cause serious problems.

The problem is that I have used reinterpret_cast<> to turn off the type checks that the
compiler will perform for me. There is no run-time check, so the method will be invoked even
if, as is the case, it is incorrect to do so.

Now consider the following equivalent managed code:

// typechecks.cpp
__gc class TypeSafe
{
public:
 void f(int i){Console::WriteLine(S"f {0}", __box(i));}
 void g(){Console::WriteLine(S"g");}
};
__delegate void DelF(int);
__delegate void DelG();

I have defined two delegates, one that can be used to call TypeSafe::f and another that can be
used to call TypeSafe::g. Now look at how these delegates can be used:

// typechecks.cpp
TypeSafe* t = new TypeSafe;
DelF* d1 = new DelF(t, &TypeSafe::f);
DelF* d2 = new DelF(t, &TypeSafe::g); // Will not compile
DelG* d3 = new DelG(t, &TypeSafe::g);
d1(42);
d3();
DelG* d4 = dynamic_cast<DelG*>(d1);
if (d4 != 0) d4();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first point to make is that it is not possible to initialize a delegate with a method of the
wrong type because the compiler checks to ensure that the types match. It is not possible to
cast away this check. However, what you can do is cast between types, and here I have used
dynamic_cast<> to perform a type check. In this case, the cast will fail and d4 will be
assigned to zero.

The preceding section showed an example of such a cast. If you call
Delegate::GetInvocationList, the delegates are returned as an array of Delegate objects. The
simplest way to invoke the delegate is to cast it to the appropriate delegate type. (Another
option is to call Delegate::DynamicInvoke, but this means that you have to construct the
parameter list as an array of Object* pointers.)

Exceptions and Delegates

When you invoke a delegate, it is the runtime that calls the specified method. If that method
throws an exception, the runtime will catch the exception in the context in which it was
thrown. The runtime will rethrow the exception in the context in which the delegate was
invoked. Thus, if the delegate is passed to a context other than the one in which it was created
or if it is invoked asynchronously and the method throws an exception, that exception is
serialized and passed back to the context that invoked the delegate and rethrown there.

If the delegate is multicast and if an exception is thrown by an invoked method, the runtime
will stop the invocation and no other methods will be called. It is important that you are aware
of this behavior, and in general, it is best to prevent any exceptions from leaking from the
invoked method. The reason why I say this is because delegate invocation is disconnected in
terms of the code that is involved. The class that invokes a delegate is usually written by a
totally different developer than the developer who wrote the method code. Indeed, library code
can use delegates as a notification mechanism and the client code might well be written by a
totally different company. A multicast delegate could be composed of many delegates with
different target objects and methods, so just because one of these methods throws an
exception, should the entire invocation be aborted? The exception occurred in one method and
other methods in the invocation list can be running in different AppDomains, so the other
methods will be unaffected by the exceptional condition.

If you cannot guarantee the quality of the methods you are invoking through a multicast
delegate, you can catch the exception yourself if you are willing to invoke each delegate in the
multicast delegate, as shown here:

// del is a MyDelegate object.
IEnumerator* e = del->GetInvocationList()->GetEnumerator();
while (e->MoveNext())
{
 MyDelegate* d = dynamic_cast<MyDelegate*>(e->Current);
 try
 {
 // Invoke the delegate here.
 d();
 }
 catch (Exception* ex)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 // Do something with the exception.
 }
}

An exception thrown because of an invalid argument might be a good reason to cancel the rest
of the invocation (because it indicates that an error was traced from the calling code), but other
than that it makes sense to continue the invocation.

Delegates and Interop

Some native APIs provide notifications through function callbacks. For example, the Win32
functions ::EnumDateFormatsEx, ::EnumFontFamiliesEx, ::EnumObjects,
::EnumWindowStations, and ::EnumWindows are a few of the enumeration functions that will
iterate through a list of items and call a user-defined callback function for each. In .NET,
enumerations tend to be returned to the user via an array or a collection. For example, the
FontFamily class in the System::Drawing namespace has a static property named Families
that returns an array of FontFamily objects that represent each font family available on the
system. In Win32, ::EnumFontFamilyEx does the same thing through a callback.

The Win32 ::EnumWindows API is interesting; it allows you to get the handle of each user
interface (UI) window running on your system. (Windows 2000 and later can have UI-less
windows, and these can be enumerated by repeatedly calling ::FindWindowEx with
HWND_MESSAGE as the parent window.) There is no .NET Framework class that returns this
information, presumably because the class might be a security risk (by giving access to
windows other than those used by the current application).

The following library assembly has a class named EnumWin that has a property named
WindowNames that a user can access to get the names of the windows when the object was
created:

// Compile with cl /clr /LD enumwin.cpp /link /noentry.
#using <mscorlib.dll>
using namespace System;
using namespace System::Collections;
using namespace System::Text;
using namespace System::Runtime::InteropServices;

public __gc class EnumWin
{
 __delegate bool WNDENUMPROC(IntPtr hwnd, IntPtr lParam);
 [DllImport("user32.dll")]
 static bool EnumWindows(WNDENUMPROC __gc* enumProc,
 IntPtr lParam);
 [DllImport("user32.dll")]
 static int GetWindowTextLength(IntPtr hwnd);
 [DllImport("user32.dll", CharSet=CharSet::Auto)]
 static int GetWindowText(IntPtr hwnd, StringBuilder* str,
 int max);
 bool GetInfo(IntPtr hwnd, IntPtr lParam)
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 int size = GetWindowTextLength(hwnd);
 StringBuilder* sb = new StringBuilder(size + 1);
 GetWindowText(hwnd, sb, sb->Capacity);
 GCHandle h = GCHandle::op_Explicit(lParam);
 ArrayList* arr = static_cast<ArrayList*>(h.Target);
 arr->Add(sb->ToString());
 return true;
 }
 String* names[];
public:
 __property String* get_WindowNames()[]
 {
 return names;
 }
 EnumWin()
 {
 ArrayList* arr = new ArrayList;
 GCHandle h = GCHandle::Alloc(arr);
 WNDENUMPROC* proc = new WNDENUMPROC(this,
 &EnumWin::GetInfo);
 EnumWindows(proc, static_cast<IntPtr>(h));
 h.Free();
 names = new String*[arr->Count];
 for (int i=0; i < arr->Count; i++)
 {
 names[i] = arr->Item[i]->ToString();
 }
 }
};

This code does not use the C runtime library (CRT), nor does it have any global native C++
objects, so it does not need the CRT start-up code, which is why I use the /noentry linker
switch. When EnumWin is created, the constructor creates an instance of the
WNDENUMPROC delegate, passing it the member method GetInfo. This delegate is passed to
::EnumWindows, which is called through platform invoke. ::EnumWindows will call GetInfo
for each window it can find. I want to record the title of each window, so in the EnumWin
constructor, I create an ArrayList. I use this object because it will grow as items are inserted. I
need to pass this object to GetInfo, which I can do through the second parameter of
::EnumWindows, but because this call will mean that an object reference will be passed to
native code, I need to ensure that the ArrayList is pinned. I perform the pinning using
GCHandle. ::EnumWindows blocks until all the windows have been enumerated, so at this
point, the constructor will continue to run and create the string array with the strings in the
ArrayList.

I have chosen to use platform invoke rather than IJW to call ::EnumWindows because the
declaration of the method allows me to provide marshaling information. If I used IJW, I would
have to provide a prototype for ::EnumWindows that matches the function in the import

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

have to provide a prototype for ::EnumWindows that matches the function in the import
library. With platform invoke, I can provide the parameter types that I want (and any
additional marshaling information) and the marshaler will marshal the managed types to the
native parameters. The marshaler will take a pointer to a delegate, pin it, and then extract a
function pointer. Note that this process is not the same as merely pinning the delegate because
the delegate refers to a method called with the __clrcall calling convention, whereas the native
code will expect one of the native calling conventions (most likely __stdcall). Instead, the
marshaler will pass the native method a native thunk to the managed method.

This arrangement means that you can use the .NET platform invoke marshaler to convert a
delegate to an unmanaged function pointer. Here is some code in a native DLL:

// Compile with:
// cl /LD thunklib.cpp.
extern "C" __declspec(dllexport) int Conv(int i)
{
 return i;
}

This code does nothing more than return the parameter it is passed. The code is compiled as a
C++ DLL so that it can be used by a managed C++ source file using platform invoke.

// deladdr.cpp
// Declare a delegate.
__delegate void MyDelegate(int i);

// Link to our DLL.
[DllImport("thunklib.dll")]
extern "C" int Conv(MyDelegate __gc* del);

The Conv method is imported through platform invoke, and I have declared the parameter as a
pointer to a delegate that I have declared. Platform invoke will convert the delegate to the
unmanaged integer, and the function will simply return that integer.

Let’s use this function. I can declare a class with a static method that can be called through the
delegate, as shown here:

__gc class Managed
{
public:
 static void Callback(int i)
 {
 Console::WriteLine(__box(i));
 }
};

Next let’s declare a typedef for an unmanaged function pointer that corresponds to the delegate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Next let’s declare a typedef for an unmanaged function pointer that corresponds to the delegate
and an unmanaged function that will be passed the delegate. Because the function is
unmanaged, it is passed an integer that it converts by casting the integer to the function
pointer.

typedef void (*FUNC)(int);
#pragma unmanaged
void Caller(int del)
{
 // Call back
 FUNC func = reinterpret_cast<FUNC>(del);
 func(42);
}
#pragma managed

Finally, here is the code that creates the delegate and passes it to the unmanaged function:

void main()
{
 MyDelegate __pin* del = new MyDelegate(0, &Managed::Callback);
 int d = Conv(del);
 Console::WriteLine(S"Address of delegate: {0:x}", __box(d));
 // Show that the delegate has been converted
 // to an unmanaged pointer.
 Caller(d);
}

Marshaling Delegates

All delegate classes are derived from System::MulticastDelegate. This class is marked with the
[Serializable] attribute, and its base class, Delegate, implements ISerializable, which means
that when marshaled, all delegates are passed by value using custom serialization. The
Delegate class uses a private class named DelegateSerializationHolder, which serializes
information about the delegate class, the targets held in the delegate, and the methods to be
invoked.

If the delegate has a target object (that is, the method invoked is not static), the class of the
target object must be serializable or marshal by reference. If the target object class is
serializable, the object is serialized when the delegate is serialized, so the method will be
executed in the same context as where the delegate is invoked. If the target object is marshal
by reference, the reference will be passed to the context where the delegate is invoked, which
means that the method will be invoked in the context where the target object was created. This
process is summarized in Figure 3-2.

If the method to invoke is static, the method’s class does not have to be serializable, so the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the method to invoke is static, the method’s class does not have to be serializable, so the
method will always be invoked in the same context as where the delegate was invoked.
However, in all cases, the assembly that has the method’s class must be available to the
assembly invoking the delegate because it is the assembly that deserializes the delegate that
actually calls the method.

Because delegates are serializable, they can be passed to other contexts, to other AppDomains
in the same process, or to other processes via .NET remoting. If the target objects are
serializable, you can serialize a delegate to a file or to an object that is passed via Microsoft
Message Queuing (MSMQ) to a disconnected object. This ability gives rise to the interesting
situation of being able to invoke a delegate hours or days after the delegate has been created.

Figure 3-2. Passing delegates across context boundaries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Asynchronous Programming

The .NET Framework was written with asynchronous programming in mind. Whenever you
create a delegate, you have the choice of whether to invoke the delegate synchronously or
asynchronously. The compiler will generate asynchronous methods to invoke the delegate, and
the runtime will provide the implementation and the infrastructure for those methods.

The choice about whether a method is called asynchronously is made entirely by the caller.
The same method is called for asynchronous and synchronous calls. The called code does not
know how it is called and is not written with the calling mechanism in mind. When client code
calls a method asynchronously, it calls BeginInvoke to start the method call and the .NET
Framework calls the specified method on another thread. From this point onward, there is
nothing that the client can do to cancel the call.

Parameters and Asynchronous Delegates

In general, .NET __gc types are passed to methods through pointers and hence are passed by
reference; __value types are usually passed to methods by value but can be passed by
reference if a pointer is passed to the __value type. For synchronous calls, by reference means
that data can be passed to a method and returned from the method through the parameter; the
parameter is in/out. With asynchronous calls, “by reference” for a non- __gc type might mean
that the parameter is an in parameter or an in/out parameter, depending on the type of the
pointer.

Consider the following code:

public __delegate int CallMe(Int32 inParam, Int32* inoutParam);

The compiler will generate a class that looks like this (in pseudo C++):

__gc __sealed class CallMe : public MulticastDelegate
{
public:
 CallMe(Object* obj, int meth);
 virtual Int32 Invoke(Int32 inParam, Int32* inoutParam);
 virtual IAsyncResult* BeginInvoke(
 Int32 inParam, Int32* inoutParam,
 AsyncCallback* cb, Object* state);
 virtual Int32 EndInvoke(Int32* inoutParam, IAsyncResult* ar);
};

The last two methods are used for asynchronous calls. The compiler has determined which
parameters are in parameters and which are in/out parameters by the level of indirection: for
__value types, if a pointer is used, the parameter is an in/out parameter; for a __gc type, if a
pointer to pointer is used, the parameter is an in/out parameter. Thus, in this example, the first

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pointer to pointer is used, the parameter is an in/out parameter. Thus, in this example, the first
delegate parameter is a __value type and is not a pointer, so it is an in parameter and appears
only in BeginInvoke, whereas the second delegate parameter is a __value type and is passed
through a pointer, so the compiler treats it as an in/out parameter and it appears in both
BeginInvoke and EndInvoke.

C++ code typically uses C++ references for in/out parameters. However, don’t be tempted to
use these references on managed code because the C++ compiler will treat them as in
parameters when generating the delegate class. This behavior is the opposite of what you
would expect. Furthermore, be careful about using C++ primitive types. Consider these two
delegates:

__delegate void Pass_Int32Ptr(Int32*);
__delegate void Pass_intPtr(int*);

I have already shown these two delegates, and I made the point that the parameter to
Pass_intPtr is a __nogc pointer, whereas the parameter to Pass_Int32Ptr is a __gc pointer.
The delegate classes generated by the compiler will treat the parameter to Pass_Int32Ptr as an
in/out parameter as you would expect, but it will treat the parameter to Pass_intPtr as an in
parameter. Again, this behavior is the opposite of what you expect. So I will repeat the
warning I gave earlier: when you declare a delegate that has a pointer to non-__gc types, it is
important to explicitly declare the pointer type.

The [Out] attribute can be used to give a hint to the runtime that you do not intend to pass a
value in through a parameter; however, it is ignored by the compiler when generating a
delegate class. Here’s an example:

__delegate void OutDel([Out] Int32* outParam);

The invocation methods generated by the compiler look like this:

virtual void Invoke([Out] Int32* outParam);
virtual IAsyncResult* BeginInvoke([Out] Int32* outParam,
 AsyncCallback* cb, object* state);
virtual void EndInvoke([Out] Int32* outParam, IAsyncResult* ar);

The first parameter of BeginInvoke is marked as [Out], which makes no sense whatsoever.

These are the rules for declaring the parameters of delegates:

Don’t use C++ reference parameters.

Don’t use C++ primitive types; it is safer to use .NET Framework primitive types.

Always explicitly specify the pointer type for __value types.

Don’t use [Out].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Calling Delegates Asynchronously

To initiate the asynchronous delegate invocation, you call BeginInvoke and pass the in
parameters and in/out parameters. The runtime will select a pool thread and use this thread to
make the invocation, and then BeginInvoke will return. When the delegate invocation has
completed, you call EndInvoke to obtain the return value and the value of the in/out
parameters. Of course, this process is relevant only for single-cast delegates.

BeginInvoke returns a pointer to IAsyncResult. This interface pointer is for the asynchronous
call object created by the runtime to handle the asynchronous call. The asynchronous call
object is an instance of the AsyncResult class, but usually you will only need to access the
members of the IAsyncResult interface. When BeginInvoke returns, the delegate invocation is
unlikely to have completed. You access the asynchronous call object to determine when the
call has completed. There are several ways to do this.

// For the delegate: __delegate void MyDelegate();
MyDelegate* del = new MyDelegate(new CallObject, &CallObject::CallMe);
IAsyncResult* ar = del->BeginInvoke(0, 0);
while (!ar->IsCompleted) DoSomeTask();
del->EndInvoke(ar);

This code starts the delegate call and then polls for completion by accessing the IsCompleted
property. If the call has not completed, DoSomeTask performs some idle time processing.

The asynchronous call object also has a synchronization object that will be set when the call is
completed, as shown in this example:

IAsyncResult* ar = del->BeginInvoke(0, 0);
while (!ar->AsyncWaitHandle->WaitOne(100, false)) DoSomeTask();
del->EndInvoke(ar);

This code is equivalent to the previous code in many respects. The difference is that it will
wait for the synchronization object to signal and if the synchronization object does not signal
after 100 milliseconds (ms), WaitOne will return false and DoSomeTask will be called.

Here is a concrete example: imagine that you want to get a list of all the files in a folder and in
its child folders sorted by file size. The following class will do just this:

// sortfiles.cpp
public __gc class SortedFiles : public IComparer
{
public:
 __property FileInfo* get_Items()[]
 {
 return static_cast<FileInfo*[]>(
 m_list->ToArray(__typeof(FileInfo)));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_list->ToArray(__typeof(FileInfo)));
 }
 // This method is used during the sorting process.
 int Compare(Object* x, Object* y)
 {
 FileInfo* fx = static_cast<FileInfo*>(x);
 FileInfo* fy = static_cast<FileInfo*>(y);
 if (fx->Length == fy->Length) return 0;
 if (fx->Length > fy->Length) return 1;
 return -1;
 }
 // Create instances through a static method so that we can
 // use it with a delegate.
 static SortedFiles* GetFiles(String* s)
 {
 return new SortedFiles(s);
 }
protected:
 ArrayList* m_list;
 SortedFiles(String* strRoot)
 {
 m_list = new ArrayList();
 // First just get all the files.
 Fill(strRoot);
 // Now sort into file size order.
 m_list->Sort(this);
 }
 void Fill(String* s)
 {
 // First add the files in the current directory.
 DirectoryInfo* di = new DirectoryInfo(s);
 FileInfo* files[];
 try
 {
 files = di->GetFiles();
 }
 catch(UnauthorizedAccessException* ex)
 {
 // We have tried to access a folder that we don't
 // have access to.
 return;
 }
 // Add each file to our list.
 IEnumerator* items = files->GetEnumerator();
 while (items->MoveNext())
 {
 FileInfo* fi = static_cast<FileInfo*>(items->Current);
 m_list->Add(fi);
 }
 // Now go through the subdirectories and recursively
 // call Fill() to add their files.
 DirectoryInfo* dirs[] = di->GetDirectories();
 items = dirs->GetEnumerator();
 while (items->MoveNext())
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 DirectoryInfo* di =
 static_cast<DirectoryInfo*>(items->Current);
 Fill(di->FullName);
 }
 }
};

If I pass the root of a disk to this class, the process is likely to take a while, so I want this class
to operate asynchronously and provide some visual feedback that the process hasn’t simply
crashed. Here’s one way to do this:

// sortfiles.cpp
#using <mscorlib.dll>
using namespace System;
using namespace System::Collections;
using namespace System::IO;

#using <system.windows.forms.dll>
#using <system.dll>
using namespace System::Windows::Forms;

// Defined elsewhere
__gc class SortedFiles;
// Class to provide feedback
__gc class Progress : public Form
{
 ProgressBar* pb;
public:
 Progress()
 {
 Width = 200;
 Height = 20;
 FormBorderStyle = FormBorderStyle::None;
 TopMost = true;
 StartPosition = System::Windows::Forms::
 FormStartPosition::CenterScreen;
 pb = new ProgressBar;
 pb->Width = Width;
 pb->Height = Height;
 this->Controls->Add(pb);
 }
 void Increment()
 {
 if (pb->Value >= pb->Maximum) pb->Value = pb->Minimum;
 pb->PerformStep();
 }
};

__delegate SortedFiles* GetFiles(String* s);

void main()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void main()
{
 String* args[] = Environment::GetCommandLineArgs();
 if (args->Length == 1) return;
 Progress* p = new Progress;
 p->Show();
 GetFiles* gf = new GetFiles(0, &SortedFiles::GetFiles);
 IAsyncResult* ar;
 ar = gf->BeginInvoke(args[1], 0, 0);
 while (!ar->AsyncWaitHandle->WaitOne(100, false))
 {
 p->Increment();
 }
 SortedFiles* sf = gf->EndInvoke(ar);
 p->Hide();

 FileInfo* fi =
 static_cast<FileInfo*>(sf->Items[sf->Items->Count-1]);
 Console::WriteLine(S"{0}\\{1} is {2}",
 fi->DirectoryName, fi->Name, __box(fi->Length));
}

The Progress class is a captionless form that contains a single progress bar that is incremented
at 100 ms intervals. Because I cannot tell how long this action will take, I cannot set a
maximum value. Instead I leave this value at the default of 100 and the step will be left at 10,
so after about a second, the progress bar will have reached the maximum. At this point, I set
the value back to the minimum value and start the process again. When ar->AsyncWaitHandle
is signaled, the creation of the SortedList has completed and we can access the object. The last
item in the array will be the largest file.

Now consider this usage of delegates:

IAsyncResult* ar = del->BeginInvoke(0, 0);
DoSomeTask();
ar->AsyncWaitHandle->WaitOne();
del->EndInvoke(ar);

In this version, the delegate is invoked and then DoSomeTask is called. When this method
returns, the thread needs the results from the delegate, so it calls WaitOne with no parameters,
which will simply block the calling thread until the synchronization object signals that the
delegate call has completed. Now consider this:

IAsyncResult* ar = del->BeginInvoke(0, 0);
DoSomeTask();
del->EndInvoke(ar);

Here I call BeginInvoke to start the asynchronous call, and then I call DoSomeTask to run
some code while the delegate is invoked. After this method has completed, I call EndInvoke.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

some code while the delegate is invoked. After this method has completed, I call EndInvoke.
In this example, I do not check to ensure that the delegate has completed, but this is not a
problem because EndInvoke will block until the delegate call completes and then it will
perform cleanup before returning any values returned from the delegate call. If you use
EndInvoke, the call to the synchronization object is unnecessary, but I think that it is better to
make the call to the synchronization object because it makes it clear that the thread is blocked
until the method has completed.

In all these examples, the EndInvoke method is called on the same thread that called
BeginInvoke, and it is passed the IAsyncResult interface of the asynchronous call object. If the
delegate does not return any values (as in these examples), you can omit the call to EndInvoke.

The final way you can handle when the asynchronous call has completed is to use the last two
parameters of the BeginInvoke. These are a delegate and a state object. The delegate looks like
this:

__delegate void AsyncCallback(IAsyncResult* ar);

A method used to initialize this AsyncCallback will be called when the asynchronous delegate
completes, and it will be passed the interface on the asynchronous call object. However, the
important point is that this method will be called on the same thread that was used to make the
actual call on the asynchronous delegate, rather than the thread that is used to invoke the
delegate.

// logfiles.cpp
__gc class Logger
{
 StreamWriter* sw;
public:
 Logger(String* s)
 {
 if (File::Exists(s)) File::Delete(s);
 sw = new StreamWriter(File::OpenWrite(s));
 }
 void Close()
 {
 if (sw) sw->Close();
 sw = 0;
 }
 ~Logger()
 { Close(); }
 void LogData(IAsyncResult* ar)
 {
 AsyncResult* obj = static_cast<AsyncResult*>(ar);
 GetFiles* gf = static_cast<GetFiles*>(obj->AsyncDelegate);
 SortedFiles* sf = gf->EndInvoke(ar);
 for (int i = sf->Items->Length-1;
 i > sf->Items->Length-6 && i >= 0; i--)
 {
 FileInfo* fi = static_cast<FileInfo*>(sf->Items[i]);
 sw->WriteLine(S"{0}\\{1} is {2}",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sw->WriteLine(S"{0}\\{1} is {2}",
 fi->DirectoryName, fi->Name, __box(fi->Length));
 }
 sw->Flush();
 }
};

The Logger class is created based on a text file. The LogData method has the signature of
AsyncCallback, so it can be used to create a delegate that can be passed to BeginInvoke. When
the asynchronous call completes, LogData is called; the method needs to obtain the results
from the asynchronous call, so it gets access to the asynchronous call object and then gets
access to the asynchronous delegate through the AsyncDelegate property. Once it has the
SortedFiles object, the LogData method can log the information required.

However, this code has a few problems. Consider one way to call it:

Progress* p = new Progress;
p->Show();
GetFiles* gf = new GetFiles(0, &SortedFiles::GetFiles);
Logger* log = new Logger(S"results.txt");
AsyncCallback* acb = new AsyncCallback(log, &Logger::LogData);
IAsyncResult* ar;
ar = gf->BeginInvoke(Environment::GetCommandLineArgs()[1], acb, 0);
while (!ar->AsyncWaitHandle->WaitOne(100, false))
{
 p->Increment();
}
p->Hide();
// Do some other work.
log->Close();

I have been careful about the Logger class by giving it a destructor. I have also added a
method named Close so that I can explicitly release the resources when I know that they are
no longer needed. The problem with this code is that there will be a race condition between the
thread that runs this code and the thread that makes the asynchronous call and calls LogData.
The effect of this race will be that when the asynchronous method has completed, the while
loop will complete and the file will be closed before LogData has completed its work. The
point is that the AsyncWaitHandle synchronization object will be signaled before the callback
is called. If you want to use both the synchronization object and the callback delegate, you
should use some other synchronization to ensure that resources are used in the order that you
expect.

You can take another approach. Consider this adjusted version of the Logger class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__gc class Logger
{
public:
 static void LogData(IAsyncResult* ar)
 {
 StreamWriter* sw =
 static_cast<StreamWriter*>(ar->AsyncState);
 AsyncResult* obj = static_cast<AsyncResult*>(ar);
 GetFiles* gf = static_cast<GetFiles*>(obj->AsyncDelegate);
 SortedFiles* sf = gf->EndInvoke(ar);
 for (int i = sf->Items->Length-1;
 i > sf->Items->Length-6 && i >= 0; i--)
 {
 FileInfo* fi = static_cast<FileInfo*>(sf->Items[i]);
 sw->WriteLine(S"{0}\\{1} is {2}",
 fi->DirectoryName, fi->Name, __box(fi->Length));
 }
 sw->Close();
 }
};

This time LogData is a static method and the file is accessed through the
IAsyncResult::AsyncState property. In this case, I know that the StreamWriter object will not
be used by any other thread after LogData is called, so I can close the file when then method
completes. The callback delegate is used like this:

String* strPath = Environment::GetCommandLineArgs()[1];
String* s = S"results.txt";
if (File::Exists(s)) File::Delete(s);
StreamWriter* sw = new StreamWriter(File::OpenWrite(s));
sw->WriteLine(S"searching {0}", strPath);
GetFiles* gf = new GetFiles(0, &SortedFiles::GetFiles);
AsyncCallback* acb = new AsyncCallback(0, &Logger::LogData);
IAsyncResult* ar = gf->BeginInvoke(strPath, acb, sw);
sw = 0;
// Do other work.

The thread that calls this code can initialize the StreamWriter object and use the object before
passing it to the asynchronous call object by calling BeginInvoke. At this point, I release my
reference on the StreamWriter object so that this thread cannot use it and so that the .NET
object is not kept longer than it is actually needed. Again, it is worth pointing out that if you
pass an object as the final parameter to BeginInvoke and you want to access this object in the
asynchronous call thread and in the calling thread, then you will need to use some additional
synchronization.

Asynchronous Calls and Exceptions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Consider this code:

__gc class Called
{
public:
 void CallMe()
 {
 throw new Exception(S"oops");
 }
};
__delegate void Del();
void CallIt()
{
 Del* d = new Del(new Called, &Called::CallMe);
 d->BeginInvoke(0, 0);
}

Called::CallMe throws an exception, but CallIt will run fine. As far as it is concerned, no
exception has been thrown. When you think about it, the reason is obvious: BeginInvoke is
used for in and in/out parameters, but the exception comes from the method that was called, so
it is effectively an out parameter. This code will catch the exception:

void CallIt()
{
 Del* d = new Del(new Called, &Called::CallMe);
 IAsyncResult* ar = d->BeginInvoke(0, 0);
 ar->AsyncWaitHandle->WaitOne();
 try
 {
 d->EndInvoke(ar);
 }
 catch(Exception* e)
 {
 Console::WriteLine(S"caught exception: {0}", e->ToString());
 }
}

If you think it is important that you handle exceptions thrown by the method and called
asynchronously, you must call EndInvoke, even if the method has no return values. It is
interesting to look at the stack trace dumped in the exception handler in this example. This
stack trace will show the state of the stack in the thread where the exception was thrown and
the stack where the delegate was invoked. This trace shows that .NET remoting sinks are used
even if the asynchronous call is made in the same AppDomain.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One pattern you might consider is fire and forget. In this case, your intention is to inform
connected code that some event has occurred, but you do not want to know the reaction of the
connected code to the notification nor are you interested in whether the connected code throws
an exception when it receives the notification. To do this, the notifier calls BeginInvoke so that
the notification is performed on a separate thread, and the notifier omits the call to EndInvoke.
Of course, the asynchronous call object will still get any return values and exceptions thrown
by the code that receives the notification. If this process involves a call across AppDomain
boundaries, you will be marshaling data that you will not use. You can tell the runtime that
this code will not generate any return values by marking it with the [OneWay] attribute. If
such code generates an exception, the exception will be eaten by the runtime and it will not be
propagated to the calling code.

The thread that makes the asynchronous call can itself throw an exception, and this exception
could cause the thread to terminate before the asynchronous method call has completed. This
exception does not affect the asynchronous method call; the call will complete as expected.

Asynchronous Calls and the .NET Framework Class Library

You can declare a delegate for any method, which means that you can invoke any method
asynchronously. You can even call .NET Framework classes asynchronously. However, closer
inspection of the .NET Framework class library shows that a few classes already have
methods that look like they support asynchronous calls. For example, the FileStream object is
used to give stream access to a file (or a pipe), and you have the choice of accessing the object
synchronously (as shown in the following code) or asynchronously:

// Open the file.
FileStream* fs = File::Open(S"file.dat", FileMode::Open);
// Read 10,000 bytes from the file.
Byte b[] = new Byte[10000];
fs->Read(b, 0, b->Length);
// Now do something with the data.
fs->Close();

You can also access the file asynchronously, as shown here:

// Open the file.
FileStream* fs = File::Open(S"file.dat", FileMode::Open);
// Read 10,000 bytes from the file.
Byte b[] = new Byte[10000];
IAsyncResult* ar = fs->BeginRead(b, 0, b->Length, 0, 0);
// Do some other work.
fs->EndRead(ar);
// Now do something with the data.
fs->Close();

This code looks like you have accessed the FileStream object through a delegate, but these

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This code looks like you have accessed the FileStream object through a delegate, but these
methods are implemented on the FileStream class and not on a separate delegate class. If you
choose, you could declare a delegate to do this:

__delegate int FileReader(Byte arr[], int offset, int count);

So have the .NET Framework designers decided to add these asynchronous methods to save
you the effort of declaring a delegate? No. When you call a method asynchronously through a
delegate, the runtime will use a separate pool thread and pass the delegate to that thread where
it will be invoked. In effect, you have a separate thread where the method is called
synchronously, and the asynchronous aspect is that the thread that invoked the delegate can
access the asynchronous call object at any time to determine whether the call has completed
and whether it has access to the results.

Under the covers, FileStream is implemented by the Win32 file APIs. The Win32 file APIs
can be called asynchronously by passing FILE_FLAG_OVERLAPPED to the Win32
::CreateFile function and then providing an OVERLAPPED structure for ::ReadFile and
::WriteFile. The OVERLAPPED structure has members to indicate the location in the file that
you want to access, and it has an event that will be signaled when the access has completed.
This arrangement means that you can queue up multiple accesses to the same file by calling
::ReadFile or ::WriteFile multiple times each with a different instance of OVERLAPPED.
Win32 asynchronous file access has been fine-tuned by the Windows developers, and clearly
it makes sense to use this code rather than to reimplement a new asynchronous mechanism
over the top of the synchronous file access. This is why FileStream has asynchronous
methods: they use the native mechanisms to read data from the file asynchronously.

Only a few classes in the .NET Framework have asynchronous methods. The FileStream class
is a good example, but in addition, there are classes that use sockets (Socket, NetworkStream,
Dns, and various Http classes) and the MessageQueue class. In all of these cases, there is a
native asynchronous mechanism that can be used: Socket is based on WinSock 2, which can
read/write to a socket through ::WSARecv and ::WSASend synchronously or asynchronously;
and message queuing, by definition, is loosely coupled.

In all of these cases, it is the object that has made provision for asynchronous calls. In general,
this behavior is not the case for .NET asynchronous calls, where the called object should be
unaware whether it is called synchronously or asynchronously. When you write your own
types, you should follow the general .NET pattern and allow the caller to determine whether
the method should be called asynchronously. The examples I showed earlier are the exception,
where the asynchronous methods can be implemented more efficiently than by relying on the
default asynchronous architecture (FileStream and sockets), or where the design of the object
might mean that it should not be called synchronously.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Managed Events

When code invokes a delegate, the chain of methods contained in the delegate is called. If the
delegate has only in parameters, you can view the invocation as being a notification from the
code that called the delegate to the code that implements the methods in the delegate that
something has happened, as shown in this example:

__delegate void Completed(int x);
__gc class Calculator
{
public:
 void Calculate(int operand, Completed* OnCompleted)
 {
 // Do some calculation.
 operand *= 2;
 OnCompleted(operand);
 }
};

Here a caller will create an instance of Calculator and call Calculate to do some complicated
calculation. When that calculation has completed, the method informs its caller by calling the
delegate passed to the method. Of course, the great thing about delegates is that there could be
more than one target, so there can be more than one object that depends on the results of
Calculate.

A delegate is just an instance of a class that derives from MulticastDelegate, which means that
a delegate can be a field in a class, as shown here:

__delegate void Completed(int x);
__gc class Calculator2
{
protected:
 Completed* OnCompleted;
public:
 Calculator2(Completed* d) : OnCompleted(d) {}
 void CalculateSomething(int operand)
 {
 // Do some calculation.
 operand *= 2;
 OnCompleted (operand);
 }
};

Here the class is initialized with a delegate, and whenever the method is called, it will inform
the clients by invoking the delegate. The delegate field is made protected because it makes no

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the clients by invoking the delegate. The delegate field is made protected because it makes no
sense for code outside the class to initiate the notification, but it does make sense for derived
classes to be able to initiate the notification.

This mechanism—a class being initialized with a delegate and then being able to invoke the
delegate to notify clients—is so useful that .NET has formalized it as a .NET event. An event
is a metadata device. When you add an event to a class, you are informing the compiler to add
metadata to the class that indicates that instances can raise the event. Because an event is
metadata, an event can be a member of an interface, which makes a lot of sense because
interfaces describe behavior and the fact that a class can raise an event is certainly a behavior
worth noting. Of course, to be able to raise an event, a class needs to have a delegate field (to
hold the delegates that will be called) and methods to add and remove delegates; the class
raises the event by invoking the delegate. If you do not provide these members yourself, the
compiler will add default members for you.

The change to the class to raise notifications through an event is straightforward, as the
following code shows:

__delegate void Completed(int x);
__gc class Calculator3
{
public:
 __event Completed* OnCompleted;
 void CalculateSomething(int operand)
 {
 // Do some calculation.
 operand *= 2;
 OnCompleted(operand);
 }
};

This class no longer needs to have a constructor to initialize the event because the compiler
will add some methods to initialize the event, which I will come to in a moment. In most
cases, you will want to make the event public. The reason is that the event is part of an object
and is a mechanism for users of the object to register their interest that they want to be notified
when an event occurs; making the event public means that external code can perform this
registration. The compiler will add three methods to this class. Two of then are public:
add_OnCompleted and remove_OnCompleted, and the third is protected, raise_OnCompleted.
In addition, the compiler will add a private delegate field, the add_ method adds a delegate to
this field, the remove_ method removes a delegate from this field, and the raise_ method
invokes the multicast delegate. As with delegates, the compiler allows you to use the += and -
= operators, which will call the add_ and remove_ methods, respectively.

If you look at the MSIL code for these compiler-generated methods, you will see that the
compiler has marked them with the synchronized attribute. When the runtime sees this
attribute, it will attempt to get a synchronization lock for the object, and only when the
runtime gets this lock will it be able to execute the method. This lock can be held only by a
single thread, so only one thread can call one of the event methods at any time, which prevents
the situation of one thread trying to add (or remove) a delegate while another thread is trying
to raise the event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

I mentioned in Chapter 1 that you can write your own add_, remove_, and _raise methods and
mark them with the __event keyword to indicate that the compiler should generate the relevant
metadata, as shown here:

__gc class Calculator4
{
 Completed* d;
protected:
 __event void raise_OnCompleted(int i){d(i);}
public:
 __event void add_OnCompleted(Completed* c){d += c;}
 __event void remove_OnCompleted(Completed* c){d -= c;}
 void CalculateSomething(int operand)
 {
 // Do some calculation.
 operand *= 2;
 OnCompleted(operand);
 }
};

This scheme allows you to provide custom code to store an event’s delegate and to invoke it.
One situation in which you will want to do this is if your class supports many events. In
Chapter 4, I will show you such an example with the Control class. This class can generate 57
events; if each event is implemented through a delegate field, this would mean 57 fields, but
most code will provide handlers for only a handful of events, which means that most of these
fields will be unused. The Control class (and other classes that derive from Component) solve
this issue by providing custom event methods that store the delegates in a single field of the
class EventHandlerList. This collection class allocates memory only for the events that have
handlers.

The .NET Framework and Events

Windows is event-based: something happens and the system will place a message about the
event in the appropriate window’s message queue. The Windows C API is a pull model: it is
your responsibility to pump the message queue for messages and act upon them. As you will
see in Chapter 4, the Windows Forms library is a push model and is based on .NET events.
Your code registers its interest in a particular event (for example, a window resizing) by
providing a delegate for an event handler method. When the event occurs, the .NET
Framework will invoke the event and your handler will be called.

Most Windows Forms events will be of the type EventHandler, shown here.

public __delegate void EventHandler(
 Object* sender, EventArgs* e);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The other event delegates look similar to this delegate. The main difference is the last
parameter, which is used to pass information about the event. The interesting point is that all
of these delegates return void and that the parameters are treated as in parameters. The code
that generates the event is not interested in your code’s reaction to the event. Windows
messages sometimes require action—for example, the WM_SIZING message is sent to a
window when its size is changing. This message is sent a pointer to a RECT structure that has
the size of the drag rectangle that the user is requesting, and you can change this size by
altering the values in the RECT structure. In the Windows Forms framework, the equivalent is
to handle the Resize event; however, this event is the EventHandler delegate and the
EventArgs class does not contain any information, so when you get this event, you have to
explicitly ask for the size and then change it accordingly.

This process is typical of Windows Forms event handling: your code is informed that
something has happened, and it is up to your code to make any necessary changes. Windows
Forms event handling is not always better than Win32 message handling. As you will see in
Chapter 4, explicitly handling the WM_SIZING message gives better results than handling the
Resize event. But I’ll wait until then to show you what I mean.

Some .NET Framework events will have an event argument derived from the EventArgs class.
For example, the Control::KeyDown event is a KeyEventHandler:

public __delegate void KeyEventHandler(
 Object* sender, KeyEventArgs* e);

KeyEventArgs derives from EventArgs and is used to pass information about the key that was
pressed and whether the keypress was combined with another key (such as Shift or Ctrl). The
argument is used to pass information pertinent to the event, but no more information than that.
If the event source is your class (which is typical for Windows Forms code), you can get
additional information through the members of your class.

The delegates for .NET Framework events always have a first parameter that is the this pointer
of the object that generated the event. This means that you can make the event handler a static
member, or it can be a member of a class other than the sender of the event. You can use the
sender parameter to access the sender object. .NET supports only single inheritance, so you
cannot have separate event handler classes and derive from each class that has an event
handler that you want to use (for example, look at how ATL adds support for interfaces
through Impl classes). However, because you have the sender parameter, you can have
separate handler objects as members of your form class. I will go into more depth about this
topic in the next chapter.

Unified Event Model

The code that I have shown so far for using an event in a class has a separate declaration of the
delegate. In many cases, this arrangement will make sense because the delegate could be used
for other events. However, there might be cases when the delegate is used only for this
particular event in this particular class. In this case, it makes sense to declare the delegate as a
public nested member of the class. The C++ compiler gives you a mechanism where you can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public nested member of the class. The C++ compiler gives you a mechanism where you can
associate the delegate with a class that has the event, and does this with a simple declaration:
the Unified Event Model.

Take a look at this class:

// unified.cpp
__gc class Calculator5
{
public:
 __event void OnCompleted(int operand);
 void CalculateSomething(int operand)
 {
 // Do some calculation.
 operand *= 2;
 OnCompleted(operand);
 }
};

The event declaration in the class does not specify a delegate. In fact, the declaration of
OnCompleted is both an inline declaration of the delegate and the event based on the delegate.
At compile time, the compiler will generate a nested delegate class (named
__Delegate_OnCompleted) and the necessary members for the event. You can use the
[event_source(managed)] C++ attribute on the class as a visual reminder that the compiler
will generate code for you but it is not required. [event_source( )] is not a .NET attribute, and
you can use this attribute in code that has not been compiled with /clr. Native code can use
either com or native as the parameter to [event_source( )] to generate event source classes that
will generate COM connection point events or events based on C++ function callbacks. Three
types of events can be generated with the same syntax, and this is the reason for the name
Unified Event Model.

You can use the /Fx compiler switch to see the code generated by the compiler. If your file is
named file.cpp, /Fx will generate an additional file named file.mrg.cpp. The generated class
looks like this:

// Class generated by the compiler in the mrg file
__gc class Calculator5
{
public:
 Calculator5() { OnCompleted = 0; }
 void CalculateSomething(int operand)
 {
 // Do some calculation.
 operand *= 2;
 OnCompleted(operand);
 }

 __delegate __gc
 class __Delegate_OnCompleted
 : public System::MulticastDelegate
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 public:
 __Delegate_OnCompleted(Object*, IntPtr);
 virtual void Invoke(int operand);
 virtual IAsyncResult* BeginInvoke(
 int operand, AsyncCallback*, Object*);
 virtual void EndInvoke(IAsyncResult*);
 };
 __Delegate_OnCompleted* OnCompleted;
 void add_OnCompleted(Calculator5::__Delegate_OnCompleted* eh)
 {
 OnCompleted =
 static_cast< Calculator5::__Delegate_OnCompleted*>
 (Delegate::Combine(OnCompleted, eh));
 }
 void remove_OnCompleted(Calculator5::__Delegate_OnCompleted* eh)
 {
 OnCompleted =
 static_cast< Calculator5::__Delegate_OnCompleted*>
 (Delegate::Remove(OnCompleted, eh));
 }
 void raise_OnCompleted(int i1)
 {
 if (OnCompleted != 0)
 {
 OnCompleted->Invoke(i1);
 }
 }
 __event void OnCompleted(int operand);
};

Be wary about the code generated by /Fx because it is not the actual code that is compiled.
This is apparent when you look at the declaration of raise_OnCompleted. This class implies
that this method is public, but if you look at the IL in the assembly, this method is actually
declared as family; that is, it is a protected member. Furthermore, you will see that there will
be an __event member added to the class. This is nonsense because there are already
implementations of the event methods. I suspect that the code that generates the .mrg file has
read the metadata for the generated code, seen that there is an .event directive, and added the
__event member to show that this metadata exists.

Of course, the name of the delegate has been generated by the compiler, so it makes the code
that adds a delegate to the event look a little ugly, as shown here:

Calculator5* c = new Calculator5;
c->OnCompleted += new Calculator5::__Delegate_OnCompleted
 (new Inform, &Inform::NotifyMe);

The C++ compiler provides a mechanism to allow you to create a delegate and add (or
remove) this delegate from the event. This process is carried out with two new keywords:
__hook and __unhook (and optionally, a C++ attribute named [event_receiver(managed)]).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__hook and __unhook (and optionally, a C++ attribute named [event_receiver(managed)]).
The event handler class looks like this:

// unified.cpp
__gc class Inform
{
public:
 void CallMe(int i)
 { Console::WriteLine(S"called with {0}", __box(i)); }
 void HookUp(Calculator5* p)
 { __hook(&Calculator5::OnCompleted, p, &Inform::CallMe); }
 void Unhook(Calculator5* p)
 { __unhook(&Calculator5::OnCompleted, p, &Inform::CallMe); }
};

The CallMe method is the event handler, and the __hook code will generate a delegate
identified by the first parameter, initialize it with the this pointer of the current object and the
method specified by the last parameter, and then add this delegate to the event field of the
object indicated by the second parameter. The compiler will generate a class that looks like
this:

// Generated by the compiler
__gc class Inform
{
public:
 void CallMe(int i)
 {Console::WriteLine(S"called with {0}", __box(i));}
 void HookUp(Calculator5* p)
 {
 (p)->add_OnCompleted(
 new Calculator5::__Delegate_OnCompleted(
 this, &Inform::CallMe));
 }
 void Unhook(Calculator5* p)
 {
 (p)->remove_OnCompleted(
 new Calculator5::__Delegate_OnCompleted(
 this, &Inform::CallMe));
 }
};

If you look in the .mrg file, you will see that the HookUp and Unhook code will also contain
the __hook and __unhook statements that generated the code. I have not shown them here to
make the code in this book easier to read (and because the generated code is merged with the
code that it is generated from, which produces a mish-mash that is not proper C++). When you
use the __hook and __unhook keywords within a class, you do not need to specify the fully
qualified name of the handler method. The compiler will use the name of the enclosing class
by default, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// unified.cpp
void HookUp(Calculator5* p)
{
 __hook(&Calculator5::OnCompleted, p, &Inform::CallMe);
}

Using this code is quite straightforward, as the following code shows:

Calculator5* c = new Calculator5;
Inform* i = new Inform;
i->HookUp(c);
c->CalculateSomething(42);
i->Unhook(c);

There is another form of __hook and __unhook that takes an additional parameter that is the
target object that will be added to the delegate. If you use this version, these keywords don’t
have to be used in a class method.

// unified.cpp
Calculator5* c2 = new Calculator5;
Inform* i2 = new Inform;
__hook(&Calculator5::OnCompleted, c2, &Inform::CallMe, i2);
c2->CalculateSomething(42);
__unhook(&Calculator5::OnCompleted, c2, &Inform::CallMe, i2);

The handler method can be a static method, in which case you pass a zero as the last parameter
to __hook and __unhook. You can use __hook and __unhook on an event source class that
does not use the Unified Event Model, so for this class:

__gc class Ticker
{
public:
 void Tick(Object* sender, ElapsedEventArgs* e)
 {
 Console::WriteLine(S"Tick: {0}", __box(e->SignalTime));
 }
};

You can provide this method as the handler for the System::Timers::Timer class’s Elapsed
event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Timer* timer = new Timer(1000);
__hook(&Timer::Elapsed, timer, &Ticker::Tick, new Ticker);
timer->Start();
System::Threading::Thread::Sleep(5000);
timer->Stop();
__unhook(&Timer::Elapsed, timer, &Ticker::Tick, new Ticker);

This code will allow the timer to tick for 5 seconds before telling it to stop.

Finally, the C++ compiler also supports the __raise keyword to raise an event.

COM Events

There was one part of COM interop that I did not cover in Chapter 2 because it is more
pertinent here: COM events. COM events are interface based; function pointers cannot be
marshaled by COM, but interfaces can. An interface can have more than one method, so if a
class can handle events from the interface, it must handle all events on the interface. This
restriction is one of the responsibilities imposed on you by interface programming: you cannot
implement just part of an interface; the code will simply not compile. For this reason, many
developers use dispinterfaces for event interfaces because although the handler needs to
handle IDispatch, the handler can choose which members of the dispinterface to implement. A
dispinterface is not a COM interface (it is just a named implementation of IDispatch), so there
is no contract to fulfill.

This aspect of COM events—that they are interface based—conflicts with .NET events, and
predictably this incompatibility is handled by TlbImp and TlbExp, which will generate
delegates from event interfaces and interfaces from delegates.

Handling COM Events in .NET

A COM object specifies the event interface that it will call when an event occurs as a [source]
interface in the type library, as shown in this example:

[uuid(96578D1F-8202-4882-99FA-2F6743FCF1C1)]
dispinterface IEvents
{
properties:
methods:
 [id(1)] void EventOne();
 [id(2)] void EventTwo([in]BSTR bstr);
};
[version(1.0),
 uuid(BFBE1B63-769F-480b-A797-8421537A2A34)]
coclass Src
{
 interface ISrc;
 [default, source] interface IEvents;
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

When this type library is run through TlbImp, it will add the items shown in Table 3-1.

Table 3-1. Items Generated by TlbImp for a Class with a dispinterface Source Interface
Item Type Description

IEvents Interface Managed version of the event interface

IEvents_Event Interface Delegate-based version of the event interface

IEvents_EventOneEventHandler Delegate Delegate for the first member of the event
interface

IEvents_EventTwoEventHandler Delegate Delegate for the other member of the event
interface

IEvents_EventProvider Class Does the actual work of accessing connection
point objects and advising

IEvents_SinkHelper Class Associates a delegate with a connection point

When an object connects to a COM object that can generate events, it first queries for
IConnectionPointContainer. It then asks this interface for the connection point for the event
interface, and then finally it calls IConnectionPoint::Advise, passing the handler that
implements the event interface and receiving back a cookie for the connection.

The implementation of the event interface is provided by the IEvents_SinkHelper class, which
has a delegate field for each member of the event interface, and it is this delegate that is
invoked when the handler event interface method is called. This class also has a field for the
cookie that associates the handler object with the connection point.

As I mentioned in Chapter 2, TlbImp will generate a managed class for the COM coclass. This
class has the [ComSourceInterfaces] attribute that identifies the event interface. This class
derives from the managed version of the coclass interfaces and IEvents_Event, which is an
interface with the .NET events equivalent to the members of the COM event interface. This
class does not have any implementation. The methods are marked with runtime managed
internalcall, which means that the runtime provides an implementation. The runtime can
handle the COM interfaces, but the implementation of the handlers for the event interfaces is a
different matter. IEvents_Event looks like this:

[ComVisible(false),
 ComEventInterface(__typeof(IEvents),
 __typeof(IEvents_EventProvider)]
public __gc __interface IEvents_Event
{
 __event IEvents_EventOneEventHandler EventOne;
 __event IEvents_EventTwoEventHandler EventTwo;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The [ComEventInterface] attribute identifies the class that acts as the bridge between the
runtime and the COM connection point object, in this case, IEvents_EventProvider. This class
has a field that holds the IConnectionPointContainer of the COM object, the
IConnectionPoint for the event interface, and an ArrayList holding the sink objects. When you
add a delegate to the coclass, the runtime calls the event method’s IEvents_EventProvider
add_ event methods. This process will create an IEvents_SinkHelper object and pass it to
IConnectionPoint::Advise, which will return a cookie that is stored in the IEvents_SinkHelper
object along with the delegate. Thus, the IEvents_SinkHelper object associates a delegate with
the cookie to the connection to a COM object. The add_ method adds this object to the
ArrayList so that it can be accessed later. When a delegate is removed, you want to break the
connection to a connection point in the COM object. The remove_ method looks up the
appropriate IEvents_SinkHelper object in the ArrayList and passes the cookie to
IConnectionPoint::Unadvise to break the connection.

Figure 3-3 shows how connection points are implemented in managed code.

Figure 3-3. Implementation of connection points in managed code

Handling .NET Events in COM

To make your .NET objects accessible to COM clients with the COM Callable Wrapper
(CCW), you must register the assembly using RegAsm. The CCW will implement
IConnectionPointContainer so that COM clients can connect to the object. Consider this code:

// mansrc.cpp
// I don't want these in the type library.
[ComVisible(false)] public __delegate void EventOne();
[ComVisible(false)] public __delegate void EventTwo(String*);

[GuidAttribute("C966757E-7F36-45c4-A791-D900EB882F8B"),
 InterfaceType(ComInterfaceType::InterfaceIsIDispatch)]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 InterfaceType(ComInterfaceType::InterfaceIsIDispatch)]
public __gc __interface IManEvents
{
 [DispId(1)]void OnEventOne();
 [DispId(2)]void OnEventTwo(String*);
};

[GuidAttribute("66B3A3C5-61CF-4a8a-88A7-A1CC6D538F80")]
public __gc __interface IManSrc
{
 void DoSomething();
};

[GuidAttribute("8515BCB4-C73F-433b-A0BA-7F8AE9FCF19E"),
 ComSourceInterfaces(__typeof(IManEvents))]
public __gc class ManSrc : public IManSrc
{
public:
 __event EventOne* OnEventOne;
 __event EventTwo* OnEventTwo;
 void DoSomething()
 {
 Console::WriteLine(S"called managed object");
 OnEventOne();
 OnEventTwo(S"Something happened");
 }
};

I have created an interface that has two methods. This interface is the managed version of the
COM event interface. So that TlbExp will identify the event interface as the source interface
for the CCW, the managed class has the [ComSourceInterfaces] attribute. If you omit this
custom attribute, the CCW will not know which source interfaces (and hence, events) should
be available through connection points.

The names of the methods on the event interface are the names of the event members in the
class. This naming is important because it is how .NET hooks up a client sink object to the
delegates in the managed class. The COM code will have sink objects that implement the
COM version of IManEvents. They do not need to have access to the delegates, so I have
marked them as [ComVisible(false)].

The TlbExp tool will generate a type library that looks like this (but I have edited it a little to
make it easier to read):

[uuid(CD55FCB3-5A8A-3019-900C-74A7C025109E), version(1.0)]
library ManSrc
{
 importlib("mscorlib.tlb");
 importlib("stdole2.tlb");
 dispinterface IManEvents;
 interface IManSrc;
 interface _ManSrc;
 [uuid(C966757E-7F36-45C4-A791-D900EB882F8B), version(1.0)]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [uuid(C966757E-7F36-45C4-A791-D900EB882F8B), version(1.0)]
 dispinterface IManEvents
 {
 properties:
 methods:
 [id(1)] void OnEventOne();
 [id(2)] void OnEventTwo([in] BSTR bstr);
 };
 [uuid(66B3A3C5-61CF-4A8A-88A7-A1CC6D538F80),
 version(1.0), dual, oleautomation]
 interface IManSrc : IDispatch
 {
 [id(0x60020000)] HRESULT DoSomething();
 };
 [uuid(8515BCB4-C73F-433B-A0BA-7F8AE9FCF19E), version(1.0)]
 coclass ManSrc
 {
 [default] interface _ManSrc;
 interface _Object;
 interface IManSrc;
 [default, source] dispinterface IManEvents;
 };
 [uuid(58794410-0083-347B-9E33-8A0B6DC73CAC),
 hidden, dual, oleautomation]
 interface _ManSrc : IDispatch { };
};

Apart from the mention of _Object (the COM version of the “class” interface for
System::Object), this code looks just like the type information that would be provided for a
COM object that can generate events via connection points. I won’t go into the details about
writing a client with C++; instead, here’s a client in Visual Basic Scripting Edition (VBScript)
that you can run using the Windows scripting host:

' useman.vbs
' Sink handler
sub obj_OnEventOne()
 WScript.Echo "called me"
End sub

Dim obj
Set obj = WScript.CreateObject("ManSrc")
WScript.ConnectObject obj, "obj_"
obj.DoSomething

If you want to call your .NET objects using the Windows scripting host, be aware that
wscript.exe and cscript.exe are located in %system_root%\System32—that is, they are not in
the same folder as your assembly. Fusion will throw an error with this code because it will
look only in the current folder for an assembly, and wherever you invoke the Windows
scripting host, this will be %systemroot%\System32. To get around this issue, you can use
/codebase when you call RegAsm or you can add the assembly to the GAC.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In general, if you register an assembly with RegAsm, you know that some of the types will be
used by COM clients. If this is the case, it makes sense to put in a little effort to add attributes
to make the class easier to use by the COM client.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing Multithreaded Code

One of the situations in which you’ll come across delegates is when you’re writing
multithreaded code because you’ll provide the thread procedure through a delegate.
Multithreading presents many problems to users mainly through the misuse, or the lack of,
synchronization. In this section, I’ll outline how threads are managed and how you can access
them safely.

Managed Threads

The System::Threading namespace has the various classes that you will use to write
multithreaded code. Of particular interest is the Thread class. This class allows you to create
managed threads, and although the documentation does not explicitly say so, it is easy to use
the performance monitor to see that when you create a managed thread, an operating system
thread is created. However, this detail is an implementation detail and there is no direct
mechanism that you can use to wrap a managed thread object around an existing operating
system thread.

Creating a managed thread is straightforward, as shown here:

// counter.cpp
__gc class Counter
{
 int count;
public:
 Counter(int c) : count(c){}
 // Count down in 1-second increments.
 void Countdown()
 {
 for (int i = count; i > 0; i--)
 {
 Console::WriteLine(i);
 Thread::Sleep(1000);
 }
 Console::WriteLine(S"Blast Off!");
 }
 static Thread* CreateCounterThread(int i)
 {
 return new Thread(
 new ThreadStart(new Counter(i), &Counter::Countdown));
 }
};

The Thread class is initialized with an instance of the ThreadStart delegate; this delegate has

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Thread class is initialized with an instance of the ThreadStart delegate; this delegate has
no parameters and no return value. This code creates an instance of a managed thread, but it
does not start the thread. (I will explain how to do this task later in this section.) In this
example, I have shown how you can provide initialization information for the thread
procedure: as member variables of the target object in the delegate. This technique is fine
because I am passing a __value object. You might have problems if the data is passed by
reference, but I will come back to this problem later in this section.

The System::Diagnostics namespace has a class named ProcessThread; however, this class is
for operating system threads, not managed threads. You can get information about the
operating system threads in the current process through the Process::Threads property, shown
here:

// counter.cpp
IEnumerator* e =
 Process::GetCurrentProcess()->Threads->GetEnumerator();
while (e->MoveNext())
{
 ProcessThread* t = static_cast<ProcessThread*>(e->Current);
 Console::WriteLine(S"thread: {0:x8}",
 __box(reinterpret_cast<int>(static_cast<void*>(t->StartAddress))));
}

This code will list the operating system threads running in the process, and in the current
version of the .NET runtime this list will include the managed threads created through the
Thread class. The Thread class encapsulates many of the things that you will do with a thread,
but it is worth pointing out that Thread is sealed, so you cannot derive from it. Table 3-2 gives
a summary of the members of this class.

Table 3-2. System::Threading::Thread Members and the Equivalent Functions in Win32
Thread Win32 Equivalent Description

Abort TerminateThread Stop the thread.

AllocateDataSlot, AllocateNamedDataSlot,
FreeNamedDataSlot, GetData,
GetNamedDataSlot, SetData

TlsAlloc,
TlsGetValue,
TlsSetValue, TlsFree

Create a data slot that
holds data specific to a
particular thread.

ApartmentState No equivalent The COM apartment
type.

CurrentContext No equivalent The .NET context
(read-only).

CurrentCulture GetThreadLocale The culture for
formatting items.

CurrentPrincipal OpenThreadToken,
GetTokenInformation

Get the security
principal.

CurrentThread GetCurrentThread The thread that is
executing the code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CurrentUICulture No equivalent Culture used for
obtaining UI resources.

GetDomain No equivalent Get the AppDomain
where the thread is
running.

GetDomainID No equivalent Identifier for the
current AppDomain.

Interrupt No equivalent Wake a thread that has
gone into long-term
sleep.

IsAlive WaitForSingleObject Test to see if a thread is
still alive (read-only).

IsBackground No equivalent Test to see if it is a
background or
foreground thread.

IsThreadPoolThread No equivalent Test to see if the thread
is in a thread pool
(read-only).

Join WaitForSingleObject Wait for the thread to
finish.

Name No equivalent Name of the thread.

Priority Get/SetThreadPriority Thread priority.

ResetAbort No equivalent Cancel a request to
terminate the thread.

Resume ResumeThread Resume a suspended
thread.

Sleep Sleep Sleep for a specified
time.

SpinWait No equivalent Spins in a loop the
specified number of
times. Each loop is a
no-op.

Start No equivalent Starts a newly created
thread.

Suspend SuspendThread Suspend a thread.

Thread constructor CreateThread Create a new thread.

ThreadState No equivalent Get information about
the current state (read-
only).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At any time, you can call the static property Thread::CurrentThread to get access to the
managed thread that is running the current code.

Thread* t = Thread::CurrentThread;
Console::WriteLine(S"This thread is \'{0}\'", t->Name);
Console::WriteLine(S"current culture {0}", t->CurrentCulture);
Console::WriteLine(S"priority {0}", __box(t->Priority));

The name of the thread is usually unset. It is a read/write property, so you can give a thread a
name, which is useful for diagnostic purposes. The thread name is truly thread specific, so you
can regard this as one way to pass thread-specific data to a thread.

// counter2.cpp
__gc class Counter
{
public:
 // Count down in 1-second increments.
 static void Countdown()
 {
 int count = Int32::Parse(Thread::CurrentThread->Name);
 for (int i = count; i > 0; i--)
 {
 Console::WriteLine(i);
 Thread::Sleep(1000);
 }
 Console::WriteLine(S"Blast Off!");
 }
 static Thread* CreateCounterThread(int i)
 {
 Thread* t = new Thread(
 new ThreadStart(0, &Counter::Countdown));
 t->Name = __box(i)->ToString();
 return t;
 }
};

Of course, this technique has its limitations.

If you want to return data from a thread, you will need to use a member variable because the
thread procedure does not return a value. Here’s one example:

// factorial.cpp
__gc class Factorial
{
 __int64 m_value;
public:
 __property __int64 get_Value() { return m_value; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 __property __int64 get_Value() { return m_value; }
 Factorial(__int64 v)
 {
 if (v > 24) throw new ArgumentException(
 S"parameter must be between 1 and 24");
 if (v <= 0) throw new ArgumentException(
 S"parameter must be between 1 and 24");
 m_value = v;
 }
 void DoWork()
 {
 __int64 result = 1;
 __int64 limit = m_value;
 m_value = 0;
 for (int i = 1; i < limit; i++)
 {
 result *= i;
 }
 m_value = result;
 }
};

This code implies that you’ll create an instance of Factorial and pass the value to calculate to
the constructor. This code can be called like this:

// factorial.cpp
Factorial* f = new Factorial(24);
Thread* t = new Thread(new ThreadStart(f, &Factorial::DoWork));
t->Start();
// Calculation occurs.
t->Join();
Console::WriteLine(S"Result = {0}", __box(f->Value));

Every thread is created in the Unstarted state, so you have to call Start to start the calculation.
On a uniprocessor machine, the calculation will actually occur when the new thread is
scheduled to run—in this case, if the calculation is longer than the time given to the thread to
run, another thread could have access to the Factorial object before the calculation has
completed. On a multiprocessor machine, the new thread could be scheduled to run on another
processor, which increases the possibility of another thread being able to access the Factorial
object before the calculation has completed. In this code, I allow the new thread to complete
its work by calling Thread::Join, which will block the current thread until the new thread has
finished.

// factorial2.cpp
__gc class Factorial
{
 __int64 m_value;
 ManualResetEvent* event;
public:
 __property __int64 get_Value()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 __property __int64 get_Value()
 {
 event->WaitOne();
 return m_value;
 }
 Factorial(__int64 v)
 {
 if (v > 24) throw new ArgumentException(
 S"parameter must be between 1 and 24");
 if (v <= 0) throw new ArgumentException(
 S"parameter must be between 1 and 24");
 m_value = v;
 event = new ManualResetEvent(false);
 }
 void DoWork()
 {
 __int64 result = 1;
 __int64 limit = m_value;
 m_value = 0;
 for (int i = 1; i < limit; i++)
 {
 result *= i;
 }
 m_value = result;
 event->Set();
 }
};

In this version, a manual reset event is used for interthread communication. The event is
created unsignaled, and WaitOne will block until the event becomes signaled. The property
accessor calls WaitOne, so the calling thread will block until DoWork has completed and calls
Set. I will return to synchronization objects later in this chapter in the section
“Synchronization Objects.”

// factorial2.cpp
Factorial* f = new Factorial(operand);
Thread* t = new Thread(new ThreadStart(f, &Factorial::DoWork));
t->Start();
// NB I do not have to call Join()
Console::WriteLine(S"Result = {0}", __box(f->Value));

Earlier, I showed the static Sleep method, which is called with a 32-bit integer or a TimeSpan
object. If an integer is used, it represents the sleep time in milliseconds. This method is static
because it can be called only on the current thread; if you want to tell another thread to stop
working, you can call the Suspend method. There are two main differences between the two
methods. First, the thread that calls Sleep knows where it is going to start to sleep, but when a
thread calls Suspend, it does not know what code the called thread is executing, so the runtime
takes over and finds a “safe” point where it is safe to suspend the thread (that is, the garbage
collector is happy about the action). The other main difference between the two is that a
suspended thread can be told to start working by calling Resume; there is no direct way to get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

suspended thread can be told to start working by calling Resume; there is no direct way to get
a thread to restart at the point where it started sleeping.

The Sleep method can be passed a value of zero to tell the system that the thread has
completed its work for the current timeslice and to allow the system to allow another thread to
do some work. The thread can also be told to sleep for Timeout::Infinite, which means that the
thread will sleep forever. In fact, a sleeping thread can be told to wake up, but it is not as clean
as a suspended thread being told to resume. Another thread can call Interrupt, which will
cause the ThreadInterruptedException to be thrown in the sleeping thread. Thus, a thread can
go into a deep sleep and catch this exception and take it as an indication to do some work.

void Interruptable ()
{
 while (true)
 {
 try {Thread::Sleep(Timeout::Infinite);}
 catch(Exception*){}
 DoWork();
 }
}

In this code, the thread goes to sleep in a guarded block and catches the exception that will be
thrown when the sleep state is interrupted. At this point, the thread can do some work before
going back to sleep and waiting to be interrupted again.

The final thread method I want to cover here is the Abort method. This method can be called
by another thread, which will cause ThreadAbortException to be thrown. This exception is
special because although you can handle it in a catch clause, this handler is not sufficient to
stop the thread from aborting because after the catch handler has finished, the thread will still
abort. To prevent this thread from aborting the catch handler, your catch handler can call
ResetAbort. (The code needs ControlThread permission to do this.) However, it rarely makes
sense to do this. If a thread has been told to abort, you should take this as a very heavy hint
that the thread should finish as quickly as possible.

Thread States

I mentioned that all managed threads are created in an Unstarted state. A thread can be in 10
different states, and you can test the current state through the ThreadState property. The
various states are summarized in Table 3-3. These are bitmasks, and a thread can be in more
than one state at any one time.

Table 3-3. System::Thread States
State Description Thread Method

Aborted The thread has aborted.

AbortRequested The thread has been told to abort;
ThreadAbortException is raised in the
thread.

Abort

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Background The thread is running in the background.

Running The thread is running. Start

Stopped The thread has stopped.

StopRequested The thread has been told to stop.

Suspended The thread has been suspended.

SuspendRequested The thread has been told to suspend. Suspend

Unstarted The thread object has been created but not
started.

Thread constructor

WaitSleepJoin The thread is blocked. Join, Sleep, or Wait on a
synchronization object

Foreground and Background Threads

A .NET thread can be a foreground thread or a background thread. The difference is that a
foreground thread will keep a process alive, whereas a background thread will not. For
example, assuming the Counter class I showed you earlier (in the section “Writing
Multithreaded Code”), can you imagine what will happen here?

void main()
{
 Thread* thread = Counter::CreateCounterThread(100);
 thread->Start();
}

Once the Start method has been called, the main method will complete, and you would
imagine that this completion would mean that the process will finish. In fact, it doesn’t; the
reason is that by default Thread objects are created as foreground threads, so although the
main thread has finished its work, the Counter thread will still be working and will continue to
work until it decides it has completed.

Now consider this:

void main()
{
 Thread* thread = Counter::CreateCounterThread(100);
 thread->IsBackground = true;
 thread->Start();
}

This code explicitly makes the thread a background thread, so after main completes, the
process will finish, even though the Counter thread might not have finished.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Thread Local Data

If you pass a __gc object to another thread, two threads will have access to the same object—
the thread where the object originated and the thread where the object was passed. You can
use synchronization objects to synchronize access to the data members, but this scheme does
assume that you want all threads to have access to the same data. Threads can have thread
local data—that is, multiple threads can have access to the same variable, but each thread will
have different values for the data. This system is equivalent to the Win32 concept of thread
local storage.

Thread local data uses local data slots. You can either allocate named or unmanaged data slots
through the Thread class. Consider this class:

// tls.cpp
__gc class MyThread
{
public:
 String* str;
 void Proc()
 {
 Thread* t = Thread::CurrentThread;
 if (str == 0)
 str = t->Name;
 Console::WriteLine(str);
 }
};

I can use this class like this:

// tls.cpp
MyThread* obj = new MyThread;
for (int i = 0; i < 5; i++)
{
 Thread* t = new Thread(new ThreadStart(obj, &MyThread::Proc));
 t->Name = i.ToString();
 t->Start();
}

I have created a single instance of MyThread and passed it to five threads. When the thread
procedure runs, it checks to see whether the str field has been assigned, and if not, the
procedure uses the name of the thread. With this version of MyThread, the first thread to run
will assign str to a value of 0 and after that each call to Proc will use the same value because
each call shares the same value. Thus the output of this code will be 0 five times.

To use thread local data, you have to allocate a data slot. Consider this new version of the
class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// tls.cpp
__gc class MyThread2
{
public:
 LocalDataStoreSlot* lds;
 MyThread2()
 {
 lds = Thread::CurrentThread->AllocateDataSlot();
 }
 void Proc()
 {
 Thread* t = Thread::CurrentThread;
 if (t->GetData(lds) == 0)
 t->SetData(lds, t->Name);
 Console::WriteLine(t->GetData(lds)->ToString());
 }
};

The constructor allocates an unmanaged data slot and stores it in the field lds. After the slot is
stored, a thread can get the value specific to this thread by calling GetData and can write this
value with SetData. When each thread first calls this code, it will get a zero from SetData
because the data slot for the thread will be clear. As a consequence, this code will print 0 to 5
on the console.

A data slot can be named, which means that you do not need to hold a LocalDataStoreSlot
object. You can allocate a named data slot by calling AllocateNamedDataSlot, passing the
name of the data slot. Any thread can get access to the data slot by calling GetNamedDataSlot,
as shown here:

// threads.cpp
__gc class MyThread3
{
public:
 void Proc()
 {
 Thread* t = Thread::CurrentThread;
 LocalDataStoreSlot* lds = t->GetNamedDataSlot(S"my name");
 if (t->GetData(lds) == 0)
 t->SetData(lds, t->Name);
 Console::WriteLine(t->GetData(lds)->ToString());
 }
};

The system maintains an internal table that associates names with data slots.
GetNamedDataSlot uses this table to return the data slot associated with the name. If you call
GetNamedDataSlot and the name does not exist, the method will allocate a data slot. This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetNamedDataSlot and the name does not exist, the method will allocate a data slot. This
table is a global table, so when you have finished with a name, you should call
FreeNamedDataSlot to remove the name from the table. Named data slots can be accessed on
any thread.

A static field in a class is shared between all instances of the class, whatever thread those
objects are accessed on. The [ThreadStatic] attribute preserves part of the meaning of static, in
that each instance of the class on a particular thread will have access to the same value;
however, there will be a separate shared data member for each thread. Consider this class:

// threads.cpp
__gc class SharedData
{
 static int i;
 String* name;
public:
 SharedData(String* s) : name(s) {}
 String* ToString()
 {
 return String::Format(S"{0} {1}", name,
 __box(Interlocked::Increment(&i)));
 }
 static void Proc()
 {
 SharedData* s1 = new SharedData(S"one");
 SharedData* s2 = new SharedData(S"two");
 Console::WriteLine(s1->ToString());
 Console::WriteLine(s2->ToString());
 }
};
void main()
{
 for (int i = 0; i < 5; i++)
 {
 Thread* t = new Thread(new ThreadStart(0,
 &SharedData::Proc));
 t->Start();
 }
}

In this example, the SharedData class has a static member and an instance member. The
ToString method will print out the value of both members, but it also increments the static
integer value (using the thread safe Interlocked::Increment). If you run this code, you will get
results similar to the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

one 1
two 2
one 3
two 4
one 5
two 6
one 7
two 8
one 9
two 10

The reason is that there will be a single static variable for all objects created on all threads. If
you add the [ThreadStatic] attribute to the member i, you will get this result:

one 1
two 2
one 1
two 2
one 1
two 2
one 1
two 2
one 1
two 2

The reason for this behavior is that now there will be a static member for each thread, so the
static member will be incremented to a maximum of 2 because on each thread,
SharedData::ToString is called only twice.

Threads and Exceptions

Exceptions are thread based. This is an important point. Remember that exceptions are
serializable, so they can be considered as an additional return value from every method. The
only way to persuade the runtime to ignore an exception is to mark the method as [OneWay],
and this strategy works only when .NET remoting is used. However, when you start a thread,
that thread has the responsibility to run the code. When the thread has finished its work (when
it is aborted or the thread procedure has finished), there is no return value and no code to
accept this return value. (By definition, a thread is a separate unit of execution and thus can be
treated as an independent entity.)

Look at this code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__gc class MyThread
{
public:
 void Proc()
 {
 throw new Exception(S"bye, bye");
 }
};
void main()
{
 Thread* t = new Thread(new ThreadStart(new MyThread,
 &MyThread::Proc));
 try
 {
 t->Start();
 // Not necessary, but let's block this thread anyway.
 t->Join();
 }
 catch(Exception* e)
 {
 Console::WriteLine(e->ToString());
 }
}

Even though the main thread uses exception handling, the process will still be terminated due
to an unhandled exception. The exception can be caught only by the thread that threw the
exception with one (ahem) exception: if an exception is not handled, it will be passed to the
AppDomain, which will pass the exception through to the UnhandledException event, as
shown here:

__gc class Catcher
{
public:
 static void Unhandled(Object* sender,
 UnhandledExceptionEventArgs* e)
 {
 Console::WriteLine(S"Handled exception:");
 Console::WriteLine(e->ExceptionObject->ToString());

 }
};
void main()
{
 AppDomain* ad = AppDomain::CurrentDomain;
 ad->UnhandledException +=
 new UnhandledExceptionEventHandler(0, &Catcher::Unhandled);
 Thread* t = new Thread(new ThreadStart(new MyThread,
 &MyThread::Proc));
 t->Start();
 // Give the other thread some time to work.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Give the other thread some time to work.
 Thread::Sleep(2000);
 Console::WriteLine(S"normal shutdown");
}

Both the main thread and the new thread run in the same AppDomain. When an exception is
thrown in a thread running in the AppDomain and it is not caught by the thread where it is
thrown, the exception will be passed to the unhandled exception event handler. The thread that
generated the exception will be shut down, but all the other threads and the AppDomain will
be unaffected. So, in this example, the process will be shut down normally. This behavior
works only for the first AppDomain that the system creates.

The main thread is treated slightly differently than the other threads; if the main thread throws
an exception that is not handled, the unhandled exception event handler will be called, but
only after the JIT debugger handling is informed (if this is turned on). I will give more details
about this process in Chapter 7.

The runtime will pass all exceptions to the unhandled exception event handler except the
ThreadAbortException; this exception will always be handled by causing the targeted thread
to abort. It never “leaks” out of the thread.

It is good practice to make sure that you handle all exceptions thrown in your thread code—if
only by using a try/catch block in your thread procedure, and/or by implementing an
unhandled exception event handler to ensure that the user never sees the unhandled exception
dialog box presented by the system. It is also a good idea to reset any synchronization objects
held by the thread that is about to die so that any other threads waiting on these objects will
not be permanently blocked. This brings me to the subject of synchronization objects.

Synchronization Objects

The .NET Framework has several classes that allow you to synchronize execution between
threads. Some of these are similar to the synchronization objects in Win32; others provide
more functionality. Most synchronization objects derive from the abstract class WaitHandle,
and the three important members of this class are the instance method WaitOne and the static
members WaitAll and WaitAny. WaitOne is like the Win32 ::WaitForSingleObject in that it
will block until the handle has become signaled or a timeout occurs. The timeout can be
expressed as a 32-bit integer with the time in milliseconds or as a TimeSpan object. The other
two members are used when you have more than one waitable object. Both of these static
methods take an array of waitable objects, and the method will block until the timeout occurs,
or if one object signals for WaitOne, or if all of the objects have signaled with WaitAll.

The classes that derive from WaitHandle are AutoResetEvent, ManualResetEvent, and Mutex.
The first two are similar to the Win32 event kernel object. The object can be created in a
signaled or an unsignaled state, and a thread can change the signaled state by calling Set or
Reset. More than one thread can wait on a single event. The difference between the two types
of events is how these waiting threads are released when the event is signaled. When a
ManualResetEvent is signaled, all threads waiting on the event will be released from the wait
state. When an AutoResetEvent is signaled, only one thread is released from the wait state and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

state. When an AutoResetEvent is signaled, only one thread is released from the wait state and
then the event will be automatically made nonsignaled. To release the other waiting threads,
the event has to be signaled the appropriate number of times. Note that if you have a
uniprocessor machine, you will have to allow the other threads to have the opportunity to be
released from the wait state.

// waiting.cpp
__gc class WaitingThread
{
public:
 AutoResetEvent* e;
 WaitingThread (){ e = new AutoResetEvent(false); }
 void Proc()
 {
 // Wait until event signals.
 e->WaitOne();
 Console::WriteLine(S"{0} released",
 Thread::CurrentThread->Name);
 }
};

void main()
{
 WaitingThread* x = new WaitingThread;
 int i;
 for (i = 0; i < 10; i++)
 {
 Thread* t = new Thread(new ThreadStart(x,
 &WaitingThread::Proc));
 t->Name = __box(i)->ToString();
 // Thread starts, but waits on the event.
 t->Start();
 }

 for (i = 1; i < 11; i++)
 {
 Console::WriteLine(S"{0}th time Set has been called",
 __box(i));
 x->e->Set();
 }
}

If you run this code as it stands on a uniprocessor machine, you will find that not all of the
threads will be released. The reason is that the second for loop might execute several loops
before the main thread’s timeslice has been completed to give another thread the opportunity
to run. It is only when a thread has been released from a wait state that the event will become
unsignaled, so if Set is called 5 times before any other thread is allowed to run, still only one
thread will be released. The solution is to insert a call to Thread::Sleep(0) after the call to Set.
This call will tell the system to reschedule the current thread and ignore the remaining time
left in the current timeslice. This solves the problem in this example, where we know that
there will be a thread waiting for the event to be signaled.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The other WaitHandle is the Mutex, which is similar to the Win32 mutex kernel object in that
only one thread can own the mutex at any one time. Mutex objects are global objects, in the
respect that any process on a single machine can have access to a mutex. Furthermore, .NET
Mutex objects are based on Win32 mutexes, so you can get access to a named Win32 mutex,
or a Win32 process can have access to a named .NET Mutex. The Mutex constructor has four
overloads; two allow you to create unnamed objects (and hence they can be used only in the
current process), and the other two allow you to create a named mutex. In the following code,
a Mutex object is created and the current thread has “ownership”:

Mutex mutex = new Mutex(true);
// Pass this mutex object to other threads.
// Do stuff with shared objects that should only be accessed
// by a single thread at a time.
// Now allow another thread to access the shared objects.
mutex->ReleaseMutex();
// One other thread now owns the mutex.

A thread requests the ownership of a mutex by calling a Wait method, for example, WaitOne.
This call will block until the thread gains ownership of the mutex, and after the thread has
finished its work on the shared objects, the thread relinquishes its ownership by calling
ReleaseMutex.

You can use a Mutex to protect data that could be accessed by multiple threads, as shown here:

// mutexes.cpp
__gc class Data
{
 int x;
public:
 Mutex* m;
 Data(){m = new Mutex(false);}
 void Proc()
 {
 m->WaitOne();
 int i = x++;
 Console::WriteLine(S"{0} has the mutex {1}",
 Thread::CurrentThread->Name, __box(i));
 // Allow another thread to try to access the shared data.
 Thread::Sleep(500);
 m->ReleaseMutex();
 }
 // Other public methods that access the instance data and
 // are protected by the mutex
};

You can even use a mutex in the property accessors, as this code shows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// mutexes.cpp
__property int get_Count()
{
 int i;
 m->WaitOne();
 i = x;
 m->ReleaseMutex();
 return i;
}
__property void set_Count(int val)
{
 m->WaitOne();
 x = val;
 m->ReleaseMutex();
}

Such property accessors will prevent more than one thread accessing the data. However, there
is a problem. Imagine that you have multiple threads trying to read the property. It makes no
sense to lock access to the property in this case because the value will not change. You might
decide to remove the protection from the get_ accessor, but this action will not protect you
from the situation when another thread tries to write to the property because the write action
might not be completed before another thread tries to read the property.

To protect you in this situation, the .NET Framework supplies the ReaderWriterLock class.
This class will allow multiple reader threads to access the lock but only when there are no
writer threads.

ReaderWriterLock* wrl;
Data() { wrl = new ReaderWriterLock(); }
__property int get_Count()
{
 int i;
 wrl->AcquireReaderLock (Timeout::Infinite);
 i = x;
 wrl->ReleaseReaderLock();
 return i;
}
__property void set_Count(int val)
{
 wrl->AcquireWriterLock (Timeout::Infinite);
 x = val;
 wrl->ReleaseWriterLock();
}

In these examples, the thread synchronization objects are rather overkill for a 32-bit integer.
The Interlocked class has static methods that allow you to increment and decrement 32-bit and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Interlocked class has static methods that allow you to increment and decrement 32-bit and
64-bit integers and to assign 32-bit integers, single-precision real numbers, and objects in an
atomic way.

If you have many lines of code within an object that logically should be executed together by
only one thread at a time, you could use a mutex to protect this code. Another option is to use
the Monitor class, which has static members that take an object. The Monitor::Enter method
will block until the lock for the object that is passed as a parameter is released. The lock is
released by calling Monitor::Exit.

Thread Pool

Threads are expensive objects. The following code, when run on a machine with 512 MB of
memory, will throw an OutOfMemoryException exception when 1970 threads have been
created:

for (int i = 0; i < 10000; i++)
{
 Thread* t = new Thread(new ThreadStart(0, &Code::Proc));
 t->Start();
}

Win32 has a memory limit of 4 GB; 2 GB are addressable by user-mode code. Windows 2000
DataCenter has a 3Gb limit for user mode code. By default, when an operating system thread
is created, it will get 1 MB of stack, so I guess 1,970 threads means that the 2-GB limit has
been reached. Unfortunately, there is no way that you can specify the stack space used by a
managed thread. When this exception was thrown, I was relieved—yes, I really was. The
reason is that in the past I have run similar tests with native C++ and have found that Win32
will attempt to create all the threads that I have requested. This attempt will result in Windows
NT paging virtual memory back and forth between physical memory and the page file, which
will result in lots of disk activity and eventually the UI will freeze. .NET has spared me this
problem before it gets out of hand.

Threads are a great idea insofar as they allow you to divide your code into logical tasks, but
you must avoid creating large numbers of threads. The maximum number of threads you can
safely create depends on how much memory you have and how much memory your code will
use. Restricting the number of threads that you have can complicate your code as you try to
decide which thread should perform the work. One way to solve this issue is to use a thread
pool, and the .NET Framework provides you with a thread pool class.

Contrast the following code with the previous code:

for (int i = 0; i < 10000; i++)
{
 ThreadPool::QueueUserWorkItem(new WaitCallback(0,
 &Code::Proc2));
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This code will run fine, and no exception will be thrown. The first time you call
QueueUserWorkItem, the thread pool will be created, and each time you call this method, the
request will be queued. The system maintains the thread pool, and in times of stress (for
example, in this loop), the system will increase the size of the pool, but it will throttle the
number of threads to a maximum figure. You can get the maximum number of threads in the
pool by calling GetMaxThreads, and you can get the number of threads that are currently
available for work by calling GetAvailableThreads. If a pool thread is idle for some
(undisclosed) amount of time, the system can terminate threads and allow the pool to shrink to
conserve resources.

The threads in the thread pool are created as background threads, which means that if the other
foreground threads (including the main thread) complete before all the requests have
completed, the process will die. You can make the pool thread a foreground thread in the
method called by the WaitCallback delegate if the action is important, but because the pool
thread can be reused, it makes sense to return the thread back to a background thread once the
method has completed. Furthermore, the pool thread is created with Normal priority, and again
you can change the priority if the action is particularly important or unimportant.

QueueUserWorkItem is passed an instance of the WaitCallback delegate:

public __delegate void WaitCallback(Object* state);

This method takes a reference to some object that you can use to pass data into, or receive
results from, the procedure executed by the pool thread. Because the code that calls
QueueUserWorkItem does not have access to the thread that does the actual work, it is not
possible to determine when that work has completed. If you rely on a result that will come
from the method executed by the pool thread, you will have to set up some interthread
communication. For example, you could create an unsignaled event object and pass it as the
state object or as a member of the object that is the target of the delegate. In both cases, the
method can indicate when it has completed its work by setting the event, as shown here:

__gc class Code
{
public:
 void Proc(Object* o)
 {
 // Do some complex calculation.
 Value = 42;
 ManualResetEvent* ev = static_cast<ManualResetEvent*>(o);
 ev->Set();
 }
 int Value;
};
// Code that uses the thread pool.
Code* obj = new Code;
ManualResetEvent* ev = new ManualResetEvent(false);
ThreadPool::QueueUserWorkItem(
 new WaitCallback(obj, &Code::Proc), ev);
// Do some work while we wait for the result.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Do some work while we wait for the result.
ev->WaitOne();
Console::Write(S"result = {0}", __box(obj->Value));

As you can see, this overload of QueueUserWorkItem takes the event object as the last
parameter.

Synchronized Contexts

If a class is context-bound (the class derives from ContextBoundObject, which includes all
classes derived from MarshalByRefObject), it can be marked with [Synchronization] to
specify whether access to the object is synchronized. This attribute is declared in the
System::Runtime::Remoting::Contexts namespace, but note that there is a similar named
attribute in System::EnterpriseServices that controls synchronization with respect to COM+
contexts.

If you specify that synchronization is required, only one thread at a time can access instance
methods and fields. All calls from other threads will block. Here’s an example:

// syncctx.cpp
__gc class Data : public ContextBoundObject
{
public:
 void Proc()
 {
 Console::WriteLine(__box(DateTime::Now));
 // Simulate some other work.
 Thread::Sleep(1000);
 }
};

This code prints out the time and then does some other work, which I have simulated by
calling Sleep. You could call this class from multiple threads in code like this:

// syncctx.cpp
Data* data = new Data;
for (int i = 0; i < 5; i++)
{
 Thread* t = new Thread(new ThreadStart(data, &Data::Proc));
 t->Start();
}

The results will show that the five threads appear to call the Proc method at the same time, and
the only indication that the Sleep call was made is a slight pause after the last time is printed at
the console. The reason is that the threads are called in parallel. If you add this line to the
declaration of the class:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// syncctx.cpp
 [Synchronization((Int32)SynchronizationAttribute::REQUIRED)]
__gc class Data {};

you will find that the time will be printed with a second interval between each time a line is
printed. The reason is that the attribute tells the runtime that whenever there is an access from
another thread, the runtime will attempt to access a lock for the object. There is only one lock,
so if another thread has this lock, the requesting thread is blocked until the lock becomes
available. In this example, the lock is applied until the Proc method has completed.

There are four values that you can use in the constructor for [Synchronization]; these are static
fields of the class and are shown in Table 3-4. To keep the compiler happy, you have to ensure
that you give the complete name of the class (SynchronizationAttribute) and you have to cast
the field to an Int32.

Table 3-4. The Values That Can Be Passed to the Constructor of [Synchronization]
Member Value Meaning

NOT_SUPPORTED 1 No synchronization will occur.

SUPPORTED 2 If the object is used in a context that has synchronization,
every access will be synchronized.

REQUIRED 4 Every access will require synchronization; the class can be
created in an existing synchronized context.

REQUIRES_NEW 8 Every access will require synchronization; the object will
always be created in a new context.

These values appear to be bitmasks, but they are not. You can apply only one of these on a
class. The reason there are four values is that you can specify whether the class will be used in
the same context as its creator (NOT_SUPPORTED, SUPPORTED, and REQUIRED, if the
creator has a synchronized context), and you can indicate whether synchronization will occur
(REQUIRED, REQUIRES_NEW, and SUPPORTED if the calling context is a synchronized
context) through one value.

Another way to get the same effect is to use the [MethodImpl] attribute in the
System::Runtime::CompilerServices namespace. As the name suggests, this namespace is
intended only for writers of compilers, but it has some nice tools, one of which is the
[MethodImpl] attribute that is used to give additional information (MethodImplOptions) to the
runtime about a method. One of the values you can pass tells the runtime that the method is
synchronized, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// syncctx2.cpp
__gc class Data
{
public:
 [MethodImpl(MethodImplOptions::Synchronized)]
 void Proc()
 {
 Console::WriteLine(__box(DateTime::Now));
 // Simulate some other work.
 Thread::Sleep(1000);
 }
};

There are two important differences between this class and the previous one: first, the attribute
is applied to the method and not the class, and second, the class does not have to derive from
ContextBoundObject. The effect is the same as before: the method can be accessed only by
one thread at a time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Summary

.NET is type-safe. If it were not, malicious code could manipulate your code to do things that
you do not want it to do. This type safety is also applied to making indirect calls to methods
through pointers, and to do this, the .NET Framework provides a type called a delegate.
However, delegates are far more than just a mechanism to allow you to make indirect calls on
methods: they are the main mechanism that allows you to call methods asynchronously, and
they are vital for declaring the code that will be called in multithreaded code. Microsoft .NET
formalizes notifications through delegates using metadata called events. Windows GUI is
event based, and this is the subject of Chapter 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4
User Interface Development
The Microsoft .NET Framework has classes that allow you to develop graphical user interface
(GUI) applications. Drawing code is based on a new technology named GDI+, and as the
name suggests, this technology extends Microsoft Windows GDI facilities. Windowing code
is based on a technology named Windows Forms. In this chapter, I will describe both the
GDI+ and Windows Forms libraries and explain how they work and how to use them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Developing Windows Forms with C++

Among the assemblies of the .NET Framework is a native DLL named gdiplus.dll, This DLL
is also distributed as part of Windows XP. which contains the new object-oriented graphics
code named GDI+. The API is unmanaged and is based on C functions exported from the
DLL. Microsoft Visual Studio .NET provides unmanaged C++ classes, and the .NET
Framework provides managed classes to access GDI+. You will find the managed classes in
the System.Drawing.dll assembly. As the name suggests, GDI+ builds upon the Windows
graphics device interface (GDI) and provides tools to draw on graphics devices. The graphics
device that you are most likely to use is a window. The .NET Framework provides you with a
managed window object called a form. The way that you use this form and its properties has
very strong parallels with unmanaged Visual Basic forms.

If you do Windows development with C++, you will most likely use the Windows SDK
directly or, more likely, the Microsoft Foundation Class Library (MFC). MFC is an
unmanaged application framework and is based on the document/view model. This library is
still part of Visual C++ .NET. MFC has been extended in version 7 to have closer integration
with the Active Template Library (ATL), and it has new classes for the new Windows XP
controls. You can continue to develop in MFC with Visual Studio .NET; do not think that you
have to port your code to Windows Forms.

Windows Forms is only for managed development, and compared to MFC, it is definitely a
version 1 product. Windows Forms provides no support for the management of documents,
nor does it provide any application framework features. Windows Forms provides only the
basic infrastructure to create forms and to create controls as part of those forms; you have to
write all the other code to connect the controls. MFC is an application framework, so it has
support to link the associated items on menus and toolbars. When you highlight a menu item,
the MFC framework will add the item’s descriptive text to the status bar. With Windows
Forms, you can add a menu and a status bar to a form, but you have the responsibility to check
for the selection of a menu item and then add the description to the status bar.

Frameworks such as MFC allow you to provide multiple views of documents of your data.
MFC has framework support to load and save these documents and to select an appropriate
view of the data. Windows Forms is not an application framework. Windows Forms is the
basic SDK for managing controls and drawing in device contexts, and you have to write the
code to manage documents and views of your data. The .NET Framework has built-in support
for serialization of objects, so you can compose your documents from multiple objects,
serialize those objects, and save them to or load them from storage (most likely a file).
Furthermore, Windows Forms also has support for the OLE features of embedded and linked
objects, including copying objects to the clipboard as a data object and drag and drop.
However, you have to write the code to render such objects.

In short, the .NET Framework class library has all of the low-level facilities that you can use
to write a fully fledged document-based application, but it has none of the convenience of
more mature frameworks, so you have to write your own application framework classes.
Regard the .NET Framework much in the same way as a 1990s developer regarded the
Windows SDK, and hope that Microsoft will be working on an application framework.

The main namespaces and assemblies used for GUI development are summarized in Table 4-
1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 4-1. The Main GUI Namespaces and Assemblies in the .NET Framework
Namespace Main Assembly Description

System::ComponentModel system,
system.windows.forms

Building blocks used for
components and component
containers

System::ComponentModel::Design system, system.design Basic classes for providing
design-time support for
components and controls.

System::Drawing system.drawing Basic access to GDI+

System::Drawing2D system.drawing Classes for 2D and vector
graphics drawing

System::Drawing::Design system.design,
system.drawing

Design-time support for
drawing elements.

System::Drawing::Imaging system.drawing Support for Windows
metafiles

System::Drawing::Printing system.drawing Classes for rendering images
on a hard copy device

System::Drawing::Text system.drawing Classes for rendering text

System::Resources mscorlib,
system.windows.forms

Classes to create, store, and
use culture-specific resources

System::Windows::Forms system.windows.forms Classes for Windows controls,
form-based windows, and
common dialog boxes, and
also has classes to handle
mouse and keyboard input

System::Windows::Forms::Design system.design,
system.windows.forms

Design-time support for forms.

Components and Containers

Every discussion of .NET GUI development must start with a discussion about components.
Forms and controls are Component based: a UI class is derived from Component, and a UI
element that can contain other UI elements will be a Component container. UI elements are
based on scarce system resources. As you will see later, when you create a control, you will
get a new Windows handle. The Windows Forms library makes no attempt to conserve
Windows handles like, for example, so-called “windowless” ActiveX controls do. When you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Windows handles like, for example, so-called “windowless” ActiveX controls do. When you
have finished with such an item, you must dispose of it as soon as possible to allow the .NET
Framework to release the UI resource. The reason for this disposal is that .NET does not
support so-called deterministic finalization. Objects are finalized when the garbage collector
decides it is right to do so. Thus, you are responsible for determining when a resource is no
longer used by a top-level window and then taking the action to release the resource. (A parent
control will dispose of its child controls.)

Disposable Objects

The .NET Framework provides an interface named IDisposable, which should be
implemented by all classes that hold resources. The interface looks like this:

public __gc __interface IDisposable
{
 void Dispose();
};

When a class implements IDisposable, the class user knows that instances of the class hold a
resource. The resource must be released as soon as possible, so the user knows that when she
has finished using an instance of the class, she should call IDisposable::Dispose. A class that
implements IDisposable should also implement a finalizer (in C++ terms, this means that the
class should have a destructor) to release the held resource in the unlikely event that the user
did not call Dispose.

// resholder.cpp
__gc class MyResourceHolder : public IDisposable
{
 HANDLE resourceHandle;
public:
 MyResourceHolder()
 {
 resourceHandle = ObtainNativeResource();
 }
 virtual void Dispose()
 {
 if (resourceHandle != 0)
 ReleaseNativeResource(resourceHandle);
 resourceHandle = 0;
 GC::SuppressFinalize(this);
 }
 virtual ~MyResourceHolder()
 {
 Dispose();
 }
 // Methods that use the resource
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This class shows the typical pattern to implement if you have a class that uses an unmanaged
resource: the constructor obtains the resource and caches the handle, and Dispose releases the
resource. Even though interface methods and destructors are always virtual, I have explicitly
used the virtual keyword to remind you of this fact, which becomes important when you
consider derived classes.

When you call Dispose, the object is disposed of. This disposal means that the object is still
alive, but the resource it holds is no longer initialized. The user could still call one of the
methods that use the resource. To prevent this action from calling an API with an invalid
handle, Dispose zeros the resource handle. It is the responsibility of the object methods to
ensure that they check to see whether an object has been disposed of and to handle this
possibility appropriately by throwing the ObjectDisposedException exception.

The destructor needs to release the resource so it too calls Dispose. When Dispose has been
called, it makes no sense to call the method another time, so Dispose calls
GC::SuppressFinalize to prevent the runtime from queuing the object for finalization (and
calling the destructor code). If you implement a class with IDisposable, the class can be used
with the C# using clause, as shown here:

// C#
MyResourceHolder res = new MyResourceHolder();
using (res)
{
 // Use object here
} // MyResourceHolder::Dispose() will be called
res = null;

If you use this class with C++, you must call Dispose explicitly, as the following code shows:

// C++
MyResourceHolder* res = new MyResourceHolder;
try
{
 // Use object here
}
__finally // Use finally so that Dispose is always called.
{
 IDisposable* d = dyanamic_cast<IDisposable*>(res);
 if (d != 0) d->Dispose();
}
res = 0;

We know that the class supports IDisposable, so the cast is unnecessary; however, I have
shown the cast to indicate how to make the code more generic. Disposable classes are quite a
responsibility. As you have seen, the Dispose method must be called by the user of an instance
of the class. If you derive from a disposable class, you have the responsibility of disposing the
resources you use in the new class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// childres.cpp
__gc class ChildHolder : public MyResourceHolder
{
public:
 // Methods that use the resource obtained by the parent class
 virtual void Dispose()
 {
 // Release child resources here.
 MyResourceHolder::Dispose();
 }
};

I mentioned earlier that interface methods and destructors are called virtually. Here is where
that fact comes into play: Because the parent has a destructor, instances of this class will also
be finalized, and when this finalization happens, the finalizer on the child class will be called
first (which calls the child destructor) and then the parent finalizer will be called (calling the
parent destructor). The parent destructor calls Dispose virtually, thus ChildHolder::Dispose is
called, which then calls MyResourceHolder::Dispose. If the user remembers that the class is
disposable and calls Dispose on a child instance, ChildHolder::Dispose is called first,
followed by MyResourceHolder::Dispose. Note that there is no need to call
GC::SuppressFinalize in the child version of Dispose because this method is called in the
parent version of Dispose. You should not implement a destructor on the child because
GC::SuppressFinalize will turn off finalization for the base part of the object and not for the
child. Hence the child destructor will be called by the finalization thread, which will dispose
of the child object twice.

The .NET Framework uses another pattern, which is followed by many classes, such as
Control, EventLog, and FileStream. This pattern assumes that a class holds on to both
managed and unmanaged resources. Unmanaged resources must be explicitly released;
managed resources will be implemented by classes that have finalizers, so the resource will be
released when the object that contains the resource is itself finalized. If such a container class
is disposed of, the caller is making the assertion that all resources should be released at that
point, so both managed and unmanaged resources should be released. If an instance of a
container class is finalized, the object will die and the references it holds will die too—in this
case, the object must still explicitly release its unmanaged resources, but it can ignore the
managed resources because they will be garbage collected and finalized soon after the
container object is finalized.

A container object that has both managed and unmanaged resources should have a protected
method that looks like this:

protected:
 virtual void Dispose(bool disposing);

The parameter is passed a value of true if the object is being disposed of; that is, the object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The parameter is passed a value of true if the object is being disposed of; that is, the object
will exist for some indeterminate amount of time after the method is called. In this situation,
you must release both managed and unmanaged resources. A false value for this parameter
means that Dispose has been called when the object was being finalized, so there is no need to
release managed resources. An object that implements this version of Dispose will call it in
IDisposable::Dispose, passing a parameter of true, and will call the following method in the
destructor passing a parameter of false:

// manreshold.cpp
__gc class MyOtherResHolder : public IDisposable
{
 HANDLE resourceHandle;
 FileStream* fs;
public:
 MyOtherResHolder()
 {
 resourceHandle = ObtainNativeResource();
 fs = File::OpenWrite(S"Data.dat");
 }
 virtual void Dispose()
 {
 Dispose(true);
 GC::SuppressFinalize(this);
 }
 virtual ~MyOtherResHolder()
 {
 Dispose(false);
 }
 // Methods that use the resources
protected:
 virtual void Dispose(bool disposing)
 {
 if (disposing) fs->Close();
 if (resourceHandle != 0)
 ReleaseNativeResource(resourceHandle);
 resourceHandle = 0;
 }
};

As you can see, the protected version of Dispose will close the FileStream object only if the
method is called when the object is being disposed of. If you derive a class from
MyOtherResHolder, you have two choices. If the derived class does not have any managed or
unmanaged resources, it does not have to implement Dispose or have a destructor. Because the
base class implements IDisposable, a user can call IDisposable::Dispose to dispose of the
parent class’s resources. Because the parent class has a finalizer if Dispose is not called, the
parent’s destructor will be called when the finalizer is called. If the derived class has managed
or unmanaged resources, these resources must be released at the appropriate time. In this case,
the derived class need implement only the protected version of Dispose, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// manreshold.cpp
__gc class OtherChildHolder : public MyOtherResHolder
{
public:
 OtherChildHolder()
 {
 // Obtain child managed resources.
 // Obtain child unmanaged resources.
 }
protected:
 virtual void Dispose(bool disposing)
 {
 if (disposing)
 {
 // Release child managed resources.
 }
 // Release child unmanaged resources.
 MyOtherResHolder::Dispose(disposing);
 }
};

Now imagine that you have a container class, that is, a class that has fields that are instances of
other classes. If those field classes are disposable, the container class must also be disposable.

// rescont.cpp
__gc class Container : public IDisposable
{
 MyResourceHolder* res1;
 MyResourceHolder* res2;
public:
 Container()
 {
 res1 = new MyResourceHolder;
 res2 = new MyResourceHolder;
 }
 virtual void Dispose()
 {
 Dispose(true);
 GC::SuppressFinalize(this);
 }
 ~Container()
 {
 Dispose(false);
 }
protected:
 virtual void Dispose(bool disposing)
 {
 if (disposing)
 {
 res1->Dispose();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 res1->Dispose();
 res2->Dispose();
 }
 }
};

Again, the destructor must call Dispose on the disposable objects that it holds. Of course, the
coding is far easier if the disposable objects are held in a container, in which case you can
simply iterate through the items in the container.

Components

If a disposable object is used with one of the Visual Studio .NET designers, the object’s class
should implement IComponent. This interface looks like this:

public __gc __interface IComponent : public IDisposable
{
 __property ISite* get_Site();
 __property void set_Site(ISite*);
 __event EventHandler* Disposed;
};

The interface derives from IDisposable, as you would expect, and it has an event that is
invoked when the component is disposed of. If you have another component that depends on
this component, the dependent component can add a delegate to the event. When the
dependent component is informed that the component has been disposed of, the dependent
component can release its reference to the disposed of component. In addition, the interface
has a read/write property that gives access to an ISite interface that is implemented on the site
where the component is being used, as shown in this code:

public __gc __interface ISite : public IServiceProvider
{
 __property IComponent* get_Component();
 __property IContainer* get_Container();
 __property bool get_DesignMode();
 __property String* get_Name();
 __property void set_Name(String*);
};

The interface has four properties, three of them read-only. The site itself is a component, so
you are able to have nested components and sites. A component is used as part of some other
object. The component can have a UI (such as a TextBox control), or it might not have a UI
(such as an EventLog). The component site might or might not be a UI element (such as a
Form).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio .NET provides designers for UI elements and non-UI elements. Designers show
a RAD image of the solution that you are developing. If you are developing a form with a
designer, then you will be able to see the controls that you are adding to the form. The
designer allows you to move the controls and configure their properties. If you are developing
a UI-less solution—the IDE calls this a component—then you will be able to see the other UI-
less components that you are using and use the IDE to change their properties.

However, designers are available only with C# and Visual Basic .NET. The reason is that a
designer needs to generate code that corresponds to the components that are shown on the
designer surface, and crucially, the designer also needs to be able to parse code. There are
definitions in the System::CodeDom and System::CodeDom::Compiler namespaces, and there
are actual implementations of the code generators in the Microsoft::CSharp and
Microsoft::VisualBasic namespaces (which are implemented in the microsoft.visualbasic and
system assemblies), but the Microsoft::VisualC namespace (in the microsoft.visualc assembly)
is notably devoid of any CodeDom classes. The current version of Visual Studio .NET does
not include a CodeDom code generator or parser for C++, so there is no designer support for
C++. Having said that, it is important to look at the support for designers because the
components you will develop might well be used by other languages that do have designer
support.

When a component is being used by a designer, the ISite::DesignMode property will return
true. You might decide to change the behavior of your component in design mode—for
example, you might be developing a component that accesses a specific hardware device, and
at design time, that device might not be available, so your component could provide a
simulation instead.

Notice that the ISite interface derives from IServiceProvider, as shown here:

public __gc __interface IServiceProvider
{
 Object* GetService(Type*);
};

This interface is a problem, as I mentioned in Chapter 2 (in the section “Calling Win32 APIs
Using IJW”), because it has the same name as a COM interface that is included when you
include windows.h, and if you want to use both the COM and .NET interfaces, you can access
the .NET interface only using its fully qualified name. The idea behind this interface is that a
component can provide several services, so you can access these services by calling
GetService and passing the type object of the service that you require. The service could be
implemented by the component, or it could be implemented by another, separate object.

The Visual Studio .NET designers and the UI items such as the property window are
components, and they provide services through IServiceProvider. For example, if you want to
provide a property editor for a specific control, you provide a class derived from UITypeEditor
and mark the control class with the [Editor] attribute. The editor class implements a method
named EditValue that is passed the IServiceProvider of the property window, and you use this
interface to get the IWindowsFormsEditorService to specify whether the property is edited
using a separate dialog (ShowDialog) or through a drop-down list box (DropDownControl and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using a separate dialog (ShowDialog) or through a drop-down list box (DropDownControl and
CloseDropDown). IServiceProvider looks like quite a useful facility, but it has an inherent
weakness: GetService takes a Type object, so you can use the services on a component only if
you know the services that it supports. There is no way to ask a component to list its services.

A component could be one of many components at a site. These components will be held by a
component container that implements IContainer:

public __gc __interface IContainer : public IDisposable
{
 __property ComponentCollection* get_Components();
 void Add(IComponent*);
 void Add(IComponent*, String*);
 void Remove(IComponent*);
};

This interface has one property—a collection of components—and the other members are used
to add or remove components from the container. The container that holds the components has
to be disposable, which makes sense because the components that it holds are disposable.
ComponentCollection is a read-only class, so a container that implements this interface will
hold the components in some other collection (which will be operated on by the interface Add
and Remove methods) and then implement the Components property by initializing a new
instance of ComponentCollection with an array of IComponents.

Writing Components

The current version of Visual Studio .NET does not support designers for C++, but a
component written with C++ can be used in a designer for another language. If the component
is a UI component, it should derive from Control or UserControl. These classes provide an
implementation of IComponent, so you do not have to worry about providing your own
implementation. If you are writing a UI-less component (examples of UI-less components are
the EventLog and the PerformanceCounter classes), you can provide your own
implementation of IComponent or use an implementation from the .NET Framework.

If the component is context bound—that is, if you pass a reference to the component to
another context—a call to the component will always be executed in the original context. Then
the best option is to use the implementations of IComponent provided by the .NET
Framework. The Component class derives from MarshalByRefObject and hence should be the
base class for components that are context-bound objects. The framework class
MarshalByValueComponent is used as the base class for components that are context agile and
hence are marshaled by value. If you derive from either of these classes, your component
should provide two constructors: a parameterless default constructor and a constructor that
takes an IContainer. The component should add itself to the container.

In addition to the properties of IComponent, the Component and MarshalByValueComponent
classes also implement IServiceProvider. These classes also have DesignMode and Container
properties so that if your component is a site, you can use these properties to implement ISite.
These two classes also implement the version of Dispose that takes a bool parameter; the
method is implemented like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Implementation in Component; MSIL converted to C++ with some
// changes made for clarity
protected virtual void Dispose(bool disposing)
{
 if (disposing)
 {
 Monitor::Enter(this)
 try
 {
 if (this->Site != 0 && this->Site->Container != 0)
 this->Site->Container->Remove(this);
 if (this->Events != 0)
 {
 EventHandler* event;
 event = __try_cast<EventHandler*>
 (this->Events->Item[Component::EventDisposed];
 if (event != 0)
 event->Invoke(this, System::EventArgs::Empty);
 }
 }
 __finally
 {
 Monitor::Exit(this)
 }
 }
}

The first point to make about this code is that because the Component class does not know the
fields in the derived class, it cannot dispose them. Thus, if you have managed or unmanaged
resources in your class, you must override this method. The second point to make is that the
code checks to see whether the Site property has a valid value, and if it does, this method
removes the current component from the site’s container. You can see that the ISite interface is
used for communication between a component and its site, so if you override this method, it is
important that you call the base class in your override.

The final point to make is that the code raises an EventHandler event, but look at how the
code does this. The Component class provides custom add_ and remove_ event methods that
store the event delegates in a property named Events:

protected:
 __property EventHandlerList* get_Events();

This property is protected, so only derived classes can access it. The delegate for the Disposed
event is added to the EventHandlerList field with a key, and the Dispose method uses the key
to obtain the delegate. The EventHandlerList class contains a linked list of a private class
named ListEntry, which contains a delegate and a key to identify the link. The key is an
Object, and the EventHandlerList class does a simple identity check on the key when

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object, and the EventHandlerList class does a simple identity check on the key when
searching for an entry. (This arrangement conserves memory; if a string were used instead,
memory would be allocated for all the characters as well as for other members of the string
object.) The Component class has a static object named EventDisposed that is used for the
key.

The reason for using EventHandlerList is not immediately obvious from this code, but it
becomes apparent when you consider a class derived from Component that implements many
events, such as Control. The Control class is the base class for all controls and forms, and it
can generate 57 different events. If each of these events were added to the Control class using
the __event keyword on a delegate field, the class would have 57 fields to hold the multicast
delegates and 171 methods (an add_, remove_, and raise_ method for each event). These 57
fields represent a large amount of memory, and this arrangement is wasteful if the user of the
control provides event handlers only for a handful of events. Instead, Control implements each
event with three methods: an add_ method, a remove_ method, and a raise method with the
name of On<Event>, where <Event> is the event name. The add_ and remove_ methods are
added as metadata to the event, but the On<Event> method is not added to the metadata, so to
raise the event, you have to call this method explicitly.

Take, for example, the Click event:

// Implementation of the Click event, C++ converted from MSIL
public:
 __event void add_Click(EventHandler* value)
 {
 this->Events->AddHandler(Control::EventClick, value);
 }
 __event void remove_Click(EventHandler* value)
 {
 this->Events->RemoveHandler(Control::EventClick, value);
 }
protected:
 virtual void OnClick(EventArgs* e)
 {
 if (this.CanRaiseEvents)
 {
 EventHandler event;
 event = __try_cast<EventHandler*>
 (this->Events->get_Item[Control::EventClick]);
 if (event != 0) event->Invoke(this, e);
 }
 }

The event obtained from Events is cast using the MSIL castclass operator, which is equivalent
to the C++ __try_cast<> operator. The check to see if the variable is zero is redundant
because if the cast fails an exception will be thrown. The class has only one field for all of the
events, the EventHandlerList used by the Events property (the private CanRaiseEvents
property is not implemented with a field). The memory used by the EventHandlerList field
will increase as you add handlers for the events, but you can feel assured that you have only as
much memory as you require.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The astute reader will notice that the delegate is obtained from the EventHandlerList field
using a member named EventClick as the key, which implies that there will be 57 such objects.
Doesn’t this behavior mean that Control actually uses more memory than if the events were
implemented with delegate fields? This arrangement is not the case because EventClick is a
static member, so you get the overhead of these keys only once in an assembly. All other
instances of Control will use the same objects.

Controls and Forms

The Control class is the base class of all UI items in the Windows Forms library; Control
derives from Component, and it implements ISynchronizeInvoke and IWin32Window.
ISynchronizeInvoke has methods that allow you to invoke a delegate on the thread where the
control is running. UI items are context bound, and any graphical action must be performed on
the same thread as the thread where the Control was created. The IWin32Window interface has
a single read-only property that returns the Windows handle of the control.

The Control class is not __abstract, but there is little point in creating an abstract class
because there will not be any code to draw the control’s UI. I will return to how to draw a
control’s UI later in this chapter in the section “Using GDI+.” Instead, you should derive a
class either directly or indirectly from Control. Table 4-2 shows the base classes in the
Windows Forms library. These classes provide functionality exhibited by one or more UI
controls: containing a list box or a spinner, having a buttonlike behavior, or being a container
for other controls.

Table 4-2. Control Base Classes in the Windows Forms Library
Base Class Description

ButtonBase Basic functionality for button controls, such as Button, CheckBox and
RadioButton.

ContainerControl A control that can contain child controls, one of which will have the
focus. This control has handler code for mnemonics. This control is the
base class for Form, PropertyGrid, UpDownBase, and UserControl.

ListControl Base class for controls that show a list: ListBoxand ComboBox.

ScrollableControl Base class for controls that contain controls and can have scroll bars,
ContainerControl and Panel.

ScrollBar Base class for controls that represent scroll bars, HScrollBar and
VScrollBar.

TextBoxBase Base class for controls that contain text, TextBox and RichTextBox.

UpDownBase Base class for a control that has a spinner control, DomainUpDown and
NumericUpDown.

UserControl Base class for composite controls that are based on other controls.

All of the classes in Table 4-2 are abstract except ContainerControl, ScrollableControl, and
UserControl, but you are unlikely to want to create instances of these classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Forms as Control Containers

The Form class is derived from Control. A form is also a container of controls, so when you
add a control to a form, you do so through a call to the Controls property of the form, as
shown in the following code:

__gc class MyForm : public Form
{
public:
 MyForm()
 {
 Button* btn = new Button;
 btn->Width = 100; btn->Height = 50;
 this->Controls->Add(btn);
 }
};

The Controls property gives access to an instance of the Control::ControlCollection nested
class. The collection is of controls needed by Form’s layout manager. When the form is
disposed of, the Form object knows the controls that it contains. When a Form object’s
Dispose is called this method will go through the collection of Control objects and dispose of
each one. This means that you do not have to dispose of the controls on a form in the form’s
Dispose method.

If you use non-Control components, these will not be added to the control collection, so you
have to ensure that these components are disposed of when the form is disposed of. To
perform this disposal, you should add a Dispose method to your form, but be sure that you call
the parent Dispose method, as shown here:

__gc class MyForm : public Form
{
 EventLog* log;
public:
 MyForm()
 {
 log = new EventLog(S"Application");
 }
protected:
 void Dispose(bool disposing)
 {
 if (disposing) log->Dispose();
 Form::Dispose(disposing);
 }
};

If you have numerous components, you can add a Container private member to hold the
components and tell this container to dispose of the components it holds.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

__gc class MyForm : public Form
{
 EventLog* log;
 System::ComponentModel::Container* components;
public:
 MyForm()
 {
 components = new System::ComponentModel::Container;
 log = new EventLog(S"Application");
 components->Add(log);
 }
protected:
 void Dispose(bool disposing)
 {
 if (disposing)
 components->Dispose();
 Form::Dispose(disposing);
 }
};

Notice that I have to give the fully qualified name of the Container class even if I use using
namespace for the namespace of this class. This is an illustration of a very irritating feature of
the Windows Forms library—the designers of many of the classes have given some properties
names that are the same names of types in the .NET Framework. The Form class is derived
indirectly from Component, and Component has a property named Container. So if I create an
instance of the Container class, the compiler does not know whether I mean the class or the
base class member. The only way to resolve this issue is to use a fully qualified name for the
class. I guess the original designers used these names because they were unaware of this name
clash issue: properties are implemented with get and/or set methods, so these names are
different from the class names. This problem is identified through the rather irrelevant error
C2065.

The Windows Forms designer for C# and Visual Basic .NET will add a component container
and a Dispose method similar to the one I have shown here, but curiously, when you add
components using a designer, they are not added to the container. This behavior means that the
components are not disposed of until the garbage collector calls the finalizer of the form, and
this makes the Dispose method useless. When you trust the design of your code to a RAD
designer, you always run the risk—as in this case—of producing useless code.

Components do something; that’s why you use them. You might get the component to perform
some action by explicitly calling its methods, or the component might be attached to some
system resource that generates data that the component passes onto your code through events.
You are most likely to create a component in a form’s constructor (or the constructor of any
component container), but at this point, your form will not be completely constructed, so it
will not be able to handle any events correctly.

A component that generates events in this manner can implement ISupportInitialize. This
interface has two methods: BeginInit and EndInit. The form will call BeginInit to initialize the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interface has two methods: BeginInit and EndInit. The form will call BeginInit to initialize the
component but to indicate that the form is not ready to handle events. The form is able to hook
up event handlers to the component, reassured that the handlers will not be called. At the end
of the form’s constructor, the form will be initialized and ready to handle events. At this point,
the form can call EndInit to indicate that the component can start generating events.

A component container has no control over how a component generates an event. The
component could create a thread that monitors some hardware devices and then generate an
event when some hardware action occurs. Can a component container handle events generated
on another thread? In many cases, the answer is yes as long as the event handler method
protects thread-sensitive code and data from multithreaded access. However, some component
containers are context bound, and others (such as controls and forms) should be accessed only
on the thread on which they were created. This restriction is why Control implements
ISynchronizeInvoke, as shown here:

__gc __interface ISynchronizeInvoke
{
 __property bool get_InvokeRequired();
 IAsyncResult* BeginInvoke(Delegate*, Object*[]);
 Object* EndInvoke(IAsyncResult*);
 Object* BeginInvoke(Delegate*, Object*[]);
};

A component that implements this interface indicates through the InvokeRequired property
whether the component can be called on a thread other than the thread that created the
component. If InvokeRequired is true, the component cannot be accessed directly by other
threads and those threads must call the invocation methods on ISynchronizeInvoke, which
guarantees that the delegate will be invoked on the thread where the component was created.

Take the FileSystemWatcher class, for example. As the name suggests, this class watches a
folder for changes (file creation, deletion, or renaming) and then generates appropriate events.
Instances of this class use a ThreadPool thread to do the watching, and the events will be
generated on this thread pool thread. This arrangement means that even if you create a
FileSystemWatcher in the constructor of a form (and hence on the same thread as the form),
the events will be generated on another thread. If the event generation results in a direct call to
a form method, the method will be called by a thread other than the one to which the form is
bound. The event is actually generated by a method named On<Event>, where <Event> is the
event name (for example, OnCreated). This method checks to see whether the event should be
generated on the thread pool thread or on another thread. This check is performed by accessing
a member property named FileSystemWatcher::SynchronizingObject, which is an
ISynchronizeInvoke interface. If this member is zero, it means that the event handler object is
happy to be called by any thread, and so the event is invoked on the thread pool thread. If the
member is nonzero, the method tests ISynchronizeInvoke::InvokeRequired and if it is true, the
method calls ISynchronizeInvoke::Invoke, which will call the event handler on the thread to
which the SynchronizingObject is bound.

If you have a component that implements ISynchronizeInvoke, it means that the component is
thread bound and so its methods must be invoked on a specified thread. If that thread-bound
component uses a component that has a SynchronizingObject member, you should initialize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

component uses a component that has a SynchronizingObject member, you should initialize
the property with the thread-bound component. Note that a component that has a
SynchronizingObject member will merely pass the event delegate to the component that
implements ISynchronizeInvoke. Such a delegate can have targets other than the synchronizing
component, but it makes little sense to marshal those methods through to the synchronizing
component. In essence, when you have this intimate connection between a synchronizing
component and a component that has a SynchronizingObject member, it is best to ensure that
the event-generating object has delegates only to the synchronizing component.

Building GUI Applications

Think back to the days of developing native C++ code for Windows. Now answer this
question: What is the difference between a console application and a GUI application? Your
first answer could be that the entry point for a console application is main, and for a GUI
application, it is WinMain, but isn’t it also true that you can call your entry point anything you
like as long as you inform the linker? Yes, that is true, so your second answer to this issue is
that the parameters of the entry points are different for console and GUI applications. But this
really isn’t the essence of how console and GUI applications differ. Actually, the original
question is a trick question because the answer is in the question: the difference is that a
console application needs a console to run, while a GUI application doesn’t need one because,
well, the application draws its own graphical user interface.

You indicate the type of the application by using the linker switch /subsystem. For a console
application, you use /subsystem:console, and for a GUI application, you use
/subsystem:windows. This switch instructs the linker to add an appropriate flag to the PE
header so that when the Windows loader loads the application, it can determine whether it
needs to use an existing console (or create one if the application is not started from the
command line) or whether the application will provide its own window.

The .NET assembly manifest also has a flag to indicate the type of application. This flag is the
.subsystem directive. For a console application, it has a value of 0x2, and for a GUI
application, it has a value of 0x3. Perhaps it is unsurprising that these values are the same as
used in the PE header to indicate these application types. There are two ways to set the value
for the .subsystem directive. The first way is to use the /subsystem linker switch. If you use
/subsystem:windows, your entry point must be called either WinMain or wWinMain,
depending on whether you are compiling an ANSI or a UNICODE entry point. In both cases,
the CRT will be initialized. If you use /subsystem:console, you can call the entry point
anything you like by using the /entry linker switch (with the proviso that you do not use
WinMain or wWinMain), but if you want to use the CRT, you have to call the entry point main
or wmain. The other way of determining the application type is implicit in the previous
discussion: if your entry point is main or wmain, the compiler will assume that the application
is for the console, and if the entry point is WinMain or wWinMain, the compiler will assume
that the application is a GUI application.

For example, this code will show a message box, but if you start it using Windows Explorer,
you’ll also get a console window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Compile with cl /clr cons.cpp.
#using <mscorlib.dll>
#using <system.windows.forms.dll>
void main()
{
 System::Windows::Forms::MessageBox::Show(
 S"Console application");
}

On the other hand, the following code will create a GUI application:

// Compile with cl /clr gui.cpp
#using <mscorlib.dll>
#using <system.windows.forms.dll>
int __stdcall WinMain(unsigned, unsigned, char*, int)
{
 System::Windows::Forms::MessageBox::Show(S"GUI application");
 return 0;
}

Why am I saying this? Well, occasionally there are advantages to having a console associated
with a GUI application. For example, a very basic debugging technique is to sprinkle your
code with Console::WriteLine statements to give indications of the current state of the
application. If your application does not have a console, the output has nowhere to go. I will
describe more effective ways to provide trace statements in Chapter 7, but it is important to
note that the .NET Framework libraries have no knowledge whether you will use them in a
console or a GUI application, so any output they produce will go to the console. This code will
invoke JIT debugging:

void main()
{
 throw new Exception(S"Error");
}

If you tell the Just-In-Time Debugging dialog box that you do not want to start a debugger, the
runtime will rather helpfully print the following code at the command line:

Unhandled Exception: System.Exception: Error
 at main()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Later in this chapter (in the section “Exceptions”), I will show that the Windows Forms library
will provide a dialog to show exception information. However, if you dismiss this dialog and
continue to run the application, you lose the exception information (because there is no
attached console for the dump of the exception to go to). With a GUI application, you have to
use some other mechanism to trace the uncaught exception.

Before leaving the subject of the GUI entry point, it is worth mentioning the use of COM in
GUI applications. In .NET applications, you can use COM objects through COM interop, and
this means that the managed thread must be initialized in a COM apartment. Managed GUI
applications can also access COM objects, and in some cases it is not apparent that COM is
being used. For example, GUI-managed applications can be hosts for ActiveX controls and
they can use drag and drop. (See the sections “Controls and ActiveX Interfaces” and “Drag
and Drop” later in this chapter for more about these topics.)

All messages sent to a Win32 window must go through a message queue, which as the name
suggests, synchronizes the messages so that they are handled in the order that they are placed
in the queue. A message queue is thread based, so a window must access the queue using that
specific thread. If this thread performs some lengthy task, it will not be pumping the message
queue and hence system messages sent to update the window’s UI will not be handled. Such a
lengthy task could be accessing a COM object—in particular, if the object is in another
process or on another machine—so COM provides a mechanism to allow the message queue
to be pumped for UI messages while waiting for a COM method call to complete. A single-
threaded apartment (STA) thread uses a Windows message queue to synchronize access to the
apartment, and this includes the notification that a COM call has completed. While an STA is
pumping the message queue for such a notification, it could receive—and handle—UI
messages from the system. This mechanism only handles a subset of UI messages, but it does
help prevent a window from appearing to have stopped responding.

There is no default synchronization to code in a multithreaded apartment (MTA), so if you
make a UI thread an MTA thread it means that while a COM call is active, the thread will be
blocked and will not pump the message queue. In essence, all UI threads must be initialized in
an STA if the thread is to make any COM calls. By default, when a managed thread first
makes a COM call, the runtime will initialize the thread into an apartment. However, the
default apartment type is the process’s MTA. If your application has even the slightest risk of
using COM, you must initialize the main thread (the thread that calls Application::Run; see the
next section) in an STA. You can do this through the [STAThread] attribute:

[STAThread]
int __stdcall WinMain(unsigned, unsigned, char*, int)
{
 // GUI code
 return 0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using GDI+

A GUI application by definition has a GUI supplied by a window. You can provide
information through a GUI in two general ways: through controls, which are child windows
that have a user interface, and by drawing an image. Drawing images is the purpose of the
GDI+ library, and I will cover the basics in this section. Controls are covered by the Windows
Forms library, which I will delay for the section “Controls and Forms.”

You can use the GDI+ library from unmanaged C++ as well as managed C++. Visual Studio
.NET is provided with classes that are wrappers around the functions exported from the
gdiplus.dll file, and if you intend to perform managed development with GDI+, it is worth
reading the documentation for the unmanaged library as well as the documentation for the
managed library. The classes in the system.drawing assembly (in the System::Drawing,
System::Drawing::Drawing2D, System::Drawing::Imaging, System::Drawing::Text, and
System::Drawing::Printing namespaces) are managed wrappers around the GDI+ library.

So that you can try out some of GDI+ classes, I need to briefly tell you how to get a window
that you can draw upon. A stand-alone window is a Form that derives from the Control class
and inherits from it the Control::Paint event.

protected:
 virtual void OnPaint(PaintEventArgs*);
public:
 void add_Paint(PaintEventHandler*);
 void remove_Paint(PaintEventHandler*);

As I mentioned earlier, the add_ and remove_ methods add and remove a delegate from a
private EventHandlerList field, and the OnPaint method raises the event. The OnPaint method
is called when the native window on which the control is based receives the Win32
WM_PAINT message. Thus you can view the OnPaint method as the WM_PAINT message
handler, and because its role is to raise the Paint event, you can also regard it as the bridge
between the Win32 message-based event system and the .NET delegate-based event system.

If you know that no code is going to add a Paint handler delegate, you can simply override the
OnPaint method. If you think that code might add a Paint handler delegate, you can still
override the OnPaint method but you have to be sure that you call the base class method.
Here’s the code to draw a cross on the form:

// basicform.cpp
__gc class TestForm : public Form
{
protected:
 void OnPaint(PaintEventArgs* args)
 {
 Graphics* g = args->Graphics;
 g->DrawLine(Pens::Black,
 0, 0,
 ClientSize.Width-1, ClientSize.Height-1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ClientSize.Width-1, ClientSize.Height-1);
 g->DrawLine(Pens::Black,
 0, ClientSize.Height-1,
 ClientSize.Width-1, 0);
 Form::OnPaint(args);
 }
};

I will describe the Graphics object in more detail later, but it is worth pointing out that I have
not paid any attention to the clipping rectangle (the invalid region that needs to be updated), so
if you resize this window, you will find that the cross will be drawn a little skewed. Again, I’ll
return to these issues later.

The entry point for this assembly looks like this:

// basicform.cpp
int __stdcall WinMain(unsigned int, unsigned int, char*, int)
{
 Application::Run(new TestForm);
 return 0;
}

The Run method is the equivalent to the message loop in a Win32 application. The final point
I need to make concerns the assemblies that the application will need. As you will expect, the
application needs to use types in mscorlib.dll and in system.windows.forms.dll; however,
because this code uses some GDI+ commands, it also needs to reference system.drawing.dll.
There is one final assembly that you need to be aware of. The Forms class derives from
Component. This class is in the System::ComponentModel namespace and is implemented in
the system.dll assembly. In general, if you do any work with Windows Forms, you will need
to reference these four assemblies:

// basicform.cpp
#using <mscorlib.dll>
#using <system.dll>
#using <system.drawing.dll>
#using <system.windows.forms.dll>

using namespace System;
using namespace System::Drawing;
using namespace System::Windows::Forms;

Graphics Class

The PaintEventArgs sent to a paint handler contains a Graphics object. This object is
equivalent to the device context that Win32 code uses when it draws graphics. The Graphics
object even has a static method, FromHdc, that you can use to create a Graphics object from a
Win32 device context, and an instance method GetHdc that will return the encapsulated device

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32 device context, and an instance method GetHdc that will return the encapsulated device
context. Note that a device context is a system resource, so if you call GetHdc, you will also
need to call Graphics::ReleaseHdc. Furthermore, because a Graphics object caches a device
context, the Graphics object must be disposed of when it no longer being used.

Normally, you would obtain the Graphics object from the PaintEventArgs passed to OnPaint
or to a Paint event handler (which, of course, is called by OnPaint). This Graphics object will
be created by another method higher up in the call stack, and this method will ensure that
when the stack is unwound, the Graphics object will be disposed of. You can also get a
Graphics object by calling Control::CreateGraphics. If you do this, it is your responsibility to
dispose of the object.

void OnClick(EventArgs* args)
{
 Graphics* g = CreateGraphics();
 // Generate a color from the mouse position.
 Color col = Color::FromArgb(MousePosition.X & 0xff,
 MousePosition.Y & 0xff,
 (MousePosition.X * MousePosition.Y)
 & 0xff);
 g->FillRectangle(new SolidBrush(col), ClientRectangle);
 g->Dispose();
}

The Graphics object encapsulates the device context where the drawing will occur, and it also
has the methods to do that drawing. Table 4-3 is a summary of the drawing methods in the
Graphics class. It is interesting that there are two methods for drawing shapes such as
rectangles and ellipses, one to draw the outline, and another to draw the interior. This
arrangement is in contrast to Win32, where a single function is used to draw the outline and
the interior of a shape; in Win32, you draw an outline by using a null brush, and you draw a
shape without an outline with a pen the same color as the brush used for the interior.

Table 4-3. Members of the Graphics Object Used to Draw on a Device Context
Method Description Win32 Equivalent

DrawArc Draws an arc Arc

DrawBezier Draws a Bezier spline PolyBezier

DrawBeziers Draws a series of Bezier splines PolyBezier

DrawClosedCurve Draws a closed cardinal spline PolyDraw

DrawCurve Draws a cardinal spline none
DrawEllipse Draws the outline of an ellipse Ellipse

DrawIcon Draws an icon to fill a rectangle none

DrawIconUnstretched Draws an icon without stretching DrawIconEx

DrawImage Draws an image to fill a rectangle StretchBlt

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DrawImageUnscaled Draws an imaged without stretching BitBlt

DrawLine Draws a line between two points LineTo

DrawLines Draws a series of connected lines Polyline

DrawPath Draws the outline of a path StrokePath

DrawPie Draws the outline of a pie AngleArc

DrawPolygon Draws the outline of a polygon PolyDraw

DrawRectangle Draws a rectangle outline Rectangle

DrawRectangles Draws a series of rectangles none

DrawString Draws a string DrawTextEx

FillClosedCurve Fills the interior of a closed cardinal spline none

FillEllipse Fills the interior of an ellipse Ellipse

FillPath Fills the interior of a path FillPath

FillPie Fills the interior of a pie Pie

FillPolygon Fills the interior of a polygon Polygon

FillRectangle Fills the interior of a rectangle Rectangle

FillRectangles Fills the interiors of a series of rectangles none

FillRegion Fills the interior of a region FillRgn

When you draw on a device context using the Win32 drawing functions, you first have to
prepare the device context by selecting the pen, brush, font, or bitmap that you want to use
during the drawing, which means that you can perform several drawing actions using, for
example, the same pen. In contrast, the drawing methods of Graphics are passed the
appropriate Pen, Brush, Icon, or Image object that will be used only for that method call. If
you want to perform another drawing action using the same pen, you need to pass that method
the same Pen object. Furthermore, as you draw in a Win32 device context, the last point is
retained, for example ::LineTo or ::PolyBezierTo; such information is not retained in the
Graphics object.

Coordinate Structures

When you draw using a Graphics object, you have to specify where the drawing will occur.
Some drawing methods draw between two points (for example, DrawLine). In this case, you
supply the positions with Cartesian points. You can supply the positions with either integer or
floating point values, as individual coordinates or through Point or PointF structures, as
shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

g->DrawLine(Pens::Black, Point(0, 0), Point(100, 0));
g->DrawLine(Pens::Black, PointF(100.0f, 0.0f),
 Point(100.0f, 100.0f));
g->DrawLine(Pens::Black, 100, 100, 0, 100);
g->DrawLine(Pens::Black, 0.0f, 100.0f, 0.0f, 0.0f);

These lines will draw a square 100 by 100 units.

Most Graphics methods will draw within a rectangle, and in this case, you can either give the
position and size of the rectangle as four integers or four floats, or you can use a Rectangle
object. Rectangle and Point objects are useful because you can perform certain operations on
them. Table 4-4 gives a summary of these operations for Point and Rectangle; RectangleF has
operations similar to Rectangle, but curiously, PointF has no operations. Rectangle and Point
have static members that convert from the floating point version.

Table 4-4. Coordinate Operations for the Integer Versions of Point and Rectangle
Method Description

Point::Offset Translate the point.

Rectangle::Inflate Change the size of the rectangle so that the center remains in the same
place. A positive number increases the size; a negative number
decreases the size. The actual inflation is twice as large as the value
you specify.

Rectangle::Offset Translate the rectangle.

Rectangle::Intersect Get a rectangle that is the intersection of two other rectangles.

Rectangle::Union Get a rectangle that will fully contain two other rectangles.

The Rectangle::Inflate method is interesting; this method will change the size of a rectangle,
increasing it or decreasing it. The value you specify for the inflation in a direction is half the
actual transform because the inflation is applied on both edges in that direction so that the
center remains in the same place.

// A rectangle at (0, 0) which is 100 units wide
// and 100 units high
Rectangle rect(0, 0, 100, 100);
Console::WriteLine(rect.ToString())
// Prints {X=0,Y=0,Width=100,Height=100}
// Deflate the rectangle.
rect.Inflate(-10, -20);
Console::WriteLine(rect.ToString())
// Prints {X=10,Y=20,Width=80,Height=60}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here the 100 by 100 rectangle is deflated by 10 in the x-direction (so this deflation will take
off 10 units from the distance between the center and both the left edge and the right edge) and
20 in the y-direction (so 20 units are taken off the distance between the center and both the top
edge and the bottom edge). The rectangle structures also have methods to determine whether a
point or a rectangle is contained in its area (Contains), or if part of its area intersects with
another rectangle (IntersectsWith).

Coordinate Transforms

In the earlier discussion, I was careful to use the term units rather than a specific unit such as
pixel. The coordinates that you specify are named World units. Before GDI+ performs a
graphics action, the Graphics object performs two transforms on the coordinate to determine
how the coordinate refers to the device. The first transform is named the World transform, and
it is specified by the Graphics::Transform property. This property is a Matrix object that
represents a 2D matrix and a vector translation. I will not go into the mathematics here, but
basically, a rotation, a stretch, or a skew operation on a 2D shape can be specified by a 2 by 2
matrix. A translation—moving a shape—cannot be represented by a matrix operation because
it is simply an offset added to the x-coordinate and y-coordinate of the shape being
transformed. You can set the Graphics::Transform property directly, or you can use methods
on the Graphics object. If you set them yourself, either you can provide the values directly
through the Matrix constructor or you can use the transform methods on this class.

One use for the Transform property is to change the coordinate axes that are used by the
Graphics object. The default origin is the upper-left corner of the graphics object, and the
default direction of the x-axis is from left to right. For the y-axis, it is from top to bottom. This
arrangement is the same as for Win32 device contexts.

The following code draws two axes 100 units long, as shown in Figure 4-1:

g->DrawLine(Pens::Black, 0, 0, 0, 100);
g->DrawLine(Pens::Black, 0, 0, 100, 0);

Figure 4-1. Two axes drawn using the default transforms. The y-axis goes from the upper-left
corner to the lower-left corner.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you would prefer to have the y-axis going from bottom to top, you have to use two
transforms. The first transform is to mirror on the x-axis so that points below the x-axis appear
above it. However, because the x-axis is originally along the top edge, all the points above the
x-axis will be outside of the client area. To remedy this problem, a translation will have to be
applied to move all points down the screen. In this example, I move the x-axis down by the
height of the client area, as shown in Figure 4-2.

g->Transform = new Matrix(1, 0, 0, -1, 0,
 ClientRectangle.Height-1);
g->DrawLine(Pens::Black, 0, 0, 0, 100);
g->DrawLine(Pens::Black, 0, 0, 100, 0);

Figure 4-2. The two axes transformed so that the y-axis goes from the lower-left corner to the
upper-left corner.

The interesting thing about this transform is that you only set it once; after that, all drawing
actions on this specific graphics object are subject to the transform. In the preceding code, I
know that the transform that mirrors points on the x-axis is represented by the four integers (1,
0, 0, -1). The final two integers are the translation. I could use the following code instead:

Matrix* m = new Matrix;
m->Reset();
m->Scale(1, -1);
m->Translate(0, 1-ClientRectangle.Height);
g->Transform = m;

It is important that you assign Transform to the Matrix after you have set this object. The
reason is that the property get_ method will obtain the matrix from GDI+ and return a copy, so
the transform will be applied to the copy rather than to the actual matrix. These lines of code
are equivalent:

// Illustrating why property access is not always a good thing;
// don't do this.
// This code...
g->Transform->Reset();
g->Transform->Scale(1, -1);
g->Transform->Translate(0, 1-ClientRectangle.Height);
// ...is the same as this code
Matrix* m;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Matrix* m;
m = g->Transform; m->Reset();
m = g->Transform; m->Scale(1, -1);
m = g->Transform; m->Translate(0, 1-ClientRectangle.Height);

It is a pity that the Windows Forms library makes such an extensive use of properties because
often code that looks like it should work doesn’t work the way you would expect. For
example, this code looks obvious:

this->ClientSize.Width = 100;
this->ClientSize.Height = 100;

The Form::ClientSize property gives the width and height of the client area of a form (the area
excluding the border and caption). The code looks like it should change the size of the form so
that the client area is 100 by 100 units. However, it does not change the physical window. The
reason is that these calls represent the following property method calls:

this->get_ClientSize().get_Width = 100;
this->get_ClientSize().get_Height = 100;

The code to resize the window occurs in the set_ClientSize property method, which has not
been called in this code. Instead, you have to write this code:

this->ClientSize = new System::Drawing::Size(100, 100);

Notice that to use the Size class I have to give the fully qualified name because Control has a
property named Size. Let’s go back to the working code I gave earlier:

Matrix* m = new Matrix;
m->Reset();
m->Scale(1, -1);
m->Translate(0, 1-ClientRectangle.Height);
g->Transform = m;

The mirror action is achieved by multiplying the y values by -1 (the call to Scale); however,
note that the translation is now negative. The reason is that because I have set the mirror
transform, this transform will be applied to the parameters of the translation. Also be aware
that the order that the transforms are applied is important; a mirror followed by a translation is
not the same as the same translation followed by the same mirror.

The Graphics class also has methods that you can apply to the transformation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

g->ScaleTransform(1, -1);
g->TranslateTransform(0, 1-ClientRectangle.Height);

This code avoids the problem I mentioned earlier with the property access to the Transform
member because these methods do the transform directly on the GDI+ structure that holds the
transform. However, the advantage of creating a Matrix object is that it can be created once in
the constructor and cached as a field, so in the paint methods, you only need to assign the
Graphics::Transform object to this cached field without having to perform the transforms each
time. Note that the transform should be created in the Resize handler because only during the
Resize handler will you know the size of the client area to be able to perform the translation.

I said that there were two transforms that are performed by GDI+. The transform represented
by Graphics::Transform is named the World transform, and it transforms the World units to
Page units. The other transform is the Page transform, and it transforms the Page units to
Device units, that is, the actual pixels used by the graphics device. The Page transform is a
scaling and involves two properties of the Graphics class: Graphics::PageUnit and
Graphics::PageScale. The Page units are simply multiplied by the Graphics::PageScale. The
Graphics::PageUnit is a little more complicated because you use it to identify the units that
you have used so that the Page transform must determine the scaling factor from your units to
the device units depending on the resolution of the device.

The values that you can use for Graphics::PageUnit are given in Table 4 5. The default unit is
GraphicsUnit::Pixel.

Table 4-5. Values in the GraphicsUnit Enumeration
Enumeration Size of Unit

Display Same as Pixel for video devices, 1/100 inch for printers

Document 1/300 inch

Inch 1 inch

Millimeter 1 millimeter

Pixel Single pixel

Point 1/72 inch

World Nontransformed units

Clipping Regions

Earlier I gave this code for the paint message handler:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// basicform.cpp
void OnPaint(PaintEventArgs* args)
{
 Graphics* g = args->Graphics;
 g->DrawLine(Pens::Black,
 0, 0,
 ClientSize.Width-1, ClientSize.Height-1);
 g->DrawLine(Pens::Black,
 0, ClientSize.Height-1,
 ClientSize.Width-1, 0);
 Form::OnPaint (args);
}

If the form is sizable, this method will be called whenever the form is resized. As the name
suggests, the form is the area where drawing will occur; any drawing outside of this area will
be clipped. In this example, the idea is to draw across from corner to corner, so if the size of
the form changes, the entire cross should be redrawn. To change the clip rectangle, you can
tell the framework that the entire client area ought to be redrawn. Here is one way to do this:

// clipform.cpp
 TestForm()
 {
 Resize += new EventHandler(this, &TestForm::Resized);
 }
protected:
 void Resized(Object*, EventArgs*)
 {
 Invalidate();
 }

In this case, I have decided to provide the Resize event handler through a delegate rather than
by overriding OnResize, which allows the Resize event to be handled by several other
handlers. The clipping area is actually a Region, which does not have to be rectangular. This
area can be accessed through the Graphics::Clip property. The Invalidate method is
overloaded and can be passed a Region that indicates the area that should be updated. The
overloaded version I have called here will make the entire client area invalid. When you call
any of the Invalidate methods, the Paint event is raised. In general, if the state of your Control
changes so that the visual image will also change, it is best to redraw the Control by
invalidating it. If your image is complicated (for example, a fractal image), you will find that
your application will have better performance if you draw only in the clip region because the
drawing you do outside of this region is simply ignored.

Finally, it is worth mentioning that the Form class has a property named ResizeRedraw, and if
this property is set to true, the entire Form will be invalidated when the Form is resized.

Colors

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Pens and brushes will have a color. The framework provides several classes to allow you to
choose the color to use. A color is made up of four values each varying between 0 and 255:
the red, blue, and green components and an alpha component. The alpha component is
effectively the transparency of the color, so a color that has an alpha value of 0 is totally
transparent and will not be seen. The Color __value type has a property for each of these four
values. These are named R, G, B, and A, but these properties are read-only. To create a Color
with specific values, you use the static methods named FromArgb, as shown here:

// Create a red, partially transparent color.
Color c = Color::FromArgb(128, 255, 0, 0);

You can also create a color object of a named color; the Color class has 141 named colors,
which are static properties, and each property corresponds to a member of the KnownColor
enumeration. If you use a named color, you can get the actual name of the color in a string
variable, as the following code shows:

Color red = Color::Red;
String* strName = red.Name;
unsigned char redValue = red.R;

The KnownColor enumeration also has some values for colors used by the system—for
example, ActiveCaption, which can be determined only at run time, and Color, which provides
a method, FromKnownColor, that will determine at run time the value of the specified color.
However, only a limited number of the named system colors are in Color; to get the complete
range, you use a class named SystemColors.

Pens

When you draw on a surface, you need to specify the Pen and/or the Brush to use. A Pen is
used to draw lines, and it is used for the outline of shapes. Pen is a generic class that has
properties for the color and width, as well as information about how two lines drawn with the
pen are joined together. Furthermore, pens can be used to draw dashed lines, and the Pen class
has properties to specify the type of the dash and the length of the dashes. When a pen is used,
it is assumed that it has a circular tip with the diameter given by the width of the pen. You can
change the tip through a transform, and the Pen class has a Transform property and transform
methods. When the pen is used, the transform is applied (ignoring the translation part of the
transformation). Because a transformation can include a stretch (Pen::ScaleTransform), the
Pen::Width property does not necessarily reflect the actual width of the pen.

Here is how to create a red pen:

Pen* redPen = new Pen(Color::Red);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The width of the pen will be determined by Pen::Width, Graphics::PageUnit, and
Graphics::PageScale. The default width is one page unit, so if the page units are set to
GraphicsUnit::Inch (and the scale is set to 1), you’ll get a very thick line! For convenience,
the framework also supplies a class named Pens that has a static member for each of the
named colors in Color and a class named SystemPens that has a pen for each of the foreground
colors in SystemColors. Pens would suggest that there will always be 140 or so pens in your
application, so isn’t this an excessive use of system resources? Well, as you will see in a
moment, you get only as many pens as you actually use.

You can specify the dashed property of a pen through Pen::DashStyle (one of the DashStyle
enumerations) and Pen::DashOffset, to give the dash spacing. You can also provide a custom
dash pattern through Pen::DashPattern, which is an array of floats where alternative elements
give the length of the dash and the length of the space between dashes. By default, a pen is
solid across its width, but you can make the line be drawn as a series of parallel lines by
providing a value for Pen::CompoundArray. Again, this property is an array of floats, but in
this case, the alternate values give the proportion of the width that will be filled or clear. For
example, if you want a pen that appears hollow with the center 50 percent empty, you could
do this:

// pens.cpp
Pen* hollow = new Pen(Color::Black, 10);
// Fill the first quarter, leave half empty,
// and fill the last quarter.
float lines __gc[] = {0.0, 0.25, 0.75, 1.0};
hollow->CompoundArray = lines;
// use pen
hollow->Dispose();

By default, the end of a line drawn with a pen will be square, but you can use the
Pen::EndCap and Pen::StartCap to specify one of the LineCap values, or you can provide
your own cap style with Pen::CustomEndCap and Pen::CustomStartCap. These properties
take a CustomLineCap, which is a class that is constructed from a GraphicsPath, which I will
come to later. However, the framework does provide a derived class named
AdjustableArrowCap that you can use to give the width and height of the arrow used for the
end cap, as shown here:

// pens.cpp
// Black pen, 5 units wide
Pen* arrow = new Pen(Color::Black, 5);
// The end is an arrow, twice the width of the pen, and the
// length is also twice the width of the pen.
arrow->CustomEndCap = new AdjustableArrowCap(2, 2);
// use pen
arrow->Dispose();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, it is worth mentioning that a pen is based on a system resource, so if you create a pen,
it makes sense to dispose of the pen when you have finished using it. However, be careful
what you do. Take a look at this:

Pen* pen1 = Pens::Black;
Pen* pen2 = new Pen(Color::Black);

Doesn’t this mean that these two pens are the same? After all, they are both black with default
values for the other properties. Well, no. This difference is highlighted if this code is in a Paint
handler and you try to dispose of pen1. You will find that the code will work fine the first time
the handler is called, but the second time it is called you will get an exception. The reason is
that Pens::Black is a static property member. The first time the property is accessed, the pen
will be created and placed in a Hashtable specific for the current thread. (This object is stored
in a data slot.) On subsequent accesses, the pen will be extracted from the Hashtable. There is
no way that you can get access to the Hashtable, so you cannot remove the entry. Hence, if
you dispose of a pen that is in the Hashtable, a reference to the disposed-of object will remain
in the Hashtable. Then, when you try to access the pen, you will access a disposed-of object.

This design of Pens (and SystemPens) means that you get only as many pens as you use, and
these pens are only created once—when you first use the pen—and disposed of when the
application finishes. However, because the members of Pens and SystemPens return a Pen
object, there is no obvious indication that you should not dispose of the pen. If you create a
pen yourself (as I did earlier with pen2), you should dispose of the pen when you have
finished with it. This requirement is why I cautioned you earlier.

Brushes

Brushes are used to fill areas, and typically they are used for background fills. The Brush class
is abstract and is the base for all the other brush classes, shown in Table 4-6. The Brushes and
SystemBrushes classes are the brush equivalent of Pens and SystemPens: they contain static
properties for named and system colors, and the brushes are created only on the first access
when they are stored in a Hashtable.

Table 4-6. The Brush Classes in System::Drawing and System::Drawing::Drawing2D
Class Description

Brushes Contains static properties, each a SolidBrush of a named color.

HatchBrush A brush based on a hatch pattern made up of a foreground color and
a background color.

LinearGradientBrush A brush with a linear gradient between two colors.

PathGradientBrush A brush that is used to fill a GraphicsPath. The gradient is from the
center of the path outwards.

SolidBrush A brush with a single, solid color.

SystemBrushes Contains static members. Each is a SolidBrush with a color used by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the system.

TextureBrush A brush that is based on an image. The area filled with this brush
will have one or more copies of the image.

As with pens, brushes encapsulate system resources, so it is important to dispose of a brush
when you no longer need it. Do not dispose of the brushes you obtain from Brushes and
SystemBrushes.

The various gradient brushes are new to GDI+. They allow you to fill an area so that it
graduates from one color to another, as shown here:

// brushes.cpp
LinearGradientBrush* brush;
brush = new LinearGradientBrush(Point(0, 0), Point(255, 0),
 Color::Red, Color::Green);
g->FillRectangle(brush, 0, 0, 255, 50);
brush->Dispose();

This code (in a Paint handler) will draw a rectangle 255 units wide and 50 units high
graduating from red at the left to green at the right (and hence, a rather mucky brown in the
center).

Bitmaps

The Image class is the base for Bitmap and Metafile. Image has basic properties for the size of
the image and the palette that will be used to draw it. More interesting are the methods of
Image: these methods allow you to create an Image object from a file (or some other Stream
object) and to save the image to a file. Image objects are also custom serializable, so you can
serialize them and store them in some other type of persistent storage.

The Bitmap class can be based on an existing bitmap saved to a file or accessible through a
stream, or it can be created as an empty bitmap of a specified size. The image file formats that
are supported are given as properties of the ImageFormat class, and the class supports the
most common image formats, including BMP, GIF, JPG, and TIFF. Because a bitmap can be
created from a stream, a stream can be part of an assembly manifest, and you can simply pass
the Stream obtained from a call to Assembly::GetManifestResourceStream to the Bitmap
constructor.

// resform.cpp
__gc class ResForm : public Form
{
public:
 ResForm()
 {
 String* strName;
 strName = String::Concat(
 RuntimeEnvironment::GetRuntimeDirectory(),
 S"\\system.windows.forms.dll");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 S"\\system.windows.forms.dll");
 Assembly* assem = Assembly::LoadFrom(strName);
 Stream* stm = assem->GetManifestResourceStream(
 S"System.Windows.Forms.ComponentModel.OrderImages.bmp");
 Bitmap* bmp = new Bitmap(stm);
 BackgroundImage = bmp;
 }
};

The OrderImages.bmp bitmap is an embedded resource in the system.windows.forms
assembly. Once you have an initialized Bitmap, there are two ways that you can show it on a
control: you can draw it with Graphics::DrawImage, or you can make the image the
BackgroundImage of the control. If you choose to make the bitmap the background image, the
bitmap will be copied repeatedly to completely fill the client area of the form. The set method
for the BackgroundImage property checks the image that is passed to initialize the background
and if the image is different from the current background image the set method will call
Invalidate so that the form is redrawn with the new image. If the control has child controls (for
example, if it is a Form), when the control is updated its child controls will also be informed
that the background image has changed. DrawImage has many overloads that allow you to
draw the bitmap at its original size, stretched in a rectangle, transformed to a parallelogram, or
drawn with its colors adjusted. These actions can be performed on the whole bitmap or on a
part of the bitmap.

You can change a bitmap, but the only drawing method Bitmap supplies is SetPixel. However,
you can create a Graphics object from a Bitmap, which means that you can perform off-screen
drawing and then render the bitmap.

// drawoff.cpp
// First draw 500 dots at random positions in a form's Paint handler,
// and then get the size of the client area.
Rectangle rect = ClientRectangle;
// Use a 10-unit border around the image.
rect.Inflate(-10, -10);
if (rect.Width > 0 && rect.Height > 0)
{
 // Create the bitmap
 Bitmap* bmp = new Bitmap(rect.Width, rect.Height);
 Random* rand = new Random;
 // Draw the dots.
 for (int i = 0; i < 500; i++)
 bmp->SetPixel(rand->Next(rect.Width),
 rand->Next(rect.Height),
 Color::Black);
 // Draw a rectangle within the bitmap.
 Graphics* grfx = Graphics::FromImage(bmp);
 grfx->DrawRectangle(Pens::Black, 0, 0,
 rect.Width-1, rect.Height-1);
 // Render the image on the form.
 // Graphics* g has been initialized elsewhere.
 g->DrawImage(bmp, rect);
 grfx->Dispose();
 bmp->Dispose();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 bmp->Dispose();
}

There is no facility in .NET to initialize a Bitmap from a window, presumably for security
reasons to prevent people from writing screen scraping programs. If you do want to get a
bitmap image from the device context of a window, you will have to use ::BitBlt through IJW
or platform invoke.

Cursors

A cursor is the image used to indicate the current mouse position. A Control has a cursor
property so that when the mouse is moved over the Control, the system will change the mouse
cursor to the Control’s cursor. Your Control can also change the cursor at run time. Another
situation in which you will use a cursor is if you use drag and drop. When you drag from one
window, the cursor will change to the drag cursor you specify, and when the cursor moves
over a drop target window, the cursor will change to indicate whether the item can be dropped
and if so, whether the item is moved or copied.

A cursor can be created from a file or a stream. Typically, you will have a cursor embedded as
a resource, so you can obtain a stream to the resource through GetManifestResourceStream, as
shown in this example:

__gc class MainForm : public Form
{
public:
 MainForm()
 {
 Assembly* assem = Assembly::GetExecutingAssembly();
 this->Cursor = new System::Windows::Forms::Cursor (
 assem->GetManifestResourceStream("cursor.cur"));
 }
};

This code assumes that the file cursor.cur has been bound as a managed resource to the
assembly. (I’ll show you how in the section “Managed Resources” later in this chapter.) The
Cursor class can be initialized only with a .cur file; it cannot be initialized with an animated
cursor (.ani) file.

The Cursors class contains static properties; however, these properties are handled in a
different way than the properties of Pens or Brushes. On the first call to each property get_
method, the appropriate system cursor is accessed and wrapped by a managed Cursor object.
This Cursor object is stored in a private field so that on subsequent calls to the property get_
method the field is returned. One of these cursors is a WaitCursor, so before you start some
lengthy operation that might freeze the UI, it is worth changing the cursor to the wait cursor,
assuming, of course, that you remember to return it back to the original cursor after the
operation has completed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System::Windows::Cursor* cur = this->Cursor;
this->Cursor = Cursors::WaitCursor;
DoLengthyOperation();
this->Cursor = cur;

Icons

There are three uses for icons. First, they are small image files, so you might want to use them
as bitmaps. Indeed, the Bitmap class can be initialized with an icon. Second, each window will
have a small icon as the system menu (in the left corner of the caption bar). In both of these
cases, the icon is wrapped by a managed class named Icon. Finally, each PE file can have an
icon; this can be a large icon or a small icon. The large icon (32 32) is shown when Windows
Explorer is set to large icon view. When you put a shortcut to the application on the desktop
and when you Alt-Tab, the large icon is shown in the task switch window. The small icon is
used when you use the small icon, list, or detailed view in Windows Explorer.

These icon files can be created with the Visual Studio .NET resource editor, but the binding of
the icon to the PE file is done in a different way for icons used for forms and icons used for PE
files. If an icon is to be used for the PE file, it will have to be an unmanaged resource,
compiled using the resource compiler, rc.exe, and bound with the linker. If an icon is to be
used to initialize an Icon object, it will have to be accessed through a stream or in an .ico file.
Such a managed object can be in the manifest (as I have shown earlier with bitmaps), or it can
be compiled as a serialized item in a ResX resource. I will return to the various types of
managed resources later in this chapter in the section “Compiled Managed Resources.”

Text and Fonts

The Graphics object can be used to draw strings with the DrawString method. Each of the
overloads of this method takes the string, a font, a brush to fill the drawn string, and an
indication of the position to draw the string. The location can be a point or a rectangle, and
you can also provide a StringFormat object that gives information about text alignment, line
spacing, tab stops, and how strings are truncated.

Text will be drawn using a font. When you create a control, the framework will initialize the
Control::Font property to a default font, so the simplest way to print a string is to use this
font:

// Graphics* g initialized somewhere else
g->DrawString(S"Test string", this->Font,
 Brushes::Black, 10.0, 20.0);

Notice that the position of the string, whether given as a point or a rectangle, is given as
floating point numbers rather than integers. Perhaps this system reflects the fact that much of
text alignment will be performed using nonpixel units such as points or inches.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you draw strings in a control, it is important to use the Font property because RAD
tools will have access to this property and will provide a value. If you are developing a form, it
will be your decision about which font to use, and often the standard font will not be suitable.
The Font property is an object of the Font class. You can initialize this object several ways,
but the most natural way is to supply the name of the font and the point size, as shown here:

// Graphics* g initialized somewhere else
System::Drawing::Font* font =
 new System::Drawing::Font(S"Arial", 12);
g->DrawString(S"Test string", font, Brushes::Black,
 10.0, 20.0);
font->Dispose();

This text will appear in a method of a class derived from Control. Because Control has a
property named Font, the code has to use the fully qualified name. Note that a Font object is
based on a system resource, so you have to make sure that you dispose of it when you have
finished with it.

To position a string, you will want to know how much space the string takes when it has been
drawn. To determine this space, you can call Graphics::MeasureString:

// strings.h
Graphics* g = args->Graphics;
String* str = S"Test string";
System::Drawing::Font* font =
 new System::Drawing::Font(S"Arial", 12);
// Get the size of the string
SizeF sizeStr;
sizeStr = g->MeasureString(str, font);
// Calculate a rectangle in the center of the form that will
// contain the string.
RectangleF rect = RectangleF::op_Implicit(this->ClientRectangle);
rect.X = rect.X + (rect.Width - sizeStr.Width)/2;
rect.Y = rect.Y + (rect.Height - sizeStr.Height)/2;
rect.Size = sizeStr;
g->DrawString(str, font, Brushes::Black, rect);
font->Dispose();

Of course, you have to ensure that the values you use to initialize a Font object correspond to
an actual font installed on your machine. The framework will attempt to find a font that best
fits the properties you specify, but it is often better to check at run time whether the fonts are
installed. Fonts of a similar type will be members of a font family, which you can obtain
through an instance of the FontFamily class. The families that are accessible in a Graphics
object can be obtained through the static FontFamily::GetFamilies method, and once you have
selected an appropriate FontFamily object, you can provide it to a Font constructor along with
other information that will better identify the font you want.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Graphics Paths

A graphics path is a collection of lines and curves and thus allows you to create complicated
outline shapes. You create graphics paths using the GraphicsPath class. This class has
methods similar to those of the Graphics class. The difference is that you add an instruction to
draw a line or a shape rather than actually draw the shape. These instructions can be played
back later through the Graphics::DrawPath and Graphics::FillPath methods. A graphics path
might be open or closed, and to close a path, you call the GraphicsPath::CloseFigure method,
which will simply draw a line between the start and end points. A region can be created from a
GraphicsPath, in which case an open graphics path will be closed automatically.

GraphicsPath has a Transform method, which you can use to supply a Matrix object and a
Warp method so that the class can distort the image, through the array of floating point values
passed as a parameter.

Regions

I have mentioned already that when you draw in a control, you draw in the current clipping
Region; however, there are other uses for Region objects. A region is made up of
GraphicsPath objects and rectangular regions, and a region is used to specify an area where
you can draw. You can also create a region based on other regions: either the union of two
regions (Union), the intersection of them (Intersect), the area occupied by either region but not
both regions (Xor) or the region occupied by one region but not by the other (Exclude and
Complement).

// regions.cpp
__gc class MainWindow : public Form
{
public:
 MainWindow()
 {
 this->FormBorderStyle = FormBorderStyle::FixedDialog;
 System::Drawing::Region* reg;
 reg = new System::Drawing::Region(this->Bounds);
 Rectangle rect(0, this->Height/3, this->Width/2,
 this->Height/3);
 reg->Exclude(rect);
 this->Region = reg;
 }
};

This code will create a form that is rectangular but has a central portion excluded. The Region
property of a form defines the area where you can draw. The results of this code can be seen in
Figure 4-3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-3. The results from defining the region for a form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Controls and Forms

The Windows Forms library contains the classes used to develop controls and forms. A
control is a UI element that can paint itself and can contain other forms. However, a control
cannot be created on its own; it must be part of a control container. In this respect, a control is
analogous to an ActiveX control or a Win32 child window. Controls typically have Control or
UserControl as the immediate base class, although you can derive from any of the existing
controls in the Windows Forms library.

A form is a control container, and it can paint itself. Unlike a control, a form can be created as
a stand-alone window. Typically, forms derive from Form (which is a child class of Control),
but you can extend an existing form by deriving from its class. Forms are very much like
Visual Basic 6 forms, which is presumably where the name originates. Indeed, you will find
that some obscure Visual Basic features that are hardly relevant to .NET have been carried
over to Windows Forms (for example, Control has a Tag property and Form has a Load
event). These features have endured to facilitate the porting of Visual Basic 6 code to Visual
Basic .NET.

Controls and forms are based on windows (they each have a Handle property that gives access
to the HWND, which I’ll return to in the next section, “Where’s the WndProc?”), but they are
quite unlike Win32 windows to program. You do not have to register a Windows class nor do
you have to write a Windows procedure. The Form class does all of that for you and translates
Windows messages into .NET events. This behavior is another case in which forms are very
much like Visual Basic 6 and are very different from traditional Win32 Windows
programming. Indeed, you will find that it is a far from straightforward task to convert
Windows SDK C++ code or MFC code to Windows Forms. If you have unmanaged GUI
code, it is far better to leave it as unmanaged code, where you have some guarantee that it will
work. I would also make this recommendation to Visual Basic 6 programmers: don’t be
tempted to create ported code by porting your Visual Basic 6 code to Visual Basic .NET. By
definition, ported code runs in an environment other than where it was designed to work.
However, I am not a Visual Basic programmer, so I do not suppose any Visual Basic
programmers will listen to me.

Where’s the WndProc?

Windows Forms technology is built over Win32 windows. When you write pure Win32 SDK
code, you create a window by passing the name of a Windows class to ::CreateWindowEx.
The Windows class is either registered by the system (these are the standard Windows
controls) or the class is a custom window registered by you. The Windows class is essentially
a description of the window’s behavior, and the most important part of the Windows class is
the address of the Windows procedure (WndProc) that will handle the messages the window
receives.

When you create a Form or a Control, what you see is a Win32 window. Windows forms, as
you know, are event-based. These events look suspiciously like managed versions of
Windows messages, and indeed they are. So how does a Windows message get translated to a
Windows Forms event?

The Form class is derived from Control, which has the code for creating the Win32 window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Form class is derived from Control, which has the code for creating the Win32 window.
The Control class has a nested class named ControlNativeWindow, and there is an assembly
access field of this class named Control::window. The constructor of the Control class
initializes the ControlNativeWindow with the this pointer of the Control object, so the native
control has access to the managed control. This initialization is all that happens when you
create a control—no Win32 window is created.

Of course, a window is no use unless it is visible. I do not want to sound too philosophical, but
if you cannot see the window, how do you know that it exists? Turning this logic on its head,
when you make a window visible, you have to have an existing window, so the set_Visible
property method is the key method for creating the native window. The first time that
set_Visible is called, a Win32 Windows class is registered and a window is created.

ControlNativeWindow derives from a class named NativeWindow that has interesting code. To
make the window visible, set_Visible needs to access the native window handle, and on the
first call to Control::get_Handle, the property method will see that the native window handle
is zero and create the handle. This process involves various calls that end up in a call to
NativeWindow::CreateHandle, passing an instance of CreateParams, which comes from the
Control::CreateParams property and which has information about the style of the window to
create. This method looks something like this:

// C++ generated from MSIL
virtual void NativeWindow::CreateHandle(CreateParams* cp)
{
 // Other code
 WindowClass* wc = WindowClass::Create(cp->ClassName,
 cp->ClassStyle);
 Monitor::Enter(wc);
 IntPtr hMod = GetModuleHandle(0);
 IntPtr hWnd = CreateWindowEx(..., wc->windowClassName,
 ..., hMod, ...);
 // Other code
 Monitor::Exit(this);
}

WindowClass is a nested class declared in NativeWindow. The constructor is passed the name
of the class to create and the style of the window. If this code is called to create a custom
control, the class name will be zero, in which case the Create method generates a Windows
class of the following form:

<windowsformsversion>.<windowclassname>.app.<appdomainID>

Here <windowsformsversion> is the version of Windows Forms that is installed and currently
is the string WindowsForms10. The <windowclassname> is the string Window. suffixed with
the style of the window class (for example, Window.8), and <appdomainID> is the unique ID
for the current AppDomain.

Here is an example Windows class name generated for a Form:

WindowsForms10.Window.8.app1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WindowsForms10.Window.8.app1

Once Create has generated a class name, it uses this name to register the Windows class and it
passes WindowClass::Callback as the Windows procedure of the class. This procedure is just
a temporary Windows procedure that is called when the window is first created with the call to
CreateWindowEx, as shown here:

// C++ generated from MSIL
public IntPtr Callback(IntPtr hWnd, int msg, IntPtr wparam,
 IntPtr lparam)
{
 ::SetWindowLong(hWnd, GWL_WNDPROC, this->defWindowProc);
 this->targetWindow->AssignHandle(hWnd);
 return this->targetWindow->Callback(hWnd, msg, wparam,
 lparam);
}

This code is passed the Windows handle of the Win32 handle that has just been created.
NativeWindow::targetWindow is the ControlNativeWindow that called WindowClass::Create.
In effect, this code stores the native Windows handle of the Win32 window that was created
(remember, this code is called because Control::get_Handle was called), and it replaces the
registered Windows procedure for this window with the method pointer stored in
WindowsClass::defWindowProc, which is the message handler code that will be called. If
Control does not handle a message, WindowClass::RegisterClass will assign this method
pointer to the Win32 function ::DefWindowProcA.

However, AssignHandle does a little more than this.

// C++ generated from MSIL
void NativeWindow::AssignHandle(IntPtr handle,
 bool assignUniqueID)
{
 // Other code
 this->handle = handle;
 this->defWindowProc = ::GetWindowLong(handle, GWL_WNDPROC);
 if (this->WndProcShouldBeDebuggable)
 this->windowProc = new WndProc(this, &NativeWindow::DebuggableCallback);
 else
 this->windowProc = new WndProc(this, &NativeWindow::Callback);
 // Other code
 ::SetWindowLong(handle, GWL_WNDPROC, this->windowProc);
 // Other code
}

This code stores the handle, obtains the Windows procedure (which WindowClass::Callback
had assigned to ::DefWindowProcA), and stores the Windows procedure as the default
Windows procedure. Then the code subclasses again, but this time it sets the Windows
procedure either as DebuggableCallback or Callback depending on whether a debugger is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

procedure either as DebuggableCallback or Callback depending on whether a debugger is
attached. NativeWindow::Callback and NativeWindow::DebuggableCallback follow the same
procedure. The difference is that Callback has exception handling so that at run time,
exceptions are not thrown when handling a message. Here is the version without the exception
handling:

IntPtr NativeWindow::DebuggableCallback(
 IntPtr hWnd, int msg, IntPtr wparam, IntPtr lparam)
{
 Message* manMsg = Message::Create(hWnd, msg, wparam, lparam);
 this->WndProc(manMsg);
 if (msg == WM_NCDESTROY) this->ReleaseHandle(false);
 return manMsg->Result;
}

This code creates a managed message object initialized with the parameters of the method and
then calls the ControlNativeWindow::WndProc, which does some handling for mouse
messages and then calls ControlNativeWindow::OnMessage:

virtual void OnMessage(Message* m)
{
 this->control->WndProc(m);
}

This method calls Control::WndProc on your control. WndProc essentially has a switch that
tests for Windows messages and calls an appropriate member method. Control has many
methods of the form Wm<MSG>, which will call DefWndProc either before or after
processing the message. This arrangement ensures that if you do not provide an event handler
in your derived class, default message handling will be performed.

The processing of the message can be straightforward or complicated depending on the
particular message. For example, WmPaint creates a PaintEventArgs by calling the Win32
::BeginPaint and extracting the device context and the invalidated area. The calls to the
Wm<MSG> methods will end up in a call to the appropriate On<MSG> method that will
generate the managed event. For example, WmPaint calls PaintWithErrorHandling, which
will call OnPaint.

The Form class is a control container. Remember that when you create a control instance with
the new keyword you are not actually creating the control window. The control is created
when it is told to show itself. You do not create controls on their own; they have to be added
to a control container, such as a Form. Form has a property named Form::Controls that is a
Control::ControlCollection. A Form’s window is created when set_Visible is first called. This
call will result in the windows of the controls in the Controls collection being created.
Remember that when you create a control object, you do not create the underlying Win32
window, but you do initialize it with layout information. This means that the
ControlCollection contains the information of the child controls and their properties. This
information is essentially the same information you’ll find in a dialog template in a Win32
application.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The WndProc method is a protected virtual member of Control, so you can override it in your
class. Note that because the Wm<MSG> methods are responsible for the default message
handling, it is vital that you call the base class implementation of WndProc in your override.
For example, the caption bar of a window is used to drag a window around the desktop. If you
set the ControlBox property of the Form to false, the form will not have a caption, so you will
not be able to move the window. Removing the caption bar also means that you’ll not have a
close button. To close such a window you can use Alt-F4. To remedy this you can override the
WndProc to test for WM_NCHITTEST, which the system will send to the window to test to see
whether a mouse click is in the client area or in the non–client area. If you return
HTCAPTION to this message, you indicate that the position clicked is in the caption bar and
hence you’ll get the caption bar behavior of being able to drag the window. In the following
code, I return this value for the entire window, so any location can be used to drag the
window:

// captionless.cpp
#define HTCAPTION 2
#define WM_NCHITTEST 0x84

__gc class CaptionlessForm : public Form
{
public:
 CaptionlessForm(){ControlBox = false;}
protected:
 void WndProc(Message* m)
 {
 if (m->Msg == WM_NCHITTEST)
 {
 m->Result = HTCAPTION;
 return;
 }
 Form::WndProc(m);
 }
};

The Message class is a value type, but because the WndProc does not return a value, the
parameter is passed by reference through a pointer, so the return value is returned through
Message::Result.

A Form looks very much like a dialog box. Indeed, the class has two methods, ShowDialog
and Show, that allow you to show a form as a modal or a modeless dialog box. If you use
Show, you can hide the form with the Hide method or toggle the Visible property. Indeed, you
can start your Windows Forms application with code such as this:

void main()
{
 Form* frm = new Form;
 frm->ShowDialog();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Under the covers, ShowDialog and Application::Run call the same method,
Application::ThreadContext::RunMessageLoop. This method starts the Win32 message loop.

Standard Windows Controls

The most prevalent of the classes in the System::Windows::Forms namespace are those that
wrap existing Win32 controls and common controls. I will not go into great detail about how
to use these classes; there are many good texts that will explain how to program them. The
most authoritative text is Charles Petzold’s Programming Microsoft Windows with C#
(Microsoft Press, 2002). Instead, I will explain how these classes relate to the Win32 controls
that they wrap. Take, for example, the Label class, which is used to add a label to a form, what
a seasoned Win32 developer would call a static control. As you can imagine, this class derives
from Control and overrides methods to provide implementations for this specific control type,
and the static constructor initializes the identifiers used for the new events, properties, and
state members.

But how does the implementation tell the system to create an instance of the Win32 static
control? The answer lies in the CreateParams property, which is used to supply the
parameters to the NativeWindow::CreateHandle method, which I mentioned earlier when I
talked about creating a control. The Label class has the following implementation:

// C++ generated from MSIL
protected:
 virtual Label::CreateParams* get_CreateParams ()
 {
 // First get the base class version
 CreateParams __gc * params = Control::CreateParams;
 params->ClassName = S"STATIC";
 if (this->OwnerDraw)
 {
 params->Style = params.Style │ 13;
 params->ExStyle = params.ExStyle & 0xffffefff;
 }

 params->Style = params->Style;
 BorderStyle border = this->BorderStyle;
 switch (border - 1)
 {
 case 0:
 params->Style = params->Style │ 0x800000;
 break;
 case 1:
 params->Style = params->Style │ 0x1000;
 break;
 }
 if (!this->UseMnemonic) params->Style =
 params->Style │ 0x80;
 return params;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

The important point is that the class name is set to STATIC when CreateParams is called by
Control::CreateHandle, so the appropriate control is created.

Exceptions

If an exception is thrown when a form or a control is created, the exception will be passed to
the code that attempted to create the object. Once the Windows handle is created, exceptions
on this thread will be handled by the Application::OnThreadException method that raises the
Application::ThreadException event. If this event is not assigned to a delegate, the method
will create an instance of ThreadExceptionDialog, which will show the exception and will
allow you to continue the application or abort it. I will talk more about handling exceptions in
Chapter 7, but in general, you should not allow a system-generated exception dialog box to be
shown to a user. Such a dialog box is of great advantage to a developer, but the average user
will not have a clue what to do. Thus, you should provide an event handler to handle the
exception, as shown here:

// winexcept.cpp
__gc class MyForm : public Form
{
public:
 MyForm(){ Click+=new EventHandler(this, &MyForm::MyClick); }
 void MyClick(Object* sender, EventArgs* args)
 {
 throw new Exception(S"Don\'t click me!");
 }
 static void Handler(Object* sender,
 ThreadExceptionEventArgs* args)
 {
 MessageBox::Show(args->Exception->ToString(),
 S"Thread Exception");
 }
};

int __stdcall WinMain(unsigned, unsigned, char*, int)
{
 Application::ThreadException +=
 new ThreadExceptionEventHandler(0, &MyForm::Handler);
 Application::Run(new MyForm);
 return 0;
}

When you click on this form, it will throw an exception. This exception will be caught by the
system and passed to the MyForm::Handler method. If the form is running under the
debugger, your event handler will not get the thread exception event. Instead, the exception
will be passed to the debugger, which can place a break point where the exception was
thrown.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Events, Properties, and Status

The Control and Form classes have .NET events for all the common events that will happen to
a window. The Control class holds all the event delegates in an instance of EventHandlerList
so that your Control takes up only as much memory as is required for the events that you
actually handle. When you change the position or the size of a Control, it will generate a
Layout event. When you add a control to a control container, the Layout event will be sent to
the control container. The event looks like this:

__delegate void LayoutEventHandler(
 Object* sender, LayoutEventArgs* e);

The LayoutEventArgs object passes information about the control and the property on the
control that has changed. Layout information is used by the layout manager (an instance of the
private nested class LayoutManager) to handle controls that are docked or anchored to the
container. A docked control is created by specifying a docking edge. The layout manager will
ensure that the control will be docked to the edge and will fill the available space in the
container in the orthogonal direction. An anchored control is created by specifying an
anchored edge. When the container is resized, the layout manager will ensure that the control
remains the same distance from the anchored edge.

During construction of a form, you will be adding several controls and changing their layout
information, but it makes little sense for the layout manager to process this information. You
can inform the control container to ignore layout events by calling SuspendLayout. When all
controls have been created, you can tell the layout manager to perform its magic by calling
ResumeLayout.

Control and Form have many properties. These properties either return information that is set
by the system (for example, the ClientRectangle property), or they can be used to affect the
behavior of the item (for example, the Visible property). These items also have state that is not
associated with a property—for example, the control style is accessed through GetStyle and
changed through SetStyle. If each property represented storage (a field) in the Control, the
control would take up a lot of memory. Instead, the Control and Form classes have fields only
for the data that is required and without which the object cannot be used (for example, the
controlStyle field used by GetStyle and SetStyle). There are other properties that require
storage, but these properties can be considered as optional. For example, Control::Name gives
a name to a control, which you can use to identify an instance; however, to make a completely
reliable comparison of two Form objects, you should use Object::ReferenceEquals so that the
Name property is treated as optional. There is no field for this property; instead, it is stored in
a collection of type PropertyStore, which is an associated container. The key that is used to
identify the property in the container is an integer that is a static member of Control (for
example, Control::PropName, the convention is for the variable to be prefixed with Prop).
These keys are initialized in the static constructor for Control through
PropertyStore::CreateKey, which merely returns an incremented static variable. Here is the
code for the Name property:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String * get_Name()
{
 String* str;
 str = (String*) this->Properties->GetObject(
 Control::PropName);
 if (str == 0 ││ str->Length == 0)
 {
 if (this->Site != 0) str = this->Site->Name;
 if (str == 0) str = S"";
 }
 return str;
}

void set_Name(String* value)
{
 if (value == 0 ││ value->Length == 0)
 {
 this->Properties->SetObject(Control::PropName, 0);
 return;
 }
 this->Properties->SetObject(Control::PropName, value);
}

The Properties property returns the property store for this object.

The Form class, and other classes derived from Control, also have state properties. These
properties indicate state such as whether the form is active (Form::Active) or whether it is
topmost (Form::TopMost). All of these state members are characterized by the fact that they
are Boolean values. If a bool was used to indicate each of these items, your program would
waste a great deal of memory because a bool is stored as a byte, even though only one bit is
used. The solution here is to use a class in the System::Collection::Specialized namespace
named BitVector32. As the name suggests, instances contain just 32-bits of memory, so the
total space taken up by all items in it cannot exceed this value. To use this class, you indicate
which portion of the 32 bits will be used by creating BitVector32::Section objects. A Section
is effectively a count of the number of bits required and the position of each in the
BitVector32. Once you have a Section, you can get or set a value through the
BitVector32::Item property, passing the Section. Classes such as Form have Section objects as
static members so that the overhead of these members occurs once for all instances of the
class. The class has an instance member of BitVector32, so potentially, 32 bool values could
be represented by a single 32-bit BitVector32.

Controls and ActiveX Interfaces

If you look at the Control class with ILDASM, you’ll see that in addition to the managed
interfaces I have mentioned already (IComponent, IDisposable, IsynchronizeInvoke, and
IWin32Window), this class implements several COM interfaces. The
System::Windows::Forms namespace has a class named UnsafeNativeMethods that contains
managed versions of the most common COM interfaces. The Control class implements the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

managed versions of the most common COM interfaces. The Control class implements the
following COM interfaces:

IOleControl

IOleObject

IOleInPlaceObject

IOleInActivePlaceObject

IOleWindow

IViewObject

IViewObject2

IPersist

IPersistStreamInit

IPersistPropertyBag

IPersistStorage

IQuickActivate

The methods on these interfaces are actually delegated to a property named ActiveXInstance,
which is an instance of a nested class named ActiveXImpl. As a consequence, you can use a
.NET control in an unmanaged application such as an MFC dialog or a Visual Basic 6 form.

// ctrls.cpp
public __gc class Ctrl : public Control
{
public:
 Ctrl() { Text = "Ctrl class"; }
protected:
 virtual void OnPaint(PaintEventArgs* args)
 {
 Graphics* g = args->Graphics;
 g->DrawRectangle(new Pen(ForeColor),
 0, 0, Size.Width-1, Size.Height-1);
 StringFormat* format = new StringFormat;
 format->Alignment = StringAlignment::Center;
 format->LineAlignment = StringAlignment::Center;
 g->DrawString(this->Text, this->Font,
 new SolidBrush(ForeColor), RectangleF(Point(0, 0),
 this->Size),
 format);
 Control::OnPaint(args);
 }
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Ctrl class merely draws a rectangle within its border and draws its Text property in the
center. If this class is compiled into an assembly named Ctrls that has a strong name, you can
run RegAsm.exe on the assembly to register the control as a COM object. If you have an MFC
application with a dialog box, you can add a control to the dialog box by right-clicking and
selecting Insert ActiveX Control. This command will show the Insert Object dialog box
created with OleUIInsertObject with the IOF_SHOWINSERTCONTROL │
IOF_SELECTCREATECONTROL flags. However, this command will not show your control.
The reason is that this dialog box will show the objects registered in HKCR\CLSID with
specific keys, and RegAsm.exe does not add those keys.

As I explained in Chapter 2, RegAsm.exe will add an entry to HKCR\CLSID for each public
class it finds in the specified assembly. To this entry, RegAsm.exe adds the InprocServer32
key, the ProgID key, and the Implemented Categories key. The category that the control
implements is shown here:

{62C8FE65-4EBB-45e7-B440-6E39B2CDBF29}

This key is named .NET Category and indicates that the class is a .NET class. The
OleUIInsertObject dialog box will look for a class that has the Control and Insertable
subkeys. The Office applications will only allow you to insert controls that have an Insertable
key in the Prog ID key in the root of HKCR. It is a pain (and error-prone) to edit the registry
by hand. The solution is to provide a registration method to add these keys (and an
unregistration method to remove these keys when the control is unregistered). RegAsm.exe
will call your registration method when it is registering your control. These methods are static
members of a class and can take either a Type or a String parameter. RegAsm.exe knows
which method to call because the registration method is marked with [ComRegisterFunction],
and the unregister method is marked with [ComUnregisterFunction].

// ctrls.cpp
using namespace Microsoft::Win32;
using namespace System::Runtime::InteropServices;

namespace Ctrls {
public __gc class Ctrl : public Control
{
public:
 Ctrl() { Text = "Ctrl class"; }
 [ComRegisterFunction]
 static void Register(Type* t)
 {
 String* strKey = S"CLSID\\{";
 strKey = String::Concat(strKey,
 Marshal::GenerateGuidForType(t).ToString());
 String* newKey = String::Concat(strKey, S"}\\Control");
 Registry::ClassesRoot->CreateSubKey(newKey);
 newKey = String::Concat(strKey, S"}\\Insertable");
 Registry::ClassesRoot->CreateSubKey(newKey);
 }
 [ComUnregisterFunction]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [ComUnregisterFunction]
 static void Unregister(Type* t)
 {
 String* strKey = S"CLSID\\{";
 strKey = String::Concat(strKey,
 Marshal::GenerateGuidForType(t).ToString());
 String* delKey = String::Concat(strKey, S"}\\Control");
 Registry::ClassesRoot->DeleteSubKey(delKey);
 delKey = String::Concat(strKey, S"}\\Insertable");
 Registry::ClassesRoot->DeleteSubKey(delKey);
 }
// Other methods
};
}; // namespace Ctrls

This code uses the registry classes in the Microsoft.Win32 namespace, so you have to have the
appropriate RegistryPermission security permissions for this code to succeed. As you can see,
the registration method obtains the GUID for the type using GenerateGuidForType, and so
that this control has the standard ProgId format, I have put this class in a namespace called
Ctrls. (The version-independent ProgID for this control will be Ctrls.Ctrl.) As a tip: if you
have opened an MFC project and opened a dialog (with the dialog editor) that contains an
assembly registered with regasm you should shut down this instance of Visual Studio.NET
before recompiling that assembly. Merely closing the MFC project solution is not sufficient.

The .NET Framework also allows you to use ActiveX controls on a form. To use these
controls, you have to import the controls with COM interop. A control must derive from
Control, so it is not sufficient just to run TlbImp.exe on the ActiveX control’s COM type
library. Instead, the Framework provides a tool named aximp.exe. This tool creates two
assemblies, one for COM interop and another that provides a control wrapper around these
imported classes. The wrapper derives from AxHost, which implements the client site
interfaces that a container needs to implement to be a container for an ActiveX control. Thus,
each ActiveX control that you import through aximp.exe will have its own ActiveX control
container.

After you have imported an ActiveX control, all you need to do to use it on a form is use the
wrapper class. The tool aximp.exe will generate a name for the wrapper class that is the
control name given in the type library prefixed by Ax (so the wrapper for MyCtrl will be
AxMyCtrl).

Control Handles

Managed controls are based on Win32 windows. I explained earlier that the window is created
when the control is first made visible. Now take a look at this code:

// hundred.cpp
#define INCR 10
__gc class MainForm : public Form
{
public:
 MainForm()
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 Location = System::Drawing::Point(0,0);
 Size = SystemInformation::WorkingArea.Size;

 int xInc = this->Width / INCR;
 int yInc = this->Height / INCR;

 for (int x = 0; x < INCR; x++)
 {
 for (int y = 0; y < INCR; y++)
 {
 Ctrl* ctrl = new Ctrl;
 ctrl->Text = String::Format(
 S"{0:x}", __box(reinterpret_cast<int>(
 static_cast<void*>(ctrl->Handle))));
 ctrl->Width = xInc;
 ctrl->Height = yInc;
 ctrl->Left = x * xInc;
 ctrl->Top = y * yInc;
 this->Controls->Add(ctrl);
 }
 }
 }
};

The MainForm class creates 100 instances of the control that I showed earlier. If you run this
code and look closely, you will see that each of these controls has a different Windows handle,
and as a consequence, it takes a short while to construct the form. Sadly, this delay takes us
back to the bad old days of Visual Basic 3. In those days, when you ran a Windows
application, you knew whether it had been written in Visual Basic 3 or C/C++ by the speed of
the user interface: If you could see the UI build itself control by control, you knew the
application was written in Visual Basic 3. If the UI built itself instantaneously, you knew the
application was written in C or C++.

The ActiveX control programmers recognized that creating lots of controls in a container
would be a problem, so ActiveX controls could be written to be windowless. This type of
control informs its container that it will not create a window handle, and instead, the container
passes the control a portion of the container’s window. .NET controls are not created as
windowless; they are always created with their own Windows handle.

Thus, you should make sure that you limit the number of controls on your forms. If your form
visibly redraws itself (as in the previous example), you should try to reduce the number of
controls on the form. If you have several controls of the same type, it might be a good idea to
rewrite a single control class that does the same work. Because Windows Forms uses
Windows handles in such an inefficient way, I would advise you against building controls
based on other .NET controls.

Drag and Drop

The Control class supports OLE drag and drop. This operation is supported by two nested
classes (Control::DropSource and Control::DropTarget) and a public class named

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

classes (Control::DropSource and Control::DropTarget) and a public class named
DataObject. These classes provide a bridge between the managed control and OLE drag and
drop: it is COM that provides the drag-and-drop support, so the thread must be initialized to
run in an STA (either with the [STAThread] attribute or explicitly through
Thread::ApartmentState). You are able to drag any items from any control, but you need to
initiate the drag. For example, you might decide that when the user clicks on a control, drag
and drop should be started, and to initiate the drag, you call the DoDragDrop method, as
shown here:

// dragndrop.cpp
__gc class DragSource : public Form
{
public:
 DragSource()
 {
 MouseDown += new MouseEventHandler(this,
 &DragSource::MouseDownHandler);
 }
 void MouseDownHandler(Object* sender, MouseEventArgs* args)
 {
 DoDragDrop(S"Data", DragDropEffects::Copy);
 }
};

Here the data object is the string Data. I have decided that the drag-and-drop operation will be
Copy. If the operation is Move, you will have to perform some action to remove the source
object from the drag source. You cannot drag any object; the object must implement
ISerializable or IDataObject. The framework provides an implementation of IDataObject as
the DataObject class. When you initiate the drag and drop operation, the object is copied to
the clipboard, and when the object is dropped, the target obtains the object from the clipboard.
The clipboard stores formatted objects—that is, there is an indication of the type of data that is
stored, so you can request the data object to be extracted as the appropriate format. The
DataObject class allows you to copy data to and from the clipboard.

In the previous example, the DoDragDrop method has to deduce the data type, and for a
String* pointer, the data is stored as a CF_TEXT and as a format named System.String. In
general, a data object will be stored with the name of the type of the object; strings and
bitmaps are exceptions because there are standard clipboard formats available. If you want to
control the formats put on the clipboard for either a drag-and-drop operation or for a clipboard
copy operation, you can create a DataObject and copy the drag and drop object into the data
object using the SetData method. This method has a parameter that you can use to specify the
data format, so it allows you to copy data in a format other than the serializable format that
.NET knows about. Often, the clipboard format will involve generating a binary representation
of the object, and to perform this task, you can use the MemoryStream class in the System::IO
namespace. This class is serializable, and it holds binary data. You can call SetData several
times to add more than one format to the data object.

To be able to drop an object on a control, you have to set its AllowDrop property to true. The
property accessor method will call the Win32 ::RegisterDragDrop, passing it an instance of
Control::DropTarget. The rest of the drag-and-drop operation is carried out using events, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Control::DropTarget. The rest of the drag-and-drop operation is carried out using events, and
these events are summarized in Table 4-7.

Table 4-7. Drag-and-Drop Events in the Control Class
Event Description

DragDrop Raised when the drag-and-drop operation has completed. Use this event to
obtain the data object.

DragEnter Raised when you drag an object over a control’s bounds. Use this event to
indicate the drag-and-drop operation that can be performed with the data
object.

DragLeave Raised when you drag an object out of a control’s bounds

DragOver Raised as you drag an object over a control. Use this event to provide some
visual feedback of the drag-and-drop operation.

GiveFeedback Raised during a drag-and-drop operation and allows you to provide visual
feedback.

When an object is dragged over a control, you will first get the DragEnter event; as you
continue to drag over the control, you will get the DragOver event until the cursor moves out
of the bounds of the control, at which point, you will get the DragLeave event. The main use
of DragEnter is to indicate what can be done with the object.

// dragndrop.cpp
void EnterCtrl(Object* sender, DragEventArgs* args)
{
 if (args->Data->GetDataPresent(S"System.String"))
 args->Effect = DragDropEffects::All;
}

The DragEventArgs class has property members that you can check to see the data that is
being dragged and the position of the mouse cursor. These properties are read-only except for
Effect, which is read/write. You use this property to indicate whether the item can be dropped,
and if the data object is dropped, whether it is copied or moved. In this example, I test the data
object to see whether the data is a System::String—notice that the format uses a dot as the
resolution operator—and if so, the data can be copied or moved.

When the object is dropped, the control will get the DragDrop event. This event also has a
DragEventArgs parameter, but this time, you should consider the properties as being read-
only. The AllowedEffect will give the drag and drop effects allowed by the source, and Effect
will be drag and drop effects allowed by the target. The KeyState property indicates whether
the Ctrl or Shift key is pressed. The Data member is an IDataObject that you can use to get
the object that is being dropped. IDataObject::Formats will return an array of strings with the
formats in the data object. IDataObject::GetDataPresent will test to see whether a specific
data format is in the data object, and finally, IDataObject::GetData will get the dropped object
in the specified format.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// dragndrop.cpp
void Drop(Object* sender, DragEventArgs* args)
{
 String* str;
 str = dynamic_cast<String*>(args->Data->GetData(
 S"System.String"));
 if (str != 0)
 {
 Graphics* g = this->CreateGraphics();
 Point p(args->X, args->Y);
 p = this->PointToClient(p);
 g->DrawString(str, this->Font,
 Brushes::Black, p.X, p.Y);
 g->Dispose();
 }
}

The DragEventArgs::X and DragEventArgs::Y properties are in mouse coordinates, so to
convert to client coordinates, I use Control::PointToClient. If the data is in a format other than
a serialized .NET object, you will need to know the details of that format. You can obtain the
data through a MemoryStream object and access the individual bytes that make up the
serialized form of the dropped object.

Superclassing

Superclassing is a term used in Win32 to describe the mechanism where you take an existing
Windows class and extend it to create another class. You can then create instances of this new
class, and they will exhibit the new behavior. In Win32 terms, you superclass a window class
by obtaining the original (registered) Windows class by calling GetClassInfo. You then create
a new Windows class, with a new WndProc containing message handlers. You use the
WndProc of the class you are superclassing as the default message handler of your new class,
and you can also call this procedure in some of your message handlers. Thus, the default code
to handle messages is the class you are superclassing, and you add extra code to this
implementation.

This process is essentially the same as deriving from a class. In C++ terms, the class you are
superclassing is the base class. If you do not override a base class implementation, the base
class method is called. If you do override a base class method, you have the option of either
replacing this base class method totally or providing implementation in addition to the base
class.

It will come as no surprise that if you want to create a control (or a form) with a behavior
similar to an existing control, all you have to do is derive from that control’s class and add the
extra functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

public __gc class Ctrl : public Button
{
protected:
 virtual void OnPaint(PaintEventArgs* args)
 {
 Button::OnPaint(args);
 Graphics* g = args->Graphics;
 g->DrawEllipse(new Pen(ForeColor),
 0, 0, Size.Width-1, Size.Height-1);
 }
};

This code derives from the standard button class and adds extra functionality to the OnPaint
method that draws an ellipse.

A final point to make concerns subclassing. Subclassing is another term that Win32 SDK
programmers use and it involves taking an existing window (not a class to a window) and
replacing its WndProc with a custom procedure that can replace or augment the control’s
behavior. .NET is type-safe, so in terms of .NET classes, it is not possible to take an object of
one type and cast it to an unrelated type. Although Control has a method named FromHandle
that appears to do the necessary action—create a .NET control from a HWND—it will work
only if the handle refers to a .NET control (and is obtained through the Control::Handle
property).

Standard Forms

Win32 has a library named comdlg32.dll that defines the Windows classes for standard dialog
boxes such as the file open dialog or the color picker dialog box. System::Windows::Forms
has classes (shown in Table 4-8) that wrap these common dialog boxes. Note that there is no
folder picker dialog box, such as the Win32 ::SHBrowseForFolder. However, this lack of a
folder picker dialog class is not a problem because all you need to do is call
::SHBrowseForFolder through IJW.

Table 4-8. Standard Dialogs in the Windows Forms Library and the Equivalent Win32
Common Dialog Boxes

Class Win32 Equivalent Description

ColorDialog ChooseColor Choose a color from standard colors or a color
swatch.

FontDialog ChooseFont Chose a font from those installed on the system.

OpenFileDialog GetOpenFileName Select a file to open.

PageSetupDialog PageSetupDlg Set up printer properties.

PrintDialog PrintDlgEx Start a print operation.

SaveFileDialog GetSaveFileName Select the location to save a file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The classes in Table 4-8 are derived from CommonDialog, which is derived from Component.
Form is not used. These classes mirror the Win32 common dialog boxes, which raises the
question of why you would want to use these rather than using the Win32 dialogs directly.
The main advantage you get with these classes is that their authors have applied code access
security (discussed in Chapter 5), so that only code with a specific permission can call the
code. Thus, an assembly method can show a OpenFileDialog only if the assembly has the
FileDialogPermission granted to it. If your code calls the Win32 API directly
(::GetOpenFileName), no check is performed as to whether your assembly is allowed to open
files with this dialog (although clearly NTFS access checks will be performed when you try to
open a file).

To show a standard form, you create an instance of the class, set various properties according
to the type of the dialog box, and then call ShowDialog, as shown here:

OpenFileDialog* file = new OpenFileDialog;
file->ShowDialog();

The CommonDialog::ShowDialog method goes into a modal loop and then calls
OpenFileDialog::RunDialog, which calls the appropriate Win32 common dialog box function.

Event Handling Strategies

.NET only allows classes to derive from a single base class. This arrangement restricts your
options somewhat for developing a class hierarchy. Native C++ allows you to use multiple
inheritance, which means that you can have base classes that perform some specific
implementation. For example, you could have a class that handles keystrokes and another that
handles mouse movements; such base classes could use downcasts to get access to child class
members.

In .NET, you can simulate this handling using containment, as shown in the following
example:

// cont.cpp
__gc class KeyPressHandler
{
 Control* parent;
public:
 KeyPressHandler(Control* p) : parent(p){}
 void KeyPressed(Object* sender, KeyPressEventArgs* args)
 {
 // Handle the keypress, and access form through parent.
 }
};
__gc class MyForm : public Form
{
 KeyPressHandler* kp;
public:
 MyForm()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MyForm()
 {
 kp = new KeyPressHandler(this);
 KeyPress += new KeyPressEventHandler(kp,
 &KeyPressHandler::KeyPressed);
 }
};

In this simple example, I have an extra class named KeyPressHandler that will have common
code that can be used by other classes. In this case, the MyForm class creates an instance of
the class and passes its this pointer to the object. MyForm then uses this object as the handler
for the KeyPressed event. Because the KeyPressHandler object is a field, it can expose
members that the MyForm class can use to alter the event handling behavior at run time.

Also be aware that handling a Windows message via an event might not be the best option.
Take a look at this class:

// restsize.cpp
__gc class RestrictedSize : public Form
{
public:
 RestrictedSize()
 {
 this->Resize += new EventHandler(this,
 &RestrictedSize::ResizeMe);
 this->Width = 200;
 }
 void ResizeMe(Object* sender, EventArgs* args)
 {
 if (this->Size.Width > 200)
 this->Size = System::Drawing::Size(200,
 this->Size.Height);
 }
};

The intention is that the Resize event is used to restrict the width so that it cannot be changed
to a value more than 200; the height can be changed to any value. However, because this
method handles the Resize event, the window already has been resized before the size is
reduced back to 200. As a consequence, you will see a flickering of the window in the brief
time between when the Resize event is raised and when the width is changed. The solution to
this problem is to handle the Win32 WM_SIZING message, as shown here:

protected:
 void WndProc(Message* m)
 {
 if (m->Msg == WM_SIZING)
 {
 RECT* rect = reinterpret_cast<RECT*>(
 static_cast<void*>(m->LParam));
 if ((rect->right - rect->left) > 200)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if ((rect->right - rect->left) > 200)
 {
 rect->right = rect->left + 200;
 m->Result = IntPtr(1);
 return;
 }
 }
 Form::WndProc(m);
 }

The whole point about the WM_SIZING message is that you are informed—before the form is
sized—about the new size. This new code will allow you to restrict the width of the forms
without the annoying flicker obtained in the previous version. Windows Forms does not
always provide the best solution, but at least you will be assured that you have the option of
reverting to a Win32 solution.

Using Windows Header Files

The final issue I want to address in this section is the use of the Win32 header files If you plan
to call Win32 code through IJW, you will want to use windows.h and other Windows headers.
I have already addressed the issues of name clashes and problems with the preprocessor;
however, there are deeper issues that you will have to address. Take a look at this code:

#using <mscorlib.dll>
#include <windows.h>
#include <commctrl.h>
#pragma comment(lib, "comctl32.lib")

int __stdcall WinMain(HINSTANCE, HINSTANCE, char*, int)
{
 InitCommonControls();
 HIMAGELIST hList;
 hList = ImageList_Create(16, 16, ILC_COLOR, 0, 1);
 // Other code
 return 0;
}

This code does not do anything, but it is the sort of code that you might see in the entry point
of a GUI application. I have decided that I want to use managed types, so I have compiled this
code with /clr. There are no name clashes nor are there any preprocessor issues. However,
when you run this code, it will throw an exception. If you change the entry point to main and
start this from a command line, you will get the following dump of the exception:

Unhandled Exception: System.TypeLoadException: Could not
 load type _IMAGELIST from assembly Test, Version=0.0.0.0,
 Culture=neutral, PublicKeyToken=null.
 at main()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The weird thing is that if you use ildasm.exe to look at your assembly, you will see that
neither HIMAGELIST nor _HIMAGELIST is defined. The problem is that commctrl.h defines
HIMAGELIST like this:

#ifndef HIMAGELIST
struct _IMAGELIST;
typedef struct _IMAGELIST* HIMAGELIST;
#endif

Because this code defines a struct with no members, the compiler adds nothing to the
assembly, but it still uses this type. The consequence is that the type loader sees that the code
uses a type that does not exist and throws an exception. The solution to this problem is to
define the struct _HIMAGELIST by hand before I include commctrl.h.

struct _IMAGELIST{};

Now the assembly will compile and it will have a type named _HIMAGELIST defined, so the
type loader will be happy. This problem only appears to be related to HIMAGELIST and
HTREEVIEW, and with the current version of the compiler, this solution is the only one
available.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using Managed Resources

The PE file format has a section named .rsrc for resources. These resources can be one of the
standard resource types (one of the RT_ prefixed symbols as documented in the Platform
SDK, for example, RT_ICON, RT_MENU or RT_STRING), or they can be a binary resource
that only your application knows about (RT_RCDATA). The resources will be arranged in the
resource section of the PE file within a resource directory. (This directory is documented in
winnt.h.) To construct this directory, you use a resource script (.rc file) and compile this script
with the resource compiler (rc.exe). The resulting .res file will be linked to the final PE file by
the linker. The Win32 ::FindResourceEx function is passed the module handle of a loaded PE
file that contains the resource, the identifier of the requested resource, and the type of the
resource (an RT_ symbol). The API will then search through the resource section of the
specified PE file for the resource directory and locate the resource. The return value can then
be used by ::LoadResource to get an HGLOBAL that you pass to LockResource to finally get a
pointer to the resource. There is often a more straightforward way to access a resource, such as
LoadIcon, but this method is the most generic and will work with all resource types.

In general, if your assembly uses only .NET code, you will not need Win32 resources (with
the exception of the icon resource for the file); if your code uses Win32 code through IJW,
you might need to have Win32 resources. Visual Studio .NET supports Win32 resource files
for managed projects, and the resource compiler will edit the resource script appropriately.
The exception is as I have given earlier: Windows Explorer will use the first Win32 icon it can
find in the PE file as its icon. First means the icon resource with the lowest resource ID, or if
the resources have names rather than numeric IDs, the first alphabetically. (Resources with
string IDs are considered to be before resources with numeric IDs.) Typically, you will want
to have at least one Win32 icon (and hence a resource script) in your project for this purpose.

Assemblies and Win32 Resources

You have to be careful of managed and unmanaged version resources clashing. I will go into
more details about this in Chapter 5 when I cover .NET versioning. However, in this chapter, I
will explain the problem from the point of view of resources. Win32 resources use the
VERSIONINFO resource type to provide information about a file, but .NET uses custom
attributes given in the System::Reflection namespace. These attributes are compared and
summarized in Table 4-9. For the VERSIONINFO column, the items in all caps are members
of VERSIONINFO, and the items in mixed case are members of the StringFileInfo block.

Table 4-9. Win32 and .NET File Versioning
Attribute VERSIONINFO Description

[AssemblyCompany] CompanyName Your company’s name

[AssemblyConfiguration] FILEFLAGS Information about the type of build

[AssemblyCopyright] LegalCopyright Your company’s copyright

[AssemblyCulture] no equivalent The culture that the assembly was
built for

[AssemblyDefaultAlias] no equivalent Friendly name for the assembly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[AssemblyDescription] FileDescription Description of the assembly

[AssemblyFileVersion] FileVersion Version of the file

[AssemblyFlags] no equivalent Information about how to load the
assembly

[AssemblyInformationalVersion] Comments Additional information not used by
the runtime

[AssemblyProduct] ProductName Name of the product that this
assembly is a part of

[AssemblyTitle] no equivalent Title of the assembly

[AssemblyTrademark] LegalTrademark Your company’s trademark

[AssemblyVersion] FILEVERSION Assembly version, used by the
runtime

The [AssemblyVersion] attribute is important to the runtime and provides information that
becomes part of the full name of an assembly. The equivalent member of VERSIONINFO is
the FILEINFO member. Note, however, that although there is a logical connection between
the two, there is no physical connection, so you can provide a different value for the managed
file version and the unmanaged file version. Unfortunately, there is no simple solution to this
problem. You have to manually change both versions when you change the version number.

Managed Resources

.NET resources are not stored in the PE .rsrc section; they are stored in the .data section along
with the IL and metadata of the assembly. .NET resources can be added, compiled, or
uncompiled. An uncompiled resource can be linked to your file with the /assemblyresource
linker switch. For example, if you have a .txt file with some text, it can be linked as a .NET
resource with this command line:

cl /clr textreader.cpp /link /assemblyresource:text.txt

This command will add a managed resource named text.txt to the manifest:

.mresource public text.txt
{
}

To read this resource, you have to use the Assembly::GetManifestResourceStream method:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// textreader.cpp
#using <mscorlib.dll>
using namespace System;
using namespace System::IO;
using namespace System::Reflection;

void main()
{
 Assembly* assem = Assembly::GetExecutingAssembly();
 Stream* stm;
 stm = assem->GetManifestResourceStream(S"text.txt");
 StreamReader* sr = new StreamReader(stm);
 Console::WriteLine(sr->ReadToEnd());
 sr->Close();
}

GetManifestResourceStream returns a stream, and you can use the Read method to read the
data as a byte array. Because I know that the resource is printable text I have used
StreamReader, which will read the stream and convert the data to managed strings.

Note that the /assemblyresource will embed a resource in an assembly. Compare this to the
assembly linker tool, al.exe and the C# compiler, which both give you the option of
embedding or linking resources to an assembly. You do not have this option with link.exe.

Compiled Managed Resources

You can also compile resources using the managed resource compiler resgen.exe. If a resource
is compiled, you can use the classes in System::Resources to get access to the items in the
resource. Compiled resources make the most sense for string table resources, but if you are
willing to do the work, you can also add binary resources.

Here’s a very simple resource file:

#this file is called data.txt
one=First Item
two=Second Item
three=Third Item

To compile this file, you use resgen.exe. This tool can take an input file with the extension of
.txt or .resx (I’ll return to this type in a moment) and output the compiled resources in a file
with the extension .resources. This tool will also decompile compiled resources; if the input
file is a .resources file, resgen will output the original source. Once you have compiled the
resource, you link it to the assembly with the /assemblyresource linker switch as before.

You can read a compiled managed resource in several ways. The first way is to get access to a
stream to the resource in the manifest and use the ResourceReader class, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assembly* assem = Assembly::GetExecutingAssembly();
Stream* stm;
stm = assem->GetManifestResourceStream(S"data.resources");
ResourceReader* reader = new ResourceReader(stm);
IDictionaryEnumerator* e = reader->GetEnumerator();
while (e->MoveNext())
{
 String* key = static_cast<String*>(e->Key);
 String* value = static_cast<String*>(e->Value);
 Console::WriteLine(S"{0}={1}", key, value);
}
reader->Close();

The ResourceReader implements IResourceReader interface. The main method is the
GetEnumerator function that allows you to iterate through the values sequentially. However,
the function does not support random access. To retrieve specific values, you need to use a
ResourceManager, as the following code shows:

ResourceManager* man;
man = new ResourceManager(S"data", assem);
Console::WriteLine(man->GetString(S"one"));

The ResourceManager is most useful for localization, which I will cover in a later section.
The resource manager is initialized with the name of the assembly that has the neutral culture
resource, but because this example does not have localized resources, this essentially means
the assembly with the resource. The resource manager needs to know the resource to load,
which is the purpose of the first parameter; the resource manager assumes that resources have
an extension of .resources, so in this example, the resource manager will look for a resource in
the manifest named data.resources.

After you have created a resource manager, you can ask the manager for a named resource.
There are two overloaded methods to do this querying, GetString and GetObject. In this
example, the resources are strings, so I have used GetString with the name of the string item to
return. This code will return the string First Item because I have requested the one string.

The resource manager is based on a resource set. The resource set determines the class that
will be used to read the resource. You can determine the resource set being used by the
resource manager through ResourceManager::GetResourceSet. This method returns a
ResourceSet pointer, and you can call ResourceSet::GetDefaultReader to get the
IResourceReader. If you want to change the resource reader (or for that matter, the resource
writer), you have to derive a class from ResourceSet and pass this class to the constructor of
ResourceManager.

Resources can also be specified through XML files, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<?xml version="1.0" encoding="utf-8"?>
<root>
 <!-- Header information about the version of the resource format
 and the classes used to read and write the resources -->
 <resheader name="resmimetype">
 <value>text/microsoft-resx</value>
 </resheader>
 <resheader name="version">
 <value>1.3</value>
 </resheader>
 <resheader name="writer">
 <value>
 System.Resources.ResXResourceWriter,
 System.Windows.Forms, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089
 </value>
 </resheader>
 <resheader name="reader">
 <value>
 System.Resources.ResXResourceReader,
 System.Windows.Forms, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089
 </value>
 </resheader>
 <!-- The resource data -->
 <data name="one">
 <value>First Item</value>
 </data>
 <data name="two">
 <value>Second Item</value>
 </data>
 <data name="three">
 <value>Third Item</value>
 </data>
</root>

This data is the bare minimum resource file. You will often find that .resx files will also have a
schema. This data can be compiled with resgen.exe, which will generate a .resources file that
can be linked to the final assembly. You can use the ResourceManager to read the compiled
resource. So what is the advantage of using a .resx file rather than a .txt file? The advantage is
that you can provide type information in .resx files that the resource reader will use to interpret
the data.

<data name="background"
 type="System.Drawing.Color, System.Drawing,
 Version=1.0.3300.0,
 Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a">
 <value>Green</value>
</data>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</data>

The type attribute gives the type of the data; in this case, it is Color; notice that I had to split
this string over several lines to fit the format of this book. However, resgen expects the string
to occupy a single line. The ResourceManager will read the appropriate section and then
convert the value to the specified type.

// resdata.cpp
ResourceManager* man = new ResourceManager(S"data", assem);
Color __box* c = static_cast<Color __box*>(
 man->GetObject(S"background"));
Console::WriteLine(c->ToString());

If the data type is a binary type, it has to be stored in the .resx file as a base64 encoded
serialized object. The serialization can be done with either the BinaryFormatter or
SoapFormatter and then encoded with Convert::ToBase64String. The ResXResourceWriter
will generate the serialized objects with BinaryFormatter and ResXResourceReader will read
objects serialized with BinaryFormatter or SoapFormatter. You indicate which formatter has
been used through the mimetype attribute of the <data> tag, as shown in Table 4-10.

Table 4-10. Mime Types and the Formatters That Are Used
Mime Type Formatter

application/x-microsoft.net.object.binary.base64 BinaryFormatter

application/x-microsoft.net.object.soap.base64 SoapFormatter

ResourceManager also has a static method named CreateFileBasedResourceManager. This
method takes two strings and a Type. The Type specifies the ResourceSet to use, and the two
strings give the name of a folder to search and the base name of the resource. If the data.resx
file is compiled to data.resources, the resources can be obtained through the resource manager
obtained from the following code:

ResourceManager* man;
man = ResourceManager::CreateFileBasedResourceManager(
 S"data", S".", 0);

The ResourceManager class can also be initialized with a type, which allows you to associate
a resource with the type that will use it. This constructor will create a resource name from the
type name by appending .resources so that MyNamespace::MyForm has resources in
MyNamespace.MyForm.resources. (Double colons are replaced by periods.) However, the
resource manager actually goes one step further than this because it takes into account the
locale where the code is running and uses this information to search for a localized resource,
which leads us to localization.

Localization

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We live in a global world of localized cultures. Not only is it good manners to provide
localized versions of your application, but it also makes good business sense: people prefer to
use software that is easy to use, and an application in a different language can hardly be
described as being easy to use. Language is just one part of a culture. A few years ago, I
bought a programming book and could read only the first 20 pages. The reason was that the
author decided to use a baseball analogy throughout his description of network programming,
and to an Englishman like me, this made the entire text incomprehensible.

Every thread has a culture. You can obtain this culture through the Thread properties
CurrentCulture and CurrentUICulture. The first of these properties returns a CultureInfo that
describes the current culture used to format dates and numbers (obtained through the
CultureInfo::DateTimeFormat and CultureInfo::NumberFormat properties). When a thread
starts, this property is initialized from the locale obtained by calling ::GetUserDefaultLCID.
CurrentUICulture is used by the ResourceManager class and is first obtained by calling the
Win32 ::GetUserDefaultUILanguage. Both of these properties are read/write so you can
change the current culture.

Thread::CurrentThread->CurrentUICulture =
 new CultureInfo(S"en-GB");

The CultureInfo class is initialized with a culture name in RFC1766 format. This name can be
a culture—with a language and a region ID, in this case, UK English—or it can be a language
identifier (for example, en for English).

Earlier I showed that compiled resources can have associated culture-specific or language-
specific values, as shown in this example:

<!-- en resources -->
<data name= "btnStop">
 <value>Stop Search</value>
</data>

To use this data, you could name the compiled resource file with a culture identifier and then
either embed this resource in your assembly or provide the resource as a stand-alone
.resources file. At run time, you could then access CurrentThread >CurrentUICulture, and
through the CultureInfo::Name property, you could access the name of the locale of the
current machine and use this name to load the appropriate resource through
GetManifestResourceStream or load the appropriate .resources file.

In fact, you do not have to go to all of this effort because ResourceManager will do this task
automatically for you. The name of a managed resource follows this format:

<base name>.<culture>.resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here <base name> is the name that I have used so far when initializing the ResourceManager
object, <culture> is the RFC1766 culture name, and for a neutral resource, this name (and the
preceding period) can be omitted. An EXE assembly should be culture neutral and have the
neutral culture resources bound to it. So if you are creating an assembly named assem with a
resource named MyResources, the assembly will have a managed resource bound to it named
myresources.resources.

The culture-specific resources should be bound to library assemblies that are culture-specific
but have the same short name derived from the neutral assembly’s short name. This
arrangement is likely to cause a problem because the Windows file system cannot distinguish
between such assemblies that have the same short name. To get around this problem, the
culture-specific assemblies should be in subfolders named according to the culture. Chapter 5
will look at placing assemblies in the global assembly cache, but for satellite resource
assemblies, this subfolder naming scheme will be used. Thus, the MyResources.en-
US.resources resource should be in a library assembly named assem.resources.dll in a
subfolder named en-US, and the MyResources.en.resources resource should be in a library
assembly also named assem.resources.dll but this will be in a subfolder named en.

The assemblies that contain culture-specific resources contain no code and are named satellite
assemblies. The name comes from the fact that they are associated with a culture-neutral
assembly with the same resource name. You use the assembler linker tool, al.exe, to create a
satellite assembly, as shown here:

al /embed:MyResources.en-US.resources /culture:en-US
 /target:library /out:assem.resources.dll

The assembly has the name of the assembly that it is associated with rather than the resource
base name.

At run time, you can load the culture-specific resource using a resource manager, as the
following code shows:

ResourceManager* man;
man = new ResourceManager(
 S"MyResources", Assembly::GetExecutingAssembly());

The resource manager will obtain the current culture, and using this information, it will look
for a satellite resource, that is, an assembly with the same short name as the specified
assembly in a subfolder with the name of the current culture. If the satellite cannot be found
(or the satellite does not have the culture-specific resource), the resource manager will attempt
to load the culture-neutral resource. It is worth mentioning here that if you have problems with
satellite assemblies, the Fusion log viewer is an invaluable tool because it tells you the names
of the assemblies that the runtime is attempting to load.

If I build an assembly named assem.exe with the culture-neutral resource
MyResources.resources, build a satellite assembly assem.resources.dll with the U.S. English

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MyResources.resources, build a satellite assembly assem.resources.dll with the U.S. English
resource MyResources.en-US.resources, and run assem.exe on a U.S. English machine, then
the satellite assembly will be loaded and the resource manager will use the U.S.-specific
resources. For any other locale the culture-neutral resources will be loaded. I can force the
runtime to load the U.S. resources by changing the current culture with the following code:

Thread::CurrentThread->CurrentUICulture =
 new CultureInfo(S"en-US");
ResourceManager* man;
man = new ResourceManager(
 S"MyResources", Assembly::GetExecutingAssembly());

I will give examples of assemblies with satellite resources in Chapter 6, where I will illustrate
how to use Visual Studio .NET build events and Makefile projects to create satellite
assemblies in appropriate folders.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Summary

Win32 PE applications can be console applications and associated with a console window, or
they can be GUI applications that run in their own window (or indeed, no window at all).
When you compile your application, you should indicate whether the application is a console
or GUI application through a linker switch or through the entry point of the application.

Your application, or a library assembly code used by an application, will need to create
windows and draw on those windows. The managed code to create forms is the Windows
Forms library, and the code to draw on windows is the GDI+ library. Both libraries are based
on native Windows code, and you can interop your managed windowing code with Win32
code.

Your managed code might use resources, and these can be managed resources (compiled or
uncompiled resources), or they can be unmanaged resources. Resources are important for
localization and for versioning of your assemblies. These issues of versioning and localized
cultures developed further in the following two chapters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5
Systems Programming
From the chapters you have read so far, you will be aware that Microsoft Visual C++ .NET is
the .NET systems programming language. C++ gives you the facility to do things that are not
possible to do in other languages supported by the .NET Framework. If you are the sort of
person who wants complete control, Visual C++ .NET is the language for you.

In this chapter, I will go into more depth about how .NET works and how you can configure it
for your code. I will address the systems concepts of how assemblies are implemented and
how to get information about the types that are implemented in assemblies. I will explain how
assemblies are configured and how you can get configuration information. I will also explain
how code access security protects your code and the implications of writing assemblies in C++
on code access security. Finally, I will show the unmanaged API for accessing the runtime and
explain how you can use it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assemblies

Assemblies are the units of deployment, versioning, and security in .NET, and in this chapter,
I will cover each of these issues. Assemblies can be made up of more than one file, but all
code will be contained in the Microsoft portable executable (PE) files. Assemblies have to
contain metadata (which is vital to how .NET works), and each code file in an assembly will
have metadata. One file in the assembly will have information about all the other files in the
metadata in a section named the manifest. This file, the one that contains the manifest, is your
central point for investigating how assemblies work and the information that they contain.

Portable Executable Files

Code that executes on Windows is stored in a file format known as portable executable, which
is an extension of the Common Object File Format (COFF). The PE file format is shown in
Figure 5-1. A PE file consists of headers containing flags about the file and sections that
contain code and data. For historical reasons, all PE files have an MS-DOS header that has a
small amount of x86 code that will run under MS-DOS and print out the message This
program cannot be run in DOS mode. The MS-DOS header can be identified by the two bytes
MZ These are the initials of Mark Zbikowski, one of the original architects of MS-DOS. at the
beginning of the file. The four bytes at location 0x3c within the MS-DOS header are the offset
of the PE header from the beginning of the file.

The PE header is made up of two structures, the COFF header and the PE header, and starts
with a 4-byte signature, which is PE followed by 2 NUL bytes. The 20-byte COFF header
contains information about the type of the machine that the file should be run on, the time and
date that the file was created, and the characteristics of the file, which indicate things such as
whether the file is a DLL or an EXE. The COFF header also gives the number of sections that
are in the PE file.

The PE header immediately follows the COFF header, and the size of the PE header is a field
in the COFF header. The PE header contains information about the version of the linker that
was used, the size of the code and data sections, the versions of the target operating systems
and subsystems, and various other flags. The PE header is 96 bytes followed by the data
directory. (The size in the COFF header is the size of the fixed fields plus the size of the data
directory.) The data directory contains sixteen 8-byte entries (although the data directory can
obtain a different number of entries, current tools generate only 16 entries), where each entry
is a relative virtual address (RVA) of the relevant table and the size of the table. An RVA is
the location of the item when the file is loaded in memory relative to the load address of the
file.

The values in the PE header can be viewed with the DUMPBIN tool using the /headers
switch. (This tool is just a stub for the linker with the /dump switch.) DUMPBIN calls the
COFF header file header values, and it calls the PE header optional header values. The current
version of DUMPBIN also describes the fifteenth data directory as the COM descriptor
directory; however, this description is likely an artifact from the various names that were used
for .NET before the current name was chosen. The ECMA specification calls the fifteenth data
directory the CLI header, and confusingly, you can obtain this information with the /clrheader

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

directory the CLI header, and confusingly, you can obtain this information with the /clrheader
switch to DUMPBIN. The CLI header gives the RVA for the managed resources and the
metadata directory. The managed resource directory holds the resources that you have added
to your assembly through the linker /assemblyresource switch. The CLI header also gives the
minimum version of the runtime required to run the assembly, but curiously, this version is
given as 2.0. I guess the reason for this odd versioning is that .NET was known as COM+ 2.0
during the early part of its development.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-1. The PE file format

Immediately after the PE header is a section table that has 40 bytes for each entry. (The COFF
header gives the total number of sections.) Section is the name of a part of the PE file that can
contain either code or data. The section table indicates the name of the section, its size and
position in the PE file, and whether the section contains code or data. If the section contains
code, the entry in the section header indicates whether the code is readable or writable.
Sections in PE files will be located at linker determined alignments. At run time, sections are
always loaded at page boundaries. This combination of read/write characteristics and the fact
that they are loaded at page boundaries implies that the main purpose of a section is to provide
the basic information required by the Win32 virtual memory APIs.

Section names generated by Microsoft compilers always start with a period, but if you define
your own sections with #pragma data_seg (for example, to declare a shared data section), you
can use any name you want. Section names have a maximum of eight characters, and names
longer than this will be truncated. Furthermore, they are not necessarily NUL terminated: the
entry in the section table is exactly 8 bytes. The DUMPBIN /headers switch gives this
information for each section.

The PE header also gives the address of the entry point of the PE file. This code is simply a
JMP to either the _CorExeMain or _CorDllMain function exported from mscoree.dll. This
DLL is statically imported by all .NET modules and is the only .NET file that is copied to
your machine’s system directory. mscoree.dll is a shim DLL that forwards calls to the
appropriate .NET system DLL (mscorwks.dll or mscorsvr.dll; see the section “Initializing the
Runtime” later in this chapter).

All that I have described here is true of executable and library assemblies and of .NET module
files.

Metadata Directory

One field in the CLI header is the RVA for the metadata directory, which gives access to all
the metadata used by the assembly. The metadata directory starts with the string BSJB and has
information about the version of the metadata and the version of the .NET Framework (as a
string) that was used to create the assembly (documented as the IMAGE_COR20_HEADER
structure in corhdr.h). After the header, the directory has information about the metadata
streams that are used in the assembly. A metadata stream is a table holding information used
by your code. The Microsoft intermediate language (MSIL) code in your types uses metadata
tokens to identify elements that can be held in metadata (such as type names, member names,
and user strings). A metadata token identifies which stream the metadata is held in and the
location of the metadata in the stream. The various metadata streams that can be generated by
the C++ compiler are given in Table 5-1.

When your code is compiled, the compiler will generate a metadata directory in the .obj file,
and when the assembly is created, the linker will amalgamate the metadata directories from the
various .obj files in your project. The compiler will add entries to the #~ stream for metadata
items such as class definitions, class members, and references to externally defined classes.
The actual names of these items are stored in the #Strings stream. You can see the entries that
are stored in these streams by turning on the display of tokens in ILDASM. You turn on the
display of tokens using the /tokens switch, or using the /advanced switch and selecting Show
Token Values from the View menu.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 5-1. Metadata Streams
Stream Description

#~ Optimized stream of the metadata tables .NET also defines a stream called #-,
which is a non-optimized stream of metadata tables. Current tools only generate
the optimized stream.

#Blob Holds internal metadata binary objects

#Guid Holds GUIDs

#Strings Holds the names of metadata items

#US User Strings, holds user-defined strings

Metadata tokens identify both the stream and the location of the item in the stream. The top
byte identifies the metadata table (one of the CorTokenType enumerated types documented in
the corhdr.h). All of these tables except mdtString can be found in the #~ stream; the
mdtString items are located in the #US stream. The lower three bytes of tokens for items in the
#~ stream give the record ID (RID) of the item in the stream. In contrast, the lower three bytes
of tokens for items in the #US stream are an offset from the beginning of the stream of the
item. For example, the code

Test* t = new Test;
String* str1 = S"Test1";
String* str2 = S"Test2";

will generate the following MSIL:

newobj instance void Test/* 02000003 */::.ctor() /* 06000008 */
stloc.2
ldstr "Test1" /* 70000001 */
stloc.1
ldstr "Test2" /* 7000000D */
stloc.0

The string Test1 is stored as the first item in the #US stream. (All streams are indexed from 1.)
The string is stored as a Unicode string (0xa bytes long) prefixed with the length of the entire
entry. Metadata uses a compressed format for the length of the string so that strings with a
short length will use a single byte for the length, which is the case for the Test1 string: it has a
length of 0x0b (0xa + 1). This layout means that the second string in the #US stream will be at
location 0xd, which is the reason that the string Test2 has the token 0x7000000d (a top byte of
0x70 is a user string). Here is the actual data held in the #US stream:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

71c8 00 00 00 00 00 0b 54 00 T.
71d0 65 00 73 00 74 00 31 00 e.s.t.1.
71d8 00 0b 54 00 65 00 73 00 ..T.e.s.
71e0 74 00 32 00 00 00 00 00 t.2.....

The class Test is defined in this assembly, and it is the third definition, whereas the constructor
is the eighth method defined in the assembly.

The definition of a type will be accessed through the #~ stream. I won’t go into the fine details
of how to obtain the definition of the type because the type is documented in the ECMA
specification, which you can find in the Program Files\Microsoft Visual Studio
.NET\FrameworkSDK\Tool Developers Guide\docs\ Partition II Metadata.doc file. The
various definitions that you can have in an assembly will be accessed through a table. The
current specification defines 35 different tables and the format of those tables. The header to
the #~ stream contains a 64-bit bit mask where each bit specifies whether a corresponding
table is used in the assembly. The header is followed by an array of 32 bit integers giving the
number of entries in each of the tables. This data is then followed by the actual table.

The metadata table for each type of metadata is different, so each entry for the Module table
has 10 bytes, and each entry for the TypeDef table (used to give information about type
definitions) has 20 bytes. The ECMA specification contains the schema for each table. A type
definition contains an index into the #Strings stream for the name of the type and the
namespace. The definition also gives an index into the Field and Method tables for the fields
and methods implemented by the type. Each entry in the Field table has the RVA of the
implementation of the method (the MSIL for the method).

Reading Metadata

The physical layout of assemblies and metadata is documented in the ECMA specification.
The ECMA specification also documents the format of each IL opcode, so if you choose, you
can write unmanaged (or managed) code to read an assembly, get information about the types
implemented in the assembly and the types that the assembly uses, and dump the IL of those
types. Of course, this process would be rather tedious, so Microsoft has provided two APIs to
get access to metadata: reflection and the unmanaged metadata API.

The reflection API is a high-level managed API. It presents a logical view of metadata and is
accessible from any .NET language. Reflection is concerned with metadata—the description
of types—so it does not give access to MSIL. However, the API does allow you to invoke a
method of a type, as shown in the following code:

// reflinvoke.cpp
String* str = S"Hello";
Type* t = str->GetType();
Type* params[] = new Type*[0];
// Get the overload of ToUpper that has no parameters.
MethodInfo* mi = t->GetMethod(S"ToUpper", params);
// Invoke the method. We know that the return value is a String*.
String* str2 = static_cast<String*>(mi->Invoke(str, 0));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String* str2 = static_cast<String*>(mi->Invoke(str, 0));
Console::WriteLine(str2);

The unmanaged API is far closer to the physical layout of metadata in the PE file. This API is
documented in the Tools Developers Guide supplied with the .NET Framework SDK (the
Metadata Unmanaged API.doc and the Assembly Metadata Unmanaged API.doc files in the
Program Files\Microsoft Visual Studio .NET\FrameworkSDK\Tool Developers Guide\docs
directory) and is provided through COM objects. The interfaces and CLSIDs for these objects
are declared in cor.h, and the types and enumerations used to describe metadata are declared in
corhdr.h. The .NET Framework SDK comes with an example named metainfo that shows how
to use these interfaces. This tool is also useful for probing into how metadata is stored in
assemblies. The /heaps switch for metainfo dumps the entries in the #Strings, #US, and #Blobs
streams, and it will give information about the metadata tables that are present in the #~
stream. The /raw switch will dump the entries in each table in the #~ stream and the schema of
each table. Some of the entries in a metadata table will be an index into one of the other
streams or into another table, but the information provided by this tool gives you enough
information to determine the items in the assembly.

The metadata API is straightforward to use. The first stage is to access the metadata dispenser
object, as shown here:

// dumptypes.cpp
IMetaDataDispenserEx* pDispenser;
CoCreateInstance(CLSID_CorMetaDataDispenser, NULL,
 CLSCTX_INPROC_SERVER, IID_IMetaDataDispenserEx,
 (void**)&pDispenser);

This is the gateway to the other metadata APIs. There are three metadata interfaces:
IMetaDataImport and IMetaDataAssemblyImport and the lower-level interface
IMetaDataTables. These are implemented by a separate object named the scope object, as the
following code shows:

// dumptypes.cpp
IMetaDataImport* pImport;
pDispenser->OpenScope(strFile, 0,
 IID_IMetaDataImport, (LPUNKNOWN*)&pImport);

The OpenScope method returns an interface for an assembly in a file, and there is a version
that returns the interface for an in-memory assembly. You can request IMetaDataImport,
ImetaDataAssemblyImport, or IMetaDataTables from this method because they are all
implemented on the scope object. You can get information about an individual item through its
metadata token. The methods on IMetaDataImport will use the token to locate the item in the
appropriate table in the #~ stream. You can get a token for an item either by requesting the
item by name or by enumerating the items of a particular type. If you use an enumerator, you
must free it once the enumeration has completed. When you have a token, you can call a
method to get information about the specified object. Here is an example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// dumptypes.cpp
HRESULT hr;
HCORENUM hEnum = 0;
mdTypeDef typeDefs[5];
ULONG count = 0;
do
{
 hr = pImport->EnumTypeDefs(&hEnum, typeDefs,
 sizeof(typeDefs)/sizeof(mdTypeDef), &count);
 for (ULONG idx = 0; idx < count; idx++)
 {
 ULONG size = 0;
 // Get the size of the name.
 pImport->GetTypeDefProps(typeDefs[idx], 0, 0, &size, 0, 0);
 LPWSTR strName = new WCHAR[size];
 DWORD flags;
 mdToken baseClass = 0;
 pImport->GetTypeDefProps(
 typeDefs[idx], strName, size, 0, &flags, &baseClass);
 LPCWSTR strType = TypeOfType(pImport, flags, baseClass);
 // If the class is nested, get the full name by
 // repeatedly accessing the name of the encloser class.
 if (IsTdNested(flags))
 {
 LPWSTR strEncloser = 0;
 mdTypeDef nestedType = typeDefs[idx];
 while (true)
 {
 // Get the token of the enclosing class.
 mdTypeDef encloser;
 pImport->GetNestedClassProps(nestedType, &encloser);
 LPWSTR str = GetTypeName(pImport, encloser);
 if (strEncloser == 0)
 strEncloser = str;
 else
 {
 // Prefix the name with the enclosing class.
 LPWSTR strTemp;
 strTemp = new WCHAR[lstrlen(strEncloser)
 + lstrlen(str) + 3];
 wcscpy(strTemp, str);
 wcscat(strTemp, L"::");
 wcscat(strTemp, strEncloser);
 delete [] strEncloser;
 delete [] str;
 strEncloser = strTemp;
 }
 // See if the encloser class is a nested class.
 pImport->GetTypeDefProps(
 encloser, 0, 0, 0, &flags, 0);
 if (!IsTdNested(flags)) break;
 nestedType = encloser;
 }
 wprintf(L"%s %s::%s;\n",
 strType, strEncloser, strName);
 delete [] strEncloser;
 }
 else
 wprintf(L"%s %s;\n", strType, strName);
 delete [] strName;
 }
} while (count > 0);
if (hEnum) pImport->CloseEnum(hEnum);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (hEnum) pImport->CloseEnum(hEnum);

EnumTypeDefs is called repeatedly until the enumeration is exhausted. The first time that the
method is called it is passed zero as the first parameter. A handle to the enumeration is
returned, and this handle is passed to EnumTypeDefs on subsequent calls. The method will
attempt to fill the array with tokens and return the count of tokens that were returned. After the
enumeration has completed, CloseEnum is called to clean up resources allocated for the
enumeration.

For each token, I call GetTypeDefProps to get information about the type. This method can
return the name, a token for the base class of the type, and a flags value that will return one of
the values from the CorTypeAttr enumeration. The corhdr.h file defines various macros to
check for various flags in this enumeration, and I will concentrate on just two flags
(tdInterface and tdClass) and three macros (IsTdInterface, IsTdClass, and IsTdNested). If the
class is nested within another class, the IsTdNested macro will return true, and to get the token
of the enclosing class, you can call GetNestedClassProps. Because classes can be nested to
multiple levels, I loop until I get to the top-level class.

EnumTypeDefs will return tokens of __value and __gc types; __value types can be classes or
enums, and __gc types can be classes or interfaces, so the code needs to determine which of
these four types the token refers to. The tdInterface flag is a nonzero flag that makes the
positive assertion that the type is an interface. The tdClass flag is zero, so you check to see
whether a type is an interface; otherwise, it is a noninterface type. However, there is no flag
for value types or enumerations. The only way to check for these is to test the base class for
the type. This test is the purpose of the TypeOfType method that I have defined, as shown
here:

// dumptypes.cpp
LPCWSTR TypeOfType(IMetaDataImport* pImport, DWORD flags,
 mdToken baseClass)
{
 static LPCWSTR types[] =
 {
 L"__gc __interface",
 L"__gc class",
 L"__value class",
 L"__value enum"
 };
 int type = 0;
 if (!IsTdInterface(flags))
 {
 LPWSTR name = GetTypeName(pImport, baseClass);
 if (name != 0)
 {
 if (wcscmp(name, L"System.ValueType") == 0) type = 2;
 else if (wcscmp(name, L"System.Enum") == 0) type = 3;
 else type = 1;
 delete [] name;
 }
 }
 return types[type];
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Here I use a static array of the types that you can have in .NET. If IsTdInterface returns true,
the type is an interface. Otherwise, the method obtains the base class name and uses this to
determine whether the type is an enum, a __value type, or a __gc class type.

The GetTypeName method returns the name of the base type. This process is a little more
complex than calling GetTypeDefProps because GetTypeDefProps returns the properties of a
type defined in the current scope, but the base class type might have been defined in another
assembly, in which case you do not want to get the properties of a type definition, but of a
type reference. Here is my implementation of GetTypeName:

// dumptypes.cpp
// This method returns a string allocated with the C++ new
// operator, so you must delete the value when you have finished
// with it.
LPWSTR GetTypeName(IMetaDataImport* pImport, mdToken baseClass)
{
 ULONG size = 0;
 LPWSTR name = 0;
 pImport->GetTypeDefProps(baseClass, 0, 0, &size, 0, 0);
 if (size == 0)
 {
 // Since the size is zero, we attempt to see if the token is
 // a type reference.
 pImport->GetTypeRefProps(baseClass, 0, 0, 0, &size);
 // Interfaces return a NUL character as the base class name
 // when they have no base interface.
 if (size > 1)
 {
 name = new WCHAR[size];
 pImport->GetTypeRefProps(baseClass, 0, name, size, 0);
 return name;
 }
 else
 {
 // There is no name.
 return 0;
 }
 }
 else
 {
 // The token is a type definition.
 name = new WCHAR[size];
 pImport->GetTypeDefProps(baseClass, name, size, 0, 0, 0);
 return name;
 }
 return 0;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you have a token to a type definition, you can get access to the members of the type.
EnumMembers will return the methods and fields, or you can call EnumMethods, EnumFields,
EnumProperties, or EnumEvents to get the specific members of the type. If the type
implements interfaces, you can call EnumInterfaceImpls to get the tokens of these interfaces.
Interfaces are the only types in .NET that do not have to have a base class. However,
GetTypeDefProps will return a non-NULL token for the base class, and the name from this
base class will be the single NUL character. This is why I test for this situation in
GetTypeName.

The source code for this chapter has a screen saver that will print the types exported from all
the assemblies in the .NET Framework folder. This screen saver is an unmanaged application
and uses the unmanaged APIs that I have described here.

Assembly Format

An assembly contains a manifest, which is essentially a repository for information about the
files that constitute the assembly, the resources it holds, the security permissions it requires,
and the assemblies that the current assembly is statically linked to. The manifest is contained
in a PE file, either a DLL or an EXE. This DLL is the file that you specify in a #using
statement.

An assembly is made up from one or more modules. A module contains code and is a
mechanism for the .NET runtime to load only the code that is actually being executed. I will
go into more depth about building multimodule assemblies in Chapter 6. However, it is worth
pointing out that you will rarely want to create an assembly with more than one module.
Indeed, the .NET Framework assemblies are all single-module assemblies. There are two main
situations in which you will want to have more than one module. The first case is when you
have a library with types that you use frequently and types that you will rarely use. In this
case, you can put the rarely used types in a separate module. When the assembly is loaded, the
module with the frequently used types will be loaded, and the other module will be loaded into
memory only in the rare situation in which the types it defines are referenced. The other
situation in which you will use multiple modules is when the assembly is designed to be
downloaded from another machine. You can put types that are likely to need updates in a
separate module, and when you update a module, only this module will be downloaded.
However, as you will find out in the section “Verifiable Code,” the C++ compiler cannot be
used to create assemblies that are intended to be downloaded because the .NET loader will
refuse to load such an assembly sourced from another machine.

Each module will have metadata containing information about the types that the module
implements and the assemblies that it references. One module will contain the manifest. In
addition to information about the types that this module implements and the assemblies it
references, the manifest contains metadata about the other modules in the assembly and
information about the assembly. You can view the manifest with ILDASM, but note that this
tool identifies the tables of type definitions and assembly references as MANIFEST even if the
module does not contain an assembly manifest.

Two important pieces of information in an assembly manifest are the security permissions
required by the assembly (which will be covered in the section “Security” later in this chapter)
and the complete name of the assembly. Because an assembly can be made up of more than
one file, there must be some mechanism to name the entire assembly. When you build an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

one file, there must be some mechanism to name the entire assembly. When you build an
assembly, you will get one or more PE files. The PE file that contains the manifest supplies
the short name of the assembly; all assemblies have a short name. In addition, an assembly can
have metadata to indicate the version, the culture, and a public key of the publisher of the
assembly. The full name of an assembly is a combination of these four: the short name,
version, culture, and public key. The version, culture, and public key for an assembly are
provided through custom attributes.

Version

The version of an assembly is supplied through the [AssemblyVersion] attribute. The version
is supplied as the parameter to this attribute as a string in this format:

<major>.<minor>.<build>.<revision>

Each part of the version string is a number, and each number is separated by a period. There is
a major and a minor version, a build number, and a revision. You must provide the major
version, and the rest can be regarded as optional and will be assumed to be zero if you do not
specify them. If you provide an asterisk for the build, the compiler will generate the build
number by calculating the number of days since the year 2000 from the build date, and then
the compiler will generate the revision number by calculating the number of seconds from
midnight module 2 from the build time. This mechanism means that each time an assembly is
compiled, the build and revision are changed. If the assembly has a strong name (see the
section “Assembly Strong Name” later in this chapter), the runtime will create the complete
name of the referenced assembly using the version stored in the referring assembly. If the
runtime cannot find an assembly with this exact name, You can change this behavior with a
configuration file. See the section “Locating Assemblies” later in this chapter. you will get a
FileLoadException. The problem with using * within [AssemblyVersion] is that if the
assembly is a library assembly and has a strong name, you have to compile the assemblies that
use the library every time you recompile the library. Of course, you might decide to recompile
the library because the public interface of the types exported from the assembly (that is, the
public members of public types) has changed, so the users of the library must be recompiled to
take advantage of the new public interface. If only the implementation of those types has
changed, it should be unnecessary to recompile the users of the library.

Furthermore, when you use the [AssemblyVersion] attribute in a C++ file, the compiler will
change the .ver metadata attribute, but it does not change the VERSIONINFO unmanaged
resource in the final assembly. Because you have two versions to keep synchronized, it makes
no sense to rely on the compiler to provide the values for the build and revision. For all of
these reasons, I recommend that you do not use * in the version string for the
[AssemblyVersion] attribute.

If you have multiple source files for your project, you should use [AssemblyVersion] in only
one file; if you have this attribute in more than one source file, the linker will notice this
duplication, issue a warning, and use the version in the .obj file that was last passed to the
linker.

The .NET Framework also provides an attribute named [AssemblyFileVersion], but this
attribute has no effect on the assembly version. The compiler will add metadata for the
attribute as a custom attribute. The compiler does read the attribute, and it will validate the
value passed to the attribute to ensure that this string contains only numbers and periods. The
parameter to [AssemblyFileVersion] is a string in the form major.minor.build.revision, but you

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parameter to [AssemblyFileVersion] is a string in the form major.minor.build.revision, but you
can omit parts of the string except for major. Similar to the assembly version, the value passed
in [AssemblyFileVersion] is not automatically used to update the VERSIONINFO unmanaged
resource. You will have to manually synchronize the managed and unmanaged versions. I do
this with a script that obtains the relevant files from Visual SourceSafe, changes the versions,
and then checks the files back in. At each milestone in the development cycle, I can run the
script for all the assemblies in the project and set the managed and unmanaged version to the
same value.

Culture

The culture for an assembly is especially important for a library assembly that is used as a
satellite assembly. The culture is also useful for library assemblies in general, but it is of no
use for an EXE assembly because an EXE assembly should be culture neutral, and if it needs a
localized resource, an EXE should use a satellite assembly. For this reason, the C++ compiler
will issue an error when you attempt to add a culture to an EXE assembly. You add a culture
to a library assembly through the [AssemblyCulture] attribute and pass the culture identifier to
the constructor.

Assembly Strong Name

You give an assembly a strong name by providing a public/private key pair. When the
assembly is built, the compiler will read the files that constitute the assembly and generate a
hash for each one. This hash is added to the manifest of the assembly so that the .NET loader
can check to see whether the file has changed when it is loaded. The default hash algorithm is
SHA-1, but you can change the algorithm with the [AssemblyAlgorithmId] attribute. The
options are given by the AssemblyHashAlgorithm enumeration, either SHA-1 or MD5.

Once the compiler has created the manifest, the compiler will create a hash (always using
SHA-1) from the entire PE file that contains the manifest, and it will sign this hash with the
private key that you provide. The hash and the public key are stored in the assembly (in a
location that is not hashed) so that when an assembly is loaded, the loader can generate a hash
and compare this hash with the signed hash in the assembly. If the two do not agree, the file
has been tampered with and the loader will not load it. Note that the signing occurs on the file
with the manifest; if an assembly has other modules, the hash of the module is not signed.

To create a public/private key pair, you run the sn.exe tool. This tool can create a key pair in a
file, or it can put the key pair in a cryptographic container. Typically, you will only ever want
to run this utility once to create the publisher key pair for your company. You can then use the
same key pair for every assembly that you produce that has a strong name. Because you will
only ever need one key pair, it makes sense to install this key pair into a cryptographic
container so that the key pair will be available from any folder on your machine. It is a two-
step process to put a key pair in a container. The first step is to generate a key pair in a file, as
shown here:

sn –k RTG.snk

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The file RTG.snk will contain the key pair. This file can then be installed in a key container—
a part of the key database that contains all the key pairs (exchange and signature key pairs)
belonging to a specific user—with the following:

sn -i RTG.snk RTG

The key pair in the file will be installed into the container named RTG. Each cryptographic
service provider on your machine has a key database that is used to store persistent keys.
There is a machine-wide database and a user-specific database. You can use the -m switch on
sn to specify which database to use, and you can use the -m switch to check the current setting.
(The machine key database is stored in the \Documents and Settings\All Users\Application
Data\Microsoft\Crypto\RSA\MachineKeys folder, and the per-user database is stored
in\Documents and Settings\<User>\Application Data\Microsoft\Crypto\ RSA\<SID>, where
<User> is the user’s name and <SID> is the user’s SID.)

To apply a strong name to an assembly, you use the [AssemblyKeyFile] or
[AssemblyKeyName] attribute. The former is passed the name of the file that holds the key;
the latter is passed the name of the crypto key container. You can view the public key that is
added to the assembly using ILDASM, and you’ll find that there is a metadata entry named
.publickey that lists the key. It is interesting that the C++ compiler also adds a custom attribute
for both of these even though this is unnecessary.

The public key is typically 600 bytes or so and is a key component of the strong name.
However, if the name of an assembly contained the entire public key, the name would be
extremely long, so instead of using the public key in the strong name, .NET uses a 64-bit hash
of the public key named a public key token. The .NET Framework SDK exports functions
from mscoree.dll to generate key pairs and public key tokens. These functions are prototyped
in strongname.h, as shown in this example:

// Create a key pair.
LPBYTE key;
ULONG sizeKey;
StrongNameKeyGen(NULL, 0, &key, &sizeKey);
// Do something with the key pair.

// Create a token from the key pair.
LPBYTE token;
ULONG sizeToken;
StrongNameTokenFromPublicKey(key, sizeKey, &token, &sizeToken);

// We know that the token is 64 bits.
wprintf(L"\n%02x%02x%02x%02x%02x%02x%02x%02x\n",
 token[0], token[1], token[2], token[3],
 token[4], token[5], token[6], token[7]);

// Free the buffers used by the API.
StrongNameFreeBuffer(token);
StrongNameFreeBuffer(key);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StrongNameFreeBuffer(key);

The strong name APIs return buffers allocated by the API; you must free these buffers by
calling StrongNameFreeBuffer. There are functions in strongname.h to install key pairs in a
key container, to extract a public key from an assembly, to perform tasks, such as hash blobs
of data and files, and to verify a signed manifest file. Clearly, the sn tool is implemented using
these functions (and you can verify this by running the DEPENDS utility on mscoree.dll).

Assembly Configuration

One of the goals of .NET is to simplify application deployment. Microsoft calls this process
XCOPY deployment because the implication is that you can simply copy the application (using
Windows Explorer, or indeed, the command-line XCOPY command) to copy the application
files to the target machine. Related to XCOPY deployment is DEL uninstallation. The idea is
that when you want to remove an application from your system, you merely delete the files.
Of course, not all applications can be installed and uninstalled in this way (applications that
are Windows Services are an example), but the situation is certainly better than in the days
before .NET. One area where Microsoft has made improvements to facilitate XCOPY
deployment is in configuration.

In the early days of Windows, the preferred configuration technique was to use INI files: an
application could store its settings in a global INI file named win.ini or in a private file. The
API you use to read INI files is dated, and the format of these files is rather restrictive.
Because these settings were file-based, while one application was writing to the INI file, the
application had a lock on the file, so other applications could not have access.

To get around these problems, newer versions of Windows provide a hierarchical database
named the registry. The actual underlying technology of this database is hidden from you
through the API. However, access to the registry is more sophisticated than mere file access; it
is a multiuser system where two threads can access different parts of the registry at the same
time. Registry keys can have access control lists, so you can control who has access to a key.
The API also has a simple mechanism to have global settings for all users
(HKEY_LOCAL_MACHINE, commonly abbreviated HKLM) and to allow you to have
settings specific to the current user (HKEY_CURRENT_USER, or HKCU). (If you have an
account with sufficient privileges, you can even access the registry on another machine, which
means that administrators have less distance to walk when administering machines.)

The problem with the registry comes in two forms: configuration and bloat. When an
application is installed on a machine, the installation program must add values for the
application into the registry to allow the application to run. Unless you have privileged
knowledge about the values that the application needs, you have no choice but to use the
installer program, which means that XCOPY deployment is not possible. When you remove
an application, you also have to remove the registry entries, which brings me to bloat. Even if
your applications do uninstall themselves properly, the registry is a hungry beast and will
grow with time until its size reaches a user-specified setting, at which point you will get a dire
warning from the system telling you to increase the registry size. One situation where bloat is
an issue is with COM object registration. The bloat associated with COM object registration is
such an issue for the developer that I have gotten into the habit of adding a special value to the
main key of my COM objects when built for DEBUG. I can then clean the registry at any time
by running a utility that looks for the special value and then deletes the key and its subkeys.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The .NET Framework introduces a new configuration system. XML is ubiquitous in the .NET
Framework, and it will come as no surprise to learn that the .NET Framework uses XML files
to hold configuration information. It is interesting that Microsoft appears to have performed a
U-turn with configuration files and has gone back to the old days of providing a user-readable
file for each application, rather than a central repository. In this section, I will describe how
configuration files are used and explain some nice configuration file features, but bear in mind
that configuration files do not solve the issue of multiple threads accessing a single file locked
by another thread writing to the file. The .NET configuration file API essentially ignores this
issue by treating the files as read-only by applications. Furthermore, there are no per-user
configuration files, so if you have an application that can be used by several users on the same
machine, you will have to find another mechanism to save per-user settings.

Configuration Files

Each configuration file is an XML file and has the extension .config. The root element in a
configuration file is named <configuration>; the other elements in a configuration file are
defined by the configuration file schema and can be extended. Your machine will have
configuration files for security and for applications. For applications, there will be a single,
centralized file named machine.config that has configuration settings used by all applications.
In addition, each application can have a configuration file that has a name in the form
<app>.config, where <app> is the EXE file for the application, so an application named
MyApp.exe will have a configuration file named MyApp.exe.config. You can also have files
to configure .NET remoting, but these files are loaded in a different way than application
configuration files, as I will explain in the section “Remoting” later in this chapter.

When you read a configuration section, you will get an amalgamation of the settings in the
application file and the machine’s configuration file. If there is a setting with the same name in
both files, the application file setting takes precedence. Under the covers, when a
configuration section is requested and it is found to exist in the application configuration file
or the machine.config file, the setting is cached in a Hashtable. This mechanism reinforces the
statement that I made earlier: configuration files are read-only because changes that are made
while the application is running are not guaranteed to be readable by the application.

Note that configuration files are for applications; you cannot have a configuration file for a
library assembly. ASP.NET uses library assemblies, so to get around this restriction,
ASP.NET applications have configuration files named web.config in the Web application’s
folder. This is all I will say about web.config files because this book is not about ASP.NET.

When you develop an application, you will find the application configuration file useful
because there are settings that you can make to configure debugging options. (I will give
details in Chapter 7.) Configuration files are also useful for deployed applications. There are
two main scenarios: user configuration settings and run-time settings. User configurations
settings are whatever you choose to use, and typically you will put these in the <appSettings>
section of the file. (See the next section, “Application Settings”.) Configuration files also have
settings that are read by the runtime. You do not have to do anything to get the runtime to read
the settings; the runtime will automatically load your configuration file and look for the values
that it requires.

By default, Visual Studio .NET does not allow you to manage configuration files for C++

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By default, Visual Studio .NET does not allow you to manage configuration files for C++
projects (although it does for C# projects). In Chapter 6, I will show how to use build events to
manage configuration files. Common configuration file sections that you can have in an
application configuration file are given in Table 5-2. Note that the capitalization used in the
section name is important; if you use a different capitalization, the system will throw a
configuration exception.

Table 5-2. Common Configuration File Sections
Section Description

<appSettings> Custom configuration settings

<configSections> Allows you to extend configuration files

<runtime> Information about garbage collection, assembly binding, and
probing

<startup> Information about the version of the runtime that the
application requires

<system.diagnostics> Settings for tracing applications

<system.net> Configuration settings for the System.Net classes that allow
you to use sockets

<system.runtime.remoting> Configuration settings for remote objects and remoting
channels

<system.web> Configuration settings for ASP.NET applications

Application Settings

You can supply application settings in a configuration file through the <appSettings> section.
Remember, the application regards these sections as read-only. The user of an application
provides the application settings. Essentially, this section can be regarded as equivalent to
command-line switches. Here is an example configuration file:

<!-- MyForm.exe.config -->
<configuration>
 <appSettings>
 <add key="BackColor" value="RED"/>
 <add key="Height" value="100"/>
 <add key="Width" value="200"/>
 </appSettings>
</configuration>

It is important to point out that these pairs are key-value pairs and not name-value pairs. Just
about every exception I have ever received from using the <appSettings> section has been
because I have used name instead of key. (The confusion occurs because other sections in
configuration files are name-value pairs.) The few exceptions that I have had that have not
been caused through using name have been caused because I have used the wrong
capitalization in the section names.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are several ways to read these settings. The simplest way is to use a class named
AppSettingsReader in the System::Configuration namespace. This class has a single method
named GetValue that is provided the name of the setting and the type. The method will read
the setting and attempt to convert the value from a string to the type you specify by calling the
Parse method on the target type. In this example, I want to specify a color but the Color class
does not have a Parse method, so I specify that the setting is read as a string and I do the
conversion myself:

// myform.cpp
Form* frm = new Form;
AppSettingsReader* reader = new AppSettingsReader;
String* strColor = static_cast<String*>(
 reader->GetValue(S"BackColor", __typeof(String)));
frm->BackColor = Color::FromName(strColor);
Int32 __box* width = static_cast<Int32 __box*>(
 reader->GetValue(S"Width", __typeof(Int32)));
frm->Width = *width;
Int32 __box* height = static_cast<Int32 __box*>(
 reader->GetValue(S"Height", __typeof(Int32)));
frm->Height = *height;
Application::Run(frm);

This code reads the BackColor setting as a string and then uses the FromName method to
create a color from a known color name. This color value is then used for the background
color of the form. The code also reads the Width and Height settings, but because Int32 does
have a Parse method, the code can allow GetValue to do the conversion.

The other way to read values in the <appSettings> section is to read the entire section in one
go and access these settings through a collection, and to perform this task, you use the
Configuration::AppSettings static property. The <appSettings> section, like many sections in
a configuration file, has nested sections, and to help you read these, the .NET Framework
defines collection classes (which I will cover in the section “Configuration Section Handlers”
later in this chapter).

// myform2.cpp
Form* frm = new Form;
AppSettingsReader* reader = new AppSettingsReader;
String* strColor =
 ConfigurationSettings::AppSettings->Item[S"BackColor"];
frm->BackColor = Color::FromName(strColor);
String* strWidth =
 ConfigurationSettings::AppSettings->Item[S"Width"];
frm->Width = Int32::Parse(strWidth);
String* strHeight =
 ConfigurationSettings::AppSettings->Item[S"Height"];
frm->Height = Int32::Parse(strHeight);
Application::Run(frm);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Configuration::AppSettings is a NameValueCollection, which has an indexer property. You
pass the name of the setting as the parameter to the Item property, and it will return back a
string. Even if the setting is for a type that has a Parse method (as in this case with Width and
Height), you still have to explicitly convert from a string.

You can also have an <appSettings> section in the machine.config file that will hold global
settings used by all applications. At run time, you will get a combination of the settings from
machine.config and from your own application configuration file. This arrangement means
that your application might inherit settings from machine.config that the user does not want
the application to receive. To remove an individual item, you can use the <remove> tag in the
application configuration file; to remove all the settings inherited from the machine.config file,
you can use the <clear> element.

If you have many items in your configuration file, you might decide it would be better to split
the file into two files. You can do this operation with the <appSettings> section by providing
a file attribute to the tag:

<configuration>
 <appSettings file="otherSettings.xml">
 <add key="BackColor" value="RED"/>
 </appSettings>
</configuration>

The system reads the application settings in the application configuration file first, followed by
the settings in the file you specify. If any settings are replicated, the values given in the file
specified by the file attribute will take precedence. For this example, the extra file would look
like this:

<!-- otherSettings.xml -->
<appSettings>
 <add key="BackColor" value="GREEN"/>
 <add key="Height" value="100"/>
 <add key="Width" value="200"/>
</appSettings>

Notice that the root of this file is <appSettings>. The application will create a green form
because the value in this file will be used instead of the value provided by the application
configuration file. Although this facility is of some use, I can see that it could have been even
more useful. For example, if I could give the name of an environment variable for the file, I
would have a very simple mechanism to provide per-user settings through the
%USERNAME% variable. Sadly, the mechanism does not work this way.

Diagnostic Switches

The <system.diagnostics> section has several values that you can use to determine how

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <system.diagnostics> section has several values that you can use to determine how
debugging actions and tracing occurs in your application, and I will defer discussion of these
until Chapter 7. However, it is interesting to take a look at one of the sections, <switches>. If
you have a need for an integer value in a configuration file, you can put it in the <switches>
section and read the value directly using a class derived from Switch. This class is abstract,
and the .NET Framework provides an implementation named BooleanSwitch that interprets
the value as either true or false. The documentation in MSDN says that you should enable
tracing or debugging in your application to use switches. However, you can safely ignore this
advice because the runtime makes no check. Using BooleanSwitch is simple: in the
configuration file, you add a <switches> section, as shown here:

<!-- Bool.exe.config -->
<configuration>
 <system.diagnostics>
 <switches>
 <add name="Value" value="1"/>
 </switches>
 </system.diagnostics>
</configuration>

Notice that this setting is a name-value pair. You provide the name of the switch to the
constructor of BooleanSwitch, and curiously, you also provide a description of the switch, as
shown in the following code:

// bool.cpp
BooleanSwitch* value = new BooleanSwitch(S"Value",
 S"description");
if (value->Enabled) Console::WriteLine(S"Enabled");
else Console::WriteLine(S"Not enabled");

The description parameter is ignored by the .NET Framework, and I guess this behavior is left
over from an earlier version of this class developed during the beta cycle of the Framework
classes. The beta versions of this class also allowed you to set a switch as an environment
variable or in the registry, but the release version only supports configuration files. If the
switch does not exist in the configuration file or if it has a value of zero, the switch is
considered not to be enabled, so the Enabled property returns false. Otherwise, the property
will be true. The property is read/write, which would suggest that you could use this property
to write to configuration files. Alas, this is not the case; the set method of the property is used
for another purpose. BooleanSwitch derives from Switch, which has a protected virtual method
named OnSwitchSettingChanged. The set method of Enabled calls OnSwitchSettingChanged,
which does nothing in both BooleanSwitch and Switch. However, you could derive your own
class from BooleanSwitch and implement OnSwitchSettingChanged, which performs some
action when the switch is changed programmatically.

Indeed, you can derive a class from Switch to read a value from the configuration file. Switch
has a property named SwitchSetting that will read the switch with the name passed to its
constructor. This property is a 32-bit integer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Remoting

The remoting section holds many values that are used to configure .NET remoting. I won’t go
into the details here because to do so would require a complete description of .NET remoting
and contexts. And there is no better source for such a description than my book Developing
Applications with Visual Studio .NET (Addison Wesley, 2002), ISBN 0-201-70852-3.
However, it is interesting to note that remoting sections are not automatically read by the
system. Instead, you have to explicitly call RemotingConfiguration::Configure and pass the
name of the file that contains these configuration sections.

Startup

An application can indicate that it runs under a specific version of the runtime through the
<requiredRuntime> element in a configuration file, as shown here:

<configuration>
 <startup>
 <requiredRuntime version="v1.0.3705.0"/>
 </startup>
</configuration>

The runtime checks the major and minor version given in the configuration file. If the
specified version of the runtime is not installed on the machine, the application will not be
loaded.

Configuration Section Handlers

The machine.config file can be found in the CONFIG folder in the .NET Framework system
folder (in the %systemroot%\Microsoft.NET\Framework\<version> folder, where <version>
is the version of the .NET Framework that you have installed). This file contains a description
of all the sections that you can include in a configuration file in a section named
<configSections>. I will explain this section in more detail in the next section (“Custom
Configuration Sections”); however, I want to point out here that these settings indicate the
name of a handler that will be used to read the section. For example, here is the value for the
<appSettings> section:

<!-- machine.config -->
<configuration>
 <configSections>
 <section name="appSettings"
 type="System.Configuration.NameValueFileSectionHandler,
 System, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/>
 </configSections>
</configuration>

This value indicates that the handler for this section is NameValueFileSectionHandler in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This value indicates that the handler for this section is NameValueFileSectionHandler in the
System::Configuration namespace. As I mentioned earlier, this handler is misnamed because it
reads key-value pairs. This class is poorly documented in the MSDN library, which merely
says: “This type supports the .NET Framework infrastructure and is not intended to be used
directly from your code.” However, this type, and the other handlers in the
System::Configuration namespace, should have been documented better if only to give a clue
as to the type of collection that is used to hold the configuration sections that they handle.

The terse documentation in the MSDN library is right in one respect: you do not use these
classes yourself; instead, you use a class named ConfigurationSettings. This class has a static
method named GetConfig to which you pass the name of the section that you want to read.
This method will return an instance of the collections identified in Table 5-3.

Table 5-3. Collections for .NET Framework Configuration Section Handlers
Handler Collection

DictionarySectionHandler System::Collection::Hashtable

DiagnosticsConfigurationHandler System::Collection::Hashtable

IgnoreSectionHandler

NameValueFileSectionHandler System::Collection::Specialized::NameValue-Collection

NameValueSectionHandler System::Collection::Specialized::NameValue-Collection

SingleTagSectionHandler System::Collection::Hashtable

I have not given a collection for the IgnoreSectionHandler class because as the name suggests,
when GetConfig is asked to read a section with this type, a NULL pointer will be returned.
The implication is that the section is not intended to be read using GetConfig.

As an example of using GetConfig, you can get access to the <system.diagnostics> section
with the following code:

// sections.cpp
Hashtable* h;
h = static_cast<Hashtable*>(
 ConfigurationSettings::GetConfig(S"system.diagnostics"));
IDictionary* d =
 static_cast<IDictionary*>(h->Item[S"switches"]);
IEnumerator* e = d->Keys->GetEnumerator();

while (e->MoveNext())
{
 Console::WriteLine(S"switches[{0}] = {1}",
 e->Current, d->Item[e->Current]);
}

When this code calls GetConfig, the method will create an instance of the
DiagnosticsConfigurationHandler class, which will read the specified section and return a
Hashtable containing the items. The <system.diagnostics> section can have nested

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hashtable containing the items. The <system.diagnostics> section can have nested
collections. The Hashtable class implements IDictionary—that is, it is an associative
container, so I can access the Item property to get a specific item. In this case, I access the
<switches> collection, which returns another IDictionary interface that I can use to iterate
over all the items in the section.

If you look through the <configSections> section in machine.config, you will see that there
are some sections that are declared with <sectionGroup> rather than <section>. Such sections
have nested sections, and the <sectionGroup> element allows you to identify the section
handler. As you can see with <appSettings>, a section can have a single handler even though
it has nested sections, but in this case, the handler provides a collection with all the data. The
<sectionGroup> element allows you to provide collections better suited to the nested section.

The <sectionGroup> element does not have a type associated with it, so there is no handler
and you cannot pass the name of the group to GetConfig. Instead, you have to pass the group
name and section within that group concatenated with a /. For example, to get the
<webControls> section within the <system.web> section group, you call:

Hashtable* h = static_cast<Hashtable*>(
 ConfigurationSettings::GetConfig(S"system.web/webControls"));

Custom Configuration Sections

You can create your own configuration section handlers. To do so, you should create a class
that implements IConfigurationSectionHandler and add entries to the configuration file to
identify the new section handler. For example, the following configuration file defines a new
section named <appData>, which I intend to use for my own application data. <appData> is
a group, but I have defined just one child section named <window> that is handled by a class
within the assembly named WindowConfig This class is in the global namespace. If the class
was in a named namespace, I would have to give the complete name, including the namespace
using a period as the scope resolution operator. :

<!-- dynamicForms.exe.config -->
<configuration>
 <configSections>
 <sectionGroup name="appData">
 <section name="window"
 type="WindowConfig,dynamicForms" />
 </sectionGroup>
 </configSections>

 <appData>
 <window Name = "mainForm" Text = "Test Window"
 Width = "400" Height = "150"
 FormBorderStyle = "FixedDialog">
 <controls>
 <control class = "TextBox" Name = "txt"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <control class = "TextBox" Name = "txt"
 Multiline = "true" Dock = "Top" Height = "50" />
 <control class = "Button" Name = "btn"
 Dock = "Bottom" Height = "50" Text = "Press Me" />
 </controls>
 </window>
 </appData>
</configuration>

In this configuration file, I declare an <appData> section with a child <window> section.
<window> is used to describe a form that contains controls. The <window> tag has attributes
for the form, and these attributes conveniently have the same name as properties of the Form
class. To declare the controls that go on the form, I use a section named <controls> that is a
collection of <control> elements. The <controls> and <control> tags are not mentioned in
the <configSections> because they do not have a specific handler. It is the responsibility of
WindowConfig to parse this data. The <control> element describes a control in the
System::Windows::Forms namespace, the class attribute is the name of the control class, and
the other attributes are names of properties of the Control class.

The WindowConfig class implements IconfigurationSectionHandler, which has a single
method named Create:

Object* Create(Object* parent, Object* ctx, XmlNode* sec);

This method is passed the XML of the section that it is to parse in the final parameter. In my
case, this will be the <window> element. The other parameters are not relevant in this
discussion. The Create method should parse the XML and then return the configuration object
that is returned from the GetConfig method. Note that there is no indication of the type of the
object that will be returned from this method. It would have been nice if the designers of the
.NET Framework had added an extra attribute to <section> for a developer to provide the type
of the configuration object. Instead, you have to call GetConfig and use Object::GetType to
determine the type. My implementation of Create will read the items in the <window> section
and use it to construct a Form object. Here is the code:

// dynamicForms.cpp
// This is the handler class for the custom section.
// It creates a window based on the items in the config file.
public __gc class WindowConfig :
 public IConfigurationSectionHandler
{
public:
 // Create a new Form object based on the
 // data in the config file.
 Object* Create(Object* parent, Object* ctx, XmlNode* sec)
 {
 // Make sure that we are passed an XML node from the file.
 // If sec is zero, we cannot create a form.
 if (sec != 0)
 {
 // Make sure that we are passed the <window> section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Make sure that we are passed the <window> section.
 if (!sec->Name->ToLower()->Equals(S"window")) return 0;

 Form* frm = new Form;
 // Initialize the form's properties with the items
 // passed as attributes of the main node.
 InitProperties(sec, frm);

 // Get the <controls> collection so that we can create
 // the controls on the form.
 XmlNode* controls = sec->Item[S"controls"];
 if (controls != 0)
 {
 // We need to get a display name of
 // system.windows.forms so that we can pass
 // this information to CreateInstance.
 Assembly* swf = frm->GetType()->Module->Assembly;

 try
 {
 // Iterate through all of the <control> nodes.
 IEnumerator* en = controls->GetEnumerator();
 while (en->MoveNext())
 {
 XmlNode* control =
 static_cast<XmlNode*>(en->Current);
 // Each node must have a class name.
 if (control->Attributes->ItemOf[S"class"] == 0)
 continue;

 // Create the specified control.
 ObjectHandle* oh;
 String* strCtrl = String::Concat(
 S"System.Windows.Forms.",
 control->Attributes->
 ItemOf[S"class"]->Value);
 oh = Activator::CreateInstance(swf->FullName,
 strCtrl);
 Control* ctrl =
 dynamic_cast<Control*>(oh->Unwrap());

 // Initialize the properties of the control
 // from the <control> node attributes.
 InitProperties(control, ctrl);

 // Add the control to the form.
 frm->Controls->Add(ctrl);
 }
 }
 catch(Exception*){/* do nothing */}
 }

 return frm;
 }
 return 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return 0;
 }
private:
 // This is used to initialize the properties of a control
 // using the attributes in a node.
 void InitProperties(XmlNode* node, Control* ctrl);
};

This method parses the XML passed through the sec parameter. I won’t go into the fine details
of how to use the .NET Framework XML classes. Instead, I will focus on what the code does
with the data. The first action is to create the form, so the code first checks to ensure that the
XML refers to the <window> section and then creates a form passing this object and the XML
to a member function named InitProperties, which will parse through the element’s attributes
and use these to initialize the properties on the Form object. I will show InitProperties in a
moment.

Next the code obtains the <controls> element, and for each one, it creates a control. Because
Create does not know the type of control to create, it has to create instances dynamically
through Activator::CreateInstance. I use the overloaded version of this method that has two
strings: the name of the assembly that contains the type and the name of the type. The name of
the assembly must be the full name of the system.windows.forms assembly. Because the Form
class is in this assembly, I can get the assembly object with this line:

Assembly* swf = frm->GetType()->Module->Assembly;

The full name of the assembly is returned through the Assembly::FullName property.
Activator::CreateInstance also needs the full name of the type, which I create by prefixing the
control name with System.Windows.Forms., using a period as the separator.
Activator::CreateInstance returns an ObjectHandle, and I can get the actual object by calling
Unwrap and then casting to Control. I can then initialize this object with InitProperties before
adding it to the form’s Controls collection.

InitProperties looks like this:

// dynamicForms.cpp
private:
 void InitProperties(XmlNode* node, Control* ctrl)
 {
 // Iterate through all the attributes.
 IEnumerator* en = node->Attributes->GetEnumerator();
 while (en->MoveNext())
 {
 XmlNode* attr = static_cast<XmlNode*>(en->Current);
 PropertyInfo* pi;
 // See if the control has a property with the same name.
 // Note that the capitalization used in the config file
 // must be exactly right.
 pi = ctrl->GetType()->GetProperty(attr->Name);
 if (pi != 0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (pi != 0)
 {
 // Enumerated values cannot be converted from strings
 // using the Convert class.
 if (pi->PropertyType->IsEnum)
 {
 // Initialize the property.
 Object* val = Enum::Parse(
 pi->PropertyType, attr->Value);
 pi->SetValue(ctrl, val, 0);
 }
 else
 {
 // Initialize the property.
 Object* val = Convert::ChangeType(
 attr->Value, pi->PropertyType);
 pi->SetValue(ctrl, val, 0);
 }
 }
 }
 }

In this code, I iterate through all the attributes of the XML node. I use the name as the name of
the control’s property, and the value of the attribute as the value of the property. Once I have
the property name, I use reflection to get information about the property, including its type. So
that I can set the property, I need to convert the string value given in the configuration file to
the actual type of the property. If the property takes a type other than an enumerated type, I
can use Convert::ChangeType. For enumerated values, I have to use Enum::Parse.

Using this handler is simple, as shown here:

Form* frm = static_cast<Form*>(
 ConfigurationSettings::GetConfig(S"appData/window"));
if (frm != 0)
 Application::Run(frm);
else
 MessageBox::Show("No form in config file");

Because the <window> section is a child section, I use appData/window as the name of the
section.

Writing to Configuration Files

The configuration file API is essentially a read-only API, which is a pity because you cannot
programmatically change settings set via a user interface and have these persisted for the next
run of the application. Of course, configuration files are just XML files, so you can use the
.NET Framework XML classes to change the file. The System::Data::DataSet class provides a
convenient way to do this because it presents the XML data in the form of a database. Here is
a class that will do this work:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// write.cpp
__gc class ConfigWriter : public IDisposable
{
public:
 DataSet* data;
 bool bChanged;
 ConfigWriter()
 {
 data = new DataSet;
 data->ReadXml(
 AppDomain::CurrentDomain->SetupInformation->
 ConfigurationFile);
 bChanged = false;
 }
 void ChangeValue(String* name, String* value)
 {
 if (data == 0)
 {
 throw new ObjectDisposedException(
 S"data", S"Dataset object is disposed");
 }
 DataTable* dt = data->Tables->Item[S"appSettings"];
 if (dt != 0)
 {
 DataRelation* add;
 add = dt->ChildRelations->Item[S"appSettings_add"];
 if (add != 0)
 {
 // Iterate through each <add> looking for Value.
 DataTable* addTable;
 addTable = static_cast<DataTable*>(add->ChildTable);

 IEnumerator* e = addTable->Rows->GetEnumerator();
 bool bSucceeded = false;
 while (e->MoveNext())
 {
 DataRow* dr = static_cast<DataRow*>(e->Current);
 String* val =
 static_cast<String*>(dr->Item[S"key"]);
 if (val->Equals(name))
 {
 // Set the value.
 dr->Item[S"value"] = value;
 bChanged = true;
 bSucceeded = true;
 break;
 }
 }
 if (!bSucceeded)
 throw new ArgumentException(
 String::Concat(S"Cannot find ", name));
 }
 else
 {
 throw new ConfigurationException(
 S"cannot find <add> section");
 }
 }
 else
 {
 throw new ConfigurationException(
 S"cannot find <appSettings> section");
 }
 }
 void Flush()
 {
 if (data == 0)
 {
 throw new ObjectDisposedException(
 S"data", S"Dataset object is disposed");
 }
 if (bChanged)
 {
 data->AcceptChanges();
 data->WriteXml(
 AppDomain::CurrentDomain->SetupInformation->
 ConfigurationFile);
 }
 }
 void Dispose()
 {
 Flush();
 if (data != 0) data->Dispose();
 data = 0;
 }
};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

};

There are a few points to be made about this class. The class is based on a disposable resource,
so it should also be disposable. Therefore, the class keeps a Boolean member that determines
whether a change has been made, and if so, the Flush method will write the data to the
configuration file. The constructor of this class opens the DataSet object using the
configuration file. The name of this file is taken from the name of the default name for the
current application domain. The ChangeValue method can be called to change any value in the
<appSettings> section. First this method obtains the table named appSettings from the dataset,
and then it checks to see whether there is a child table for all the <add> elements. To do this,
it looks for a child relation named appSettings_add. If there is a child relation with this name,
there will be a table where each row is an <add> element, and each column of these rows will
be an attribute of the <add> element. The code simply checks the key column to see whether
the element is the one that has been requested, and then the code changes the value column to
the appropriate value. If the specified element does not exist, the class throws an exception. I
was tempted to handle this situation by creating a new element with the suggested values.
However, there is a bug in the DataTable class, so a new row is added to the child relation
outside of the <appSettings> element. The source code for this chapter shows an alternative
solution that uses the System::Xml classes to write to a config file that can add new elements.

Here is some code that uses the ConfigWriter class to keep a count of how many times the
application has been run:

void main()
{
 AppSettingsReader* reader = new AppSettingsReader;
 int i = *static_cast<Int32 __box*>(
 reader->GetValue(S"RunCount", __typeof(Int32)));
 i++;
 Console::WriteLine(S"This is run number {0}", __box(i));

 ConfigWriter* writer = new ConfigWriter;
 writer->ChangeValue(S"RunCount", i.ToString());
 writer->Dispose();
}

Bear in mind that the DataSet class has to parse the XML and this task does take a while. So
although it is possible to write to configuration files, the message is clear: .NET configuration
files were designed as read-only files.

Per-User Configuration Files

There is no mechanism to tell the runtime to read a configuration setting based on the
currently logged-on user. I regard this as a serious deficiency in the configuration file API
because without such a facility, all users will get the same settings. You might decide that only
certain users should get particular features, or you might decide that you want to persist user
settings such as the last file loaded by a word processing application. In this situation, the
registry API excels: all you need to do is create a key under the HKEY_CURRENT_USER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

registry API excels: all you need to do is create a key under the HKEY_CURRENT_USER
hive, and the API will determine the current user and store the data in a registry file
specifically for that user.

So how do you do this in .NET? There are several ways, and I will outline a few. The most
obvious is to use the registry classes in the Microsoft.Win32 assembly to access the
HKEY_CURRENT_USER hive. However, this strategy breaks the idea of XCOPY deployment
and DEL uninstallation because if you copy the application to another machine, you will not
copy its configuration settings, and if you delete the application, its settings will still remain in
the registry.

You can obtain the currently logged-on user by reading the USERNAME environment
variable, as shown here:

String* strUser = Environment::GetEnvironmentVariable(S"USERNAME");

You could use this to create a configuration file with a name derived from the USERNAME
variable. Under the covers, the configuration system appears to give some hope of specifying a
configuration file other than the one derived from the application name. The AppDomain class
has a read-only property named SetupInformation that is an AppDomainSetup object. The
SetupInformation class has a read/write property named ConfigurationFile that gives the full
path to the application configuration file. (I used this property in ConfigWriter in the previous
section.) Having the ConfigurationFile property read/write would imply that you could change
this property and then create an AppSettingsReader object based on this new file. Sadly, you
cannot do this operation because each AppSettingsReader object is actually created from the
static ConfigurationSettings::AppSettings property, and AppSetings reads its values from the
file determined by ConfigurationSettings::GetConfig the first time it is called. GetConfig
obtains the configuration name from the current application domain and caches these values in
a private member for future use. GetConfig is called by the runtime when an application is
started, so from that point onward, the name of the application configuration file has been
cached and cannot be changed. Your only option is to read in the values from a custom
configuration file by reading the XML, with the DataSet class or with the XmlDocument class,
as shown in this code:

AppDomainSetup* setup =
 AppDomain::CurrentDomain->SetupInformation;
String* strUser =
 Environment::GetEnvironmentVariable(S"USERNAME");
String* strConfig;
strConfig = String::Concat(setup->ApplicationBase,
 strUser, S".config");
DataSet* config = new DataSet;
config->ReadXml(strConfig);
// Read the per-user settings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you perform this operation, you do not get the advantage of the merging of configuration
data. So if you determine that the per-user configuration file does not have a specific setting,
you will have to explicitly check the application configuration for the setting to see whether
there is a default value for all users. You could get around this problem by merging the XML
for the section from the per-user configuration file, the application configuration file, and
machine.config, but the details about how to perform this task are beyond the scope of this
book.

The advantage of the scheme I outlined above is that you can store the configuration file in the
same folder as the application so that you preserve the idea behind XCOPY deployment and
DEL uninstallation.

Another way to provide per-user configuration settings would be to add per-user sections to
the application configuration file, as shown in this example:

<configuration>
 <users>
 <user name="Richard">
 <lastDoc>chapter5.doc</lastDoc>
 </user>
 <user name="Ellinor">
 <lastDoc>accounts2002.doc</lastDoc>
 </user>
 </users>
</configuration>

There are several disadvantages to this solution. Here are two. The first problem is that the
<users> section needs to have a section handler to allow you to access the settings, so you
need to write this class (and a corresponding class to write values to the appropriate section).
Second, the settings for all users are stored in the same file. This means that if I copy the
application and its configuration file to another machine, I get the settings for all users even if
the only user on the new machine is me.

Versioning and Fusion

One of the goals of .NET is to solve the problem of DLL Hell. To a certain extent, if everyone
plays by the rules, DLL Hell would never occur; however, few people know what the rules are
and fewer still follow them. Put succinctly, the rules are that if you update a library, you
should only add functionality. You should not remove or change functionality used by older
applications. If you cannot guarantee this behavior, you should ensure that your library does
not replace earlier versions and cannot be loaded by older applications. COM tried to solve
this problem by basing versioning on absolute names of interfaces and classes with the implied
rule that a new implementation means a new name (CLSID) for the implementation, but again,
people broke that rule.

Windows introduced the idea of redirection files, empty files with the same name as the
application file but with the extension .local, which indicated to the system to load DLLs from
the local folder before following the LoadLibrary search algorithm. This system protects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the local folder before following the LoadLibrary search algorithm. This system protects
against loading the wrong version of a DLL, but it does not protect against replacing a DLL
with a newer, incompatible version. To protect against this incompatibility, Windows
introduced the idea of protected and shared DLLs. When a DLL is registered as shared, a
reference count is maintained in the registry. When an installer installs an application that uses
this DLL, the installer can update the reference count, and when the application is uninstalled,
the reference count is decremented. Such a DLL is removed only when the count falls to zero.
Also, during installation, the installer can check the version of the existing shared DLL and
replace the DLL if the installer has a newer version. Windows also protects its own system
DLLs by maintaining a copy of the official version. If you attempt to replace a system DLL,
Windows will revert to the cached copy. Only a service pack can change a system DLL.

All of these facilities help to patch up a system that is suffering from DLL Hell, but they are
essentially retrograde solutions applied after it became clear that a problem existed. The .NET
Fusion technology is Microsoft’s attempt to solve the problem by designing versioning and
location rules into the system so that you have rules to prevent the wrong library being loaded
but you also have the flexibility to change the rules if necessary.

Fusion comes with a tool named the Fusion Log Viewer (fuslogvw.exe). If Fusion cannot find
a library, you can use the Fusion Log Viewer to see the search paths and the files that Fusion
attempts to use, and from this, you can make an informed choice about how to solve the issue.
Once you have fixed and run an application, the .NET Framework will store details about the
application and the libraries it uses in an ini file in the folder

\Document and Settings\<User>\Local Settings
 \Application Data\ApplicationHistory

where <User> is the currently logged-on user. This file is an INI file, but you should not read
it directly. Instead, the .NET Framework setup will install a Microsoft Management Console
(MMC) snap-in named Microsoft .NET Framework Configuration. To view the working
versions of an application, you select the Applications node from the tree view and then select
Fix An Application from the view pane. This action will give a list of all the .NET
applications that you have ever run. You can select a particular application, and the tool will
list date ranges when the application was run without assembly load problems as well as
Application SafeMode, which is the original version of the assemblies that the application was
first built and tested with.

You can select one of these settings, and the tool will write values in the application’s
configuration file to indicate the specific version of the library assembly that the application
uses, and from this point onward, the application will use only those versions. You can edit the
configuration file by hand to change these settings at a later stage, and if this configuration
works, it will represent another entry in the Fix An Application dialog box. I will explain how
to do this in the section “Locating Assemblies” later in this chapter.

Private Assemblies

As the name suggests, library assemblies are intended to be used by other assemblies.
Libraries can be shared or private. A shared assembly can be used by more than one

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Libraries can be shared or private. A shared assembly can be used by more than one
application, and I will explain how this sharing is achieved in the next section. A private
assembly is used only by the application in its folder (or immediate parent folder, as I’ll
explain in a moment). This arrangement means that if multiple applications use the same
private library, there will be multiple copies of that library on your hard disk, but it does mean
that the applications will have the library that they were built to use.

A private assembly can have any name that you choose, and it does not need a strong name.
The private assembly is located in the same folder as the application that uses it, or in a
subfolder. This subfolder has either the same name as the short name of the assembly, or it has
the name of the culture of the assembly, or it is a subfolder mentioned in the privatePath
attribute of the <probing> section of the application configuration file (as explained in the
“Locating Assemblies” section later in this chapter). So, if you build an assembly named
utils.dll with a culture of “en-GB,” the assembly’s PE file can be in the application folder
(AppDomain::BaseDirectory), in a folder named utils, or in a folder named en-GB.

Shared Assemblies

Shared assemblies are stored in a special folder on your hard disk named the global assembly
cache (GAC). Figure 5-2 shows the GAC on my machine. In general, the GAC appears as a
folder named assembly under the %SYSTEMROOT% folder of your machine. This folder is
actually a namespace extension provided by shfusion.dll. You are not expected to view the
actual folder structure, but if you are interested, you can navigate the GAC through the
command line.

The namespace extension actually gives a list of assemblies in the GAC and assemblies in the
native image cache. (The Type column lists “native images” for these assemblies in the native
image cache.) Assemblies can be in either or both of these locations. The native image cache
contains assemblies that have been PreJITted, as I’ll explain in the next section (“PreJITted
Assemblies”).

Figure 5-2. The global assembly cache

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The GAC contains only shared assemblies, and any installer application run under the
Administrators account can install an assembly in the GAC. If the GAC was simply a FAT32
or an NTFS folder, this installation could cause a potential problem because the name of the
PE file is not sufficiently unique to prevent an installer copying over an existing library. The
GAC is actually a series of folders. Figure 5-3 shows the format of the GAC when I disable
the Fusion namespace extension. To do this, use the command line to navigate to
%systemroot%\assembly, then use attrib to remove the SHR attributes on Desktop.ini, and
then rename this file to something else. Remember to rename the file and apply the SHR
attributes after you have finished examining the folder structure. The assembly folder has a
folder named GAC, and immediately below the GAC folder is a folder that has the short name
of each assembly in the GAC. Within each of these subfolders are folders that are named
according to the version, culture, and public key token of the assembly. The most important of
these is the public key token: an assembly must have a strong name if it is to be put in the
GAC.

There are several ways to configure assemblies in the GAC. You can use the gacutil utility to
add and remove assemblies; you can use the -i switch and the assembly filename to add an
assembly and the /u switch with the full name of the assembly to remove the assembly from
the GAC. The Microsoft Installer can also add assemblies to the GAC, and you can use the
namespace extension. (You can drag and drop an assembly to install it, or use the delete
context menu to remove an assembly.)

The assembly folder in the namespace extension also shows a subfolder named Download.
This folder contains assemblies that have been downloaded from other machines. In the
section “Verifiable Code” later in this chapter, I will explain that you cannot write such
assemblies with managed C++.

Figure 5-3. The global assembly cache shown with the namespace extension disabled

PreJITted Assemblies

The shell extension (Figure 5-2) gives the short name, the version, the culture, and the public
key token of the assemblies that are installed. There is also a column named Type. This

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

key token of the assemblies that are installed. There is also a column named Type. This
column indicates whether the assembly is MSIL or has been PreJITted. In Figure 5 2, you can
see that the mscorlib assembly has been PreJITted because the Type column has the phrase
Native Images. A PreJITted assembly is one where the entire assembly has been run through
the JITter so that all the MSIL has been compiled to native code and then saved to a special
area of your hard disk called the Native Image Cache. Figure 5-4 shows the Native Image
Cache in Windows Explorer with the Fusion namespace disabled. You can PreJit your own
assemblies with the tool ngen. When you run this tool, it will JIT-compile the assembly and
then install the JITted assembly in the native image cache. The native image cache can hold
more than one version of the PreJITted assembly, but unlike the GAC, you do not need to
provide a strong name for the assembly.

Figure 5-4. The Native Image Cache shown with the namespace extension disabled

PreJITted assemblies do not contain the metadata tables held by MSIL assemblies: ILDASM
will show only the manifest for a PreJITted assembly. However, this limitation is not a
problem because you use the non-PreJITted assembly in #using statements, and at run time,
the .NET Framework will locate the relevant PreJITted assembly in the native image cache, or
if the Framework cannot find the right library, it will resort to JITting the non-PreJITted
assembly. This strategy means that a machine that has a PreJITted assembly will also have the
non-PreJITted assembly, so you cannot use this scheme to hide the implementation of your
code. Figure 5-2 shows that mscorlib is PreJITted, but the assembly that you refer to in #using
statements is the assembly in the .NET Framework system folder.

The reason for PreJITting is to make the initial loading of an assembly faster. However, once
loaded into memory, a PreJITted assembly is unlikely to have any performance gain over code
in a non-PreJITted assembly.

Locating Assemblies

Assemblies are loaded in two ways, dynamic or static. A dynamically loaded assembly is
obtained through a call to Assembly::Load, and although this mechanism gives great
flexibility, it also requires more work than static loading because you have to use the Activator
class to create objects rather than the managed new. Assembly::Load requires that you provide
the full name of the assembly. You can also provide partial information about the assembly
using Assembly::LoadWithPartialName; however, this strategy can make the load process

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

using Assembly::LoadWithPartialName; however, this strategy can make the load process
slower, and you do not get the benefit of versioning.

When you use the #using statement, you indicate that you want to statically link to the
assembly. The compiler will add the complete name of the assembly to the manifest of the
referring assembly, which includes the short name, the version, the culture, and if it has a
strong name, the public key token. Whether an assembly is statically or dynamically loaded, it
is subject to Fusion probing.

Probing is the name for the mechanism that Fusion uses to locate an assembly. The first thing
that Fusion does is check to see whether the assembly has a strong name. If the assembly has a
strong name, .NET versioning can be used, so Fusion determines the version of the assembly.
This information will be specified in the manifest of the referring assembly (or the
AssemblyName if the assembly is dynamically loaded), but it can be changed through the
application’s configuration file. The relevant section is <assemblyBinding> within the
<runtime> section, as shown in the following code:

<configuration>
 <runtime>
 <assemblyBinding>
 <dependentAssembly>
 <assemblyIdentity name="myAssem"
 PublicKeyToken="c4c3b887dbc8b8c1"/>
 <bindingRedirect oldVersion="1.1.0.0"
 newVersion="1.2.0.0"/>
 </dependentAssembly>
 </assemblyBinding>
 </runtime>
</configuration>

For each assembly that you want to provide binding information, you have to have a
<dependentAssembly> element. The name of the assembly is given in the <assemblyIdentity>
element. This name does not have a version because that information is given by the
<bindingRedirect> tag. This entry indicates that version 1.2.0.0 is installed on the machine,
but when an application that requires version 1.1.0.0 of the assembly runs, the runtime will
load the newer version instead. If the assembly is shared, there might be a publisher policy file
(discussed in the next section, “Publisher Policy Files”) that can override both the version
given in the referring assembly’s manifest or in the application file.

Fusion now has the complete name of the assembly and can test to see whether the assembly
has already been loaded. If the assembly is loaded, the loaded version will be used. Otherwise,
Fusion starts the process of locating the assembly. If the assembly has a strong name, it could
be a shared assembly, so the next step performed by Fusion is to check the GAC. If the
assembly is not in the GAC, Fusion treats the assembly as a private assembly and attempts to
determine the private assembly’s location.

The first check Fusion makes is the codebase. A dynamic loaded assembly can specify this
location through the AssemblyName::Codebase property or through Assembly::LoadFrom.
Also, a Codebase can be added to the registry entry for an assembly called through COM
interop with the /codebase switch of RegAsm. A static-bound assembly can be loaded from a
location other than the default location (another folder or a URL) through the <codeBase>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

location other than the default location (another folder or a URL) through the <codeBase>
element in the application configuration file (or a policy file). When you specify a codebase
folder, it must be a subfolder of the application folder. You cannot specify a global folder.
This reinforces the fact that the only way that you can share an assembly is to put the
assembly in the GAC.

Once the codebase has been checked, Fusion will check the current folder
(AppDomain::BaseDirectory), a subfolder with the short name of the library assembly, or a
subfolder with the name of the library assembly’s culture. If the library assembly cannot be
located in these folders, Fusion will check to see whether there is a <probing> element in the
application configuration file. This element can have an attribute named privatePath that is a
list of subfolders, and Fusion will check these folders (and if the library has a culture, a folder
with the culture name) for the assembly.

If all these checks fail, Fusion cannot find the assembly and it will throw an exception. You
can then use the Fusion Log Viewer to look at all the tests performed and why they failed.
When you are developing a shared assembly, you are likely to build the assembly frequently.
To test such an assembly, you’ll have to install the assembly in the GAC each time you
rebuild it. This process can be tedious, so the Framework offers a solution with the DEVPATH
environment variable. You put the path to the directory that contains the assembly in
DEVPATH and then add the <developmentMode> to machine.config.

<!-- machine.config -->
<configuration>
 <runtime>
 <developmentMode developerInstallation="true"/>
 </runtime>
</configuration>

I will return to this issue again in Chapter 7.

Publisher Policy Files

Earlier I said that only executable assemblies have a configuration file. That is not completely
true because a shared library assembly installed can have a publisher policy file. This file is a
resource-only assembly. The resource is an XML file in the format of a configuration file that
is linked (not embedded) to the assembly. The difference between a policy file and a config
file is that the resource in a policy file is associated with a library assembly, contains
information pertinent to applications using the library, and is used to identify version redirects
or a codebase. The resource-only assembly is installed into the GAC, so it must have a strong
name. The linker cannot be used to create the policy file because it will only embed resources,
and a publisher policy file must have a linked resource. Instead, you use the assembly linker
tool, al:

al /linkresource:myAssem.config /version:1.0.0.0
 /keyfile:mykey.snk /out:Policy.1.0.myAssem.dll

The name of the policy file has three parts:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Policy.<version>.<assembly>.dll

Policy indicates to the runtime that this is a policy file, <assembly> gives the short name, and
<version> is the major and minor version of the assembly to which the policy file refers.
Thus, the example applies to the versions of myAssem that have a major and minor version of
1.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Security

Security is hugely important. Every project design should start with security considerations,
and only after the security permissions required by the code have been decided should you
consider designing the code.

The Windows NT security model is based on security accounts possessing a security token
and secured objects (files, named pipes, synchronization objects, and so on) possessing an
access control list (ACL). The token gives access to a unique security ID (SID), and an ACL
contains a list of SIDs that have access, or are denied access, to the secured object. Windows
NT security checks are performed on principals, and principals have a SID, which allows
authentication to be performed (a mechanism in which a principal is checked to ensure it is
who the principal says it is). Many Win32 APIs access secured objects (for example,
::CreateFile to access an existing file), and the API will automatically perform an access
check on the object’s ACL using the current access token to see whether the principal has
access to the object. These access checks are performed automatically; the developer does not
have to provide additional code. Much of Windows NT security programming involves
maintaining ACLs on secured objects and allowing Win32 to perform access checks. The
Win32 API allows you to programmatically access security, but the process is rather arcane
and obscure, and as a consequence, most designs rely on using the default security. Finally,
COM+ provides role-based security, which brings security into the domain of Visual Basic
programmers.

.NET security is implemented using Windows NT security and provides code to perform
access checks and role-based security. However, .NET security goes one step further than this
because .NET security also provides code access security (also referred to as evidence-based
security), whereby access checks are performed on the call stack rather than on the principal.

Code Access Security

Access checks on principals are fine as long as you know what the code is about to do. When
you run an application, Windows will attach your access token to the process so that when the
application attempts to access a secured object, the access check (and auditing, if enabled) will
be performed using your access token. If you have administrator’s access to your machine,
any code that you run will have administrator’s access. Do you know the resources that each
application on your machine tries to access? Are those accesses legitimate? Should a screen
saver, for example, have access to your address book and be able to send e-mail? If the screen
saver runs under your account, there is no mechanism in Windows to prevent the screen saver
from sending spam to all the contacts in your address book.

This issue becomes even more important when you run code in DLLs. When you load a DLL
—either statically or dynamically—the code in the DLL is treated the same as the code in the
application from a security point of view. If the DLL code attempts to access a secured object
that your account has access to, the DLL code will also have access. If you cannot guarantee
the integrity of the code, it is clearly a risky action to allow the DLL to run under your
account. You cannot specify that all code in a specified DLL should be run with a different
access token than the one used by the process that loads the DLL. A process can impersonate
another account on a thread (for example, one with lower privileges), as long as the process is
run under an account that is allowed to perform impersonation. You could ensure that the DLL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

run under an account that is allowed to perform impersonation. You could ensure that the DLL
is called only on this impersonating thread, but if the thread needs to call code outside of the
suspect DLL, that code will be called under the impersonating token and your code could
suffer.

COM provides some protection because a DLL server can be run under a surrogate process.
Such a surrogate can be assigned a Windows identity that provides the access token for the
surrogate process, so this process can be a low privileged account. However, using a surrogate
process requires interprocess communications, which presents a performance issue, and the
technique cannot be used for ActiveX controls, which have to be loaded in process.

Code access security For a more complete appraisal of code access security, see Keith
Brown’s article, “Enforce Code Access Rights with the Common Language Runtime,” MSDN
Magazine, February 2001 (http://msdn.microsoft.com/msdnmag/issues/01/02/CAS/CAS.asp).
in the .NET Framework solves this issue by applying the access checks on the code within the
stack trace. Classes and methods can have a security permission attribute to indicate that the
code requires specific permissions to run. Code in a method can also explicitly demand a
permission. When such a check is performed, code access security will perform the access
check for each method within the stack trace until the access check fails, or until all methods
have been checked.

Assemblies are the unit of security. When your code requests a permission and that permission
is granted, it will be granted based on the evidence of the assembly and such a permission is
granted to the assembly. The evidence can include any information that you choose, but by
default includes information about the origin of the code. From the evidence, code access
security assigns the code to one of the code groups defined in the security configuration files.
A code group defines the permissions that the code will be given. Typically, the machine
administrator manages code groups and permission sets that the code groups will obtain
through the Microsoft .NET Framework Configuration MMC snap-in. The
System::Security::Policy namespace also has classes to programmatically manipulate the
security policy files.

The significant point is that these checks are performed on all code further up in the call stack,
Code in the call stack that has the specified permissions can call
CodeAccessPermission::Assert to stop the check from propagating to code higher in the call
stack. so if your trusted code calls a library method which then calls a .NET Framework class
to perform some action that requires permissions, code access security will check all the code
in the stack. If the library was downloaded from the Internet and the permission that is
requested is not allowed for code in the code group for downloaded code, the permission will
not be granted, even if your trusted code has sufficient privileges.

You know what your assembly can do, so you can specify that the assembly has code that
requires specific permissions. If an attempt is made to load your assembly by code that does
not have the permission, the load will fail. To specify that your assembly requires specific
permissions, your code can add the [SecurityPermission] attribute to the assembly, providing
information about the permissions that your assembly requires. Every assembly that you
compile with the C++ compiler will have this attribute If you look at the manifest of an
assembly, you’ll see a .permissionset reqmin directive and an XML permission set that has the
SkipVerification permission. :

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[assembly: SecurityPermission(SecurityAction::RequestMinimum,
 SkipVerification=true)];

This line indicates that the minimum permission that will be required is to skip verification of
the code. I will cover verification in the section “Verifiable Code” later in this chapter, but
note that C++ .NET code is not verifiable, and as a consequence, it can be called only by code
in the code groups that are able to skip verification—which by default means only code that
originates on the local machine. This limitation means that you cannot use C++ to write .NET
code that will be accessed from another machine or downloaded from another machine. You
can read the permission set for an assembly by passing the name of the assembly file to the
permview tool.

You can also apply access permissions to classes and to methods. If the caller does not have
the correct permission when calling such a method, or a member of an object of such a class,
then a security exception will be thrown. Furthermore, a method can specifically demand a
permission by creating a permission object and calling the Demand method. Demand will
cause a stack walk to check that the code further up the stack has the relevant permission, thus
allowing you to perform fine-grain code access checks.

There are classes in the System::Security::Permissions namespace (as well as
System::Diagnostics and System::ServiceProcess) for determining the permissions for various
common actions, such as accessing the file system, the registry, and user interface API. These
classes are shown in Table 5-4. These permissions are supplied both as a class that you can
call in your code and as attributes.

The SecurityPermission class and attribute allows you to demand permissions for various
.NET actions such as creating and manipulating AppDomain objects, configuring .NET,
extending remoting, skipping verification, and calling unmanaged code. These actions are
specified as members of the SecurityPermissionFlag enumeration.

One interesting attribute that you will find in the System::Security namespace is
[SuppressUnmanagedCodeSecurity]. When managed code makes a call through to
unmanaged code, the runtime will demand the SecurityPermissionFlag::Unmanaged
permission. In some code—particularly C++ code that makes calls through IJW—there might
be many managed/unmanaged transitions, which will involve multiple stack walks with a
corresponding detrimental effect on performance. The [SuppressUnmanagedCodeSecurity]
attribute indicates that the demand for the Unmanaged permission occurs only once, when the
code is first JIT-compiled, and the demand is suppressed for subsequent calls to the
unmanaged code. The C++ compiler will add this attribute to all the thunks that it generates
for IJW.

Table 5-4. Common Code Access Security Permission Classes
Class Description

DirectoryServicesPermission Determines the permissions to read, write, delete, and
browse items in directory services

EnvironmentPermission Determines the permission to read and write environment
variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EventLogPermission Determines the permissions to read and write to logs, and
to create sources and logs

FileDialogPermission Determine the permissions to show the Open and Save
file dialog boxes

FileIOPermission Determines the permissions to read and write files,
append files, and traverse directories

IsolatedStorageFilePermission Determines the permissions to access isolated storage

PerformanceCounterPermission Determines the permissions to read, write, and create
performance counter categories

ReflectionPermission Permissions concerning whether the code can use
Reflection to access protected and private members of a
type

RegistryPermission Determines the permissions to read, write, and create
entries in the registry

SecurityPermission Determine various permissions concerned with managed
code

ServiceControllerPermission Determines the permissions to connect to or control
Windows services

SiteIdentityPermission Ensures that callers are from a specific Web site

StrongNameIdentityPermission Ensures that callers have a specific strong name

UIPermission Determines the permissions to draw and access user
inputs from windows, and access the clipboard

UrlIdentityPermission Ensures that callers are from a specific URL

ZoneIdentityPermission Ensure that callers are from a specific Internet Explorer
Zone

Role-Based Security

The .NET Framework also gives access to principals. You can define your own principal type,
but you are more likely to use the .NET Framework classes that give access to Windows
principals. You can access the identity of the current principal through the static
WindowsIdentity::GetCurrent property, shown here:

Console::WriteLine(S"The principal is {0}",
 WindowsIdentity::GetCurrent()->Name);

The WindowsPrincipal class has a property that is an IIdentity pointer, which is an instance of
the WindowsIdentity class. The WindowsPrincipal is intended to check to see whether the
current principal is within a particular role. A role is a description of the type of actions that an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

current principal is within a particular role. A role is a description of the type of actions that an
account can perform. WindowsPrincipal treats security groups as roles, so
IPrincipal::IsInRole tests a principal for membership of a group.

WindowsPrincipal* p = new WindowsPrincipal(
 WindowsIdentity::GetCurrent());
if (p->IsInRole(WindowsBuiltInRole::Administrator))
{
 // Do some administrative task.
}

You can also use roles in code access security through the PrincipalPermission class and the
[PrincipalPermission] attribute. These types will test the permissions against the principal for
the current thread. By default, the Thread::CurrentPrincipal will not be set, so you have to set
this property yourself. After you have done that, you can use either the attribute or demand the
permission through the class, as the following code shows:

__gc class Secret
{
public:
 [PrincipalPermission(SecurityAction::Demand,
 Role="BUILTIN\\Administrators")]
 void SpecialAction();
};
void main()
{
 WindowsPrincipal* p;
 p = new WindowsPrincipal(WindowsIdentity::GetCurrent());
 // Set the thread principal to the principal based on the
 // windows identity.
 Thread::CurrentPrincipal = p;
 // Demand a permission to do some action.
 PrincipalPermission* perm;
 perm = new PrincipalPermission(S"MACHINE_A\\Richard",
 S"BUILTIN\\Administrators");

 try
 {
 perm->Demand();
 // Do something that only Richard can do.
 }
 catch(Exception*) { }

 // Create the secret object.
 Secret* secret = new Secret;
 try
 {
 // Do something that only Administrators can do.
 secret->SpecialAction();
 }
 catch(Exception*) { }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

In this action, I demand just one permission; however, I can demand more than one permission
through a PermissionSet object that essentially acts as a container for permission objects.
Demanding a permission set is likely to be more efficient than demanding individual
permissions.

Be careful about demanding permissions because a demand (either explicitly or through an
attribute) will cause a stack walk and if you are calling a .NET Framework class to perform
some action, it too might demand some permission. For example, there is no point in
demanding the FileIOPermission before accessing one of the .NET Framework IO classes
because they will also demand the same permissions, so a stack walk will be performed twice.
An example where demanding the FileIOPermission is useful is if you have some object that
does many file actions in its methods, and you could demand the FileIOPermission in the
constructor so that if the permission cannot be accessed, the object will not be created. If the
demand in the constructor succeeds, the object can be created and you know that when a
System::IO class demands the same permissions the demand will succeed. Because the
constructor has already confirmed that a demand will succeed, your object’s methods could
call Assert so that demands for permissions will not propagate further up the stack.

Verifiable Code

.NET is type-safe, so to call a type member, the MSIL will have the metadata of the type and
the member. MSIL is stack-based, and .NET compilers that generate the MSIL should
construct the stack correctly before calling a type member. When your code is loaded by the
runtime, the code is verified to see that it is type-safe and also that the code does not do
anything else that is unsafe, such as access unmanaged memory or get direct access to the
managed heap through an interior pointer. If the code fails this verification, it will not run in
trusted situations. Furthermore, the code has to have the SkipVerification security permission
request to run at all. All assemblies created by the C++ compiler have this security permission
request. The .NET Framework provides a tool named peverify that you can use to check
whether an assembly has type-safe code. Even C++ assemblies that do not perform unsafe
actions will fail verification with peverify.

Code that is downloaded from another machine must be verifiable before it can be run.
Clearly, allowing non-verifiable code to run on your machine is not desirable because the code
could bypass .NET security and type safety, access managed memory, and manipulate the
stack. Code that is not verifiable will not be loaded if its source is another machine. This
means that you cannot use C++ to write assemblies intended to be loaded from another
machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unmanaged .NET Services API

Many parts of the .NET Framework are exposed to external code. Clearly, if you want to get
information about the runtime or affect how the runtime works, this task should be done from
outside the runtime, from non-.NET code. The .NET Framework SDK contains definitions of
COM interfaces and objects that give access to the runtime. The header files that contain these
definitions are shown in Table 5-5.

Table 5-5. Framework SDK Header Files
Header Description

cor.h Main header file for the metadata APIs

cordebug.h Main .NET debugger interfaces

corerror.h Definitions of the HRESULTs that can be returned from the
runtime

corhdr.h Definitions of the metadata structures

corhlpr.h Helper functions

corprof.h Profiling interfaces

corpub.h Access to the list of running .NET processes

corsvc.h Services for .NET debuggers

corsym.h API to read and write debugging symbols

gchost.h Gives access to statistics about the garbage collector

iceefilegen.h API for generating .NET files

icmprecs.h Access to the .NET data storage layer

ivalidator.h,
ivehandler.h

API to validate .NET files

mscoree.h Main header file for hosting the runtime

strongname.h Header for the APIs to generate strong names.

Enumerating Managed Processes

The corpub.h header contains interfaces that allow you to get a list of the managed processes
running on your machine and the application domains in those applications. This task involves
standard COM programming using COM enumerator interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// processes.h
#include <objbase.h>
#include <stdio.h>
#include <corpub.h>
#pragma comment(lib, "ole32.lib")
#define NAME_LEN 256

void main()
{
 CoInitialize(0);
 HRESULT hr;
 // Get the COR process publisher object.
 ICorPublish* pub;
 hr = CoCreateInstance(__uuidof(CorpubPublish), 0,
 CLSCTX_INPROC_SERVER,
 __uuidof(pub), (void**)&pub);
 if (SUCCEEDED(hr))
 {
 // Enumerate the managed processes.
 ICorPublishProcessEnum* pEnum;
 hr = pub->EnumProcesses(COR_PUB_MANAGEDONLY, &pEnum);
 if (SUCCEEDED(hr))
 {
 ICorPublishProcess* processes[5];
 ULONG fetched = 1;
 while(pEnum->Next(5, processes, &fetched) == S_OK
 && fetched > 0)
 {
 // Get information about each process.
 for (ULONG i = 0; i < fetched; i++)
 {
 WCHAR name[NAME_LEN];
 ULONG32 size = 0;
 // Get the file name.
 processes[i]->GetDisplayName(NAME_LEN,
 &size, name);
 if (size > 0)
 {
 wprintf(L"name = %s\n", name);
 }
 // Get the process ID.
 unsigned pid;
 processes[i]->GetProcessID(&pid);
 wprintf(L"\tprocess id = %ld\n", pid);
 // Enumerate the application domains.
 ICorPublishAppDomainEnum* pEnumDomains;
 hr = processes[i]->EnumAppDomains(&pEnumDomains);
 if (SUCCEEDED(hr))
 {
 ICorPublishAppDomain* appDomains[5];
 ULONG aFetched = 1;
 while (aFetched > 0 &&
 pEnumDomains->Next(5,
 appDomains, &aFetched) == S_OK)
 {
 // Get information about each domain.
 for (ULONG j = 0; j < aFetched; j++)
 {
 WCHAR name[NAME_LEN];
 ULONG32 size=0;
 appDomains[j]->GetName(NAME_LEN,
 &size, name);
 if (size > 0)
 {
 wprintf(L"\t\tname = %s\n", name);
 }

 appDomains[j]->Release();
 }
 }
 pEnumDomains->Release();
 }
 processes[i]->Release();
 }
 }
 pEnum->Release();
 }
 pub->Release();
 }
 CoUninitialize();
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The CorpubPublish object implements the ICorPublish interface, which you can use to get
information about a single managed process or to get access to an enumerator
(ICorPublishProcessEnum) to iterate through all the managed processes. Information about a
managed process is obtained through ICorPublishProcess, which allows you to get the file
name of the process and its Windows process ID. Once you have a process ID, you can pass it
to the Win32 ::OpenProcess function to get a process handle and then get other information
about the process using Win32 process functions. Christophe Nasarre describes these APIs in
his article “Escape from DLL Hell with Custom Debugging and Instrumentation Tools and
Utilities,” Magazine, June 2002
(http://msdn.microsoft.com/msdnmag/issues/02/06/debug/debug.asp).

The ICorPublishProcess interface also allows you to enumerate the application domains in a
process and from each one get the name and ID of the AppDomain.

Getting Information About the Garbage Collector

The runtime is represented by an object named the CorRuntimeHost (which is defined in
mscoree.h). This object implements the IGCHost interface, which you can call to get
information about the garbage collector.

// gc.cpp
ICorRuntimeHost* pHost;
CorBindToRuntimeEx(0, 0, 0, __uuidof(CorRuntimeHost),
 __uuidof(pHost), (void**)&pHost);
UseTheRuntime(pHost);
IGCHost* pGC;
pHost->QueryInterface(__uuidof(pGC), (void**)&pGC);
COR_GC_STATS stats;
memset(&stats, 0, sizeof(stats));
stats.Flags = COR_GC_MEMORYUSAGE│COR_GC_COUNTS;
pGC->GetStats(&stats);
printf("GC called explicitly %ld times\n",
 stats.ExplicitGCCount);
printf("committed %ld kB\n", stats.CommittedKBytes);
printf("reserved %ld kB\n", stats.ReservedKBytes);
printf("generation 0 has %ld kB\n",
 stats.Gen0HeapSizeKBytes);
printf("\tcollections: %ld\n",
 stats.GenCollectionsTaken[0]);
printf("generation 1 has %ld kB\n",
 stats.Gen1HeapSizeKBytes);
printf("\tcollections: %ld\n",
 stats.GenCollectionsTaken[1]);
printf("generation 2 has %ld kB\n",
 stats.Gen2HeapSizeKBytes);
printf("\tcollections: %ld\n",
 stats.GenCollectionsTaken[2]);
printf("large object heap has %ld kB\n",
 stats.LargeObjectHeapSizeKBytes);
pGC->Release();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pGC->Release();

The preferred way to get access to the runtime is through a call to CorBindToRuntime
because this API allows you to specify the version of the runtime to load and provides some
optimization flags. In this example, I have passed zero for all the options, which indicates that
default values will be used. (This is equivalent to calling ::CoCreateInstance to get the run-
time object.) I will explain these parameters in the next section, “Hosting the .NET Runtime.”

In this example, I call the user function UseTheRuntime that will call some .NET code and
then I dump the garbage collection statistics. IGCHost::GetStats is passed an instance of
COR_GC_STATS through which statistics about the garbage collector are returned. This
parameter is in/out, and you have to initialize the Flags member to indicate which statistics
you require. The IGCHost interface also allows you to configure the garbage collector, and of
these methods, perhaps the least dangerous to call is Collect, which allows you to explicitly
tell the garbage collector to perform a collection on a specific generation or on all generations.

Hosting the .NET Runtime

The .NET Framework SDK also contains code to allow you to host the .NET runtime. For
more details, see “Microsoft .NET: Implement a Custom Common Language Runtime Host
for Your Managed App,” Steven Pratschner, MSDN Magazine, March 2001, which you can
read at www.msdn.microsoft.com/msdnmag/issues/01/03/clr/clr.asp. This hosting means that
you can create application domains, load types into those domains, and then execute them.
Examples of processes that host the .NET runtime are the ASP.NET worker process that is
called by IIS to run ASP.NET applications, and Internet Explorer when it is requested to host
a .NET control on an HTML page.

Hosting the .NET runtime is only one way to access .NET types from unmanaged code. You
can also do the same thing with COM interop, or you can simply compile your unmanaged
C++ application as a managed application (with the /clr switch) and import the .NET types
with #using. You will decide to host the runtime if you want to have greater control over how
application domains are created and the version of the runtime, or if you want to have closer
integration and receive events from the runtime.

Hosting the runtime is straightforward, but calling .NET code is not a trivial task because
effectively you have to use an equivalent of the .NET Reflection API through COM
automation compatible interfaces. I can handle COM interfaces, but when I have to handle the
overhead of IDispatch, VARIANT, and SAFEARRAY from C++, I start to wonder whether the
benefits are worth the effort. If you want to call more than one object or more than one method
on an object, it is far better to use another solution. However, if you want to call a single entry
point method on an assembly, the pain of calling automation interfaces is worth the effort.

Initializing the Runtime

The first task to perform is to initialize the runtime. .NET allows side-by-side installation of
the runtime; that is, you can have more than one version of the runtime installed on a machine.
An application can indicate that it runs under a specific version of the runtime through the
<requiredRuntime> element in a configuration file. More than one version of the runtime can
execute on a machine at the same time. CorBindToRuntimeEx takes the version of the runtime

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

execute on a machine at the same time. CorBindToRuntimeEx takes the version of the runtime
as a string to its first parameter. This string is in the following format:

v<major>.<minor>.<build>

An example is v1.0.3750. In other words, this string is in a similar format to the naming
convention used for the .NET Framework system folder. If you pass a NULL for this
parameter, the most recent version of the runtime will be loaded. You can fill a string with the
most recent version of the .NET runtime by calling CorGetVersion. The second parameter is
called the build flavor and can be wks or svr. This parameter indicates whether you want to
load the workstation or server version of the runtime (mscorwks.dll or mscorsvr.dll). If you
pass NULL for this parameter, you will get the workstation build. If you have a uniprocessor
machine, you will always get the workstation build.

The third parameter of CorBindToRuntimeEx is an optimization flag. For a uniprocessor
machine, this flag will allow you to determine whether assemblies are loaded into every
application domain, or if they are treated as being domain-neutral. If assemblies are loaded
into each application domain and your process has more than one application domain, this
strategy can increase the memory footprint of the process. However, if assemblies are domain-
neutral, a separate copy of static data must be made for all application domains, and this
duplication can slow performance.

CorBindToRuntimeEx is passed the CLSID of the run-time object and the interface that you
require. Table 5-6 lists the interfaces that you can request. (These are documented in
mscoree.idl.)

Table 5-6. Runtime Object Interfaces
Interface Description

ICorConfiguration Allows you to provide callbacks so that your code is informed when
certain thread events occur and when the virtual memory limits have
been exceeded

ICorRuntimeHost Allows you to start or stop the runtime, and to manipulate application
domains

IDebuggerInfo Determines whether a debugger is attached

IGCHost Gets statistics about and configures the garbage collector

ICorThreadPool Gets access to the .NET thread pool

IValidator Validates .NET files

Typically, you will request the ICorRuntimeHost so that you can start the runtime and get
access to an application domain, as shown here:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HRESULT hr;
ICorRuntimeHost* pHost;
hr = CorBindToRuntimeEx(0, 0, 0, __uuidof(CorRuntimeHost),
 __uuidof(pHost), (void**)&pHost);
if (SUCCEEDED(hr))
{
 pHost->Start();
 RunCodeInAppDomain(pHost);
 pHost->Stop();
 pHost->Release();
}

The user function RunCodeInAppDomain will obtain an application domain and use it to load
and execute the user code. There are several methods on ICorRuntimeHost for getting access
to an application domain. The first method is GetDefaultDomain, which as the name suggests,
is the first domain in the runtime and is created automatically when the runtime starts in the
process. If you prefer, you can create your own application domain, and there are two ways to
do this: in a single action, or in a two-step call. CreateDomain will create a domain with a
specific name and return an interface on that domain. CreateDomainSetup will return a pointer
to an IAppDomainSetup that you can use to set parameters for the domain and then pass this
object to the CreateDomainEx to create the application domain. Finally, you can enumerate all
the existing domains by calling methods on the ICorRuntimeHost interface—you do not get a
separate enumerator object.

The methods that return an application domain actually return an IUnknown interface. There is
no application domain interface defined in mscoree.idl. Indeed, the application domain set-up
parameters are also passed to CreateDomainEx through an IUnknown pointer. The
IAppDomainSetup interface is also notable by its absence in mscoree.idl. The application
domain is accessed through a pointer to the _AppDomain interface. These two interfaces are
described in the mscorlib.tlb type library, and this is where the fun begins.

The _AppDomain interface is a COM version of the class interface for the
System::AppDomain class, so you can use the documentation in the Framework SDK to
determine the parameters for the methods. However, the first question is: which method
should you call? The problem arises because interfaces in .NET can be overloaded, but in
COM they cannot, so when interfaces are exported to COM from .NET, overloaded methods
are renamed. For example, there are seven overloads of the AppDomain::Load method, and
these overloads appear in the _AppDomain COM interface as methods Load, Load_2, …
Load_6. You have to use OLEView to look at the signatures of these methods to determine
which method you intend to call.

You get a description in the type library for _AppDomain because this class is marked with the
[ClassInterface] attribute to indicate that it is ClassInterfaceType::AutoDual. However, this
behavior is not the default, and you are discouraged from using this attribute value on your
own classes. The default is not to provide a definition for a class interface for COM and only
to support late binding. Take, for example, the _Module interface (the class interface of the
System::Reflection::Module class). The type library gives this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[odl, uuid(D002E9BA-D9E3-3749-B1D3-D565A08B13E7),
 hidden, oleautomation]
interface _Module : IDispatch {};

There is no indication of the methods implemented on this interface. “But,” you say, “you
always have the option of using the documentation for the Module class.” Yes, you do, but
what about overloaded methods? To be absolutely sure, you have to write code to access the
type information that is generated dynamically for the Module object
(IDispatch::GetTypeInfo) and check for a method that has the same parameter types and with
a name the same as you expect, or with an underscore and a number. This process is all rather
messy.

To make even trivial calls to .NET Framework library classes requires lots of C++ simply to
make the automation calls. This is why I said earlier that if you want to call more than an entry
point function, you should consider some other method of accessing the runtime from
unmanaged code. IJW, of course, is your perfect C++ solution.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Summary

The more .NET code you write, the more you realize that there is more to the .NET
Framework than scripting together Web controls on an ASP.NET page or controls on a form.
The .NET Framework has been built from the bottom up to be secure, flexible, and fully
configurable. In this chapter, I have given details of how assemblies are implemented in PE
files and how metadata is stored in those files and accessed through the unmanaged API. I
have also shown how applications are configured and some of the great things you can do, as
well as some of the deficiencies in the current design.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6
Building Code with Visual
C++ .NET
Visual C++ .NET is more than just a compiler and a linker; it is a whole development
environment, a collection of tools and libraries. Although you can develop applications with
the command-line tools—compiling each file through a batch file—if you have a project with
more than a handful of files, it starts to become inconvenient to wait for all files to be built
when just one file has changed. You can take advantage of the nmake tool to compile only
those files that have changed, but nmake make files are far from intuitive to create. In this
situation, you really do need a visual tool to develop your code, which is where the Visual
Studio .NET integrated development environment (IDE) comes in.

In this chapter, I will describe how to use the IDE to develop your code and how to use the
various tools the IDE provides. I will also explain the managed C++ projects that you can
develop, and at the end of the chapter, I will give examples of solutions that you will
commonly create.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Visual Studio .NET IDE

The Visual Studio .NET IDE provides all the tools to manage projects. Through context
menus, you can provide dependency information, and through property pages, you can specify
the build tool to use to compile a source file. The various tools that you can use are available
through the main IDE menu, through toolbars and context menus. Because some menus have
nested levels of submenus, it would be cumbersome for me to describe the exact location of
each tool. Luckily, there is a simpler way to invoke these tools because the IDE provides an
extensibility model that allows you to invoke the IDE tools through commands. Before I
describe the IDE, I have to explain what a command is.

Commands

The Visual Studio .NET IDE exposes its functionality through COM objects. This
arrangement means that you can write macros and Visual Studio Add-ins to extend the
functionality of the IDE, and you can also access these objects through the Command window.
The Command window has two modes: command mode and immediate mode. Immediate
mode is used to get information about variables during a debugging session, which I will cover
in Chapter 7. As the name suggests, the command mode allows you to execute commands.
When you first open the Command window (through the View, Other Windows menu), it will
be in command mode. You can tell if you are in command mode because the prompt will be a
greater-than symbol (>). If you type the command immed, the window will switch to
immediate mode and there will be no prompt. When you are in immediate mode, you can
switch back to command mode by typing >cmd. The > symbol is important because it
temporarily puts the Command window into command mode so that the window can execute
the command cmd to switch to command mode. If you omit the > symbol, the Command
window will treat whatever you type as an expression to execute. While in immediate mode,
you can execute any command by typing the > symbol and then the command name, and after
the command has completed, you will be returned to immediate mode again.

Command mode supports IntelliSense, so when you start typing, the window will present a
drop-down list box with the commands that fit the text you are typing. (See Figure 6-1.)
Notice that the lower-right corner of the list box shows that it is resizable (indicated by the
diagonal lines in the corner), so you can resize the list box by dragging this corner. As with all
IntelliSense list boxes, you can scroll up and down the list with the mouse or the keyboard and
select the command that you require. IntelliSense is perhaps a bit of a misnomer in this context
because it rather dumbly fills the list box with all the commands that look like the command
you are typing. It does not check whether those command are relevant in the current context,
so often you will find that when you select a command, you will get an error saying that the
command is not available. All of the IDE menu items are available through commands in the
Command window, but note that when you pull down a menu, the items that are not relevant
in the current context are disabled; thus, there is information to indicate which commands are
relevant. It is a pity that the IntelliSense author did not use the same information. Each
command is represented by an EnvDTE::Command object that has an IsAvailable property.

There are two broad types of commands that you can execute, DTE commands and aliases.
DTE stands for Design-Time Environment and is accessible through the DTE object. (I’ll
return to this object in the section “The DTE Object” later in this chapter.) DTE commands are
actions that you can perform in the IDE, as shown in this example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

File.OpenFile

Figure 6-1. IntelliSense in the Command window

This command will show the Open File dialog box. This command makes it look like there is
a File object (or a File class; the C# and Visual Basic .NET dot operator is sloppy in that
respect) with a method named OpenFile. In fact, this is not the case. The dot does no more
than separate File from OpenFile; the entire name of the command is File.OpenFile. The
naming comes from the menu item that gives access to the command, so File.OpenFile is
accessed by going to the File menu, selecting the Open submenu, and then selecting the File
menu item. Here’s a good visual hint: if you cannot see a menu named Query, you cannot
execute any command that starts with the Query. text (in other words, the text “Query”
followed by a period). Table 6 1 gives a description of the various command prefixes.

Throughout this chapter and Chapter 7, I will use the command name when I refer to a Visual
Studio .NET window.

Some commands will show a window or manipulate the currently selected UI item, and other
commands take parameters. For example, the File.OpenFile command without any parameters
will show the Open File dialog box, but if you give a parameter, the command will open the
specified file. IntelliSense helps here. The word completion facility will search for the file that
best fits the characters that you have typed. So, if you type

File.OpenFile i

IntelliSense will give a list of all the files and folders starting with i. This command can take
another parameter that specifies the editor to use to edit the file. If you do not give an editor
name, the default editor for the file will be used. For example, if you load a file with the .ico
extension, the icon will be loaded into the Resource Editor. If you want to load this file in the
Binary Editor, you can use a command such as this:

File.OpenFile myIcon.ico /e:"Binary Editor"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

File.OpenFile myIcon.ico /e:"Binary Editor"

Table 6-1. Command Menu Identifiers
Menu
Identifier

Command Descriptions

Action Use in setup projects to specify the actions that can be performed when
installing or uninstalling an application.

Analyzer Manipulate a Visual Studio Analyzer project.

Build Build a solution or a project, and access the Configuration Manager.

Data Generate datasets from data sources.

Database Access and manipulate a database connection open in Server Explorer.

Debug Start or stop a debug session, step through code, and view memory, variables,
and other statistics.

Diagram Generate database diagrams used to establish relationships between tables.

Edit Manipulate text in the editor, move the insertion point, and find and replace
text.

File Open and save files and solutions; add projects to solutions; print files and
access source control.

Format Format controls in a dialog in the Resource Editor.

Frames Manipulate framesets in the Frameset Editor.

Help Access dynamic help and MSDN in the Microsoft Document Explorer.

Image Manipulate cursors, icons, and bitmaps.

Insert Add items to an HTML page in the HTML Editor.

Macros Execute macros.

Project Manipulate projects: add items and specify build order and dependencies.

Query Edit a query in a database project.

Schema Edit an XML schema with the XML Schema Designer.

Styles Edit a style sheet.

Table Manipulate tables in an HTML page.

Tools Access external tools and customize toolbars, Server Explorer, and the
Toolbox.

View Specify visible windows.

Window Manipulate visible windows.

XML Validate XML and create a schema from XML.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some commands have similar names, and this similarity can cause confusion. For example,
Debug.Threads will show the Threads window, but the Debug.ListThreads command will
print out a summary of the currently running threads in the Command window.

In some cases, there are commands that do the same thing, for example, View.ToolBox and
toolbox. The former command fits into the pattern that I have already described: this command
will select the ToolBox menu item from the View menu. The toolbox command is an alias for
the View.ToolBox command; you can view the aliases and the commands for which each is an
alias by using the alias command. In some cases, aliases are simply shorthand for a command.
For example, of has far fewer letters to type than the command File.OpenFile for which it is
an alias. In other cases, the alias has specific parameters. For example, the command StopFind
is an alias for Edit.FindInFiles /stop. You can define your own alias using the alias command,
as shown here:

alias binLoad File.OpenFile /e:"Binary Editor"

The binLoad alias should be used with a file name, and this file will be loaded with the Binary
Editor. The system saves alias definitions in a file named aliases.ini in a subfolder of the
VisualStudio folder under your Documents And Settings folder. (The aliases are written to this
file when you shut down the IDE.)

One alias that is useful is the shell alias (Tools.Shell), which will run the process that you
specify. The process can be started as a separate window, so the following command will
show the contents of the current folder in a Windows Explorer window This command passes
the parameter to the shell, and since the default process is Explorer, you can get the same
effect by omitting explorer in this example. :

shell explorer .

If the process is a command-line process, you can redirect the output to either the Command
window (using the /c switch) or the Command pane of the Output window (using the /o
switch). The following command will list the help for the command-line C++ compiler in the
Command window This assumes that the path to the C++ compiler is in the system PATH
environment variable. :

shell /c cl /help

Finally, you can also execute commands from the Find drop-down list box on the Standard
toolbar. Normally, you use this feature to search for text in the currently open document (by
typing the text and then pressing the Enter key or F3), but if you type the > symbol, you can
give the name of a command. So, if you type >File.OpenFile in the Find list box, you will get
the File Open dialog box rather than having to search the document for the text
>File.OpenFile. If you decide that you would like to search the current document for the text
>File.OpenFile, you have to use the Find dialog box (accessed through the Edit.Find

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>File.OpenFile, you have to use the Find dialog box (accessed through the Edit.Find
command), or you could type the following in the Find list box:

>Edit.Find >File.OpenFile

Projects, Solutions, and Configurations

Visual Studio .NET uses projects and solutions to manage your code. A project has an output,
so you use projects to build DLLs, EXEs, or MSI (Microsoft Installer) files. A solution
contains projects; the solution can have a single output, or it can have multiple outputs. C++
projects are described by XML files with the extension .vcproj. Because this file is XML, you
can read it with a simple text editor such as Notepad. Such a project file contains the
dependency and build tool information for each source file. Visual Studio 6 had an option to
export a project as an nmake make file; however, this feature is missing in Visual Studio
.NET. Solutions are described by files with the extension .sln. These files are also text files,
but they have a proprietary format.

Solutions and projects have one or more configurations. A project configuration has specific
build properties, and by default, the wizards will usually give you a Release build and a Debug
build configuration. You can supply any build tool values in the configuration through the
project property pages. Because the project property pages allow you to include and exclude
files from a build, you can use project configurations to compile different files in the project.
(But note that project dependencies are configuration independent.) Some properties that are
accessible through the project property pages are used by the build tools (for example, the
C++ compiler). You can provide these settings for each individual file, or you can set them on
the project. If such a property is set on the project, it becomes the default value. For example,
you can set the preprocessor symbols that will be defined for each file in the project, and you
can also define additional preprocessor symbols on a per-file basis.

Solutions also have configurations, and these have the same names as the project
configurations. However, and rather confusingly, you can use the solution property pages to
identify the project configuration on a per-project basis that will be used for a particular
solution configuration. I will explain these property pages further in the section “Managing
Configurations” later in this chapter.

When you use Visual Studio .NET with an open solution, you will get some additional
nonessential files in the solution and project folders. These files hold optional information and
will be created if they do not exist. There are three files to consider: the solution options file
(.suo), the no-compile browser file (.ncb), and the resource editor file (.aps). The solution
options file holds information about the files that you had open and your position in those files
when the solution was last saved. This feature is useful for you, because at the end of a day all
the information about your workspace will be saved, and when you load the solution the next
day, you will get the same files open at the same positions that you used the previous day.
This information is unlikely to be useful for a coworker, so if you copy a solution to transmit
to a colleague, it makes little sense to copy the .suo file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you load a resource script (.rc), the IDE Resource Editor will create a compiled version
of the script in the .aps file. This arrangement means that the Resource Script Editor does not
have to parse the resource script in subsequent editing sessions, but during a build, the
resource script is always used to create the final output’s resources. The compiled version of
the resource script, .aps, is used to load resource information quickly in the Resource Editor
and can always be regenerated from a resource script.

The no-compile browser file contains information about the classes that you have used in your
project and information used for statement completion. The no-compile browser file can get
quite large, and it will be generated if Visual Studio .NET cannot find one in the solution
folder. There is a school of thought that says that .ncb files can take time to build afresh, but I
take the opposite view that disk space (and download time, if a project is sent to me) is more
important than the time it takes to re-create a no-compile build file.

Thus, I usually delete the .suo, .ncb, and .aps files when I have completed work on a solution.
I don’t put these files under source control, and if I send a solution to a coworker, I always
exclude these files.

Creating Projects and Solutions

Creating a solution with Visual Studio .NET is as simple as running the New Project dialog
box (File.NewProject). This dialog box allows you to select the location for the solution and to
select the first project type. By default, the dialog will name the solution after the first project
and put the .sln file in the project folder. If you want to create a multiproject solution, it is
better to separate the solution and project files. To do this task, you should click on the More
button and check the Create Directory For Solution check box. This option allows you to
specify the name for the solution folder, and the project folder will be created as a subfolder. If
you have existing projects, these can be added to a solution through File.AddExistingProject.
You can create a blank solution through the Visual Studio Solutions category of the New
Project dialog box or through File.NewBlankSolution.

Solution Explorer

Visual Studio .NET offers two views on your solution, one based on the files in the projects
and the other based on the types that you have defined. Solution Explorer shows the files in
your solution, and Class View shows the types. Each view is a tree view control with an entry
for each project in the solution. Solution Explorer also has an additional entry named Solution
Items for items that have been added to the solution rather than to an individual project. In
addition, if you open a file that is not part of any project in your solution, this file will be
shown in a folder in Solution Explorer named Miscellaneous Files. If you do not see this
folder, it is disabled. To enable this folder, go to the Environment, Documents property page
of the Tools.Options dialog box and check Show Miscellaneous Files In Solution Explorer.
When you close a solution, the current contents of the Miscellaneous Files folder (in other
words, the nonsolution files open in the workspace) will be saved in the solution so that when
you open the solution, the miscellaneous files will be opened too. When there are no
miscellaneous files, the Miscellaneous Files folder will not show in Solution Explorer. You
can indicate that the Miscellaneous Files folder is used as a most recently used folder for
nonsolution files. You enable this option through the workspace properties (Tools.Options) by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

nonsolution files. You enable this option through the workspace properties (Tools.Options) by
specifying how many files are saved in the Miscellaneous Files folder. By default, this value is
set to zero.

Each project in the Solution Explorer view has “folders” that categorize your files. By default
you’ll get three folders (shown in Table 6-2) for the code files, headers, and resource files.
You can put any type of file into any folder; the build process is not affected by the Solution
Explorer folders. Each folder has a filter. When you add a new file to a project through the
Add Class (Project.AddClass) or Add New Item (File.AddNewItem) dialog boxes, the filter
will be used to determine which folder the file should be added to. If a new file is of a type not
covered by any filter, the file will be added to the top level of the project entry.

Table 6-2. Filters for Default Folders in Solution Explorer
Folder Filter

Source Files cpp;c;cxx;def;odl;idl;hpj;bat;asm

Header Files h;hpp;hxx;hm;inl;inc

Resource Files rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;r

There is no connection between the folders in Solution Explorer and folders on the hard disk
(unlike C# or Visual Basic .NET projects). Indeed, you can add files from any location
(including other machines) to a Solution Explorer folder. When you add a file to a Solution
Explorer folder, the file is not moved; you are merely adding information about the file to the
folder. This behavior means that you can share a file between solutions, and it also means that
if you remove a file from a folder, the physical file is unaffected. If you want to delete a file
(or rename it), you have to do this with an external tool such as Windows Explorer.

When you open a file from Solution Explorer, the IDE will check the file association to
determine the editor to use. The IDE provides several editors, and you can add an association
for an external tool. The mechanism to do this task is not immediately obvious: you have to
show the Open dialog (File.OpenFile) and then click on the down arrow button next to the
Open button. This action will show a drop-down menu, and from this menu, you can select
Open With. This command shows the Open With dialog box (shown in Figure 6-2), and
through this dialog, you can select one of the IDE’s editors or add your own editor. The Add
button allows you to specify the path to an editor and give a friendly name that will be used in
the Open With dialog box. Be careful about what you use for the friendly name because it is
the same name that you will use with the File.OpenFile /e switch, so it is best to give a short,
but obvious name. (For example, typing the name of the default editor, /e:"Source code (Text)
Editor” is very tedious; it would have been better to have named it simply Text Editor.) If you
open a file with an external editor, you will get a separate window. If the solution is under
source control, you will have to check the file out of source control first; otherwise, the file
will be opened as read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-2. The Open With dialog box showing the default Visual Studio .NET editors

You can add new folders to your project, which will be added to your .vcproj file. You can use
the Properties window (View.PropertiesWindows) to change the properties of a folder. As I
have mentioned already, the filter property is used to determine which folder a new file will be
added to. In addition, you have properties to determine whether files added to the folder will
be parsed to provide information for Class View (Parse Files) and whether the files will be
subject to source code control (SCC). Folders can also be nested.

You can add files to a folder in one of several ways: you can use the context menu of the
folder, you can use items on the File or Project menu (the File.AddExistingItem command is
available through both menus), or you can use drag and drop, either from another folder or
from Windows Explorer. Unfortunately, the Open File dialog box shown by the
File.AddExistingItem command does not use the filter set for the folder. Be aware that within a
project a file can be in only one folder.

Files within a folder also have properties. The starting place to look is the Properties window,
which will give the name and the location of the file. This window also has a property named
Content that indicates whether the file is considered as “content” as part of the output of the
project. When a project is deployed, all the outputs of the project—the compiled output and
the content files—will be copied to the deployment location. Rather confusingly, files can also
have property pages. To show a property page, you can select the Properties item from the
context menu for the file (View.PropertyPages) or you can click the Property Pages button on
the Properties window. This window will have a page named General, which indicates the
tool to use to build the file and whether the file is included in the build for the current
configuration. If Excluded From Build is set to Yes, the file will not be compiled; if this
property is set to No, the build tool will be used.

Table 6-3 lists the tool that will be used for various files. You can change the build tool
through the Tool property (which will list only the five options in Table 6 3), in which case
you need to click the OK button of the dialog box to get the property pages for the specified
tool. For each build tool in Table 6-3, I have given the name of the property pages; you will
find that the project will also have property pages for the build tool. The project property
pages provide build tool settings that are the default for all appropriate files in the project, and
the file property pages are used to specify the settings for a specific file. Note that some file
types will be listed as having a Custom Build Tool when you might think that there is a
suitable build tool available. For example, header files (.h) will be listed as Custom Build Tool
rather than C/C++ Compiler Tool. When you think about it, the reason is obvious: header files
are not compiled because they are always included in a C or C++ file; however, Solution
Explorer does not have enough intelligence to indicate this fact.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 6-3. Build Tools
File Extension Build Tool Property Pages

.c, .cpp. .cxx C/C++ Compiler Tool C/C++

.rc Resource Compiler Tool Resources

.wsdl Web Service Proxy Generator Web References

.idl MIDL Tool MIDL

All other files Custom Build Tool Custom Build Step

Class View

Visual Studio .NET can also show your solution in Class View (View.ClassView). Again, this
window is a tree view control, and you will get a top-level item for each project; however, you
will not have the equivalent of Miscellaneous Files or Solution Items. Class View will show
all the classes in your project, and there are also containers named Global Functions And
Variables and Macros And Constants. You cannot add folders to this view. Class View has
three main purposes. First, it is a browsing and navigation tool to help you find definitions of
code in your project. Second, Class View allows you to access properties specific to a type.
Finally, Class View gives access to various wizards that you can use to change your code. I
will address the browsing uses in this section, I will cover wizards in the section “Code
Wizards” later in this chapter, and I will cover item properties in the section “Editing Code”
later in this chapter.

The type browsing facility of Class View is particularly useful in large projects when classes
can be defined in many files. When you add a file to a Solution Explorer folder that has the
Parse property set to True, the file will be parsed and the types are added to the relevant
folders in Class View. If you double-click on a type or a member of a type in Class View, the
file containing the implementation will be loaded and the insertion point is placed on the item.
If the declaration and implementation are in different files, you can use the context menu to
select either the declaration (in the header) or the definition (in the .cpp file).

A class entry in Class View will list all its members. Interestingly, for unmanaged classes, the
destructor is listed with the destructor name (such as ~MyClass), but for managed classes, the
destructor is listed as Finalize even though the compiler explicitly refuses to allow you to
define a method named Finalize on your class. Class View also gives an item named Bases
And Interfaces that lists the base classes and interfaces implemented by the class. If the source
of the base class is available through a file in a folder with Parse set to True, you will be able
to browse the base class members too.

To get more information, you can use the Object Browser (View.ObjectBrowser), shown in
Figure 6-3. This tool can be used to browse items (classes and functions) in your solution and
also to browse other files that contain type information. Such files include browser files (.bsc),
type libraries, and assemblies. In Figure 6-3, I am browsing the current project and the classes
in the mscorlib assembly. To browse these files, you have to select Selected Components from
the Browse list box and then select the Customize button
(Tools.CustomizeObjectBrowsingScope). This action allows you to select files that contain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Tools.CustomizeObjectBrowsingScope). This action allows you to select files that contain
type libraries and assemblies. If you want to load a .bsc browser file, you have to use the Open
File dialog box (File.OpenFile).

Figure 6-3. The Object Browser

Object Browser and Class View allow you to search for the use of a type or a type member.
This feature is accessible through the Find Symbol dialog box (Edit.FindSymbol) or through
the Quick Find Symbols context menu item (to search for the selected item). The Find Symbol
Results window (View.FindSymbolResults) lists where in your solution the symbol is used.
Note that to be able to search your own project for the use of a specified symbol you have to
generate browser files (.bsc). This setting is not enabled by default, and to enable it requires
two changes. First, you have to go to the Browser Information page of the C/C++ property
pages (Project.Properties) and change Enable Browse Information to Include All Browse
Information. This setting will create browser information files (.sbr) for all source files, but to
combine these files into a single source browser file (.bsc), you also have to go to the General
page of the project property pages and change the Build Browser Information property to Yes.

Resource View

As I mentioned in Chapter 4, an assembly can have both managed and unmanaged resources.
Resource View is available in both managed and unmanaged projects, but it shows only
unmanaged resources. Managed resources are not maintained through resource scripts, so
there is no need for a specific resource script editor and so Resource View is not used for
managed resources. Resource View has a tree view where the top level items are the projects
in the solution and beneath each project entry are the resource scripts in each project.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Resource View parses the .rc file when you first load the file. After you have finished making
changes, Resource View writes to the .rc file. This behavior means that the resource script has
the specific format recognized by Resource View, and you should not attempt to change the
script by hand. If you have a specific need to add unmanaged resources to the assembly that
are not handled by the Resource Editor, you have to perform this task through the context
menu. The context menu for a resource file in Resource View has the menu items Resource
Includes (Edit.ResourceIncludes) and Resource Symbols (Edit.ResourceSymbols). Resource
Includes allows you to specify the name of the file that contains symbols for the items in the
resource script that can be edited by Resource View. (By default, this file will be resource.h.)
Resource Includes also allows you to specify header files, which the Resource View cannot
edit (by default, this list will be one file, afxres.h), and Resource Includes allows you to
specify resource script entries. (By resource script entries, I mean any item that can go in a .rc
file; the entries that you type will be added verbatim to the resource script.)

When you add new unmanaged resources to a project, Resource View assigns a symbol for the
resource. You can use the Properties window to change the symbol for an item, either to
provide a new symbol name or to use a symbol from one of the included header files (included
through Resource Includes). If you use a new symbol, the definition of the symbol will be
added to the symbol header file (by default, resource.h). If you rename a symbol, the original
symbol will remain in the symbol header file. You should not edit the symbol header by hand,
so to clean up these extra symbols, you use the Resource Symbols dialog box
(Edit.ResourceSymbols).

Visual Studio .NET has editors for the resources that you will use most often. There is an
Image Editor for cursors, icons, bitmaps, and toolbars; a Dialog Box Editor; an HTML Editor
for Web pages; an editor for VERSION_INFO resources; an editor for editing unmanaged
menus; and editors for string tables and accelerator tables. These editors are used when you
double-click on a resource in Resource View. If your project has managed resources, the
resource editors will be used for those too (in particular, the Image Editor and the HTML
Editor).

Solution Properties

Solutions have properties that are accessible through the Properties window and the solution
property pages. (This window is shown by the Project.Properties or View.PropertyPages
command when the solution is selected.) The Properties window is essentially a summary of
the solution properties. Not all of the solution property pages are specific to a solution;
confusingly, the property pages mix the solution pages with a page that really should be in the
general options for Visual Studio .NET (Tools.Options). I’ll start by describing the real
solution property pages.

The solution property pages are mainly concerned with manipulating configurations. The
Startup Project page allows you to specify which project is the start-up project. When you
debug a solution, the output from the start up project is started under the debugger. A solution
can have more than one start up project because you can debug more than one process at a
single time. (For more details, see Chapter 7.) If you choose to have more than one start up
project, you have the option of determining whether the output is started under the debugger,
started stand-alone, or ignored during a debugging session.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you have more than one project in a solution, some projects might depend on the outputs of
others. For example, if you have a solution with a library assembly and an executable
assembly that uses the library, you will more than likely statically link to the library, so the
compiler needs metadata to make the calls (which the compiler gets through the #using
statement) and the linker needs the metadata to generate the assembly’s manifest. This
arrangement means that the library must be built before the executable, and if the library
source changes and has to be rebuilt, the executable must be rebuilt too. Thus, the executable
depends on the library, and the executable must be built after the library.

The Project Dependencies property page allows you to identify the dependencies between
projects. It has one checked list box with all the projects other than the project being
configured. You use the drop-down list box at the top of the property page to identify the
project whose dependencies you want to alter. Once you have selected a project, you then
check the projects that it depends on. The dependencies define the order that projects are built,
and you can view this order through the Build Order tab of the Project Dependencies dialog
box (through the project or solution context menu).

The next solution property page is named Debug Source Files. As the name suggests, this
page allows you to specify the location of the source files for the libraries that you use. By
default, this page will have the locations of the source files for the CRT, MFC, and ATL, but
you can add paths to the location of your own libraries. When you debug your solution and
step into a library method, the debugger will search the folders that you give for the file
specified in the library’s program database (.pdb).

The final property page really should not be on this dialog. It is named Debug Symbol Files.
As the name suggests, this page is used to give the paths that will be searched for symbol files
(.dbg or .pdb) for system libraries. If you have the symbols for your operating system
installed, I urge you to add the path to those symbols. Although you will not have access to the
source code for the operating system, the symbols allow you to locate which operating system
function has thrown an exception, which gives you more information about how to determine
what caused the problem. I will cover symbol files in more detail in Chapter 7.

Symbols are also provided with the .NET Framework SDK. Note that symbols are not
provided for the class library. The Framework SDK provides symbols for the DLLs that have
native (but not ngen-created) code. So there are symbols for files such as mscoree.dll and
mscorwks.dll. If you are likely to write code to access the functions exported from such DLLs
(for example, if you want to use the strong name APIs), it makes sense to add these symbol
files to your symbol file path. These symbols can be found in the Symbols folder under the
FrameworkSDK folder.

I said that these are not solution settings because when you add a symbol path through this
dialog, the path will be available to any solution. Thus, it would have been better to put this
property page in the IDE options available through Tools.Options.

Project Properties

Most of the configuration that you will perform will be through the project property pages.
However, unlike solutions, the Properties window is not a mere summary of the properties; it
has one property that is not available elsewhere: Policy File. A policy file has the extension
.tdl and contains XML descriptions of the actions that can be performed on the project. A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.tdl and contains XML descriptions of the actions that can be performed on the project. A
policy file can be used to identify the items that can be added to a project, the help that can be
shown, and items in the toolbox. The idea is that an administrator can define a policy file for
the type of project that developers in a team are working on, and the policy file assures that no
developer is able to add facilities that are not supported by the policy. A more complete
description of policy files is beyond the scope of this book.

The project’s property pages (when the project is selected, Project.Properties or
View.PropertyPages) give access to the parameters that will be passed to the various tools
used to perform the build (shown in Table 6-4). The IDE performs project maintenance,
manages dependencies, and determines the build tools to use for the various file types. The
nmake utility is not used. One of the advantages of using the IDE to perform the build is that it
will produce a summary Web page at the end of the build with a complete description of the
actions that have been performed. This file is named BuildLog.htm and is copied to the output
directory. This file lists the current environment variables, the command lines passed to the
build tools, and the outputs from the build tools, which means that you have complete
information about a build, which helps you to identify the problem if a build fails.

I will cover the settings for the compiler and linker for managed projects in later sections of
this chapter. (See “Compiler Switches” and “Linker Switches.”) The Custom Build Step and
Build Events categories allow you to identify a custom tool that will be run at a particular
point during the build process. (See the section “Build Steps” later in this chapter.)

In this section, I will describe only one property page, the General property page (Figure 6-4).
This page is used to provide general settings for the project configuration; these are settings
that affect the whole project. The first two properties are the Intermediate Directory and the
Output Directory. The Intermediate Directory property takes the outputs of the pre-link tools
such as the C++ compiler and the resource compiler, and the Output Directory property has
the outputs of the linker and the browser make utility. The values that you enter here will be
available to other properties through the $(IntDir) and $(OutDir) macros. By default, these
properties are the same and are a folder under the project folder with the name of the
configuration, but you can provide any name you want and can even include environment
variables. These properties are useful if you want to have a general output directory for all the
projects in a solution. (See the sections “Multiassembly Solutions” and “Multimodule
Solutions” later in this chapter.)

Table 6-4. Project Property Page Categories
Property Page
Category

Build Tool

C/C++ C++ compiler, cl.exe

Linker The linker, link.exe

Resources Resource compiler, rc.exe

MIDL IDL compiler, midl.exe

Browse
Information

The browse information maintenance utility, BscMake.exe

Build Events Custom

Custom Build Custom

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Step

Web References The Web proxy generation tool, sproxy.exe for unmanaged projects,
wsdl.exe for managed projects

Web Deployment The Web deployment tool, VCDeploy.exe

The other two properties on this page that I ought to mention are the Character Set and Use
Managed Extensions properties. As the name suggests, the Use Managed Extensions property
determines whether the /clr switch is passed to the compiler. However, do not assume that to
compile a project as a managed project all you have to do is set this property because some of
the compiler switches are incompatible with the /clr switch. Furthermore, the project property
pages even allow you to set switches that are incompatible with the /clr switch. It would have
been nice if the Use Managed Extensions property was a “master switch” that determined
which switches you can set with the Project Properties dialog box.

The Character Set property determines whether the project will be built for Unicode or the
Multi-Byte Character Set (MBCS). The value of this property determines which version of
MFC and ATL static-link libraries will be used, and it also defines appropriate manifest
symbols. The Character Set property specifies default values for the project.

Figure 6-4. The General property page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you edit a property, you will usually get either a combo box or a drop-down list box in
the grid. For properties that can have only specific values, you will get these in a drop-down
list box. For other properties, such as the output file name or preprocessor symbols to define,
you will get a combo box. You can type the value in the edit control of the combo, or you can
select <Edit…> from the list box, and you will get a dialog box to help you edit the value.
Figure 6-5 shows the dialog box used to edit the name of the output folder for a project (on the
Project.Properties dialog box, select Output Directory from the General page). The dialog has
a Macros>> button; if you click this button, you will see Visual Studio .NET macro
definitions. Macros are used in project properties using the same format as nmake, that is,
$(macroname), where macroname is the macro that you want to use. So, for example, in
Figure 6-5, you can see that the C++ files are installed in a folder named $(VCInstallDir).

If the property you are editing can take a list of items (for example, preprocessor symbols),
you should separate each item with a semicolon. Don’t add a space because this space will be
treated as part of the item. So, if I want to define the TRACE and STRICT preprocessor
symbols, I enter the following information for the Preprocessor Definitions on the
Preprocessor C/C++ page:

TRACE;STRICT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-5. Editing a project’s output folder name with the Visual C++ macros visible

Managing Configurations

When you build a solution, you have to identify the solution configuration to build. A solution
configuration has information about the project configurations that will be used to build each
project in the solution. A project configuration contains the properties that you have set
through the project property pages. By default, you will get two configurations, Debug and
Release, that have project settings to compile with and without debugging information.

The IDE provides a tool named the Configuration Manager (Build.ConfigurationManager),
which you can use to manage solution configurations (shown in Figure 6-6). This dialog has a
grid that lists the projects in the solution, and it allows you to specify which project
configuration will be used for each project in the solution for a specified solution
configuration. The Active Solution Configuration allows you to specify the solution
configuration that you want to edit, and the Configuration Manager will fill the grid with the
current project configurations. You can also use this dialog to specify whether a particular
project is built when the solution configuration is built.

The Configuration Manager also allows you to add new configurations. To add a solution
configuration, you select <New…> from the Active Solution Configuration list box. This
option shows the New Solution dialog box that will allow you to create either a new solution
configuration or both a solution configuration and a configuration for each project. The New
Solution Configuration dialog box has a check box named Also Create New Project
Configuration(s); if you select this check box, a configuration with the same name will be
created in the solution and in each project. If you uncheck this box, only a solution
configuration will be created. If you create project configurations through the New Solution
Configuration dialog box, the configurations will apply only to the current projects. If you add
another project to the solution, the project will get only the default Debug and Release
configurations. If you want to have a project configuration that corresponds to a solution
configuration for the new project, you have to add that configuration by hand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-6. The Configuration Manager

To add a new project configuration, you select <New…> for the configuration of a project in
the Configuration Manager (shown in Figure 6-7). This option will show the New Project
Configuration dialog box, which looks the same as the New Solution Configuration dialog
box; indeed, this dialog also has a check box named Also Create New Solution
Configuration(s), so you have the choice of creating just a project configuration or both a
project and a solution configuration with the same name.

Figure 6-7. Adding a new project configuration through the Configuration Manager dialog
box

Visual Studio .NET Options

Visual Studio .NET also has general properties that are specific to C++ builds but will be
applied to all C++ solutions. You can access these properties through the Tools.Options dialog
box in the Projects category. The VC++ Build page allows you to specify the C++ file
extensions, whether the BuildLog.htm file will be generated, and whether build timings will be
shown. The VC++ Directories page is more interesting; this page is used to identify the folders
that will be searched, and the search order, for the build tools, the header files, the static-link
libraries, the source files for code completion, and the assemblies that are used in the #using
statement. The values that you give on this page will apply to all C++ solutions, and I think
this is where the page for symbol files should have been shown. Note that the values on this
page are different to the equivalent environment variables, PATH, INCLUDE, LIB, and
LIBPATH. However, if you prefer Visual Studio .NET to use the environment variables, you
should start it with the /useenv switch. (See the section “Visual Studio .NET Command Line”
later in this chapter.) If you use this switch, you will find that the VC++ Directories page will
have the values of the PATH, INCLUDE, LIB, and LIBPATH variables when the IDE was

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

have the values of the PATH, INCLUDE, LIB, and LIBPATH variables when the IDE was
started. This page stores the settings in the registry, so if you change these environment
variables, the search paths will be unaffected, and if you change the search paths through this
page, the environment variables will be unaffected.

Editing Code

The main reason you will want to use Visual Studio .NET for developing your code is the
tools that it offers to manage your project, which I have covered in the previous sections. The
next most important reason is the Visual Studio .NET text editor. The Visual Studio .NET
editor is integrated with the Visual Studio .NET help system and with IntelliSense, so you can
get information about the classes and methods that you want to use and you get code
completion.

Text Editor

The Visual Studio .NET text editor is essentially Notepad on steroids: it offers no-nonsense
editing of text, but in addition, it gives you tools that make your work much easier. The first
big change that you get over Notepad is that the status bar will indicate where in the source
file the insertion point is located. You get the current line position, character position, and
column number. One of the most important updates in Windows XP was that Notepad was
given a status bar with these facilities. If you are unsure about whether to upgrade to Windows
XP, I hope that this change will finally make up your mind that upgrading is worth the bother
of Windows Activation. This information, of course, is important when you have a list of
warnings and errors from a build, but as I will mention in Chapter 7, if you double-click on an
error in the Output pane, the caret will be moved automatically to the source of the error.

The text editor also supports code coloring. The text editor knows the type of the document
that you are editing (it gets this from the extension of the file), and as you type text, it checks
to see what the text is used for. For example, the editor checks to see whether the text is a
language keyword, a comment, a literal string, or an identifier (class name, class member, or a
variable), and it will assign the text to the appropriate color. This feature is a useful check as
you type because you will be able to see from the syntax coloring whether the compiler will
treat the text as a keyword.

You can edit the colors that will be used through the Fonts And Colors page of the
Environment category in the Options dialog box (Tools.Options). This page allows you to set
the colors and fonts used for the text editor and various other windows in the IDE and for the
printer. The Display Items list box gives the various types of text that you can apply a color to.
One of these types is named User Keyword. The coloring that you specify for this item will be
applied to any text that you give in a file named usertype.dat. This text file has one keyword
per line, and it should be saved in the same folder as DevEnv.exe. When the IDE first loads, it
reads the usertype.dat file, so for any changes to take effect, you have to restart the IDE.

The text editor also performs code highlighting. If you type text that should occur in pairs, the
text editor will highlight the two sections of text when you type the second of the pair. For
example, if you type a closing parenthesis, the text editor will highlight this symbol and the
corresponding opening parenthesis. The text editor will count nested parentheses, so this
feature will allow you to avoid mismatching them. This feature works for parenthesis, braces,
C-style comments (/* and */), quotes (" and "), angle brackets (< and >), square brackets,
keywords that occur in pairs (if and else), and the preprocessor directives for conditional

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

keywords that occur in pairs (if and else), and the preprocessor directives for conditional
compilation.

Depending on the size of the font you select, you will find that at some point you will exceed
the width of the current editor window. The default action is for the window to scroll
horizontally as you add more text, but you can change the text editor setting (Tools.Options
dialog box, Text Editor, C/C++, General page) to enable word wrap. This setting will wrap
code so that it always fits the current window, by moving code to the next line. Word wrap is
useful for reading code, but it should not be used for editing code because it overrides some of
the formatting that the editor can supply. The same options page also allows you to enable
virtual space. This facility will be familiar to Microsoft Word users. Virtual space allows you
to insert text at any point in a source file beyond the end of an existing line. Once virtual space
has been enabled, you simply click at the location where you want to insert text—such as the
middle of a blank line—and the editor will pad out the space between the text and the old end
of the line with spaces. I find virtual space useful for adding inline comments.

Formatting Code

Formatted code is more readable than unformatted code. As you type code, the text editor will
apply formatting to your code. The text editor options (Tools.Options, Text Editor, C/C++) has
several pages to specify how code is formatted. There is one page that allows you to set
whether the tab key inserts spaces or a tab character and how code should be indented. You
have three options: either you have to format the code yourself with spaces and tabs (None), or
when you press the Enter key, the insertion point will be aligned with the text on the preceding
line (Block), or the text editor will use formatting rules to determine how to indent code
(Smart).

I usually set my format settings to indicate that the tab key inserts spaces. This makes it easier
for me to format text, but if I load code written by another developer or code that has been
generated by the code wizards, this code can contain tab characters. The text editor allows you
to see which characters have been used for white space (Edit.ViewWhiteSpace), and you can
indicate that it should replace spaces with tab characters (Edit.TabifySelection) or replace tab
characters with spaces (Edit.UntabifySelection). You can even indicate that the editor should
remove the white space at the end of a line (Edit.DeleteHorizontalWhiteSpace). This tool is
more complicated than it first appears because the first time you apply it on a line that has
white space, it will replace tabs with a single space and it will replace multiple spaces with a
single space. The net effect is to have single spaces between each word. If you use this tool on
a line with only single spaces, it will remove all of them. If you select more than one line of
code, you can choose to delete the lines that do not contain code (Edit.DeleteBlankLines).

The final facility that I should mention here is the block commenting feature
(Edit.CommentSelection). This command will comment selected lines with the C++ comment
character (//), which is useful for commenting out blocks of code because the text editor also
offers an uncomment command (Edit.UncommentSelection) that will remove the comment
character. Note that this feature works only with C++ comments; it does not work with C-style
multiline comments (/* */).

Navigating Code

A large source file presents problems to navigating code. The text editor gives you several
tools that make navigating easier. The first tool occurs at the top of the text editor for source

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tools that make navigating easier. The first tool occurs at the top of the text editor for source
files and headers that are part of your project. Here you will find two drop-down list boxes.
The left-hand box lists class names, and the right-hand box lists the members of the selected
class. This facility appears to have been added to the text editor to keep Visual Basic
programmers happy (Visual Basic .NET shares the text editor) because the editor is similar to
the text editor in Visual Basic 6. As a consequence, this feature is not quite as useful as it
might seem to be because the members list box does not distinguish between overloaded
methods. Class View is a far more effective way to navigate code.

Another way to navigate through code in a large source file is to use the keyboard arrow keys
to scroll. These are largely as you would expect: the arrow keys move one line at a time, and
the Page Up and Page Down keys move a screen at a time. There are other key sequences too:
on the default keyboard mapping, Ctrl+Home will move the caret to the beginning of the file
and Ctrl+End will move to the end of the file. Furthermore, Ctrl+Page Up will move the caret
to the top of the screen, Ctrl+Page Down will move the caret to the bottom of the screen, and
Ctrl with the left or right arrow keys will move the caret left or right one word at a time. When
you use the arrow keys to scroll up or down, the caret will move through the text. If you use
the Ctrl key with the up or down arrow, the caret will stay in the same position in the text and
the text will scroll. In both cases, if the caret position moves out of the current screen, the caret
will be moved through the text so that it appears at the top or the bottom of the screen
(depending on the direction you are scrolling).

If your mouse has a wheel, you can use this wheel to scroll the code, and if you have a third
mouse button (or a wheel), clicking the button or wheel turns on autoscrolling so that the scroll
speed can be adjusted by moving the mouse forward or backward. Autoscrolling works only in
one direction—from the start to the end of the document. It does not work in the horizontal
direction, so if you have a source file with long lines, it makes sense to turn on word wrap
before using autoscrolling.

Of course, if you know the name of the class member, you can always search for it. The
Visual Studio .NET IDE gives you three ways to do this task: Find (Edit.Find), Find In Files
(Edit.FindinFiles), and incremental search (Edit.IncrementalSearch, but as you will see, you
will not be able to execute this command from the Command window). The Find dialog box
(shown in Figure 6-8) allows you to search the current file or the files opened in the current
project. The search will start from the current caret position, so you can specify that the search
is performed upwards or downwards. The dialog allows you to search for part or all of a
specified word or through the Use drop-down list box, to provide a regular expression or a
simplified version of regular expressions that is named Wildcards. In Figure 6-8, I am
searching for the expression ?his; this expression will search for any word that starts with a
single character followed by the three characters his.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-8. The Find dialog box

The Find dialog box is modeless, so each time you click the Find Next button, the search will
pause on the next word that is found. If you click the Mark All button, a bookmark will be
placed against all the matches. The Standard toolbar has a combo box named Find, which is a
quick way to search the current document.

Next to the Find combo box on the Standard toolbar is the Find In Files button, which will
show the Find In Files dialog box. This dialog allows you to search a specific file, a file that
fits a particular pattern, or the files in a path. The path can be the current solution, or you can
browse for a folder on your hard disk, on a file share, or all of these: the browse dialog allows
you to select more than one path.

If you specify a folder to search, you can indicate that subfolders are searched too. This
process can take a long time, so the Find In Files dialog box also has a Stop button
(Edit.StopSearch). When the search has completed, the results will go to the Find window.
There are two Find windows, named Find Results 1 and Find Results 2, and the Find In Files
dialog box has a check box that you can use to indicate which Find window will be used.
When the search has completed, you can double-click on any of the results and the IDE will
load the file and position the caret at the location of the text that was found.

These two dialogs can also be used to replace text. When you click the Replace button, an
extra edit box will be shown that you can use to supply the replacing text. If the search string
is a regular expression, you can provide an expression for the replacing text. You have two
options: either you can go through each found text individually and check manually whether
the replacement should be made, or you can click Replace All to make all changes in one go.
With the Find In Files dialog box, you have to be careful with Replace All because a lot of
files could be affected and, because the files are not loaded into the IDE, you cannot undo the
changes.

You can also search through a document using an incremental search. Once initiated by
pressing Ctrl+I, you provide the search word character by character, and the incremental
search will find the first word that fits the characters that have been typed. You can then
continue to search for these characters by pressing Ctrl+I again, or you can provide more
search characters, and incremental search will look for the first word that matches all of these
characters.

Finally, you can navigate text blocks through the Edit.GotoBrace command. The default
keyboard mapping for this command is Ctrl+}. To use this command, you have to select text
that starts a text block and then call the command. The text block can start with a brace, a
parenthesis, a square or an angled bracket, a single or double quote, a preprocessor directive
used to identify a code block (#if, #ifdef, or #ifndef), or C++ keywords that occur in pairs (for
example, if and else).

Outlining

By default, outlining is not enabled, but you can enable it with the Edit.CollapsetoDefinitions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

By default, outlining is not enabled, but you can enable it with the Edit.CollapsetoDefinitions
command. This command will collapse blocks of code, showing just the first line. You can tell
that a block of code has been collapsed by the plus symbol (+) to the left of the code block. If
you click the + symbol, the code block will be expanded. Outlined code blocks can be nested
so that when a namespace is expanded, it will show classes collapsed; when a class is
expanded, it will show methods collapsed; and when a method is expanded, it will show
comments and if and while blocks collapsed. The various code blocks that can be used in
outlining are shown in Table 6-5.

An expanded code block will show the code within the block. The first line of the code block
will have a minus symbol (–) next to it, and clicking on this symbol collapses the code block.
When a code block is collapsed and you hover the mouse over the ellipsis, a ToolTip will
appear with as much of the code block as can be fitted into the ToolTip.

Table 6-5. Outlining
Code Block Collapsed View

Blocks of comments /**/

Namespaces namespace name and ellipsis

Classes Class name and ellipsis

Functions Function signature and ellipsis

Mixed blocks of code []

IntelliSense

I have already mentioned that the text editor will check the text that you type and will use this
to apply syntax coloring. The checks that are performed extend far beyond mere cosmetics.
From the text that you type, the text editor will gain information for the following tools:

Dynamic help

Topics that might be of help will be shown in a separate window.

IntelliSense

For the complete names of a type, IntelliSense will list the members of the type.

Code completion

From a partial name of a type, or type member, code completion will attempt to
determine the complete name or will give a list of possible names.

For example, if you type

int testVar;
test

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

in the text editor, the text editor can guess that you are about to type testVar. You can use code
completion (Alt+Right Arrow, Edit.CompleteWord) to allow the text editor to complete the
word. If there is more than one possibility for the text, a list box will appear with all possible
names in this context, even those that are not applicable. The best match will be selected. If
you type a complete name, IntelliSense will be able to give you options about the item. Here is
an example:

Console::

This text is a complete class name, so IntelliSense will show a list box with all the members of
the Console class. You can then scroll through the list box (or type more characters of the
name) and select the member that you want to use. If you type the name of a method,
IntelliSense will show the parameters of the method in a ToolTip, and as you type a parameter,
the appropriate item in the ToolTip is highlighted. If the method is overloaded, the ToolTip
will show an up and down arrow that you can use to select the appropriate overload.

One nice feature is that when you select items in a list box generated by IntelliSense, a
ToolTip will appear with the name of the namespace and the file (assembly or source file)
where the item is implemented. Furthermore, if the item has a comment on the same line as the
item or on the line above, the comment will also be shown in this ToolTip.

Code Wizards

Visual Studio .NET has many wizards to generate code, I will cover the project wizards
(File.NewProject) in the section “Project Types” later in this chapter. In this section, I will
cover the wizards provided to add code and edit existing code.

Both Solution Explorer and Class View have a context menu item named Add Class
(Project.AddClass). The Add Class wizard exists mainly for unmanaged code; most of the
class types are ATL or MFC. The only class type that is vaguely relevant to .NET is the
Generic C++ Class, but this wizard adds a native class to your code and it does little work.
The wizard will add a header to your project (and optionally, a .cpp file), and it adds a class
that can be derived from a base class. To be honest, this wizard does very little and it has some
annoying quirks. Although it adds the header to your project, it does not add a #include for the
header anywhere in the project, and the wizard assumes that all class names begin with a C
and that the class source files have the same name as the class, so it removes the initial C to
determine the name of the header file. If you have a class named Customer, the header created
by this wizard will be named ustomer.h. You can specify the name of the header file that you
want created, but to be honest, I never remember this limitation and usually end up having to
rename the file with Windows Explorer, which expends as much effort as the wizard attempts
to save. It is best to ignore this wizard and use File.AddNewItem to add a blank header to your
project.

Class View has two wizards that you can use to alter an existing class, the Add Member
Function wizard (started with the Project.AddFunction command) and the Add Member
Variable wizard (started with the Project.AddVariable command), but these save you little

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Variable wizard (started with the Project.AddVariable command), but these save you little
effort. For a managed class, most of the items on the Add Member Variable wizard are
disabled, which means that you merely have controls to enter the name, type, access, and a
comment for the variable. Again, you might as well edit the class by hand.

The Add Member Function wizard provides a few more facilities; it allows you to build up the
parameter list, name, access level, and return type (as shown in Figure 6-9). However, the
types provided in the Parameter Type combo box do not offer any managed types, nor do you
have the opportunity to apply attributes to either the function or its parameters. Again, you
will expend less effort if you add the function to the class by hand. Finally, it is worth pointing
out that there is no wizard to indicate that a class implements an interface, nor one to add
support for events or properties. The support for managed classes in Class View is so poor that
it really is not worth bothering with them.

The Properties window fares slightly better, but you really should use it only to view
information about a class rather than use it to change a class. Consider the following managed
class Note that you do not have to escape a single quote when it is used in a string used to
initialize an attribute. :

[Obsolete("Don't use this class")]
__gc class MyClass
{
 public:
};

Figure 6-10 shows the properties of this class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-9. The Add Member Function wizard

The Properties window gives a list of the attributes applied to the class, and although you can
change the existing parameters, you cannot use the Properties window to add a new parameter
to an attribute. The class parameters look over-engineered; a class can be __gc, __value, or
neither, but it cannot be both, so it seems odd to have two Boolean properties IsManaged and
IsValue, where it would be far better to have an enumerated property instead. The reason is
that these properties are not really intended for you to change. (You can change them, and the
Properties window does ensure that these two properties are never both true.) They are
actually part of the Visual Studio .NET automation model (members of the VCCodeClass) and
are intended to be used by custom Visual Studio .NET Add-ins.

The Properties window gives you information about a class, but it will not allow you to make
any changes to the class other than trivial changes. Although the Properties window has an
Events button, the window does not list the events that you can handle by the class, so if you
want to develop a Form, you are on your own. Indeed, I have found that if I change a class
through the Properties window, occasionally, the class and the Properties window get out of
synch. In such a situation, the only remedy is to close down the solution, delete the no-compile
browser file (.ncb), and reload the solution. The Properties window was clearly a nice idea, but
one that was not developed for C++ classes.

Figure 6-10. The Properties window showing the properties of a class

Visual Studio .NET Command Line

When you start Visual Studio .NET from the command line, you actually start a command-line
process named DevEnv.com. This process parses the command line, and if the command-line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

process named DevEnv.com. This process parses the command line, and if the command-line
parameters are correct, it passes them to the GUI executable DevEnv.exe. If you start Visual
Studio .NET from the Start menu, you will start DevEnv.exe directly. Compare the results
from typing devenv.com /? and devenv.exe /? at the command line. The common command-
line switches are summarized in Table 6-6.

The command-line build switches allow you to build, clean, rebuild, or deploy a solution (or a
project) from the command line. If you omit one of these switches, the solution will be loaded
in the IDE. Remember that although the nmake tool is provided as part of Visual C++ .NET, it
is not used when building solutions with the IDE because solutions and project files use a
totally different format to store dependency and build information. You can pass the name of a
solution or a project file to DevEnv. If you give the name of a solution file, all of the projects
in the solution will be built. Whether you decide to pass a solution or a project file, you have
to give the name of the configuration to build, as shown in this example:

devenv MySolution.sln /build Debug
devenv MySolution.sln /build Debug /project TestProject

The first of these two lines will build all of the projects in the MySolution.sln file using the
Debug solution configuration. The second line builds the Debug solution configuration of the
TestProject project. These two commands are straightforward; however, take a look at the this
line:

devenv MySolution.sln /build Debug /project TestProject
 /projectconfig "Debug│Win32"

Table 6-6. Visual Studio .NET Command-Line Switches
Switch Description

/build Build either a project or a solution of a specified configuration.

/clean Clean a project or a solution of a specified configuration.

/command Execute the command.

/deploy Deploy a project or a solution of a specified configuration.

/fn The name of the font to use.

/fs The size of the font to use.

/mdi Use the MDI interface.

/mditabs Use the tabbed window interface.

/out Write build output to the specified file.

/project Use with /build to specify a particular project to build.

/projectconfig Use with /project to specify a particular configuration.

/rebuild Clean and then build a project or solution of a specified configuration.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/run Build a project or solution of a specified configuration through the IDE, and
then run the startup project.

/runexit Build a project or solution of a specified configuration through the IDE and
then exit.

/useenv Use the paths specified by the PATH, INCLUDE, LIB, and LIBPATH
environment variables.

In this case, the TestProject is built, but this time I specify the project configuration as well.
This is not the name of the configuration that you see in the configuration manager, but the
amalgamation of the configuration and the platform. In this case, I want to build the Debug
configuration for the Win32 platform. Because this name uses a pipe symbol, I have to use
quotation marks on the command line. Otherwise, the command-line processor will assume
that I am trying to pipe output to a process named Win32.

If you use the /out switch, the output which would have gone to the IDE Output window will
be sent to the file you specify. If you use /out with /build, /rebuild, /clean, or /deploy, the
output will be to the file and to the command line. If you use the /run or /runexit switch, the
IDE will be started, the solution will be loaded and built, and then the output of the startup
project will be run. If you use /out with either of these switches, the output generated during
the run (which included information about the symbols that were loaded) will also go to the
specified file. However, this output is not the same as the build log file. Indeed, by default, the
build log file will still be generated.

Finally, the /command switch allows you to start the IDE to run a specified command and then
leave the IDE running. For example, you can start the IDE and show the New Project dialog
with the following line:

devenv /command File.NewProject

Unfortunately, the processing of the command line is not too clever. If the command takes
parameters, you have to give the entire command in quotation marks, as shown here:

devenv /command "Edit.FindinFiles include /lookin:. /ext:*.cpp"

This will search for the text include in all .cpp files in the current directory. Calling commands
such as this from the command line is of limited use because the command string cannot have
nested strings, so for example, I cannot search for the text #define UNICODE.

The DTE Object

Although the IDE has some managed elements (the Properties window is an instance of the
PropertyGrid class in the System::Windows::Forms namespace), it is largely an unmanaged

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PropertyGrid class in the System::Windows::Forms namespace), it is largely an unmanaged
application with COM as the glue that holds everything together. Indeed, the COM objects in
the IDE have been developed with ATL. I know this because if I load DevEnv.exe into the
IDE (the default view for an executable is a view of the unmanaged resources in the file), I can
see that the executable contains several ATL .rgs registration scripts (a resource named
REGISTRY).

The IDE is accessed through a COM object with the ProgID of VisualStudio.DTE.7. The
registry entry of this object is interesting. The coclass registration has an inproc server entry
and a local server entry. The local server entry gives DevEnv.exe, the IDE process, as the
COM server. This information is what you would expect because the DTE object is the IDE.
The inproc server registration gives the name of the EnvDTE assembly and specifies that the
class is EnvDTE.DTEClass. If you look at this assembly with ILDASM (the assembly can be
found in the .NET system folder), you will see that DTEClass looks something like this:

[
 CoClass("EnvDTE.DTEClass"),
 GuidAttribute("04A72314-32E9-48E2-9B87-A63603454F3E")
]
public __gc __interface DTE : public _DTE
{
 // Other members
};
[
 ClassInterface(ClassInterfaceType::None), DefaultMember("Name"),
 GuidAttribute("3C9CFE1E-389F-4118-9FAD-365385190329"),
 TypeLibType(TypeLibTypeFlags::FAppObject
 │ TypeLibTypeFlags::FCanCreate
 │ TypeLibTypeFlags::FPreDeclId)
]
public __gc class DTEClass
 : public _DTE, public DTE
{
 // Other members
};

Guess what? The GUID of DTEClass is the GUID of VisualStudio.DTE.7. So this information
means that when you create an inproc VisualStudio.DTE.7, you get an instance of the .NET
object DTEClass through COM interop, which accesses the local server VisualStudio.DTE.7
object through COM interop. I would hope that .NET COM interop marshaling will optimize
away the unnecessary transitions from COM to .NET to COM.

The DTE object has almost 40 properties and a handful of methods. The main reason for this
object is to give access to all the other objects in the IDE. The COM interface is a
dispinterface, so it has been designed to be scripted. You can write a script in one of a
multitude of automation-aware languages, but you are most likely to want to access the IDE
object model from code that runs within the IDE as a macro or as a Visual Studio .NET Add-
in.

Here is an example of scripting the DTE object with a VBScript script that you can run from
the command line:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

' Run with cscript dumpcommands.vbs.
Dim msdev
Set msdev = WScript.CreateObject("VisualStudio.DTE.7")
Dim command
For Each command in msdev.Commands
 If command.Name <> "" Then
 WScript.Echo command.Name
 End If
Next

The Commands property is a collection of Command objects, and this example will list at the
command the names of all the commands supported by the IDE. You can also execute
commands through the ExecuteCommand method, as shown here:

' Run with cscript find.vbs.
Dim searchFor
WScript.Echo "Type search text"
searchFor = WScript.StdIn.ReadLine

Dim msdev
Set msdev = WScript.CreateObject("VisualStudio.DTE.7")
' Get the current folder path.
Dim fso
Set fso = CreateObject("Scripting.FileSystemObject")
' Create the parameters for the command.
Dim str
str = searchFor & " /lookin:" & Chr(34)
str = str & fso.GetFolder(".").Path & Chr(34)
str = str & " /ext:*.cpp"
msdev.ExecuteCommand "Edit.FindinFiles", str
' Show IDE with the find results.
msdev.MainWindow.Visible = True
WScript.Sleep 5000

In this code, I use the VBScript ReadLine method to get a line of text from the user. This text
is then appended to the parameter that is passed to the ExecuteCommand method. After the
search is made, the script makes the IDE visible. The object will be destroyed at the end of the
script, and this will shut down the IDE, so I get the script to sleep for 5 seconds to give the
user the opportunity to see that there are some results.

The Visual C++ 7 Libraries

When you install Visual Studio .NET on your machine, the install program will install various
libraries. In this section, I want to describe these libraries and explain where you can find
them. I will use the Visual C++ macros to specify locations on your hard disk. With the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

them. I will use the Visual C++ macros to specify locations on your hard disk. With the
release of Visual Studio .NET, Microsoft has decided to reorganize the include and library
folders. Table 6-7 shows the folders used by the standard folders. The most important change
is that the headers for the CRT and C++ standard library are located in a separate folder from
the folders used for the Platform SDK.

Table 6-7. Visual C++ Libraries
Folder Description

$(FrameworkSDKDir) Contains samples, documentation, and library files for the
Framework SDK. Some of the samples have Visual Studio
.NET solutions; others use make files. The include and lib
folders contain the SDK files for metadata and accessing the
runtime object.

$(FrameworkSDKDir) \Tool
Developers Guide

Contains samples that show how to access the runtime from
C++, how to write a profiler, and how to write a basic .NET
compiler. This folder tree also has the ECMA specification.

$(VCInstallDir)\atlmfc Contains the headers, static-link libraries and source files
for the combined ATL and MFC libraries.

$(VCInstallDir)\crt Contains the source code for the C runtime library.

$(VCInstallDir)\include
$(VCInstallDir)\lib

Contains headers and static-link libraries for the C runtime
library, the C++ standard library, and other libraries specific
to Visual C++ .

$(VCInstallDir)\PlatformSDK Contains the headers and static-link libraries for the
Platform SDK, which includes the Windows SDK.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Project Types

Solutions are containers for projects. When you create a project through the New Project
dialog box, the IDE will also create a solution for the project. You can load a project without
loading a solution (File.OpenProject and select a .vcproj file), but when you load a project
without loading a solution, the IDE will look in the project folder for a solution file with the
same name as the project file, and if it cannot find this solution file, the IDE will search any
solution file to see if it references the project file. If the IDE cannot find a saved solution for
the project, it will create a new solution file. A project will always be loaded into the IDE
within a solution.

If you intend to develop a solution with more than one project, it is best to create a folder
hierarchy with each project in a subfolder within the solution folder. If you forget to create this
folder hierarchy when you create the first project, you can do it at a later stage by creating a
blank solution, copying the project folders into the solution folder, and then using
File.AddExistingProject to add the projects to the solution. Once you have created a solution,
you can add new projects to the solution through the Add New Project dialog box
(File.AddNewProject). This dialog is the same as the New Project dialog box except that it has
no options to determine the name or location of the solution. Table 6-8 shows the C++ projects
that are shown in the New Project and Add New Project dialog boxes. I have indicated which
of these projects are managed. For the Makefile Project, I have said possibly because whether
the project is managed depends on the contents of the make file.

The unmanaged projects typically give you options about the code that you want the wizard to
create. Previous versions of Visual Studio took the attitude of “why have several project
wizards when you can combine them all into one?” The worst example of this was the Win32
Project Wizard, which allowed you to create unrelated items such as EXEs, DLLs, and static-
link libraries through a single wizard, while ignoring important options such as support for the
CRT, the C++ Standard Library, and the character set used by the code. Furthermore, this
wizard did not even give you the option of creating a Windows Service. This wizard still
exists in Visual Studio .NET.

The new C++ project types in Visual Studio .NET take a different approach. The attitude
seems to have swung in the completely opposite direction and appears to be “why have one
project wizard when we have space for lots of them in the New Project dialog box?” This
change has resulted in silly situations such as the one that occurs with ATL Server projects:
you have a wizard to create ATL Server Applications and Web Services and another wizard to
create just ATL Server Web Services. The latter is just the former with a few check boxes
checked—I think that most people are capable of checking a box marked Create As Web
Service.

The other main difference that you find with the new projects in Visual Studio .NET (the ATL
Server projects are an exception) is that the designers have decided that you as the developer
have no useful input in the process of creating a project. The managed C++ projects follow
this approach, and they will always create a one-size-fits-all project for you. This arrangement
necessarily means that the wizard generates the barest of bare-bones code. Depending on your
point of view about code wizards (“I always delete wizard-generated code because the code
that I write is always better” or “all I do is stitch together the code generated by the wizard”),
this arrangement might appear to you to be a good thing or a bad thing. If you habitually

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

this arrangement might appear to you to be a good thing or a bad thing. If you habitually
delete wizard-generated code, one reason could be that the wizard is not creating code
appropriate to your work, but solace is at hand because Visual Studio .NET allows you to
create your own project wizards (Custom Wizard). Of course, you could always be right that
the code you write is better than machine-generated code. In the following sections, I will
explain just the managed projects.

Table 6-8. Visual C++ .NET Project Types
Project Type Managed? Description

ATL Project No EXE or DLL COM Server

ATL Server Project No Web Service or Web Application ISAPI extension

ATL Server Web
Service

No Web Service ISAPI extension

Custom Wizard No Creates a Visual Studio .NET project wizard

Extended Stored
Procedure Dll

No Extension DLL containing SQL Server stored
procedures

Makefile Project Possibly

Managed C++
Application

Yes Managed console application

Managed C++ Class
Library

Yes Library assembly

Managed C++ Empty
Project

Yes An empty project; you decide what type of assembly
the project should create

Managed C++ Web
Service

Yes Managed Web Service

MFC ActiveX Control No DLL COM Server containing controls

MFC Application No EXE application

MFC DLL No MFC extension DLL

MFC ISAPI Extension No ISAPI extension DLL

Win32 Project No DLL, static-link library, GUI, or console application

Managed Applications

The Managed C++ Application project wizard creates a project for an EXE assembly. The
main C++ file looks like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

#include "stdafx.h"

#using <mscorlib.dll>
#include <tchar.h>

using namespace System;

// This is the entry point for this application.
int _tmain(void)
{
 // TODO: Please replace the sample code below with your own.
 Console::WriteLine(S"Hello World");
 return 0;
}

There are several points to make about this code. The first is that the file includes tchar.h and
has _tmain as the entry point. The tchar.h header file has definitions for the various _t prefixed
symbols with conditional compilation that give either the Unicode or ANSI CRT functions,
depending on whether the _UNICODE symbol is defined. One of these definitions is for the
_tmain symbol, which will be defined as either wmain or main. The implication is that you can
compile the code for either Unicode or ANSI. However, the project wizard gives two project
configurations, Debug and Release, both of which have the Character Set project property set
to Use Multi-Byte Character Set. If you would prefer to have a Unicode build, you should
change this setting to Use Unicode Character Set or you can create a new configuration based
on each of the Debug and Release configurations and configure these to compile as Unicode.

The next point is that _tmain is the managed entry point, and the first thread created for the
project will run this function. Recall from Chapter 2 that TlbImp will generate .NET classes to
help you call COM objects through COM interop. If you call these classes in _tmain, what
COM apartment will the COM object run? By default, the runtime will initialize the thread in
the process’s MTA apartment when a COM object is first used, and this process is what will
happen in this code. If you know that the objects you will create will be STA objects, you will
save yourself some marshaling by making the main thread run in an STA. If your process is
GUI, you must make the first thread run in an STA so that COM synchronization occurs
through the process’s message loop. To make the main thread run in an STA, you need to
apply the [STAThread] attribute, as shown here:

[STAThread]
int _tmain(void)

The next point to make about this file is the inclusion of stdafx.h. This inclusion means that
the project is configured to use precompiled headers. Precompiled headers are useful when
you have headers that are likely to be used by all the source files in your project but will not
be changed during your development cycle. (Windows.h is the canonical example.) I will
return to this issue in the section “Precompiled Headers” later in this chapter.

The project will also have a file named AssemblyInfo.h, which looks like this with the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The project will also have a file named AssemblyInfo.h, which looks like this with the
comments removed:

#include "stdafx.h"

#using <mscorlib.dll>

using namespace System::Reflection;
using namespace System::Runtime::CompilerServices;

[assembly:AssemblyTitleAttribute("")];
[assembly:AssemblyDescriptionAttribute("")];
[assembly:AssemblyConfigurationAttribute("")];
[assembly:AssemblyCompanyAttribute("")];
[assembly:AssemblyProductAttribute("")];
[assembly:AssemblyCopyrightAttribute("")];
[assembly:AssemblyTrademarkAttribute("")];
[assembly:AssemblyCultureAttribute("")];

[assembly:AssemblyVersionAttribute("1.0.*")];

[assembly:AssemblyDelaySignAttribute(false)];
[assembly:AssemblyKeyFileAttribute("")];
[assembly:AssemblyKeyNameAttribute("")];

This code looks very suspiciously like the author of the wizard has been playing “me too”
with the author of the C# project wizards because this code is an exact translation from the
AssemblyInfo.cs file that is added to C# projects. The code even has the same comments
about versioning and the correspondingly unpleasant effects from using * in the
[AssemblyVersion] attribute.

It doesn’t make much sense to have attributes without values. Indeed, I would have expected
the project wizard to make some intelligent guesses at the values for these attributes. (For
example, [AssemblyCompany] could be assigned the same value that you gave as your
Organization when you installed Visual Studio .NET.) This file certainly feels like a version 1
attempt.

In Chapter 5, I described how you can configure how a process works through a configuration
file. However, the IDE does not support configuration files as part of a project, but it is quite
simple to add a config file to a project and set the custom build properties. Here is what to do:
First create a new folder in the project, and set its properties so that Parse is set to False—this
step is not required, but because config files do not contain anything that will be shown in
Class View, there is no point in parsing them. You can then create a file named app.config and
add this file to the folder that you created. Next open the property pages for this file, and from
the Configuration drop-down list box, select All Configurations and then set the properties
according to Table 6-9.

When you perform a build, the IDE will compare the timestamp on the file app.config with the
timestamp on the file mentioned in the Outputs property, and if the timestamp of app.config is
later, the build command will be performed. By using the macros, the same settings can be
used for all configurations. $(OutDir) will be the name of the output directory where the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

used for all configurations. $(OutDir) will be the name of the output directory where the
executable will be created. The name of the executable is given by $(TargetFileName), so the
configuration name is the name of the executable file appended with .config.

Table 6-9. Properties for a Config File
Property Value

Command Line copy /y app.config “$(OutDir)\$(TargetFileName).config”

Description Copying $(TargetFileName).config

Outputs $(OutDir)\$(TargetFileName).config

Additional Dependencies <leave empty>

Managed Class Libraries

The Managed C++ Class Library project type creates the code for a library assembly. Yet
again you have a file named AssemblyInfo.cpp and the support files for precompiled headers.
Unlike the Application project, there is a reference to the mscorlib assembly in the stdafx.h
file. The main difference between this project type and the application project type is that there
is no file with an entry point. (Library assemblies do not need entry points.) Instead, you will
have a .cpp and a header file for the library classes, as shown in this example:

// MyLibrary.h
#pragma once
using namespace System;

namespace MyLibrary
{
 public __gc class Class1
 {
 // TODO: Add your methods for this class here.
 };
}

Of course, your first task is to change the name of the class from Class1 to something more
appropriate. This is the file that the wizard generates for a library project named MyLibrary,
and it is interesting to note that the wizard has departed from the usual file-naming convention:
the header file is usually named after the class rather than the namespace. Yet again a C++
wizard is following the behavior of a C# wizard.

Obviously, a library does not run on its own; you have to load it into a process. This restriction
becomes most apparent when you want to debug the library. The debugging properties for a
library project allow you to specify the process that will load the library (details are given in
Chapter 7), but note that in most cases, the library will be statically bound (that is, you have
mentioned the library in the process with a #using statement). This arrangement means that the
process must be built with the specific version of the library. Thus, the process depends on the
library.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Furthermore, if the library is a private library, the library must be in the same folder as the
process (or in a subfolder). Whether the library is shared or not, the compiler must be able to
resolve the #using statement in the process source code so that the compiler can access the
metadata of the library. There are several strategies that you can use, and I’ll address these in
the section “Multiassembly Solutions” later in this chapter.

Managed Object Files and Modules

Assemblies have at least one module, but they can contain more than one module. The New
Project dialog box does not have a project for creating .NET modules as part of an assembly,
but it is quite trivial to create this type of project. To create this type of project, you should
create a library project and specify that the output is a .NET module by going to the Linker
category of the project’s property pages and on the Advanced page, changing the Turn Off
Assembly Generation property to Yes. The convention in .NET is that modules should have
the extension of .netmodule (it is not a mandatory convention), so you should also go to the
General page of the Linker category and change the Output File property so that the output file
has this extension.

A .NET module cannot be used on its own; it must be part of an assembly. This restriction
means that you should also have a project that creates an assembly that uses the module, and
because the linker requires the module when it builds the assembly, the assembly project
depends on the module project. The module must be in the same folder as the assembly, which
means that you have to configure your solution so that you have a common output folder for
the module and assembly. I will explain how to perform this task in the section “Multimodule
Solutions” later in this chapter.

The C++ compiler will compile each source file to an object file (.obj) with the /clr and /c
switches (compile, don’t link); you will get an object file with managed code. The compiler
will add to the .obj file information about the metadata streams that the linker will merge into
the final module. If you dump the object file with dumpbin, you will see that the file has a
section named .cormeta that contains the metadata streams. (Use the switches
/section:.cormeta /rawdata to see this.) In general, if you want to share code, you will prefer
to do this sharing through a library, but there are occasions when you will want to provide
private utility classes to make available to more than one assembly. The IDE does not provide
a managed project type that is not linked, but because by definition an object file comes from a
single .cpp source file, you do not need the IDE’s source file management. You will provide
such utility classes through a compiled .obj file if you think that your users will not be
interested in the actual implementation of those classes. If this is not the case, you should
provide the source through an include file (.h or .inl).

Makefile Projects

If you have special build requirements, you can use the Visual Studio .NET Makefile project.
The name is misleading because the project does not create a make file for the nmake utility.
You can add any source file to this project and use any build tool, so you can choose to use
nmake if you want. The Makefile project uses a wizard with a user interface. This simple
wizard has four fields, described in Table 6-10.

Table 6-10. Makefile Project Wizard’s Options

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Field Description

Build
command line

The command line that will be called when the project is built.

Output This property is not used; your make file commands define the output.

Clean
command

The command line to “clean” the project. Use this command to delete
outputs and intermediate files.

Rebuild
command line

The command to rebuild the project; essentially perform the clean
command before performing the build command.

For example, you could define a file named makefile with an all target that has the actions to
build the project and a clean target to clean the project. You can then use nmake as the build
tool and give nmake as the build command, If you invoke nmake without the name of a make
file, it will automatically look for a make file with the name makefile. nmake clean to clean the
project and nmake /a to rebuild the project.

The project wizard creates three folders with Parse set to True: Source Files, Header Files,
and Resource Files. These folders have the same filters as for any other C++ project.
However, these folders are really only cosmetic because the IDE does not check the timestamp
of these files against the compiler output like it does for other C++ projects because this is the
responsibility of your build tool. Thus, if you want files to be compiled only when they have
changed, you should use nmake as the build tool.

Managed Web Services

The Managed C++ Web Service project is a port of the C# ASP.NET Web Service project, so
you will find that most of the files in the project are direct copies. One example is the
Global.asax file, which gives information to ASP.NET about the class that will handle
application-level or session-level events. If you are writing the Web service in C#, the source
files reside on the Web server. You have the option of providing code in a script as well as in a
compiled assembly. When the Web service is accessed for the first time (or if the script has
changed), the C# in the script will be compiled. This option requires CodeDOM support for
the language. In C#, you can also provide code in a separate file, called the code-behind file.
In addition, code can be provided as a compiled assembly. The assembly is located in a folder
named bin in the IIS virtual directory for the Web Service project.

There is no CodeDOM support for C++, so you cannot provide C++ in the script file or in a
code-behind file, but the Global.asax file generated by the wizard contains a reference to a
code-behind file (Global.asax.h). This reference makes no sense whatsoever because when
ASP.NET parses Global.asax, it will not be able to find the specified code-behind file, and
even if it could, it would not be able to compile it. As a consequence, these items are ignored
by ASP.NET, so there is no need for them to be there. (I’ll explain the steps in a moment.) A
further example that Managed C++ Web Service projects are a mere port from C# is that the
header files contain C#-style XML comments (which start with the /// comment). XML
comments are used only by the C# compiler.

Before you can write a Web service, you have to clean up the files generated by the wizard.
You should delete the CodeBehind attribute from Global.asax. The wizard creates a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You should delete the CodeBehind attribute from Global.asax. The wizard creates a
namespace with the name of the project, and it adds a class for the Web service named Class1.
The rationale is that your Web service project could contain several Web services. However,
the name of the header and .cpp files is used for the name of the namespace, and this would
suggest that if you add another class, it should be in a different namespace. Instead, I prefer
the normal C++ convention of naming the header and .cpp file after the class. To do this
through the New Project wizard, you have to give the project the name of the class; otherwise,
you have to change the name of the files by hand. In the following example, I assume that I
have just one Web service class, so I have named the project after the name of the class.

The first change is to Global.asax. After the wizard has finished, it will look like this:

<%@ Application Codebehind="Global.asax.h" Inherits="GetTime.Global" %>

Edit it so that it looks something like this:

<%@ Application Inherits="MyServices.Global" %>

As I have already mentioned, the class will be called Class1. This is far from satisfactory, so
you should rename it to something that reflects your Web service and then edit the .asmx file
created by the wizard for your Web service. This is the code generated by the wizard:

<!-- GetTime.asmx -->
<%@ WebService Class=GetTime.Class1 %>

Change this to the following:

<!-- GetTime.asmx -->
<%@ WebService Class=MyServices.GetTime %>

This Web service is named GetTime, and it simply returns a string with the current time. Here
is my implementation of the Web service, where I have highlighted the changes:

// GetTime.h
#pragma once
#using <System.Web.Services.dll>
using namespace System;
using namespace System::Web::Services;

namespace MyServices
{
 [WebService(Namespace="http://www.myserver.com/webservices/")]
 public __gc class GetTime {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 public __gc class GetTime {
 public:
 [WebMethod]
 String __gc* Time()
 {
 return DateTime::Now.ToString(); }
 };
}

The project wizard will not add the [Web Service] attribute for you to supply the default XML
namespace for the Web service. As a result, when you first call the Web service (by requesting
the GetTime.asmx file) from the Web server, you will get a Web page saying that you are
using http://tempuri.org/ as the namespace. The wizard will derive your Web service class
from WebService. This derivation is not necessary unless you want to use the ASP.NET
facilities that this class offers: session state, user authentication, or access to the actual HTTP
request.

The most important code here is the [WebMethod] attribute. This attribute indicates that the
method can be called as a Web service method, and it also indicates that ASP.NET will
generate a description for the method in WSDL (Web Service Description Language). To
view the WSDL for a Web service, you call the Web service page with WSDL as a parameter,
as shown here:

http://:www.myserver.com/GetTime/GetTime.asmx?WSDL

When you build the project, the Web service will be deployed on the target machine. This
behavior is a consequence of the lack of support for code-behind. When you build the project,
it is built in the local folder used by Visual Studio .NET, and this folder will not be the same
as the folders used by ASP.NET. The files that are deployed will have the Content property set
to True in the Properties window. The files that are deployed are listed in Table 6-11, where
<project> is the name of the project.

Table 6-11. Deployed Files for Web Service Projects
File Description

Global.asax ASP.NET application file that indicates the code that will handle
application-level events

<project>.asmx File containing the Web service’s processing directives

<project>.dll Assembly containing the Web service

<project>.vsdisco Web service dynamic discovery file containing information that
ASP.NET will use to search for discovery information

Web.config Configuration file for the Web service

Note that the assembly is a library, which is loaded into its own application domain in the
ASP.NET worker process (aspnet_wp.exe). I mentioned in the Chapter 5 that configuration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ASP.NET worker process (aspnet_wp.exe). I mentioned in the Chapter 5 that configuration
files are for processes and cannot be used by libraries. ASP.NET is the exception to this rule,
but note that the configuration file is always named Web.config.

When the Web service is deployed (I’ll mention how in a moment), folders are created in the
virtual directory for the IIS extension for the Web service. Web service discovery allows a
user to get information about a Web service. ASP.NET supports dynamic discovery so that at
run time, ASP.NET will search for assembly files and use reflection to determine the Web
methods that are exposed from those assemblies. The .vsdisco file contains information that
ASP.NET uses to search for this information. The wizard-generated file contains information
about the folders that are not searched for information.

When you build a Web Services project, the files that have changed will be deployed to the
Web server. This information is not completely accurate; there appears to be a bug so that
deployment only occurs if assembly has been rebuilt. If you change one of the other content
files, you have to manually deploy the project. You can also manually deploy the project
through the Deploy context menu item (Build.Deploy). Deployment is performed by a separate
tool named vcdeploy, which is also used by unmanaged ATL Server Web projects. This tool is
not documented, but you can get an idea of what it will do by looking at the input file that it
takes. After you have deployed a project, take a look at the build summary file, BuildLog.htm,
and you will see that the IDE has created an XML file that looks something like this:

<?xml version="1.0" encoding="Windows-1252"?>
<ATLSINSTSETTINGS>
 <WEBHOSTNAME>localhost</WEBHOSTNAME>
 <VIRTDIRNAME>GetTime</VIRTDIRNAME>
 <VIRTDIRFSPATH>c:\inetpub\wwwroot\GetTime</VIRTDIRFSPATH>
 <APPISOLATION>0</APPISOLATION>

 <APPFILEGROUP>
 <!-- Other entries deleted for clarity -->
 <APPFILENAME>
 <SRC>c:\GetTime\GetTime.asmx</SRC>
 <DEST>GetTime.asmx</DEST>
 </APPFILENAME>
 <APPFILENAME>
 <SRC>c:\GetTime\Web.config</SRC>
 <DEST>Web.config</DEST>
 </APPFILENAME>
 <APPFILENAME>
 <SRC>c:\GetTime\Debug\GetTime.dll</SRC>
 <DEST>bin\GetTime.dll</DEST>
 </APPFILENAME>
 </APPFILEGROUP>
</ATLSINSTSETTINGS>

The first point to make regards the name of the main element, <ATLSINSTSETTINGS>: this
name implies that the tool was originally developed for ATL Server projects. There are two
groups of elements here. The first group gives information about the Web server, and I’ll
return to this in a moment; the second group is the collection <APPFILEGROUP>, which
identifies the files to be deployed. Each <APPFILENAME> entry is a file in the project with

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

identifies the files to be deployed. Each <APPFILENAME> entry is a file in the project with
the Content property set to True. The child elements give the path to the file that is to be
copied and the relative path where the file will be copied.

The project’s property pages have a category named Web Deployment that has the properties
that the IDE uses to generate the XML file to pass to vcdeploy. This category allows you to
indicate the name of the virtual directory, but it does not allow you to indicate the machine
where the application will be deployed, which will always be the local machine. Because this
tool is also used by ATL Server projects, there are settings that are not applicable to Managed
C++ Web Service projects. ASP.NET assumes that the assembly will be in a subfolder named
bin, so do not be tempted to change the Relative Path property. Also, ASP.NET applications
will be hosted by the ASP.NET worker process, so the Application Protection property (the
<APPISOLATION> element) is irrelevant.

Finally, it is important to point out that the deployment performed by vcdeploy is intended for
the development phase of your project. Visual Studio .NET provides a project named Web
Setup Project that you can use to create an MSI (Microsoft Installer) file that contains the
assembly and content files. When you deploy your final project, you should deploy it through
Microsoft Installer.

Web Service Clients

There is no specific project type for Web service clients because you can use Web services in
any of the other project types. However, there are two different tools used to add the code to a
project to access Web services, one for managed projects, and another for unmanaged projects.
I will cover managed projects first.

The Solution Explorer context menu has an item called Add Web Reference
(Project.AddWebReference). This menu item will show the Add Web Reference dialog box,
which allows you to browse for the WSDL for a Web service. In the Address combo box, you
should type the URL that will return the WSDL. For an ASP.NET project, this will be either
the .asmx file, or the .asmx file with the WSDL parameter, like this:

http://localhost/GetTime/GetTime.asmx?WSDL

Once this tool has located the WSDL, you can click on the Add Reference button and the tool
will store the WSDL in a file and add the file to the project. The build rule for this file
(expressed on the property pages) indicates that the file will be compiled with the Web Service
Proxy Generator (wsdl.exe). Interestingly, this property page indicates that the Generated
Proxy Language is Managed C++, but this tool cannot create C++. For the preceding GetTime
example, the following commands will be executed when the Web reference is first added to
the project and when the project is built:

wsdl /nologo /l:cs /out:"GetTime.cs" "GetTime.wsdl"
csc /t:module /nologo /o+ /debug- /out:"GetTime.dll" "GetTime.cs"
copy "GetTime.dll" "Debug\GetTime.dll"

The wsdl tool will create the code that can be compiled to an assembly to access the Web

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The wsdl tool will create the code that can be compiled to an assembly to access the Web
service. This tool will not generate managed C++, so C# is chosen as the language (/l:cs);
however, this option is not configurable, and it does not appear on the property pages for the
WSDL file. The C# is compiled to a .NET module (not an assembly) and then copied to the
configuration out folder. Again, these steps are not configurable; there are no project
properties or build events that specify these actions. It is a pity that you cannot configure these
settings because the extension of the module will be .dll and not the conventional .netmodule.
(Although the WSDL file’s property page indicates the output name that will be generated, the
name that you supply will be ignored, so there is no way to change the module extension.)

Add Web Reference also adds a header file to the project called WebService.h, which looks
like this:

#using <System.DLL>
#using <GetTime.dll>
#using <System.Web.Services.DLL>
#using <System.Data.DLL>

There are two points that should be made about this file. The first point concerns the line
importing the metadata from the module GetTime.dll. This line indicates that you can use the
Web service classes in this file, or any file that includes it. However, since the wizard did not
know in which file you want to use the Web service, you have to add an appropriate #include
line by hand. Also, although the GetTime.dll module is part of the assembly you are
compiling, the linker is not informed of this (that is, /assemblymodule is not used; see the
section “Linker Switches” later in this chapter). The reason is that if you use #using with a
module, the compiler will automatically assume that you want to add the module to the
assembly, so the linker will oblige without explicitly being told to add the module.

The second point to make about this header file is the assemblies that are referenced. The
module uses the system and system.web.services assemblies, so the references to these are
required. The module does not use the system.data assembly, and I can see no reason why the
wizard adds this reference.

You can add a reference to an unmanaged C++ client. Again, you do this through
Project.AddWebReference, which will add a WSDL file to the project. This time the property
pages for the WSDL file are correct. The Generated Proxy Language is given as Native C++,
and the values that you enter on these property pages are used by the build tool. The tool that
is used is called sproxy.exe. The command line that will be generated for the GetTime Web
service looks like this:

sproxy.exe GetTime.wsdl /out:"GetTime.h" /nologo

The header file generated by this tool is added to the project and contains ATL code to access
the Web service. Because this code used by the Microsoft XML parser through COM, you
have to make sure that in an unmanaged project you initialize a COM apartment before you
use the generated class.

Comment Web Pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Tools menu has a command named Build Comment Web Pages
(Tools.BuildCommentWebPages). If you look this up in the online help, you will see a note
that says:

Currently, only C# supports the code comment syntax required for code comment Web
reports. Additional languages might also support code comment syntax at a later date.

This information is misleading because it implies that you can use only
Tools.BuildCommentWebPages for C# projects. In fact, you can use this command on C++
projects; you just lose some of the fine details offered by C# XML comments. This tool parses
source code; it does not require that the source is built. The tool will generate HTML pages
that list each namespace and give the classes and functions defined. Classes and functions not
defined in a namespace will be given in a namespace named Global. Each element that the
tool finds will have a Web page with a description of the item. To provide a description, you
should give one or more lines of comments before the item in the source code. The only
exceptions are comments for parameters and the return value, for which you should use the
XML-like tags <param> and <returns>, as shown in this example:

// This is a widget object.
__gc class Widget
{
 // The widget state.
 int i;
public:
 // Create a widget with default values.
 Widget();
 // Calculates the widget value.
 // <param name="j">The parameter.</param>
 // <returns>The calculated value of the widget</returns>
 String* Value(int j);
};

Note that these comments use the C++ comment symbol (//). You do not use the C# XML
comments symbol (///). The comment tool will create the table shown in Figure 6-11. This
table lists the members of the class, and each member is a hyperlink to a page that describes
the member. The note that I quoted earlier is partially true because as you can see from the
screen shot, the Description column for the Value function contains the description of the
function and its parameter and return value, which is not what you would expect. These are
intended for the page for the function. However, it is a fairly trivial task to edit the HTML
generated by the Tools.BuildCommentWebPages tool to create a comment page.

Thus, although the Tools.BuildCommentWebPages tool is not intended for C++ projects, it
goes 95 percent of the way to producing useful comment pages. With a little work to tidy up
the results, you can create good-looking documentation for your libraries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-11. Comment page for the Widget class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Compiling Code

The project property pages allow you to specify the switches for the various C++ build tools.
In this section, I describe the build tool switches that are specific to compiling managed code.
In general, to compile code to an assembly, you have to reference the metadata in the source
files with #using and you have to pass the /clr switch to the compiler. There are some switches
that are incompatible with /clr, and I will mention some of these. The categories for the C++
compiler and linker both have a page named Command Line that gives a summary of the
command-line switches that will be passed to the tool at build time. If the property pages do
not have a property for a switch that you want to use, you can use this page to add the switch.
It is also worthwhile to point out here again that the BuildLog.htm file lists the command-line
switches that were used to invoke the tool at build time; you can use this to help determine if a
failed build was due to the tool options you used.

Compiler Switches

The most important compiler switch for .NET code is /clr. In the project settings, this switch is
set through the Use Managed Extensions property on the General page. When you pass /clr to
the compiler, it will define the _MANAGED symbol. This symbol means that you can have
files shared between managed and unmanaged projects and use conditional compilation to call
.NET Framework classes only when the code is compiled in a managed project. Note that this
symbol is set according to the mode of the compiler rather than according to the type of the
code being compiled. Consider this code:

#pragma unmanaged
void NativeCode()
{
#ifdef _MANAGED
#pragma message("/clr has been used")
#endif
}
#pragma managed

If this code is compiled with the /clr switch, the function will be compiled to native x86
because I have used the unmanaged pragma, but the message will still be sent to the output
window because the compiler was passed the /clr switch. The /clr switch assumes that the
source file has managed (or __value) classes that use the new keywords. However, these
keywords are compatible with the /Za (Disable Language Extension) switch.

The /clr switch has an option named noAssembly (the capitalization is important); however,
you cannot use this option on the project properties page. This option is used when the C++
compiler is called to compile and link in one invocation to create a module, as shown here:

cl File.cpp /clr:noAssembly /LD /FeFile.netmodule

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modules have to be created using the /LD switch, and by convention, the file has the extension
.netmodule (hence the reason for the /Fe switch). Modules do not have an assembly manifest,
and this option is usually selected by passing the /noassembly switch to the linker. (The
/clr:noAssembly switch tells the compiler to pass the linker the /noassembly switch.) The IDE
always compiles and links in two separate invocations (the compiler is passed the /c switch),
so /clr:noAssembly is not relevant to files compiled through the IDE.

I mentioned in Chapter 1 that all files compiled with /clr ought to access the metadata in the
mscorlib.dll assembly file with a #using statement. In fact, you can omit this statement as long
as you use the /FU switch to identify this assembly file, as shown in the following line of
code:

cl File.cpp /clr /FUmscorlib.dll

You can use the /FU switch more than once on a command line. This switch is accessible
through the project property pages on the Advanced C/C++ page. In general, I prefer to
provide the #using statement in source files, but if the compiler gives me the C2065 error
message one too many times (because I have forgotten to provide a #using statement), I find it
therapeutic to call the compiler telling it FU.

While on the subject of #using, I ought to mention how the compiler locates the metadata files.
You can use an absolute path in the #using statement, or you can provide a search path for the
compiler to use. There are two ways to perform this task. The first is to provide the search path
temporarily through the /AI switch. This switch should be called for each folder path that you
want to provide. In the IDE, you provide these values through the Resolve #using References
property on the C/C++ General page. The advantage of setting this through the IDE is that you
can use Visual Studio .NET macros, as I’ll explain in the sections under the heading
“Examples of Common Solutions” at the end of this chapter.

If you have shared libraries that you will use often, it is a pain to have to provide the path to
these through /AI for every project you create. Instead, you can use the Reference files
directories (through the Tools.Options, Projects, VC++ Directories property page). For
command-line projects, you can get the same effect by setting the LIBPATH environment
variable. Note that the compiler automatically checks these directories; the IDE does not pass
them to the compiler through the /AI switch.

The output of the compiler is an object file, but you can also use compiler switches to indicate
that additional output files should be created. The most interesting of these is the /FA switch to
generate assembly code listing (the Assembly Output property on the Output Files C/C++
property pages). When you use /FA with /clr, the output will be MSIL rather than x86
assembly. It is useful to use /Fas, which will show the IL and the original source code.

It is important to point out that managed projects do not support Edit And Continue (Debug
Information Format property on the General C/C++ page), and that if you are using the CRT,
you must link with the multithreaded version of the library (Runtime Library property on the
Code Generation C/C++ page).

Precompiled Headers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you do not use the /FU switch, each file that has managed code ought to have access to the
metadata in the mscorlib assembly, and your code might also need to access metadata in other
assemblies. One way to provide this access is to have a single header file used by all source
files in your project and place the common #using statements in there. The convention is to
name this common header file stdafx.h. Of course, if that header file references many header
files or has many #using statements, it could take a prolonged length of time for the
preprocessor to parse all the files for each source file. This is the reason for precompiled
headers: the header file is processed just once and a memory snapshot is taken and stored on
the hard disk as a .pch file. This file is loaded when the compiler processes a file that includes
stdafx.h and saves time to process the header.

It makes sense to put common #using statements in the stdafx.h file because it centralizes this
code. However, note that for the mscorlib assembly, the compiler will place only information
about common types in the precompiled header, so when the compiler compiles other files, it
will still have to access the mscorlib assembly. Also note that metadata is easier for the
compiler to process than the data in header files, so you are unlikely to gain much time during
a build by having #using statements in the precompiled header.

Linker Switches

The linker also has switches for managed code. Two go hand-in-hand, the /noassembly and
/assemblymodule switches. The /noassembly switch is used to create a module, that is, a file
without an assembly manifest. This switch is accessed through the Turn Off Assembly
Generation property on the Advanced Linker property page. A module cannot be used on its
own. It must be part of an assembly, and there are two ways to add a module to an assembly. I
have already mentioned the first way: if you reference a module through #using, the module is
implicitly added to the assembly. However, I prefer the second, more explicit way: to use the
Add Module To Assembly property (/assemblymodule) on the Input Linker page.

Another linker switch that you can use is /noentry, which is accessed through the Resource
Only DLL property on the Advanced Linker property page. This switch is useful for library
assemblies and modules. A library assembly does not have a .NET entry point, and if the
library or module does not use the CRT (or have global C++ objects), there is no need to have
a Win32 entry point either.

The only other .NET-specific linker switch is /assemblyresource. This switch is used to add a
.NET resource to the final output. This linker switch adds the resource to the metadata of the
assembly. There are two ways to get a resource added to an assembly: as a noncompiled
resource, or as a resource compiled through ResGen. The IDE does not have direct support for
using ResGen, and I’ll show you the steps of how to use this utility in the section “Projects
That Use Resources” later in this chapter. The output of ResGen is a .resources file, and this
file should be added to the Embed Managed Resource File property on the Linker Input page.
You can also add resources that are not compiled, and to do this task, you simply provide the
name to the list in the Embed Managed Resource File property. Resources can only be
embedded; you cannot link them as separate files. Also, there is no support in the resource
property pages to treat a resource as a managed resource. Although a resource file has a
Content property on its Properties window, this property refers to deploying the file during
Web deployment and is not interpreted as indicating that the resource file is content as part of
the assembly. Furthermore, it would have been nice if the Embed Managed Resource File
property editor gave a list of the resources that are part of the project, but sadly, it does not do

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

property editor gave a list of the resources that are part of the project, but sadly, it does not do
this, so you have to remember the names of the resources in the project.

Optimization

Release builds have optimizations turned on. The default is the /O2 compiler switch, which
optimizes for the fastest code. However, as John Robbins mentions in his Bugslayer column
for MSDN magazine, October 2000,
(http://msdn.microsoft.com/msdnmag/issues/1000/Bugslayer/Bugslayer1000.asp), an
application optimized for size will often run faster than one optimized for speed because the
number of page faults will be less. In the IDE, compiler optimizations are accessed through the
Optimization C/C++ property page. The Optimization property is a general switch that you
can use to optimize for the fastest code or the smallest code, and the compiler will use
appropriate optimization switches. If you want to fine-tune the optimization, you can set the
Optimization property to Custom and then set the other properties on the page. Assemblies can
be optimized with any of the compiler and linker optimization switches except one, whole
program optimization (/GL compiler switch, /LTCG linker switch), so the Whole Program
Optimization property on the General project property page should always be set to No.

Build Steps

The Solution Explorer and Class View context menus have Build, Rebuild, Clean Link, and
Deploy for projects; solutions have Build, Rebuild, Clean, and Batch Build; and files merely
have a Compile item. The Build (Build.BuildSelection and Build.BuildSolution) option will
compile only those files that have changed, Clean (Build.CleanSelection and
Build.CleanSolution) will delete all outputs and intermediate files. Rebuild
(Build.RebuildSelection and Build.RebuildSolution) will compile all code, this command is
essentially the same as Clean followed by Build. The project Link command (Build.Link when
a project is selected) and the file Compile command (Build.Compile) do not check to see
whether the source file has changed since the action was last performed; they force the link or
compile.

When you rebuild a solution, all projects in the solution will be built. You can use the Solution
configuration to indicate that particular projects should not be built. If you want to temporarily
remove a project from the build process, you can do so by unloading the project
(Project.UnloadProject). This option is accessible only through the Project menu. (It is not o n
the context menu.) If you rebuild a solution with one of the projects unloaded, you will get a
message in the Output window saying:

Error: Cannot access data for the desired project since
 it is in a zombie state.

The zombie project is merely ignored, and the build process will continue with the next
project. When you have decided that you want to build the project as part of the solution, you
can reload the project through the context menu (Project.ReloadProject).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The project property pages allow you to add custom commands within the build process.
These are accessed through two categories on the property pages dialog box: Build Events and
Custom Build Step. The Build Events category defines three build events: Pre-Build Event,
Pre-Link Event, and Post-Build Event. Thus, the build order is as follows:

1. Command defined in the Pre-Build Event.

2. Compile the source files.

3. Command defined in the Pre-Link Event.

4. Link the project.

5. Command defined in the Custom Build Step.

6. Command defined in the Post-Build Event.

The IDE ignores the outputs of the commands entered on the Build Events category. The
Custom Build Step has an Outputs property that must not be left empty. (If it is, the step will
be ignored.) However, the IDE does not check the timestamp on the output. When the project
is built (that is, when one of the source files changes or when you perform a rebuild), the
Custom Build Step is always performed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Examples of Common Solutions

So far in this chapter, I have shown you the basic building blocks that you will use to create
your solutions. I have shown you the projects provided by Visual Studio .NET, the options
that you can use on the build tool, and how to specify these options using configurations. In
this final section, I will describe how to develop real-life managed solutions with Visual
Studio .NET.

Multiassembly Solutions

If you develop a library solution, you will need to have an application assembly to test the
code. In many cases, you will want to develop an application and the library assemblies it uses
in a single solution. The problem with using library assemblies is that the metadata must be
available to the compiler when the compiler builds the application so that information about
the library can be added to the application’s manifest. This limitation means that the
application assembly must be last in the build order, and to set this order, you should select the
solution in Solution Explorer and select Project Dependencies (Project.ProjectDependencies).
On this dialog, select the application project from the Project drop-down list and then check
the library projects it uses from the Depends On list box.

When you run the application, Fusion has to be able to find the library assembly. If the library
is private, either the library is in the same folder as the application assembly or you use some
mechanism to indicate that it is in another folder.

Specifying a Search Order

If the compiler has a problem finding the metadata for a library assembly, why not use the
LIBPATH environment variable, the compiler switch /AI, or the Reference files property
(through Tools.Options)? Indeed, these options will solve the problem of locating metadata,
but they do nothing to help Fusion to find the library at run time. Also, note that when the IDE
is started, it reads the environment variables. If you start the IDE with /useenv, it will initialize
the references path with the LIBPATH variable but only at that point in time. If you change
any environment variable after the IDE has started, you have to restart the IDE to pick up the
new value.

If you do not provide Fusion with information about where to find the library, you will get an
exception thrown in mainCRTStartup (crt0.c) of type FileNotFoundException, which will
mention the name of the assembly that Fusion cannot find. To get further information, you can
run the Fusion Log Viewer (fuslogvw).

One way to provide assembly location to Fusion is to use the DEVPATH environment
variable. You can set this variable to a single path, and when Fusion starts its probing for an
assembly, it will use this path first before processing the application configuration file or
searching any subfolders. This solution is suitable only when you have a single library
assembly in a project because you can specify only a single path. When I use this solution, I
usually set the environment variable at the command line and then start the IDE from the same
command line. This way I know that the environment is only temporary. If I set this via the
control panel, I would run the risk of the environment variable being used by another project
(or indeed, when any .NET application is started).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The way that the DEVPATH variable is used is a little odd. First, the runtime assumes that the
last character is a backslash, and it removes this character before, well, adding another
backslash and the name of the library. The runtime does not check to see whether the last
character actually is a backslash, so if you set the variable to

C:\Dev\Debug

which you know contains a library named myLib.dll, the runtime will attempt to locate

C:\Dev\Debu\myLib.dll

This “feature” has caught me several times because I have to check the Fusion log very
carefully to see that the g in Debug is missing. The other odd behavior of Fusion’s treatment
of the DEVPATH variable is that if you supply the path in quotes, Fusion will append the path
to the process’s Appbase (in other words, the current folder). So, I could type the following at
the command line:

set DEVPATH="C:\Dev\Debug\"

If I now start the IDE from the command line, open the solution in C:\Dev, and try to run the
output, the IDE will fail to start the process with the following lines in the Fusion log:

LOG: Appbase = c:\Dev\Debug\
LOG: DEVPATH = c:\Dev\"C:\Dev\Debug\
LOG: Unable to find assembly in DEVPATH location:
 c:\Dev\"C:\Dev\Debug\myLib.DLL.

I suspect part of the problem is that the runtime does not check the last character of the path in
DEVPATH, but I cannot see the rationale of appending this path to what appears to be a cut
down version of Appbase.

Finally, before you can use DEVPATH, you have to add the following code to the
machine.config file:

<runtime>
 <developmentMode developerInstallation="true" />
</runtime>

To be honest, I find DEVPATH fragile to use. It is too dependent on fixed paths, and it is not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To be honest, I find DEVPATH fragile to use. It is too dependent on fixed paths, and it is not
associated with the solution, so if I copy a solution to another machine (out of shared source
control, for example), I have to determine yet again the paths to use. Thus, I rarely use
DEVPATH when developing multiassembly projects.

Using a Common Output Folder

In my opinion, the best solution to this problem is to maintain a common output folder for all
the projects in the solution. (You can see this solution with the MultiMod example in the
source code for this chapter.) I usually provide a separate folder named bin under the solution
folder and then have subfolders under this folder for each of the solution configurations. To set
up this arrangement, I need to provide a Pre-Build Event and edit the project properties.

The first step is use the solution’s build order (Project.ProjectBuildOrder) to determine the
project that will be built first. For this project, open the property pages and select All
Configurations from the Configuration drop-down list box. Then set the Pre-Build Event to

if not exist "$(SolutionDir)bin" md "$(SolutionDir)bin"

For each project in the solution that has an assembly output, open the property pages for All
Configurations, go to the Linker General page, and set the Output File to

$(SolutionDir)bin/$(OutDir)/<file>

where <file> is the name of the file including its extension. In other words, you prefix the
command that is already there with $(SolutionDir)bin/. Note that the linker is quite relaxed
about using slashes in paths. Indeed, you can mix slashes and backslashes. Some tools are not
so relaxed. One such tool is the command-line copy, which I mentioned in Table 6 9 for
managing configuration files in a project. If you have a configuration file in a multiassembly
solution, you need to change the command to copy the file to include your new output
directory. (See Table 6-12.)

Table 6-12. Properties for a Config File in a Multiassembly Solution
Property Value

Command
Line

copy /y app.config
“$(SolutionDir)bin\$(OutDir)\$(TargetFileName).config”

Outputs “$(SolutionDir)bin\$(OutDir)\$(TargetFileName).config”

Next you need to give the compiler the path to find the metadata. To do this task, you should
open the property pages for the application assembly, select All Configurations, and on the
C/C++ General page, change the Resolve #using References to

$(SolutionDir)bin\$(OutDir)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The final task is to allow the debugger to find the .pdb files associated with the assemblies (see
Chapter 7). This step is not strictly necessary because when an assembly is built, the path to
the .pdb is put in the file, but logically, the .pdb is an output, so it should be copied to the
output folder. To perform this task, you should open each project’s property pages for All
Configurations, As you’ll see in Chapter 7, there are some advantages to be gained in
generating symbols for release builds. and in the Linker Debug page, change the Generate
Program Database File property to

$(SolutionDir)bin/$(OutDir)/$(ProjectName).pdb

Now when you build the solution, you will get the output files in a subfolder with the
configuration name under the bin folder and the intermediate files in a subfolder with the
configuration name under each project folder. You will be able to run the solution under the
debugger and from the command line.

Multimodule Solutions

A multimodule solution has the same problems as a multiassembly solution: you have to make
sure that the compiler can find the metadata for the modules when you reference them, and the
best solution to this problem is to use a common output folder as I explained earlier. The
MultiMod example in the source code for this chapter shows the steps that I will describe here.

In addition, you have to provide projects that create modules rather than assemblies. To do this
task, you should create a Managed C++ Class Library for all modules. (If the assembly you
are creating is an application, the module that contains the assembly manifest should be a
Managed C++ application.) Then, for all modules except the module that contains the
assembly manifest, you should go to the Linker Advanced page for All Configurations, change
the Turn Off Assembly Generation property to Yes, and on the General page, change the
output file name so that it has the extension .netmodule.

Once you have done this, you should go to the project that has the assembly manifest, and on
the Linker Input page, add the name of the module in the Add Module to Assembly property.
This name should be the full path to the module, as shown in this example

$(SolutionDir)bin/$(OutDir)/ModOne.netmodule

where ModOne is the name of the module. If you have more than one module, you should add
them to this property and separate each with only a semicolon. (Do not use a semicolon and a
space.)

Projects That Use Resources

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Adding unmanaged resources to a project is straightforward: you select Add Resource from
the Solution Explorer context menu, and the IDE will add a resource script (.rc) and symbol
header file (resource.h) to the project. Adding a managed resource is a little more work. If the
resource is not compiled, you merely have to add the resource file name to the Embed
Managed Resource File on the Linker Input property page.

If the resource is compiled, the Embed Managed Resource File needs the name of the
.resources file created by the ResGen utility. For example, to add a string resource to an
assembly, you should add a .txt file to your project and open the All Configurations property
pages. Set the Custom Build Step Command Line to

resgen $(InputFileName) $(IntDir)/$(InputName).resources

Here $(InputFileName) will give the name of the text file, and $(InputName) is the name
without the .txt extension. Unfortunately, you cannot use macros to add the compiled file to
the managed resources list, so you have to use the actual name. If $(InputFileName) is
strings.txt, add the following line to the Embed Managed Resource File property:

$(IntDir)/strings.resources

The ResGen utility also takes an XML file as an input. As I mentioned in Chapter 4, the
format of these files is hardly memorable, so you should either copy a .resx file from another
project or use the following trick. The ResGen utility will convert input files (.txt or .resx) to
.resources files and vice versa. So you can do this:

resgen strings.txt strings.resources
resgen strings.resources strings.resx

The first line creates the .resources file, and the second line creates the XML file with the
schema and the data that was given in strings.txt. You can then add the .resx file to your
project. The IDE has an XML editor, and I find it more useful to use XML view than Dataset
view. If you want to add a binary resource to a .resx file, you will have to do this by hand
because there are no tools provided to obtain the encoded serialized form of a binary file. The
only solution is to create a temporary C# forms project and use that.

Solutions That Have Satellite Assemblies

Recall from Chapter 4 that applications use satellite assemblies for locale-dependent
resources. A satellite assembly is associated with an application assembly, but the application
assembly does not depend on the satellite because the application should have culture-neutral
resources to fall back on if the localized resource cannot be found. For an application
assembly in a file named ResApp.exe, the satellite assembly is named ResApp.resources.dll.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

assembly in a file named ResApp.exe, the satellite assembly is named ResApp.resources.dll.
This file must be built as a resource-only library and have a culture. Because all satellites have
the same name, they can be distinguished only by their location, so a satellite must be installed
in a subfolder with the name of the culture.

All of this information means that you cannot use the Managed C++ Class Library project and
instead you have to use the assembly linker tool (al.exe). To build using this tool, you have to
add a Makefile project to your solution and ensure that the output is installed in the correct
folder. The source code for this chapter has an example (Resources) that shows how this type
of building can be done.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Summary

You can develop applications using Notepad to edit the source code, the command-line tools
to compile the code, and nmake to control the build process, but the process is tedious. The
Visual Studio .NET IDE does all this work for you and more. It provides tools to edit your
code, to browse and search for specific words, and to control the dependencies and build
process. The IDE also provides wizards to create initial code for you, but as I have explained
in this chapter, two of these wizards are important: the projects to create managed applications
and library assemblies. However, these projects are just the bare bones, so if you want to do
anything slightly more complicated, you have to customize the projects yourself. In this
chapter, I have explained how to use the project and solution options to develop
multiassembly applications and multimodule assemblies, and I have shown how to develop
assemblies that have managed resources.

Of course, when you are developing an application, you always need to test that it works, and
this task involves running the code under a debugger, which is the subject of the Chapter 7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7
Debugging
Every code needs debugging at some point during its development. Initially, you will need to
debug while you are developing your algorithm: you might need to test that the algorithm is
working correctly, or you can use a debugger for code coverage—testing to see how often
code is called. You might also find bugs when your code is unit or system tested, or you might
get a bug reported by an end user. When you get a bug report, you have to decide where the
error occurs and what situation causes the problem. Thus, your life will be far easier if the
original code is written with debugging in mind—in particular, checking return values, tracing
values, and reporting errors.

Once you have located the error, you need to set up a debug session to test the code and to
determine how to fix the code. To do this debugging, you will need to single-step through the
code and watch how variables change, and perhaps even change some variables yourself. Your
code can use native code through interop or through It Just Works (IJW), in which case you
will want to step between the .NET and native worlds testing all of your code. Your
application might be distributed over several machines, in which case you will want to be able
to debug code on remote machines.

In this chapter, I describe how to use the debugging tools in Microsoft Visual Studio .NET and
how to make your code more debuggable. The .NET Framework has classes that you can use
to trace intermediate results and to assert that values are correct. I will describe how these
classes work, how you can use them, and how to improve them. When you install Visual
Studio .NET, you will have several debuggers. The most useful are those built into the IDE
because these integrated tools allow you to seamlessly debug both native and JIT-compiled
code. I will explain how to use these debuggers and the associated tools that can supply you
with additional information about the process you are debugging. Finally I will explain how to
debug code across thread boundaries, across application domain boundaries, and in other
processes on the same or on a remote machine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Writing Code for Debugging

No developer assumes that his code will have a bug. Can you imagine a candidate at an
interview freely admitting that his code will have bugs? But no one is infallible, so it is far
better to admit to yourself that your code inevitably will have bugs and then to add code that
enables the compiler to find those bugs or allows the bugs to be picked up during testing. If
you write your code with debugging in mind, you will save yourself an immense amount of
effort when your first bug is reported.

Debuggable Code

Your first line of defense against bugs is the compiler. Perhaps the most useful keyword in
C++ is const because it allows you to specify how a parameter or a variable will be used, and
the compiler ensures that the parameter or the variable is used as you intend. Consider this
code:

void PrintName(const wchar_t* strName)
{
 _putws(strName);
 wcscpy(strName, L"no name");
}

The method signature specifies that the string the parameter points to will not be changed in
the method. When you build the project, the compiler will issue an error that the data pointed
to by strName will be changed by the call to wcscpy. (The compiler cannot convert from const
wchar_t* to wchar_t*.)

Now consider the equivalent code in managed code:

void PrintName(String* strName)
{
 Console::WriteLine(strName);
 strName = S"no name";
}

On the surface, this code looks as if the string can be altered in the method. However,
instances of System::String are immutable, so the assignment changes the string pointer, not
the original contents. (The pointer will be passed on the stack, the assignment will not affect
the original string pointer passed in the call, and the value on the stack will be cleared when
the method returns.) The parameter is effectively an in parameter; that is, any changes to the
parameter will not be returned to the calling code.

If the method signature is for a method that will be called through interop, it is useful to make
explicit the fact that the data will not be changed so that the marshaler will know that it will
not need to return data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[DllImport("myDll.dll")]
extern void PrintName([In] String* strName);

The immutability of System::String ensures that code cannot inadvertently change values.
However, consider this class:

__gc class Counter
{
public:
 int count;
 Counter(int c) : count(c) {}
 String* ToString()
 { return String::Format(S"Counter is {0}", __box(count)); }
 // Other members omitted
};

Now look at the following method that takes an instance as a parameter:

void Count(Counter* counter)
{
 while (true)
 {
 if (counter->count = 5) break;
 // Do something with counter.
 Console::WriteLine(counter->count);
 counter->count--;
 }
}

Can you see the bug here? For every Counter that is passed to this method, the while loop will
end immediately and the count member will be changed to 5. The reason is that I have used an
assignment operator instead of the equality operator. If the parameter is changed to const
Counter*, the compiler will detect that the assignment is being performed and will issue the
error “l-value specifies a const object,” that is, you cannot change a const object. There are
two further points to be made about this code. First, you should not make fields public, the
check on the value of the object’s state should be performed using a method member of
Counter. The second point is that the assignment/equality bug can be caught by the compiler
by placing the literal value on the left hand side; this will not catch the bug when non literal
values are compared. When the compiler sees the const keyword in this context, it will modify
the parameter with the following IL:

modopt([Microsoft.VisualC]Microsoft.VisualC.IsConstModifier)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

However, the compiler performs the check that the parameter is treated as a const object, so
the runtime should not need to know this information. Indeed, if Count is a member of a public
class and the parameter is marked as const, the method can still be called by code written in
languages other than C++.

Note also that you can use the C++ const_cast<> operator to remove the const-ness of a
pointer. The IsConstModifier modifier means nothing to the runtime, so the IL for
const_cast<> merely takes the const variable and calls it as if it were a non-const variable.
From a C++ point of view, you clearly must have a good reason to cast away a pointer’s
const-ness.

In a similar way, you can declare objects as being const to prevent them from being modified
or passed to methods that can modify them, and again, the compiler, not the runtime, performs
the test. You cannot apply const to a method, so the code

const Counter* c = new Counter(50);
Console::WriteLine(c->ToString());

will cause the compiler to issue an error that it “cannot convert the this pointer from a ‘const
Counter’ to a ‘Counter &’” in order call the ToString method. For an __nogc class, this error
can be removed by applying const to ToString to indicate that the method does not change the
object, so the method can be safely called through a const pointer. With a __gc class, you
cannot remove the error in this manner; instead, you have to cast away the const-ness of the
pointer before passing it to WriteLine, as shown here:

Console::WriteLine(const_cast<Counter*>(c)->ToString());

This casting will remove the error, and although it requires extra code, the casting results in no
extra IL because as I mentioned earlier, const is used only by the compiler, not by the runtime.
The const keyword is extremely useful to get the compiler to perform checks for you, but it
involves writing extra code. As always, you have to expend more effort to ensure that your
code will be safe.

Finally for this section, I cannot stress enough the importance of writing code that is readable.
Comments are vital because they document the purpose of the code and the expected inputs
and outputs. If you comment your code well, when you return to the code months later, you
will be able to start debugging immediately. The Visual Studio .NET IDE helps here with the
commands to comment and uncomment sections of text in the editor (Edit.CommentSelection,
Edit.UncommentSelection), so you can type your comments as if they are text in a word
processor and then turn them into a comment with a single command.

Dividing your code into procedures is also important and outlining (which I mentioned in the
section “Outlining” in Chapter 6) helps to order what you see in the text editor. Try to avoid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

section “Outlining” in Chapter 6) helps to order what you see in the text editor. Try to avoid
writing methods that have hundreds of lines of code. If you section your code into procedures,
you can more effectively determine the expected inputs and outputs and use assertions to
ensure that these conditions are met at run time. Furthermore, if you use short procedures, the
code will be JIT-compiled and will start to execute quicker than an equivalent monolithic
method. This advice is particularly true if a method contains sections that will be executed
infrequently. Placing such code in a separate method ensures that the code will be JIT-
compiled only when it is first called, and because this occurs infrequently, the JIT-compilation
of the method might never occur, so you get a performance benefit. Determining the code that
is executed infrequently involves profiling, which I will return to in the section “Profiling”
later in this chapter.

.NET Conditional Code

The System::Diagnostics namespace has an attribute named [Conditional], which indicates
that code with the attribute should be used only when the appropriate symbol is defined. This
attribute is not the same as conditional compilation because the code that has the
[Conditional] attribute will be compiled into the final assembly. The intention of the attribute
is to indicate to the compiler that the code can be called only when the specified symbol is
defined. If the symbol is not defined, the intention of the attribute is that the compiler should
ignore the statements that call the conditional method, as shown in this example:

// conditional.cpp
__gc class Test
{
public:
 [Conditional("TEST")] void TestOnly(){}
 void Always(){}
};

This code indicates that the Always method can be called irrespective of the symbols that are
defined when the code is compiled, whereas the TestOnly method should be called only in
builds where TEST has been defined. The problem with this code is that the [Conditional]
attribute has no effect whatsoever on the C++ compiler. It is one of the few features where I
will admit that the C# compiler has done things right: the C# compiler will compile only calls
to code without the [Conditional] attribute and code where the symbol specified by
[Conditional] has been defined. This arrangement means that the code

#undefine TEST
Test* test = new Test;
test->TestOnly();

will actually call the TestOnly method even though I have explicitly made sure that the TEST
symbol is not defined. You should be extremely careful about checking for code that has the
[Conditional] attribute (several classes in the .NET Framework SDK use this attribute), and
for such a method, you should manually add conditional compilation, as shown in the
following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Test* test = new Test;
#ifdef TEST
test->TestOnly();
#endif

Clearly, if you are going to regularly call methods that have the [Conditional] attribute, you
will have your code cluttered with conditional compilation. To make your code far more
readable, you should get the preprocessor to do the work through a macro, as shown here:

// conditional.cpp
#ifdef TEST
#define TESTMETHOD(p) p->TestOnly()
#else
#define TESTMETHOD(p) __noop
#endif

The __noop intrinsic indicates that the call should be ignored. Now you can use the
TESTMETHOD macro in your code, and the preprocessor will call the method only if the
TEST symbol is defined.

Test* test = new Test;
TESTMETHOD(test);

Other than making your code more readable, the advantage with this approach is that you can
centralize your conditional compilation macros in one header file, and more important, it
shows that you have had the discipline to check for [Conditional] methods. One final point: it
is worth reminding you that in debug builds, the C++ compiler defines the _DEBUG symbol
but it does not define the DEBUG symbol.

Tracing Code

When an error occurs in your code, the first task is to locate the errant code. If the error causes
an exception to be thrown, you have a starting point in your code from which you can
backtrack to try and locate the original source of the error. If the bug causes your code to run
without an exception but causes your code to return incorrect results, you have a more difficult
task because the bug could potentially be anywhere in your code.

Tracing values allows you to output method parameters, intermediate values, and return
values, as well as to indicate the execution flow. You can use this information to compare the
traced output with test data and then use this comparison to locate the method that has the
incorrect code. Furthermore, you can use asserts to ensure that you are immediately informed
whenever important values are not right. You then have the opportunity to run the errant code
under a debugger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you have a strong candidate for the source of the bug, you have the issue of stepping
through the code to determine where the problem lies in your algorithm. I will explain
stepping through code using the debugger in the section “Stepping Through Code” later in this
chapter; however, I have to point out that in some situations single-stepping is not practical.
Such a situation is when the error occurs within a loop and the error is a culmination of many
iterations; if you single-stepped through all of the loops, you would have a very tedious time.
The debugger will allow you to break when a variable has a specific value or when a certain
number of loops have been run, but it is often simpler to trace the value of the variable that has
the problem and then watch how the value changes, thus determining when the problem
occurs.

Tracing involves generating a string with information that you might need to isolate problems
in the code and then reporting that string in a way that allows the string to be read at a later
stage. The information that you report is fairly useless if it does not contain information to
locate where the information was generated. Therefore, it is usually useful to include
information, such as the source file and the line number, or the assembly, class, and method
name, along with the traced information. It is often better to use the source file and the line
number because this information will allow you to locate the problem within the source file.
Furthermore, if this information appears within the Output pane in Visual Studio .NET, you
can load the source file and place the caret at the position of the problem merely by double-
clicking on the line in the Output pane. The format that you should use to get this behavior is
shown in this code:

source_file (line_number, character_position): message

Here, source_file is the name of the file, which can be a full path to the file; if just the name of
the file is used, the current project directory will be searched. The pair, line_number and
character_position, gives the location of the problem, and when you double-click on the
report in the Output pane, the caret will be moved to this position. You can leave out the
character position (which is the format that the C++ compiler uses for its error and warning
messages), in which case the caret will be placed at the beginning of the line. The string after
the colon is used to describe the problem, and when you double-click on the error report, this
string will be shown in the status area of Visual Studio .NET.

If your application is composed of several assemblies, it might be a good idea to put the
assembly name in the reported message. If you use the full name (which includes the version,
culture, and public key token of the assembly), you will find that the string that identifies the
assembly might clutter up the Output pane. In this case, you can use just the short name of the
assembly and use some code to dump the full name of the assemblies as they are loaded, as
shown in this example:

// traceassem.cpp
// Static member
void App::AssemblyLoaded(Object* sender, AssemblyLoadEventArgs* args)
{
 // Example uses WriteLine(); to get this information sent to the
 // Output pane; use Trace::WriteLine() as described later.
 Console::WriteLine(S"Loaded {0}", args->LoadedAssembly->FullName);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Console::WriteLine(S"Loaded {0}", args->LoadedAssembly->FullName);
}

// In the entry point of the main assembly
AppDomain::CurrentDomain->AssemblyLoad +=
 new AssemblyLoadEventHandler (0, &App::AssemblyLoaded));

The full name of an assembly includes its short name (that is, the name of the file that contains
the assembly manifest but without the extension), so you should be able to use these messages
to identify the assembly. In the preceding code, I have printed the assembly name to the
command line. I will show how to get this information into the Output pane in a moment.

If the application involves the interaction between several processes on the same machine or
distributed over several machines, the messages that are being reported must be collected in a
way that allows them to be collated and analyzed together. If these messages are collected on
the machine where they are generated, you have the issue of synchronizing the messages when
they are collated. This arrangement means that the clocks on the target machines must be
accurately synchronized. On the other hand, a single machine can be used to record the
messages, but this arrangement means that network traffic will increase significantly and
performance will suffer. The Windows NT event log can be used in both ways: you can log
messages on the machine where they are generated, in which case you will need to compare
event logs from several machines, or you can nominate a single machine, and all processes in
the application can log messages to that machine.

The simplest method to report an event is to use the ::OutputDebugString Win32 API. As the
name suggests, this function sends the specified string to the output debug stream. Internally,
this function uses ::RaiseException to generate a structured exception with the undocumented
code 0x40010006, passing the length of the string and the string as the exception parameters
and indicating that the exception is continuable. I found this out by writing some unmanaged
C++ code that uses ::OutputDebugString. I ran this code under the Visual Studio .NET
debugger, and when I came to the ::OutputDebugString statement, I single-stepped in the
Disassembly window. The NT symbols showed me that ::OutputDebugString called
::RaiseException. So, in the following code, the call to ::OutputDebugString and
::RaiseException do the same thing I have shown this code as native C++. The reason is that
the .NET Framework does not provide a mechanism to raise a native exception. The nearest
possible method is Marshal::ThrowExceptionForHR, but this method does not take a string
parameter, so although the exception is handled (you do not see the unhandled exception
dialog box), it is useless because you cannot provide the message. :

// Unmanaged C++
LPCSTR str = "Test String\n";
OutputDebugString(str);
LPCSTR args[2] = {reinterpret_cast<LPCSTR>(strlen(str)), str};
RaiseException(0x40010006, 0, 2,
 reinterpret_cast<const DWORD*>(args));

If the process that generated the string is being debugged, the string will be passed
synchronously to the debugger when the process calls the Win32 API ::WaitForDebugEvent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

synchronously to the debugger when the process calls the Win32 API ::WaitForDebugEvent.
If the process is not being debugged, the system handles the exception by placing the string
and the process ID of the process that generates the message in a shared memory section
through a memory mapped file named DBWIN_BUFFER. Because this file is shared by all
processes reading from and writing to this shared memory, the access is controlled by two
events: DBWIN_BUFFER_READY and DBWIN_DATA_READY.

The upshot is that whatever mechanism is used to read the message, the code that does the
reading is coupled to the code that generates the message. The thread that generates the
message will block until the process that reads the message has completed the read, so if the
reading code is not efficient, the reading code can cause the generating process to run
exceptionally slow or even to hang. If your process is multithreaded and you use
::OutputDebugString in each thread, these events will also synchronize your threads, which is
not an effect that you would expect.

Thus, you should not trace messages through ::OutputDebugString in release builds that will
be executed under normal circumstances. Tracing is often useful in release builds, but it has to
be explicitly turned on, perhaps through a command-line switch or through a config file. By
default, C# projects define the TRACE symbol in release builds, which, as you will see in the
next section, means that tracing through the System::Diagnostics::Trace class is enabled.
Trace messages are handled by trace listeners, and one of the default listeners reports the
message via ::OutputDebugString, so if the C# developer is not aware of this issue, he will
effectively allow his release builds to be coupled to the debug stream monitor that the user
chooses to run. This action is dangerous and is an example of simplifying builds to the point of
affecting the performance of the process.

.NET Tracing

The .NET Framework class library provides classes in the System::Diagnostics namespace to
handle tracing. Effectively, .NET tracing involves two types of classes: a writer class and a
listener class. There are two writer classes, Trace and Debug. These classes have their
methods marked with the [Conditional] attribute, the intention being that if the TRACE
symbol is defined, the Trace methods can be called, and if the DEBUG symbol is defined, the
Debug methods can be called. As I mentioned earlier, these methods will be available even if
the appropriate symbol is not defined. This arrangement means that if you have to use C++
conditional compilation with the Write and WriteLine methods of Debug and Trace, your code
will be cluttered, which limits the usefulness of these classes. One possibility is to use the
alternative methods, WriteIf and WriteLineIf. These methods take a Boolean parameter, and
the message will be reported only if this parameter is true. You can obtain this value from a
config file or perhaps define a global bool whose value is true only when the appropriate
symbol is defined, as shown in this example:

#ifdef TRACE
bool g_bTrace = true;
#else
bool g_bTrace = false;
#endif
// In your code
Trace::WriteLineIf(g_bTrace, S"This is a message");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although this code places the conditional compilation in just one place—to determine the
value of the bool global variable—this arrangement still means that a check is performed when
the trace messages are required. You can get rid of this check by using a macro that is
conditionally compiled, as shown here:

#ifdef TRACE
#define TRACEMSG Trace::WriteLine
#else
#define TRACEMSG __noop
#endif

It is a pity that the C++ compiler does not check for the [Conditional] attribute and compile
the code only if the appropriate symbol is defined, as the C# compiler does. However, the
TRACEMSG macro gives the same effect, and to be honest, I feel that the macro makes the
code more readable because it makes it more obvious that the code is tracing a message.

The .NET Framework also provides a class named Debugger. I will return to this class later,
but for this discussion, this class has a pertinent method named Log. This method does nothing
if the process is not being debugged, but if the process is being debugged by the managed
debugger, the method prints in the Output pane the message passed to the method.

The string passed to the Debug or the Trace class is passed to each entry in the Listeners
collection created for each application domain. (Both classes use the same collection.) Each of
these listener objects is an instance of a class derived from the TraceListener class, which has
a Write and a WriteLine method. These methods record the message string to a location
appropriate to the type of listener. Table 7-1 shows the trace listener classes provided by the
.NET Framework.

Table 7-1. Table 7 1 The .NET Trace Listener Classes in the System::Diagnostics Namespace
Class Description

DefaultTraceListener
Logs messages to ::OutputDebugString and to
Debugger::Log; reports asserts through a modal
message box, to ::OutputDebugString, and to
Debugger::Log

EventLogTraceListener
Logs messages and asserts to the Windows NT event
log

TextWriterTraceListener
Logs messages and asserts to the TextWriter (a
stream, a file, the console, or a custom TextWriter)
passed to the constructor

I will return to the issue of asserts in the section “.NET Asserts” later in this chapter, but
notice that EventLogTraceListener and TextWriterTraceListener treat failed asserts as merely
a special kind of trace message. However, the DefaultTraceListener class shows a modal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a special kind of trace message. However, the DefaultTraceListener class shows a modal
dialog box for a failed assert. It is vital that code that can generate such a dialog box does not
appear in release build code and especially vital for code that does not run in the interactive
Window Station (so that no user can see the dialog box to be able to dismiss it).

You can get access to the listeners for your application domain by accessing the static
Listeners property of either the Trace or Debug class, which returns a reference to an instance
of TraceListenerCollection. This collection is read/write, so you can add and remove items as
well as list the entries that it contains. So if you need to pass trace messages and failed asserts
via a socket to another process, you could create the socket and use it to initialize a
TextWriterTraceListener instance such as this:

NetworkStream* stm = new NetworkStream(mySocket);
StreamWriter* writer = new StreamWriter(stm);
TextWriterTraceListener* listener =
 new TextWriterTraceListener(writer);
Trace::Listeners->Add(listener);

If you have a special requirement for the tracing you intend to do, you can create your own
tracing class derived from TraceListener. (You have to provide an overload for the abstract
methods Write(String*) and WriteLine(String*), and you must ensure that you initialize the
inherited Name property to an appropriate value.)

The first time that code calls one of the Trace or Debug methods that write to the listeners for
an application domain, the Listeners collection will be created, and by default, this collection
will have an instance of DefaultTraceListener named Default. In addition, the system will
view the configuration of the process to see if there is information about the Listeners
collection. The configuration is contained in the <system.diagnostics> node. If this
information is specified in the machine.config file, all processes will have the configuration,
but note that the values in the process’s configuration file take precedence. This node can
contain a node named <trace> that has the trace settings. The <trace> node can contain a
<listeners> node to which you can add or remove items, as shown in the following code:

<!-- tracing.exe.config -->
<configuration>
 <system.diagnostics>
 <trace>
 <listeners>
 <remove name="Default"/>
 <add name="txtListener"
 type=
 "System.Diagnostics.TextWriterTraceListener,
 System, Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"
 initializeData="Trace.log"/>
 </listeners>
 </trace>
 </system.diagnostics>
</configuration>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first entry in the <listeners> node removes a named listener, in this case, the default
listener, which means that the process using this config file will not log messages to the output
debug stream. It makes sense to add this line to the config files of all your released processes
so that if a developer inadvertently leaves a Trace or debug method call in the code, the call
will be executed but will not result in ::OutputDebugString being called. (Of course, this line
can be removed for debug builds.)

The second entry adds a new listener to the Listeners collection. In this case, the listener is a
TextWriterTraceListener, so the listener needs to be initialized with a value to indicate to the
TextWriter the file in which the messages will be written. As you can see, this value is a single
string and is used to call the TextWriterTraceListener constructor that takes a string—in other
words, the string is the name of the log file. There is an inherent problem with initializing the
TextWriter this way: if you have more than one application domain in which you trace
messages, the Listeners collection in each domain will be initialized with the same data. In this
case, the separate instances of TextWriterTraceListener will attempt to write to Trace.log. The
first instance will place an exclusive lock on this file so that subsequent attempts to initialize
the Listeners collection in another domain will fail with an exception in the configuration
section handler. If logging to a file is your preference, it is better to derive from
TextWriterTraceListener and use the constructor to create a log file unique to the application
domain, as shown here:

// tracing.cpp
__gc class DomainSafeTextTrace : public TextWriterTraceListener
{
public:
 DomainSafeTextTrace()
 {
 Initialize(S"Trace.log");
 }
 DomainSafeTextTrace(String* str)
 {
 Initialize(str);
 }
protected:
 void Initialize(String* str)
 {
 this->Name = S"DomainSafeTextTrace";
 String* strFile;
 strFile = String::Concat(str, S".",
 AppDomain::CurrentDomain->FriendlyName);
 strFile = String::Concat(strFile, S".log");
 this->Writer = new StreamWriter(strFile, true);
 }
};

The first domain is named after the process, so if I use this class in a process named Test.exe
and the config file provides Trace as the name of the tracing file, this class will create a file
named Trace.Text.exe.log. If the process then creates an application domain named
Second_Domain, a file named Trace.Second_Domain.log will be created. The source code for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Second_Domain, a file named Trace.Second_Domain.log will be created. The source code for
this chapter has two examples. Tracing.cpp uses DomainSafeTextTrace and identifies that this
trace listener should be used with an entry in the config file. The other example, tracing2.cpp,
uses a class similar to DomainSafeTextTrace that is designed to be added to the Listeners
collection programmatically.

The <trace> node can have two attributes: autoflush and indentsize. These attributes
correspond to the AutoFlush and IndentSize properties of Trace. If AutoFlush is set to true, the
Flush method is called whenever a write is made through Trace. This behavior is especially
useful if the entries in the Listeners collection are based on buffered streams (for example,
those that are based on a file). If you do not use AutoFlush, you should manually call
Trace::Flush before the application domain closes down. The IndentSize property specifies the
size of indenting that will be used. Indenting helps you to format traced messages. For
example, you might decide that it makes more sense to indent messages from method calls, as
shown here:

void Test()
{
 Trace::Indent();
 Trace::WriteLine(S"In Test()");
 Trace::Unindent();
}
void main()
{
 Trace::WriteLine(S"In main()");
 Test();
}

This code will print “In main()” at column zero and then on the next line print In “Test()” at
column number IndentSize. To set the AutoFlush and IndentSize properties of the Debug class,
you should use the autosize and indentsize attributes of the <debug> node in
<system.diagnostics>.

The various methods of Trace and Debug that allow you to write methods have an overloaded
version that takes a second string; this string is the category. The category can be any value
that you choose, and in the trace stream, you will find that the traced message will be prefixed
with the category and a colon. Finally, there are also methods that take an Object* pointer.
These methods merely call ToString on the object and pass the resulting string to the method
that takes a string.

These two classes are fine for basic tracing, but they do leave a lot for the programmer to do.
The first issue is that Write and WriteLine take already formatted strings, so you cannot use a
format string and variables to provide the values at run time for the placeholders in the format
strings. These classes are sealed, so you cannot add new functionality by deriving a child
class. Instead, you have to create a totally new class. Furthermore, since you cannot write code
that uses the managed varargs, you have to use an array of Object* and the [ParamArray]
attribute, which simulates varargs for C# but does nothing for the C++ programmer. Another
problem with these classes is that they do not have a “detail” level. The ATL trace macro
(ATLTRACE) allows you to define a detail level so that at run time you can decide to trace
messages at various detail levels. With Debug and Trace, all trace messages are generated, so

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

messages at various detail levels. With Debug and Trace, all trace messages are generated, so
you often have the problem of either generating too few messages and omitting important
information or generating too many messages and having to filter through the messages after
they have been collected.

Windows NT Event Log

The Windows NT event log is a wonderful facility in Windows NT, Windows 2000, and
Windows XP. It is an efficient, persistent store of events. These events are accessible on the
local machine, on a remote machine (if your account has the appropriate privileges), or
through an exported file. This arrangement means that if you have a distributed application
and something goes awry, you can copy the event log from the various machines that were
involved in the application and examine the logs at your leisure on your own machine. Now
comes the nice part: if these machines are located in different locales, the event log on each
machine shows the events in the default language of the specific locale, but if you access the
event on another machine in another locale (either by copying the exported event log file or by
accessing the event log over the network), the event is formatted using the locale of the
machine from where it is being viewed. This seems like magic, but in fact, it is quite
straightforward.

When you log an event, you need a file (typically a DLL) called a message resource file. This
file could be in your application, but typically it is a separate file because it should be installed
on each machine where the events are to be read. The path to this file is registered with the
system with a name called the source name.

The message resource file has Win32 resources of type RT_MESSAGETABLE. Each language
that you will support will have a message table resource, and this resource essentially
associates an event ID with a format string. The format string has the locale-specific message
with placeholders (%1, %2, and so on) for values that are specific to each instance of the
event. When the event is generated, the event log is given the source name, the event ID, and
an array of strings that are used to fill the placeholders. The combination of these three allows
the event log API to locate the right resource file for each event.

When you read an event from the event log, the API reads the source name, loads the resource
file, determines the current locale, and finds the message table for that locale in the resource
file. Finally, the API loads the format string and inserts the parameter strings into the
placeholders. The process is slightly more complicated than what I’ve described here, but this
overview is the essence of how the process works.

The most important aspect of this scheme is that as long as the message resource file is
registered on each machine, you will always get the events formatted in the current locale. In
addition, the format messages can be quite detailed, but because these messages are not stored
in the event log, disk space is used efficiently where the events are stored and network time is
reduced when the event log is accessed remotely.

The disk space aspect is important because there is less data to load when the event log first
loads (so the event log starts much quicker). There is also less possibility of losing data. Event
logs are limited to the size of the files used to store the events. When the file reaches this limit,
messages in the event log will be overwritten. In normal operation, it might take many weeks
to fill the event log, but the whole point about the facility is that you will need it at
extraordinary times when something is failing catastrophically, which can involve logging
many events. Note that you really should try to avoid such a situation occurring in your code.
The event log should be used sparingly. However, you cannot guarantee that third-party code

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The event log should be used sparingly. However, you cannot guarantee that third-party code
will follow such good practices. Determining what caused an application to fail can be
difficult, and it certainly does not help if events are lost. Storing format messages in a file
other than the event log avoids this problem.

If it sounds like I have a certain amount of affection and admiration for the event log, you are
correct. Although some of the Win32 APIs for accessing the event log are somewhat arcane
(they were originally designed for OS/2), they perform the job well. However, I have bad
news for you: the .NET Framework classes for reporting events have debased the behavior of
the event log to the point of making it just a little better than useless. I say this because the
designers have decided to dispense with the use of message resource files. I suspect the reason
is that the .NET classes were based on the code that appeared in unmanaged Visual Basic,
which also dispensed with resource files. The .NET Framework puts the onus of localization
on the code that generates the event and not on the code that reads the event. Thus, when you
generate an event with System::Diagnostics::EventLog, you provide the string that will appear
in its entirety in the event log. The .NET Framework does provide a message resource file, but
the message table merely has 65,536 format strings that look like this:

%1

The problem with this approach is that the application logging the event will have to determine
who will read the event. If the event will be read on the same machine where it is generated,
the application will need to determine the language of the current machine. If the event will be
read by another machine, the application will have to guess the locale of that machine.
Because it is not possible to accurately guess the locale of the other machine, a suitable neutral
language must be used, and invariably this will mean English. This default is fine for me
because I speak only English, and I guess this is fine for those of you reading the English
version of this book, but if your application is international, this behavior is bad manners at
best, and at its worst, it is arrogant and also a possible source of errors.

If you want to avoid this problem, you must avoid using the EventLog class to report events
and instead call the Win32 ::ReportEvent method through interop or IJW. The code is pretty
straightforward, and the only issue is converting a managed array of strings to an unmanaged
array of string pointers. If you use interop, you can define a custom marshaler to do the
conversion. If you use IJW, it is simple to create an unmanaged array and copy the data across
the managed/unmanaged boundary, as shown in the following code:

// eventlog.cpp
__nogc class StringArray
{
 LPCWSTR* m_params;
 int m_length;
public:
 StringArray(String* strings[])
 {
 m_length = 0;
 m_params = NULL;
 if (strings != NULL)
 {
 m_length = strings->Length;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 m_length = strings->Length;
 m_params = new LPCWSTR [m_length];
 for (int i = 0; i < m_length; i++)
 {
 m_params[i] = (LPCWSTR)(LPVOID)
 Marshal::StringToHGlobalUni(strings[i]);
 }
 }
 }
 ~StringArray()
 {
 if (m_params != NULL)
 {
 for (int i = 0; i < m_length; i++)
 {
 IntPtr ptr = (LPVOID)m_params[i];
 Marshal::FreeHGlobal(ptr);
 }
 delete [] m_params;
 }
 }
 __declspec(property(get=GetLength)) const int Length;
 const int GetLength()
 {
 return m_length;
 }
 operator LPCWSTR*()
 {
 return m_params;
 }
};

This unmanaged C++ class takes a string array as a constructor parameter and converts the
data in the array to an unmanaged array of string pointers. This unmanaged array is available
through a conversion operator. The class is designed to be created on the stack, so the
destructor of the class does the cleanup of the unmanaged resources. It can be used like this:

// eventlog.cpp
String* strings[] = { S"one", S"two" };
StringArray params(strings);
::ReportEvent(hEvt, 0, 0, evtID, NULL, params.Length,
 0, params, 0);

This code is managed. An instance of the unmanaged class is created on the stack and
initialized with the managed string array; the constructor does the conversion to a LPCWSTR
array. In the call to the Win32 ::ReportEvent, the StringArray::GetLength method is called
when the Length property is accessed, which is the purpose of the __declspec(property)
modifier. Finally, when the object is passed as the eighth parameter to ::ReportEvent, the
conversion operator is called, which returns the unmanaged LPCWSTR array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As I have mentioned, using a message resource file means that you can have Windows NT
event messages that are correctly formatted in the Windows NT event viewer for the current
locale. If you choose not to use the Windows NT event viewer, you can read the event
messages using the EventLog class. Although this class is very poor at generating event
messages (and I strongly urge you not to use it this way), it has excellent code to read event
messages. Anyone who has used the Win32 ::ReadEventLog and ::FormatMessage APIs to
read event messages will testify that these functions are far from ideal. The EventLog class has
a property named Entries that is an EventLogEntryCollection. When you read this property,
the next event is read and formatted for the current locale, whether the event was generated
with EventLog or with ::ReportEvent.

When you add an event, you specify a category value, a 16-bit value. The Windows NT event
log viewer will search a category message resource file for the display string for the category.
This file is essentially the same as an event message resource file, and the two can be
combined. If the event log viewer cannot find the display string, it will show the category
number. Yet again, this is another situation where the .NET Framework EventLog class is
seriously deficient: there is no way that you can indicate a display string for a category.

To have the complete benefit of the event log, you have to register the source in the Windows
NT registry. To do this, you have to create a key with the name of your source in

HKEY_LOCAL_MACHINE\CurrentControlSet\Services\Eventlog\Application

Within this new key, you must add two settings, a string value named EventMessageFile that
has the path to the event message resource file, and a DWORD value named TypesSupported
that is the combination of all the event log message types that can be generated. To perform
this task in managed code, you need to use the classes in the Microsoft::Win32 namespace, as
shown here:

// eventlog.cpp
void Register(String* srcName, String* srcPath)
{
 RegistryKey* application;
 application = Registry::LocalMachine->OpenSubKey(
 S"SYSTEM\\CurrentControlSet\\Services"
 S"\\Eventlog\\Application", true);
 if (application != 0)
 {
 RegistryKey* src;
 src = application->CreateSubKey(srcName);
 if (src!= 0)
 {
 src->SetValue(S"EventMessageFile", srcPath);
 src->SetValue(S"TypeSupported", __box(7));
 }
 }
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you have descriptive strings for your categories, you should add a string setting named
CategoryMessageFile that has a path to the category message resource file and a DWORD
setting named CategoryCount that lists the number of categories that have a display string.

The message file should have the message table resource bound to it as a Win32 resource. The
message table resource is created by the message compiler tool (mc.exe) from a message file
(.mc). This tool will create binary resources—one for each language that is mentioned in the
message file—and will generate a resource script (.rc) file that includes these resources.
Typically, your makefile will have a build rule to compile .mc files with mc.exe, then compile
the resultant resource script with the unmanaged resource compiler (rc.exe), and then link the
resultant binary (.res) as an unmanaged resource to the output file. This file can be an
assembly or an unmanaged DLL. It makes sense to add the registration code to the message
resource file, and in the case of an unmanaged DLL, you can add this code to an exported
function named DllInstall, as the following code shows:

HRESULT DllInstall(BOOL bInstall, LPCWSTR cmd);

The DllInstall function is called when you pass the DLL to regsvr32 with the -i switch. If the -
u switch is also used, bInstall will be FALSE (uninstall the DLL); otherwise, it will be TRUE.

If the resource file is an assembly, you can add the registration code to an installer class. This
class derives from Installer in the System::Configuration::Install namespace. The installer
class should have the [RunInstallerAttribute] attribute set to true. The .NET Framework
provides a tool named installutil.exe to which you pass the name of an assembly, and the tool
then uses reflection to look for classes with the [RunInstallerAttribute] attribute set to true.
Once the tool has found an installer class, it instantiates an instance and calls its Install
method. If this method is successful, the tool will call the class’s Commit method; otherwise, it
will call the Rollback method. Installer objects can be chained, and if one fails in its Install
method, Rollback will be called on all the objects that have been run. Thus, you should call the
Register method shown earlier within your custom installer class. You can create a
deployment project through the Visual Studio .NET IDE that calls the installer class.
Unfortunately, the documentation for installutil.exe indicates that this tool will not run an
installer class written in managed C++. The workaround is to write a shim class in C# that
calls your C++ code compiled into another module; because the installer class will be C#;
installutil.exe will be happy.

Unfortunately, the Visual Studio .NET IDE does not recognize message files, which means
that if you want to create message resource files (managed or unmanaged), you have to create
a custom project in Visual Studio .NET. However, as I mentioned earlier, the advantages that
you get from having correctly formatted messages in the Windows NT event log far outweigh
the extra effort that you have to expend to create these resource files.

CRT Tracing

If you are likely to use the CRT or call other code that uses the CRT, you might well have
code that generates trace messages through the CRT tracing mechanism. The Debug CRT
libraries have a whole series of macros that start with _RPT or _RPTF; these macros call the
_CrtDbgReport function, passing various parameters to the function. The output from

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

_CrtDbgReport function, passing various parameters to the function. The output from
_CrtDbgReport is either to the command line, a file, or a message box, and you call
_CrtSetReportMode to specify the output destination. There is also another option: if you call
_CrtSetReportHook2, you can provide your own reporting function. Your reporting function
should have the following prototype:

int ReportHook(int reportType, char *message, int *returnValue);

When code using the CRT debugging API generates a report, it will give a report type,
_CRT_WARN, _CRT_ERROR_, or _CRT_ASSERT_. This report type is passed as the first
parameter to the report hook, so your code can perform different handling depending on the
type of message that was generated. The actual message is sent as the second parameter. You
can use these two pieces of information to decide whether to process the report. If you decide
that you do not want to handle the report, you should return FALSE and _CrtDbgReport will
be called; otherwise, return TRUE. The final parameter of the report hook should be treated as
an out parameter and should be used to indicate what should happen after the hook function is
called. The function should return 0 if no errors occurred (which is the case with trace
messages), 1 if the debugger should be started, and -1 to shut down the process. From this
discussion, you can see that it is possible to define a global function that will direct all trace
messages to trace listeners, as shown here:

// assertcrt.cpp
int ReportHook(int reportType, char *message, int *returnValue)
{
 switch(reportType)
 {
 case _CRT_WARN:
 Debug::WriteLine(message);
 *returnValue = 0;
 break;
 case _CRT_ERROR:
 case _CRT_ASSERT:
 *returnValue = -1;
 Debug::Fail(message);
 break;
 }
 return TRUE;
}

Your entry point should identify the hook report function with the following code:

_CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, ReportHook);

ReportHook will ensure that all trace messages are sent to the Listeners collection. I have also
shown one way to handle assertions. However, the situation is not as simple as this, as you
will see in the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assertions

Assertions are extremely useful in debug builds and are completely useless—even harmful—
in release builds. You use an assertion to test that a condition required for the correct operation
of your code is true, so if the assertion fails, you know that you have a source of a bug.
Because a failed assertion is so important, you might choose to be informed immediately of
the failure, typically through a modal dialog box. Clearly, it does your company’s reputation
little good to present to a user of your code a modal dialog box saying that the code has failed
—if your code fails, I am sure that you would prefer the application to quietly slink away (and
hope that the user blames some other code for the death of your application), rather than to
boldly tell the user that the code has some horrendous bug that you thought could happen, and
that, indeed, it has happened. Thus, assertions should be compiled away to nothing in release
builds.

.NET Asserts

The .NET Framework provides assertions through the Debug and Trace classes. There are
three overloaded Assert methods. The simplest takes a bool, which is the test that you want to
perform. If this parameter is false, the assertion has failed and the user should be informed.
The other two overloads have, respectively, an extra string parameter and an extra two string
parameters. The first of these strings is a descriptive string that identifies the assertion that has
failed. The final string is used for additional details about the assertion.

As with the tracing methods, the Assert methods are marked with the [Conditional] attribute.
This attribute has TRACE for the methods in the Trace class, and it has DEBUG for the
methods in the Debug class. As before, the C++ compiler will compile the calls to the Assert
methods into your code whether or not these symbols are defined. Thus, you should not call
these methods directly. Instead, you should define a macro similar to the TRACEMSG macro I
mentioned earlier. Furthermore, under no circumstances should a call to Debug::Assert or
Trace::Assert exist in your code in a release build, so to ensure that the calls occur only in
debug builds, your assertion macro should be defined only if the symbol _DEBUG is defined
(note the leading underscore).

#ifdef _DEBUG
#define ASSERT Debug::Assert
#else
#define ASSERT __noop
#endif

When the Assert method is called, the Boolean expression is evaluated, and if the result is
false, the Fail method is called on each of the registered trace listeners. The Trace and Debug
classes also have a Fail method, which will also call the Fail methods on the trace listeners, so
you can fail the assert without even evaluating a Boolean.

Table 7-1 on page 431 gives the trace listener classes provided by the .NET Framework. The
DefaultTraceListener does the most work, and I will describe this class in a moment. The
EventLogTraceListener and TextWriterTraceListener classes inherit the Fail method from

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EventLogTraceListener and TextWriterTraceListener classes inherit the Fail method from
TraceListener, which merely concatenates the assert message and detailed description with a
suitable header string identifying that an assertion failed. As you would expect, the
EventLogTraceListener class adds this string to the event log as an entry, and the
TextWriterTraceListener writes the string to the stream on which it is based. However, neither
of these classes give any indication about where the assertion failed. If you decide to log failed
assertions, you must indicate where the assertion failed because there is a bug in the .NET
Framework class that prevents the automatic logging of where the assertion failed. In this
situation, it is important to use the version of Assert that has two strings and use the second
string to give the location of the assertion. I will describe how to obtain the location
programmatically later in this section.

Only the DefaultTraceListener treats the assertion as requiring immediate attention. This class
shows a modal dialog box with information about the assertion and hence the dialog box
blocks the errant code. In addition, this class logs the assertion method to a log file and to the
attached debugger. The Fail method for this class first checks the Debugger class to determine
whether there is an attached debugger (and hence, logging is enabled), and if so, it sends the
assertion message to the debugger by calling Debugger::Log. If no debugger is attached, this
message is sent to the output debug stream with a call to ::OutputDebugString. (Remember the
comments that I made earlier in the section “Tracing Code” about using this Win32 function.)
Next Fail checks to see whether a log file has been specified—the
DefaultTraceListener::LogFileName property—and if so, Fail opens this file for append, adds
the assertion failed message, and closes the file.

Finally Fail checks the AssertUiEnabled property to determine whether a modal dialog box
should be shown. If this property is true, a modal dialog box is shown with the details of the
assertion. I will have more to say about this dialog box in a moment. In all three cases (logging
to the debugger, logging to the log file, and displaying the assert dialog box), the code obtains
information about the current stack trace so that it can log the assertion location along with
other information about the assertion. However, in version 1 of .NET, there is a bug in the
StackTrace class (which I’ll mention later) that results in an empty string being generated.
Thus, no information is given about the location of the assertion, and as I mentioned before,
you should provide this information in the detailed string parameter of Assert.

There is only one way to set the values of the AsserUiEnabled and LogFileName properties:
through the config file. Although these properties are read/write, it turns out that the get
method uses the value specified in the config file rather than the value passed through the set
method, and if the process does not have a config file, a default value of true is used for
AssertUiEnabled and an empty string is used for LogFileName. Because the config file is
always used to get these properties, each instance of DefaultTraceListener has the same value
for these properties. To set these properties, you need the <assert> node in the config file, as
the following code shows:

<system.diagnostics>
 <assert assertuienabled="false" logfilename="asserts.log" />
</system.diagnostics>

Figure 7-1 shows the dialog box that is shown when an assertion fails. The top string is the
message string, and the lower string is the detailMessage string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-1. Assertion dialog box generated by DefaultTraceListener when AssertUiEnabled is
set to true

Now, ask yourself, if the button combination Abort–Retry–Ignore is so confusing, why didn’t
the designers of the Trace class merely change their captions to Quit–Debug–Continue rather
than provide that extra information in the dialog box title? If the Abort–Retry–Ignore
combination is not confusing, why bother with the title? It all seems to be rather sloppy
programming to me. The reason why the assert dialog box shown in Figure 7-1 has these
buttons is because it is a standard Win32 message box, and the code that displays the dialog
box is equivalent to the following unmanaged C++ code:

// Unmanaged code equivalent
int ret;
ret = ::MessageBox(NULL, msg, caption,
 MB_ABORTRETRYIGNORE │ MB_ICONHAND │ MB_DEFBUTTON3);
switch (ret)
{
case IDABORT:
 ::ExitProcess(1);
 break;
case IDRETRY:
 ::DebugBreak();
 break;
case IDIGNORE:
 // Do nothing.
 break;
}

To be honest, the actual code that shows the assert dialog box is not much more complicated
than this code. Instead of the Win32 ::ExitProcess, the managed code calls the static
Application::Exit to shut down the application. Note that the application gets shut down
immediately, so if you have several Trace listeners registered for this process, you have to
ensure that if you use the DefaultTraceListener class, it is the last one in the Trace::Listeners
collection. Otherwise, none of the other trace listeners will be called when you select the
Abort or Quit button. Instead of the Win32 ::DebugBreak (which merely translates to an x86
int 3 opcode), managed code calls methods on the Debugger class. This class acts as an
interface to the managed debugger, and if the managed debugger is attached to the current
process, the Debugger::IsAttached property will return true, in which case you can call
Debugger::Break to make the debugger stop at the current position in the code. If the
debugger is not currently attached, you can call Debugger::Launch to start it.

The designers of the DefaultTraceListener class To be accurate, the code is actually in the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The designers of the DefaultTraceListener class To be accurate, the code is actually in the
private System::Diagnostics::AssertWrapper class, which is called by the
DefaultTraceListener class through the private TraceInternal class. chose to call
::MessageBox because ::MessageBox is a system function and it has a predefined dialog box
that most developers are familiar with. If the designers decided to create a Form-derived
dialog box, the resultant assembly would have a dependence on system.windows.forms.dll.
Code without assertions might not use this assembly, so there is no sense in adding the extra
dependence. However, I still balk at the decision to give a key to the use of the buttons in the
dialog box title—either the developer should learn what the buttons mean or the button’s titles
should be changed. If you regard the latter as the best course of action, the following example
will interest you.

The source code for this chapter has a project named AssertDlg in the Assertions solution.
Assemblies can have Win32 resources, so I decided to create a C++ managed library and add
an unmanaged resource file. (In Solution Explorer, select the project, and through the context
menu, select Add Resource.) After doing that, I added a dialog box template named
IDD_ASSERT with the three buttons, which I labeled Quit, Debug, and Ignore. I gave these
buttons the IDs IDABORT, IDRETRY, and IDIGNORE, respectively. Then I added a read-only
edit box (IDC_MSG) and a picture box for the icon. To get the icon, I loaded user32.dll into
Visual Studio .NET, located the icon used for MB_ERROR, and exported it. I then imported
this icon into my project. Figure 7 2 shows an annotated view of this dialog box.

Figure 7-2. The Win32 resource template for the IDD_ASSERT dialog box

To show this dialog box, I call the Win32 ::DialogBoxParam function. This function creates a
modal dialog box, but the function takes a dialog procedure parameter. I use the dialog
procedure to initialize the dialog box and to handle the button clicks by merely closing the
dialog box. In the initialization code, I fill the edit box with the assert message, the detailed
description of the assertion, and details of where the assertion occurred. These strings have to
be passed from managed code to the dialog procedure, so I have chosen to concatenate these
strings together, convert the string to a native string, and pass it to ::DialogBoxParam as the
final parameter. This string is passed to the dialog procedure as the LPARAM parameter with
the WM_INITDIALOG message. Here is the complete dialog procedure:

INT_PTR CALLBACK DialogProc(HWND hDlg, UINT msg,
 WPARAM wParam, LPARAM lParam)
{
 switch (msg)
 {
 case WM_INITDIALOG:
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 LPCWSTR strMsg = reinterpret_cast<LPCWSTR>(lParam);
 HWND msg = GetDlgItem(hDlg, IDC_MSG);
 ::SetWindowText(msg, strMsg);
 break;
 }
 case WM_CLOSE:
 EndDialog(hDlg, IDIGNORE);
 return TRUE;
 case WM_COMMAND:
 if (HIWORD(wParam) == BN_CLICKED)
 {
 EndDialog(hDlg, LOWORD(wParam));
 return TRUE;
 }
 return FALSE;
 }
 return FALSE;
}

As you can see, when the user clicks on one of the buttons, the ID of the button is returned
through ::EndDialog as the return value of ::DialogBoxParam.

On the dialog box, I want to show the details of the assertion and details about where the
location occurred. To perform this task, I use the StackTrace class. This class obtains a stack
trace and allows you to step through the trace one frame at a time. The FrameCount property
gives the total number of frames, and the GetFrame property returns the specified frame
indexed from zero, thus the last frame should be FrameCount - 1. However, in .NET version
1, there is a bug in StackFrame that causes it to return one more stack frame than is actually in
the trace, so GetFrame(FrameCount - 1) actually returns an uninitialized StackFrame object.
Thus, you have to use GetFrame(FrameCount - 2) to get the last stack frame, as shown here:

StackTrace* st = new StackTrace(true);
// Get the frame that I require.
int frame = st->FrameCount - 2;
StackFrame* sf = st->GetFrame(frame);
// This is the source file.
String* strFile = sf->GetFileName();
// This is the line number.
int lineNo = sf->GetFileLineNumber();

This bug has gone unnoticed by the authors of the DefaultTraceListener class, which calls
GetFrame(FrameCount - 1) and gets an uninitialized object. As a consequence, the location
string that should appear on the Assert dialog box is empty, so there is no indication where the
failed assertion occurs.

The dialog box is shown when an assertion fails, and as I have mentioned earlier, you can
define your own trace listener class by deriving from TraceListener. In the following code, I
have derived from DefaultTraceListener so that the new class inherits the other methods but

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

have derived from DefaultTraceListener so that the new class inherits the other methods but
overrides Fail to call my dialog box:

public __gc class FixedTraceListener
 : public DefaultTraceListener
{
public:
 void Fail(String* msg, String* detailed)
 {
 // Get the stack trace so that we can find out where the
 // assertion occurs.
 StackTrace* st = new StackTrace(true);
 int frame = st->FrameCount - 2;
 StackFrame* sf = st->GetFrame(frame);

 // Concatenate the strings.
 StringBuilder* sb = new StringBuilder();
 // Add the message to the string.
 if (msg != 0 && msg->Length > 0)
 {
 sb->Append(msg);
 sb->Append(S"\r\n");
 }
 else
 {
 sb->Append(S"Assertion failed");
 }
 // If there is a detailed description, add it.
 if (detailed != 0 && detailed->Length > 0)
 {
 sb->Append(detailed);
 sb->Append(S"\r\n");
 }
 // Now add details about where the assertion occurred.
 sb->Append(S"at line ");
 sb->Append(__box(sf->GetFileLineNumber()));
 sb->Append(S" in ");
 sb->Append(sf->GetFileName());

 // Convert to a native string.
 IntPtr str = Marshal::StringToHGlobalUni(sb->ToString());
 INT_PTR ret = IDIGNORE;
 // Create the dialog box; this call blocks until the
 // dialog box is closed.
 ret = ::DialogBoxParam(GetModuleHandle(L"AssertDlg.dll"),
 MAKEINTRESOURCE(IDD_ASSERT), NULL, DialogProc,
 (LPARAM)(LPVOID)str);
 // Free the converted string.
 Marshal::FreeHGlobal(str);
 // Perform the action the user requested.
 switch(ret)
 {
 case IDABORT:
 Environment::Exit(1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Environment::Exit(1);
 break;
 case IDRETRY:
 {
 if (Debugger::IsAttached)
 Debugger::Break();
 else
 Debugger::Launch();
 }
 break;
 case IDIGNORE:
 // Do nothing.
 break;
 }
 }
};

The Fail method creates the dialog box with ::DialogBoxParam, which blocks until the dialog
box is closed. The switch statement then tests the return value and performs an appropriate
action, as I described earlier in this section. Take another look at the call to
::DialogBoxParam, shown here:

ret = ::DialogBoxParam(GetModuleHandle(L"AssertDlg.dll"),
 MAKEINTRESOURCE(IDD_ASSERT), NULL, DialogProc,
 (LPARAM)(LPVOID)str);

The first parameter is the HINSTANCE of the module that has the resource. The module will
be the assembly that contains the dialog procedure, and this HINSTANCE is obtained by
calling ::GetModuleHandle. Note that if I pass NULL as the parameter to this function, it will
return the module handle of the process that loads the assembly, which is not what I want.
Instead, I give the name of the assembly module (in this case, AssertDlg.dll). The name of the
module has a .dll extension, which is in contrast to the short name of an assembly, which can
have either .dll or .exe as the extension. (Fusion will attempt to find a file with either of these
extensions.)

To use this class, you have to change the config file for the process that loads the library
assembly. Here is the appropriate section, identifying the class in the AssertDlg.dll assembly:

<trace>
 <listeners>
 <add name="assertListener"
 type="FixedTraceListener, AssertDlg"/>
 <remove name="Default"/>
 </listeners>
</trace>

The source code for this chapter has a project named UseAssertions (part of the Assertions
solution) that shows how to use this trace listener.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CRT Asserts

If you are likely to use code that calls the CRT, you are likely to have code that has CRT
asserts. The CRT defines two macros, _ASSERT and _ASSERTE, and has a function named
assert.

The assert function will report the assertion failure through a file stream (either a file or
stderr) or to a modal dialog box, depending on the error reporting value set by calling
_set_error_mode. The default is to print the assertion failure to stderr and then call abort,
which will call _CrtDebugReport. Depending on how reporting is set up, you will get a report
sent to a file, the command line, or a modal message box. The default mode is for
_CrtDebugReport to use a message box, so assert appears to create both a message on the
command line and in a message box.

If you use _set_error_mode to use a message box, you will get the familiar Abort–Retry–
Ignore dialog box, so you get to choose whether to shut down the process. If you want to
redirect assert failures generated by assert to a TraceListener, you have to ensure that
_set_error_mode is set to _OUT_TO_STDERR so that _CrtDbgReport is called, and that
_CrtSetReportHook is called to set a function that does the redirection. The _ASSERT and
_ASSERTE macros call _CrtDbgReport with _CRT_ASSERT as the report type. _ASSERTE
identifies the expression that failed, whereas _ASSERT merely identifies that there was a
problem.

From the earlier discussion, it might be apparent that directing CRT assertions to trace
listeners will involve defining a report hook function and registering it, as shown in the
following code:

// assertcrt.cpp
_set_error_mode(_OUT_TO_STDERR);
_CrtSetReportHook2(_CRT_RPTHOOK_INSTALL, ReportHook);

I showed you the ReportHook function earlier in this chapter. This code has problems. The
first problem occurs with handling assert; although we can successfully hook the assert
through the _CrtDbgReport function, this function is called in abort, which means that
whatever value the ReportHook function returns, the process is doomed to die. If your report
hook function shows the Abort–Retry–Ignore dialog box from DefaultTraceListener and the
user chooses Ignore, this selection will ultimately have the same affect as selecting Abort.
(The only difference is that Ignore allows the CRT to abort the process, whereas in the case of
Abort, DefaultTraceListener will close down the process.) You do have the advantage that the
failed assertion will be sent to the logging files. If you use another trace listener, assert(false)
will always abort the process after your listener has done its work, regardless of the value that
you return from your report hook function. The Retry button is not much more help because
although it starts the debugger, the breakpoint will be in your report hook function and all that
you can do is look through the stack to see where the assertion failed before single-stepping
through abort until it kills the process.

The _ASSERT and _ASSERTE macros respect the value returned from your report function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The _ASSERT and _ASSERTE macros respect the value returned from your report function.
However, you now have the problem of determining what value to return. Recall that
DefaultTraceListener::Fail returns void because it is just one of potentially several listeners
that is called by the Trace or Debug class, so the listener has to determine the button that the
user clicked and perform the appropriate action. There is no way that ReportHook can
determine which button the user chose, so your code has to make a policy decision. In the
code I gave in the “CRT Tracing” section earlier in this chapter, the assertion will always
abort the process because I return a value of -1 from the hook function. So, if the user chooses
Retry or Ignore, he will get back to the ReportHook function, after which the process will die.
If you chose to return 1 from the hook function, the debugger will be started whether the Retry
or the Ignore button is clicked. However, it is far better in this case to click Ignore because the
managed debugger will be launched and the breakpoint will appear within the managed code,
many stack frames away from the actual source of the assertion failure. In this situation, if you
click the Ignore button, the CRT will ensure that the breakpoint occurs in the right place.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Symbol Files and Managed Code

Before you can debug code, you have to provide information for the debugger to interpret the
stack to identify the method where the breakpoint is located, and the parameters and local
variables to that method. This requirement is the reason for the generation of symbols, and
although symbols are vital for debugging debug builds, symbols are not confined to debug
builds because release builds can benefit from generating symbol files too.

Why would you want symbol files for release builds? The main reason is that if your code
generates a fault when it has been released as a product, the symbol files will allow your
clients to return more meaningful information to you. Clearly, if your code fails, your clients
will not be too pleased, but if they have the symbol files at least they will be able to provide
you with some information about what the problem is and where it has occurred. If your
product is a library intended to be used by developers, you can assume that your clients will
have the knowledge to return symbol information (perhaps through running your code under a
debugger). If your code is for use by nondevelopers, you do not want to allow the raw
exception to get to the user. You can write crash handler code as part of the assembly that
catches exceptions before they reach the user and then uses symbols to determine where the
exception occurred and save this information in a format that the user can transmit to you as
part of a bug report.

However, because debugging symbol files have all the information about the stack, doesn’t
this give away all of your secrets? Well, if your code is all managed code, there are no issues
here because users will be able to get most of the information they need about your code
through .NET reflection anyway, and the stack will be set up according to .NET principles.
However, currently there is no debugger that shows IL as it is being executed, so if a managed
process throws an exception and a JIT debugger attaches, you will see x86 opcodes if no
symbols are available, and you’ll see opcodes annotated with the names of the functions if
symbols are available.

If some of your code is native (linked in, for example, from static libraries), there is no type
information available within the code. Furthermore, the code might have been optimized and
some code could be inlined, and in other cases, the optimizer might even merge stack frames.
Clearly, if code has been optimized, the debugger needs additional information to be able to
reconstruct the stack according to how the source code is arranged. Symbol files have this
information. Again, you might decide that you would prefer to limit the amount of information
that is provided in the symbol files (principally information about local variables).

Both debug and release builds for managed C++ projects will create symbols. To change the
settings, you should go to the Debug page of the Linker settings in the project’s property pages
(Project.Properties). Changing this property to Yes (or passing /DEBUG on the linker
command line) tells the linker to create debugging symbols in the program database (PDB),
and the Generate Program Database File property (the /PDB linker switch) allows you to
specify the name of this file. The amount of information that is put into the PDB is determined
by the setting you use for the Strip Private Symbols linker property (the /PDBSTRIPPED
linker switch) and the compiler’s /Z switch. The compiler settings are available through the
Debug Information Format property on the General page, and Table 7-2 shows the compiler
switches that determine the amount of information that is put into the PDB.

Table 7-2. Table 7 2 Compiler Switches for Generating Symbolic

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 7-2. Table 7 2 Compiler Switches for Generating Symbolic
Information for Managed Projects

Switch Description

/Z7
Contains full symbolic information that is CodeView compatible

/Zi
Contains full symbolic information in PDB format

By default, /Zi is used for debug builds of all managed C++ projects, but confusingly, it is
used for release builds of EXE assemblies but not for release builds of library assemblies.
Note that the C++ compiler also supports the /ZI switch that adds full debugging information
and enables edit and continue. However, this switch is not supported for managed projects,
and the /Zd switch, too, is incompatible with managed projects.

The /Zi and /Z7 switches cause the System.Diagnostics.DebuggableAttribute attribute to be
added to the assembly. This attribute affects how the runtime treats the code when JIT-
compiling it; it indicates that the run-time optimizer should be turned off but that the runtime
should track run-time information. The combined effect of this attribute is that there will be
more information for the managed debugger, but performance will be affected even if the
assembly is not being debugged. If you have native classes in your assembly, these will be
marked with the undocumented Microsoft::VisualC::DebugInfoInPDBAttribute attribute to
indicate that symbolic information was created for the type.

The compiler puts symbolic information in the .obj file when you use the /Z7 switch, but it
creates a separate program database file for the /Zi switch. By default, this file is named after
the version of the compiler (that is, vc70.pdb), but you can change this name using the
Program Database File Name property on the Output Files page (the /Fd compiler switch).
When the /DEBUG switch is used with the linker, the linker collates the debug symbols from
the .obj and .pdb files (if they exist) and creates a single .pdb file with the name of the project
(the output name of the file generated by link.exe) or a file specified using the /PDB switch.
Because the default setting for the managed C++ projects in Visual Studio .NET is /Zi, you
will get two .pdb files created when you compile a project: one named after the project and
another named vc70.pdb. Only the .pdb file that is named after your project will actually be
used.

The assembly-generated file will contain the full path to the .pdb file that was created, and the
debugger will use this path to determine the name of the program database. If the debugger
cannot find the PDB file in this path, it will look in the same directory as the file that it is
debugging, and failing that, it will look in the path given in the Symbol Path property on the
Debugging page of the project’s property page. The solution Property Pages dialog also has a
page to specify symbol paths (Debug Symbol Files on the Common Properties section), which
will affect all projects in the solution.

When a debugger attaches to a process, it will get two important values in the CPU registers:
the stack pointer and the instruction pointer. The instruction pointer will indicate where in the
code the breakpoint has occurred, and with the use of information such as the map file (which
can be generated during the build process but is clearly useful only if the breakpoint is within

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can be generated during the build process but is clearly useful only if the breakpoint is within
your process), you can manually determine which method the breakpoint lies on. However,
this information is far from all that is required. The method could have been called by another
method in your code, so you need the context of the call—which method called it. In addition,
you need to have information about local variables, and if the method is part of a class, you
need information about instance variables. All of this information is obtained through the
stack.

The usual explanation is that each method occupies a stack frame pointed to by the stack
pointer. (The EBP register points to the start of the stack frame.) The return address and the
function’s parameters (including the this pointer for an object) are pushed onto the stack, and
local variables usually occupy the following locations. However, the optimizer might remove
the need for stack frames for some functions, so data called Frame Pointer Omission (FPO)
records have to be generated in the symbol file to enable the debugger to correctly interpret
these situations.

I mentioned the StackTrace class in the “.NET Asserts” section earlier in this chapter. This
class relies on symbols, so consider this code:

// dumper.cpp
#using <mscorlib.dll>
#using <system.dll>
using namespace System;
using namespace System::Reflection;
using namespace System::Diagnostics;

__gc class Dumper
{
public:
 void Dump()
 {
 StackTrace* st = new StackTrace(true);
 for (int i = 0; i < st->FrameCount; i++)
 {
 Console::WriteLine(S"frame: {0} ", __box(i));
 StackFrame* sf = st->GetFrame(i);
 Console::WriteLine(S"\t{0} ({1}, {2})",
 sf->GetFileName(),
 __box(sf->GetFileLineNumber()),
 __box(sf->GetFileColumnNumber()));
 Console::WriteLine(S"\tNative: {0}",
 __box(sf->GetNativeOffset()));
 Console::WriteLine(S"\tMethod: {0} ({1})",
 sf->GetMethod()->Name,
 __box(sf->GetILOffset()));
 }
 }
};

void main()
{
 Dumper* dump = new Dumper();
 dump->Dump();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dump->Dump();
}

If you compile this code with symbols, using the command line

cl /clr /Zi dump.cpp

you should get an output like this:

frame: 0
 d:\development\test\symb\release\dump.cpp (12, 0)
 Native: 87
 Method: Dump (6)
frame: 1
 d:\development\test\symb\release\dump.cpp (29, 0)
 Native: 40
 Method: main (14)
frame: 2
 (0, 0)
 Native: 0
 Method: _mainCRTStartup (-1)

I initialized the StackFrame instance with true to indicate that I wanted file name and line
number information. As you can see, this information is reflected in all the stack frames except
the last one (frame 2), which is the bug I mentioned in the “.NET Asserts” section earlier in
this chapter. If you compile the code without symbols (omit the /Zi switch), the output will
look like this:

frame: 0
 (0, 0)
 Native: 49
 Method: Dump (-1)
frame: 1
 (0, 0)
 Native: 18
 Method: main (-1)
frame: 2
 (0, 0)
 Native: 0
 Method: _mainCRTStartup (-1)

Thus, without symbols, you still have the method names. The StackFrame class uses
internalcall methods to obtain information about the stack, so it is not possible to use
ILDASM to determine how StackFrame::GetMethod works, but the fact that it returns a
MethodBase instance would indicate that the function uses reflection rather than symbols.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The only other reliable information that you get from a stack trace without symbols is the
offset returned by GetNativeOffset, which the documentation describes as “The offset from the
start of the JIT-compiled code for the method being executed.” Unless you know about the
internal workings of the JIT compiler, it is difficult to determine the locations within the
source code where the stack trace was generated using the native offset. Remember that the
C++ compiler generates IL and this IL is JIT-compiled at run time, so one JIT compiler could
create different code than another, and indeed, the same JIT compiler could create different
code for different machines or even for different runs of the same code. Turning on symbol
generation by passing /DEBUG to the linker also instructs the JIT compiler to track
information (the [Debuggable] attribute), which clearly is influential in this respect. If you use
the /PDBSTRIPPED switch, the linker will generate a separate program database with just
public symbols and FPO data. This information is not sufficient for StackTrace.

One final situation in which you will see symbol information is if there is an exception.
Exceptions have a property named StackTrace that returns a string. The string is created by
calling Environment::GetStackTrace, which constructs the string by calling the StackTrace
class. Thus, if your assembly is distributed without symbols, you will get method names only
in the StackTrace property but no information about source files or line numbers. One
interesting point to bear in mind is that if you have a remote object that throws an exception,
the exception will be serialized and passed to the client object that made the call, where an
exception will be thrown. If the client object does not have symbols, there will not be any
source file information in the exception’s StackTrace property for the trace generated from the
client side. However, if the remote object has symbols available, source file information will
be returned back to the client through the serialized exception, so the client will have access to
this information.

Making Code Easier to Debug

Although the compiler and the linker are the main sources for information used by the
debugger, some other settings affect how .NET code is debugged. When code in an assembly
is first used, the MSIL is JIT-compiled and the JIT compiler attempts to make the code as
efficient as possible. I have already mentioned the [Debuggable] attribute, which the compiler
adds to an assembly when you compile the code with symbolic information. The compiler
applies this attribute to indicate that JIT tracking information is generated and the JIT
compilation is not optimized. A release build does not have this attribute, but you can inform
the JIT compiler to change its behavior by using an .ini file Yes, this is right: the file is an old-
style Windows .ini file. with the same name as the application in the same folder, as shown
here:

; myApp.ini for assembly myApp.exe
[.NET Framework Debugging Control]
GenerateTrackingInfo=1
AllowOptimize=0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first value determines whether the JIT compiler creates information useful for a managed
debugger; a value of 1 will generate this information. The second value specifies whether the
JIT compiler will optimize the code it generates; a value of 0 turns off the optimizer. The
preceding values should create JIT-compiled code that is easiest for managed debuggers to
debug. Of course, there will be a drop in performance when you use these settings.

If you decide to use ngen when you deploy your assemblies, you have another problem. As I
mentioned in Chapter 5, this tool will JIT-compile an assembly and install it into the native
image cache. Managed debuggers expect assemblies to be MSIL so that they can be debugged.
The ngen tool can add extra information to the native image that can allow the assembly to be
debugged. To do this, you use the /debug switch when you call ngen. If you do not use this
switch, the runtime will use normal JIT compilation when the assembly is run under the
debugger and will make appropriate debug information available to the debugger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using the Visual Studio .NET Debugger

When you install Visual Studio .NET, you get two GUI debuggers, the internal debugger of
the IDE, which will allow you to do both managed and native debugging, and the CLR
debugger (DbgCLR.exe), which will only debug managed code. The CLR debugger is
essentially a cut down version of the IDE debugger and is provided as part of the .NET
Framework SDK. In addition to these debuggers, Visual Studio .NET also has the command-
line debugger, cordbg.exe. This debugger is an unmanaged application that calls the various
objects exposed through COM interop to allow you to enumerate and attach to assemblies. If
you are interested in writing your own debugger, you will be pleased to know that the source
code for cordbg.exe is supplied as a sample in the .NET Framework SDK. (Look in the
samples folder of the Tool Developers Guide.)

Locating Assemblies

The first issue with debugging managed applications is to ensure that the assemblies can be
located. If your process uses library assemblies and these assemblies are part of your solution,
you will have the source code and symbols for these libraries, so you will be able to single-
step through the library code. However, you have to set up the IDE to allow Fusion to find
these libraries. Recall how Fusion loads a .NET assembly: When Fusion has located an
assembly’s file, it reads the manifest to determine the library assemblies that are static bound.
Fusion will then try to locate these assemblies, which includes searching the global assembly
cache (GAC) and looking for the named assembly with the .dll and the .exe extension. Fusion
will look for a subfolder with the name of the assembly and search that folder too. (Config
files and publisher policy files affect the search order too, but I will ignore their effect in this
discussion.)

If you have multiple projects in a solution, you will not get the paths that Fusion will expect.
For example, if you have a solution with two projects, Main and Lib, where Lib is a library
assembly used by Main, you are likely to get the folder arrangement shown in Figure 7-3. In
this case, if you attempt to run the Main.exe assembly, Fusion will issue an error indicating
that it cannot locate the library Lib.dll. (You can view the details with the Fusion log viewer.)

Figure 7-3. Typical folder arrangements for a solution

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You might have used the /AI compiler switch in your project settings for the Main project, but
this switch only gives a path to metadata; it does not give a path to the location of the
assembly at run time. There are several ways to solve this problem. I described the simplest
way in Chapter 6 in the “Multiassembly Solutions” section: define a bin folder in your
solution and direct all output to it. So, you can have a subfolder named bin\Debug for all
outputs from debug builds and another folder named bin\Release for the outputs from release
builds. This setting will ensure that all outputs from all projects are in the same folder so that
when you run the main assembly in the solution, Fusion will be able to find the assemblies that
it uses because by default it looks first in the current folder.

The .NET Framework also allows you to configure Fusion for debugging through the
DEVPATH environment variable. When Fusion determines that the machine is used for
development (which I will specify in a moment), it checks the folders mentioned in the
DEVPATH variable for the assemblies that it is attempting to locate. Thus, in the preceding
example, you could place the path MySolution\Lib\Debug\ in DEVPATH.

To indicate to Fusion that it should use DEVPATH, you should add the following code in the
machine.config file:

<runtime>
 <developmentMode developerInstallation="true"/>
</runtime>

Of course, if you have multiple library assemblies in a solution, the DEVPATH can get
cluttered, and you will need to remember to clean up the environment variable when you move
on to another solution. For these reasons (and the reasons I mentioned in Chapter 6 in the
“Specifying a Search Order” section), it is better to have a shared output folder, as I just
mentioned.

The actual purpose of DEVPATH is for assemblies that would be located in the GAC when the
assembly is deployed. If you are developing a shared assembly (an assembly with a strong
name that will be installed in the GAC), you might find it a problem to remove the old version
and install the new one every time that you change the assembly. In this case, you can add the
assembly’s folder to the DEVPATH, or (the better solution) you can change the output folder
of the project to point to a folder that can be used as the output folders for other shared
assemblies you are developing and put the path to this folder in the DEVPATH variable.

I mentioned in Chapter 6 that you can create multimodule assemblies, in which case the
assembly will have one file that holds the manifest and one or more files that contain code
and/or resources. These modules must be in the same code base as the manifest, so if you
develop each module as a separate project, you should ensure that when you use the assembly
the modules are in the same folder. In this case, you cannot use DEVPATH because Fusion
will bind to the assembly (the module that has the manifest) and assumes that the other
modules will be in the same location. Defining a single output folder for the entire solution
will solve this issue.

Starting the Debugger

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you install Visual Studio .NET, the installer will create a Windows NT group named
Debugger Users. Your account must be a member of this group or of the Administrators group
to start the debugger. Most of the time, you will start the debugger through the IDE. However,
sometimes you might decide to start the debugger through JIT debugging, so I will cover both
cases here.

Debugging Through the IDE

When debugging through the IDE, you have two options: either you can attach to a running
process, or you can start a process through a loaded solution. If you attach to a running
process, the process can be on the current machine or on another machine. I will cover
attaching to a running process in the “Attaching to a Running Process” section later in this
chapter. Before you can debug an assembly, you have to ensure that each assembly can be
loaded. If you have read through the “Locating Assemblies” section earlier in this chapter, you
should not have any problems here.

You have two further options about starting a process through a solution. The first option is
the most familiar to you: the solution will have source code, and the process will be an output
of the project. In this case, you can start an instance of the process under the debugger through
the Debug context menu of the project in Class View or Solution Explorer. (If the process is
set to be the StartUp Project or if there is a single project in the solution, you can start the
process from the Debug menu or through the keyboard shortcut key F5.) The second option
you have is to start a process that is not part of the current solution. To do so, you add the
executable using the File.AddExistingProject command. Once you have done this, you treat
the executable as a project, so you can step into a new instance and you can set it as the
Startup project. When the executable is run, you will be able to step through the source code,
if the executable has symbols and the source code is available.

The IDE will allow you to debug more than one process at the same time. This ability is great
news if you are designing an application that uses interprocess communication because you
can run both processes in the same instance of the IDE. When you press the F5 key for the
default keyboard mappings (Debug.Start command), the IDE starts the process from the start-
up project. (I’ll mention in a moment what happens if this is a library assembly.) You can
configure more than one project to be the start-up project, and you can also specify what order
the project outputs are started in. To do this configuring, you have to use the property pages of
the solution and select the Startup Project page from Common Properties. The grid on this
page lists all the projects in the solution, and the Action column in this grid lists three options:
None, Start, and Start Without Debugging. Using the Start action will start the specified
process and attach the debugger to it. You can use Debug.ListPrograms in the command
window to verify that the processes have started. I regard these settings as an important
property of the solution. Unfortunately, the designers of the IDE did not think so and persisted
them in the solution options (.suo) file rather than the solution (.sln) file. The solution options
file is not persisted when you put a solution under source control. As a consequence, when
you get a solution out of source control, you must set the start-up order (or the start-up project)
before you can debug the solution. I regard this as a bug in the IDE.

When you are debugging more than one process, you can switch between them by using the
Debug Location toolbar, shown in Figure 7 4. The Program drop-down list shows the various
programs that are being debugged, which is essentially the list you will get from the
Debug.ListPrograms command. For the selected process, the Thread drop-down list gives the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debug.ListPrograms command. For the selected process, the Thread drop-down list gives the
threads that are running in the process, which is the data that you will also see in the Threads
window or through the Debug.ListThreads command. Finally, the Stack Frame drop-down
lists the call stack for the selected thread, which is the same information that you will get from
the Call Stack window or through the Debug.ListCallStack command.

Figure 7 4. The Debug Location toolbar

There is another option that you should notice. When you start more than one process under
the debugger, you can either treat the debugger as if there is a single thread of execution
between the two applications, or you can allow the debugging to occur in both processes
simultaneously. The IDE options (Tools.Options) Debugging pages lists an In Break Mode,
Only Stop Execution Of The Current Process option on the General page. If this option is
selected, the debugger will only break into the current process, so if you want to follow the
action of making an interprocess communication, you will have to manually switch across
from the source code of the process that makes the call to the source code that accepts the call
and break into the process to allow the debugger to switch to the new process. You can then
use the Run To Cursor command or the Continue (F5) command to run to the code that
processes the interprocess call. If you deselect the In Break Mode option, you will be able to
set breakpoints in each of the processes and wait for the breakpoints to be hit.

Debuggers can only debug processes, so if your project produces a library assembly (DLL),
you have to nominate a process that will use the library. To do this task, you should use the
project’s property pages where the Debugging page has a property named Command that for
an executable will be set to $(TargetPath). For a library, this property should be set to the
process that will use the library. While I am describing this property page, it is worth pointing
out two other properties: Working Directory and Command Arguments. The process will be
started in the folder that you give as the Working Directory property; if you do not give a
value, the project folder ($(ProjectDir)) is used. Although this appears on the Debugging
page, it is used as the current folder when you start without debugging
(Debug.StartWithoutDebugging) and when you start the process under the debugger
(Debug.Start). The values in the Command Arguments property will be passed to the
command line of the specified process. If this process is one that you have written, you can
obtain these arguments through one of the following mechanisms:

If the process is a command-line process, the arguments will be available through the
unmanaged argv parameter to main. The first item is the process name.

If the process is a GUI, the unmanaged string parameter of WinMain, lpCmdLine, will
be a concatenation of the arguments (but not the name of the process).

The Environment::CommandLine property is a concatenation of the command-line
arguments, including the name of the process.

The Environment::GetCommandLineArgs method returns a String* array with the
arguments; the first one is the name of the process.

Attaching to a Running Process

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If a process is already running, you can attach to that process through the Debug.Processes
dialog box. (If you have a solution loaded, this command will be accessible through the Debug
menu. Otherwise, it is on the Tools menu.) If your account is a member of the Debugger Users
group or a member of the Administrators group, the Processes dialog box will list the
processes running on the specified machine. I say, the specified machine because this dialog
box is used to debug remote processes, as I will explain in the “Remote Debugging” section
later in this chapter.

The Processes dialog box gives you the option of listing system (service) processes as well as
nonsystem processes. However, if you are debugging a service, the dialog box is often of little
use. The reason I say this is that services are often hosted by svchost.exe, and the dialog box
merely lists the instances of this process and not the actual service that the instance is hosting.
Similarly, COM+ applications hosted by dllhost.exe are merely shown as dllhost.exe and not
as the actual COM+ application, which is a pity. The information about the actual service that
is run under svchost.exe is available; you can view this information with the ProcessExplorer
utility from www.sysinternals.com.

Once you have identified the application that you want to attach to, you then have the option
of specifying how to detach from the process. .NET allows you to detach from a process when
you have finished debugging. If the process is native C++ and you are running on an operating
system other then Windows XP, you have to run the Visual Studio .NET Debugger Proxy
Service to be able to detach from a process. Windows XP has this facility built into the
operating system.

Once you close the Processes dialog box, the appropriate debugger should be attached to the
process and you should be able to set breakpoints in the source code for the process or the
libraries used by the process. If you set a breakpoint and it shows a question mark glyph, the
source code does not correspond to the process being debugged. There are two main causes of
this problem. The first is if the source code is compiled to a DLL, the DLL might not have
been loaded. (This is the case for unmanaged projects that use LoadLibrary, for managed and
unmanaged projects that use COM, and for managed projects that access DLL methods
through Platform Invoke.) Second, if you are debugging code hosted by dllhost.exe, you might
have simply selected the wrong instance. The solution to this problem is to detach from the
process and attach to another instance; continue this mechanism until the breakpoints are set
correctly, indicating that you are debugging the right process.

JIT Debugging

When an exception occurs in a process, you will be informed by the system. JIT debugging is
handled differently for managed and unmanaged code. If the code is unmanaged, the operating
system determines what happens when an exception is thrown. If the code is managed, the
exception will be caught by the runtime, which will then determine what should happen. The
two mechanisms are separate and are controlled by different settings in the system registry.

If JIT debugging is enabled on your machine and the process is a native process, by default the
system will give you a summary dialog box that identifies the exception and gives two
buttons, OK and Cancel. Clicking the OK button will close down the process, and clicking the
Cancel button will attach the debugger to the process to allow you to determine the source of
the fault. JIT debugging of native processes is controlled by the following registry key:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT
\CurrentVersion\AeDebug

Table 7-3 shows the settings that will appear in the AeDebug key. This key has a setting
named Auto that by default is 0, which indicates that the summary dialog box should be shown
if a process generates a fault; thus the user is given the option as to whether to debug the
process. If Auto is set to 1, the user is not given the option; instead, the debugger is always
attached. The debugger process is identified in the Debugger setting. This setting has the path
to the debugger and also the command line that identifies the process to debug (its process ID)
and the handle to an event object that is used to indicate to the system that the debugger has
attached.

Table 7-3. Settings in the AeDebug Key
Setting Description

Auto
Identifies whether the debugger will automatically
attach to a process that generated an exception

Debugger
Command line to start the debugger

PreVisualStudio7Debugger
The debugger that was used before Visual Studio
.NET was installed

UserDebuggerHotKey
This is the virtual key code of the hot key when the
process is running under a debugger

The UserDebuggerHotKey setting identifies a “break” key to be used when a process is
running under the debugger. This setting’s value is a virtual key code of a key, and when you
press the corresponding key, the system will cause a breakpoint (an int 3 x86 opcode) to be
generated. If you have installed Visual Studio .NET on the machine, you will also see the
PreVisualStudio7Debugger setting that identifies the debugger that was used prior to installing
Visual Studio .NET (usually the Dr. Watson utility). Visual Studio .NET will install the
following as the debugger:

vs7jit.exe -p %ld -e %ld

The command-line parameters are the process ID of the process to debug and the value of an
event handle. When a debugger has started, it should attach to the process by calling the
Win32 ::OpenProcess using the process ID. Once the debugger has attached, it can inform the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Win32 ::OpenProcess using the process ID. Once the debugger has attached, it can inform the
system by setting the event. It does this simply by casting the event handle value to a
HANDLE and then passing this value to the Win32 ::SetEvent function.

The process vs7jit.exe presents the user with a dialog box showing the debuggers that can be
used. The default option will be either the Visual Studio .NET IDE or DbgCLR.exe. If Visual
Studio .NET is already running, the dialog box will also give you the option of using the
running instance to attach to the process. The process vs7jit.exe will then start the debugger
and pass it information about the process to debug. This information passing is not carried out
through a command line like the Debugger setting in AeDebug. Instead, vs7jit.exe starts the
selected debugger through COM. Both DevEnv.exe (the process for the IDE) and
DbgCLR.exe have a command-line switch named /JITDEBUG that is used to launch the
process as a COM local server to perform JIT debugging. Once vs7jit.exe has launched the
debugger, it gets access to an undocumented interface named IDebugJIT2, which vs7jit.exe
presumably uses to pass information to the debugger to allow the debugger to attach to the
process.

If a managed application throws an unhandled exception, the .NET Framework will catch the
exception and allow you to debug the process. This process is carried out independently of the
settings in AeDebug. The relevant registry key is as follows:

HKEY_LOCAL_MACHINE\Software\Microsoft\.NETFramework

This key has the settings shown in Table 7-4.

Table 7-4. The Registry Settings for the Managed Debugger
Setting Description

DbgJITDebugLaunchSetting
This setting is used to indicate whether the user has
the option about debugging.

DbgManagedDebugger
The command to start the managed debugger.

The DbjJITDebugLaunchSetting setting has the same purpose as the Auto setting in AeDebug:
it allows you to specify whether the managed debugger automatically attaches to the process.
If this setting has a value of 0, the user will see a modal dialog box specifying that an
exception has occurred in a managed process. This dialog box has an OK to abort the process
and a Cancel button to debug the process, the DbgManagedDebugger setting has the
command to start the debugger. If DbgJITDebugLaunchSetting setting has a value of 1, a stack
dump will be performed and the process will be terminated. Finally, if the value is 2, the
managed debugger will be started automatically, without user intervention. When you install
Visual Studio .NET, the managed debugger in DbgManagedDebugger will be vs7jit.exe, so
whether you use 0 or 2 for DbgJITDebugLaunchSetting, you will always have the option of
shutting down the faulted process without launching the debugger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The IDE can debug both native processes and managed processes, so once it has been told to
attach to a process, it presents the user with a dialog box asking the user which debugger to
use.

As you can see, JIT debugging often presents the user with a plethora of dialog boxes.
Although you can minimize the number of dialog boxes by changing the values in the Auto
and DbgJITDebugLaunchSetting settings, you still have to negotiate the dialog box presented
by vs7jit.exe and the IDE when it first starts. There are no options that you can set to make
these processes assume default values.

You can use the IDE property pages through the Tools.Options command to change the JIT
debugging settings. The relevant page is the Just-In-Time page in the Debugging category.
This page lists the various debuggers that the IDE implements, and you can use it to determine
whether the debuggers will be used when a fault occurs in a process. This page edits the
relevant registry setting, so if you uncheck the Native option, the IDE will replace the
Debugger setting in AeDebug with the value in the PreVisualStudio7Debugger setting.
Likewise, if you deselect the support for the common language runtime, the IDE will replace
the value in the DbgManagedDebugger setting with the default value in a separate key also
named DbgManagedDebugger. Sadly, this property does not affect the initial dialog box
shown when the IDE is started up for JIT debugging.

Finally, the Machine Debug Manager (mdm.exe) is used when debugging processes. If you
run this program with the /dumpjit switch, it will present a dialog box with a summary of the
settings in the AeDebug and .NETFramework keys.

The Exceptions Dialog Box

The Exceptions dialog box (Debug.Exceptions) allows you to configure how the IDE will treat
exceptions. The dialog box categorizes exceptions according to whether the exception comes
from the runtime, from the Win32 system, or from native C++, and for each exception, you
can specify how the IDE treats an exception when it is first thrown and how it treats an
exception if it is not handled by code. When a process is run under a debugger and an
exception is thrown, the system will inform the debugger. This is called the first-chance
notification. If the debugger does not handle the exception, the system looks for an appropriate
exception handler. If it cannot find a handler, the debugger is informed again. This is known
as the last-chance notification.

Through the Exceptions dialog box, you can specify that the debugger will break at that point
or you can specify that execution will continue, which will allow the exception to be handled
by a handler if one exists. If the exception is not handled, you can indicate how the IDE
handles that, too: either break in the debugger or continue execution, which will most likely
result in the process dying.

The dialog box shows the exceptions in a tree view. For .NET run-time exceptions, this view
is nested according to the namespace of the exception. You have the ability to use this
hierarchy when specifying how the IDE handles exceptions: you can specify a setting for the
general type of exception, and the namespace (for a .NET exception), and specify that a
specific exception uses the setting of its parent in the hierarchy. Although you can add your
own exceptions to the dialog box, you cannot nest your exceptions according to the namespace
similar to how the dialog box shows .NET Framework exceptions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Debugging Processes

Once you have attached to a process, you can use the various tools in the IDE to view the
stack, threads, variables, and memory, and to single-step through the rest of the process. In this
section, I will outline how to use these tools during a debugging session.

Stepping Through Code

You have several options about stepping through code: you can single-step, you can run to a
breakpoint, you can run to the cursor (caret), or you can change the execution point. The
simplest of these options is to single-step (Debug.StepOver). The default keyboard layout
assigns this command to the F10 key, and while you are in the text editor, the command
allows you to single-step over a C++ statement. If that statement is a method call, you will
execute the call in one step. If you want to step into the method call, you can press the F11 key
(Debug.StepInto). If it becomes apparent to you that the method is large and that you do not
want to single-step through all the method’s statements, you can step out of the function to the
point where you stepped into it by pressing Shift+F11 (Debug.StepOut). If you perform
single-stepping in Disassembly view, then each statement will be an x86 statement—the
Disassembly view shows x86 and not IL—which is useful if you are interested in the Win32
API calls that are being made.

If you have breakpoints set in your code, you can allow the process to run the debuggee
process until one of these breakpoints is hit by pressing the F5 key (Debug.Start). There might
be a situation in which the execution flow avoids these breakpoints, in which case, you can
break into the process at whatever point the main thread is executing (Debug.BreakAll). This
might well be deep into a Win32 API call, so you might have to walk up the stack to get back
to some code that you recognize.

If you want to execute the next few statements, it is often overkill to set a breakpoint. Instead,
what you can do is place the caret at the point in your code where you want to break and select
Run To Cursor Of course, this should be Run To Caret; the caret is the insertion point in the
code, and the cursor indicates where the mouse is located. (Debug.RunToCursor). Again, you
have to be careful where you place the caret because you might place it at a point which will
not be executed, in which case the process will merely run until it stops.

The final action that you can perform is to change the actual execution of the code. When a
process is paused in break mode in the debugger, a yellow arrow will indicate the next
statement that will be executed. As you single-step, this arrow will move. However, you can
move this arrow yourself, skipping some statements or re-executing others. This operation is
illustrated in Figure 7-5, where the execution point is on the second line of the method, so i
has been assigned a value of 4. I have selected the execution point in the indicator column and
dragged it to the last line of the method. (I could also position the caret on the target line and
select Set Next Statement from the context menu.) If I drop the execution point here, when I
single-step, only the final line will be executed. The intervening lines concerning the variable j
will be ignored. Thus, the method will return 4. In the figure, the upper arrow shows the
current location of the execution point, and the cursor shows the position where the execution
point will be moved to.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 7-5. Moving the execution point with a drag-and-drop operation

Such an action is quite dangerous because you could skip over statements that return values
that are used by subsequent statements. However, it can also be very useful. For example, if
you have code that creates a file and periodically writes to it, and during a debugging session,
you find that the file cannot be created, you can single-step through the code, and whenever
there is a call to write to the file, you can move the execution point to the following statement.
This action allows you to continue with the debugging session and delay until a later time the
investigation of why the file failed to be created.

Setting Breakpoints

Breakpoints allow you to identify a particular piece of code as being worthy of further
investigation. When you run the code under the debugger, it will run until a breakpoint is hit;
execution will pause at the breakpoint. Break mode is important because many of the windows
provided by the debugger only show useful results in break mode. There are essentially four
ways to set a breakpoint. First, you can click in the indication area (the gray column on the
left) in the text editor, which will toggle a breakpoint on the line. The second way is to place
the caret on the line where you want to have the breakpoint and then press F9 (the
Debug.ToggleBreakpoint command). In both cases, the debugger will allow breakpoints to be
set only on lines that execute code, so you cannot place a breakpoint on a line that declares an
uninitialized local variable. If you attempt to set a breakpoint on such a line in break mode, the
breakpoint will be placed on the next acceptable line. If you do this when the code is not being
debugged, the breakpoint will be moved when the debug session starts.

The third way to set a breakpoint is by means of code. How you set a breakpoint this way
depends on whether you are writing managed code. In unmanaged code, you can use the inline
assembler to insert an interrupt (int 3), and when the code reaches this point, you will get a
structured exception. If you are running under the debugger, you will get an unhandled
exception dialog box. Otherwise, you will get the opportunity to attach a debugger through JIT
debugging. Clearly, using the inline assembler produces code that is not portable and is not a
good .NET practice. However, you can still use this method in global functions that will
compile under the managed compiler, and the compiler will replace the call with the IL break
opcode. When you run the code without a debugger, you will get a structured exception and
have the option of debugging the process. If the code is running under a debugger, the code
will break at the line after the interrupt. You will not get the unhandled exception dialog box
from the IDE.

Another way to get the same effect is to use the Win32 ::DebugBreak function, which merely
calls int 3. You can call this function in managed code through platform invoke or through
IJW. However, a far better solution is to use the __debugbreak intrinsic. You can use this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IJW. However, a far better solution is to use the __debugbreak intrinsic. You can use this
intrinsic in both managed and unmanaged code. If you use this intrinsic in unmanaged code,
the compiler will add an int 3, but if you use this intrinsic in managed code, you will get the IL
break statement. The intrinsic is effectively behaving as an inline IL assembler.

Note that all of these methods of adding a breakpoint in code should not be compiled into
release builds. Thus, you should use conditional compilation to guarantee that the breakpoint
is not in your release builds.

The final way to set a breakpoint is through the New Breakpoint dialog box
(Debug.NewBreakpoint). This method gives you far more flexibility than the other methods I
have mentioned. This dialog box has three tabs, Function, File, and Address. There is also a
Data tab that allows you to indicate a variable that will be watched. A break will occur in code
that changes this variable. However, I have ignored it here because it is only applicable for
unmanaged code. The names imply how you indicate where you want a breakpoint to be set,
by referring to a location in a source file or by indicating a specific function or an address. The
Function and File tabs have edit boxes labeled Line and Character. However, the Character
box is ignored by both tabs, and the Line edit box is ignored by the Function tab (which only
supports placing breakpoints on the first line in a function).

The most flexible of the three is the Address tab. This tab allows you to give an address in the
code. The actual format of this address is different for managed and unmanaged code. If your
code is unmanaged, you can give the absolute address of the position in the code—you can use
the MAP file for the process to determine the address of a function. For example, if you use an
unmanaged static library through IJW, you might decide to put a breakpoint on code linked
into your code by specifying the address, so if the MAP file has this entry:

Address Publics by Value Rva+Base Lib:Object
0001:00015a70 _puts 00416a70 f LIBCMTD:puts.obj

I could place a breakpoint in the puts function by putting the address 0x00416A70 in the
Address edit box on the Address tab. The process loads at virtual address 0x00400000. If you
have information about the source file or the DLL where a managed function is located, you
can specify the address using the following syntax:

{function, source_file, binary}.line_number

You do not need all of the items here; you only need enough to identify the location where
you want to break. Here are some examples:

{_putts, puts.c,}.41
{, puts.c,}.41

These examples both set a breakpoint at the beginning of the puts function. Note that the name
of the function is _putts, which is the name conditionally defined for ANSI or Unicode. You

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the function is _putts, which is the name conditionally defined for ANSI or Unicode. You
can also set breakpoints in unmanaged DLLs, in which case you have to give the name of the
DLL and the location within the DLL.

{,,mylib.dll}Func

In this case, the breakpoint will be set at the start of a function named Func exported from
mylib.dll. If you have public-only dbg symbols, for example, those that are provided for the
operating system, the name of the function should be prefixed with an underscore and
appended with an @ character and the number of bytes that should be pushed on the stack, as
shown here:

{,,kernel32.dll}_BaseProcessStart@4

In this example, I set a breakpoint on an undocumented Win32 function that is called by the
system to start your process. Putting a breakpoint at this location will allow you to step
through all the code that is called to set up the context for your process. You can tell whether
you have entered the address correctly in the Address tab because when you start the process,
the New Breakpoint dialog box will replace the expression with the absolute address that
corresponds to the expression.

Setting breakpoints in managed code is similar to setting them in native code, except that you
have to remember that managed code is usually JIT-compiled at run time, in which case the
actual location of the code will not be known until the code is run, and the location will vary
between runs. The disassembly window will give the address as the offset from the beginning
of the function, so setting a breakpoint in a function involves providing enough information to
locate the function and an offset. The following line is the address of the breakpoint as entered
in the Address tab:

System::Console::WriteLine + 0x00000000

This address will put a breakpoint on the first line of the WriteLine function in mscorlib.dll.

Be aware that when a DLL function is called through platform invoke, the DLL is
dynamically loaded the first time the function is called. Thus, the breakpoint will not be
resolved before this point.

When you use the Function tab to set a breakpoint, you must provide enough information for
the debugger to identify the method, so you need to give the class and namespace. If you want
to set a breakpoint on an overloaded method, you should also give the parameter list of the
specific overload where you want the breakpoint set. If you do not give the parameter list, the
New Breakpoint dialog box will determine the overloads of the method and will give you a
dialog box to allow you to choose which one to use.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are debugging a loop and an error appears but only after several iterations, you will find
it irritating to go through every iteration to get to the point where the error occurs. To get
around this problem, you can set a hit count. In effect, the debugger keeps a count that the
breakpoint has been reached but will only break when the hit count expression that you
specify has been achieved. You can specify a value for the hit count, and the debugger can be
instructed to break when the hit count is this value, when the hit count is a multiple of this
value, or when it is greater than or equal to this value. In a similar way, you can also use the
condition to give an expression that determines whether the debugger will break at the
breakpoint. This condition can be the name of a variable, in which case the break will occur
when the variable has changed, or you can give a Boolean expression and the break will occur
when the expression is true.

The Call Stack Window

When you are in break mode, you can use the Call Stack window (Debug.CallStack
command) to view the stack. The Call Stack window will use symbols and the values on the
stack to determine the code that is being called, and it will interpret parameters passed to the
method. For example, if I step into a call to Console::WriteLine, I can build up a stack that
looks like this:

mscorlib.dll!System.IO.TextWriter::WriteLine(
 System.Object value = {System.Int32})
mscorlib.dll!SyncTextWriter::WriteLine(
 System.Object value = {System.Int32}) + 0x20 bytes
mscorlib.dll!System.Console::WriteLine(
 System.Object value = {System.Int32}) + 0x1c bytes
Test.exe!main() Line 52
Test.exe!mainCRTStartup() Line 259 + 0x19

In the main function of Test.exe, I pass a single int to Console::WriteLine at line 52 in the
source file. This value is passed to the version of WriteLine that takes a single parameter of
type Object*. Because this is a file in my project, the symbols are available, so the line number
can be resolved. Note the format that the Call Stack window uses to identify functions. This
format looks like a mixture of C++ (with :: as the scope operator) and C# (with . as the scope
operator), but in fact, it is the format used by ILASM where the dot operator is used as the
scope operator within namespaces and the double colon is used as the scope operator for class
members.

The previous dump shows the case when you select all of the view options. If the methods in
the view have many parameters, the view can get cluttered, so the context menu for the Call
Stack window allows you to turn off display of byte offsets; line numbers; parameter names,
values and types, and module names. You can also traverse through the call stack. When you
double-click on an item, you will either see the source code for that method (if it is available)
or you will get the disassembly for that code in the Disassembly view. The view will indicate
the current execution point with a yellow arrow and the code that is being viewed with a green
arrow.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When you are in break mode, all threads in the process are paused. You can switch to the
Threads window and switch to another thread to view the call stack for that thread.

Disassembly

Whenever you step into code where source code is not available, you will see the Disassembly
window. You will typically see this window when you set a breakpoint on an address (as I
showed earlier). If you are stepping through source code and you come across a method for
which you do not have source code, selecting Step Into will have no effect; it will be treated as
Step Over. To step into such a method you need to switch to Disassembly view
(Debug.Disassembly) and then proceed with single-stepping from that point.

The Disassembly view can show source code and line numbers in the source, symbol names,
the address (with respect to the start of a method in managed code), and the actual bytes of the
machine code; all of this information is configurable with the context menu. The window also
has a toolbar, and you can use the Address combo box to type the name of a method; this
method does not have to be in the current call stack, however, to see the disassembled code,
you do need to have executed the method at some point. You can use either the dot operator or
the :: operator as the scope resolution operator. However, if the method is overloaded, there is
no way that you can indicate the particular version that you require.

If you chose, you can also perform disassembly from the Command window using the
Debug.ListDisassembly command. This command will show the disassembly of the code at
the current execution point and by default the next 8 bytes. You can use switches on this
command to change the number of bytes to disassemble and to determine whether symbols
and source code are shown.

Memory Window

The memory window is used to display a section of virtual memory. The IDE now supports
four separate windows, which are accessed with the commands Debug.Memory1 through
Debug.Memory4. You can display any address that is mapped into your process. On the
toolbar for the Memory window, there is a combo box named Address where you can type the
address in hex, but you must remember to prefix the address with 0x. In addition, you can also
type symbol names, which means that in managed code, you can type the name of a method
and actually see the location of the JIT-compiled code. (However, don’t be tempted to type
this absolute address in the Address box on the Disassembly window for managed code.) If
you have unmanaged code, you can type the name of a pointer variable and the Memory
window will show the contents at that memory. Unfortunately, if you pass the name of a
pointer variable in managed code, the Memory window will not show the contents of that
memory, but confusingly, if you give the name of an integer the Memory window will
interpret the contents of the integer as a memory address and show the memory at that
location, Thus, in this managed code:

int x = 0x100;
int __nogc* p = &x;
int y = reinterpret_cast<int>(&x);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you type x in the Address box, you will get the memory at 0x100. If you type p, the
debugger will not show you the actual memory location of the variable x; instead, it merely
shows memory location 0x00000000. However, if you type y, which is the address of x cast to
an integer, you will get the memory location of x. Of course, in managed code, you should
never hold on to addresses of objects on the managed heap without pinning the object pointer
first. So to investigate the internal data of a managed string, you should use code such as this:

String __pin* pStr = S"Test";
int y = reinterpret_cast<int>(pStr);

Once pinned, the address of the managed string can be safely accessed and then cast to an
integer that can be shown in the Memory window.

The Memory window has a multitude of formatting options through the context menu. You
can choose to view the data as string data (select No Data) either as ASCII or as Unicode; you
can view it as one byte, two bytes, four bytes, eight bytes, 32-bit or 64-bit floating point with
or without (No Text) an equivalent view in text. You can also specify how many columns will
be shown on each line through the Columns box on the toolbar.

You can select data in the Memory window and copy it to the clipboard. The data is copied as
CF_TEXT, rich text and other formats; CF_TEXT is the first format and includes all of the
data that you selected in the window. This is much better than the IDE’s Binary Editor, which
sadly only copies the binary data that you select and does not include the address or character
representation of the data. One powerful feature of the memory editor is that it allows you to
change values, even of managed data. This ability means that you can change the internal data
in an object, which is quite a risky thing to do unless you know exactly what you are changing.

You can also list memory in the Command window using the Debug.ListMemory command.
This command will list the next 16 bytes at the execution point as bytes and characters. You
can use switches to specify how many bytes and how this data is shown.

Watch Window

When you are debugging code, you are interested in two general issues, the execution flow
and the value of variables. The execution flow can be determined by watching the Call Stack
window, and the code shown in the Disassembly window or the source code. There are several
ways that you can get the value of a variable. The debugger provides various Watch windows
that will show variables pertinent to the window and also DataTips. When you hover the
cursor over a variable within the source code, the debugger will show a ToolTip with the name
of the variable and a summary of its value.

The Watch windows allow you to view the values of objects. The actual format of the data
that is shown can be altered either by using format commands or by providing a formatter
object. I will come back to formatter objects in the “Formatting Watch Variables” section later
in this chapter. Table 7-5 shows the various Watch windows, and in addition to these, you also
have the Quick Watch dialog box (Debug.QuickWatch) that shows a variable and its members
in a grid.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 7-5. The Watch Windows Provided by the Debugger
Watch Window Description

Autos The names of variables in the current statement and the previous
statement

Locals Stack variables

Registers CPU registers

This The this pointer of the current executing object

Watch1 to
Watch4

Any variable you choose

The Autos, Locals, Registers, and This windows show you specific variables. You cannot add
or remove variables, but you can change the values of the displayed variables. As you step
through code, the values for the watched variables might change, and this change is shown by
the value changing from black to red.

Each of the four Watch windows allows you to specify the variables that are shown, and each
window also acts as an expression evaluator. Thus, you can type the following into the Name
field of a Watch window:

"Hello".Length

and the value of the expression will be displayed as 5 in the corresponding Value field. Note
that the syntax is C#; the expression evaluator will not understand S"Hello"->Length. You can
also call static methods and global functions, as shown in this example:

String* GetGlobalString()
{
 return S"Hello from a global function";
}
__gc class Test
{
public:
 static String* GetString()
 {
 return S"Hello from a static method";
 }
};

If you type the following as the names of two variables in a Watch window grid, you will see
the appropriate string as the value:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetGlobalString()
Test::GetString()

The expression evaluator also allows you to create objects and will display the value of those
objects, as shown here:

__gc class Creator
{
public:
 static Object* Create(String* s)
 {
 return Activator::CreateInstance(
 AppDomain::CurrentDomain->GetAssemblies()[0]->FullName,
 s);
 }
};

In this code, I assume that the first item in the array returned from GetAssemblies is mscorlib.
The static method Create asks for an instance of the object passed as a parameter, so if you
enter the following as the name of the watch variable, an instance of the Debugger class will
be created:

Creator::Create("System.Diagnostics.Debugger")

The Debugger class is in the mscorlib assembly. If you pass the name of a class that does not
exist in this assembly, the value that is shown will be the exception that is thrown. Similarly, if
you try to create an object of a class that does not have a parameterless constructor, you’ll see
an exception.

The expression evaluator allows you to access array elements too.

__gc class MyData
{
public:
 static int GetData() __gc []
 {
 int i __gc[] = {0, 1, 2, 3};
 return i;
 }
};

If you use MyData::GetData as the name of the watch variable, you’ll find that an integer
array with your elements will be shown.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also call instance methods on existing objects. However, you should be careful
because the method can change the state of the object, and furthermore, whenever you add a
new variable to the Watch window, the expression evaluation is carried out on all expressions
in the grid. Consider this class:

__gc class StringData
{
 String* m_s;
public:
 StringData(String* s):m_s(s){}
 String* Add(String* s)
 {
 m_s = String::Concat(m_s, s);
 return m_s;
 }
};

If you create an instance of this class in your code and then call Add through the variable name
like this:

str.Add("more_data");

the instance in your code will have the string “more_data” appended to it, and whenever you
add a new variable to the Watch window, the string “more_data” will be appended to the
instance once more. You can also use operators on items, as long as the item supports the
specified operator.

Immediate Mode

The Command window becomes very useful during a debug session. In the previous section, I
mentioned various commands that you can give. Some of these commands will show windows
(for example, Debug.Threads), whereas others will print out data to the Command window
(for example Debug.ListThreads). In addition, while you are in break mode, you can put the
Command window into immediate mode (the immed command; to get it back into command
mode, type cmd). When you are in immediate mode, you can print out the values of variables,
change the values of variables, and run code. For example, you can type the following

System::Math::Pow(2, 3)

which is the static method that returns the first number raised to the power of the second
number, and the Command window will show 8.0.

The immediate mode will also show more complex data types, so using the example classes in
the previous section, you can type MyData::GetData in immediate mode and the following

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the previous section, you can type MyData::GetData in immediate mode and the following
will be printed out:

{Length=4}
 [0]: 0
 [1]: 1
 [2]: 2
 [3]: 3

In other words, the result is an array, and in the summary of the class, it prints out the value of
the Length property, followed by each of the items in the array. Similarly, if you use the
Creator class to create an instance of the Debugger class, the immediate mode will show this:

{System.Runtime.Remoting.ObjectHandle}
 System.MarshalByRefObject: {System.Runtime.Remoting.ObjectHandle}
 WrappedObject: {System.Diagnostics.Debugger}

The return value of the Create method actually returns an ObjectHandle instance, and
ObjectHandle derives from MarshalByRefObject. ObjectHandle also has a single private field
named WrappedObject, which is the actual object that was created, and in this case, the value
is dumped in the Command window as the name of the class.

Formatting Watch Variables

In the earlier discussion on the Watch windows, I mentioned that objects are formatted in the
grid. In fact, the DataTips and the immediate mode of the Command window also show
formatted summaries of the objects that are printed out. These object summaries show either
the name of the class or a formatted value; the Allow Property Evaluation In Variable
Windows property on the General Debugger page of the IDE options (Tool.Options)
determines which view is shown. (You have to restart the IDE for the change of the property
to have an effect.)

The formatting rules that are shown in the object summary are given in .dat files in the
Common7\Packages\Debugger folder. There are three such files in this folder: autoexp.dat has
the rules for unmanaged projects, mcee_cs.dat has the rules for C# projects, and mcee_mc.dat
has the rules for managed C++ projects. However, although there are two files for managed
code, it appears that mcee_mc.dat is ignored and mcee_cs.dat is used for both C# and
managed C++. Note that these rules are applied to the particular project type, so if you have an
unmanaged class that you want to use in a managed project, the rules should be in mcee_cs.dat
and not autoexp.dat.

These files are used by the debugger in conjunction with a formatter DLL. In terms of
managed code, this formatter DLL is mcee.dll. For unmanaged code, you have the option of
providing an extension DLL. The syntax for managed projects is straightforward: each line in
mcee_cs.dat has an entry for a class that indicates how the fields should be shown. For
example, this entry is the rule for System::DateTime:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

; (Date is in US format, change to suit)
<System.DateTime>=<Month>/<Day>/<Year>

The class name and its members are shown in angle brackets, and the rule appears to the right
of the equals sign and includes the literal / as a separator. When a DateTime object initialized
to February 14, 2002 is added to a Watch window, the object’s value is displayed as:

{2/14/02}

This display assumes that you have decided not to show integers as hexadecimals. Otherwise,
using this default rule, you will see

{0x2/0xe/0x7d2}

which is far from useful. You can override this behavior by adding a format rule for the
members, as shown here:

<System.DateTime>=<Month,d>/<Day,d>/<Year,d>

If you have already used a DateTime in your code, you will have to restart the IDE to get the
new formatting rules. The d modifier indicates that the member will always be shown as a
decimal. In addition, you can also use h for hexadecimal and o for octal. The DateTime value
type has many data members, so against the name of the variable, you will see a tree view
node that you can expand to see the other members; the rule just specifies the summary that is
shown against the variable. If you choose, you can specify that the variable cannot be
expanded. To specify this rule, you need to use the - modifier in the class name:

<System.DateTime,->=<Month,d>/<Day,d>/<Year,d>

Well, that’s the theory. However, there seems to be a bug here too because turning off
expansion also turns off the formatting rules, so you will not see any value for the object, just
the class name.

It is also worth pointing out that when you give a formatting rule for a class, this rule is also
used for the DataTips that appear when you hover the cursor over a variable in the source code
editor.

If you call unmanaged code through Platform Invoke or through a static library with IJW, the
native debugger will be used to step through your code. In this case, the types are defined in
an unmanaged project, so the formatting rules should be in autoexp.dat. The syntax in this file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an unmanaged project, so the formatting rules should be in autoexp.dat. The syntax in this file
is similar to the managed format files; the major difference is that the type name is given
without angle brackets and that namespaces are identified with the :: operator. The other
difference is that you get far more format modifiers and you can extend the expression
evaluator using a DLL. This DLL is unmanaged and is loaded into the address space of Visual
Studio .NET, so if your code throws an exception, this will affect the entire IDE.

Debugging Mixed Code

The IDE allows you to debug both managed and native code. The Debugging property page
(Project.Properties) for a project allows you to specify the Debugger Type as one of Auto,
Native, Managed, or Mixed. If you use Managed or Native, only that debugger will be used. If
you have a managed project and set the debugger to be the managed debugger and then
attempt to step into a native method, the debugger will treat the command as the Step Over
command. This behavior happens even if you use the Disassembly window. For this reason,
the Debugger Type property is usually set to Auto, which means that the IDE will determine
the debugger to use from the code in the process. If you know that you will be debugging both
native and managed code, you can select Mixed to get both debuggers.

When you single-step through source code under the managed debugger and you step into
native code or COM code, the switch to the native debugger is seamless; you do not see any
context changes. Correspondingly, when you step out of a native call back into managed code,
you do not see the change from the native to the managed debugger. Indeed, if you single-step
through the call from managed to native code, you will see that a call is made through to an
address, and yet when you step into this call, you will stop at a totally different address. The
native and managed debuggers clearly conspire to avoid allowing you to see the details of how
the transition between managed and native code is performed. To a large extent, this transition
is irrelevant because you are interested solely in the behavior of your code and not in the
underlying plumbing of the infrastructure.

Debugging Multithreaded Code

Multithreaded code presents various problems to the debugger. In essence, when you are in
break mode in the debugger, you see just one source file where the breakpoint has been hit,
and there is a single thread of execution through which you are single-stepping. When you
single-step a single-threaded application, you get the impression that the execution has slowed
to an extremely slow rate. However, this is not the case with multithreaded applications. When
in break mode, the other threads in the application will be suspended, and if the thread you are
debugging depends on communication with these other threads, the behavior of the application
will be affected.

Consider this class:

// multithread.cpp in the MultiThread project
__gc class ThreadProcs
{
public:
 AutoResetEvent* are1;
 AutoResetEvent* are2;
 ThreadProcs()
 {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 {
 are1 = new AutoResetEvent(false);
 are2 = new AutoResetEvent(true);
 }
 void ProcOne()
 {
 while(true)
 {
 if (are1->WaitOne())
 {
 Thread::Sleep(100);
 Console::WriteLine(S"thread one");
 are2->Set();
 }
 }
 }
 void ProcTwo()
 {
 while(true)
 {
 if (are2->WaitOne())
 {
 Thread::Sleep(100);
 Console::WriteLine(S"thread two");
 are1->Set();
 }
 }
 }
};

void main()
{
 ThreadProcs* p = new ThreadProcs;
 Thread* one = new Thread(new ThreadStart(p, &ThreadProcs::ProcOne));
 one->IsBackground = false;
 Thread* two = new Thread(new ThreadStart(p, &ThreadProcs::ProcTwo));
 two->IsBackground = false;

 one->Start();
 two->Start();
}

The class defines two thread procedures that depend on two events. When the are1 event is
signaled, ProcOne runs and because the event is autoreset, the event will be unsignaled. The
next time the thread calls WaitOne on this thread, it will block until the event has been set
again. ProcOne waits a while before printing out a message to the console and then sets the
are2 event to allow the other thread to run before waiting on event are1. In effect, this code
only allows one thread to run at a time.

If you place a breakpoint on the call to Sleep in both methods, you can watch how the
debugger treats the events changing their signaled state. Because are2 is created in a signaled
state, the code will break first on the call to Sleep in ProcTwo, and because it is autoreset, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

state, the code will break first on the call to Sleep in ProcTwo, and because it is autoreset, the
event will be unsignaled at this point. You will then be able to single-step through the code
where the event are1 is set, and finally ProcTwo will wait on are2. At this point, the debugger
will see that the thread running ProcTwo is in a wait state, so it will give execution to the other
thread, and because are1 is now signaled, the breakpoint on Sleep in ThreadOne will be
reached. Again, you will be able to single-step through this code, setting are2 and then
blocking on the call to wait on event are1, at which point the execution will be given over to
the thread running ProcTwo.

This switching back and forth between threads can be a little confusing, but it illustrates that
the debugger monitors the threads that are running and the communication that is occurring. In
essence, there is a single thread of execution when you are single-stepping.

When a multithreaded application is in break mode, you can use the Debug.Threads command
to bring up the Threads window to list the threads running in the process and the
Debug.ListThreads command to print out the threads in the Command window. Note that if
you debug a managed application the list of threads is not the same as the number of OS
threads running in the process. You can also use immediate mode to call variables accessible
to the code that the thread is running. Of course, you should be careful because in the
preceding code, I could break in ProcTwo and call this->are2->Set—that is, I can set the
event that the event will wait upon and screw up the thread synchronization.

You can also decide to debug another thread. To do this task, you should bring up the Threads
window and select another thread by clicking on it, and then select Switch To Thread from the
context menu. The debugger will show the execution point where it has been stopped in the
selected thread, and you can then single-step. All other threads in the process will be frozen at
this point, so if your code involves interthread communication, you will find that the code
might not behave as you would expect.

Debugging Across Application Domains

If your application creates additional application domains, you might need to debug across
application domains. The good news is that the debugger can step across application domain
boundaries as if the call is the same as stepping into a method call. In some respects, cross-
application domain calls can be less of an issue to debug than debugging multithreaded
applications. The reason is that a process can have multiple application domains and yet only
one thread of execution, so as long as object references are marshaled across the domain
boundary (so that calls take into account the context differences between the domains), there is
no synchronization issue, unlike multiple threads trying to access the same data.

// appdomains.cpp in AppDomains project
__gc class Other : public MarshalByRefObject
{
public:
 void CallMe()
 {
 Console::WriteLine(S"you have called {0}",
 AppDomain::CurrentDomain->FriendlyName);
 }
};

void main()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

void main()
{
 AppDomain* ad = AppDomain::CreateDomain(S"Other domain");
 // Assume current assembly is the second one in the assembly array.
 String* str = AppDomain::CurrentDomain->GetAssemblies()[1]->FullName;
 Other* o = static_cast<Other*>(
 ad->CreateInstance(str, S"Other")->Unwrap());
 o->CallMe();
}

In this code, the class Other is designed for interapplication domain calls. You can set
breakpoints on code that runs in either of the application domains that are present when this
process runs, so you can set a breakpoint on a line within CallMe. When a breakpoint is hit on
a call to CallMe, the execution point will be moved to the method in the class and you can
single-step through this method and step out of the method into the main method. However, a
cursory glance at the stack trace when the execution point is in CallMe will indicate that there
is much more going on. Cross-domain calls use .NET remoting, which means that a proxy for
the Other object will be created in the default domain and the proxy will do the work of
packaging up the request into a message to be sent via a channel to the actual object. Although
this mechanism is optimized somewhat because the proxy and the object are within the same
process, the net effect is the same as if the proxy and object were in different processes; that is,
the code sets up sink chains to take into account the differences between the context between
the proxy and object.

In contrast to the unmanaged/managed transition where the debugger hides the details of the
context change, with cross-domain calls, you can see all the code that makes the context
transition, and if you switch to the Disassembly window, you can see this code execute in its
full glory.

Remote Debugging

The Visual Studio .NET debugger allows you to debug processes on another machine. There
are two ways that the machines involved in the debugging can communicate, and the
Processes dialog box distinguishes between the two by the transport that is used: TCP/IP and
what it calls the Default protocol, which is DCOM. TCP/IP is only used for remotely
debugging native code, whereas if you want to debug managed code, you must use the DCOM
(Default) setting. I have heard it said that .NET would replace DCOM; well in this case, .NET
requires the existence of DCOM!

The DCOM method of debugging uses a service called the Machine Debug Manager. The
IDE communicates with this service using DCOM. This method is a secure way of connecting
to the remote machine because you can use DCOM security to determine who can connect.
When you install the remote debugging components, the installer will configure the Machine
Debug Manager DCOM application to give launch and access permissions to accounts in the
Debugger Users group. Thus, to enable another machine to debug processes on your machine,
you must add the account of the interactive user that will run the IDE on that machine to the
local Debugger Users account.

The TCP/IP remote debugging option is essentially the same as remote debugging in previous
versions of Visual C++. To use this option, you have to install the Remote Debug Monitor,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

versions of Visual C++. To use this option, you have to install the Remote Debug Monitor,
msvcmon.exe, on the remote machine, along with support DLLs. This tool is started on the
command line and accepts connections from the client machine. If you remotely debug a
native process using the DCOM protocol, you will actually use TCP/IP and the Remote Debug
Monitor will be started automatically by the Machine Debug Manager (and it will be stopped
when you detach or terminate the debugged application). In addition, when you select TCP/IP
as the protocol, it is the Remote Debug Monitor that returns the list of processes on the remote
machine, but the Available Processes grid on the Processes dialog box will show that all
processes are Win32. If you select an application that is a .NET application, you will debug it
as if it is a Win32 application. In other words, you will not be able to use the symbols for the
process and you will see the Win32 calls made by the runtime executing your JIT-compiled
code. This exercise is interesting to do at least once, to see the code that the runtime calls, but
it is of little use when trying to find bugs in your code.

Remote JIT Debugging

You might also decide to allow remote JIT debugging. To allow this debugging, you should
run the Machine Debug Manager (mdm.exe) with the /remotecfg switch. This switch causes
the program to present a dialog box where you can specify that remote debugging is enabled.
This dialog box also has a list box where you can add the names of machines that will be
informed when an exception has occurred on the local machine and is caught by JIT
debugging.

Be careful when you enable remote debugging because when an exception is thrown, you do
not get a warning that the exception will be passed on to the other machine. In my opinion, JIT
debugging on the machine that starts the debugger should have fewer dialog boxes, but JIT
debugging across machine boundaries should at least have had a dialog box warning you that
the exception is going to be handled by another machine. Therefore, it is safer to keep remote
JIT debugging turned off and only enable it when you are about to start a debugging session.
However, be aware that when you turn off remote JIT debugging by calling

mdm –remotecfg

and deselecting the option to enable JIT debugging, the Machine Debug Manager will turn off
all JIT debugging on the local machine, so if you want to handle JIT debugging with the local
copy of Visual Studio .NET, you have to enable local debugging through the Debugging
category on the Tools.Options dialog box. It is a bit of a mess, but once you know what is
going on, you soon get into the habit of turning JIT debugging on and off.

Remote Debugging from the IDE

When you debug a remote process, you have the option of having the project on the remote
machine so that when you compile the code, the process will be on the correct machine, and
the symbols for that process will be in there, too. (For .NET processes, the symbols must be on
the remote machine.) However, you do have the associated problem that the source code will
be on the remote machine, so the local machine must be able to have access to those files,
perhaps through a UNC address. In this case, the local account must have permission to access
the file on the remote machine, so you might have to use Windows Explorer to give members
of the Debugger Users group access to the file. The other option is to have the project on the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the Debugger Users group access to the file. The other option is to have the project on the
local machine and instruct the debugger to run the process on the remote machine. This option
means that you can use the local project, but it causes problems due to code access security,
which I’ll mention in a moment.

Debugging code on a remote machine is straightforward. The issues that you need to address
are: how do you start or attach to the remote process, and how do you single-step through it. If
the process is installed on the remote machine, you can start that process and attach to it. The
Processes dialog box (Debug.Processes) will list the processes on the remote machine, and if
you are using the DCOM protocol, it will indicate whether the process is native (Win32) or
.NET. You can use this dialog box to attach to a process. If the remote machine is set up for
remote JIT debugging, when an unhandled exception occurs in a process on the remote
machine, the client machine that was identified to mdm.exe will be contacted and vs7jit.exe
will be run on the client, which gives the user on that machine the option of which debugger to
use.

If the process’s project is installed on the local machine, you can set values in the project’s
property pages to indicate that the process will run on another machine. These properties can
be found on the Debugging page. The Remote Machine property indicates the name of the
machine where the process should run, and the Connection property is used to indicate
whether the process is local or whether TCP/IP or DCOM is used. Finally, Remote Command
gives the command line that will start the process, which should be from the perspective of the
remote machine. If the process is compiled and located on the local machine, you can use a
UNC share name to the location of the process on the local machine. In this case, the remote
machine will access the assembly from another machine, so there will be a code access
security issue. The symbols must be available on the remote machine, so you will also have to
set the Symbol Path property to point to the local machine.

The main issue that you will need to address when performing remote debugging is code
access security. If you use the Remote Command property to indicate that the code that runs
on the remote machine actually originates on another machine, you will have to set up code
access security on the remote machine to all that code to run. If the code is accessed from
another machine on the intranet, you can use the .NET Framework Configuration MMC snap-
in to add a new code group under the machine’s All_Code group, and for the membership
condition, select the Local Intranet zone and then give FullTrust for the permission set.

Debugging .NET Remoting Applications

If you are debugging a .NET remoting application, initially you might decide to run the server
on the same machine as the client. This way you can have the client and server projects in the
same solution, and you will be able to single-step through the client code and hit breakpoints
in the server code. Note that you have to run the server under the debugger to allow you to
step into a remote method call. If the server is not running under the debugger and you step
into a remote call, the debugger will not attach to the process and the request is treated as Step
Over. Of course, if the server is running under the debugger, you can set breakpoints in the
server code—even if the object is loaded through the <service> tag in a configuration file—
and you will be able to step through the remote object code when the breakpoint is hit.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The whole point of .NET remoting is to run an object on another machine. This process is
straightforward: all you have to do is ensure that you copy the assemblies, their symbols, and
configuration files to the server machine. (You could access these from a share on the client
machine, but again, you will have a code access security issue.) Then, in the server project’s
Debugging properties, you have to indicate that the server will run on the remote machine. To
do this, the remote settings must be set to indicate that the Connection property is set to
Remote Via DCOM and then you give the name of the remote machine and the location of the
server with respect to the remote machine. Finally, you have to remember to change the client
configuration file to access the remote object on the server machine. After you have done all
of this, you will be able to step through code in the client and server just as if the server was
running on the client machine.

Debugging Web Services

If the server is a managed Web service, the Debugging page should have the URL to the Web
service’s .asmx file as the HTTP URL. This setting will allow the debugger to attach to the
Web service assembly, but you must be aware that the debugger will also start your Web
browser with this URL, and as long as the Web browser runs, the debugger will be attached to
the Web service. To finish your debugging session, you must close down the Web browser.

As with .NET remoting, you will not be able to step into a method in a client application and
expect the debugger to step into the Web service method, but you can set breakpoints in the
server code and see them hit when the client calls the Web service method. However, there are
a few issues. The first issue is that when you change the Web service, you will have to
manually deploy it to the remote server machine. (As I mentioned in the last chapter, there is
no way to specify through the IDE the machine where the Web service should be deployed.)
Next, be aware that when you add a Web reference to a managed project, the IDE adds the
reference by generating a C# file with the information about the Web service, including the
URL to the service. If you change the location of the Web service, you will have to ensure that
the URL held by the Web service proxy is a URL to the new machine. The proxy object
generated by wsdl.exe has WebClientProtocol as a base class. This class has a property named
Url, which is the URL to the proxy. Thus, your Web service client should initialize this
property before calling the Web service through the proxy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Profiling

Visual Studio .NET does not provide a code profiler; however, the .NET runtime has built-in
support for profiling, which means that you can write your own profiler, and the .NET
Framework Tools Developers Guide has examples There appears to be a bug in both examples
when logging to a file. If you want to use these profilers, it is best to turn this option off by
ensuring that the environment variable DBG_PRF_LOG is not set. illustrating how to write a
profiler. The Tools Developers Guide contains comprehensive documentation for the API in a
document called Profiling.doc in addition to comments in the corprof.idl file, which describes
the profiling interfaces.

Essentially, a profiler is a COM object implemented in a DLL. This object should implement
the ICorProfilerCallback interface, and it should be registered as an inproc server. Profiling is
turned on with the help of two environment variables: COR_ENABLE_PROFILING and
COR_PROFILER. If COR_ENABLE_PROFILING is set to 1, whenever a managed process is
run, the profiler will be called. The runtime looks for the COR_PROFILER environment
variable, which will have the CLSID (in registry format) of the profiler object.

ICorProfilerCallback is a rather large interface. It allows your profiler to be informed when
profiling is starting or finishing (which is important because it allows the profiler to indicate
the events that it is interested in), and it has methods for all the events that the runtime can use
to inform the profiler, including events for creating and destroying application domains;
loading assemblies, modules, and classes; JIT-compiling code; remoting events; handling
exceptions; and making transitions between native and managed code. The interface is shown
here:

[
 object,
 uuid(176FBED1-A55C-4796-98CA-A9DA0EF883E7),
 pointer_default(unique), local
]
interface ICorProfilerCallback : IUnknown
{
 // Startup/shutdown events
 HRESULT Initialize([in] IUnknown* pICorProfilerInfoUnk);
 HRESULT Shutdown();
 // Application domain events
 HRESULT AppDomainCreationStarted(
 [in] AppDomainID appDomainId);
 HRESULT AppDomainCreationFinished(
 [in] AppDomainID appDomainId,
 [in] HRESULT hrStatus);
 HRESULT AppDomainShutdownStarted(
 [in] AppDomainID appDomainId);
 HRESULT AppDomainShutdownFinished(
 [in] AppDomainID appDomainId,
 [in] HRESULT hrStatus);
 // Assembly events
 HRESULT AssemblyLoadStarted([in] AssemblyID assemblyId);
 HRESULT AssemblyLoadFinished([in] AssemblyID assemblyId,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HRESULT AssemblyLoadFinished([in] AssemblyID assemblyId,
 [in] HRESULT hrStatus);
 HRESULT AssemblyUnloadStarted([in] AssemblyID assemblyId);
 HRESULT AssemblyUnloadFinished([in] AssemblyID assemblyId,
 [in] HRESULT hrStatus);
 // Module events
 HRESULT ModuleLoadStarted([in] ModuleID moduleId);
 HRESULT ModuleLoadFinished([in] ModuleID moduleId,
 [in] HRESULT hrStatus);
 HRESULT ModuleUnloadStarted([in] ModuleID moduleId);
 HRESULT ModuleUnloadFinished([in] ModuleID moduleId,
 [in] HRESULT hrStatus);
 HRESULT ModuleAttachedToAssembly([in] ModuleID moduleId,
 [in] AssemblyID AssemblyId);
 // Class events
 HRESULT ClassLoadStarted([in] ClassID classId);
 HRESULT ClassLoadFinished([in] ClassID classId,
 [in] HRESULT hrStatus);
 HRESULT ClassUnloadStarted([in] ClassID classId);
 HRESULT ClassUnloadFinished([in] ClassID classId,
 [in] HRESULT hrStatus);
 // JIT events
 HRESULT FunctionUnloadStarted([in] FunctionID functionId);
 HRESULT JITCompilationStarted([in] FunctionID functionId,
 [in] BOOL fIsSafeToBlock);
 HRESULT JITCompilationFinished([in] FunctionID functionId,
 [in] HRESULT hrStatus, [in] BOOL fIsSafeToBlock);
 HRESULT JITCachedFunctionSearchStarted(
 [in] FunctionID functionId,
 [out] BOOL *pbUseCachedFunction);
 HRESULT JITCachedFunctionSearchFinished(
 [in] FunctionID functionId,
 [in] COR_PRF_JIT_CACHE result);
 HRESULT JITFunctionPitched([in] FunctionID functionId);
 HRESULT JITInlining([in] FunctionID callerId,
 [in] FunctionID calleeId, [out] BOOL *pfShouldInline);
 // Thread events
 HRESULT ThreadCreated([in] ThreadID threadId);
 HRESULT ThreadDestroyed([in] ThreadID threadId);
 HRESULT ThreadAssignedToOSThread(
 [in] ThreadID managedThreadId,
 [in] DWORD osThreadId);
 // Client-side remoting events
 HRESULT RemotingClientInvocationStarted();
 HRESULT RemotingClientSendingMessage([in] GUID *pCookie,
 [in] BOOL fIsAsync);
 HRESULT RemotingClientReceivingReply([in] GUID *pCookie,
 [in] BOOL fIsAsync);
 HRESULT RemotingClientInvocationFinished();
 // Server-side remoting events
 HRESULT RemotingServerReceivingMessage([in] GUID *pCookie,
 [in] BOOL fIsAsync);
 HRESULT RemotingServerInvocationStarted();
 HRESULT RemotingServerInvocationReturned();
 HRESULT RemotingServerSendingReply([in] GUID *pCookie,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HRESULT RemotingServerSendingReply([in] GUID *pCookie,
 [in] BOOL fIsAsync);
 // Transition events
 HRESULT UnmanagedToManagedTransition(
 [in] FunctionID functionId,
 [in] COR_PRF_TRANSITION_REASON reason);
 HRESULT ManagedToUnmanagedTransition(
 [in] FunctionID functionId,
 [in] COR_PRF_TRANSITION_REASON reason);
 // Run-time suspension events
 HRESULT RuntimeSuspendStarted(
 [in] COR_PRF_SUSPEND_REASON suspendReason);
 HRESULT RuntimeSuspendFinished();
 HRESULT RuntimeSuspendAborted();
 HRESULT RuntimeResumeStarted();
 HRESULT RuntimeResumeFinished();
 HRESULT RuntimeThreadSuspended([in] ThreadID threadId);
 HRESULT RuntimeThreadResumed([in] ThreadID threadId);
 // GC events
 HRESULT MovedReferences([in] ULONG cMovedObjectIDRanges,
 [in, size_is(cMovedObjectIDRanges)]
 ObjectID oldObjectIDRangeStart[],
 [in, size_is(cMovedObjectIDRanges)]
 ObjectID newObjectIDRangeStart[],
 [in, size_is(cMovedObjectIDRanges)]
 ULONG cObjectIDRangeLength[]);
 HRESULT ObjectAllocated([in] ObjectID objectId,
 [in] ClassID classId);
 HRESULT ObjectsAllocatedByClass([in] ULONG cClassCount,
 [in, size_is(cClassCount)] ClassID classIds[],
 [in, size_is(cClassCount)] ULONG cObjects[]);
 HRESULT ObjectReferences([in] ObjectID objectId,
 [in] ClassID classId, [in] ULONG cObjectRefs,
 [in, size_is(cObjectRefs)] ObjectID objectRefIds[]);
 HRESULT RootReferences([in] ULONG cRootRefs,
 [in, size_is(cRootRefs)] ObjectID rootRefIds[]);
 // Exception creation events
 HRESULT ExceptionThrown([in] ObjectID thrownObjectId);
 // Exception handler search events
 HRESULT ExceptionSearchFunctionEnter(
 [in] FunctionID functionId);
 HRESULT ExceptionSearchFunctionLeave();
 HRESULT ExceptionSearchFilterEnter(
 [in] FunctionID functionId);
 HRESULT ExceptionSearchFilterLeave();
 HRESULT ExceptionSearchCatcherFound(
 [in] FunctionID functionId);
 HRESULT ExceptionOSHandlerEnter([in] UINT_PTR __unused);
 HRESULT ExceptionOSHandlerLeave([in] UINT_PTR __unused);
 // Exception unwind events
 HRESULT ExceptionUnwindFunctionEnter(
 [in] FunctionID functionId);
 HRESULT ExceptionUnwindFunctionLeave();
 HRESULT ExceptionUnwindFinallyEnter(
 [in] FunctionID functionId);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [in] FunctionID functionId);
 HRESULT ExceptionUnwindFinallyLeave();
 HRESULT ExceptionCatcherEnter([in] FunctionID functionId,
 [in] ObjectID objectId);
 HRESULT ExceptionCatcherLeave();
 // CLR->COM interop table events
 HRESULT COMClassicVTableCreated([in] ClassID wrappedClassId,
 [in] REFGUID implementedIID, [in] void *pVTable,
 [in] ULONG cSlots);
 HRESULT COMClassicVTableDestroyed(
 [in] ClassID wrappedClassId,
 [in] REFGUID implementedIID, [in] void *pVTable);
 HRESULT ExceptionCLRCatcherFound();
 HRESULT ExceptionCLRCatcherExecute();
}

It would have been easier to program the profiler object if the interface had been spilt into
several interfaces, and it would make the code follow interface programming ethos.

The simplest way to write a profiler is to use ATL attributes. Here is the basic code:

// Compile with cl /LD profiler.cpp.
#define _ATL_ATTRIBUTES
#include <atlbase.h>
#include <atlcom.h>

#include <cor.h>
#include <corprof.h>

#include <stdio.h>

[module(dll, name="ProfilerLib")];

[coclass, uuid("1dbbf8c4-88a3-4b70-99a5-e1697f3b837b"),
 threading("free")]
class Profiler : public ICorProfilerCallback
{
 CComPtr<ICorProfilerInfo> m_pInfo;
public:
 HRESULT __stdcall Initialize(IUnknown* pICorProfilerInfoUnk)
 {
 puts("Profiler Initialized");
 pICorProfilerInfoUnk->QueryInterface(&m_pInfo);
 m_pInfo->SetEventMask(COR_PRF_MONITOR_JIT_COMPILATION);
 return S_OK;
 }
 HRESULT __stdcall Shutdown()
 {
 puts("Profiler Shutdown");
 m_pInfo.Release();
 return S_OK;
 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }
// Other interface methods
};

ATL attributes make writing COM classes simple. The [coclass] attribute tells the compiler to
generate a class factory and registration code, the [module] attribute tells the compiler to
create the required COM DLL exported functions, and [threading(free)] adds registration and
code support to make the class free-threaded. I have left out most of the methods of
ICorProfilerCallback, but of course, there should be implementations of each.

The first point to make is that when a managed process is run, the registered profiler will be
created in the process space of that managed process and the Initialize method will be called.
The profiler has to indicate to the runtime which events it wants to receive by calling
ICorProfilerInfo::SetEventMask and passing a bitmask. My profiler is only interested in JIT
events, so I will provide special handling for the following three methods (the other interface
methods are empty):

HRESULT __stdcall JITCompilationStarted(
 FunctionID functionId, BOOL fIsSafeToBlock)
{
 printf("starting to JIT-compile function \n", functionId);
 PrintFunctionName(functionId);
 return S_OK;
}
HRESULT __stdcall JITCompilationFinished(
 FunctionID functionId, HRESULT hrStatus, BOOL fIsSafeToBlock)
{
 printf("completed JIT-compiled function %ld ", functionId);
 PrintFunctionName(functionId);
 if (SUCCEEDED(hrStatus))
 printf("succeeded\n");
 else
 printf("failed with %08x\n", hrStatus);
 return S_OK;
}
HRESULT __stdcall JITInlining(
 FunctionID callerId, FunctionID calleeId,
 BOOL *pfShouldInline)
{
 printf("JIT inlining function %08x ", calleeId);
 PrintFunctionName(calleeId);
 printf("to function %08x ", callerId);
 PrintFunctionName(callerId);
 return S_OK;
}

I think it would have been far better if ICorProfilerCallback was split into several event
interfaces because then IUnknown::QueryInterface would be used to determine whether the
particular events were handled, and it would mean that I would not have to fill this class with a
plethora of empty, useless methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first two methods are called to indicate that JIT-compiling is about to start and then that
the compilation has finished on a method. The third method indicates that a method will not be
JIT-compiled in isolation but will be inlined as part of another method. I have decided just to
print out the name of the method, but in your own profiler, you might decide to start a timer
when the JIT-compilation starts and stop the timer when the JIT-compilation finishes to get an
idea of how long JITting takes.

To indicate the method that is being JIT-compiled, these methods are passed a FunctionId,
which is merely a UINT_PTR. To convert this FunctionId to the actual method name, I use a
helper function named PrintFunctionName, as shown in the following code:

void PrintFunctionName(FunctionID id)
{
 mdToken tokMethod;
 CComPtr<IMetaDataImport> pImport;
 m_pInfo->GetTokenAndMetaDataFromFunction(
 id, IID_IMetaDataImport, (IUnknown**)&pImport, &tokMethod);
 HRESULT hr;
 ULONG nameLen = 0;
 hr = pImport->GetMethodProps(
 tokMethod, NULL, NULL, NULL,
 &nameLen, NULL, NULL, NULL, NULL, NULL);
 if (FAILED(hr))
 {
 puts("cannot get method name");
 return;
 }
 wchar_t* methodName = new wchar_t[nameLen];
 mdTypeDef tokCls;
 pImport->GetMethodProps(
 tokMethod, &tokCls, methodName, nameLen,
 &nameLen, NULL, NULL, NULL, NULL, NULL);
 nameLen = 0;
 hr = pImport->GetTypeDefProps(
 tokCls, NULL, 0, &nameLen, NULL, NULL);
 if (FAILED(hr))
 {
 puts("cannot get class name");
 delete [] methodName;
 return;
 }

 wchar_t* clsName = new wchar_t[nameLen];
 pImport->GetTypeDefProps(
 tokCls, clsName, nameLen, &nameLen, NULL, NULL);
 wprintf(L"%s.%s\n", clsName, methodName);
 delete [] methodName;
 delete [] clsName;
}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The significant thing about this code is that it calls the ICorProfilerInfo interface obtained
when the runtime calls the Initialize method. The ICorProfilerInfo interface is yet another
mega-interface that does all kinds of things. Again, I would prefer if the implementers of the
.NET Framework had split ICorProfilerInfo into several interfaces. I cannot see why the
implementers did not decide to do this splitting, especially because Initialize is passed an
IUnknown pointer, so I am required to ask for the interface that I want to call.

ICorProfilerInfo has methods that allow you to convert from metadata tokens to the class and
function identifiers used by ICorProfilerCallback; to get information about assemblies,
modules, application domains, and threads; and to get metadata tokens about classes and
functions so that you can get their names. In addition, ICorProfilerInfo has methods that can
be called to cause a function to be JITted again, to cause the garbage collector to start a
collection, to get the IL for a method, and even to replace the IL for a method that has not been
JITted, and to indicate functions that are called when a method is about to be called and when
the method has been called. Because these are such a diverse group of methods, they really
should have been implemented on several different interfaces.

In PrintFunctionName, I call just one of these methods on ICorProfilerInfo:
GetTokenAndMetaDataFromFunction, which returns the metadata token for the method that is
JIT-compiled and a metadata interface that I can use to get the class and method name from
this metadata token. For this I use methods on the IMetaDataImport interface (which I
described in Chapter 5). GetMethodProps gets the name of the method and the metadata token
of the class, whereas GetTypeDefProps returns the name of the class. Note that the class name
returned by GetTypeDefProps is fully qualified with the namespace, but the resolution
operator used is C# style; that is, a dot is used, so I have followed this style in my code.

For this simple assembly:

void main()
{
 Console::WriteLine(S"Simple Test");
}

I get this output:

Initialized profiler
starting to JIT-compile function 003753b0 .main
JIT inlining function 79b895a0 System.Console.WriteLine
to function 003753b0 .main
JIT inlining function 79b893e0 System.Console.get_Out
to function 003753b0 .main
completed JIT-compiled function 003753b0 .main
succeeded
Simple Test
Shutdown profiler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The profiling API is extremely powerful, but you have to be careful. In particular, the .NET
Framework is free-threaded, which means that the ICorProfilerCallback interface might not
be called on the same thread each time. This detail was overlooked by the writers of the
example profilers and appears to be the source of the bug when logging profiler information to
a file. Your profiler code is called by the .NET Framework, so you have to be very careful to
ensure that the code is bug-free; otherwise, you might cause an error in the process being
profiled. Furthermore, when you are profiling an application, be sure that you set the profiling
environment variables only at the command line, and remember to clear the environment
variables once you have finished profiling. This way the profiler will be called only when you
decide it should be used. The C++ compiler uses managed code, so if you run it from a
command line where you have set the profiler environment variables, you will get profiling
information for the compiler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Summary

In this chapter, I have given a comprehensive coverage of the tools that are available in Visual
Studio .NET and in the .NET Framework to debug managed applications. C++ is well served
in this area; indeed, there are areas where C++ is far better than any other .NET language for
helping you to debug your application. In all cases, you have to take into account that your
application can use native code. This issue is not great because Visual Studio .NET provides a
native debugger, and the transition between managed and native debuggers appears
seamlessly. Even if the native code runs on another machine, you can still treat the code as if it
is managed, and the Machine Debug Manager will ensure that the appropriate code is run on
the remote machine to facilitate native debugging.

It is also important to write your code in such a way that allows you to determine the source of
an error. In this respect, C++ is both better than and yet deficient compared to other languages.
It is deficient because the managed C++ compiler does not take the [Conditional] attribute
into account, but it is trivial to use C++ conditional compilation to get the same affect. The
diagnostics classes in the .NET Framework have their own problems, and C++ is the ideal
language to improve these classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix A
.NET Framework Libraries
The .NET Framework library replaces most of the C and C++ libraries that you are used to
using to develop your code. Although you can still use the C runtime library (CRT) and the
C++ standard library for existing code that you are recompiling for the .NET runtime, it makes
sense when you create a new project to use the .NET Framework classes. In this appendix, I
present in a series of tables the .NET Framework equivalent of the common CRT and C++
standard library routines. Sometimes there is no close match to a .NET Framework class, in
which case I have not listed the CRT or standard library item. In other cases, I have listed the
closest match, but you should always check the documentation carefully.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Strings

The main string classes are System::String, System::Char, and System::Text::StringBuilder.
String objects are immutable and essentially contain an array of Chars. You use StringBuilder
to manipulate a Char array, from which a String can be created.

Character Characterization

The Char class holds Unicode characters; however, for clarity in Table A-1, I give the Multi-
Byte Character Set (MBCS) name of the CRT routine.

Table A-1. Table A-1 .NET Char
Equivalents for CRT Character

Routines
CRT Routine .NET Equivalent

isalnum Char::IsLetterOrDigit

isalpha Char::IsLetter

iscntrl Char::IsControl

isdigit Char::IsDigit

islower Char::IsLower

isxdigit Char::IsNumber

ispunct Char::IsPunctuation

isupper Char::IsUpper

isspace Char::IsWhitespace

String Routines

Again, .NET strings are Unicode. Note that System::String is immutable, so most of its
methods return new strings. StringBuilder allows you to change the actual buffer, so this is
more equivalent to the CRT routines. Also be aware that many CRT routines return pointers
(for example, strchr), but the .NET equivalents return a character index (IndexOf), as shown in
Table A-2.

Table A-2. Table A-2 .NET String Equivalents for CRT
String Routines

CRT Routine .NET Equivalent

sprintf String::Format

strcat, strncat String::Concat, StringBuilder::Append

strchr String::IndexOf

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strcmp String::Compare, String::CompareTo

strcoll String::CompareOrdinal

strcpy String::Copy

strcspn String::IndexOfAny

strftime DateTime::ToString

strlen String::Length

_strlwr String::ToLower

strrchr String::LastIndexOf

strstr String::LastIndexOfAny

strtok String::Split

_strupr String::ToUpper

Data Conversion

.NET primitive types implement IConvertible, which means that a primitive type can be
converted to other types. In addition, you can use System::Convert, which has static methods
that allow you to convert between types. You convert a type to a string by calling the ToString
method, as Table A-3 shows. This allows you to perform formatted conversion. I will explain
this conversion further in the section “Formatted Output” later in this appendix.

Table A-3. Table A-3 .NET Conversion Methods for CRT Routines
CRT Routine .NET Equivalent

atof, atoi, atol, strtod, strtol Use the appropriate Parse method

_itoa, _itol, _ecvt, _fcvt, _gcvt, _ltoa Use the appropriate ToString method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Files and I/O

.NET uses stream APIs for input and output. The System::IO namespace has the classes that
can be used to access files and the general stream classes.

Stream I/O

The File class gives information about a file, and through static methods, it allows you to open
files for read or write, as a binary file or as a text file. When a file is open in binary mode, a
FileStream is returned; when a file is open in text mode, a StreamWriter or StreamReader
method is returned. (Both of these objects are based on a FileStream object.) Table A-4 shows
the equivalent FileStream for CRT stream I/O routines.

Table A-4. Table A-4 .NET FileStream Equivalents for CRT File Routines
CRT
Routine

.NET Equivelant

fclose FileStream::Close

feof Compare FileStream::Position with FileStream::Length

fflush FileStream::Flush

fopen File::Open, File::Create, File::OpenRead, File::OpenWrite

fscanf Pass FileStream object to BinaryReader constructor, and call Read methods

fseek FileStream::Seek

fprintf Format string with String::Format, and write to stream with
FileStream::Write

getc FileStream::ReadByte

putc FileStream::WriteByte

rewind FileStream::Seek

setbuf Wrap the stream with BufferedStream

Console I/O

The main class for console I/O is System::Console. This class has two static properties, In and
Out, and exposes some methods as static members. Table A 5 shows .NET Console
equivalents for CRT console I/O routines.

Table A-5. Table A-5 Console Equivalents for CRT I/O Routines
CRT
Routine

.NET Equivalent

getchar Console::Read There is no direct equivalent in .NET because Console::Read will

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

not return until the Enter key has been pressed.

gets Console::ReadLine

printf Console::Write, Console::WriteLine

putchar Console::Write, or WriteByte on Console::Out

puts Console::WriteLine

scanf Pass Console::OpenStandardInput to BinaryReader constructor and call Read
methods

sprintf String::Format

Formatted Output

Methods that are used to format strings (for example, String::Format and Console::WriteLine)
are passed a format string with placeholders. The placeholders are numbered—indexed from
zero and corresponding to the parameters passed to the method—and the number is enclosed
in braces. You can also supply format information in the placeholder, as indicated in Table A-
6, where n is the placeholder number.

Table A-6. Table A-6 Available Placeholders for String-Formatting Methods
Placeholder Description

{n:C} Currency: the string has the currency symbol and the decimal places specified
for the current culture.

{n:Dm} Integer with m digits.

{n:Em} Scientific format; m is the precision.

{n:Fm} Fixed: m is the number of decimal places.

{n:Gm} General format, fixed or scientific.

{n:Nm} Number format: thousands are grouped with a culture-specific separator; m
gives the number of decimal places.

{n:Pm} Percentage format: the number is shown as a percentage with m digits after
the decimal place.

{n:Rm} Roundtrip format: the resulting string can be converted back to the number
without loss of data.

{n:Xm} Hex format: m gives the number of digits.

File Handling

Information about a file can be obtained through the File class and the FileInfo class. Table A-
7 shows the .NET equivalents of these classes. File paths can be manipulated with the static
methods on the Path class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table A-7. Table A-7 .NET File Handling Equivalents
CRT
Routine

.NET Equivalent

_chsize FileStream::SetLength

_filelength FileInfo::Length

_fstat, _stat File::GetAttributes, File::GetCreationTime, File::GetLastAccessTime,
File::GetLastWriteTime

_fullpath Path::GetFullPath

_makepath Path::Combine

_mktemp Path::GetTempFileName

remove,
_unlink

File::Delete

rename File::Move

_splitpath Use static methods on Path

Directory Routines

The Directory class gives information about a folder and can be used to create and delete
folders and get information about the current folder. Table A-8 shows the Directory class
equivalents for CRT folder routines.

Table A-8. Table A-8 .NET Directory Class Equivalents for CRT Folder Routines
CRT Routine .NET Equivalent

_chdir Directory::SetCurrentDirectory

_findclose, _findfirst,
_findnext

Use Directory::GetDirectories and Directory::GetFiles

_getcwd Directory::GetCurrentDirectory

_getdrive Pass Directory::GetCurrentDirectory to
Directory::GetDirectoryRoot

_getdrives Directory::GetLogicalDrives

_mkdir Directory::CreateDirectory

_rmdir Directory::Delete

Process and Environment Control

In .NET, threads are represented by the System::Threading::Thread class, and processes are
represented by System::Diagnostics::Process class. The System::Environment class gives

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

represented by System::Diagnostics::Process class. The System::Environment class gives
access to information such as environment variables, machine name, command line, and folder
information. Table A-9 shows the .NET equivalents to the CRT routines for obtaining these
types of information.

Table A-9. Table A-9 .NET Equivalents for Thread,
Process, and Environment Routines

CRT Routine .NET Equivalent

abort Environment::Exit

assert Debug::Assert, Trace::Assert

_beginthread Thread constructor and Thread::Start

_endthread Thread::Terminate

_execl, _spawnl Process::Start

getenv Environment::GetEnvironmentVariables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Time

The System::DateTime allows you to access the current time and to perform time
manipulations. Time differences are returned as System::TimeSpan objects. The
System::Globalization::DateTimeFormatInfo class has information used to format dates and
times for a culture. The CultureInfo::DateTimeFormat property returns the format information
for a specified culture. DateTime::ToString can be used to format a time for a culture. Table
A 10 shows the .NET date and time equivalents to CRT date and time routines.

Table A-10. Table A-10 .NET Date and Time Equivalents for CRT Date and Time Routines
CRT Routine .NET Equivalent

asctime, ctime, _ftime,
_strtime, _strdate

Call ToString on DateTime::Now

clock Get a Process object through Process::GetCurrentProcess()
and call TotalProcessorTime

difftime DateTime::Subtract

time DateTime::Now

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Containers

The System::Collections namespace contains the collection interfaces and common
implementations. The System::Collections::Specialized namespace contains further collection
classes. In the Table A-11, I have listed the .NET Framework classes that are the nearest
match for the standard library container classes in terms of the behavior of adding and
accessing items and whether the container is associative.

Table A-11. Table A-11 .NET Equivalents for
C++ Standard Library Container Classes

C++ Class .NET Equivalent

deque Array

hash_map, hash_multimap HashTable

hash_set, hash_multiset ArrayList

list ArrayList

map, multimap SortedList

queue Queue

set, multiset ArrayList

stack Stack

vector Array

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Appendix B
Further Resources
In this appendix, I list the tools and other resources that I find useful when I develop .NET
code and when I investigate how .NET works.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tools

While writing this book, I often needed to look into the assemblies produced by the C++
compiler and into the .NET Framework assemblies. In this section, I list the tools that I have
found useful.

ILDASM

This tool is provided as part of the .NET Framework SDK. You can find it in the
FrameworkSDK\Bin folder. This tool is a GUI application, but you can invoke it with
command-line arguments, which means that you can change the registry so that ILDASM can
be invoked through the context menu for an .exe, a .dll, or a .netmodule file. I use the
/advanced switch so that I get ILDASM in its full glory. Here is a script to add these values:

Windows Registry Editor Version 5.00
[HKEY_CLASSES_ROOT\exefile\shell]
[HKEY_CLASSES_ROOT\exefile\shell\Dissassemble]
[HKEY_CLASSES_ROOT\exefile\shell\Dissassemble\command]
@="ildasm /advanced %1"
[HKEY_CLASSES_ROOT\dllfile\shell]
[HKEY_CLASSES_ROOT\dllfile\shell\Disassemble]
[HKEY_CLASSES_ROOT\dllfile\shell\Disassemble\command]
@="ildasm.exe /advanced %1"
[HKEY_CLASSES_ROOT\.netmodule]
@="netmodulefile"
[HKEY_CLASSES_ROOT\netmodulefile]
[HKEY_CLASSES_ROOT\netmodulefile\shell]
[HKEY_CLASSES_ROOT\netmodulefile\shell\Disassemble]
[HKEY_CLASSES_ROOT\netmodulefile\shell\Disassemble\command]
@="ildasm /advanced %1"

Anakrino

This is a free decompilation tool written by Jay Freeman. You can get the latest release from
www.anakrino.org. Anakrino allows you to decompile assemblies to C# or managed C++. By
default, Anakrino lists the assemblies in the .NET Framework system folder in a tree view
control that you can use to browse through the types and their members. This tool is
invaluable in determining how a class works, but it really should be used in conjunction with
ILDASM because Anakrino does not give access to all metadata.

MetaInfo

This tool is provided as a sample as part of the Tool Developer’s Guide (which is part of the
.NET Framework SDK). It gives you a raw view of the metadata in an assembly, in contrast to
the logical view that is presented in ILDASM. If you are interested in developing code with
the unmanaged metadata API, take a look at the source for this tool.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rotor

This tool is also known by the rather uncatchy name of the Microsoft Shared Source CLI
Implementation and can be downloaded from http://msdn.microsoft.com/library/en-
us/dndotnet/html/mssharsourcecli.asp. Please pay attention to the license for this code. This
tool is an implementation of the ECMA standards of a C# compiler and Common Language
Infrastructure (CLI). The source code will compile and run on Windows XP and FreeBSD.
The documentation says that “there are significant differences in implementation between this
code and the code for Microsoft’s commercial CLR implementation.” Although I will not
disagree with this statement in terms of the run-time DLLs, I can say that the .NET
Framework classes that are provided in source form (in C#) look very similar to the
decompilation obtained through Anakrino.

Rotor also contains the source code for various tools that you are used to using in the .NET
Framework SDK: the IL assembler (ilasm.exe) and disassembler (ildasm.exe), the command-
line debugger (cordbg.exe), the code access security command-line policy editor (caspol.exe),
and the global assembly cache utility (gacutil.exe). Rotor also provides the source code for
various compilers and build tools, so you get the assembly linker tool (al.exe), a C# compiler,
and the source for nmake.exe. Finally, Rotor has the source for the main DLLs that constitute
the .NET Framework, including code for Fusion, the JIT compiler, and the execution engine.
If you want to get an idea of how garbage collection or JIT compilation can be implemented,
this library will thrill you.

DUMPBIN

This tool is a shim around the linker. When you call dumpbin, you are actually calling link
/dump. This tool is useful for investigating the format of PE files (.exe and .dll) and COFF
object files (.obj), and the symbols they contain. The version provided with Visual Studio
.NET (see VC7/bin) will also give information about the CLI Header.

PEDump

This tool is provided as part of Matt Pietrek’s February 2002 article “Inside Windows: An In-
Depth Look into the Win32 Portable Executable File Format” in MSDN Magazine
(http://download.microsoft.com/download/msdnmagazine/code/Feb02/WXP/EN-US/PE.exe).
PEDump does all that DUMPBIN does, but it does not depend on the linker tool.

DbgView

This tool shows you the strings passed to OutputDebugString. You can download the tool
from www.sysinternals.com. When you run an application under the debugger, any debug
strings (those passed to Trace::WriteLine) will show up in the Output window of Visual
Studio .NET. This tool is useful on the occasions when you run an application that has debug
messages without a debugger.

RegMon

This tool, also from www.sysinternals.com, will list the accesses made to the registry. It is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This tool, also from www.sysinternals.com, will list the accesses made to the registry. It is
useful to see the calls that are made to the registry because you can trace the COM objects that
are created by the calls made to HKCR\Classes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tools Supplied with This Book

In some cases, I have had to write my own tools because I have not been able to find a suitable
tool included with Visual Studio .NET or elsewhere.

Profiler

This tool is described in Chapter 7 and is a simple implementation of the profiling interface.
The interesting thing about this tool is the ability to look at the types that are loaded when you
start a .NET application. Again, this gives you some insight into how the runtime works.

HexDump

The Visual Studio .NET binary editor (File.OpenFile /e“Binary Editor”) is great for scanning
through a binary file to see if there are any undocumented command-line arguments (for
example, the /nosplash switch for DevEnv.exe) or just to look at the file structure.
Unfortunately, when you copy a selection from this editor to the clipboard, the binary code is
copied and not the formatted hex view. This limitation makes it useless for people like me to
create hex dumps. The source code for this appendix has a small utility for dumping a file as
hex to the command line; this utility is called HexDump.

DumpInterfaces

It is interesting to establish the interfaces that a COM class implements. This tool (supplied
with the sample code) simply takes a ProgID or a CLSID, creates an instance of the object,
and then calls IUnknown::QueryInterface for every interface registered in the system registry.
It is crude, but it is surprising the information that you can obtain. The example uses ATL, so
if you compile it at the command line, you have to ensure that your environment variables are
set up correctly. (Run the vcvars32.bat batch file from the VC7\bin folder.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Books

This is not a bibliography; it is a list of books that I think all .NET developers ought to read.

Inside Microsoft .NET IL Assembler by Serge Lidin (Microsoft Press, 2002), ISBN 0-7356-
1547-0.

If you are ever likely to use ILDASM, you must read this book. If you are interested in
metadata and how it is stored in assemblies, you must read this book.

Applied Microsoft .NET Framework Programming by Jeffrey Richter (Microsoft Press, 2002),
ISBN 0-7356-1422-9.

Jeff is well known for his in-depth books about Windows—avoiding the fluff and getting to
the metal. He has done the same thing here with the .NET Framework.

Programming Microsoft Windows with C# by Charles Petzold (Microsoft Press, 2002), ISBN
0-7356-1370-2.

Everyone must have at least one Petzold, and you might as well make it this one. This book
covers the entire breadth of the Windows Forms and GDI+ libraries. Whatever you want to do
in Windows Forms, you’ll find out how to do it in this book.

Common Language Infrastructure, ECMA Specification.

You can find this specification in the Program Files\Microsoft Visual Studio
.NET\FrameworkSDK\Tool Developers Guide\docs\Partition II Metadata.doc file. It is
supplied in five documents covering the .NET runtime and the .NET Framework. As with all
specifications, it is hard to read more than a few sections in a sitting, but these documents are
invaluable to understand how .NET works.

Developing Applications with Visual Studio .NET by Richard Grimes (Addison-Wesley,
2002), ISBN 0-201-70852-3.

Buy this book so that I can pay my mortgage and have a place where I can write more books.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Richard Grimes

In the 1980s, there was a graffito on a wall beneath the main lecture theater in the physics
department at Nottingham University. This said: “Physics graduates have only two options:
work for the defence industry or the software industry.” (It is possible that the graffito is still
there.) Richard Grimes graduated with an honours BSc in physics from Nottingham, but being
ideologically opposed to the former option and finding that the latter lacked the challenges that
he needed, he chose instead to defy the message of the graffito and go into research. He gained
a PhD in semiconductor physics and then studied photothermal ionization and quantum effects
in III-V semiconductors and II-VI semimagnetic semiconductors. After spending several years
as a research scientist, Richard took time off to help bring up his newborn daughter, an
endeavor that turned out to be the best-spent and most enjoyable nine months of his life. That
was followed by a year as a computer trainer (the most unpleasant year of his life) and then
almost four years as a software developer. With remarkable prescience, the graffito had clearly
foretold his future.

During his time as a software developer, Richard started writing technical articles, and this
undertaking led to his first book (on DCOM). The success of that book persuaded Richard to
become an independent software developer and writer. He has since written several books on
COM, MTS, COM+, and ATL—and more recently on .NET. He writes for various magazines,
including MSDN Magazine, and was the .NET columnist for Visual C++ Developers Journal
before its metamorphosis into Visual Studio Magazine. He also speaks regularly at
conferences on Microsoft technologies, giving talks and workshops on topics related to .NET
and C++.

Richard lives in the medieval town of Kenilworth in England with his wife and two children.
For relaxation—and to break the occasional bout of writer’s block—he enjoys working in his
garden, where he grows fruit and vegetables. The only criterion for a plant to be included in
his garden is that it has to be edible. Richard can be contacted on topics about C++ and .NET,
or indeed, on the growing of fruit and vegetables, at dotnet.dev@grimes.demon.co.uk.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

