
[ Team LiB ]

  
• Table of Contents
• Index
• Reviews
• Examples
• Reader Reviews
• Errata

Python in a Nutshell
By Alex Martelli

  

Publisher : O'Reilly

Pub Date : March 2003

ISBN : 0-596-00188-6
Pages : 654

In the tradition of O'Reilly's "In a Nutshell" series, Python in a Nutshell offers Python programmers
one place to look when they need help remembering or deciphering the syntax of this open source
language and its many modules. This comprehensive reference guide makes it easy to look up all the
most frequently needed information--not just about the Python language itself, but also the most
frequently used parts of the standard library and the most important third-party extensions.

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

  
• Table of Contents
• Index
• Reviews
• Examples
• Reader Reviews
• Errata

Python in a Nutshell
By Alex Martelli

  

Publisher : O'Reilly

Pub Date : March 2003

ISBN : 0-596-00188-6
Pages : 654

   Copyright

   Preface

    How This Book Is Organized

    Conventions Used in This Book

    How to Contact Us

    Acknowledgments

   
   Part I:  Getting Started with Python

    Chapter 1.  Introduction to Python

    Section 1.1.  The Python Language

    Section 1.2.  The Python Standard Library and Extension Modules

    Section 1.3.  Python Implementations

    Section 1.4.  Python Development and Versions

    Section 1.5.  Python Resources

   
    Chapter 2.  Installation

    Section 2.1.  Installing Python from Source Code

    Section 2.2.  Installing Python from Binaries

    Section 2.3.  Installing Jython

   
    Chapter 3.  The Python Interpreter

    Section 3.1.  The python Program

    Section 3.2.  Python Development Environments

    Section 3.3.  Running Python Programs

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Section 3.4.  The Jython Interpreter

   
   
   Part II:  Core Python Language and Built-ins

    Chapter 4.  The Python Language

    Section 4.1.  Lexical Structure

    Section 4.2.  Data Types

    Section 4.3.  Variables and Other References

    Section 4.4.  Expressions and Operators

    Section 4.5.  Numeric Operations

    Section 4.6.  Sequence Operations

    Section 4.7.  Dictionary Operations

    Section 4.8.  The print Statement

    Section 4.9.  Control Flow Statements

    Section 4.10.  Functions

   
    Chapter 5.  Object-Oriented Python

    Section 5.1.  Classic Classes and Instances

    Section 5.2.  New-Style Classes and Instances

    Section 5.3.  Special Methods

    Section 5.4.  Metaclasses

   
    Chapter 6.  Exceptions

    Section 6.1.  The try Statement

    Section 6.2.  Exception Propagation

    Section 6.3.  The raise Statement

    Section 6.4.  Exception Objects

    Section 6.5.  Custom Exception Classes

    Section 6.6.  Error-Checking Strategies

   
    Chapter 7.  Modules

    Section 7.1.  Module Objects

    Section 7.2.  Module Loading

    Section 7.3.  Packages

    Section 7.4.  The Distribution Utilities (distutils)

   
    Chapter 8.  Core Built-ins

    Section 8.1.  Built-in Types

    Section 8.2.  Built-in Functions

    Section 8.3.  The sys Module

    Section 8.4.  The getopt Module

    Section 8.5.  The copy Module

    Section 8.6.  The bisect Module

    Section 8.7.  The UserList, UserDict, and UserString Modules

   
    Chapter 9.  Strings and Regular Expressions

    Section 9.1.  Methods of String Objects

    Section 9.2.  The string Module

    Section 9.3.  String Formatting

    Section 9.4.  The pprint Module

    Section 9.5.  The repr Module

    Section 9.6.  Unicode

    Section 9.7.  Regular Expressions and the re Module

   

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   
   Part III:  Python Library and Extension Modules

    Chapter 10.  File and Text Operations

    Section 10.1.  The os Module

    Section 10.2.  Filesystem Operations

    Section 10.3.  File Objects

    Section 10.4.  Auxiliary Modules for File I/O

    Section 10.5.  The StringIO and cStringIO Modules

    Section 10.6.  Compressed Files

    Section 10.7.  Text Input and Output

    Section 10.8.  Richer-Text I/O

    Section 10.9.  Interactive Command Sessions

    Section 10.10.  Internationalization

   
    Chapter 11.  Persistence and Databases

    Section 11.1.  Serialization

    Section 11.2.  DBM Modules

    Section 11.3.  The Berkeley DB Module

    Section 11.4.  The Python Database API (DBAPI) 2.0

   
    Chapter 12.  Time Operations

    Section 12.1.  The time Module

    Section 12.2.  The sched Module

    Section 12.3.  The calendar Module

    Section 12.4.  The mx.DateTime Module

   
    Chapter 13.  Controlling Execution

    Section 13.1.  Dynamic Execution and the exec Statement

    Section 13.2.  Restricted Execution

    Section 13.3.  Internal Types

    Section 13.4.  Garbage Collection

    Section 13.5.  Termination Functions

    Section 13.6.  Site and User Customization

   
    Chapter 14.  Threads and Processes

    Section 14.1.  Threads in Python

    Section 14.2.  The thread Module

    Section 14.3.  The Queue Module

    Section 14.4.  The threading Module

    Section 14.5.  Threaded Program Architecture

    Section 14.6.  Process Environment

    Section 14.7.  Running Other Programs

    Section 14.8.  The mmap Module

   
    Chapter 15.  Numeric Processing

    Section 15.1.  The math and cmath Modules

    Section 15.2.  The operator Module

    Section 15.3.  The random Module

    Section 15.4.  The array Module

    Section 15.5.  The Numeric Package

    Section 15.6.  Array Objects

    Section 15.7.  Universal Functions (ufuncs)

    Section 15.8.  Optional Numeric Modules

   

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Chapter 16.  Tkinter GUIs

    Section 16.1.  Tkinter Fundamentals

    Section 16.2.  Widget Fundamentals

    Section 16.3.  Commonly Used Simple Widgets

    Section 16.4.  Container Widgets

    Section 16.5.  Menus

    Section 16.6.  The Text Widget

    Section 16.7.  The Canvas Widget

    Section 16.8.  Geometry Management

    Section 16.9.  Tkinter Events

   
    Chapter 17.  Testing, Debugging, and Optimizing

    Section 17.1.  Testing

    Section 17.2.  Debugging

    Section 17.3.  The warnings Module

    Section 17.4.  Optimization

   
   
   Part IV:  Network and Web Programming

    Chapter 18.  Client-Side Network Protocol Modules

    Section 18.1.  URL Access

    Section 18.2.  Email Protocols

    Section 18.3.  The HTTP and FTP Protocols

    Section 18.4.  Network News

    Section 18.5.  Telnet

    Section 18.6.  Distributed Computing

   
    Chapter 19.  Sockets and Server-Side Network Protocol Modules

    Section 19.1.  The socket Module

    Section 19.2.  The SocketServer Module

    Section 19.3.  Event-Driven Socket Programs

   
    Chapter 20.  CGI Scripting and Alternatives

    Section 20.1.  CGI in Python

    Section 20.2.  Cookies

    Section 20.3.  Other Server-Side Approaches

   
    Chapter 21.  MIME and Network Encodings

    Section 21.1.  Encoding Binary Data as Text

    Section 21.2.  MIME and Email Format Handling

   
    Chapter 22.  Structured Text: HTML

    Section 22.1.  The sgmllib Module

    Section 22.2.  The htmllib Module

    Section 22.3.  The HTMLParser Module

    Section 22.4.  Generating HTML

   
    Chapter 23.  Structured Text: XML

    Section 23.1.  An Overview of XML Parsing

    Section 23.2.  Parsing XML with SAX

    Section 23.3.  Parsing XML with DOM

    Section 23.4.  Changing and Generating XML

   
   
   Part V:  Extending and Embedding

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Part V:  Extending and Embedding

    Chapter 24.  Extending and Embedding Classic Python

    Section 24.1.  Extending Python with Python's C API

    Section 24.2.  Extending Python Without Python's C API

    Section 24.3.  Embedding Python

   
    Chapter 25.  Extending and Embedding Jython

    Section 25.1.  Importing Java Packages in Jython

    Section 25.2.  Embedding Jython in Java

    Section 25.3.  Compiling Python into Java

   
    Chapter 26.  Distributing Extensions and Programs

    Section 26.1.  Python's distutils

    Section 26.2.  The py2exe Tool

    Section 26.3.  The Installer Tool

   
   
   Colophon

   Index

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Copyright

Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps. The association between the image of an African rock python and the topic of Python is a
trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Preface

The Python programming language manages to reconcile many apparent contradictions: it's both
elegant and pragmatic, simple and powerful, a high-level language that doesn't get in your way when
you want to fiddle with bits and bytes, suitable for programming novices and great for experts too.

This book is aimed at programmers with some previous exposure to Python, as well as experienced
programmers coming to Python for the first time from other programming languages. The book is a
quick reference to Python itself, the most important parts of its vast standard library, and some of the
most popular and useful third-party modules, covering a range of applications including web and
network programming, GUIs, XML handling, database interactions, and high-speed numeric
computing. It focuses on Python's cross-platform capabilities and covers the basics of extending
Python and embedding it in other applications, using either C or Java.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

How This Book Is Organized

This book has five parts, as follows:

Part I, Getting Started with Python

Chapter 1 covers the general characteristics of the Python language and its
implementations, and discusses where to get help and information.

Chapter 2 explains how to obtain and install Python.

Chapter 3 covers the Python interpreter program, its command-line options, and its use
for running Python programs and in interactive sessions. The chapter also mentions text
editors that are particularly suitable for editing Python programs, and examines some
full-fledged integrated development environments, including IDLE, which comes free
with standard Python.

Part II, Core Python Language and Built-ins

Chapter 4 covers Python syntax, built-in data types, expressions, statements, and how
to write and call functions.

Chapter 5 explains object-oriented programming in Python.

Chapter 6 covers how to deal with errors and abnormal conditions in Python programs.

Chapter 7 covers the ways in which Python lets you group code into modules and
packages, and how to define and import modules.

Chapter 8 is a reference to built-in data types and functions, and some of the most
fundamental modules in the standard Python library.

Chapter 9 covers Python's powerful string-processing facilities, including regular
expressions.

Part III, Python Library and Extension Modules

Chapter 10 explains how to deal with files and text processing using built-in Python file
objects, modules from Python's standard library, and platform-specific extensions for
rich text I/O.

Chapter 11 introduces Python's serialization and persistence mechanisms, as well as
Python's interfaces to DBM databases and relational (SQL-based) databases.

Chapter 12 covers how to deal with times and dates in Python, using the standard
library and popular extensions.

Chapter 13 explains how to achieve advanced execution control in Python, including
execution of dynamically generated code, restricted execution environments, and control
of garbage collection.

Chapter 14 covers Python's functionality for concurrent execution, both via multiple
threads running within one process and via multiple processes running on a single
machine.

Chapter 15 shows Python's features for numeric computations, both in standard library
modules and in the popular extension package called Numeric.

Chapter 16 explains how to develop graphical user interfaces in Python with the Tkinter
package included with the standard Python distribution, and mentions other alternative
Python GUI frameworks.

Chapter 17 deals with Python tools and approaches that help ensure your programs do

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Chapter 17 deals with Python tools and approaches that help ensure your programs do
what they're meant to do, find and correct errors in your programs, and check and
enhance performance.

Part IV, Network and Web Programming

Chapter 18 covers many modules in Python's standard library that help you write
network client programs.

Chapter 19 explains Python's interfaces to low-level network mechanisms (sockets),
standard Python library modules that help you write network server programs, and
asynchronous (event-driven) network programming with standard modules and popular
extensions.

Chapter 20 covers the basics of CGI programming and how to perform CGI programming
in Python with standard Python library modules. The chapter also mentions alternatives
to CGI programming for server-side web programming through Python extensions.

Chapter 21 shows how to process email and other network-structured and encoded
documents in Python.

Chapter 22 covers Python library modules that let you process and generate HTML
documents.

Chapter 23 covers Python library modules and popular extensions that let you process,
modify, and generate XML documents.

Part V, Extending and Embedding

Chapter 24 shows how to code Python extension modules using C and other classic
compiled languages, and how to embed Python in applications coded in such languages.

Chapter 25 shows how to use Java classes from the Jython implementation of Python,
and how to embed Jython in applications coded in Java.

Chapter 26 covers the tools that let you package Python extensions, modules, and
applications for distribution.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Conventions Used in This Book

The following conventions are used throughout this book.

Reference Conventions

In the function/method reference entries, when feasible, each optional parameter is shown with a
default value using the Python syntax name=value. Built-in functions need not accept named
parameters, so parameter names are not significant. Some optional parameters are best explained in
terms of their presence or absence, rather than through default values. In such cases, a parameter is
indicated as being optional by enclosing it in brackets ([ ]). When more than one argument is
optional, the brackets are nested.

Typographic Conventions

Italic

Used for filenames, program names, URLs, and to introduce new terms.

Constant Width

Used for all code examples, as well as for commands and all items that appear in code,
including keywords, methods, functions, classes, and modules.

Constant Width Italic

Used to show text that can be replaced with user-supplied values in code examples.

Constant Width Bold

Used for commands that must be typed on the command line, and occasionally for emphasis in
code examples or to indicate code output.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 928-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, and any additional information. You
can access this page at:

http://www.oreilly.com/catalog/pythonian/

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, resource centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Acknowledgments

My heartfelt thanks to everybody who helped me out on this book. Many Python beginners,
practitioners, and experts have read drafts of parts of the book and have given me feedback to help
make it clearer and more precise, accurate, and readable. Out of those, for the quality and quantity of
their feedback, I must single out for special thanks Andrea Babini, Andrei Raevsky, Anna Ravenscroft,
and my fellow Python Business Forum board members Jacob Hallén and Laura Creighton.

Some Python experts gave me indispensable help in specific areas: Aahz on threading, Itamar Shtull-
Trauring on Twisted, Mike Orr on Cheetah, Eric Jones and Paul Dubois on Numeric, and Tim Peters on
threading, testing, performance issues, and optimization.

I was also blessed with a wonderful group of technical reviewers: Fred Drake of Python Labs, co-
author of Python & XML (O'Reilly) and Grand Poobah of Python's excellent free documentation;
Magnus Lie Hetland, author of Practical Python (Apress); Steve Holden, author of Python Web
Programming (New Riders); and last but not least Sue Giller, whose observations as a sharp-eyed,
experienced, non-Pythonista programmer were particularly useful in the pursuit of clarity and
precision. The book's editor, Paula Ferguson, went above and beyond the call of duty in her work to
make this book clearer and more readable.

My family and friends have been patient and supportive throughout the time it took me to write this
book: particular thanks for that to my children Flavia and Lucio, my partner Marina, my sister
Elisabetta, and my father Lanfranco.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part I: Getting Started with Python
Chapter 1

Chapter 2

Chapter 3

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 1. Introduction to Python

Python is a general-purpose programming language. It has been around for quite a while: Guido van
Rossum, Python's creator, started developing Python back in 1990. This stable and mature language
is very high level, dynamic, object-oriented, and cross-platform—all characteristics that are very
attractive to developers. Python runs on all major hardware platforms and operating systems, so it
doesn't constrain your platform choices.

Python offers high productivity for all phases of the software life cycle: analysis, design, prototyping,
coding, testing, debugging, tuning, documentation, deployment, and, of course, maintenance.
Python's popularity has seen steady, unflagging growth over the years. Today, familiarity with Python
is an advantage for every programmer, as Python is likely to have some useful role to play as a part
of any software solution.

Python provides a unique mix of elegance, simplicity, and power. You'll quickly become productive
with Python, thanks to its consistency and regularity, its rich standard library, and the many other
modules that are readily available for it. Python is easy to learn, so it is quite suitable if you are new
to programming, yet at the same time it is powerful enough for the most sophisticated expert.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

1.1 The Python Language

The Python language, while not minimalist, is rather spare, for good pragmatic reasons. When a
language offers one good way to express a design idea, supplying other ways has only modest
benefits, while the cost in terms of language complexity grows with the number of features. A
complicated language is harder to learn and to master (and to implement efficiently and without
bugs) than a simpler one. Any complications and quirks in a language hamper productivity in software
maintenance, particularly in large projects, where many developers cooperate and often maintain
code originally written by others.

Python is simple, but not simplistic. It adheres to the idea that if a language behaves a certain way in
some contexts, it should ideally work similarly in all contexts. Python also follows the principle that a
language should not have convenient shortcuts, special cases, ad hoc exceptions, overly subtle
distinctions, or mysterious and tricky under-the-covers optimizations. A good language, like any other
designed artifact, must balance such general principles with taste, common sense, and a high degree
of practicality.

Python is a general-purpose programming language, so Python's traits are useful in any area of
software development. There is no area where Python cannot be part of an optimal solution. "Part" is
an important word here—while many developers find that Python fills all of their needs, Python does
not have to stand alone. Python programs can cooperate with a variety of other software components,
making it an ideal language for gluing together components written in other languages.

Python is a very-high-level language. This means that Python uses a higher level of abstraction,
conceptually farther from the underlying machine, than do classic compiled languages, such as C,
C++, and Fortran, which are traditionally called high-level languages. Python is also simpler, faster to
process, and more regular than classic high-level languages. This affords high programmer
productivity and makes Python an attractive development tool. Good compilers for classic compiled
languages can often generate binary machine code that runs much faster than Python code. However,
in most cases, the performance of Python-coded applications proves sufficient. When it doesn't, you
can apply the optimization techniques covered in Chapter 17 to enhance your program's performance
while keeping the benefits of high programming productivity.

Python is an object-oriented programming language, but it lets you develop code using both object-
oriented and traditional procedural styles, mixing and matching as your application requires. Python's
object-oriented features are like those of C++, although they are much simpler to use.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

1.2 The Python Standard Library and Extension Modules

There is more to Python programming than just the Python language: the standard Python library and
other extension modules are almost as important for effective Python use as the language itself. The
Python standard library supplies many well-designed, solid, 100% pure Python modules for
convenient reuse. It includes modules for such tasks as data representation, string and text
processing, interacting with the operating system and filesystem, and web programming. Because
these modules are written in Python, they work on all platforms supported by Python.

Extension modules, from the standard library or from elsewhere, let Python applications access
functionality supplied by the underlying operating system or other software components, such as
graphical user interfaces (GUIs), databases, and networks. Extensions afford maximal speed in
computationally intensive tasks, such as XML parsing and numeric array computations. Extension
modules that are not coded in Python, however, do not necessarily enjoy the same cross-platform
portability as pure Python code.

You can write special-purpose extension modules in lower-level languages to achieve maximum
performance for small, computationally intensive parts that you originally prototyped in Python. You
can also use tools such as SWIG to make existing C/C++ libraries into Python extension modules, as
we'll see in Chapter 24. Finally, you can embed Python in applications coded in other languages,
exposing existing application functionality to Python scripts via dedicated Python extension modules.

This book documents many modules, both from the standard library and from other sources, in areas
such as client- and server-side network programming, GUIs, numerical array processing, databases,
manipulation of text and binary files, and interaction with the operating system.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

1.3 Python Implementations

Python currently has two production-quality implementations, CPython and Jython, and one
experimental implementation, Python .NET. This book primarily addresses CPython, which I refer to
as just Python for simplicity. However, the distinction between a language and its implementations is
an important one.

1.3.1 CPython

Classic Python (a.k.a., CPython, often just called Python) is the fastest, most up-to-date, most solid
and complete implementation of Python. CPython is a compiler, interpreter, and set of built-in and
optional extension modules, coded in standard C. CPython can be used on any platform where the C
compiler complies with the ISO/IEC 9899:1990 standard (i.e., all modern, popular platforms). In
Chapter 2, I'll explain how to download and install CPython. All of this book, except Chapter 24 and a
few sections explicitly marked otherwise, applies to CPython.

1.3.2 Jython

Jython is a Python implementation for any Java Virtual Machine (JVM) compliant with Java 1.2 or
better. Such JVMs are available for all popular, modern platforms. To use Jython well, you need some
familiarity with fundamental Java classes. You do not have to code in Java, but documentation and
examples for existing Java classes are couched in Java terms, so you need a nodding acquaintance
with Java to read and understand them. You also need to use Java supporting tools for tasks such as
manipulating .jar files and signing applets. This book deals with Python, not with Java. For Jython
usage, you should complement this book with Jython Essentials, by Noel Rappin and Samuele Pedroni
(O'Reilly), possibly Java in a Nutshell, by David Flanagan (O'Reilly), and, if needed, some of the many
other Java resources available.

1.3.3 Choosing Between CPython and Jython

If your platform is able to run both CPython and Jython, how do you choose between them? First of
all, don't choose—download and install them both. They coexist without problems, and they're free.
Having them both on your machine costs only some download time and a little extra disk space.

To experiment, learn, and try things out, you will most often use CPython, as it's faster. To develop
and deploy, your best choice depends on what extension modules you want to use and how you want
to distribute your programs. CPython applications are generally faster, particularly if they can make
good use of suitable extension modules, such as Numeric (covered in Chapter 15). The development
of CPython versions is faster than that of Jython versions: at the time of writing, for example, the
next scheduled release is 2.2 for Jython, but 2.3 for CPython.

However, as you'll see in Chapter 25, Jython can use any Java class as an extension module, whether
the class comes from a standard Java library, a third-party library, or a library you develop yourself. A
Jython-coded application is a 100% pure Java application, with all of Java's deployment advantages
and issues, and runs on any target machine having a suitable JVM. Packaging opportunities are also
identical to Java's.

Jython and CPython are both good, faithful implementations of Python, reasonably close in terms of
usability and performance. Given these pragmatic issues, either one may enjoy decisive practical
advantages in a specific scenario. Thus, it is wise to become familiar with the strengths and
weaknesses of each, to be able to choose optimally for each development task.

1.3.4 Python .NET

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The experimental Python .NET is a Python implementation for the Microsoft .NET platform, with an
architecture similar to Jython's, but targeting Microsoft Intermediate Language (MSIL) rather than
JVM bytecode. Python .NET is not as mature as CPython or Jython, but when it is ready for production
use, Python .NET may become a great way to develop for .NET, like Jython is for the JVM. For
information on Python .NET and links to download it, see
http://www.activestate.com/Initiatives/NET/Research.html.

1.3.5 Licensing and Price Issues

Current releases of CPython are covered by the CNRI Open Source GPL-Compatible License, allowing
free use of Python for both commercial and free-software development
(http://www.python.org/2.2.1/license.html). Jython's license is similarly liberal. Anything you
download from the main Python and Jython sites will not cost you a penny. These licenses do not
constrain what licensing and pricing conditions you can use for software you develop using the tools,
libraries, and documentation they cover.

However, not everything Python-related is totally free from licensing costs or hassles. Many third-
party Python sources, tools, and extension modules that you can freely download have liberal
licenses, similar to that of Python itself. Others, however, are covered by the GNU Public License
(GPL) or Lesser GPL (LGPL), constraining the licensing conditions you are allowed to place on derived
works. Commercially developed modules and tools may require you to pay a fee, either
unconditionally or if you use them for profit.

There is no substitute for careful examination of licensing conditions and prices. Before you invest
time and energy into any software component, check that you can live with its license. Often,
especially in a corporate environment, such legal matters may involve consulting a lawyer. Modules
and tools covered in this book, unless I explicitly say otherwise, can be taken to be, at the time of this
writing, freely downloadable, open source, and covered by a liberal license akin to Python's. However,
I claim no legal expertise, and licenses can change over time, so double-checking is always prudent.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

1.4 Python Development and Versions

Python is developed by the Python Labs of Zope Corporation, which consists of half a dozen core
developers headed by Guido van Rossum, Python's inventor, architect, and Benevolent Dictator For
Life (BDFL). This title means that Guido has the final say on what becomes part of the Python
language and standard libraries.

Python intellectual property is vested in the Python Software Foundation (PSF), a non-profit
corporation devoted to promoting Python, with dozens of individual members (nominated for their
contributions to Python, and including all of the Python core team) and corporate sponsors. Most PSF
members have commit privileges to Python's CVS tree on SourceForge (http://sf.net/cvs/?
group_id=5470), and most Python CVS committers are members of the PSF.

Proposed changes to Python are detailed in public documents called Python Enhancement Proposals
(PEPs), debated (and sometimes advisorily voted upon) by Python developers and the wider Python
community, and finally approved or rejected by Guido, who takes debate and votes into account but is
not bound by them. Hundreds of people contribute to Python development, through PEPs, discussion,
bug reports, and proposed patches to Python sources, libraries, and documentation.

Python Labs releases minor versions of Python (2.x, for growing values of x) about once or twice a
year. 2.0 was released in October 2000, 2.1 in April 2001, and 2.2 in December 2001. Python 2.3 is
scheduled to be released in early 2003. Each minor release adds features that make Python more
powerful and simpler to use, but also takes care to maintain backward compatibility. One day there
will be a Python 3.0 release, which will be allowed to break backward compatibility to some extent.
However, that release is still several years in the future, and no specific plans for it currently exist.

Each minor release 2.x starts with alpha releases, tagged as 2.xa0, 2.xa1, and so on. After the alphas
comes at least one beta release, 2.xb1, and after the betas at least one release candidate, 2.xrc1. By
the time the final release of 2.x comes out, it is always solid, reliable, and well tested on all major
platforms. Any Python programmer can help ensure this by downloading alphas, betas, and release
candidates, trying them out on existing Python programs, and filing bug reports for any problem that
might emerge.

Once a minor release is out, most of the attention of the core team switches to the next minor
release. However, a minor release normally gets successive point releases (i.e., 2.x.1, 2.x.2 and so
on) that add no functionality but can fix errors, port Python to new platforms, enhance
documentation, and add optimizations and tools.

The Python Business Forum (http://python-in-business.org) is an international society of companies
that base their business on Python. The Forum, among other activities, tests and maintains special
Python releases (known as "Python-in-a-tie") that Python Labs certifies for industrial-strength
robustness.

This book focuses on Python 2.2 (and all its point releases), the most stable and widespread release
at the time of this writing, and the basis of the current "Python-in-a-tie" efforts. It also mentions a
few changes scheduled to appear in Python 2.3, and documents the parts of the language and
libraries that are new in 2.2 and thus cannot be used with the previous 2.1 release. Python 2.1 is still
important because it's used in widely deployed Zope 2.x releases (the current Zope releases, 3.x, rely
on Python 2.2 and later). Also, at the time of this writing, the released version of Jython supports only
Python 2.1, not yet Python 2.2.

Among older releases of Python, the only one with a large installed base is 1.5.2, which is part of
most installations of Red Hat Linux Releases 6.x and 7.x. However, this book does not address Python
1.5.2, which is over three years old and should not be used for any new development. Python's
backward compatibility is good: current versions of Python are able to properly process just about any
valid Python 1.5.2 program.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

1.5 Python Resources

The richest of all Python resources is the Internet. The starting point is Python's site,
http://www.python.org, which is full of interesting links that you will want to explore. And
http://www.jython.org is a must if you have any interest in Jython.

1.5.1 Documentation

Python and Jython come with good documentation. The manuals are available in many formats,
suitable for viewing, searching, and printing. You can browse the manuals on the Web at
http://www.python.org/doc/current/. You can find links to the various formats you can download at
http://www.python.org/doc/current/download.html, and http://www.python.org/doc/ has links to a
large variety of documents. For Jython, http://www.jython.org/docs/ has links to Jython-specific
documents as well as general Python ones. The Python FAQ (Frequently Asked Questions) is at
http://www.python.org/doc/FAQ.html, and the Jython-specific FAQ is at http://www.jython.org/cgi-
bin/faqw.py?req=index.

Most Python documentation (including this book) assumes some software development knowledge.
However, Python is quite suitable for first-time programmers, so there are exceptions to this rule. A
few good introductory online texts are:

Josh Cogliati's "Non-Programmers Tutorial For Python," available at
http://www.honors.montana.edu/~jjc/easytut/easytut/

Alan Gauld's "Learning to Program," available at http://www.crosswinds.net/~agauld/

Allen Downey and Jeffrey Elkner's "How to Think Like a Computer Scientist (Python Version),"
available at http://www.ibiblio.org/obp/thinkCSpy/

1.5.2 Newsgroups and Mailing Lists

The URL http://www.python.org/psa/MailingLists.html has links to Python-related mailing lists and
newsgroups. Always use plain-text format, not HTML, in all messages to mailing lists and newsgroups.

The Usenet newsgroup for Python discussions is comp.lang.python. The newsgroup is also available as
a mailing list. To subscribe, send a message whose body is the word subscribe to python-list-
request@python.org. Python-related announcements are posted to comp.lang.python.announce. To
subscribe to its mailing-list equivalent, send a message whose body is the word subscribe to python-
announce-list-request@python.org. To subscribe to Jython's mailing list, visit
http://lists.sf.net/lists/listinfo/jython-users. To ask for individual help with Python, email your
question to python-help@python.org. For questions and discussions about using Python to teach or
learn programming, write to tutor@python.org.

1.5.3 Special Interest Groups

Discussions on specialized subjects related to Python take place on the mailing lists of Python Special
Interest Groups (SIGs). http://www.python.org/sigs/ has a list of active SIGs and pointers to general
and specific information about them. Over a dozen SIGs are active at the time of this writing. Here
are a few examples:

http://www.python.org/sigs/c++-sig/

Bindings between C++ and Python

http://www.python.org/sigs/i18n-sig/

Internationalization and localization of Python programs

http://www.python.org/sigs/image-sig/

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Image processing in Python

1.5.4 Python Business Forum

The Python Business Forum (PBF), at http://www.python-in-business.org/, is an international society
of companies that base their business on Python. The PBF was formed quite recently, but the site
already offers interesting information about business uses of Python.

1.5.5 Python Journal

The Python Journal, http://pythonjournal.cognizor.com/, is a free online publication focusing on
Python, how to use it, and its applications.

1.5.6 Extension Modules and Python Sources

A good starting point to explore the world of available Python extensions and sources is "The Vaults of
Parnassus," available at http://www.vex.net/parnassus/. It contains over 1,000 classified and
commented links. By following these links, you can find and download most freely available Python
modules and tools.

The standard Python source distribution contains excellent Python source code in the standard library
and in the Demos and Tools directories, as well as C source for the many built-in extension modules.
Even if you have no interest in building Python from source, I suggest you download and unpack the
Python source distribution for study purposes.

Many Python modules and tools covered in this book also have dedicated sites. References to these
sites are included in the appropriate chapters in this book.

1.5.7 The Python Cookbook

ActiveState has built a collaborative web site at http://www.activestate.com/ASPN/Python/Cookbook
that contains a living collection of Python recipes. Each recipe contains some Python code, with
comments and discussion, contributed by volunteers and enriched with the contributions of readers,
under the editorial supervision of David Ascher. All code is covered by a license similar to Python's.
Everyone is invited to participate as author and reader in this interesting and useful community
endeavor. Hundreds of recipes from the site, edited, commented, and grouped into chapters with
introductions by well-known Python experts, are published by O'Reilly as the Python Cookbook, edited
by Alex Martelli and David Ascher.

1.5.8 Books and Magazines

Although the Net is a rich source of information, books and magazines still have their place (if you
and I didn't agree on this, I wouldn't be writing this book, and you wouldn't be reading it). At the time
of this writing, the only magazine entirely devoted to Python is Py (for updated information, visit
http://www.pyzine.com/).

Books about Python and Jython are more numerous. Here are a few that I recommend:

If you are just starting to learn Python (but have some previous programming experience),
Learning Python, by Mark Lutz and David Ascher (O'Reilly), will serve you well. It sticks to the
basics of Python's language and core libraries, covering clearly and in depth each of the
subjects it touches.

Python Web Programming, by Steve Holden (New Riders), teaches the basics of both Python
and many other technologies that help you build dynamic web sites, including TCP/IP, HTTP,
HTML, XML, and relational databases. The book offers substantial examples, including a
complete database-backed site.

Python Programming on Win32, by Mark Hammond and Andy Robinson (O'Reilly), is

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Python Programming on Win32, by Mark Hammond and Andy Robinson (O'Reilly), is
indispensable for optimal Python use on Windows. The book details platform-specific
extensions to Python for COM, ActiveScripting, Win32 API calls, and integration with Windows
applications. The current edition uses Python's old 1.5.2 version, but everything also applies to
Python's current version.

Jython Essentials, by Samuele Pedroni and Noel Rappin (O'Reilly), is a rich and concise book on
Jython, suitable if you already have some Java knowledge. For effective Jython use, I also
suggest Java in a Nutshell, by David Flanagan (O'Reilly).

Python Essential Reference, by David Beazley (New Riders), is a concise but complete
reference to the Python language and its standard libraries.

Python Standard Library, by Fredrik Lundh (O'Reilly), offers terse and usable coverage of all
modules in the standard Python library, with over 300 well-commented scripts to show how
you can use each module. The amount and quality of examples stands out as the book's
outstanding feature.

For a massive, wide-ranging treatise on Python applications and techniques, including many
large examples, you can't beat Programming Python, by Mark Lutz (O'Reilly).

For a very concise summary reference and reminder of Python's essentials, check out Python
Pocket Reference, also by Mark Lutz (O'Reilly).

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 2. Installation

You can install Python, in both classic (CPython) and JVM (Jython) versions, on most platforms. With
a suitable development system (C for CPython, Java for Jython), you can install Python from its
source code distribution. On popular platforms, you also have the alternative of installing from a
prebuilt binary distribution.

Installing CPython from a binary distribution is faster, saves you substantial work on some platforms,
and is the only possibility if you have no suitable C development system. Installing from a source code
distribution gives you more control and flexibility, and is the only possibility if you can't find a suitable
prebuilt binary distribution for your platform. Even if you install from binaries, I recommend you also
download the source distribution, which includes examples and demos that may be missing from
prebuilt binary packages.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

2.1 Installing Python from Source Code

To install Python from source code, you need a platform with an ISO-compliant C compiler and
ancillary tools such as make. On Windows, the normal way to build Python is with the Microsoft
product Visual C++.

To download Python source code, visit http://www.python.org and follow the link labeled Download.
The latest version at the time of this writing is:

http://www.python.org/ftp/python/2.2.2/Python-2.2.2.tgz

The .tgz file extension is equivalent to .tar.gz (i.e., a tar archive of files, compressed by the powerful
and popular gzip compressor).

2.1.1 Windows

On Windows, installing Python from source code can be a chore unless you are already familiar with
Microsoft Visual C++ and used to working at the Windows command line (i.e., in the text-oriented
windows known as MS-DOS Prompt or Command Prompt, depending on your version of Windows).

If the following instructions give you trouble, I suggest you skip ahead to the material on installing
Python from binaries later in this chapter. It may be a good idea, on Windows, to do an installation
from binaries anyway, even if you also install from source code. This way, if you notice anything
strange while using the version you installed from source code, you can double-check with the
installation from binaries. If the strangeness goes away, it must have been due to some quirk in your
installation from source code, and then you know you must double-check the latter.

In the following sections, for clarity, I assume you have made a new directory named C:\Py and
downloaded Python-2.2.2.tgz there. Of course, you can choose to name and place the directory as it
best suits you.

2.1.1.1 Uncompressing and unpacking the Python source code

You can uncompress and unpack a .tgz file with programs tar and gunzip. If you do not have tar and
gunzip, you can download the collection of utilities ftp://ftp.objectcentral.com/winutils.zip into C:\Py.
If you do not have other ways to unpack a ZIP file, download ftp://ftp.th-soft.com/UNZIP.EXE into
C:\Py. Open an MS-DOS Prompt window and give the following commands:

C:\> My Documents>cd \Py
C:\Py> unzip winutils
    [unzip lists the files it is unpacking - omitted here]
C:\Py> gunzip Python-2.2.2.tgz
C:\Py> tar xvf Python-2.2.2.tar
    [tar lists the files it is unpacking - omitted here]
C:\Py>

Commercial programs WinZip (http://www.winzip.com) and PowerArchiver
(http://www.powerarchiver.com) can also uncompress and unpack .tgz archives. Whether via gunzip
and tar, a commercial program, or some other program, you now have a directory C:\Py\Python-
2.2.2, the root of a tree that contains the entire standard Python distribution in source form.

2.1.1.2 Building the Python source code with Microsoft Visual C++

Open the workspace file C:\Py\Python-2.2.2\PCbuild\pcbuild.dsw with Microsoft Visual C++, for
example by starting Windows Explorer, going to directory C:\Py\Python-2.2.2\PCbuild, and double-
clicking on file pcbuild.dsw.

Choose Build  Set Active Configuration  python Win32 Release, then Build  Build

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Choose Build  Set Active Configuration  python Win32 Release, then Build  Build
python.exe. Visual C++ builds projects pythoncore and python, making files python22.dll and
python.exe in C:\Py\Python-2.2.2\PCbuild. You can also build other subprojects (for example with
Build  Batch Build...). However, to build subprojects _tkinter, bsddb, pyexpat, and zlib, you first
need to download other open source packages and install them in the C:\Py directory. Follow the
instructions in C:\Py\Python-2.2.2\PCbuild\readme.txt if you want to build every Python package that
is in the distribution.

2.1.1.3 Building Python for debugging

You can also, optionally, build the debug versions, as well as the release versions, of the Python
packages.

With Visual C++, an executable (.exe) built for release can interoperate fully only with dynamic load
libraries (DLLs) also built for release, while an executable built for debugging interoperates fully only
with DLLs also built for debugging. Trying to mix and match can cause program crashes and assorted
strangeness. To help you avoid accidentally mixing parts built for release with others built for
debugging, the Python workspace appends a _d to the name of debugging executables and DLLs. For
example, when you build for debugging, pythoncore produces python22_d.dll and python produces
python22_d.exe.

What makes the debugging and release Visual C++ builds incompatible is the choice of runtime
library. Executables and DLLs can fully interoperate only by using the same runtime library, and the
runtime library must in turn be a DLL. You can tweak Project  Settings  C/C++  Code
Generation  Use run-time library, setting all projects to use Multithreaded DLL (MSVCRT.DLL)
(also remove the _DEBUG definition in C/C++  Code Generation  Preprocessor). I recommend
you do this only if you are experienced with Microsoft Visual C++ and have special, advanced
requirements. Otherwise, resigning yourself to keeping two separate and distinct release and
debugging "worlds" is the simplest approach.

2.1.1.4 Installing after the build

python22.dll (or python22_d.dll, if you want to run a debug-mode python_d.exe) must be in a
directory from which Windows loads DLLs when needed. Suitable directories depend on your version
of Windows: for example, c:\windows\system is one possibility. If you don't copy python22.dll to a
suitable directory, you can run Python only when the current directory is the directory in which
python22.dll resides.

Similarly, python.exe must be in a directory in which Windows looks for executables, normally a
directory listed in the Windows environment variable named PATH. How to set PATH and other
environment variables depends on your version of Windows, as mentioned in Chapter 3. Python can
locate other files, such as the standard library modules, according to various strategies.
C:\Py\Python-2.2.2\PC\readme.txt documents the various possibilities.

2.1.1.5 Building Python for Cygwin

Python 2.2 is also available as a part of the free Cygwin Unix-like environment for Windows—see
http://cygwin.com/ for more information. Cygwin runs on top of Windows. However, Cygwin is quite
similar to Linux and other free Unix-like environments in many respects. In particular, Cygwin uses
the popular, free gcc C/C++ compiler and associated tools, such as make. Building Python from
source code on Cygwin is therefore similar to building from source code on Unix-like environments,
even though Cygwin runs on Windows.

2.1.2 Unix-like Platforms

On Unix-like platforms, installing Python from source code is not a particularly complicated procedure.
In the following sections, for clarity, I assume you have created a new directory named ~/Py and
downloaded Python-2.2.2.tgz there. Of course, you can choose to name and place the directory as it
best suits you.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


2.1.2.1 Uncompressing and unpacking the Python source code

You can uncompress and unpack a .tgz file with programs tar and gunzip. If you have the popular
GNU version of tar, you can just type the following at a shell prompt:

$ cd ~/Py
$ tar xzf Python-2.2.2.tgz

You now have a directory ~/Py/Python-2.2.2, the root of a tree that contains the entire standard
Python distribution in source form.

2.1.2.2 Configuring, building, and testing

You will find detailed notes in file ~/Py/Python-2.2.2/README under the heading "Build instructions,"
and I strongly suggest reading those notes. In the simplest case, however, all you need to get started
may be to give the following commands at a shell prompt:

$ cd ~/Py/Python-2.2.2
$ ./configure
    [configure writes much information - snipped here]
$ make
    [make takes quite a while, and emits much information]

If you run make without running ./configure first, make will implicitly run ./configure for you. When
make finishes, you should test that the Python you have just built works as expected, as follows:

$ make test
    [takes quite a while, emits much information]

Most likely, make test will confirm that your build is working, but also inform you that some tests
have been skipped because optional modules were missing.

Some of the modules are platform-specific (e.g., some only work on machines running SGI's Irix
operating system), so you should not worry about them if your machine just doesn't support them.
However, other modules get skipped during the build procedure because they depend on other open
source packages that may not be installed on your machine. For example, module _tkinter, needed to
run the Tkinter GUI package covered in Chapter 16, can be built only if ./configure is able to find an
installation of Tcl/Tk 8.0 or later on your machine. See ~/Py/Python-2.2.2/README for more details,
and also for specific caveats regarding many different Unix and Unix-like platforms.

Building from source code lets you tweak your configuration in several useful ways. For example, you
can build Python in a special way that will help you track down memory leaks if you develop C-coded
Python extensions, covered in Chapter 24. Again, ~/Py/Python-2.2.2/README is a good source of
information about the configuration options you can use.

2.1.2.3 Installing after the build

By default, ./configure prepares Python for installation in /usr/local/bin and /usr/local/lib. You can
change these settings by running ./configure with option --prefix before running make. For example, if
you want a private installation of Python in subdirectory py22 of your home directory, run:

$ cd ~/Py/Python-2.2.2
$ ./configure --prefix=~/py22

and continue with make as in the previous section. Once you're done building and testing Python, to
perform the actual installation of all files, run:

$ make install

The user running make install must have write permissions on the target directories. Depending on

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The user running make install must have write permissions on the target directories. Depending on
your choice of target directories and the permissions set on those directories, you may therefore need
to su to root, bin, or some other special user when you run make install.

2.1.3 Apple Macintosh

Jack Jansen's page on MacPython, http://www.cwi.nl/~jack/macpython.html, is an indispensable
resource for any Macintosh Python user. The page includes pointers to specially packaged Python
2.2.2 source code for Macintosh (requiring the CodeWarrior Pro 7 C compiler), prebuilt binaries for
both Mac OS X and older Mac OS 9, and a wealth of other Macintosh-specific resources.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

2.2 Installing Python from Binaries

If your platform is popular and current, you may find a prebuilt and packaged binary version of
Python ready for installation. Binary packages are typically self-installing, either directly as executable
programs, or via appropriate system tools, such as the RedHat Package Manager (RPM) on Linux and
the Microsoft Installer (MSI) on Windows. Once you have downloaded a package, install it by running
the program and interactively choosing installation parameters, such as the directory where Python is
to be installed.

To download Python binaries, visit http://www.python.org and follow the link labeled Download. At
the time of this writing, the only binary installer directly available from the main Python site is a
Windows installer executable:

http://www.python.org/ftp/python/2.2.2/Python-2.2.2.exe

Many third parties supply free binary Python installers for other platforms. For Linux distributions, see
http://rpmfind.net if your distribution is RPM-based (RedHat, Mandrake, SUSE, and so on) or
http://www.debian.org for Debian. The site http://www.python.org/download/ provides links to binary
distributions for Macintosh, OS/2, Amiga, RISC OS, QNX, VxWorks, IBM AS/400, Sony PlayStation 2,
and Sharp Zaurus. Older Python versions, mainly 1.5.2, are also usable and functional, though not as
powerful and polished as the current Python 2.2.2. The download page provides links to 1.5.2
installers for older or less popular platforms (MS-DOS, Windows 3.1, Psion, BeOS, etc.).

ActivePython (http://www.activestate.com/Products/ActivePython) is a binary package of Python 2.2
for 32-bit versions of Windows and x86 Linux.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

2.3 Installing Jython

To install Jython, you need a Java Virtual Machine (JVM) that complies with Java 1.1 or higher. See
http://www.jython.org/platform.html for advice on JVMs for your platform.

To download Jython, visit http://www.jython.org and follow the link labeled Download. The latest
version at the time of this writing is:

http://prdownloads.sf.net/jython/jython-21.class

In the following section, for clarity, I assume you have created a new directory named C:\Jy and
downloaded jython-21.class there. Of course, you can choose to name and place the directory as it
best suits you. On Unix-like platforms, in particular, the directory name will more likely be something
like ~/Jy.

The Jython installer .class file is a self-installing program. Open an MS-DOS Prompt window (or a shell
prompt on a Unix-like platform), change directory to C:\Jy, and run your Java interpreter on the
Jython installer. Make sure to include directory C:\Jy in the Java CLASSPATH. With most releases of
Sun's Java Development Kit (JDK), for example, you can run:

C:\Jy> java -cp . jython-21

This runs a GUI installer that lets you choose destination directory and options. If you want to avoid
the GUI, you can use the -o switch on the command line. The switch lets you specify the installation
directory and options directly on the command line. For example:

C:\Jy> java -cp . jython-21 -o C:\Jython-2.1 demo lib source

installs Jython, with all optional components (demos, libraries, and source code), in directory
C:\Jython-2.1. The Jython installation builds two small, useful command files. One, run as jython
(named jython.bat on Windows), runs the interpreter. The other, run as jythonc, compiles Python
source into JVM bytecode. You can add the Jython installation directory to your PATH, or copy these
command files into any directory on your PATH.

You may want to use Jython with different JDKs on the same machine. For example, while JDK 1.4 is
best for most development, you may also need to use JDK 1.1 occasionally in order to compile applets
that can run on browsers that support only Java 1.1. In such cases, you could share a single Jython
installation among multiple JVMs. However, to avoid confusion and accidents, I suggest you perform
separate installations from the same Jython download on each JVM you want to support. Suppose, for
example, that you have JDK 1.4 installed in C:\Jdk14 and JDK 1.1 installed in C:\Jdk11. In this case,
you could use the commands:

C:\Jy> \Jdk14\java -cp . jython-21 -o C:\Jy21-14 demo lib source
C:\Jy> \Jdk11\java -cp . jython-21 -o C:\Jy21-11 demo lib source

With these installations, you could then choose to work off C:\Jy21-14 most of the time (e.g., by
placing it in your PATH), and cd to C:\Jy21-11 when you specifically need to compile applets with JDK
1.1.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 3. The Python Interpreter

To develop software systems in Python, you produce text files that contain Python source code and
documentation. You can use any text editor, including those in Integrated Development Environments
(IDEs). You then process the source files with the Python compiler and interpreter. You can do this
directly, or implicitly inside an IDE, or via another program that embeds Python. The Python
interpreter also lets you execute Python code interactively, as do IDEs.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.1 The python Program

The Python interpreter program is run as python (it's named python.exe on Windows). python
includes both the interpreter itself and the Python compiler, which is implicitly invoked, as needed, on
imported modules. Depending on your system, the program may have to be in a directory listed in
your PATH environment variable. Alternatively, as with any other program, you can give a complete
pathname to it at the command (shell) prompt, or in the shell script (or .BAT file, shortcut target,
etc.) that runs it.[1] On Windows, you can also use Start  Programs  Python 2.2  Python
(command line).

[1] This may involve using quotes, if the pathname contains spaces—again, this
depends on your operating system.

3.1.1 Environment Variables

Besides PATH, other environment variables affect the python program. Some environment variables
have the same effects as options passed to python on the command line; these are documented in
the next section. A few provide settings not available via command-line options:

PYTHONHOME

The Python installation directory. A lib subdirectory, containing the standard Python library
modules, should exist under this directory. On Unix-like systems, the standard library modules
should be in subdirectory lib/python-2.2 for Python 2.2, lib/python-2.3 for Python 2.3, and so
on.

PYTHONPATH

A list of directories, separated by colons on Unix-like systems and by semicolons on Windows.
Modules are imported from these directories. This extends the initial value for Python's sys.path
variable. Modules, importing, and the sys.path variable are covered in Chapter 7.

PYTHONSTARTUP

The name of a Python source file that is automatically executed each time an interactive
interpreter session starts. No such file is run if this variable is not set, or if it is set to the path
of a file that is not found. The PYTHONSTARTUP file is not used when you run a Python script: it
is used only when you start an interactive session.

How you set and examine environment variables depends on your operating system: shell commands,
persistent startup shell files (e.g., AUTOEXEC.BAT on Windows), or other approaches (e.g., Start 
Settings  Control Panel  System  Environment on Windows/NT, 2000, and XP). Some
Python versions for Windows also look for this information in the registry, in addition to the
environment. On Macintosh systems, the Python interpreter is started through the PythonInterpreter
icon and configured through the EditPythonPrefs icon. See
http://www.python.org/doc/current/mac/mac.html for information about Python on the Mac.

3.1.2 Command-Line Syntax and Options

The Python interpreter command-line syntax can be summarized as follows:

[path]python {options} [ -c command | file | - ] {arguments}

Here, brackets ([ ]) denote something that is optional, braces ({ }) enclose items of which 0 or more
may be present, and vertical bars (|) show a choice between alternatives (with none of them also
being a possibility).

options are case-sensitive short strings, starting with a hyphen, that ask python for a non-default
behavior. Unlike most Windows programs, python only accepts options starting with a hyphen, not

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


behavior. Unlike most Windows programs, python only accepts options starting with a hyphen, not
with a slash. Python consistently uses slashes for file paths, as in Unix. The most useful options are
listed in Table 3-1. Each option's description gives the environment variable (if any) that, when set to
any value, requests the same behavior.

Table 3-1. Python frequently used command-line options
Option Meaning (and equivalent environment variable)
-h Prints a full list of options and summary help, then terminates

-i Ensures an interactive session, no matter what (PYTHONINSPECT)

-O Optimizes generated bytecode (PYTHONOPTIMIZE)

-OO Like -O, but also removes documentation strings from the bytecode
-Q arg Controls the behavior of division operator / on integers

-S Omits the normally implicit import site on startup
-t Warns about inconsistent usage of tabs and blank spaces

-tt Like -tt, but raises an error rather than a warning

-u Uses unbuffered binary files for standard output and standard error (PYTHONUNBUFFERED)
-U Treats all literal strings as Unicode literals

-v Verbosely traces import and cleanup actions (PYTHONVERBOSE)
-V Prints the Python version number, then terminates
-W arg Adds an entry to the warnings filter (covered in Chapter 17)

-x Excludes (skips) the first line of the main script's source

-i is used to get an interactive session immediately after running some script, with variables still intact
and available for inspection. You do not need it for normal interactive sessions. -t and -tt ensure that
your tabs and spaces in Python sources are used consistently (see Chapter 4 for more information
about whitespace usage in Python).

-O and -OO yield small savings of time and space in bytecode generated for modules you import:
expect about 10% to 20% improvement in runtime, depending on your platform and coding style.
However, with -OO, documentation strings will not be available. -Q determines the behavior of
division operator / used between two integer operands (division is covered in Chapter 4). -W adds an
entry to the warnings filter (warnings are covered in Chapter 17).

-u uses binary mode for standard output (and standard error). Some platforms, such as Windows,
distinguish binary and text modes. Binary mode is needed when binary data is emitted to standard
output, as in some Common Gateway Interface (CGI) scripts. -u also ensures that output is performed
immediately, rather than buffered to enhance performance. This is necessary when delays due to
buffering could cause problems, as in certain Unix pipelines.

After the options, if any, comes an indication of what Python program is to be run. A file path is that
of a Python source or bytecode file to run, complete with file extension, if any. On any platform, you
may use a slash (/) as the separator between components in this path. On Windows only, you may
alternatively use a backslash (\). Instead of a file path, you can use -c command to execute a Python
code string command. command normally contains spaces, so you need quotes around it to satisfy
your operating system's shell or command-line processor. Some shells (e.g., bash) let you enter
multiple lines as a single argument, so that command can be a series of Python statements. Other
shells (e.g., Windows shells) limit you to a single line; command can then be one or more simple
statements separated by semicolons (;), as discussed in Chapter 4. A hyphen, or the lack of any token
in this position, tells the interpreter to read program source from standard input—normally, an
interactive session. You need an explicit hyphen only if arguments follow. arguments are arbitrary
strings: the Python application being run can access the strings as sys.argv.

For example, on a standard Windows installation of Python 2.2, you can enter the following at an MS-
DOS Prompt (or Command Prompt):

C:\> python22\python -c "import time; print time.asctime(  )"

to have Python emit the current date and time. On an installation of Python from sources, on Cygwin,
Linux, OpenBSD, or other Unix-like systems, you can enter the following at a shell prompt:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$ /usr/local/bin/python -v

to start an interactive session with verbose tracing of import and cleanup. In each case, you can start
the command with just python (you do not have to specify the full path to the Python executable) if
the directory of the Python executable is in your PATH environment variable.

3.1.3 Interactive Sessions

When you run python without a script argument, python enters an interactive session and prompts
you to enter Python statements or expressions. Interactive sessions are useful to explore, to check
things out, and to use Python as a very powerful, extensible interactive calculator.

When you enter a complete statement, Python executes it. When you enter a complete expression,
Python evaluates it. If the expression has a result, Python outputs a string representing the result,
and also assigns the result to the variable named _ (a single underscore) so that you can easily use
that result in another expression. The prompt string is >>> when Python expects a statement or
expression, and ... when a statement or expression has been started but not yet completed. For
example, Python prompts you with ... when you have opened a parenthesis on a previous line and
have not closed it yet.

An interactive session is terminated by end-of-file on standard input (Ctrl-Z on Windows, Ctrl-D on
Unix-like systems). The statement raise SystemExit also ends the session, as does a call to sys.exit( ),
either interactively or in code being run (SystemExit and Python exception handling are covered in
Chapter 6).

Line-editing and history facilities depend in part on how Python was built: if the optional readline
module was included, the features of the GNU readline library are available. Windows NT, 2000, and
XP have a simple but usable history facility for interactive text-mode programs like python. Windows
95, 98, and ME don't. You can use other line-editing and history facilities by installing the Alternative
ReadLine package for Windows (http://newcenturycomputers.net/projects/readline.html) or pyrepl for
Unix (http://starship.python.net/crew/mwh/hacks/pyrepl.html).
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.2 Python Development Environments

The Python interpreter's built-in interactive mode is the simplest development environment for
Python. It is a bit primitive, but it is lightweight, has a small footprint, and starts fast. Together with
an appropriate text editor (as discussed later in this chapter) and line-editing and history facilities, it
is a usable and popular development environment. However, there are a number of other
development environments that you can also use.

3.2.1 IDLE

Python's Integrated DeveLopment Environment (IDLE) comes with the standard Python distribution.
IDLE is a cross-platform, 100% pure Python application based on Tkinter (see Chapter 16). IDLE
offers a Python shell, similar to interactive Python interpreter sessions but richer in functionality. It
also includes a text editor optimized to edit Python source code, an integrated interactive debugger,
and several specialized browsers/viewers.

3.2.2 Other Free Cross-Platform Python IDEs

IDLE is mature, stable, easy to use, and rich in functionality. Promising new Python IDEs that share
IDLE's free and cross-platform nature are emerging. Red Hat's Source Navigator
(http://sources.redhat.com/sourcenav/) supports many languages. It runs on Linux, Solaris, HPUX,
and Windows. Boa Constructor (http://boa-constructor.sf.net/) is Python-only and still beta-level, but
well worth trying out. Boa Constructor includes a GUI builder for the wxWindows cross-platform GUI
toolkit.

3.2.3 Platform-Specific Free Python IDEs

Python is cross-platform, and this book focuses on cross-platform tools and components. However,
Python also provides good platform-specific facilities, including IDEs, on many platforms it supports.
For the Macintosh, MacPython includes an IDE (see
http://www.python.org/doc/current/mac/mac.html). On Windows, ActivePython includes the
PythonWin IDE. PythonWin is also available as a free add-on to the standard Python distribution for
Windows, part of Mark Hammond's powerful win32all extensions (see
http://starship.python.net/crew/mhammond).

3.2.4 Commercial Python IDEs

Several companies sell commercial Python IDEs, both cross-platform and platform-specific. You must
pay for them if you use them for commercial development and, in most cases, even if you develop
free software. However, they offer support contracts and rich arrays of tools. If you have funding for
software tool purchases, it is worth looking at these in detail and trying out their free demos or
evaluations. Most work on Linux and Windows.

Secret Labs (http://www.pythonware.com) offers a Python IDE called PythonWorks. It includes a GUI
designer for Tkinter (covered in Chapter 16). Archaeopterix sells a Python IDE, Wing, notable for its
powerful source-browsing and remote-debugging facilities (http://archaeopterix.com/wingide).
theKompany sells a Python IDE, BlackAdder, that includes a GUI builder for the PyQt GUI toolkit
(http://www.thekompany.com/products/blackadder).

ActiveState (http://www.activestate.com) has two Python IDE products. Komodo is built on top of
Mozilla (http://www.mozilla.org) and includes remote debugging capabilities. Visual Python is for
Windows only, and lets you use Microsoft's multi-language Visual Studio .NET IDE for Python
development.

3.2.5 Free Text Editors with Python Support

You can edit Python source code with any text editor, even simplistic ones such as notepad on
Windows or ed on Linux. Powerful free editors also support Python, with extra features such as

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Windows or ed on Linux. Powerful free editors also support Python, with extra features such as
syntax-based colorization and automatic indentation. Cross-platform editors let you work in uniform
ways on different platforms. Good programmers' text editors also let you run, from within the editor,
tools of your choice on the source code you're editing.

Top of the league for sheer editing power is a classic, emacs (http://www.emacs.org, and
http://www.python.org/emacs for Python-specific add-ons). However, emacs is not the easiest editor
to use, nor is it lightweight. My personal favorite is another classic, vim (http://www.vim.org), the
modern, improved version of the traditional Unix editor vi. vim is fast, lightweight, Python-
programmable, and runs everywhere in both text-mode and GUI versions. vim, like vi, has a modal
design, which lets you use normal keys for cursor movement and text changes when in command
mode. Some love this as an ergonomic trait, minimizing finger travel. Others find it confusing and
detest it. Newer editors challenge the classic ones. SciTE (http://www.scintilla.org) builds on the
Scintilla programming language editor component. FTE (http://fte.sf.net) is also worth trying.

Other advanced free editors with Python syntax support are platform-specific. On Windows, try
SynEdit (http://www.mkidesign.com/syneditinfo.html). On Unix-like systems, try Glimmer
(http://glimmer.sf.net), and Cooledit (http://cooledit.sf.net), which also offers Python
programmability, like vim, but without vim's modal architecture.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.3 Running Python Programs

Whatever tools you use to produce your Python application, you can see your application as a set of
Python source files. A script is a file that you can run directly. A module is a file that you can import
(as covered in Chapter 7) to provide functionality to other files or to interactive sessions. A Python file
can be both a module and a script, exposing functionality when imported, but also suitable for being
run directly. A useful and widespread convention is that Python files that are primarily meant to be
imported as modules, when run directly, should execute self-test operations. Testing is covered in
Chapter 17.

The Python interpreter automatically compiles Python source files as needed. Python source files
normally have extension .py. Python saves the compiled bytecode file for each module in the same
directory as the module's source, with the same basename and extension .pyc (or .pyo if Python is
run with option -O). Python does not save the compiled bytecode form of a script when you run the
script directly; rather, Python recompiles the script each time you run it. Python saves bytecode files
only for modules you import. It automatically rebuilds each module's bytecode file whenever
necessary, for example when you edit the module's source. Eventually, for deployment, you may
package Python modules using tools covered in Chapter 26.

You can run Python code interactively, with the Python interpreter or an IDE. Normally, however, you
initiate execution by running a top-level script. To run a script, you give its path as an argument to
python, as covered earlier in this chapter. Depending on your operating system, you can invoke
python directly, from a shell script, or in a command file. On Unix-like systems, you can make a
Python script directly executable by setting the file's permission bits x and r and beginning the script
with a so-called shebang line, which is a first line of the form:

#!/usr/bin/env python {options}

providing a path to the python program.

On Windows, you can associate file extensions .py, .pyc, and .pyo with the Python interpreter in the
Windows registry. Most Python versions for Windows perform this association when installed. You can
then run Python scripts with the usual Windows mechanisms, such as double-clicking on their icons.
On Windows, when you run a Python script by double-clicking on the script's icon, Windows
automatically closes the text-mode console associated with the script as soon as the script
terminates. If you want the console to linger in order to allow the user to read the script's output on
the screen, you need to ensure the script doesn't terminate too soon, for example by using the
following as the script's last statement:

raw_input('Press Enter to terminate')

This is not necessary when you run the script from a pre-existing console (also known as a MS-DOS
Prompt or Command Prompt window).

On Windows, you can also use extension .pyw and interpreter program pythonw.exe instead of .py
and python.exe. The w variants run Python without a text-mode console, and thus without standard
input and output. These variants are appropriate for scripts that rely on GUIs. You normally use them
only when the script is fully debugged, to keep standard output and error available for information,
warnings, and error messages during development.

Applications coded in other languages may embed Python, controlling the execution of Python code
for their own purposes. We examine this subject further in Chapter 24.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

3.4 The Jython Interpreter

The jython interpreter built during installation (see Chapter 2) is run similarly to the python program:

[path]jython {options} [ -j jar | -c command | file | - ] {arguments}

-j jar tells jython that the main script to run is _ _run_ _.py in the .jar file. Options -i, -S, and -v are
the same as for python. --help is like python's -h, and --version is like python's --V. Instead of
environment variables, jython uses a text file named registry in the installation directory to record
properties with structured names. Property python.path, for example, is the Jython equivalent of
Python's environment variable PYTHONPATH. You can also set properties with jython command-line
options, in the form -D name=value.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part II: Core Python Language and Built-ins
Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 4. The Python Language

This chapter is a quick guide to the Python language. To learn Python from scratch, I suggest you
start with Learning Python, by Mark Lutz and David Ascher (O'Reilly). If you already know other
programming languages and just want to learn the specifics of Python, this chapter is for you. I'm not
trying to teach Python here, so we're going to cover a lot of ground at a pretty fast pace.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.1 Lexical Structure

The lexical structure of a programming language is the set of basic rules that govern how you write
programs in that language. It is the lowest-level syntax of the language and specifies such things as
what variable names look like and what characters are used for comments. Each Python source file,
like any other text file, is a sequence of characters. You can also usefully see it as a sequence of lines,
tokens, or statements. These different syntactic views complement and reinforce each other. Python
is very particular about program layout, especially with regard to lines and indentation, so you'll want
to pay attention to this information if you are coming to Python from another language.

4.1.1 Lines and Indentation

A Python program is composed of a sequence of logical lines, each made up of one or more physical
lines. Each physical line may end with a comment. A pound sign (#) that is not inside a string literal
begins a comment. All characters after the # and up to the physical line end are part of the comment,
and the Python interpreter ignores them. A line containing only whitespace, possibly with a comment,
is called a blank line, and is ignored by the interpreter. In an interactive interpreter session, you must
enter an empty physical line (without any whitespace or comment) to terminate a multiline
statement.

In Python, the end of a physical line marks the end of most statements. Unlike in other languages,
Python statements are not normally terminated with a delimiter, such as a semicolon (;). When a
statement is too long to fit on a single physical line, you can join two adjacent physical lines into a
logical line by ensuring that the first physical line has no comment and ends with a backslash (\).
Python also joins adjacent physical lines into one logical line if an open parenthesis ((), bracket ([), or
brace ({) has not yet been closed. Triple-quoted string literals can also span physical lines. Physical
lines after the first one in a logical line are known as continuation lines. The indentation issues
covered next do not apply to continuation lines, but only to the first physical line of each logical line.

Python uses indentation to express the block structure of a program. Unlike other languages, Python
does not use braces or begin/end delimiters around blocks of statements: indentation is the only way
to indicate such blocks. Each logical line in a Python program is indented by the whitespace on its left.
A block is a contiguous sequence of logical lines, all indented by the same amount; the block is ended
by a logical line with less indentation. All statements in a block must have the same indentation, as
must all clauses in a compound statement. Standard Python style is to use four spaces per indentation
level. The first statement in a source file must have no indentation (i.e., it must not begin with any
whitespace). Additionally, statements typed at the interactive interpreter prompt >>> (covered in
Chapter 3) must have no indentation.

A tab is logically replaced by up to 8 spaces, so that the next character after the tab falls into logical
column 9, 17, 25, etc. Don't mix spaces and tabs for indentation, since different tools (e.g., editors,
email systems, printers) treat tabs differently. The -t and -tt options to the Python interpreter
(covered in Chapter 3) ensure against inconsistent tab and space usage in Python source code. You
can configure any good editor to expand tabs to spaces so that all Python source code you write
contains only spaces, not tabs. You then know that all tools, including Python itself, are going to be
consistent in handling the crucial matter of indentation in your source files.

4.1.2 Tokens

Python breaks each logical line into a sequence of elementary lexical components, called tokens. Each
token corresponds to a substring of the logical line. The normal token types are identifiers, keywords,
operators, delimiters, and literals, as covered in the following sections. Whitespace may be freely
used between tokens to separate them. Some whitespace separation is needed between logically
adjacent identifiers or keywords; otherwise, they would be parsed as a single, longer identifier. For
example, printx is a single identifier—to write the keyword print followed by identifier x, you need to
insert some whitespace (e.g., print x).

4.1.2.1 Identifiers

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


4.1.2.1 Identifiers

An identifier is a name used to identify a variable, function, class, module, or other object. An
identifier starts with a letter (A to Z or a to z) or underscore (_) followed by zero or more letters,
underscores, and digits (0 to 9). Case is significant in Python: lowercase and uppercase letters are
distinct. Punctuation characters such as @, $, and % are not allowed in identifiers.

Normal Python style is to start class names with an uppercase letter and other identifiers with a
lowercase letter. Starting an identifier with a single leading underscore indicates by convention that
the identifier is meant to be private. Starting an identifier with two leading underscores indicates a
strongly private identifier; if the identifier also ends with two trailing underscores, the identifier is a
language-defined special name. The identifier _ (a single underscore) is special in interactive
interpreter sessions: the interpreter binds _ to the result of the last expression statement evaluated
interactively, if any.

4.1.2.2 Keywords

Python has 28 keywords (29 in Python 2.3 and later), which are identifiers that Python reserves for
special syntactic uses. Keywords are composed of lowercase letters only. You cannot use keywords as
regular identifiers. Some keywords begin simple statements or clauses of compound statements,
while other keywords are used as operators. All the keywords are covered in detail in this book, either
later in this chapter or in Chapter 5, Chapter 6, or Chapter 7. The keywords in Python are:

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield[1]

def finally in print

[1] Only in Python 2.3 and later (or Python 2.2 with from _ _future_ _ import
generators).

4.1.2.3 Operators

Python uses non-alphanumeric characters and character combinations as operators. Python
recognizes the following operators, which are covered in detail later in this chapter:

+ - * / % ** // << >> &
| ^ ~ < <= > >= <> != =  =

4.1.2.4 Delimiters

Python uses the following symbols and symbol combinations as delimiters in expressions, lists,
dictionaries, various aspects of statements, and strings, among other purposes:

( ) [ ] { }
, : . ` = ;
+= -= *= /= //= %=
&= |= ^= >>= <<= **=

The period (.) can also appear in floating-point and imaginary literals. A sequence of three periods
(...) has a special meaning in slices. The last two rows of the table list the augmented assignment
operators, which serve lexically as delimiters but also perform an operation. I'll discuss the syntax for
the various delimiters when I introduce the objects or statements with which they are used.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The following characters have special meanings as part of other tokens:

' " # \

The characters @, $, and ?, all control characters except whitespace, and all characters with ISO
codes above 126 (i.e., non-ASCII characters, such as accented letters), can never be part of the text
of a Python program except in comments or string literals.

4.1.2.5 Literals

A literal is a data value that appears directly in a program. The following are all literals in Python:

42                       # Integer literal
3.14                     # Floating-point literal
1.0J                     # Imaginary literal
'hello'                  # String literal
"world"                  # Another string literal
"""Good
night"""                 # Triple-quoted string literal

Using literals and delimiters, you can create data values of other types:

[ 42, 3.14, 'hello' ]    # List 
( 100, 200, 300 )        # Tuple 
{ 'x':42, 'y':3.14 }     # Dictionary

The syntax for literals and other data values is covered in detail later in this chapter, when we discuss
the various data types supported by Python.

4.1.3 Statements

You can consider a Python source file as a sequence of simple and compound statements. Unlike other
languages, Python has no declarations or other top-level syntax elements.

4.1.3.1 Simple statements

A simple statement is one that contains no other statements. A simple statement lies entirely within a
logical line. As in other languages, you may place more than one simple statement on a single logical
line, with a semicolon (;) as the separator. However, one statement per line is the usual Python style,
as it makes programs more readable.

Any expression can stand on its own as a simple statement; we'll discuss expressions in detail later in
this chapter. The interactive interpreter shows the result of an expression statement entered at the
prompt (>>>), and also binds the result to a variable named _. Apart from interactive sessions,
expression statements are useful only to call functions (and other callables) that have side effects
(e.g., that perform output or change global variables).

An assignment is a simple statement that assigns a value to a variable, as we'll discuss later in this
chapter. Unlike in some other languages, an assignment in Python is a statement, and therefore can
never be part of an expression.

4.1.3.2 Compound statements

A compound statement contains other statements and controls their execution. A compound
statement has one or more clauses, aligned at the same indentation. Each clause has a header that
starts with a keyword and ends with a colon (:), followed by a body, which is a sequence of one or
more statements. When the body contains multiple statements, also known as a block, these

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


more statements. When the body contains multiple statements, also known as a block, these
statements should be placed on separate logical lines after the header line and indented rightward
from the header line. The block terminates when the indentation returns to that of the clause header
(or further left from there). Alternatively, the body can be a single simple statement, following the :
on the same logical line as the header. The body may also be several simple statements on the same
line with semicolons between them, but as I've already indicated, this is not good Python style.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.2 Data Types

The operation of a Python program hinges on the data it handles. All data values in Python are
represented by objects, and each object, or value, has a type. An object's type determines what
operations the object supports, or, in other words, what operations you can perform on the data
value. The type also determines the object's attributes and items (if any) and whether the object can
be altered. An object that can be altered is known as a mutable object, while one that cannot be
altered is an immutable object. I cover object attributes and items in detail later in this chapter.

The built-in type(obj) accepts any object as its argument and returns the type object that represents
the type of obj. Another built-in function, isinstance(obj,type), returns True if object obj is represented
by type object type; otherwise, it returns False (built-in names True and False were introduced in
Python 2.2.1; in older versions, 1 and 0 are used instead).

Python has built-in objects for fundamental data types such as numbers, strings, tuples, lists, and
dictionaries, as covered in the following sections. You can also create user-defined objects, known as
classes, as discussed in detail in Chapter 5.

4.2.1 Numbers

The built-in number objects in Python support integers (plain and long), floating-point numbers, and
complex numbers. All numbers in Python are immutable objects, meaning that when you perform an
operation on a number object, you always produce a new number object. Operations on numbers,
called arithmetic operations, are covered later in this chapter.

Integer literals can be decimal, octal, or hexadecimal. A decimal literal is represented by a sequence
of digits where the first digit is non-zero. An octal literal is specified with a 0 followed by a sequence
of octal digits (0 to 7). To indicate a hexadecimal literal, use 0x followed by a sequence of
hexadecimal digits (0 to 9 and A to F, in either upper- or lowercase). For example:

1, 23, 3493                  # Decimal integers
01, 027, 06645               # Octal integers
0x1, 0x17, 0xDA5             # Hexadecimal integers

Any kind of integer literal may be followed by the letter L or l to denote a long integer. For instance:

1L, 23L, 99999333493L        # Long decimal integers
01L, 027L, 01351033136165L   # Long octal integers
0x1L, 0x17L, 0x17486CBC75L   # Long hexadecimal integers

Use uppercase L here, not lowercase l, which may look like the digit 1. The difference between a long
integer and a plain integer is that a long integer has no predefined size limit: it may be as large as
memory allows. A plain integer takes up a few bytes of memory and has minimum and maximum
values that are dictated by machine architecture. sys.maxint is the largest available plain integer,
while -sys.maxint-1 is the largest negative one. On typical 32-bit machines, sys.maxint is 2147483647.

A floating-point literal is represented by a sequence of decimal digits that includes a decimal point (.),
an exponent part (an e or E, optionally followed by + or -, followed by one or more digits), or both.
The leading character of a floating-point literal cannot be e or E: it may be any digit or a period (.)
(prior to Python 2.2, a leading 0 had to be immediately followed by a period). For example:

0., 0.0, .0, 1., 1.0, 1e0, 1.e0, 1.0e0

A Python floating-point value corresponds to a C double and shares its limits of range and precision,
typically 53 bits of precision on modern platforms. (Python currently offers no way to find out this
range and precision.)

A complex number is made up of two floating-point values, one each for the real and imaginary parts.
You can access the parts of a complex object z as read-only attributes z.real and z.imag. You can
specify an imaginary literal as a floating-point or decimal literal followed by a j or J:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


0j, 0.j, 0.0j, .0j, 1j, 1.j, 1.0j, 1e0j, 1.e0j, 1.0e0j

The j at the end of the literal indicates the square root of -1, as commonly used in electrical
engineering (some other disciplines use i for this purpose, but Python has chosen j). There are no
other complex literals; constant complex numbers are denoted by adding or subtracting a floating-
point literal and an imaginary one.

Note that numeric literals do not include a sign: a leading + or -, if present, is a separate operator, as
discussed later in this chapter.

4.2.2 Sequences

A sequence is an ordered container of items, indexed by non-negative integers. Python provides built-
in sequence types for strings (plain and Unicode), tuples, and lists. Library and extension modules
provide other sequence types, and you can write yet others yourself (as discussed in Chapter 5).
Sequences can be manipulated in a variety of ways, as discussed later in this chapter.

4.2.2.1 Strings

A built-in string object is an ordered collection of characters used to store and represent text-based
information. Strings in Python are immutable, meaning that when you perform an operation on a
string, you always produce a new string object rather than mutating the existing string. String objects
provide numerous methods, as discussed in detail in Chapter 9.

A string literal can be quoted or triple-quoted. A quoted string is a sequence of zero or more
characters enclosed in matching quote characters, single (') or double ("). For example:

'This is a literal string'
"This is another string"

The two different kinds of quotes function identically; having both allows you to include one kind of
quote inside of a string specified with the other kind without needing to escape them with the
backslash character (\):

'I\'m a Python fanatic'           # a quote can be escaped
"I'm a Python fanatic"            # this way is more readable

To have a string span multiple lines, you can use a backslash as the last character of the line to
indicate that the next line is a continuation:

"A not very long string\
that spans two lines"             # comment not allowed on previous line

To make the string output on two lines, you must embed a newline in the string:

"A not very long string\n\
that prints on two lines"         # comment not allowed on previous line

Another approach is to use a triple-quoted string, which is enclosed by matching triplets of quote
characters (''' or """):

"""An even bigger
string that spans
three lines"""                    # comments not allowed on previous lines

In a triple-quoted string literal, line breaks in the literal are preserved as newline characters in the
resulting string object.

The only character that cannot be part of a triple-quoted string is an unescaped backslash, while a
quoted string cannot contain an unescaped backslash, a line-end, and the quote character that
encloses it. The backslash character starts an escape sequence, which lets you introduce any
character in either kind of string. Python's string escape sequences are listed in Table 4-1.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Table 4-1. String escape sequences
Sequence Meaning ASCII/ISO code

\<newline> End of line is ignored None

\\ Backslash 0x5c
\' Single quote 0x27
\" Double quote 0x22
\a Bell 0x07
\b Backspace 0x08
\f Form feed 0x0c
\n Newline 0x0a
\r Carriage return 0x0d
\t Tab 0x09
\v Vertical tab 0x0b
\DDD Octal value DDD As given

\xXX Hexadecimal value XX As given

\other Any other character 0x5c + as given

A variant of a string literal is a raw string. The syntax is the same as for quoted or triple-quoted string
literals, except that an r or R immediately precedes the leading quote. In raw strings, escape
sequences are not interpreted as in Table 4-1, but are literally copied into the string, including
backslashes and newline characters. Raw string syntax is handy for strings that include many
backslashes, as in regular expressions (see Chapter 9). A raw string cannot end with an odd number
of backslashes: the last one would be taken as escaping the terminating quote.

Unicode string literals have the same syntax as other string literals, plus a u or U immediately before
the leading quote character. Unicode string literals can use \u followed by four hexadecimal digits to
denote Unicode characters, and can also include the kinds of escape sequences listed in Table 4-1.
Unicode literals can also include the escape sequence \N{name}, where name is a standard Unicode
name as per the list at http://www.unicode.org/charts/. For example, \N{Copyright Sign} indicates a
Unicode copyright sign character (©). Raw Unicode string literals start with ur, not ru.

Multiple string literals of any kind (quoted, triple-quoted, raw, Unicode) can be adjacent, with optional
whitespace in between. The compiler concatenates such adjacent string literals into a single string
object. If any literal in the concatenation is Unicode, the whole result is Unicode. Writing a long string
literal in this way lets you present it readably across multiple physical lines, and gives you an
opportunity to insert comments about parts of the string. For example:

marypop = ('supercalifragilistic'   # Open paren -> logical line continues
           'expialidocious')        # Indentation ignored in continuation

The result here is a single word of 34 characters.

4.2.2.2 Tuples

A tuple is an immutable ordered sequence of items. The items of a tuple are arbitrary objects and
may be of different types. To specify a tuple, use a series of expressions (the items of the tuple)
separated by commas (,). You may optionally place a redundant comma after the last item. You may
group tuple items with parentheses, but the parentheses are needed only where the commas would
otherwise have another meaning (e.g., in function calls) or to denote empty or nested tuples. A tuple
with exactly two items is also often called a pair. To create a tuple of one item (a singleton), add a
comma to the end of the expression. An empty tuple is denoted by an empty pair of parentheses.
Here are some tuples, all enclosed in optional parentheses:

(100,200,300)              # Tuple with three items
(3.14,)                    # Tuple with one item
(  )                         # Empty tuple

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


(  )                         # Empty tuple

You can also call the built-in tuple to create a tuple. For example:

tuple('wow')

This builds a tuple equal to:

('w', 'o', 'w')

tuple( ) without arguments creates and returns an empty tuple. When x is a sequence, tuple(x) returns
a tuple whose items are the same as the items in sequence x.

4.2.2.3 Lists

A list is a mutable ordered sequence of items. The items of a list are arbitrary objects and may be of
different types. To specify a list, use a series of expressions (the items of the list) separated by
commas (,) and within brackets ([ ]). You may optionally place a redundant comma after the last
item. An empty list is denoted by an empty pair of brackets. Here are some example lists:

[42,3.14,'hello']          # List with three items
[100]                      # List with one item
[  ]                         # Empty list

You can also call the built-in list to create a list. For example:

list('wow')

This builds a list equal to:

['w', 'o', 'w']

list( ) without arguments creates and returns an empty list. When x is a sequence, list(x) creates and
returns a new list whose items are the same as the items in sequence x. You can also build lists with
list comprehensions, as discussed later in this chapter.

4.2.3 Dictionaries

A mapping is an arbitrary collection of objects indexed by nearly arbitrary values called keys.
Mappings are mutable and, unlike sequences, are unordered.

Python provides a single built-in mapping type, the dictionary type. Library and extension modules
provide other mapping types, and you can write others yourself (as discussed in Chapter 5). Keys in a
dictionary may be of different types, but they must be hashable (see function hash in Section 8.2 in
Chapter 8). Values in a dictionary are arbitrary objects and may be of different types. An item in a
dictionary is a key/value pair. You can think of a dictionary as an associative array (also known in
some other languages as a hash).

To specify a dictionary, use a series of pairs of expressions (the pairs are the items of the dictionary)
separated by commas (,) within braces ({ }). You may optionally place a redundant comma after the
last item. Each item in a dictionary is written key:value, where key is an expression giving the item's
key and value is an expression giving the item's value. If a key appears more than once in a
dictionary, only one of the items with that key is kept in the dictionary. In other words, dictionaries do
not allow duplicate keys. An empty dictionary is denoted by an empty pair of braces. Here are some
dictionaries:

{ 'x':42, 'y':3.14, 'z':7 }     # Dictionary with three items and string keys
{ 1:2, 3:4 }                    # Dictionary with two items and integer keys
{  }                            # Empty dictionary

In Python 2.2 and up, you can call the built-in dict to create a dictionary. For example:

dict([[1,2],[3,4]])

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


dict([[1,2],[3,4]])

This builds a dictionary equal to:

{1:2,3:4}

dict( ) without arguments creates and returns an empty dictionary. When the argument x to dict is a
mapping, dict returns a new dictionary object with the same keys and values as x. When x is a
sequence, the items in x must be pairs, and dict(x) returns a dictionary whose items (key/value pairs)
are the same as the items in sequence x. If a key appears more than once in x, only the last item with
that key is kept in the resulting dictionary.

4.2.4 None

The built-in type None denotes a null object. None has no methods or other attributes. You can use
None as a placeholder when you need a reference but you don't care about what object you refer to,
or when you need to indicate that no object is there. Functions return None as their result unless they
have specific return statements coded to return other values.

4.2.5 Callables

In Python, callable types are those whose instances support the function call operation (see Section
4.4 later in this chapter). Functions are obviously callable, and Python provides built-in functions (see
Chapter 8) and also supports user-defined functions (see Section 4.10 later in this chapter).
Generators, which are new as of Python 2.2, are also callable (see Section 4.10.8 later in this
chapter).

Types are also callable. Thus, the dict, list, and tuple built-ins discussed earlier are in fact types. Prior
to Python 2.2, these names referred to factory functions for creating objects of these types. As of
Python 2.2, however, they refer to the type objects themselves. Since types are callable, this change
does not break existing programs. See Chapter 8 for a complete list of built-in types.

As we'll discuss in Chapter 5, class objects are callable. So are methods, which are functions bound to
class attributes. Finally, class instances whose classes supply _ _call_ _ methods are also callable.

4.2.6 Boolean Values

Prior to Python 2.3, there is no explicit Boolean type in Python. However, every data value in Python
can be evaluated as a truth value: true or false. Any non-zero number or non-empty string, tuple, list,
or dictionary evaluates as true. Zero (of any numeric type), None, and empty strings, tuples, lists,
and dictionaries evaluate as false. Python also has a number of built-in functions that return Boolean
results.

Built-in names True and False were introduced in Python 2.2.1 to represent true and false; in older
versions of Python, 1 and 0 are used instead. Throughout the rest of this book, I will use True and
False to represent true and false. If you are using a version of Python older than 2.2.1, you'll need to
substitute 1 and 0 when using examples from this book.

Python 2.2.1 also introduced a new built-in function named bool. When this function is called with any
argument, it considers the argument's value in a Boolean context and returns False or True
accordingly.

In Python 2.3, bool becomes a type (a subclass of int) and True and False are the values of that type.
The only substantial effect of this innovation is that the string representations of Boolean values
become 'True' and 'False', while in earlier versions they are '1' and '0'.

The 2.2.1 and 2.3 changes are handy because they let you speak of functions and expressions as
"returning True or False" or "returning a Boolean." The changes also let you write clearer code when
you want to return a truth value (e.g., return True instead of return 1).
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.3 Variables and Other References

A Python program accesses data values through references. A reference is a name that refers to the
specific location in memory of a value (object). References take the form of variables, attributes, and
items. In Python, a variable or other reference has no intrinsic type. The object to which a reference is
bound at a given time does have a type, however. Any given reference may be bound to objects of
different types during the execution of a program.

4.3.1 Variables

In Python, there are no declarations. The existence of a variable depends on a statement that binds
the variable, or, in other words, that sets a name to hold a reference to some object. You can also
unbind a variable by resetting the name so it no longer holds a reference. Assignment statements are
the most common way to bind variables and other references. The del statement unbinds references.

Binding a reference that was already bound is also known as rebinding it. Whenever binding is
mentioned in this book, rebinding is implicitly included except where it is explicitly excluded.
Rebinding or unbinding a reference has no effect on the object to which the reference was bound,
except that an object disappears when nothing refers to it. The automatic cleanup of objects to which
there are no references is known as garbage collection.

You can name a variable with any identifier except the 29 that are reserved as Python's keywords
(see Section 4.1.2.2 earlier in this chapter). A variable can be global or local. A global variable is an
attribute of a module object (Chapter 7 covers modules). A local variable lives in a function's local
namespace (see Section 4.10 later in this chapter).

4.3.1.1 Object attributes and items

The distinction between attributes and items of an object is in the syntax you use to access them. An
attribute of an object is denoted by a reference to the object, followed by a period (.), followed by an
identifier called the attribute name (i.e., x.y refers to the attribute of object x that is named y).

An item of an object is denoted by a reference to the object, followed by an expression within
brackets ([ ]). The expression in brackets is called the index or key to the item, and the object is
called the container of the item (i.e., x[y] refers to the item at key or index y in container object x).

Attributes that are callable are also known as methods. Python draws no strong distinction between
callable and non-callable attributes, as other languages do. General rules about attributes also apply
to callable attributes (methods).

4.3.1.2 Accessing nonexistent references

A common programming error is trying to access a reference that does not exist. For example, a
variable may be unbound, or an attribute name or item index may not be valid for the object to which
you apply it. The Python compiler, when it analyzes and compiles source code, diagnoses only syntax
errors. Compilation does not diagnose semantic errors such as trying to access an unbound attribute,
item, or variable. Python diagnoses semantic errors only when the errant code executes, i.e., at
runtime. When an operation is a Python semantic error, attempting it raises an exception (see
Chapter 6). Accessing a nonexistent variable, attribute, or item, just like any other semantic error,
raises an exception.

4.3.2 Assignment Statements

Assignment statements can be plain or augmented. Plain assignment to a variable (e.g., name=value)
is how you create a new variable or rebind an existing variable to a new value. Plain assignment to an
object attribute (e.g., obj.attr=value) is a request to object obj to create or rebind attribute attr. Plain
assignment to an item in a container (e.g., obj[key]=value) is a request to container obj to create or

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


assignment to an item in a container (e.g., obj[key]=value) is a request to container obj to create or
rebind the item with index key.

Augmented assignment (e.g., name+=value) cannot, per se, create new references. Augmented
assignment can rebind a variable, ask an object to rebind one of its existing attributes or items, or
request the target object to modify itself (an object may, of course, create arbitrary new references
while responding to requests). When you make a request to an object, it is up to the object to decide
whether to honor the request or raise an exception.

4.3.2.1 Plain assignment

A plain assignment statement in the simplest form has the syntax:

target = expression

The target is also known as the left-hand side, and the expression as the right-hand side. When the
assignment statement executes, Python evaluates the right-hand side expression, then binds the
expression's value to the left-hand side target. The binding does not depend on the type of the value.
In particular, Python draws no strong distinction between callable and non-callable objects, as some
other languages do, so you can bind functions, methods, types, and other callables to variables.

Details of the binding do depend on the kind of target, however. The target in an assignment may be
an identifier, an attribute reference, an indexing, or a slicing:

An identifier is a variable's name: assignment to an identifier binds the variable with this name.

An attribute reference has the syntax obj.name. obj is an expression denoting an object, and
name is an identifier, called an attribute name of the object. Assignment to an attribute
reference asks object obj to bind its attribute named name.

An indexing has the syntax obj[expr]. obj and expr are expressions denoting any objects.
Assignment to an indexing asks container obj to bind its item selected by the value of expr,
also known as the index or key of the item.

A slicing has the syntax obj[start:stop] or obj[start:stop:stride]. obj, start, stop, and stride are
expressions denoting any objects. start, stop, and stride are all optional (i.e., obj[:stop:] is also
a syntactically correct slicing, equivalent to obj[None:stop:None]). Assignment to a slicing asks
container obj to bind or unbind some of its items.

We'll come back to indexing and slicing targets later in this chapter when we discuss operations on
lists and dictionaries.

When the target of the assignment is an identifier, the assignment statement specifies the binding of
a variable. This is never disallowed: when you request it, it takes place. In all other cases, the
assignment statement specifies a request to an object to bind one or more of its attributes or items.
An object may refuse to create or rebind some (or all) attributes or items, raising an exception if you
attempt a disallowed creation or rebinding.

There can be multiple targets and equals signs (=) in a plain assignment. For example:

a = b = c = 0

binds variables a, b, and c to the value 0. Each time the statement executes, the right-hand side
expression is evaluated once. Each target gets bound to the single object returned by the expression,
just as if several simple assignments executed one after the other.

The target in a plain assignment can list two or more references separated by commas, optionally
enclosed in parentheses or brackets. For example:

a, b, c = x

This requires x to be a sequence with three items, and binds a to the first item, b to the second, and c

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This requires x to be a sequence with three items, and binds a to the first item, b to the second, and c
to the third. This kind of assignment is called an unpacking assignment, and, in general, the right-
hand side expression must be a sequence with exactly as many items as there are references in the
target; otherwise, an exception is raised. Each reference in the target is bound to the corresponding
item in the sequence. An unpacking assignment can also swap references:

a, b = b, a

This rebinds a to refer to what b was bound to, and vice versa.

4.3.2.2 Augmented assignment

An augmented assignment differs from a plain assignment in that, instead of an equals sign (=)
between the target and the expression, it uses an augmented operator: a binary operator followed by
=. The augmented operators are +=, -=, *=, /=, //=, %=, **=, |=, >>=, <<=, &=, and ^=. An
augmented assignment can have only one target on the left-hand side; that is, augmented
assignment doesn't support multiple targets.

In an augmented assignment, just as in a plain one, Python first evaluates the right-hand side
expression. Then, if the left-hand side refers to an object that has a special method for the
appropriate in-place version of the operator, Python calls the method with the right-hand side value
as its argument. It is up to the method to modify the left-hand side object appropriately and return
the modified object (Chapter 5 covers special methods). If the left-hand side object has no
appropriate in-place special method, Python applies the corresponding binary operator to the left-
hand side and right-hand side objects, then rebinds the target reference to the operator's result. For
example, x+=y is like x=x._ _iadd_ _(y) when x has special method _ _iadd_ _. Otherwise x+=y is like
x=x+y.

Augmented assignment never creates its target reference: the target must already be bound when
augmented assignment executes. Augmented assignment can re-bind the target reference to a new
object or modify the same object to which the target reference was already bound. Plain assignment,
in contrast, can create or rebind the left-hand side target reference, but it never modifies the object,
if any, to which the target reference was previously bound. The distinction between objects and
references to objects is crucial here. For example, x=x+y does not modify the object to which name x
was originally bound. Rather, it rebinds the name x to refer to a new object. x+=y, in contrast,
modifies the object to which the name x is bound when that object has special method _ _iadd_ _;
otherwise, x+=y rebinds the name x, just like x=x+y.

4.3.3 del Statements

Despite its name, a del statement does not delete objects: rather, it unbinds references. Object
deletion may follow as a consequence, by garbage collection, when no more references to an object
exist.

A del statement consists of the keyword del, followed by one or more target references separated by
commas (,). Each target can be a variable, attribute reference, indexing, or slicing, just like for
assignment statements, and must be bound at the time del executes. When a del target is an
identifier, the del statement specifies the unbinding of the variable. As long as the identifier is bound,
unbinding it is never disallowed: when requested, it takes place.

In all other cases, the del statement specifies a request to an object to unbind one or more of its
attributes or items. An object may refuse to unbind some (or all) attributes or items, raising an
exception if a disallowed unbinding is attempted (see also _ _delattr_ _ in Chapter 5). Unbinding a
slicing normally has the same effect as assigning an empty sequence to that slice, but it is up to the
container object to implement this equivalence.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.4 Expressions and Operators

An expression is a phrase of code that the Python interpreter can evaluate to produce a value. The
simplest expressions are literals and identifiers. You build other expressions by joining subexpressions
with the operators and/or delimiters in Table 4-2. This table lists the operators in decreasing order of
precedence, so operators with higher precedence are listed before those with lower precedence.
Operators listed together have the same precedence. The A column lists the associativity of the
operator, which can be L (left-to-right), R (right-to-left), or NA (non-associative).

In Table 4-2, expr, key, f, index, x, and y indicate any expression, while attr and arg indicate
identifiers. The notation ,... indicates that commas join zero or more repetitions, except for string
conversion, where one or more repetitions are allowed. A trailing comma is also allowed and
innocuous in all such cases, except with string conversion, where it's forbidden.

Table 4-2. Operator precedence in expressions
Operator Description A

`expr,...` String conversion NA

{key:expr,...} Dictionary creation NA

[expr,...] List creation NA

(expr,...) Tuple creation or simple parentheses NA

f(expr,...) Function call L

x[index:index] Slicing L

x[index] Indexing L

x.attr Attribute reference L

x**y Exponentiation (x to yth power) R

~x Bitwise NOT NA

+x, -x Unary plus and minus NA

x*y, x/y, x//y, x%y Multiplication, division, truncating division, remainder L

x+y, x-y Addition, subtraction L

x<<y, x>>y Left-shift, right-shift L

x&y Bitwise AND L

x^y Bitwise XOR L

x|y Bitwise OR L

x<y, x<=y, x>y, x>=y,
x<>y, x!=y, x= =y

Comparisons (less than, less than or equal, greater than, greater
than or equal, inequality, equality)[2] NA

x is y, x is not y Identity tests NA

x in y, x not in y Membership tests NA

not x Boolean NOT NA

x and y Boolean AND L

x or y Boolean OR L

lambda arg,...: expr Anonymous simple function NA

[2] Note that <> and != are alternate forms of the same operator, where != is the
preferred version and <> is obsolete.

You can chain comparisons, implying a logical and. For example:

a < b <= c < d

has the same meaning as:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


a < b and b <= c and c < d

The chained form is more readable and evaluates each subexpression only once.

Operators and and or short-circuit their operands' evaluation: the right-hand operand evaluates only if
its value is needed to get the truth value of the entire and or or operation. In other words, x and y
first evaluates x and if x is false, the result is x; otherwise, the result is y. By the same token, x or y
first evaluates x and if x is true, the result is x; otherwise, the result is y. Note that and and or don't
force their results to be True or False, but rather return one or the other of their operands. This lets
you use these operators more generally, not just in Boolean contexts. and and or, because of their
short-circuiting semantics, differ from all other operators, which fully evaluate all operands before
performing the operation. As such, and and or let the left operand act as a guard for the right
operand.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.5 Numeric Operations

Python supplies the usual numeric operations, as you've just seen in Table 4-2. All numbers are
immutable objects, so when you perform a numeric operation on a number object, you always
produce a new number object. You can access the parts of a complex object z as read-only attributes
z.real and z.imag. Trying to rebind these attributes on a complex object raises an exception.

Note that a number's optional + or - sign, and the + that joins a floating-point literal to an imaginary
one to make a complex number, are not part of the literals' syntax. They are ordinary operators,
subject to normal operator precedence rules (see Table 4-2). This is why, for example, -2**2
evaluates to -4: exponentiation has higher precedence than unary minus, so the whole expression
parses as -(2**2), not as (-2)**2.

4.5.1 Coercion and Conversions

You can perform arithmetic operations and comparisons between any two numbers. If the operands'
types differ, coercion applies: Python converts the operand with the smaller type to the larger type.
The types, in order from smallest to largest, are integers, long integers, floating-point numbers, and
complex numbers.

You can also perform an explicit conversion by passing a numeric argument to any of the built-ins:
int, long, float, and complex. int and long drop their argument's fractional part, if any (e.g., int(9.8) is
9). Converting from a complex number to any other numeric type drops the imaginary part. You can
also call complex with two arguments, giving real and imaginary parts.

Each built-in type can also take a string argument with the syntax of an appropriate numeric literal
with two small extensions: the argument string may start with a sign and, for complex numbers, may
sum or subtract real and imaginary parts. int and long can also be called with two arguments: the first
one a string to convert, and the second one the radix, an integer between 2 and 36 to use as the base
for the conversion (e.g., int('101',2) returns 5, the value of '101' in base 2).

4.5.2 Arithmetic Operations

If the right operand of /, //, or % is 0, Python raises a runtime exception. The // operator, introduced
in Python 2.2, performs truncating division, which means it returns an integer result (converted to the
same type as the wider operand) and ignores the remainder, if any. When both operands are
integers, the / operator behaves like // if you are using Python 2.1 and earlier or if the switch -Qold
was used on the Python command line (-Qold is the default in Python 2.2). Otherwise, / performs true
division, returning a floating-point result (or a complex result, if either operand is a complex number).
To have / perform true division on integer operands in Python 2.2, use the switch -Qnew on the
Python command line or begin your source file with the statement:

from future import division

This ensures that operator / works without truncation on any type of operands.

To ensure that your program's behavior does not depend on the -Q switch, use // (in Python 2.2 and
later) to get truncating division. When you do not want truncation, ensure that at least one operand is
not an integer. For example, instead of a/b, use 1.*a/b to avoid making any assumption on the types
of a and b. To check whether your program has version dependencies in its use of division, use the
switch -Qwarn on the Python command line (in Python 2.2 and later) to get warnings about uses of /
on integer operands.

The built-in divmod function takes two numeric arguments and returns a pair whose items are the
quotient and remainder, thus saving you from having to use both // for the quotient and % for the
remainder.

An exponentiation operation, a**b, raises an exception if a is less than zero and b is a floating-point
value with a non-zero fractional part. The built-in pow(a,b) function returns the same result as a**b.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


value with a non-zero fractional part. The built-in pow(a,b) function returns the same result as a**b.
With three arguments, pow(a,b,c) returns the same result as (a**b)%c, but faster.

4.5.3 Comparisons

All objects, including numbers, can also be compared for equality (= =) and inequality (!=).
Comparisons requiring order (<, <=, >, >=) may be used between any two numbers except complex
ones, for which they raise runtime exceptions. All these operators return Boolean values (True or
False).

4.5.4 Bitwise Operations on Integers

Integers and long integers can be considered strings of bits and used with the bitwise operations
shown in Table 4-2. Bitwise operators have lower priority than arithmetic operators. Positive integers
are extended by an infinite string of 0 bits on the left. Negative integers are represented in two's
complement notation, and therefore are extended by an infinite string of 1 bits on the left.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.6 Sequence Operations

Python supports a variety of operations that can be applied to sequence types, including strings, lists,
and tuples.

4.6.1 Sequences in General

Sequences are containers with items accessible by indexing or slicing, as we'll discuss shortly. The
built-in len function takes a container as an argument and returns the number of items in the
container. The built-in min and max functions take one argument, a non-empty sequence (or other
iterable) whose items are comparable, and they return the smallest and largest items in the
sequence, respectively. You can also call min and max with multiple arguments, in which case they
return the smallest and largest arguments, respectively.

4.6.1.1 Coercion and conversions

There is no implicit coercion between different sequence types except that normal strings are coerced
to Unicode strings if needed. Conversion to strings is covered in detail in Chapter 9. You can call the
built-in tuple and list functions with a single argument (a sequence or other iterable) to get an
instance of the type you're calling, with the same items in the same order as in the argument.

4.6.1.2 Concatenation

You can concatenate sequences of the same type with the + operator. You can also multiply any
sequence S by an integer n with the * operator. The result of S*n or n*S is the concatenation of n
copies of S. If n is zero or less than zero, the result is an empty sequence of the same type as S.

4.6.1.3 Sequence membership

The x in S operator tests to see whether object x equals any item in the sequence S. It returns True if
it does and False if it doesn't. Similarly, the x not in S operator is just like not (x in S).

4.6.1.4 Indexing a sequence

The nth item of a sequence S is denoted by an indexing: S[n]. Indexing in Python is zero-based (i.e.,
the first item in S is S[0]). If S has L items, the index n may be 0, 1, ... up to and including L-1, but no
larger. n may also be -1, -2, ... down to and including -L, but no smaller. A negative n indicates the
same item in S as L+n does. In other words, S[-1] is the last element of S, S[-2] is the next-to-last
one, and so on. For example:

x = [1,2,3,4]
x[1]                  # 2
x[-1]                 # 4

Using an index greater than or equal to L or less than -L raises an exception. Assigning to an item
with an invalid index also raises an exception. You can add elements to a list, but to do so you assign
to a slice, not an item, as we'll discuss shortly.

4.6.1.5 Slicing a sequence

You can denote a subsequence of S with a slicing, using the syntax S[i:j], where i and j are integers.
S[i:j] is the subsequence of S from the ith item, included, to the jth item, excluded. Note that in

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


S[i:j] is the subsequence of S from the ith item, included, to the jth item, excluded. Note that in
Python, all ranges include the lower bound and exclude the upper bound. A slice can be an empty
subsequence if j is less than i or if i is greater than or equal to L, the length of S. You can omit i if it is
equal to 0, so that the slice begins from the start of S, and you can omit j if it is greater than or equal
to L, so that the slice extends all the way to the end of S. You can even omit both indices to mean the
entire sequence: S[:]. Either or both indices may be less than 0. A negative index indicates the same
spot in S as L+n, just as in indexing. An index greater than or equal to L means the end of S, while a
negative index less than or equal to -L means the start of S. Here are some examples:

x = [1,2,3,4]
x[1:3]                 # [2,3]
x[1:]                  # [2,3,4]
x[:2]                  # [1,2]

Slicing can also use the extended syntax S[i:j:k]. In Python 2.2, built-in sequences do not support
extended-form slicing, but in Python 2.3 they do. Even in Python 2.2 and earlier, however, user-
defined sequences can optionally support extended-form slicing. k is the stride of the slice, or the
distance between successive indices. For example, S[i:j] is equivalent to S[i:j:1], S[::2] is the
subsequence of S that includes all items that have an even index in S, and S[::-1] has the same items
as S, but in reverse order.

4.6.2 Strings

String objects are immutable, so attempting to rebind or delete an item or slice of a string raises an
exception. The items of a string object are strings of length 1. The slices of a string object are its
substrings. String objects have several methods, which are covered in Chapter 9.

4.6.3 Tuples

Tuple objects are immutable, so attempting to rebind or delete an item or slice of a tuple raises an
exception. The items of a tuple are arbitrary objects, and may be of different types. The slices of a
tuple are also tuples. Tuples have no normal methods.

4.6.4 Lists

List objects are mutable, so you may rebind or delete items and slices of a list. The items of a list are
arbitrary objects, and may be of different types. The slices of a list are also lists.

4.6.4.1 Modifying a list

You can modify a list by assigning to an indexing. For instance:

x = [1,2,3,4]
x[1] = 42                # x is now [1,42,2,3]

Another way to modify a list object L is to use a slice of L as the target (left-hand side) of an
assignment statement. The right-hand side of the assignment must also be a list. The left-hand side
slice and the right-hand side list may each be of any length, which means that assigning to a slice can
add items to the list or remove items from the list. For example:

x = [1,2,3,4]
x[1:3] = [22,33,44]      # x is now [1,22,33,44,4]
x[1:4] = [2,3]           # x back to [1,2,3,4]

Here are some important special cases:

Using the empty list [ ] as the right-hand side expression removes the target slice from L. In
other words, L[i:j]=[ ] has the same effect as del L[i:j].

Using an empty slice of L as the left-hand side target inserts the items of the right-hand side
list at the appropriate spot in L. In other words, L[i:i]=['a','b'] inserts the items 'a' and 'b' after

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


list at the appropriate spot in L. In other words, L[i:i]=['a','b'] inserts the items 'a' and 'b' after
item i in L.

Using a slice that covers the entire list object, L[:], as the left-hand side target totally replaces
the content of L.

You can delete an item or a slice from a list with del. For instance:

x = [1,2,3,4,5]
del x[1]                 # x is now [1,3,4,5]
del x[1:3]               # x is now [1,5]

4.6.4.2 In-place operations on a list

List objects define in-place versions of the + and * operators, which are used via augmented
assignment statements. The augmented assignment statement L+=L1 has the effect of adding the
items of list L1 to the end of L, while L*=n has the effect of adding n copies of L to the end of L.

4.6.4.3 List methods

List objects provide several methods, as shown in Table 4-3. Non-mutating methods return a result
without altering the object to which they apply, while mutating methods may alter the object to which
they apply. Many of the mutating methods behave like assignments to appropriate slices of the list. In
Table 4-3, L and l indicate any list object, i any valid index in L, and x any object.

Table 4-3. List object methods
Method Description

Non-mutating
methods

L.count(x) Returns the number of occurrences of x in L

L.index(x) Returns the index of the first occurrence of item x in L or raises an exception if L
has no such item

Mutating
methods

L.append(x) Appends item x to the end of L
L.extend(l) Appends all the items of list l to the end of L
L.insert(i,x) Inserts item x at index i in L
L.remove(x) Removes the first occurrence of item x from L

L.pop([i]) Returns the value of the item at index i and removes it from L; if i is omitted,
removes and returns the last item

L.reverse(  ) Reverses, in-place, the items of L

L.sort([f]) Sorts, in-place, the items of L, comparing items by f; if f is omitted, cmp is used
as comparison function

All mutating methods of list objects except pop return None. The sort method takes one optional
argument. If present, the argument must be a function that, when called with any two list items as
arguments, returns -1, 0, or 1, depending on whether the first item is to be considered less than,
equal to, or greater than the second item for sorting purposes. Passing the argument slows down the
sort, although it makes it easy to sort small lists in flexible ways. The decorate-sort-undecorate idiom,
presented in Chapter 17, is faster (and often less error-prone) than passing an argument to sort, and
it's at least as flexible.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.7 Dictionary Operations

Python provides a variety of operations that can be applied to dictionaries. Since dictionaries are
containers, the built-in len function can take a dictionary as its single argument and return the
number of items (key/value pairs) in the dictionary object.

4.7.1 Dictionary Membership

In Python 2.2 and later, the k in D operator tests to see whether object k is one of the keys of the
dictionary D. It returns True if it is and False if it isn't. Similarly, the k not in D operator is just like not
(k in D).

4.7.2 Indexing a Dictionary

The value in a dictionary D that is currently associated with key k is denoted by an indexing: D[k].
Indexing with a key that is not present in the dictionary raises an exception. For example:

d = { 'x':42, 'y':3.14, 'z':7 } 
d['x']                           # 42
d['z']                           # 7
d['a']                           # raises exception

Plain assignment to a dictionary indexed with a key that is not yet in the dictionary (e.g.,
D[newkey]=value) is a valid operation that adds the key and value as a new item in the dictionary. For
instance:

d = { 'x':42, 'y':3.14, 'z':7 } 
d['a'] = 16                      # d is now {'x':42,'y':3.14,'z':7,'a':16}

The del statement, in the form del D[k], removes from the dictionary the item whose key is k. If k is
not a key in dictionary D, del D[k] raises an exception.

4.7.3 Dictionary Methods

Dictionary objects provide several methods, as shown in Table 4-4. Non-mutating methods return a
result without altering the object to which they apply, while mutating methods may alter the object to
which they apply. In Table 4-4, D and D1 indicate any dictionary object, k any valid key in D, and x
any object.

Table 4-4. Dictionary object methods
Method Description

Non-mutating
methods

D.copy(  ) Returns a (shallow) copy of the dictionary

D.has_key(k) Returns True if k is a key in D, otherwise returns False
D.items(  ) Returns a copy of the list of all items (key/value pairs) in D
D.keys(  ) Returns a copy of the list of all keys in D
D.values(  ) Returns a copy of the list of all values in D
D.iteritems(  ) Returns an iterator on all items (key/value pairs) in D
D.iterkeys(  ) Returns an iterator on all keys in D
D.itervalues(  ) Returns an iterator on all values in D

D.get(k[,x]) Returns D[k] if k is a key in D, otherwise returns x (or None, if x is not
given)

Mutating methods

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


D.clear(  ) Removes all items from D
D.update(D1) For each k in D1, sets D[k] equal to D1[k]
D.setdefault(k[,x]) Returns D[k] if k is a key in D; otherwise sets D[k] equal to x and returns x
D.popitem(  ) Removes and returns an arbitrary item (key/value pair)

The items, keys, and values methods return their resulting lists in arbitrary order. If you call more than
one of these methods without any intervening change to the dictionary, however, the order of the
results is the same for all. The iteritems, iterkeys, and itervalues methods, which are new as of Python
2.2, return iterators equivalent to these lists (iterators are discussed later in this chapter). An iterator
consumes less memory than a list, but you are not allowed to modify a dictionary while iterating on
one of its iterators. Iterating on the list returned by items, keys, or values carries no such constraint.
Iterating directly on a dictionary D is exactly like iterating on D.iterkeys( ).

The popitem method can be used for destructive iteration on a dictionary. Both items and popitem
return dictionary items as key/value pairs, but using popitem consumes less memory, as it does not
rely on a separate list of items. The memory savings make the idiom usable for a loop on a huge
dictionary, if it's okay to destroy the dictionary in the course of the loop. In Python 2.2 and later,
iterating directly on the dictionary (or on iterkeys or iteritems) also consumes modest amounts of
memory, and does not destroy the dictionary you're iterating on.

The setdefault method returns the same result as get, but if k is not a key in D, setdefault also has the
side effect of binding D[k] to the value x.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.8 The print Statement

A print statement is denoted by the keyword print followed by zero or more expressions separated by
commas. print is a handy, simple way to output values in text form. print outputs each expression x as
a string that's just like the result of calling str(x) (covered in Chapter 8). print implicitly outputs a
space between expressions, and it also implicitly outputs \n after the last expression, unless the last
expression is followed by a trailing comma (,). Here are some examples of print statements:

letter = 'c'
print "give me a", letter, "..."           # prints: give me a c ...
answer = 42
print "the answer is:", answer             # prints: the answer is: 42

The destination of print's output is the file or file-like object that is the value of the stdout attribute of
the sys module (covered in Chapter 8). You can control output format more precisely by performing
string formatting yourself, with the % operator or other string manipulation techniques, as covered in
Chapter 9. You can also use the write or writelines methods of file objects, as covered in Chapter 10.
However, print is very simple to use, and simplicity is an important advantage in the common case
where all you need are the simple output strategies that print supplies.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.9 Control Flow Statements

A program's control flow is the order in which the program's code executes. The control flow of a
Python program is regulated by conditional statements, loops, and function calls. This section covers
the if statement and for and while loops; functions are covered later in this chapter. Raising and
handling exceptions also affects control flow; exceptions are covered in Chapter 6.

4.9.1 The if Statement

Often, you need to execute some statements only if some condition holds, or choose statements to
execute depending on several mutually exclusive conditions. The Python compound statement if,
which uses if, elif, and else clauses, lets you conditionally execute blocks of statements. Here's the
syntax for the if statement:

if expression:
    statement(s)
elif expression:
    statement(s)
elif expression:
    statement(s)
...
else expression:
    statement(s)

The elif and else clauses are optional. Note that unlike some languages, Python does not have a switch
statement, so you must use if, elif, and else for all conditional processing.

Here's a typical if statement:

if x < 0: print "x is negative"
elif x % 2: print "x is positive and odd"
else: print "x is even and non-negative"

When there are multiple statements in a clause (i.e., the clause controls a block of statements), the
statements are placed on separate logical lines after the line containing the clause's keyword (known
as the header line of the clause) and indented rightward from the header line. The block terminates
when the indentation returns to that of the clause header (or further left from there). When there is
just a single simple statement, as here, it can follow the : on the same logical line as the header, but
it can also be placed on a separate logical line, immediately after the header line and indented
rightward from it. Many Python practitioners consider the separate-line style more readable:

if x < 0:
    print "x is negative"
elif x % 2:
    print "x is positive and odd"
else:
    print "x is even and non-negative"

You can use any Python expression as the condition in an if or elif clause. When you use an expression
this way, you are using it in a Boolean context. In a Boolean context, any value is taken as either true
or false. As we discussed earlier, any non-zero number or non-empty string, tuple, list, or dictionary
evaluates as true. Zero (of any numeric type), None, and empty strings, tuples, lists, and dictionaries
evaluate as false. When you want to test a value x in a Boolean context, use the following coding
style:

if x:

This is the clearest and most Pythonic form. Don't use:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


if x is True:
if x =  = True:
if bool(x):

There is a crucial difference between saying that an expression "returns True" (meaning the
expression returns the value 1 intended as a Boolean result) and saying that an expression "evaluates
as true" (meaning the expression returns any result that is true in a Boolean context). When testing
an expression, you care about the latter condition, not the former.

If the expression for the if clause evaluates as true, the statements following the if clause execute,
and the entire if statement ends. Otherwise, the expressions for any elif clauses are evaluated in
order. The statements following the first elif clause whose condition is true, if any, are executed, and
the entire if statement ends. Otherwise, if an else clause exists, the statements following it are
executed.

4.9.2 The while Statement

The while statement in Python supports repeated execution of a statement or block of statements that
is controlled by a conditional expression. Here's the syntax for the while statement:

while expression:
    statement(s)

A while statement can also include an else clause and break and continue statements, as we'll discuss
shortly.

Here's a typical while statement:

count = 0
while x > 0:
    x = x // 2            # truncating division
    count += 1
print "The approximate log2 is", count

First, expression, which is known as the loop condition, is evaluated. If the condition is false, the while
statement ends. If the loop condition is satisfied, the statement or statements that comprise the loop
body are executed. When the loop body finishes executing, the loop condition is evaluated again, to
see if another iteration should be performed. This process continues until the loop condition is false,
at which point the while statement ends.

The loop body should contain code that eventually makes the loop condition false, or the loop will
never end unless an exception is raised or the loop body executes a break statement. A loop that is in
a function's body also ends if a return statement executes in the loop body, as the whole function ends
in this case.

4.9.3 The for Statement

The for statement in Python supports repeated execution of a statement or block of statements that is
controlled by an iterable expression. Here's the syntax for the for statement:

for target in iterable:
    statement(s)

Note that the in keyword is part of the syntax of the for statement and is functionally unrelated to the
in operator used for membership testing. A for statement can also include an else clause and break
and continue statements, as we'll discuss shortly.

Here's a typical for statement:

for letter in "ciao":
    print "give me a", letter, "..."

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    print "give me a", letter, "..."

iterable may be any Python expression suitable as an argument to built-in function iter, which returns
an iterator object (explained in detail in the next section). target is normally an identifier that names
the control variable of the loop; the for statement successively rebinds this variable to each item of
the iterator, in order. The statement or statements that comprise the loop body execute once for each
item in iterable (unless the loop ends because an exception is raised or a break or return statement is
executed).

A target with multiple identifiers is also allowed, as with an unpacking assignment. In this case, the
iterator's items must then be sequences, each with the same length, equal to the number of
identifiers in the target. For example, when d is a dictionary, this is a typical way to loop on the items
in d:

for key, value in d.items(  ):
    if not key or not value: del d[key]    # keep only true keys and values

The items method returns a list of key/value pairs, so we can use a for loop with two identifiers in the
target to unpack each item into key and value.

If the iterator has a mutable underlying object, that object must not be altered while a for loop is in
progress on it. For example, the previous example cannot use iteritems instead of items. iteritems
returns an iterator whose underlying object is d, so therefore the loop body cannot mutate d (by del
d[key]). items returns a list, though, so d is not the underlying object of the iterator and the loop body
can mutate d.

The control variable may be rebound in the loop body, but is rebound again to the next item in the
iterator at the next iteration of the loop. The loop body does not execute at all if the iterator yields no
items. In this case, the control variable is not bound or rebound in any way by the for statement. If
the iterator yields at least one item, however, when the loop statement terminates, the control
variable remains bound to the last value to which the loop statement has bound it. The following code
is thus correct, as long as someseq is not empty:

for x in someseq:
    process(x)
print "Last item processed was", x

4.9.3.1 Iterators

An iterator is any object i such that you can call i.next( ) without any arguments. i.next( ) returns the
next item of iterator i, or, when iterator i has no more items, raises a StopIteration exception. When
you write a class (see Chapter 5), you can allow instances of the class to be iterators by defining such
a method next. Most iterators are built by implicit or explicit calls to built-in function iter, covered in
Chapter 8. Calling a generator also returns an iterator, as we'll discuss later in this chapter.

The for statement implicitly calls iter to get an iterator. The following statement:

for x in c: 
    statement(s)

is equivalent to:

_temporary_iterator = iter(c)
while True:
    try: x = _temporary_iterator.next(  )
    except StopIteration: break
    statement(s)

Thus, if iter(c) returns an iterator i such that i.next( ) never raises StopIteration (an infinite iterator),
the loop for x in c: never terminates (unless the statements in the loop body contain suitable break or
return statements or propagate exceptions). iter(c), in turn, calls special method c._ _iter_ _( ) to
obtain and return an iterator on c. We'll talk more about the special method _ _iter_ _ in Chapter 5.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Iterators were first introduced in Python 2.2. In earlier versions, for x in S: required S to be a
sequence that was indexable with progressively larger indices 0, 1, ..., and raised an IndexError when
indexed with a too-large index. Thanks to iterators, the for statement can now be used on a container
that is not a sequence, such as a dictionary, as long as the container is iterable (i.e., it defines an _
_iter_ _ special method so that function iter can accept the container as the argument and return an
iterator on the container). Built-in functions that used to require a sequence argument now also
accept any iterable.

4.9.3.2 range and xrange

Looping over a sequence of integers is a common task, so Python provides built-in functions range
and xrange to generate and return integer sequences. The simplest, most idiomatic way to loop n
times in Python is:

for i in xrange(n):
    statement(s)

range(x) returns a list whose items are consecutive integers from 0 (included) up to x (excluded).
range(x,y) returns a list whose items are consecutive integers from x (included) up to y (excluded).
The result is the empty list if x is greater than or equal to y. range(x,y,step) returns a list of integers
from x (included) up to y (excluded), such that the difference between each two adjacent items in the
list is step. If step is less than 0, range counts down from x to y. range returns the empty list when x is
greater than or equal to y and step is greater than 0, or when x is less than or equal to y and step is
less than 0. If step equals 0, range raises an exception.

While range returns a normal list object, usable for all purposes, xrange returns a special-purpose
object, specifically intended to be used in iterations like the for statement shown previously. xrange
consumes less memory than range for this specific use. Leaving aside memory consumption, you can
use range wherever you could use xrange.

4.9.3.3 List comprehensions

A common use of a for loop is to inspect each item in a sequence and build a new list by appending
the results of an expression computed on some or all of the items inspected. The expression form,
called a list comprehension, lets you code this common idiom concisely and directly. Since a list
comprehension is an expression (rather than a block of statements), you can use it directly wherever
you need an expression (e.g., as an actual argument in a function call, in a return statement, or as a
subexpression for some other expression).

A list comprehension has the following syntax:

[ expression for target in iterable lc-clauses ]

target and iterable are the same as in a regular for statement. You must enclose the expression in
parentheses if it indicates a tuple.

lc-clauses is a series of zero or more clauses, each with one of the following forms:

for target in iterable
if expression

target and iterable in each for clause of a list comprehension have the same syntax as those in a
regular for statement, and the expression in each if clause of a list comprehension has the same
syntax as the expression in a regular if statement.

A list comprehension is equivalent to a for loop that builds the same list by repeated calls to the
resulting list's append method. For example (assigning the list comprehension result to a variable for
clarity):

result1 = [x+1 for x in some_sequence]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


result1 = [x+1 for x in some_sequence]

is the same as the for loop:

result2 = [  ]
for x in some_sequence:
    result2.append(x+1)

Here's a list comprehension that uses an if clause:

result3 = [x+1 for x in some_sequence if x>23]

which is the same as a for loop that contains an if statement:

result4 = [  ]
for x in some_sequence:
    if x>23:
        result4.append(x+1)

And here's a list comprehension that uses a for clause:

result5 = [x+y for x in alist for y in another]

which is the same as a for loop with another for loop nested inside:

result6 = [  ]
for x in alist:
    for y in another:
        result6.append(x+y)

As these examples show, the order of for and if in a list comprehension is the same as in the
equivalent loop, but in the list comprehension the nesting stays implicit.

4.9.4 The break Statement

The break statement is allowed only inside a loop body. When break executes, the loop terminates. If
a loop is nested inside other loops, break terminates only the innermost nested loop. In practical use,
a break statement is usually inside some clause of an if statement in the loop body so that it executes
conditionally.

One common use of break is in the implementation of a loop that decides if it should keep looping only
in the middle of each loop iteration:

while True:                     # this loop can never terminate naturally
    x = get_next(  )
    y = preprocess(x)
    if not keep_looping(x, y): break
    process(x, y)

4.9.5 The continue Statement

The continue statement is allowed only inside a loop body. When continue executes, the current
iteration of the loop body terminates, and execution continues with the next iteration of the loop. In
practical use, a continue statement is usually inside some clause of an if statement in the loop body so
that it executes conditionally.

The continue statement can be used in place of deeply nested if statements within a loop. For
example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


for x in some_container:
    if not seems_ok(x): continue
    lowbound, highbound = bounds_to_test(  )
    if x<lowbound or x>=highbound: continue
    if final_check(x):
        do_processing(x)

This equivalent code does conditional processing without continue:

for x in some_container:
    if seems_ok(x):
        lowbound, highbound = bounds_to_test(  )
        if lowbound<=x<highbound:
            if final_check(x):
                do_processing(x)

Both versions function identically, so which one you use is a matter of personal preference.

4.9.6 The else Clause on Loop Statements

Both the while and for statements may optionally have a trailing else clause. The statement or
statements after the else execute when the loop terminates naturally (at the end of the for iterator or
when the while loop condition becomes false), but not when the loop terminates prematurely (via
break, return, or an exception). When a loop contains one or more break statements, you often need
to check whether the loop terminates naturally or prematurely. You can use an else clause on the loop
for this purpose:

for x in some_container:
    if is_ok(x): break             # item x is satisfactory, terminate loop
else:
    print "Warning: no satisfactory item was found in container"
    x = None

4.9.7 The pass Statement

The body of a Python compound statement cannot be empty—it must contain at least one statement.
The pass statement, which performs no action, can be used as a placeholder when a statement is
syntactically required but you have nothing specific to do. Here's an example of using pass in a
conditional statement as a part of somewhat convoluted logic, with mutually exclusive conditions
being tested:

if condition1(x):
    process1(x)
elif x>23 or condition2(x) and x<5:
    pass                                # nothing to be done in this case
elif condition3(x):
    process3(x)
else:
    process_default(x)

4.9.8 The try Statement

Python supports exception handling with the try statement, which includes try, except, finally, and else
clauses. A program can explicitly raise an exception with the raise statement. As we'll discuss in detail
in Chapter 6, when an exception is raised, normal control flow of the program stops and Python looks
for a suitable exception handler.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

4.10 Functions

Most statements in a typical Python program are organized into functions. A function is a group of
statements that executes upon request. Python provides many built-in functions and allows
programmers to define their own functions. A request to execute a function is known as a function
call. When a function is called, it may be passed arguments that specify data upon which the function
performs its computation. In Python, a function always returns a result value, either None or a value
that represents the results of its computation. Functions defined within class statements are also
called methods. Issues specific to methods are covered in Chapter 5; the general coverage of
functions in this section, however, also applies to methods.

In Python, functions are objects (values) and are handled like other objects. Thus, you can pass a
function as an argument in a call to another function. Similarly, a function can return another function
as the result of a call. A function, just like any other object, can be bound to a variable, an item in a
container, or an attribute of an object. Functions can also be keys into a dictionary. For example, if
you need to quickly find a function's inverse given the function, you could define a dictionary whose
keys and values are functions and then make the dictionary bidirectional (using some functions from
module math, covered in Chapter 15):

inverse = {sin:asin, cos:acos, tan:atan, log:exp}
for f in inverse.keys(  ): inverse[inverse[f]] = f

The fact that functions are objects in Python is often expressed by saying that functions are first-class
objects.

4.10.1 The def Statement

The def statement is the most common way to define a function. def is a single-clause compound
statement with the following syntax:

def function-name(parameters): 
    statement(s)

function-name is an identifier. It is a variable that gets bound (or rebound) to the function object when
def executes.

parameters is an optional list of identifiers, called formal parameters or just parameters, that are used
to represent values that are supplied as arguments when the function is called. In the simplest case, a
function doesn't have any formal parameters, which means the function doesn't take any arguments
when it is called. In this case, the function definition has empty parentheses following function-name.

When a function does take arguments, parameters contains one or more identifiers, separated by
commas (,). In this case, each call to the function supplies values, known as arguments, that
correspond to the parameters specified in the function definition. The parameters are local variables
of the function, as we'll discuss later in this section, and each call to the function binds these local
variables to the corresponding values that the caller supplies as arguments.

The non-empty sequence of statements, known as the function body, does not execute when the def
statement executes. Rather, the function body executes later, each time the function is called. The
function body can contain zero or more occurrences of the return statement, as we'll discuss shortly.

Here's an example of a simple function that returns a value that is double the value passed to it:

def double(x):
    return x*2

4.10.2 Parameters

Formal parameters that are simple identifiers indicate mandatory parameters. Each call to the
function must supply a corresponding value (argument) for each mandatory parameter.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In the comma-separated list of parameters, zero or more mandatory parameters may be followed by
zero or more optional parameters, where each optional parameter has the syntax:

identifier=expression

The def statement evaluates the expression and saves a reference to the value returned by the
expression, called the default value for the parameter, among the attributes of the function object.
When a function call does not supply an argument corresponding to an optional parameter, the call
binds the parameter's identifier to its default value for that execution of the function.

Note that the same object, the default value, gets bound to the optional parameter whenever the
caller does not supply a corresponding argument. This can be tricky when the default value is a
mutable object and the function body alters the parameter. For example:

def f(x, y=[  ]):
    y.append(x)
    return y
print f(23)                # prints: [23]
prinf f(42)                # prints: [23,42]

The second print statement prints [23,42] because the first call to f altered the default value of y,
originally an empty list [ ], by appending 23 to it. If you want y to be bound to a new empty list object
each time f is called with a single argument, use the following:

def f(x, y=None):
    if y is None: y = [  ]
    y.append(x)
    return y
print f(23)                # prints: [23]
prinf f(42)                # prints: [42]

At the end of the formal parameters, you may optionally use either or both of the special forms
*identifier1 and **identifier2. If both are present, the one with two asterisks must be last. *identifier1
indicates that any call to the function may supply extra positional arguments, while **identifier2
specifies that any call to the function may supply extra named arguments (positional and named
arguments are covered later in this chapter). Every call to the function binds identifier1 to a tuple
whose items are the extra positional arguments (or the empty tuple, if there are none). identifier2 is
bound to a dictionary whose items are the names and values of the extra named arguments (or the
empty dictionary, if there are none). Here's how to write a function that accepts any number of
arguments and returns their sum:

def sum(*numbers):
    result = 0
    for number in numbers: result += number
    return result
print sum(23,42)           # prints: 65

The ** form also lets you construct a dictionary with string keys in a more readable fashion than with
the standard dictionary creation syntax:

def adict(**kwds): return kwds
print adict(a=23, b=42)    # prints: {'a':23, 'b':42}

Note that the body of function adict is just one simple statement, and therefore we can exercise the
option to put it on the same line as the def statement. Of course, it would be just as correct (and
arguably more readable) to code function adict using two lines instead of one:

def adict(**kwds):
    return kwds

4.10.3 Attributes of Function Objects

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The def statement defines some attributes of a function object. The attribute func_name, also
accessible as _ _name_ _, is a read-only attribute (trying to rebind or unbind it raises a runtime
exception) that refers to the identifier used as the function name in the def statement. The attribute
func_defaults, which you may rebind or unbind, refers to the tuple of default values for the optional
parameters (or the empty tuple, if the function has no optional parameters).

Another function attribute is the documentation string, also known as a docstring. You may use or
rebind a function's docstring attribute as either func_doc or _ _doc_ _. If the first statement in the
function body is a string literal, the compiler binds that string as the function's docstring attribute. A
similar rule applies to classes (see Chapter 5) and modules (see Chapter 7). Docstrings most often
span multiple physical lines, and are therefore normally specified in triple-quoted string literal form.
For example:

def sum(*numbers):
    '''Accept arbitrary numerical arguments and return their sum.

    The arguments are zero or more numbers.  The result is their sum.'''

    result = 0
    for number in numbers: result += number
    return result

Documentation strings should be part of any Python code you write. They play a role similar to that of
comments in any programming language, but their applicability is wider since they are available at
runtime. Development environments and other tools may use docstrings from function, class, and
module objects to remind the programmer how to use those objects. The doctest module (covered in
Chapter 17) makes it easy to check that the sample code in docstrings is accurate and correct.

To make your docstrings as useful as possible, you should respect a few simple conventions. The first
line of a docstring should be a concise summary of the function's purpose, starting with an uppercase
letter and ending with a period. It should not mention the function's name, unless the name happens
to be a natural-language word that comes naturally as part of a good, concise summary of the
function's operation. If the docstring is multiline, the second line should be empty, and the following
lines should form one or more paragraphs, separated by empty lines, describing the function's
expected arguments, preconditions, return value, and side effects (if any). Further explanations,
bibliographical references, and usage examples (to be checked with doctest) can optionally follow
toward the end of the docstring.

In addition to its predefined attributes, a function object may be given arbitrary attributes. To create
an attribute of a function object, bind a value to the appropriate attribute references in an assignment
statement after the def statement has executed. For example, a function could count how many times
it is called:

def counter(  ):
    counter.count += 1
    return counter.count
counter.count = 0

Note that this is not common usage. More often, when you want to group together some state (data)
and some behavior (code), you should use the object-oriented mechanisms covered in Chapter 5.
However, the ability to associate arbitrary attributes with a function can sometimes come in handy.

4.10.4 The return Statement

The return statement in Python is allowed only inside a function body, and it can optionally be
followed by an expression. When return executes, the function terminates and the value of the
expression is returned. A function returns None if it terminates by reaching the end of its body or by
executing a return statement that has no expression.

As a matter of style, you should not write a return statement without an expression at the end of a
function body. If some return statements in a function have an expression, all return statements
should have an expression. return None should only be written explicitly to meet this style

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


should have an expression. return None should only be written explicitly to meet this style
requirement. Python does not enforce these stylistic conventions, but your code will be clearer and
more readable if you follow them.

4.10.5 Calling Functions

A function call is an expression with the following syntax:

function-object(arguments)

function-object may be any reference to a function object; it is most often the function's name. The
parentheses denote the function-call operation itself. arguments, in the simplest case, is a series of
zero or more expressions separated by commas (,), giving values for the function's corresponding
formal parameters. When a function is called, the parameters are bound to these values, the function
body executes, and the value of the function-call expression is whatever the function returns.

4.10.5.1 The semantics of argument passing

In traditional terms, all argument passing in Python is by value. For example, if a variable is passed
as an argument, Python passes to the function the object (value) to which the variable currently
refers, not the variable itself. Thus, a function cannot rebind the caller's variables. However, if a
mutable object is passed as an argument, the function may request changes to that object since
Python passes the object itself, not a copy. Rebinding a variable and mutating an object are totally
different concepts in Python. For example:

def f(x, y):
    x = 23
    y.append(42)
a = 77
b = [99]
f(a, b)
print a, b                # prints: 77 [99, 42]

The print statement shows that a is still bound to 77. Function f's rebinding of its parameter x to 23
has no effect on f's caller, and in particular on the binding of the caller's variable, which happened to
be used to pass 77 as the parameter's value. However, the print statement also shows that b is now
bound to [99,42]. b is still bound to the same list object as before the call, but that object has
mutated, as f has appended 42 to that list object. In either case, f has not altered the caller's
bindings, nor can f alter the number 77, as numbers are immutable. However, f can alter a list object,
as list objects are mutable. In this example, f does mutate the list object that the caller passes to f as
the second argument by calling the object's append method.

4.10.5.2 Kinds of arguments

Arguments that are just expressions are called positional arguments. Each positional argument
supplies the value for the formal parameter that corresponds to it by position (order) in the function
definition.

In a function call, zero or more positional arguments may be followed by zero or more named
arguments with the following syntax:

identifier=expression

The identifier must be one of the formal parameter names used in the def statement for the function.
The expression supplies the value for the formal parameter of that name.

A function call must supply, via either a positional or a named argument, exactly one value for each
mandatory parameter, and zero or one value for each optional parameter. For example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


def divide(divisor, dividend): return dividend // divisor
print divide(12,94)                         # prints: 7
print divide(dividend=94, divisor=12)       # prints: 7

As you can see, the two calls to divide are equivalent. You can pass named arguments for readability
purposes when you think that identifying the role of each argument and controlling the order of
arguments enhances your code's clarity.

A more common use of named arguments is to bind some optional parameters to specific values,
while letting other optional parameters take their default values:

def f(middle, begin='init', end='finis'): return begin+middle+end
print f('tini', end='')                     # prints: inittini

Thanks to named argument end='', the caller can specify a value, the empty string '', for f's third
parameter, end, and still let f's second parameter, begin, use its default value, the string 'init'.

At the end of the arguments in a function call, you may optionally use either or both of the special
forms *seq and **dict. If both are present, the one with two asterisks must be last. *seq passes the
items of seq to the function as positional arguments (after the normal positional arguments, if any,
that the call gives with the usual simple syntax). seq may be any sequence or iterable. **dict passes
the items of dict to the function as named arguments, where dict must be a dictionary whose keys are
all strings. Each item's key is a parameter name, and the item's value is the argument's value.

Sometimes you want to pass an argument of the form *seq or **dict when the formal parameters use
similar forms, as described earlier under Section 4.10.2. For example, using the function sum defined
in that section (and shown again here), you may want to print the sum of all the values in dictionary
d. This is easy with *seq:

def sum(*numbers):
    result = 0
    for number in numbers: result += number
    return result
print sum(*d.values(  ))

However, you may also pass arguments of the form *seq or **dict when calling a function that does
not use similar forms in its formal parameters.

4.10.6 Namespaces

A function's formal parameters, plus any variables that are bound (by assignment or by other binding
statements) in the function body, comprise the function's local namespace, also known as local scope.
Each of these variables is called a local variable of the function.

Variables that are not local are known as global variables (in the absence of nested definitions, which
we'll discuss shortly). Global variables are attributes of the module object, as covered in Chapter 7. If
a local variable in a function has the same name as a global variable, whenever that name is
mentioned in the function body, the local variable, not the global variable, is used. This idea is
expressed by saying that the local variable hides the global variable of the same name throughout the
function body.

4.10.6.1 The global statement

By default, any variable that is bound within a function body is a local variable of the function. If a
function needs to rebind some global variables, the first statement of the function must be:

global identifiers

where identifiers is one or more identifiers separated by commas (,). The identifiers listed in a global
statement refer to the global variables (i.e., attributes of the module object) that the function needs
to rebind. For example, the function counter that we saw in Section 4.10.3 could be implemented

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


to rebind. For example, the function counter that we saw in Section 4.10.3 could be implemented
using global and a global variable rather than an attribute of the function object as follows:

_count = 0
def counter(  ):
    global _count
    _count += 1
    return _count

Without the global statement, the counter function would raise an UnboundLocalError exception
because _count would be an uninitialized (unbound) local variable. Note also that while the global
statement does enable this kind of programming, it is neither elegant nor advisable. As I mentioned
earlier, when you want to group together some state and some behavior, the object-oriented
mechanisms covered in Chapter 5 are typically the best approach.

You don't need global if the function body simply uses a global variable, including changing the object
bound to that variable if the object is mutable. You need to use a global statement only if the function
body rebinds a global variable. As a matter of style, you should not use global unless it's strictly
necessary, as its presence will cause readers of your program to assume the statement is there for
some useful purpose.

4.10.6.2 Nested functions and nested scopes

A def statement within a function body defines a nested function, and the function whose body
includes the def is known as an outer function to the nested one. Code in a nested function's body
may access (but not rebind) local variables of an outer function, also known as free variables of the
nested function. This nested-scope access is automatic in Python 2.2 and later. To request nested-
scope access in Python 2.1, the first statement of the module must be:

from _ _future_ _ import nested_scopes

The simplest way to let a nested function access a value is often not to rely on nested scopes, but
rather to explicitly pass that value as one of the function's arguments. The argument's value can be
bound when the nested function is defined by using the value as the default for an optional argument.
For example:

def percent1(a, b, c):                # works with any version
    def pc(x, total=a+b+c): return (x*100.0) / total
    print "Percentages are ", pc(a), pc(b), pc(c)

Here's the same functionality using nested scopes:

def percent2(a, b, c):                # needs 2.2 or "from future import"
    def pc(x): return (x*100.0) / (a+b+c)
    print "Percentages are", pc(a), pc(b), pc(c)

In this specific case, percent1 has a slight advantage: the computation of a+b+c happens only once,
while percent2's inner function pc repeats the computation three times. However, if the outer function
were rebinding its local variables between calls to the nested function, repeating this computation
might be an advantage. It's therefore advisable to be aware of both approaches, and choose the most
appropriate one case by case.

A nested function that accesses values from outer local variables is known as a closure. The following
example shows how to build a closure without nested scopes (using a default value):

def make_adder_1(augend):             # works with any version
    def add(addend, _augend=augend): return addend+_augend
    return add

Here's the same closure functionality using nested scopes:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


def make_adder_2(augend):             # needs 2.2 or "from future import"
    def add(addend): return addend+augend
    return add

Closures are an exception to the general rule that the object-oriented mechanisms covered in Chapter
5 are the best way to bundle together data and code. When you need to construct callable objects,
with some parameters fixed at object construction time, closures can be simpler and more effective
than classes. For example, the result of make_adder_1(7) is a function that accepts a single argument
and adds 7 to that argument (the result of make_adder_2(7) behaves in just the same way). You can
also express the same idea as lambda x: x+7, using the lambda form covered in the next section. A
closure is a "factory" for any member of a family of functions distinguished by some parameters, such
as the value of argument augend in the previous examples, and this may often help you avoid code
duplication.

4.10.7 lambda Expressions

If a function body contains a single return expression statement, you may choose to replace the
function with the special lambda expression form:

lambda parameters: expression

A lambda expression is the anonymous equivalent of a normal function whose body is a single return
statement. Note that the lambda syntax does not use the return keyword. You can use a lambda
expression wherever you would use a reference to a function. lambda can sometimes be handy when
you want to use a simple function as an argument or return value. Here's an example that uses a
lambda expression as an argument to the built-in filter function:

aList = [1,2,3,4,5,6,7,8,9]
low = 3
high = 7
filter(lambda x,l=low,h=high: h>x>l, aList)     # returns: [4, 5, 6]

As an alternative, you can always use a local def statement that gives the function object a name. You
can then use this name as the argument or return value. Here's the same filter example using a local
def statement:

aList = [1,2,3,4,5,6,7,8,9]
low = 3
high = 7
def test(value, l=low, h=high):
    return h>value>l
filter(test, aList)                             # returns: [4, 5, 6]

4.10.8 Generators

When the body of a function contains one or more occurrences of the keyword yield, the function is
called a generator. When a generator is called, the function body does not execute. Instead, calling
the generator returns a special iterator object that wraps the function body, the set of its local
variables (including its parameters), and the current point of execution, which is initially the start of
the function.

When the next method of this iterator object is called, the function body executes up to the next yield
statement, which takes the form:

yield expression

When a yield statement executes, the function is frozen with its execution state and local variables
intact, and the expression following yield is returned as the result of the next method. On the next call
to next, execution of the function body resumes where it left off, again up to the next yield statement.
If the function body ends or executes a return statement, the iterator raises a StopException to
indicate that the iterator is finished. Note that return statements in a generator cannot contain

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


indicate that the iterator is finished. Note that return statements in a generator cannot contain
expressions, as that is a syntax error.

yield is always a keyword in Python 2.3 and later. In Python 2.2, to make yield a keyword in a source
file, use the following line as the first statement in the file:

from _ _future_ _ import generators

In Python 2.1 and earlier, you cannot define generators.

Generators are often handy ways to build iterators. Since the most common way to use an iterator is
to loop on it with a for statement, you typically call a generator like this:

for avariable in somegenerator(arguments):

For example, say that you want a sequence of numbers counting up from 1 to N and then down to 1
again. A generator helps:

def updown(N):
    for x in xrange(1,N): yield x
    for x in xrange(N,0,-1): yield x
for i in updown(3): print i                   # prints: 1 2 3 2 1

Here is a generator that works somewhat like the built-in xrange function, but returns a sequence of
floating-point values instead of a sequence of integers:

def frange(start, stop, step=1.0):
    while start < stop:
        yield start
        start += step

frange is only somewhat like xrange, because, for simplicity, it makes arguments start and stop
mandatory, and silently assumes step is positive (by default, like xrange, frange makes step equal to
1).

Generators are more flexible than functions that return lists. A generator may build an iterator that
returns an infinite stream of results that is usable only in loops that terminate by other means (e.g.,
via a break statement). Further, the generator-built iterator performs lazy evaluation: the iterator
computes each successive item only when and if needed, just in time, while the equivalent function
does all computations in advance and may require large amounts of memory to hold the results list.
Therefore, in Python 2.2 and later, if all you need is the ability to iterate on a computed sequence, it
is often best to compute the sequence in a generator, rather than in a function that returns a list. If
the caller needs a list that contains all the items produced by a generator G(arguments), the caller can
use the following code:

resulting_list = list(G(arguments))

4.10.9 Recursion

Python supports recursion (i.e., a Python function can call itself), but there is a limit to how deep the
recursion can be. By default, Python interrupts recursion and raises a RecursionLimitExceeded
exception (covered in Chapter 6) when it detects that the stack of recursive calls has gone over a
depth of 1,000. You can change the recursion limit with function setrecursionlimit of module sys,
covered in Chapter 8.

However, changing this limit will still not give you unlimited recursion; the absolute maximum limit
depends on the platform, particularly on the underlying operating system and C runtime library, but
it's typically a few thousand. When recursive calls get too deep, your program will crash. Runaway
recursion after a call to setrecursionlimit that exceeds the platform's capabilities is one of the very few
ways a Python program can crash—really crash, hard, without the usual safety net of Python's
exception mechanisms. Therefore, be wary of trying to fix a program that is getting
RecursionLimitExceeded exceptions by raising the recursion limit too high with setrecursionlimit. Most
often, you'd be better advised to look for ways to remove the recursion or, at least, to limit the depth
of recursion that your program needs.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 5. Object-Oriented Python

Python is an object-oriented programming language. Unlike some other object-oriented languages,
Python doesn't force you to use the object-oriented paradigm exclusively. Python also supports
procedural programming with modules and functions, so you can select the most suitable
programming paradigm for each part of your program. Generally, the object-oriented paradigm is
suitable when you want to group state (data) and behavior (code) together in handy packets of
functionality. It's also useful when you want to use some of Python's object-oriented mechanisms
covered in this chapter, such as inheritance or special methods. The procedural paradigm, based on
modules and functions, tends to be simpler and is more suitable when you don't need any of the
benefits of object-oriented programming. With Python, you often mix and match the two paradigms.

Python 2.2 and 2.3 are in transition between two slightly different object models. This chapter starts
by describing the classic object model, which was the only one available in Python 2.1 and earlier and
is still the default model in Python 2.2 and 2.3. The chapter then covers the small differences that
define the powerful new-style object model and discusses how to use the new-style object model with
Python 2.2 and 2.3. Because the new-style object model builds on the classic one, you'll need to
understand the classic model before you can learn about the new model. Finally, the chapter covers
special methods for both the classic and new-style object models, as well as metaclasses for Python
2.2 and later.

The new-style object model will become the default in a future version of Python. Even though the
classic object model is still the default, I suggest you use the new-style object model when
programming with Python 2.2 and later. Its advantages over the classic object model, while small, are
measurable, and there are practically no compensating disadvantages. Therefore, it's simpler just to
stick to the new-style object model, rather than try to decide which model to use each time you code
a new class.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

5.1 Classic Classes and Instances

A classic class is a Python object with several characteristics:

You can call a class object as if it were a function. The call creates another object, known as an
instance of the class, that knows what class it belongs to.

A class has arbitrarily named attributes that you can bind and reference.

The values of class attributes can be data objects or function objects.

Class attributes bound to functions are known as methods of the class.

 A method can have a special Python-defined name with two leading and two trailing
underscores. Python invokes such special methods, if they are present, when various kinds of
operations take place on class instances.

A class can inherit from other classes, meaning it can delegate to other class objects the lookup
of attributes that are not found in the class itself.

An instance of a class is a Python object with arbitrarily named attributes that you can bind and
reference. An instance object implicitly delegates to its class the lookup of attributes not found in the
instance itself. The class, in turn, may delegate the lookup to the classes from which it inherits, if any.

In Python, classes are objects (values), and are handled like other objects. Thus, you can pass a class
as an argument in a call to a function. Similarly, a function can return a class as the result of a call. A
class, just like any other object, can be bound to a variable (local or global), an item in a container, or
an attribute of an object. Classes can also be keys into a dictionary. The fact that classes are objects
in Python is often expressed by saying that classes are first-class objects.

5.1.1 The class Statement

The class statement is the most common way to create a class object. class is a single-clause
compound statement with the following syntax:

class classname[(base-classes)]: 
    statement(s)

classname is an identifier. It is a variable that gets bound (or rebound) to the class object after the
class statement finishes executing.

base-classes is an optional comma-delimited series of expressions whose values must be class objects.
These classes are known by different names in different languages; you can think of them as the base
classes, superclasses, or parents of the class being created. The class being created is said to inherit
from, derive from, extend, or subclass its base classes, depending on what language you are familiar
with. This class is also known as a direct subclass or descendant of its base classes.

The subclass relationship between classes is transitive. If C1 subclasses C2, and C2 subclasses C3, C1
subclasses C3. Built-in function issubclass(C1, C2) accepts two arguments that are class objects: it
returns True if C1 subclasses C2, otherwise it returns False. Any class is considered a subclass of
itself; therefore issubclass(C, C) returns True for any class C. The way in which the base classes of a
class affect the functionality of the class is covered later in this chapter.

The syntax of the class statement has a small, tricky difference from that of the def statement covered
in Chapter 4. In a def statement, parentheses are mandatory between the function's name and the
colon. To define a function without formal parameters, use a statement such as:

def name(  ): 
    statement(s)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    statement(s)

In a class statement, the parentheses are mandatory if the class has one or more base classes, but
they are forbidden if the class has no base classes. Thus, to define a class without base classes, use a
statement such as:

class name: 
    statement(s)

The non-empty sequence of statements that follows the class statement is known as the class body. A
class body executes immediately, as part of the class statement's execution. Until the body finishes
executing, the new class object does not yet exist and the classname identifier is not yet bound (or
rebound). Section 5.4 later in this chapter provides more details about what happens when a class
statement executes.

Finally, note that the class statement does not create any instances of a class, but rather defines the
set of attributes that are shared by all instances when they are created.

5.1.2 The Class Body

The body of a class is where you normally specify the attributes of the class; these attributes can be
data objects or function objects.

5.1.2.1 Attributes of class objects

You typically specify an attribute of a class object by binding a value to an identifier within the class
body. For example:

class C1:
    x = 23
print C1.x                               # prints: 23

Class object C1 now has an attribute named x, bound to the value 23, and C1.x refers to that
attribute.

You can also bind or unbind class attributes outside the class body. For example:

class C2: pass
C2.x = 23
print C2.x                               # prints: 23

However, your program is more readable if you bind, and thus create, class attributes with
statements inside the class body. Any class attributes are implicitly shared by all instances of the
class when those instances are created, as we'll discuss shortly.

The class statement implicitly defines some class attributes. Attribute _ _name_ _ is the classname
identifier string used in the class statement. Attribute _ _bases_ _ is the tuple of class objects given as
the base classes in the class statement (or the empty tuple, if no base classes are given). For
example, using the class C1 we just created:

print C1._ _name_ _, C1._ _bases_ _          # prints: C1, (  )

A class also has an attribute _ _dict_ _, which is the dictionary object that the class uses to hold all of
its other attributes. For any class object C, any object x, and any identifier S (except _ _name_ _, _
_bases_ _, and _ _dict_ _), C.S=x is equivalent to C._ _dict_ _['S']=x. For example, again referring to
the class C1 we just created:

C1.y = 45
C1._ _dict_ _['z'] = 67
print C1.x, C1.y, C1.z                   # prints: 23, 45, 67

There is no difference between class attributes created in the class body, outside of the body by
assigning an attribute, or outside of the body by explicitly binding an entry in C._ _dict_ _.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In statements that are directly in a class's body, references to attributes of the class must use a
simple name, not a fully qualified name. For example:

class C3:
    x = 23
    y = x + 22                         # must use just x, not C3.x

However, in statements that are in methods defined in a class body, references to attributes of the
class must use a fully qualified name, not a simple name. For example:

class C4:
    x = 23
    def amethod(self):
        print C4.x                     # must use C4.x, not just x

Note that attribute references (i.e., an expression like C.S) have richer semantics than attribute
binding. These references are covered in detail later in this chapter.

5.1.2.2 Function definitions in a class body

Most class bodies include def statements, as functions (called methods in this context) are important
attributes for class objects. A def statement in a class body obeys the rules presented in Section 4.10.
In addition, a method defined in a class body always has a mandatory first parameter, conventionally
named self, that refers to the instance on which you call the method. The self parameter plays a
special role in method calls, as covered later in this chapter.

Here's an example of a class that includes a method definition:

class C5:
    def hello(self):
        print "Hello"

A class can define a variety of special methods (methods with names that have two leading and two
trailing underscores) relating to specific operations. We'll discuss special methods in great detail later
in this chapter.

5.1.2.3 Class-private variables

When a statement in a class body (or in a method in the body) uses an identifier starting with two
underscores (but not ending with underscores), such as _ _ident, the Python compiler implicitly
changes the identifier into _classname_ _ident, where classname is the name of the class. This lets a
class use private names for attributes, methods, global variables, and other purposes, without the risk
of accidentally duplicating names used elsewhere.

By convention, all identifiers starting with a single underscore are also intended as private to the
scope that binds them, whether that scope is or isn't a class. The Python compiler does not enforce
privacy conventions, however: it's up to Python programmers to respect them.

5.1.2.4 Class documentation strings

If the first statement in the class body is a string literal, the compiler binds that string as the
documentation string attribute for the class. This attribute is named _ _doc_ _ and is known as the
docstring of the class. See Section 4.10.3 for more information on docstrings.

5.1.3 Instances

When you want to create an instance of a class, call the class object as if it were a function. Each call
returns a new instance object of that class:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


anInstance = C5(  )

You can call built-in function isinstance(I,C) with a class object as argument C. In this case, isinstance
returns True if object I is an instance of class C or any subclass of C. Otherwise, isinstance returns
False.

5.1.3.1 _ _init_ _

When a class has or inherits a method named _ _init_ _, calling the class object implicitly executes _
_init_ _ on the new instance to perform any instance-specific initialization that is needed. Arguments
passed in the call must correspond to the formal parameters of _ _init_ _. For example, consider the
following class:

class C6:
    def _ _init_ _(self,n):
        self.x = n

Here's how to create an instance of the C6 class:

anotherInstance = C6(42)

As shown in the C6 class, the _ _init_ _ method typically contains statements that bind instance
attributes. An _ _init_ _ method must either not return a value or return the value None; any other
return value raises a TypeError exception.

The main purpose of _ _init_ _ is to bind, and thus create, the attributes of a newly created instance.
You may also bind or unbind instance attributes outside _ _init_ _, as you'll see shortly. However, your
code will be more readable if you initially bind all attributes of a class instance with statements in the
_ _init_ _ method.

When _ _init_ _ is absent, you must call the class without arguments, and the newly generated
instance has no instance-specific attributes. See Section 5.3 later in this chapter for more details
about _ _init_ _.

5.1.3.2 Attributes of instance objects

Once you have created an instance, you can access its attributes (data and methods) using the dot (.)
operator. For example:

anInstance.hello(  )                       # prints: Hello
print anotherInstance.x                    # prints: 42

Attribute references such as these have fairly rich semantics in Python and are covered in detail later
in this section.

You can give an instance object an arbitrary attribute by binding a value to an attribute reference. For
example:

class C7: pass
z = C7(  )
z.x = 23
print z.x                                   # prints: 23

Instance object z now has an attribute named x, bound to the value 23, and z.x refers to that
attribute. Note that the _ _setattr_ _ special method, if present, intercepts every attempt to bind an
attribute. _ _setattr_ _ is covered in Section 5.3 later in this chapter.

Creating an instance implicitly defines two instance attributes. For any instance z, z._ _class_ _ is the
class object to which z belongs, and z._ _dict_ _ is the dictionary that z uses to hold all of its other
attributes. For example, for the instance z we just created:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


print z._ _class_ _._ _name_ _, z._ _dict_ _     # prints: C7, {'x':23}

You may rebind (but not unbind) either or both of these attributes, but this is rarely necessary.

For any instance object z, any object x, and any identifier S (except _ _class_ _ and _ _dict_ _), z.S=x
is equivalent to z._ _dict_ _['S']=x (unless a _ _setattr_ _ special method intercepts the binding
attempt). For example, again referring to the instance z we just created:

z.y = 45
z._ _dict_ _['z'] = 67
print z.x, z.y, z.z                         # prints: 23, 45, 67

There is no difference between instance attributes created in _ _init_ _, by assigning to attributes, or
by explicitly binding an entry in z._ _dict_ _.

5.1.3.3 The factory-function idiom

It is common to want to create instances of different classes depending upon some condition or to
want to avoid creating a new instance if an existing one is available for reuse. You might consider
implementing these needs by having _ _init_ _ return a particular object, but that isn't possible
because Python raises an exception when _ _init_ _ returns any value other than None. The best way
to implement flexible object creation is by using an ordinary function, rather than by calling the class
object directly. A function used in this role is known as a factory function.

Calling a factory function is a more flexible solution, as such a function may return an existing
reusable instance or create a new instance by calling whatever class is appropriate. Say you have two
almost-interchangeable classes (SpecialCase and NormalCase) and you want to flexibly generate either
one of them, depending on an argument. The following appropriateCase factory function allows you to
do just that (the role of the self parameters is covered in Section 5.1.5 later in this chapter):

class SpecialCase:
    def amethod(self): print "special"
class NormalCase:
    def amethod(self): print "normal"
def appropriateCase(isnormal=1):
    if isnormal: return NormalCase(  )
    else: return SpecialCase(  )
aninstance = appropriateCase(isnormal=0)
aninstance.amethod(  )                        # prints "special", as desired

5.1.4 Attribute Reference Basics

An attribute reference is an expression of the form x.name, where x is any expression and name is an
identifier called the attribute name. Many kinds of Python objects have attributes, but an attribute
reference has special rich semantics when x refers to a class or instance. Remember that methods are
attributes too, so everything I say about attributes in general also applies to attributes that are
callable (i.e., methods).

Say that x is an instance of class C, which inherits from base class B. Both classes and the instance
have several attributes (data and methods) as follows:

class B:
    a = 23
    b = 45
    def f(self): print "method f in class B"
    def g(self): print "method g in class B"
class C(B):
    b = 67
    c = 89
    d = 123
    def g(self): print "method g in class C"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    def g(self): print "method g in class C"
    def h(self): print "method h in class C"
x = C(  )
x.d = 77
x.e = 88

Some attribute names are special. For example, C._ _name_ _ is the string 'C', the class name. C._
_bases_ _ is the tuple (B,), the tuple of C's base classes. x._ _class_ _ is the class C, the class to which
x belongs. When you refer to an attribute with one of these special names, the attribute reference
looks directly into a special dedicated slot in the class or instance object and fetches the value it finds
there. Thus, you can never unbind these attributes. Rebinding them is allowed, so you can change the
name or base classes of a class or the class of an instance on the fly, but this is an advanced
technique and rarely necessary.

Both class C and instance x each have one other special attribute, a dictionary named _ _dict_ _. All
other attributes of a class or instance, except for the few special ones, are held as items in the _
_dict_ _ attribute of the class or instance.

Apart from special names, when you use the syntax x.name to refer to an attribute of instance x, the
lookup proceeds in two steps:

1. When 'name' is a key in x._ _dict_ _, x.name fetches and returns the value at x._ _dict_
_['name']

2. Otherwise, x.name delegates the lookup to x's class (i.e., it works just the same as x._ _class_
_.name)

Similarly, lookup for an attribute reference C.name on a class object C also proceeds in two steps:

1. When 'name' is a key in C._ _dict_ _, C.name fetches and returns the value at C._ _dict_
_['name']

2. Otherwise, C.name delegates the lookup to C's base classes, meaning it loops on C._ _bases_ _
and tries the name lookup on each

When these two lookup procedures do not find an attribute, Python raises an AttributeError exception.
However, if x's class defines or inherits special method _ _getattr_ _, Python calls x._ _getattr_
_('name') rather than raising the exception.

Consider the following attribute references:

print x.e, x.d, x.c, x.b. x.a                 # prints: 88, 77, 89, 67, 23

x.e and x.d succeed in step 1 of the first lookup process, since 'e' and 'd' are both keys in x._ _dict_ _.
Therefore, the lookups go no further, but rather return 88 and 77. The other three references must
proceed to step 2 of the first process and look in x._ _class_ _ (i.e., C). x.c and x.b succeed in step 1
of the second lookup process, since 'c' and 'b' are both keys in C._ _dict_ _. Therefore, the lookups go
no further, but rather return 89 and 67. x.a gets all the way to step 2 of the second process, looking in
C._ _bases_ _[0] (i.e., B). 'a' is a key in B._ _dict_ _, therefore x.a finally succeeds and returns 23.

Note that the attribute lookup steps happen only when you refer to an attribute, not when you bind an
attribute. When you bind or unbind an attribute whose name is not special, only the _ _dict_ _ entry
for the attribute is affected. In other words, in the case of attribute binding, there is no lookup
procedure involved.

5.1.5 Bound and Unbound Methods

Step 1 of the class attribute reference lookup process described in the previous section actually
performs an additional task when the value found is a function. In this case, the attribute reference
does not return the function object directly, but rather wraps the function into an unbound method
object or a bound method object. The key difference between unbound and bound methods is that an
unbound method is not associated with a particular instance, while a bound method is.

In the code in the previous section, attributes f, g, and h are functions; therefore an attribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In the code in the previous section, attributes f, g, and h are functions; therefore an attribute
reference to any one of them returns a method object wrapping the respective function. Consider the
following:

print x.h, x.g, x.f, C.h, C.g, C.f

This statement outputs three bound methods, represented as strings like:

<bound method C.h of <_ _main_ _.C instance at 0x8156d5c>>

and then three unbound ones, represented as strings like:

<unbound method C.h>

We get bound methods when the attribute reference is on instance x, and unbound methods when the
attribute reference is on class C.

Because a bound method is already associated with a specific instance, you call the method as
follows:

x.h(  )                      # prints: method h in class C

The key thing to notice here is that you don't pass the method's first argument, self, by the usual
argument-passing syntax. Rather, a bound method of instance x implicitly binds the self parameter to
object x. Thus, the body of the method can access the instance's attributes as attributes of self, even
though we don't pass an explicit argument to the method.

An unbound method, however, is not associated with a specific instance, so you must specify an
appropriate instance as the first argument when you invoke an unbound method. For example:

C.h(x)                     # prints: method h in class C

You call unbound methods far less frequently than you call bound methods. The main use for unbound
methods is for accessing overridden methods, as discussed in Section 5.1.6 later in this chapter.

5.1.5.1 Unbound method details

As we've just discussed, when an attribute reference on a class refers to a function, a reference to
that attribute returns an unbound method that wraps the function. An unbound method has three
attributes in addition to those of the function object it wraps: im_class is the class object supplying the
method, im_func is the wrapped function, and im_self is always None. These attributes are all read-
only, meaning that trying to rebind or unbind any of them raises an exception.

You can call an unbound method just as you would call its im_func function, but the first argument in
any call must be an instance of im_class or a descendant. In other words, a call to an unbound
method must have at least one argument, which corresponds to the first formal parameter
(conventionally named self).

5.1.5.2 Bound method details

As covered earlier in Section 5.1.4, an attribute reference on an instance x, such as x.f, delegates the
lookup to x's class when 'f' is not a key in x._ _dict_ _. In this case, when the lookup finds a function
object, the attribute reference operation creates and returns a bound method that wraps the function.
Note that when the attribute reference finds a function object in x._ _dict_ _ or any other kind of
callable object by whatever route, the attribute reference operation does not create a bound method.
The bound method is created only when a function object is found as an attribute in the instance's
class.

A bound method is similar an unbound method, in that it has three read-only attributes in addition to
those of the function object it wraps. Like with an unbound method, im_class is the class object
supplying the method, and im_func is the wrapped function. However, in a bound method object,
attribute im_self refers to x, the instance from which the method was obtained.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A bound method is used like its im_func function, but calls to a bound method do not explicitly supply
an argument corresponding to the first formal parameter (conventionally named self). When you call a
bound method, the bound method passes im_self as the first argument to im_func, before other
arguments (if any) are passed at the point of call.

Let's follow the conceptual steps in a typical method call with the normal syntax x.name(arg). x is an
instance object, name is an identifier naming one of x's methods (a function-valued attribute of x's
class), and arg is any expression. Python checks if 'name' is a key in x._ _dict_ _, but it isn't. So
Python finds name in x._ _class_ _ (possibly, by inheritance, in one of its _ _bases_ _). Python notices
that the value is a function object, and that the lookup is being done on instance x. Therefore, Python
creates a bound method object whose im_self attribute refers to x. Then, Python calls the bound
method object with arg as the only actual argument. The bound method inserts im_self (i.e., x) as the
first actual argument and arg becomes the second one. The overall effect is just like calling:

x._ _class_ _._ _dict_ _['name'](x, arg)

When a bound method's function body executes, it has no special namespace relationship to either its
self object or any class. Variables referenced are local or global, just as for any other function, as
covered in Section 4.10.6. Variables do not implicitly indicate attributes in self, nor do they indicate
attributes in any class object. When the method needs to refer to, bind, or unbind an attribute of its
self object, it does so by standard attribute-reference syntax (e.g., self.name). The lack of implicit
scoping may take some getting used to (since Python differs in this respect from many other object-
oriented languages), but it results in clarity, simplicity, and the removal of potential ambiguities.

Bound method objects are first-class objects, and you can use them wherever you can use a callable
object. Since a bound method holds references to the function it wraps and to the self object on which
it executes, it's a powerful and flexible alternative to a closure (covered in Section 4.10.6.2). An
instance object with special method _ _call_ _ (covered in Section 5.3 later in this chapter) offers
another viable alternative. Each of these constructs lets you bundle some behavior (code) and some
state (data) into a single callable object. Closures are simplest, but limited in their applicability.
Here's the closure from Chapter 4:

def make_adder_as_closure(augend):
    def add(addend, _augend=augend): return addend+_augend
    return add

Bound methods and callable instances are richer and more flexible. Here's how to implement the
same functionality with a bound method:

def make_adder_as_bound_method(augend):
    class Adder:
        def _ _init_ _(self, augend): self.augend = augend
        def add(self, addend): return addend+self.augend
    return Adder(augend).add

Here's how to implement it with a callable instance (an instance with _ _call_ _):

def make_adder_as_callable_instance(augend):
    class Adder:
        def _ _init_ _(self, augend): self.augend = augend
        def _ _call_ _(self, addend): return addend+self.augend
    return Adder(augend)

From the viewpoint of the code that calls the functions, all of these functions are interchangeable,
since all return callable objects that are polymorphic (i.e., usable in the same ways). In terms of
implementation, the closure is simplest; the bound method and callable instance use more flexible
and powerful mechanisms, but there is really no need for that extra power in this case.

5.1.6 Inheritance

When you use an attribute reference C.name on a class object C, and 'name' is not a key in C._ _dict_
_, the lookup implicitly proceeds on each class object that is in C._ _bases_ _, in order. C's base

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


_, the lookup implicitly proceeds on each class object that is in C._ _bases_ _, in order. C's base
classes may in turn have their own base classes. In this case, the lookup recursively proceeds up the
inheritance tree, stopping when 'name' is found. The search is depth-first, meaning that it examines
the ancestors of each base class of C before considering the next base class of C. Consider the
following example:

class Base1:
    def amethod(self): print "Base1"
class Base2(Base1): pass
class Base3:
    def amethod(self): print "Base3"
class Derived(Base2, Base3): pass
aninstance = Derived(  )
aninstance.amethod(  )                    # prints: "Base1"

In this case, the lookup for amethod starts in Derived. When it isn't found there, lookup proceeds to
Base2. Since the attribute isn't found in Base2, lookup then proceeds to Base2's ancestor, Base1,
where the attribute is found. Therefore, the lookup stops at this point and never considers Base3,
where it would also find an attribute with the same name.

5.1.6.1 Overriding attributes

As we've just seen, the search for an attribute proceeds up the inheritance tree and stops as soon as
the attribute is found. Descendent classes are examined before their ancestors, meaning that when a
subclass defines an attribute with the same name as one in a superclass, the search finds the
definition when it looks at the subclass and stops there. This is known as the subclass overriding the
definition in the superclass. Consider the following:

class B:
    a = 23
    b = 45
    def f(self): print "method f in class B"
    def g(self): print "method g in class B"
class C(B):
    b = 67
    c = 89
    d = 123
    def g(self): print "method g in class C"
    def h(self): print "method h in class C"

In this code, class C overrides attributes b and g of its superclass B.

5.1.6.2 Delegating to superclass methods

When a subclass C overrides a method f of its superclass B, the body of C.f often wants to delegate
some part of its operation to the superclass's implementation of the method. This can be done using
an unbound method, as follows:

class Base:
    def greet(self, name): print "Welcome ", name
class Sub(Base):
    def greet(self, name):
        print "Well Met and",
        Base.greet(self, name)
x = Sub(  )
x.greet('Alex')

The delegation to the superclass, in the body of Sub.greet, uses an unbound method obtained by
attribute reference Base.greet on the superclass, and therefore passes all attributes normally,
including self. Delegating to a superclass implementation is the main use of unbound methods.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


One very common use of such delegation occurs with special method _ _init_ _. When an instance is
created in Python, the _ _init_ _ methods of base classes are not automatically invoked, as they are in
some other object-oriented languages. Thus, it is up to a subclass to perform the proper initialization
by using delegation if necessary. For example:

class Base:
    def _ _init_ _(self):
        self.anattribute = 23
class Derived(Base):
    def _ _init_ _(self):
        Base._ _init_ _(self)
        self.anotherattribute = 45

If the _ _init_ _ method of class Derived didn't explicitly call that of class Base, instances of Derived
would miss that portion of their initialization, and thus such instances would lack attribute anattribute.

5.1.6.3 "Deleting" class attributes

Inheritance and overriding provide a simple and effective way to add or modify class attributes
(methods) non-invasively (i.e., without modifying the class in which the attributes are defined), by
adding or overriding the attributes in subclasses. However, inheritance does not directly support
similar ways to delete (hide) base classes' attributes non-invasively. If the subclass simply fails to
define (override) an attribute, Python finds the base class's definition. If you need to perform such
deletion, possibilities include:

Overriding the method and raising an exception in the method's body

Eschewing inheritance, holding the attributes elsewhere than in the subclass's _ _dict_ _, and
defining _ _getattr_ _ for selective delegation

Using the new-style object model and overriding _ _getattribute_ _ to similar effect

The last two techniques here are demonstrated in "_ _getattribute_ _" later in this chapter.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

5.2 New-Style Classes and Instances

Most of what I have covered so far in this chapter also holds for the new-style object model
introduced in Python 2.2. New-style classes and instances are first-class objects just like classic ones,
both can have arbitrary attributes, you call a class to create an instance of the class, and so on. In
this section, I'm going to cover the few differences between the new-style and classic object models.

In Python 2.2 and 2.3, a class is new-style if it inherits from built-in type object directly or indirectly
(i.e., if it subclasses any built-in type, such as list, dict, file, object, and so on). In Python 2.1 and
earlier, a class cannot inherit from a built-in type, and built-in type object does not exist. In Section
5.4 later in this chapter, I cover other ways to make a class new-style, ways that you can use in
Python 2.2 or later whether a class has superclasses or not.

As I said at the beginning of this chapter, I suggest you get into the habit of using new-style classes
when you program in Python 2.2 or later. The new-style object model has small but measurable
advantages, and there are practically no compensating disadvantages. It's simpler just to stick to the
new-style object model, rather than try to decide which model to use each time you code a new class.

5.2.1 The Built-in object Type

As of Python 2.2, the built-in object type is the ancestor of all built-in types and new-style classes.
The object type defines some special methods (as documented in Section 5.3 later in this chapter)
that implement the default semantics of objects:

_ _new_ _ , _ _init_ _

You can create a direct instance of object, and such creation implicitly uses the static method _
_new_ _ of type object to create the new instance, and then uses the new instance's _ _init_ _
method to initialize the new instance. object._ _init_ _ ignores its arguments and performs no
operation whatsoever, so you can pass arbitrary arguments to type object when you call it to
create an instance of it: all such arguments will be ignored.

_ _delattr_ _ , _ _getattribute_ _, _ _setattr_ _

By default, an object handles attribute references as covered earlier in this chapter, using
these methods of object.

_ _hash_ _ , _ _repr_ _, _ _str_ _

An object can be passed to functions hash and repr and to type str.

A subclass of object may override any of these methods and/or add others.

5.2.2 Class-Level Methods

The new-style object model allows two kinds of class-level methods that do not exist in the classic
object model: static methods and class methods. Class-level methods exist only in Python 2.2 and
later, but in these versions you can also have such methods in classic classes. This is the only feature
of the new-style object model that is also fully functional with classic classes in Python 2.2 and later.

5.2.2.1 Static methods

A static method is a method that you can call on a class, or on any instance of the class, without the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A static method is a method that you can call on a class, or on any instance of the class, without the
special behavior and constraints of ordinary methods, bound and unbound, on the first argument. A
static method may have any signature: it may have no arguments, and the first argument, if any,
plays no special role. You can think of a static method as an ordinary function that you're able to call
normally, despite the fact that it happens to be bound to a class attribute. While it is never necessary
to define static methods (you could always define a function instead), some programmers consider
them to be an elegant alternative to such functions whose purpose is tightly bound to some specific
class.

You build a static method by calling built-in type staticmethod and binding its result to a class
attribute. Like all binding of class attributes, this is normally done in the body of the class, but you
may also choose to perform it elsewhere. The only argument to staticmethod is the function to invoke
when Python calls the static method. The following example shows how to define and call a static
method:

class AClass(object):
    def astatic(  ): print 'a static method'
    astatic = staticmethod(astatic)
anInstance = AClass(  )
AClass.astatic(  )                    # prints: a static method
anInstance.astatic(  )                # prints: a static method

This example uses the same name for the function passed to staticmethod and for the attribute bound
to staticmethod's result. This style is not mandatory, but it's a good idea, and I recommend that you
use it.

5.2.2.2 Class methods

A class method is a method that you can call on a class or on any instance of the class. Python binds
the method's first argument to the class on which you call the method, or the class of the instance on
which you call the method; it does not bind it to the instance, as for normal bound methods. There is
no equivalent of unbound methods for class methods. The first formal argument of a class method is
conventionally named cls. While it is never necessary to define class methods (you could always
alternatively define a function that takes the class object as its first argument), some programmers
consider them to be an elegant alternative to such functions.

You build a class method by calling built-in type classmethod and binding its result to a class attribute.
Like all binding of class attributes, this is normally done in the body of the class, but you may also
choose to perform it elsewhere. The only argument to classmethod is the function to invoke when
Python calls the class method. Here's how to define and call a class method:

class ABase(object):
    def aclassmet(cls): print 'a class method for', cls._ _name_ _
    aclassmet = classmethod(aclassmet)
class ADeriv(ABase): pass
bInstance = ABase(  )
dInstance = ADeriv(  )
ABase.aclassmet(  )               # prints: a class method for ABase
bInstance.aclassmet(  )           # prints: a class method for ABase
ADeriv.aclassmet(  )              # prints: a class method for ADeriv
dInstance.aclassmet(  )           # prints: a class method for ADeriv

This example uses the same name for the function passed to classmethod and for the attribute bound
to classmethod's result. This style is not mandatory, but it's a good idea, and I recommend that you
use it.

5.2.3 New-Style Classes

All features of classic classes, covered earlier in this chapter, also apply to new-style classes. New-
style classes also have some additional features with regard to the _ _init_ _ special method, and they
all have a _ _new_ _ static method.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5.2.3.1 _ _init_ _

A new-style class C that inherits _ _init_ _ from object without overriding it lets you pass arbitrary
arguments when you call C, but ignores all of those arguments. This behavior can be somewhat
surprising. I suggest you override _ _init_ _ in all new-style classes that directly subclass object, even
in those rare cases in which your own class's _ _init_ _ has no task to perform. For example:

class C(object):
    def _ _init_ _(self): pass
    # rest of class body omitted

Now instantiating C( ) without arguments works, but mistakenly trying to pass an argument (e.g.,
C('xyz')) raises an exception. If class C did not override _ _init_ _, a call C('xyz') would silently ignore
the erroneous argument. It's generally best not to silently ignore errors.

5.2.3.2 _ _new_ _

Each new-style class has a static method named _ _new_ _. When you call C(*args,**kwds) to create
a new instance of a new-style class C, Python invokes C._ _new_ _(C,*args,**kwds). Python uses _
_new_ _'s return value x as the newly created instance. Then, Python calls C._ _init_
_(x,*args,**kwds), but only when x is indeed an instance of C (otherwise, x's state is as _ _new_ _ had
left it). Thus, for a new-style class C, the statement x=C(23) is equivalent to the following code:

x = C._ _new_ _(C, 23)
if isinstance(x, C): C._ _init_ _(x, 23)

object._ _new_ _ creates a new, uninitialized instance of the class it receives as its first argument, and
ignores any other arguments. When you override _ _new_ _ within the class body, you do not need to
add _ _new_ _=staticmethod(_ _new_ _), as you normally would: Python recognizes the name _ _new_
_ and treats it specially in this context. In those rare cases in which you rebind C._ _new_ _ later,
outside the body of class C, you do need to use C._ _new_ _=staticmethod(whatever).

_ _new_ _ has most of the flexibility of a factory function, as covered earlier in this chapter. _ _new_ _
may choose to return an existing instance or to make a new one, as appropriate. When _ _new_ _
does need to create a new instance, it most often delegates creation by calling object._ _new_ _ or the
_ _new_ _ method of another built-in type that is a superclass of C. The following example shows how
to override static method _ _new_ _ in order to implement a version of the Singleton design pattern:

class Singleton(object):
    _singletons = {  }
    def _ _new_ _(cls, *args, **kwds):
        if not cls._singletons.has_key(cls):
            cls._singletons[cls] = object._ _new_ _(cls)
        return cls._singletons[cls]

Any subclass of Singleton (that does not further override _ _new_ _) has exactly one instance. If the
subclass defines an _ _init_ _ method, the subclass must ensure its _ _init_ _ is safe when called
repeatedly (at each creation request) on the one and only class instance.

5.2.4 New-Style Instances

All features of instances of classic classes, covered earlier in this chapter, also apply to instances of
new-style classes. In addition, new-style classes may define attributes called properties and a special
attribute named _ _slots_ _ that affects access to instance attributes. The new-style object model also
adds a special method _ _getattribute_ _ that is more general than the _ _getattr_ _ special method
present in both the classic and new-style object models. It also has different semantics for per-
instance definition of special methods.

5.2.4.1 Properties

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


5.2.4.1 Properties

A property is an instance attribute with special functionality. You reference, bind, or unbind the
attribute with the normal syntax (e.g., print x.prop, x.prop=23, del x.prop). However, rather than
following the usual semantics for attribute reference, binding, and unbinding, these accesses call
methods on instance x that you specify when defining the property using the built-in type property.
Here's how to define a read-only property:

class Rectangle(object):
    def _ _init_ _(self, width, heigth):
        self.width = width
        self.heigth = heigth
    def getArea(self):
        return self.width * self.heigth
    area = property(getArea, doc='area of the rectangle')

Each instance r of class Rectangle has a synthetic read-only attribute r.area, computed on the fly in
method r.getArea( ) by multiplying the sides of the rectangle. The docstring Rectangle.area._ _doc_ _ is
'area of the rectangle'. The property is read-only (attempts to rebind or unbind it fail) because we only
specify a get method in the call to property.

Properties perform tasks that are similar to those of special methods _ _getattr_ _, _ _setattr_ _, and _
_delattr_ _ (covered in Section 5.3 later in this chapter), but in a faster and simpler way. You build a
property by calling built-in type property and binding its result to a class attribute. Like all binding of
class attributes, this is normally done in the body of the class, but you may also choose to perform it
elsewhere. Within the body of a class C, use the following syntax:

attrib = property(fget=None, fset=None, fdel=None, doc=None)

When x is an instance of C and you reference x.attrib, Python calls on x the method you passed as
argument fget to the property constructor, without arguments. When you assign x.attrib = value,
Python calls the method you passed as argument fset, with value as the only argument. When you
perform del x.attrib, Python calls the method you passed as argument fdel, without arguments. Python
uses the argument you passed as doc as the docstring of the attribute. All arguments to property are
optional. When an argument is missing, the corresponding operation is forbidden. For example, in the
Rectangle example, we made property area read-only, because we passed only argument fget, not
arguments fset and fdel.

To obtain similar results for a classic class in Python 2.1, we need to define special methods _
_getattr_ _ and _ _setattr_ _ and in each of them test for attribute name 'area' and handle it
specifically. The following example shows how to simulate a read-only property in Python 2.1:

class Rectangle:
    def _ _init_ _(self, width, heigth):
        self.width = width
        self.heigth = heigth
    def getArea(self):
        return self.width * self.heigth
    def _ _getattr_ _(self, name):
        if name=  ='area': return self.getArea(  )
        raise AttributeError, name
    def _ _setattr_ _(self, name, value):
        if name=  ='area':
            raise AttributeError, "can't bind attribute"
        self._ _dict_ _[name] = value

5.2.4.2 _ _slots_ _

Normally, each instance object x of any class C has a dictionary x._ _dict_ _ that Python uses to let
you bind arbitrary attributes on x. To save some memory (at the cost of letting x have only a
predefined set of attribute names), you can define in class C a class attribute named _ _slots_ _,
which is a sequence (normally a tuple) of strings (normally identifiers).When class C has an attribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


which is a sequence (normally a tuple) of strings (normally identifiers).When class C has an attribute
_ _slots_ _, a direct instance x of class C has no x._ _dict_ _, and any attempt to bind on x any
attribute whose name is not in C._ _slots_ _ raises an exception. Using _ _slots_ _ lets you reduce
memory consumption for small instance objects that can do without the ability to have arbitrarily
named attributes. Note that _ _slots_ _ is worth adding only to classes that can have so many
instances that saving a few tens of bytes per instance is important—typically classes that can have
millions, not mere thousands, of instances alive at the same time. Unlike most other class attributes,
_ _slots_ _ works as I've just described only if some statement in the class body binds it as a class
attribute. Any later alteration, rebinding, or unbinding of _ _slots_ _ has no effect, nor does inheriting
_ _slots_ _ from a base class. Here's how to add _ _slots_ _ to the Rectangle class defined earlier, to
get smaller (though less flexible) instances:

class OptimizedRectangle(Rectangle):
    _ _slots_ _ = 'width', 'heigth'

We do not need to define a slot for the area property. _ _slots_ _ does not constrain properties, only
ordinary instance attributes—the attributes that would reside in the instance's _ _dict_ _ if _ _slots_ _
wasn't defined.

5.2.4.3 _ _getattribute_ _

All references to instance attributes for new-style instances proceed through special method _
_getattribute_ _. This method is supplied by base class object, where it implements all the details of
object attribute reference semantics as documented earlier in this chapter. However, you may
override _ _getattribute_ _ for special purposes, such as hiding inherited class attributes (e.g.,
methods) for your subclass's instances. The following example shows one way to implement a list
without append in the new-style object model:

class listNoAppend(list):
    def _ _getattribute_ _(self, name):
        if name =  = 'append': raise AttributeError, name
        return list._ _getattribute_ _(self, name)

An instance x of class listNoAppend is almost indistinguishable from a built-in list object, except that
performance is substantially worse, and any reference to x.append raises an exception.

The following example shows how to implement _ _getattr_ _, _ _setattr_ _, and _ _delattr_ _ so that _
_getattr_ _ is called on every attribute reference, just like _ _getattribute_ _ is for new-style instances:

class AttributeWatcher:
    def _ _init_ _(self):
        # note the caution to avoid triggering _ _setattr_ _, and the
        # emulation of Python's name-mangling for a private attribute
        self._ _dict_ _['_AttributeWatcher_ _mydict']={  }
    def _ _getattr_ _(self, name):
        # as well as tracing every call, for demonstration purposes we
        # also fake "having" any requested attribute, EXCEPT special
        # methods (_ _getattr_ _ is also invoked to ask for them: check by
        # trying a few operations on an AttributeWatcher instance).
        print "getattr", name
        try: return self._ _mydict[name]
        except KeyError:
            if name.startswith('_ _') and name.endswith('_ _'):
                raise AttributeError, name
            else: return 'fake_'+name
    def _ _setattr_ _(self, name, value):
        print "setattr", name, value
        self._ _mydict[name] = value
    def _ _delattr_ _(self, name):
        print "delattr", name
        try: del self._ _mydict[name]
        except KeyError: pass

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        except KeyError: pass

5.2.4.4 Per-instance methods

Both the classic and new-style object models allow an instance to have instance-specific bindings for
all attributes, including callable attributes (methods). For a method, just like for any other attribute,
an instance-specific binding hides a class-level binding: attribute lookup does not even look at the
class if it finds a binding directly in the instance. In both object models, an instance-specific binding
for a callable attribute does not perform any of the transformations detailed in Section 5.1.5 earlier in
this chapter. In other words, the attribute reference returns exactly the same callable object that was
earlier bound directly to the instance attribute.

Classic and new-style object models do differ on per-instance binding of the special methods that
Python invokes implicitly as a result of various operations, as covered in Section 5.3 later in this
chapter. In the classic object model, an instance may usefully override a special method, and Python
uses the per-instance binding even when invoking the method implicitly. In the new-style object
model, implicit use of special methods always relies on the class-level binding of the special method,
if any. The following code shows this difference between classic and new-style object models:

def fakeGetItem(idx): return idx
class Classic: pass
c = Classic(  )
c._ _getitem_ _ = fakeGetItem
print c[23]                       # prints: 23
class NewStyle(object): pass
n = NewStyle(  )
n._ _getitem_ _ = fakeGetItem
print n[23]                       # results in: 
# Traceback (most recent call last):
#   File "<stdin>", line 1, in ?
# TypeError: unindexable object

The semantics of the classic object model in this regard are sometimes handy for tricky and
somewhat obscure purposes. However, the new-style object model's approach regularizes and
simplifies the relationship between classes and metaclasses, covered in Section 5.4 later in this
chapter.

5.2.5 Inheritance in the New-Style Object Model

In the new-style object model, inheritance works similarly to the way it works in the classic object
model. One key difference is that a new-style class can inherit from a built-in type. The new-style
object model, like the classic one, supports multiple inheritance. However, a class may directly or
indirectly subclass multiple built-in types only if those types are specifically designed to allow this
level of mutual compatibility. Python does not support unconstrained inheritance from multiple
arbitrary built-in types. Normally, a new-style class only subclasses at most one substantial built-in
type; this means at most one built-in type in addition to object, which is the superclass of all built-in
types and new-style classes and imposes no constraints on multiple inheritance.

5.2.5.1 Method resolution order

In the classic object model, method and attribute lookup (also called resolution order) among direct
and indirect base classes proceeds left-first, depth-first. While very simple, this rule may produce
undesired results when multiple base classes inherit from the same common base class and override
different subsets of the common base class's methods; in this case, the overrides of the rightmost
base class are hidden in the lookup. For example, if A subclasses B and C in that order, and B and C
each subclass D, the classic lookup proceeds in the conceptual order A, B, D, C, D. Since Python looks
up D before C, any method defined in class D, even if class C overrides it, is therefore found only in
the base class D version. This issue causes few practical problems only because such an inheritance
pattern, also known as a diamond-shaped inheritance graph, is rarely used in the classic Python
object model.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In the new-style object model, however, all types directly or indirectly subclass object. Therefore, any
multiple inheritance gives diamond-shaped inheritance graphs, and the classic resolution order would
often produce problems. Python's new-style object model changes the resolution order by leaving in
the lookup sequence only the rightmost occurrence of any given class. Using the example from the
previous paragraph, when class D is new-style (e.g., D directly subclasses object), the resolution
order for class A becomes A, B, C, D, object, and no anomalies arise. Figure 5-1 shows the classic and
new-style method resolution orders for the case of a diamond-shaped inheritance graph.

Figure 5-1. Classic and new-style method resolution order

Each new-style class and built-in type has a special read-only class attribute called _ _mro_ _, which
is the tuple of types used for method resolution, in order. You can reference _ _mro_ _ only on
classes, not on instances, and, since _ _mro_ _ is a read-only attribute, you cannot rebind or unbind
it.

5.2.5.2 Cooperative superclass method calling

As we saw earlier in this chapter, when a subclass overrides a method, the overriding method often
wants to delegate part of its operation to the superclass's implementation of the same method. The
simple solution that is idiomatic in Python's classic object model (calling the superclass's version
directly with unbound method syntax) is imperfect in cases of multiple inheritance with diamond-
shaped graphs. Consider the following definitions:

class A(object):
    def met(self): 
        print 'A.met'
class B(A):
    def met(self): 
        print 'B.met'
        A.met(self)
class C(A):
    def met(self): 
        print 'C.met'
        A.met(self)
class D(B,C):
    def met(self): 
        print 'D.met'
        B.met(self)
        C.met(self)

In this code, when we call D( ).met( ), A.met ends up being called twice. How can we ensure that each

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


In this code, when we call D( ).met( ), A.met ends up being called twice. How can we ensure that each
ancestor's implementation of the method is called once, and only once? This problem turns out to be
rather hard to solve without some special help. The special help that Python 2.2 provides is the new
built-in type super. super(aclass, obj) returns a special superobject of object obj. When we look up an
attribute (e.g., a method) in this superobject, the lookup begins after class aclass in obj's method
resolution order. We can therefore rewrite the previous code as:

class A(object):
    def met(self): 
        print 'A.met'
class B(A):
    def met(self): 
        print 'B.met'
        super(B,self).met(  )
class C(A):
    def met(self): 
        print 'C.met'
        super(C,self).met(  )
class D(B,C):
    def met(self): 
        print 'D.met'
        super(D,self).met(  )

Now, D( ).met( ) results in exactly one call to each class's version of met. If you get into the habit of
always coding superclass calls with super, your classes will fit smoothly even in complicated
inheritance structures. There are no ill effects whatsoever if the inheritance structure turns out to be
simple instead (as long as your code only runs on Python 2.2 and later, of course).
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

5.3 Special Methods

A class may define or inherit special methods (i.e., methods whose names begin and end with double
underscores). Each special method relates to a specific operation. Python implicitly invokes a special
method whenever you perform the related operation on an instance object. In most cases, the
method's return value is the operation's result, and attempting an operation when its related method
is not present raises an exception. Throughout this section, I will point out the cases in which these
general rules do not apply. In the following, x is the instance of class C on which you perform the
operation, and y is the other operand, if any. The formal argument self of each method also refers to
instance object x.

5.3.1 General-Purpose Special Methods

Some special methods relate to general-purpose operations. A class that defines or inherits these
methods allows its instances to control such operations. These operations can be divided into the
following categories:

Initialization and finalization

An instance can control its initialization (a frequent need) via special method _ _init_ _, and/or
its finalization (a rare need) via _ _del_ _.

Representation as string

An instance can control how Python represents it as a string via special methods _ _repr_ _, _
_str_ _, and _ _unicode_ _.

Comparison, hashing, and use in a Boolean context

An instance can control how it compares with other objects (methods _ _lt_ _ and _ _cmp_ _),
how dictionaries use it as a key (_ _hash_ _), and whether it evaluates to true or false in
Boolean contexts (_ _nonzero_ _).

Attribute reference, binding, and unbinding

An instance can control access to its attributes (reference, binding, unbinding) by defining
special methods _ _getattribute_ _, _ _getattr_ _, _ _setattr_ _, and _ _delattr_ _.

Callable instances

An instance is callable, just like a function object, if it has the special method _ _call_ _.

The rest of this section documents the general-purpose special methods.

_ _call_ _

_ _call_ _(self[,args...])

When you call x([args...]), Python translates the operation into a call to x._ _call_ _([args...]). The
formal arguments for the call operation are the same as for the _ _call_ _ method, minus the first
argument. The first argument, conventionally called self, refers to x, and Python supplies it implicitly
and automatically, just as in any other call to a bound method.

_ _cmp_ _

_ _cmp_ _(self,other)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Any comparison, when its specific special method (_ _lt_ _, _ _gt_ _, etc.) is absent or returns
NotImplemented, calls x._ _cmp_ _(y) instead, as do built-in function cmp(x,y) and the sort method of
list objects. _ _cmp_ _ should return -1 if x is less than y, 0 if x is equal to y, or 1 if x is greater than y.
When _ _cmp_ _ is also absent, order comparisons (<, <=, >, >=) raise exceptions. Equality
comparisons (= =, !=), in this case, become identity checks: x= =y evaluates id(x)= =id(y) (i.e., x is
y).

_ _del_ _

_ _del_ _(self)

Just before x disappears because of garbage collection, Python calls x._ _del_ _( ) to let x finalize
itself. If _ _del_ _ is absent, Python performs no special finalization upon garbage-collecting x (this is
the usual case, as very few classes need to define _ _del_ _). Python ignores the return value of _
_del_ _. Python performs no implicit call to _ _del_ _ methods of class C's superclasses. C._ _del_ _
must explicitly perform any needed finalization.

For example, when class C has a base class B to finalize, the code in C._ _del_ _ must call B._ _del_
_(self) (or better, for new-style classes, super(C, self)._ _del_ _( )). _ _del_ _ is generally not the best
approach when you need timely and guaranteed finalization. For such needs, use the try/finally
statement covered in Chapter 6.

_ _delattr_ _

_ _delattr_ _(self,name)

At every request to unbind attribute x.y (typically, a del statement del x.y), Python calls x._ _delattr_
_('y'). All the considerations discussed for _ _setattr_ _ also apply to _ _delattr_ _. Python ignores the
return value of _ _delattr_ _. If _ _delattr_ _ is absent, Python usually translates del x.y into del x._
_dict_ _['y'].

_ _eq_ _, _ _ge_ _, _ _gt_ _, _ _le_ _, _ _lt_ _, _
_ne_ _

_ _eq_ _(self,other)
_ _ge_ _(self,other)
_ _gt_ _(self,other)
_ _le_ _(self,other)
_ _lt_ _(self,other)
_ _ne_ _(self,other)

Comparisons x= =y, x>=y, x>y, x<=y, x<y, and x!=y, respectively, call the special methods listed
here, which should return False or True (in Python 2.2.1 and later; 0 or 1 in Python 2.2, 2.1, and
earlier). Each method may return NotImplemented to tell Python to handle the comparison in
alternative ways (e.g., Python may then try y>x in lieu of x<y).

_ _getattr_ _

_ _getattr_ _(self,name)

When attribute x.y is accessed but not found by the usual procedure (i.e., where AttributeError would
normally be raised), Python calls x._ _getattr_ _('y') instead. Python does not call _ _getattr_ _ for

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


normally be raised), Python calls x._ _getattr_ _('y') instead. Python does not call _ _getattr_ _ for
attributes found by normal means (i.e., as keys in x._ _dict_ _ or via x._ _class_ _). If you want
Python to call _ _getattr_ _ on every attribute reference, keep the attributes elsewhere (e.g., in
another dictionary referenced by an attribute with a private name, as shown earlier in this chapter),
or else write a new-style class and override _ _getattribute_ _ instead. _ _getattr_ _ should raise
AttributeError if it cannot find y.

_ _getattribute_ _ Python 2.2 and later

_ _getattribute_ _(self,name)

At every request to access attribute x.y, if x is an instance of new-style class C, Python calls x._
_getattribute_ _('y'), which must obtain and return the attribute value or else raise AttributeError. The
normal semantics of attribute access (using x._ _dict_ _, C._ _slots_ _, C's class attributes, x._
_getattr_ _) are all due to object._ _getattribute_ _.

If class C overrides _ _getattribute_ _, it must implement all of the attribute access semantics it wants
to offer. Most often, the most convenient way to implement attribute access semantics is by
delegating (e.g., calling object._ _getattribute_ _(self, ...) as part of the operation of your override of _
_getattribute_ _). Note that a class that overrides _ _getattribute_ _ makes attribute access on
instances of the class quite slow, since your overriding code is called on every such attribute access.

_ _hash_ _

_ _hash_ _(self)

The hash(x) built-in function call, and using x as a dictionary key (typically, D[x] where D is a
dictionary), call x._ _hash_ _( ). _ _hash_ _ must return a 32-bit int such that x= =y implies hash(x)=
=hash(y), and must always return the same value for a given object.

When _ _hash_ _ is absent, hash(x) and using x as a dictionary key call id(x) instead, as long as _
_cmp_ _ and _ _eq_ _ are also absent.

Any x such that hash(x) returns a result, rather than raising an exception, is known as a hashable
object. When _ _hash_ _ is absent, but _ _cmp_ _ or _ _eq_ _ is present, hash(x) and using x as a
dictionary key raise an exception. In this case, x is not hashable and cannot be a dictionary key.

You normally define _ _hash_ _ only for immutable objects that also define _ _cmp_ _ and/or _ _eq_
_. Note that, if there exists any y such that x= =y, even if y is of a different type, and both x and y are
hashable, you must ensure that hash(x)= =hash(y).

_ _init_ _

_ _init_ _(self[,args...])

When a call C([args...]) creates instance x of class C Python calls x._ _init_ _([args...]) to let x initialize
itself. If _ _init_ _ is absent, you must call class C without arguments, C( ), and x has no instance-
specific attributes upon creation (note that _ _init_ _ is never absent for a new-style class, since such
a class inherits _ _init_ _ from object unless it redefines it). _ _init_ _ must return None. Python
performs no implicit call to _ _init_ _ methods of class C's superclasses. C._ _init_ _ must explicitly
perform any needed initialization. For example, when class C has a base class B to initialize without
arguments, the code in C._ _init_ _ must explicitly call B._ _init_ _(self) (or better, for new-style
classes, call super(C, self)._ _init_ _( )).

_ _new_ _ Python 2.2 and later

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


_ _new_ _(cls[,args...])

When you call C([args...]) and C is a new-style class, Python will obtain the new instance x that you
are creating by invoking C._ _new_ _(C,[args...]). _ _new_ _ is a static method that every new-style
class has (often simply inheriting it from object) and it can return any value x. In other words, _
_new_ _ is not constrained to returning a new instance of C, although normally it is expected to do so.
If, and only if, the value x that _ _new_ _ returns is indeed an instance of C (whether a new or
previously existing one), Python continues after calling _ _new_ _ by implicitly calling _ _init_ _ on x.

_ _nonzero_ _

_ _nonzero_ _(self)

When evaluating x as true or false (see Section 4.2.6), for example on a call to bool(x) in Python 2.2.1
and later, Python calls x._ _nonzero_ _( ), which should return True or False. When _ _nonzero_ _ is
not present, Python calls _ _len_ _ instead, and takes x as false when x._ _len_ _( ) returns 0. When
neither _ _nonzero_ _ nor _ _len_ _ is present, Python always takes x as true.

_ _repr_ _

_ _repr_ _(self)

The repr(x) built-in function call, the `x` expression form, and the interactive interpreter (when x is
the result of an expression statement) call x._ _repr_ _( ) to obtain an official, complete string
representation of x. If _ _repr_ _ is absent, Python uses a default string representation. _ _repr_ _
should return a string with unambiguous information on x. Ideally, when feasible, the string should be
an expression such that eval(repr(x))= =x.

_ _setattr_ _

_ _setattr_ _(self, name, value)

At every request to bind attribute x.y (typically, an assignment statement x.y=value), Python calls x._
_setattr_ _('y',value). Python always calls _ _setattr_ _ for any attribute binding on x; a major
difference from _ _getattr_ _ (_ _setattr_ _ is closer to new-style classes' _ _getattribute_ _ in this
sense). To avoid recursion, when x._ _setattr_ _ binds x's attributes, it must modify x._ _dict_ _
directly (e.g., by x._ _dict_ _[name]=value), or better, for a new-style class, delegate (e.g., call
super(C, x)._ _setattr_ _('y',value)). Python ignores the return value of _ _setattr_ _. If _ _setattr_ _ is
absent, Python usually translates x.y=z into x._ _dict_ _['y']=z.

_ _str_ _

_ _str_ _(self)

The str(x) built-in type and the print x statement call x._ _str_ _( ) to obtain an informal, concise string
representation of x. If _ _str_ _ is absent, Python calls x._ _repr_ _ instead. _ _str_ _ should return a
conveniently human-readable string, even if it entails some approximation.

_ _unicode_ _ Python 2.2 and later

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


_ _unicode_ _(self)

The unicode(x) built-in type call, in Python 2.2 and later, invokes x._ _unicode_ _( ), if present, in
preference to x._ _str_ _( ). If a class supplies both special methods _ _unicode_ _ and _ _str_ _, the
two should return equivalent strings (of Unicode and plain string type respectively).

5.3.2 Special Methods for Containers

An instance can be a container (either a sequence or a mapping, but not both, as they are mutually
exclusive concepts). For maximum usefulness, containers should provide not just special methods _
_getitem_ _, _ _setitem_ _, _ _delitem_ _, _ _len_ _, _ _contains_ _, and _ _iter_ _, but also a few non-
special methods, as discussed in the following sections.

5.3.2.1 Sequences

In each item access special method, a sequence that has L items should accept any integer key, such
that 0<=key<L. For compatibility with built-in sequences, a negative index key, 0>key>=-L, should be
equivalent to key+L. When key has an invalid type, the method should raise TypeError. When key is a
value of a valid type, but out of range, the method should raise IndexError. In Python 2.1, and also in
later Python versions for classes that do not define _ _iter_ _, the for statement relies on these
requirements, as do built-in functions that take sequences as arguments.

A sequence should also allow concatenation by + and repetition by *. A sequence should therefore
have special methods _ _add_ _, _ _mul_ _, _ _radd_ _, and _ _rmul_ _, covered in Section 5.3.3 later
in this chapter. Mutable sequences should also have _ _iadd_ _ and _ _imul_ _, and the non-special
methods covered in Section 4.6.4.3: append, count, index, insert, extend, pop, remove, reverse, and
sort.

5.3.2.2 Mappings

A mapping's item access special methods should raise KeyError, rather than IndexError, when they
receive an invalid key argument value of a valid type. A mapping should define the non-special
methods covered in Section 4.7.3: copy, get, has_key, items, keys, values, iteritems, iterkeys, and
itervalues. Special method _ _iter_ _ should be equivalent to iterkeys. A mutable mapping should also
define methods clear, popitem, setdefault, and update.

5.3.2.3 Sets

Sets, scheduled to be introduced in Python 2.3, can be seen as rather peculiar kinds of containers—
containers that are neither sequences nor mappings, and cannot be indexed, but do have a length
(number of elements) and are iterable. Unfortunately, the interface of sets (and even the final
decision about introducing them in Python 2.3) is still not stable as of this writing. Therefore, I do not
consider sets in this book.

5.3.2.4 Container slicing

When you reference, bind, or unbind a slicing such as x[i:j] or x[i:j:k] on a container x, Python calls x's
applicable item access special method, passing as key an object of a built-in type called a slice object.
A slice object has attributes start, stop, and step. Each attribute is None if the corresponding value is
omitted in the slice syntax. For example, del x[:3] calls x._ _delitem_ _(y), and y is a slice object such
that y.stop is 3, y.start is None, and y.step is None. It is up to container object x to appropriately
interpret the slice object argument passed to x's special methods.

Some built-in types, such as list and tuple, define now-deprecated special methods _ _getslice_ _, _
_setslice_ _, and _ _delslice_ _. For an instance x of such a type, slicing x with only one colon, as in
x[i:j], calls a slice-specific special method. Slicing x with two colons, as in x[i:j:k], calls an item access

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


x[i:j], calls a slice-specific special method. Slicing x with two colons, as in x[i:j:k], calls an item access
special method with a slice object argument. For example:

class C:
    def _ _getslice_ _(self, i, j): print 'getslice', i, j
    def _ _getitem_ _(self, index): print 'getitem', index
x = C(  )
x[12:34]
x[56:78:9]

The first slicing calls x._ _getslice_ _(12,34), and the second calls x._ _getitem_ _(slice(56,78,9)). It's
best to avoid defining the slice-specific special methods in your classes, but you may need to override
them if your class subclasses list or tuple and you want to provide special functionality when an
instance of your class is sliced. Note that built-in sequences do not yet support slicing with two colons
up to Python 2.2: this functionality is scheduled to be introduced in Python 2.3.

5.3.2.5 Container methods

Special methods _ _getitem_ _, _ _setitem_ _, _ _delitem_ _, _ _iter_ _, _ _len_ _, and _ _contains_ _
expose container functionality.

_ _contains_ _

_ _contains_ _(self,item)

The Boolean test y in x calls x._ _contains_ _(y). When x is a sequence, _ _contains_ _ should return
True when y equals the value of an item in the sequence. When x is a mapping, _ _contains_ _ should
return True when y equals the value of a key in the mapping. Otherwise, _ _contains_ _ should return
False. If _ _contains_ _ is absent, Python performs y in x as follows, taking time proportional to len(x):

for z in x:
    if y=  =z: return True
return False

_ _delitem_ _

_ _delitem_ _(self,key)

For a request to unbind an item or slice of x (typically del x[key]), Python will call x._ _delitem_ _(key).
A container x should have _ _delitem_ _ only if x is mutable, so that items (and possibly slices) can be
removed.

_ _getitem_ _

_ _getitem_ _(self,key)

When x[key] is accessed (i.e., when container x is indexed or sliced), Python calls x._ _getitem_
_(key). All containers should have _ _getitem_ _.

_ _iter_ _

_ _iter_ _(self)

For a request to loop on all items of x (typically for item in x), Python calls x._ _iter_ _( ) to obtain an

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For a request to loop on all items of x (typically for item in x), Python calls x._ _iter_ _( ) to obtain an
iterator on x. The built-in function iter(x) also calls x._ _iter_ _( ). If _ _iter_ _ is absent and x is a
sequence, iter(x) synthesizes and returns an iterator object that wraps x and returns x[0], x[1], and so
on, until one of these item accesses raises IndexError to indicate the end of the sequence.

_ _len_ _

_ _len_ _(self)

The len(x) built-in function call, and other built-in functions that need to know how many items are in
container x, call x._ _len_ _( ). _ _len_ _ should return an int, the number of items in x. Python also
calls x._ _len_ _( ) to evaluate x in a Boolean context, if _ _nonzero_ _ is absent. Absent _ _nonzero_
_, a container is taken as false if and only if the container is empty (i.e., the container's length is 0).

_ _setitem_ _

_ _setitem_ _(self,key,value)

For a request to bind an item or slice of x (typically an assignment x[key]=value), Python calls x._
_setitem_ _(key,value). A container x should have _ _setitem_ _ only if x is mutable, so that items, and
possibly slices, can be added and/or rebound.

5.3.3 Special Methods for Numeric Objects

An instance may support numeric operations by means of many special methods. Some classes that
are not numbers also support some of the following special methods, in order to overload operators
such as + and *. For example, sequences should have special methods _ _add_ _, _ _mul_ _, _ _radd_
_, and _ _rmul_ _, as mentioned earlier in this chapter.

_ _abs_ _, _ _invert_ _, _ _neg_ _, _ _pos_ _

_ _abs_ _(self)
_ _invert_ _(self)
_ _neg_ _(self)
_ _pos_ _(self)

Unary operators abs(x), ~x, -x, and +x, respectively, call these methods.

_ _add_ _, _ _div_ _, _ _floordiv_ _, _ _mod_ _, _
_mul_ _, _ _sub_ _,_ _truediv_ _

_ _add_ _(self,other)
_ _div_ _(self,other)
_ _floordiv_ _(self,other)
_ _mod_ _(self,other)
_ _mul_ _(self,other)
_ _sub_ _(self,other)
_ _truediv_ _(self,other)

Operators x+y, x/y, x//y, x%y, x*y, x-y, and x/y, respectively, call these methods. The operator / calls
_ _truediv_ _, if present, instead of _ _div_ _, in the situations where division is non-truncating, as
covered in Section 4.5.2.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


_ _and_ _, _ _lshift_ _, _ _or_ _, _ _rshift_ _, _ _xor_
_

_ _and_ _(self,other)
_ _lshift_ _(self,other)
_ _or_ _(self,other)
_ _rshift_ _(self,other)
_ _xor_ _(self,other)

Operators x&y, x<<y, x|y, x>>y, and x^y, respectively, call these methods.

_ _coerce_ _

_ _coerce_ _(self,other)

For any numeric operation with two operands x and y, Python invokes x._ _coerce_ _(y). _ _coerce_ _
should return a pair with x and y converted to acceptable types. _ _coerce_ _ returns None when it
cannot perform the conversion. In such cases, Python will call y._ _coerce_ _(x). This special method
is now deprecated: new Python classes should not implement it, but instead deal with whatever types
they can accept directly in the special methods of the relevant numeric operations. However, if a class
does supply _ _coerce_ _, Python still calls it for backward compatibility.

_ _complex_ _, _ _float_ _, _ _int_ _, _ _long_ _

_ _complex_ _(self)
_ _float_ _(self)
_ _int_ _(self)
_ _long_ _(self)

Built-in types complex(x), float(x), int(x), and long(x), respectively, call these methods.

_ _divmod_ _

_ _divmod_ _(self,other)

Built-in function divmod(x,y) calls x._ _divmod_ _(y). _ _divmod_ _ should return a pair
(quotient,remainder) equal to (x//y,x%y).

_ _hex_ _, _ _oct_ _

_ _hex_ _(self)
_ _oct_ _(self)

Built-in function hex(x) calls x._ _hex_ _( ). Built-in function oct(x) calls x._ _oct_ _( ). Each of these
special methods should return a string representing the value of x, in base 16 and 8 respectively.

_ _iadd_ _, _ _idiv_ _, _ _ifloordiv_ _, _ _imod_ _, _
_imul_ _, _ _isub_ _, _ _itruediv_ _

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


_ _iadd_ _(self,other)
_ _idiv_ _(self,other)
_ _ifloordiv_ _(self,other)
_ _imod_ _(self,other)
_ _imul_ _(self,other)
_ _isub_ _(self,other)
_ _itruediv_ _(self,other)

The augmented assignments x+=y, x/=y, x//=y, x%=y, x*=y, x-=y, and x/=y, respectively, call these
methods. Each method should modify x in-place and return self. Define these methods when x is
mutable (i.e., when x can change in-place).

_ _iand_ _, _ _ilshift_ _, _ _ior_ _, _ _irshift_ _, _
_ixor_ _

_ _iand_ _(self,other)
_ _ilshift_ _(self,other)
_ _ior_ _(self,other)
_ _irshift_ _(self,other)
_ _ixor_ _(self,other)

Augmented assignments x&=y, x<<=y, x|=y, x>>=y, and x^=y, respectively, call these methods.
Each method should modify x in-place and return self.

_ _ipow_ _

_ _ipow_ _(self,other)

Augmented assignment x**=y calls x._ _ipow_ _(y). _ _ipow_ _ should modify x in-place and return
self.

_ _pow_ _

_ _pow_ _(self,other[,modulo])

x**y and pow(x,y) both call x._ _pow_ _(y), while pow(x,y,z) calls x._ _pow_ _(y,z). x._ _pow_ _(y,z)
should return a value equal to the expression x._ _pow_ _(y)%z.

_ _radd_ _, _ _rdiv_ _, _ _rmod_ _, _ _rmul_ _, _
_rsub_ _

_ _radd_ _(self,other)
_ _rdiv_ _(self,other)
_ _rmod_ _(self,other)
_ _rmul_ _(self,other)
_ _rsub_ _(self,other)

Operators y+x, y/x, y%x, y*x, and y-x, respectively, call these methods when y doesn't have a needed
method _ _add_ _, _ _div_ _, and so on.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


_ _rand_ _, _ _rlshift_ _, _ _ror_ _, _ _rrshift_ _, _
_rxor_ _

_ _rand_ _(self,other)
_ _rlshift_ _(self,other)
_ _ror_ _(self,other)
_ _rrshift_ _(self,other)
_ _rxor_ _(self,other)

Operators y&x, y<<x, y|x, y>>x, and y^x, respectively, call these methods when y doesn't have
needed method _ _and_ _, _ _lshift_ _, and so on.

_ _rdivmod_ _

_ _rdivmod_ _(self,other)

Built-in function divmod(y,x) calls x._ _rdivmod_ _(y) when y doesn't have _ _divmod_ _. _ _rdivmod_ _
should return a pair (remainder,quotient).

_ _rpow_ _

_ _rpow_ _(self,other)

y**x and pow(y,x) call x._ _rpow_ _(y), when y doesn't have _ _pow_ _. There is no three-argument
form in this case.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

5.4 Metaclasses

Any object, even a class object, has a type. In Python, types and classes are also first-class objects.
The type of a class object is also known as the class's metaclass.[1] An object's behavior is
determined largely by the type of the object. This also holds for classes: a class's behavior is
determined largely by the class's metaclass. Metaclasses are an advanced subject, and you may want
to skip the rest of this chapter on first reading. However, fully grasping metaclasses can help you
obtain a deeper understanding of Python, and sometimes it can even be useful to define your own
custom metaclasses.

[1] Strictly speaking, the type of a class C could be said to be the metaclass only of
instances of C, rather than of C itself, but this exceedingly subtle terminological
distinction is rarely, if ever, observed in practice.

The distinction between classic and new-style classes relies on the fact that each class's behavior is
determined by its metaclass. In other words, the reason classic classes behave differently from new-
style classes is that classic and new-style classes are object of different types (metaclasses):

class Classic: pass
class Newstyle(object): pass
print type(Classic)                  # prints: <type 'class'>
print type(Newstyle)                 # prints: <type 'type'>

The type of Classic is object types.ClassType from standard module types, while the type of Newstyle is
built-in object type. type is also the metaclass of all Python built-in types, including itself (i.e., print
type(type) also prints <type 'type'>).

5.4.1 How Python Determines a Class's Metaclass

To execute a class statement, Python first collects the base classes into a tuple t (an empty one, if
there are no base classes) and executes the class body in a temporary dictionary d. Then, Python
determines the metaclass M to use for the new class object C created by the class statement.

When '_ _metaclass_ _' is a key in d, M is d['_ _metaclass_ _']. Thus, you can explicitly control class C's
metaclass by binding the attribute _ _metaclass_ _ in C's class body. Otherwise, when t is non-empty
(i.e., when C has one or more base classes), M is type(t[0]), the metaclass of C's first base class. This
is why inheriting from object indicates that C is a new-style class. Since type(object) is type, a class C
that inherits from object (or some other built-in type) gets the same metaclass as object (i.e., type(C),
C's metaclass, is also type) Thus, being a new-style class is synonymous with having type as the
metaclass.

When C has no base classes, but the current module has a global variable named _ _metaclass_ _, M
is the value of that global variable. This lets you make classes without base classes default to new-
style classes, rather than classic classes, throughout a module. Just place the following statement
toward the start of the module body:

_ _metaclass_ = type

Failing all of these, in Python 2.2 and 2.3, M defaults to types.ClassType. This last default of defaults
clause is why classes without base classes are classic classes by default, when _ _metaclass_ _ is not
bound in the class body or as a global variable of the module.

5.4.2 How a Metaclass Creates a Class

Having determined M, Python calls M with three arguments: the class name (a string), the tuple of
base classes t, and the dictionary d. The call returns the class object C, which Python then binds to
the class name, completing the execution of the class statement. Note that this is in fact an
instantiation of type M, so the call to M executes M._ _init_ _(C,namestring,t,d), where C is the return

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


instantiation of type M, so the call to M executes M._ _init_ _(C,namestring,t,d), where C is the return
value of M._ _new_ _(M,namestring,t,d), just as in any other similar instantiation of a new-style class
(or built-in type).

After class object C is created, the relationship between class C and its type (type(C), normally M) is
the same as that between any object and its type. For example, when you call class C (to create an
instance of C), M._ _call_ _ executes, with class object C as the first actual argument.

Note the benefit of the new-style approach described in Section 5.2.4.4 earlier in this chapter. Calling
C to instantiate it must execute the metaclass's M._ _call_ _, whether or not C has a per-instance
attribute (method) _ _call_ _ (i.e., independently of whether instances of C are or aren't callable). This
requirement is simply incompatible with the classic object model, where per-instance methods
override per-class ones—even for implicitly called special methods. The new-style approach avoids
having to make the relationship between a class and its metaclass an ad hoc special case. Avoiding ad
hoc special cases is a key to Python's power: Python has few, simple, general rules, and applies them
consistently.

5.4.2.1 Defining and using your own metaclasses

It's easy to define metaclasses in Python 2.2 and later, by inheriting from type and overriding some
methods. You can also perform most of these tasks with _ _new_ _, _ _init_ _, _ _getattribute_ _, and
so on, without involving metaclasses. However, a custom metaclass can be faster, since special
processing is done only at class creation time, which is a rare operation. A custom metaclass also lets
you define a whole category of classes in a framework that magically acquires whatever interesting
behavior you've coded, quite independently of what special methods the classes may choose to
define. Moreover, some behavior of class objects can be customized only in metaclasses. The
following example shows how to use a metaclass to change the string format of class objects:

class MyMeta(type):
    def _ _str_ _(cls): return "Beautiful class '%s'"%cls._ _name_ _
class MyClass:
    _ _metaclass_ _ = MyMeta
x = MyClass(  )
print type(x)

Strictly speaking, classes that instantiate your own custom metaclass are neither classic nor new-
style: the semantics of classes and of their instances is entirely defined by their metaclass. In
practice, your custom metaclasses will almost invariably subclass built-in type. Therefore, the
semantics of the classes that instantiate them are best thought of as secondary variations with
respect to the semantics of new-style classes.

5.4.2.2 A substantial custom metaclass example

Suppose that, programming in Python, we miss C's struct type: an object that is just a bunch of data
attributes with fixed names. Python lets us easily define an appropriate Bunch class, apart from the
fixed names:

class Bunch(object):
    def _ _init_ _(self, **fields): self._ _dict_ _ = fields
p = Bunch(x=2.3, y=4.5)
print p                     # prints: <_ _main_ _.Bunch object at 0x00AE8B10>

However, a custom metaclass lets us exploit the fact that the attribute names are fixed at class
creation time. The code shown in Example 5-1 defines a metaclass, metaMetaBunch, and a class,
MetaBunch, that let us write code like the following:

class Point(MetaBunch):
    """ A point has x and y coordinates, defaulting to 0.0, and a color,
        defaulting to 'gray' -- and nothing more, except what Python and
        the metaclass conspire to add, such as _ _init_ _ and _ _repr_ _
    """

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    """
    x = 0.0
    y = 0.0
    color = 'gray'
# example uses of class Point
q = Point(  )
print q                     # prints: Point(  )
p = Point(x=1.2, y=3.4)
print p                     # prints: Point(y=3.399999999, x=1.2)

In this code, the print statements print readable string representations of our Point instances. Point
instances are also quite memory-lean, and their performance is basically the same as for instances of
the simple class Bunch in the previous example (no extra overhead due to special methods getting
called implicitly). Note that Example 5-1 is quite substantial, and following all its details requires
understanding aspects of Python covered later in this book, such as strings (Chapter 9) and module
warnings (Chapter 17).

Example 5-1. The metaMetaBunch metaclass

import warnings
class metaMetaBunch(type):
    """
    metaclass for new and improved "Bunch": implicitly defines _ _slots_ _,
   _ _init_ _ and _ _repr_ _ from variables bound in class scope.
    A class statement for an instance of metaMetaBunch (i.e., for a class
    whose metaclass is metaMetaBunch) must define only class-scope data
    attributes (and possibly special methods, but NOT _ _init_ _ and 
    _ _repr_ _!).  metaMetaBunch removes the data attributes from class
    scope, snuggles them instead as items in a class-scope dict named
    _ _dflts_ _, and puts in the class a _ _slots_ _ with those attributes'
    names, an _ _init_ _ that takes as optional keyword arguments each of
    them (using the values in _ _dflts_ _ as defaults for missing ones), and
    a _ _repr_ _ that shows the repr of each attribute that differs from its
    default value (the output of _ _repr_ _ can be passed to _ _eval_ _ to 
    make an equal instance, as per the usual convention in the matter, if
    each of the non-default-valued attributes respects the convention too)
    """
    def _ _new_ _(cls, classname, bases, classdict):
        """ Everything needs to be done in _ _new_ _, since type._ _new_ _ is
            where _ _slots_ _ are taken into account.
        """
        # define as local functions the _ _init_ _ and _ _repr_ _ that we'll
        # use in the new class
        def _ _init_ _(self, **kw):
            """ Simplistic _ _init_ _: first set all attributes to default
                values, then override those explicitly passed in kw.
            """
            for k in self._ _dflts_ _: setattr(self, k, self._ _dflts_ _[k])
            for k in kw: setattr(self, k, kw[k])
        def _ _repr_ _(self):
            """ Clever _ _repr_ _: show only attributes that differ from the
                respective default values, for compactness.
            """
            rep = ['%s=%r' % (k, getattr(self, k)) for k in self._ _dflts_ _
                    if getattr(self, k) != self._ _dflts_ _[k]
                  ]
            return '%s(%s)' % (classname, ', '.join(rep))
        # build the newdict that we'll use as class-dict for the new class
        newdict = { '_ _slots_ _':[  ], '_ _dflts_ _':{  },
            '_ _init_ _':_ _init_ _, '_ _repr_ _':_ _repr_ _, }
        for k in classdict:
            if k.startswith('_ _') and k.endswith('_ _'):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            if k.startswith('_ _') and k.endswith('_ _'):
                # special methods: copy to newdict, warn about conflicts
                if k in newdict:
                    warnings.warn("Can't set attr %r in bunch-class %r"
                        % (k, classname))
                else:
                    newdict[k] = classdict[k]
            else:
                # class variables, store name in _ _slots_ _, and name and
                # value as an item in _ _dflts_ _
                newdict['_ _slots_ _'].append(k)
                newdict['_ _dflts_ _'][k] = classdict[k]
        # finally delegate the rest of the work to type._ _new_ _
        return type._ _new_ _(cls, classname, bases, newdict)
class MetaBunch(object):
    """ For convenience: inheriting from MetaBunch can be used to get
        the new metaclass (same as defining _ _metaclass_ _ yourself).
    """
    _ _metaclass_ _ = metaMetaBunch
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 6. Exceptions

Python uses exceptions to communicate errors and anomalies. An exception is an object that indicates
an error or anomalous condition. When Python detects an error, it raises an exception; that is, it
signals the occurrence of an anomalous condition by passing an exception object to the exception-
propagation mechanism. Your code can also explicitly raise an exception by executing a raise
statement.

Handling an exception means receiving the exception object from the propagation mechanism and
performing whatever actions are needed to deal with the anomalous situation. If a program does not
handle an exception, it terminates with an error traceback message. However, a program can handle
exceptions and keep running despite errors or other abnormal conditions.

Python also uses exceptions to indicate some special situations that are not errors, and are not even
abnormal occurrences. For example, as covered in Chapter 4, an iterator's next method raises the
exception StopIteration when the iterator has no more items. This is not an error, and it is not even an
anomalous condition, since most iterators run out of items eventually.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.1 The try Statement

The try statement provides Python's exception-handling mechanism. It is a compound statement that
can take one of two different forms:

A try clause followed by one or more except clauses

A try clause followed by exactly one finally clause

6.1.1 try/except

Here's the syntax for the try/except form of the try statement:

try:
    statement(s)
except [expression [, target]]:
    statement(s)
[else:
    statement(s)]

This form of the try statement has one or more except clauses, as well as an optional else clause.

The body of each except clause is known as an exception handler. The code executes if the expression
in the except clause matches an exception object that propagates from the try clause. expression is an
optional class or tuple of classes that matches any exception object of one of the listed classes or any
of their subclasses. The optional target is an identifier that names a variable that Python binds to the
exception object just before the exception handler executes. A handler can also obtain the current
exception object by calling the exc_info function of module sys (covered in Chapter 8).

Here is an example of the try/except form of the try statement:

try: 1/0
except ZeroDivisionError: print "caught divide-by-0 attempt"

If a try statement has several except clauses, the exception propagation mechanism tests the except
clauses in order: the first except clause whose expression matches the exception object is used as the
handler. Thus, you must always list handlers for specific cases before you list handlers for more
general cases. If you list a general case first, the more specific except clauses that follow will never
enter the picture.

The last except clause may lack an expression. This clause handles any exception that reaches it
during propagation. Such unconditional handling is a rare need, but it does occur, generally in
wrapper functions that must perform some extra task before reraising an exception, as we'll discuss
later in the chapter.

Note that exception propagation terminates when it finds a handler whose expression matches the
exception object. Thus, if a try statement is nested in the try clause of another try statement, a
handler established by the inner try is reached first during propagation, and therefore is the one that
handles the exception, if it matches the expression. For example:

try:
    try: 1/0
    except: print "caught an exception"
except ZeroDivisionError:
    print "caught divide-by-0 attempt"
# prints: caught an exception

In this case, it does not matter that the handler established by clause except ZeroDivisionError: in the
outer try clause is more specific and appropriate than the catch-all except: in the inner try clause. The

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


outer try clause is more specific and appropriate than the catch-all except: in the inner try clause. The
outer try does not even enter into the picture because the exception doesn't propagate out of the
inner try.

The optional else clause of try/except executes only if the try clause terminates normally. In other
words, it does not execute if an exception propagates from the try clause or if the try clause exits with
a break, continue, or return statement. The handlers established by try/except cover only the try
clause, not the else clause. The else clause is useful to avoid accidentally handling unexpected
exceptions. For example:

print repr(value), "is ",
try:
    value + 0
except TypeError:
    # not a number, maybe a string, Unicode, UserString...?
    try:
        value + ''
    except TypeError:
        print "neither a number nor a string"
    else:
        print "a string or string-like value"
else:
    print "a number of some kind"

6.1.2 try/finally

Here's the syntax for the try/finally form of the try statement:

try:
    statement(s)
finally:
    statement(s)

This form has exactly one finally clause, and it cannot have an else clause.

The finally clause establishes what is known as a clean-up handler. The code always executes after the
try clause terminates in any way. When an exception propagates from the try clause, the try clause
terminates, the clean-up handler executes, and the exception keeps propagating. When no exception
occurs, the clean-up handler executes anyway, whether the try clause reaches its end or exits by
executing a break, continue, or return statement.

Clean-up handlers established with try/finally offer a robust and explicit way to specify finalization
code that must always execute, no matter what, to ensure consistency of program state and/or
external entities (e.g., files, databases, network connections). Here is an example of the try/finally
form of the try statement:

f = open(someFile, "w")
try:
    do_something_with_file(f)
finally:
    f.close(  )

Note that the try/finally form is distinct from the try/except form: a try statement cannot have both
except and finally clauses, as execution order might be ambiguous. If you need both exception
handlers and a clean-up handler, nest a try statement in the try clause of another try statement to
define execution order explicitly and unambiguously.

A finally clause cannot directly contain a continue statement, but it may contain a break or return
statement. Such usage, however, makes your program less clear, as exception propagation stops
when such a break or return executes. Most programmers would not normally expect propagation to
be stopped in a finally clause, so this usage may confuse people who are reading your code.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.2 Exception Propagation

When an exception is raised, the exception-propagation mechanism takes control. The normal control
flow of the program stops, and Python looks for a suitable exception handler. Python's try statement
establishes exception handlers via its except clauses. The handlers deal with exceptions raised in the
body of the try clause, as well as exceptions that propagate from any of the functions called by that
code, directly or indirectly. If an exception is raised within a try clause that has an applicable except
handler, the try clause terminates and the handler executes. When the handler finishes, execution
continues with the statement after the try statement.

If the statement raising the exception is not within a try clause that has an applicable handler, the
function containing the statement terminates, and the exception propagates upward to the statement
that called the function. If the call to the terminated function is within a try clause that has an
applicable handler, that try clause terminates, and the handler executes. Otherwise, the function
containing the call terminates, and the propagation process repeats, unwinding the stack of function
calls until an applicable handler is found.

If Python cannot find such a handler, by default the program prints an error message to the standard
error stream (the file sys.stderr). The error message includes a traceback that gives details about
functions terminated during propagation. You can change Python's default error-reporting behavior by
setting sys.excepthook (covered in Chapter 8). After error reporting, Python goes back to the
interactive session, if any, or terminates if no interactive session is active. When the exception class is
SystemExit, termination is silent and includes the interactive session, if any.

Here are some functions that we can use to see exception propagation at work.

def f(  ):
    print "in f, before 1/0"
    1/0                           # raises a ZeroDivisionError exception
    print "in f, after 1/0"

def g(  ):
    print "in g, before f(  )"
    f(  )
    print "in g, after f(  )"

def h(  ):
    print "in h, before g(  )"
    try:
        g(  )
        print "in h, after g(  )"
    except ZeroDivisionError:
        print "ZD exception caught"
    print "function h ends"

Calling the h function has the following results:

>>> h(  )
in h, before g(  )
in g, before f(  )
in f, before 1/0
ZD exception caught
function h ends

Function h establishes a try statement and calls function g within the try clause. g, in turn, calls f,
which performs a division by 0, raising an exception of class ZeroDivisionError. The exception
propagates all the way back to the except clause in h. Functions f and g terminate during the
exception propagation phase, which is why neither of their "after" messages is printed. The execution
of h's try clause also terminates during the exception propagation phase, so its "after" message isn't

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


of h's try clause also terminates during the exception propagation phase, so its "after" message isn't
printed either. Execution continues after the handler, at the end of h's try/except block.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.3 The raise Statement

You can use the raise statement to raise an exception explicitly. raise is a simple statement with the
following syntax:

raise [expression1[, expression2]]

Only an exception handler (or a function that a handler calls, directly or indirectly) can use raise
without any expressions. A plain raise statement reraises the same exception object that the handler
received. The handler terminates, and the exception propagation mechanism keeps searching for
other applicable handlers. Using a raise without expressions is useful when a handler discovers that it
is unable to handle an exception it receives, so the exception should keep propagating.

When only expression1 is present, it can be an instance object or a class object. In this case, if
expression1 is an instance object, Python raises that instance. When expression1 is a class object, raise
instantiates the class without arguments and raises the resulting instance. When both expressions are
present, expression1 must be a class object. raise instantiates the class, with expression2 as the
argument (or multiple arguments if expression2 is a tuple), and raises the resulting instance.

Here's an example of a typical use of the raise statement:

def crossProduct(seq1, seq2):
    if not seq1 or not seq2:
        raise ValueError, "Sequence arguments must be non-empty"
    return [ (x1, x2) for x1 in seq1 for x2 in seq2 ]

The crossProduct function returns a list of all pairs with one item from each of its sequence arguments,
but first it tests both arguments. If either argument is empty, the function raises ValueError, rather
than just returning an empty list as the list comprehension would normally do. Note that there is no
need for crossProduct to test if seq1 and seq2 are iterable: if either isn't, the list comprehension itself
will raise the appropriate exception, presumably a TypeError. Once an exception is raised, be it by
Python itself or with an explicit raise statement in your code, it's up to the caller to either handle it
(with a suitable try/except statement) or let it propagate further up the call stack.

Use the raise statement only to raise additional exceptions for cases that would normally be okay but
your specifications define to be errors. Do not use raise to duplicate the error checking and diagnostics
Python already and implicitly does on your behalf.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.4 Exception Objects

Exceptions are instances of subclasses of the built-in Exception class. For backward compatibility,
Python also lets you use strings, or instances of any class, as exception objects, but such usage risks
future incompatibility and gives no benefits. An instance of any subclass of Exception has an attribute
args, the tuple of arguments used to create the instance. args holds error-specific information, usable
for diagnostic or recovery purposes.

6.4.1 The Hierarchy of Standard Exceptions

All exceptions that Python itself raises are instances of subclasses of Exception. The inheritance
structure of exception classes is important, as it determines which except clauses handle which
exceptions.

The SystemExit class inherits directly from Exception. Instances of SystemExit are normally raised by
the exit function in module sys (covered in Chapter 8).

Other standard exceptions derive from StandardError, a direct subclass of Exception. Three subclasses
of StandardError, like StandardError itself and Exception, are never instantiated directly. Their purpose
is to make it easier for you to specify except clauses that handle a broad range of related errors.
These subclasses are:

ArithmeticError

The base class for exceptions due to arithmetic errors (i.e., OverflowError, ZeroDivisionError,
FloatingPointError)

LookupError

The base class for exceptions that a container raises when it receives an invalid key or index
(i.e., IndexError, KeyError)

EnvironmentError

The base class for exceptions due to external causes (i.e., IOError, OSError, WindowsError)

6.4.2 Standard Exception Classes

Common runtime errors raise exceptions of the following classes:

AssertionError

An assert statement failed.

AttributeError

An attribute reference or assignment failed.

FloatingPointError

A floating-point operation failed. Derived from ArithmeticError.

IOError

An I/O operation failed (e.g., the disk is full, a file was not found, or needed permissions were
missing). Derived from EnvironmentError.

ImportError

An import statement (covered in Chapter 7) cannot find the module to import or cannot find a
name specifically requested from the module.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


IndentationError

The parser encountered a syntax error due to incorrect indentation. Derived from SyntaxError.

IndexError

An integer used to index a sequence is out of range (using a non-integer as a sequence index
raises TypeError). Derived from LookupError.

KeyError

A key used to index a mapping is not in the mapping. Derived from LookupError.

KeyboardInterrupt

The user pressed the interrupt key (Ctrl-C, Ctrl-Break, or Delete, depending on the platform).

MemoryError

An operation ran out of memory.

NameError

A variable was referenced, but its name is not bound.

NotImplementedError

Raised by abstract base classes to indicate that a concrete subclass must override a method.

OSError

Raised by functions in module os (covered in Chapter 10 and Chapter 14) to indicate platform-
dependent errors. Derived from EnvironmentError.

OverflowError

The result of an operation on an integer is too large to fit into an integer (operator << does not
raise this exception: rather, it drops excess bits). Derived from ArithmeticError. Python 2.1
only; in 2.2 and 2.3, too-large integer results implicitly become long integers, without raising
exceptions.

SyntaxError

The parser encountered a syntax error.

SystemError

An internal error within Python itself or some extension module. You should report this to the
authors and maintainers of Python, or of the extension in question, with all possible details to
allow reproducing it.

TypeError

An operation or function was applied to an object of an inappropriate type.

UnboundLocalError

A reference was made to a local variable, but no value is currently bound to that local variable.
Derived from NameError.

UnicodeError

An error occurred while converting Unicode to a string or vice versa.

ValueError

An operation or function was applied to an object that has a correct type but an inappropriate
value, and nothing more specific (e.g., KeyError) applies.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


WindowsError

Raised by functions in module os (covered in Chapter 10 and Chapter 14) to indicate Windows-
specific errors. Derived from OsError.

ZeroDivisionError

A divisor (the right-hand operand of a /, //, or % operator or the second argument to built-in
function divmod) is 0. Derived from ArithmeticError.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.5 Custom Exception Classes

You can subclass any of the standard exception classes in order to define your own exception class.
Typically, such a subclass adds nothing more than a docstring:

class InvalidAttribute(AttributeError):
    "Used to indicate attributes that could never be valid"

Given the semantics of try/except, raising a custom exception class such as InvalidAttribute is almost
the same as raising its standard exception superclass, AttributeError. Any except clause able to handle
AttributeError can handle InvalidAttribute just as well. In addition, client code that knows specifically
about your InvalidAttribute custom exception class can handle it specifically, without having to handle
all other cases of AttributeError if it is not prepared for those. For example:

class SomeFunkyClass(object):
    "much hypothetical functionality snipped"
    def _ _getattr_ _(self, name):
        "this _ _getattr_ _ only clarifies the kind of attribute error"
        if name.startswith('_'):
            raise InvalidAttribute, "Unknown private attribute "+name
        else:
            raise AttributeError, "Unknown attribute "+name

Now client code can be more selective in its handlers. For example:

s = SomeFunkyClass(  )
try:
    value = getattr(s, thename)
except InvalidAttribute, err
    warnings.warn(str(err))
    value = None
# other cases of AttributeError just propagate, as they're unexpected

A special case of custom exception class that you may sometimes find useful is one that wraps
another exception and adds further information. To gather information about a pending exception,
you can use the exc_info function from module sys (covered in Chapter 8). Given this, your custom
exception class could be defined as follows:

import sys
class CustomException(Exception):
    "Wrap arbitrary pending exception, if any, in addition to other info"
    def _ _init_ _(self, *args):
        Exception._ _init_ _(self, *args)
        self.wrapped_exc = sys.exc_info(  )

You would then typically use this class in a wrapper function such as:

def call_wrapped(callable, *args, **kwds):
    try: return callable(*args, **kwds)
    except: raise CustomException, "Wrapped function propagated exception"

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

6.6 Error-Checking Strategies

Most programming languages that support exceptions are geared to raise exceptions only in very rare
cases. Python's emphasis is different. In Python, exceptions are considered appropriate whenever
they make a program simpler and more robust. A common idiom in other languages, sometimes
known as "look before you leap" (LBYL), is to check in advance, before attempting an operation, for
all circumstances that might make the operation invalid. This is not ideal, for several reasons:

The checks may diminish the readability and clarity of the common, mainstream cases where
everything is okay.

The work needed for checking may duplicate a substantial part of the work done in the
operation itself.

The programmer might easily err by omitting some needed check.

The situation might change between the moment the checks are performed and the moment
the operation is attempted.

The preferred idiom in Python is generally to attempt the operation in a try clause and handle the
exceptions that may result in except clauses. This idiom is known as "it's easier to ask forgiveness
than permission" (EAFP), a motto widely credited to Admiral Grace Murray Hopper, co-inventor of
COBOL, and shares none of the defects of "look before you leap." Here is a function written using the
LBYL idiom:

def safe_divide_1(x, y):
    if y=  =0:
        print "Divide-by-0 attempt detected"
        return None
    else:
        return x/y

With LBYL, the checks come first, and the mainstream case is somewhat hidden at the end of the
function.

Here is the equivalent function written using the EAFP idiom:

def safe_divide_2(x, y):
    try:
        return x/y
    except ZeroDivisionError:  
        print "Divide-by-0 attempt detected"
        return None

With EAFP, the mainstream case is up front in a try clause, and the anomalies are handled in an
except clause.

EAFP is most often the preferable error-handling strategy, but it is not a panacea. In particular, you
must be careful not to cast too wide a net, catching errors that you did not expect and therefore did
not mean to catch. The following is a typical case of such a risk (built-in function getattr is covered in
Chapter 8):

def trycalling(obj, attrib, default, *args, **kwds):
    try: return getattr(obj, attrib)(*args, **kwds)
    except AttributeError: return default

The intention of function trycalling is to try calling a method named attrib on object obj, but to return
default if obj has no method thus named. However, the function as coded does not do just that. It also
hides any error case where AttributeError is raised inside the implementation of the sought-after

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


hides any error case where AttributeError is raised inside the implementation of the sought-after
method, silently returning default in those cases. This may hide bugs in other code. To do exactly
what is intended, the function must take a little bit more care:

def trycalling(obj, attrib, default, *args, **kwds):
    try: method = getattr(obj, attrib)
    except AttributeError: return default
    else: return method(*args, **kwds)

This implementation of trycalling separates the getattr call, placed in the try clause and therefore
watched over by the handler in the except clause, from the call of the method, placed in the else
clause and therefore free to propagate any exceptions it may need to. Using EAFP in the most
effective way involves frequent use of the else clause on try/except statements.

6.6.1 Handling Errors in Large Programs

In large programs, it is especially easy to err by making your try/except statements too wide,
particularly once you have convinced yourself of the power of EAFP as a general error-checking
strategy. A try/except is too wide when it catches too many different errors or an error that can occur
in too many different places. The latter is a problem if you need to distinguish exactly what happened
and where, and the information in the traceback is not sufficient to pinpoint such details (or you
discard some or all of the information in the traceback object). For effective error handling, you have
to keep a clear distinction between errors and anomalies that you expect (and thus know exactly how
to handle), and unexpected errors and anomalies, which indicate a bug somewhere in your program.

Some errors and anomalies are not really erroneous, and perhaps not even all that anomalous: they
are just special cases, perhaps rare but nevertheless quite expected, which you choose to handle via
EAFP rather than via LBYL to avoid LBYL's many intrinsic defects. In such cases, you should just
handle the anomaly, in most cases without even logging or reporting it. Be very careful, under these
circumstances, to keep the relevant try/except constructs as narrow as feasible. Use a small try clause
that doesn't call too many other functions, and very specific exception-class lists in the except clauses.

Errors and anomalies that depend on user input or other external conditions not under your control
are always expected to some extent, precisely because you have no control on their underlying
causes. In such cases, you should concentrate your effort on handling the anomaly gracefully,
normally reporting and logging its exact nature and details, and generally keep your program running
with undamaged internal and persistent states. The width of try/except clauses under such
circumstances should also be reasonably narrow, although this is not quite as crucial as when you use
EAFP to structure your handling of not-really-erroneous special cases.

Lastly, entirely unexpected errors and anomalies indicate bugs in your program's design or coding. In
most cases, the best strategy regarding such errors is to avoid try/except and just let the program
terminate with error and traceback messages. (You might even want to log such information and/or
display it more suitably with an application-specific hook in sys.excepthook, as we'll discuss shortly.) If
your program must keep running at all costs, even under such circumstances, try/except statements
that are quite wide may be appropriate, with the try clause guarding function calls that exercise vast
swaths of program functionality and broad except clauses.

In the case of a long-running program, make sure all details of the anomaly or error are logged to
some persistent place for later study (and that some indication gets displayed, too, so that you know
such later study is necessary). The key is making sure that the program's persistent state can be
reverted to some undamaged, internally consistent point. The techniques that enable long-running
programs to survive some of their own bugs are known as checkpointing and transactional behavior,
but they are not covered further in this book.

6.6.2 Logging Errors

When Python propagates an exception all the way to the top of the stack without finding an applicable
handler, the interpreter normally prints an error traceback to the standard error stream of the process
(sys.stderr) before terminating the program. You can rebind sys.stderr to any file-like object usable for
output in order to divert this information to a destination more suitable for your purposes.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


When you want to change the amount and kind of information output on such occasions, rebinding
sys.stderr is not sufficient. In such cases, you can assign your own function to sys.excepthook, and
Python will call it before terminating the program due to an unhandled exception. In your exception-
reporting function, you can output whatever information you think will later help you diagnose and
debug the problem to whatever destinations you please. For example, you might use module
traceback (covered in Chapter 17) to help you format stack traces. When your exception-reporting
function terminates, so does your program.

6.6.3 The assert Statement

The assert statement allows you to introduce debugging code into a program. assert is a simple
statement with the following syntax:

assert condition[,expression]

When you run Python with the optimize flag (-O, as covered in Chapter 3), assert is a null operation:
the compiler generates no code. Otherwise, assert evaluates condition. If condition is satisfied, assert
does nothing. If condition is not satisfied, assert instantiates AssertionError with expression as the
argument (or without arguments, if there is no expression) and raises the resulting instance.

assert statements are an effective way to document your program. When you want to state that a
significant condition C is known to hold at a certain point in a program's execution, assert C is better
than a comment that just states C. The advantage of assert is that when the condition does not in fact
hold, assert alerts you to the problem by raising AssertionError.

6.6.4 The _ _debug_ _ Built-in Variable

When you run Python without option -O, the _ _debug_ _ built-in variable is True. When you run
Python with option -O, _ _debug_ _ is False. Also, with option -O, the compiler generates no code for
an if statement whose condition is _ _debug_ _.

To exploit this optimization, surround the definitions of functions that you call only in assert
statements with if _ _debug_ _. This technique makes compiled code smaller and faster when Python
is run with -O, and enhances program clarity by showing that the functions exist only to perform
sanity checks.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 7. Modules

A typical Python program is made up of several source files. Each source file corresponds to a module,
which packages program code and data for reuse. Modules are normally independent of each other so
that other programs can reuse the specific modules they need. A module explicitly establishes
dependencies upon another module by using import or from statements. In some other programming
languages, global variables can provide a hidden conduit for coupling between modules. In Python,
however, global variables are not global to all modules, but instead such variables are attributes of a
single module object. Thus, Python modules communicate in explicit and maintainable ways.

Python also supports extensions, which are components written in other languages, such as C, C++,
or Java, for use with Python. Extensions are seen as modules by the Python code that uses them
(called client code). From the client code viewpoint, it does not matter whether a module is 100%
pure Python or an extension. You can always start by coding a module in Python. Later, if you need
better performance, you can recode some modules in a lower-level language without changing the
client code that uses the modules. Chapter 24 and Chapter 25 discuss writing extensions in C and
Java.

This chapter discusses module creation and loading. It also covers grouping modules into packages,
which are modules that contain other modules, forming a hierarchical, tree-like structure. Finally, the
chapter discusses using Python's distribution utilities (distutils) to prepare packages and modules for
distribution and to install distributed packages and modules.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

7.1 Module Objects

A module is a Python object with arbitrarily named attributes that you can bind and reference. The
Python code for a module named aname normally resides in a file named aname.py, as covered in
Section 7.2 later in this chapter.

In Python, modules are objects (values) and are handled like other objects. Thus, you can pass a
module as an argument in a call to a function. Similarly, a function can return a module as the result
of a call. A module, just like any other object, can be bound to a variable, an item in a container, or
an attribute of an object. For example, the sys.modules dictionary, covered later in this chapter, holds
module objects as its values.

7.1.1 The import Statement

You can use any Python source file as a module by executing an import statement in some other code.
import has the following syntax:

import modname [as varname][,...]

The import keyword is followed by one or more module specifiers, separated by commas. In the
simplest and most common case, modname is an identifier, the name of a variable that Python binds
to the module object when the import statement finishes. In this case, Python looks for the module of
the same name to satisfy the import request. For example:

import MyModule

looks for the module named MyModule and binds the variable named MyModule in the current scope to
the module object. modname can also be a sequence of identifiers separated by dots (.) that names a
module in a package, as covered in later in this chapter.

When as varname is part of an import statement, Python binds the variable named varname to the
module object, but the module name that Python looks for is modname. For example:

import MyModule as Alias

looks for the module named MyModule and binds the variable named Alias in the current scope to the
module object. varname is always a simple identifier.

7.1.1.1 Module body

The body of a module is the sequence of statements in the module's source file. There is no special
syntax required to indicate that a source file is a module; any valid source file can be used as a
module. A module's body executes immediately the first time the module is imported in a given run of
a program. During execution of the body, the module object already exists and an entry in
sys.modules is already bound to the module object.

7.1.1.2 Attributes of module objects

An import statement creates a new namespace that contains all the attributes of the module. To
access an attribute in this namespace, use the name of the module object as a prefix:

import MyModule
a = MyModule.f(  )

or:

import MyModule as Alias
a = Alias.f(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


a = Alias.f(  )

Most attributes of a module object are bound by statements in the module body. When a statement in
the body binds a variable (a global variable), what gets bound is an attribute of the module object.
The normal purpose of a module body is exactly that of creating the module's attributes: def
statements create and bind functions, class statements create and bind classes, assignment
statements bind attributes of any type.

You can also bind and unbind module attributes outside the body (i.e., in other modules), generally
using attribute reference syntax M.name (where M is any expression whose value is the module, and
identifier name is the attribute name). For clarity, however, it's usually best to bind module attributes
in the module body.

The import statement implicitly defines some module attributes as soon as it creates the module
object, before the module's body executes. The _ _dict_ _ attribute is the dictionary object that the
module uses as the namespace for its attributes. Unlike all other attributes of the module, _ _dict_ _
is not available to code in the module as a global variable. All other attributes in the module are
entries in the module's _ _dict_ _, and they are available to code in the modules as global variables.
Attribute _ _name_ _ is the module's name, and attribute _ _file_ _ is the filename from which the
module was loaded, if any.

For any module object M, any object x, and any identifier string S (except _ _dict_ _), binding M.S=x
is equivalent to binding M._ _dict_ _['S']=x. An attribute reference such as M.S is also substantially
equivalent to M._ _dict_ _['S']. The only difference is that when 'S' is not a key in M._ _dict_ _,
accessing M._ _dict_ _['S'] directly raises KeyError, while accessing M.S raises AttributeError instead.
Module attributes are also available to all code in the module's body as global variables. In other
words, within the module body, S used as a global variable is equivalent to M.S (i.e., M._ _dict_ _['S'])
for both binding and reference.

7.1.1.3 Python built-ins

Python offers several built-in objects (covered in Chapter 8). All built-in objects are attributes of a
preloaded module named _ _builtin_ _. When Python loads a module, the module automatically gets
an extra attribute named _ _builtins_ _, which refers to either module _ _builtin_ _ or to _ _builtin_ _'s
dictionary. Python may choose either, so don't rely on _ _builtins_ _. If you need to access module _
_builtin_ _ directly, use an import _ _builtin_ _ statement. Note the difference between the name of
the attribute and the name of the module: the former has an extra s. When a global variable is not
found in the current module, Python looks for the identifier in the current module's _ _builtins_ _
before raising NameError.

The lookup is the only mechanism that Python uses to let your code implicitly access built-ins. The
built-ins' names are not reserved, nor are they hardwired in Python itself. Since the access
mechanism is simple and documented, your own code can use the mechanism directly (in moderation,
or your program's clarity and simplicity will suffer). Thus, you can add your own built-ins or substitute
your functions for the normal built-in ones. You can restrict an untrusted module by controlling what
built-ins the untrusted module sees (as covered in Chapter 13). The following example shows how
you can wrap a built-in function with your own function (_ _import_ _ and reload are both covered
later in this chapter):

# reload takes a module object; let's make it accept a string as well
import _ _builtin_ _
_reload = _ _builtin_ _.reload                   # save the original built-in
def reload(mod_or_name):
    if isinstance(mod_or_name, str):             # if argument is a string
        mod_or_name = _ _import_ _(mod_or_name)  # get the module instead
    return _reload(mod_or_name)                  # invoke the real built-in
_ _builtin_ _.reload = reload                # override built-in with wrapper

7.1.1.4 Module documentation strings

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If the first statement in the module body is a string literal, the compiler binds that string as the
module's documentation string attribute, named _ _doc_ _. Documentation strings are also called
docstrings. See Section 4.10.3 for more information on docstrings.

7.1.1.5 Module-private variables

No variable of a module is really private. However, by convention, starting an identifier with a single
underscore (_), such as _secret, indicates that the identifier is meant to be private. In other words,
the leading underscore communicates to client-code programmers that they should not access the
identifier directly.

Development environments and other tools rely on the leading-underscore naming convention to
discern which attributes of a module are public (i.e., part of the module's interface) and which ones
are private (i.e., to be used only within the module). It is good programming practice to distinguish
between private and public attributes by starting the private ones with _, for clarity and to get
maximum benefit from tools.

It is particularly important to respect the convention when you write client code that uses modules
written by others. In other words, avoid using any attributes in such modules whose names start with
_. Future releases of the modules will no doubt maintain their public interface, but are quite likely to
change private implementation details.

7.1.2 The from Statement

Python's from statement lets you import specific attributes from a module into the current
namespace. from has two syntax variants:

from modname import attrname [as varname][,...]
from modname import *

A from statement specifies a module name, followed by one or more attribute specifiers separated by
commas. In the simplest and most common case, attrname is an identifier that names a variable that
Python binds to the attribute of the same name in the module named modname. For example:

from MyModule import f

modname can also be a sequence of identifiers separated by dots (.) that names a module within a
package, as covered later in this chapter.

When as varname is part of a from statement, Python binds the variable named varname to the
attribute, but the module attribute from which the variable gets its value is attrname. For example:

from MyModule import f as foo

attrname and varname are always simple identifiers.

Code that is directly inside a module body (not in the body of a function or class) may use an asterisk
(*) in a from statement:

from MyModule import *

The * requests that all attributes of module modname be bound as global variables in the importing
module. When the module has an attribute named _ _all_ _, the attribute's value is the list of the
attributes that are bound by this type of from statement. Otherwise, this type of from statement binds
all attributes of modname except those beginning with underscores. Since from M import * may bind
an arbitrary set of global variables, it can have unforeseen and undesired side effects, such as hiding
built-ins and rebinding variables you still need. Thus, you should use the * form of from very sparingly
and only from modules that are explicitly documented as supporting such usage.

In general, the import statement is a better choice than the from statement. I suggest you think of the
from statement, and particularly from M import *, as conveniences meant only for occasional use in
interactive Python sessions. If you always access module M with the statement import M, and always

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


interactive Python sessions. If you always access module M with the statement import M, and always
access M's attributes with explicit syntax M.A, your code will be slightly less concise, but far clearer
and more readable. from is a good idea only for modules whose documentation explicitly specifies
from support (such as module Tkinter, covered in Chapter 16). Another good use of from is to import
specific modules from a package, as we'll discuss in Section 7.3 later in this chapter.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

7.2 Module Loading

Module-loading operations rely on attributes of the built-in sys module (covered in Chapter 8). The
module-loading process described here is carried out by built-in function _ _import_ _. Your code can
call _ _import_ _ directly, with the module name string as an argument. _ _import_ _ returns the
module object or raises ImportError if the import fails.

To import a module named M, _ _import_ _ first checks dictionary sys.modules, using string M as the
key. When key M is in the dictionary, _ _import_ _ returns the corresponding value as the requested
module object. Otherwise, _ _import_ _ binds sys.modules[M] to a new empty module object with a _
_name_ _ of M, then looks for the right way to initialize (load) the module, as covered in Section 7.2.2
later in this section.

Thanks to this mechanism, the loading operation takes place only the first time a module is imported
in a given run of the program. When a module is imported again, the module is not reloaded, since _
_import_ _ finds and returns the module's entry in sys.modules. Thus, all imports of a module after the
first one are extremely fast because they're just dictionary lookups.

7.2.1 Built-in Modules

When a module is loaded, _ _import_ _ first checks whether the module is built-in. Built-in modules
are listed in tuple sys.builtin_module_names, but rebinding that tuple does not affect module loading. A
built-in module, like any other Python extension, is initialized by calling the module's initialization
function. The search for built-in modules also finds frozen modules and modules in platform-specific
locations (e.g., resources on the Mac, the Registry in Windows).

7.2.2 Searching the Filesystem for a Module

If module M is not built-in or frozen, _ _import_ _ looks for M's code as a file on the filesystem. _
_import_ _ looks in the directories whose names are the items of list sys.path, in order. sys.path is
initialized at program startup, using environment variable PYTHONPATH (covered in Chapter 3) if
present. The first item in sys.path is always the directory from which the main program (script) is
loaded. An empty string in sys.path indicates the current directory.

Your code can mutate or rebind sys.path, and such changes affect what directories _ _import_ _
searches to load modules. Changing sys.path does not affect modules that are already loaded (and
thus already listed in sys.modules) when sys.path is changed.

If a text file with extension .pth is found in the PYTHONHOME directory at startup, its contents are
added to sys.path, one item per line. .pth files can also contain blank lines and comment lines starting
with the character #, as Python ignores any such lines. .pth files can also contain import statements,
which Python executes, but no other kinds of statements.

When looking for the file for module M in each directory along sys.path, Python considers the following
extensions in the order listed:

1. .pyd and .dll (Windows) or .so (most Unix-like platforms), which indicate Python extension
modules. (Some Unix dialects use different extensions; e.g., .sl is the extension used on HP-
UX.)

2. .py, which indicates pure Python source modules.

3. .pyc (or .pyo, if Python is run with option -O), which indicates bytecode-compiled Python
modules.

Upon finding source file M.py, Python compiles it to M.pyc (or M.pyo) unless the bytecode file is
already present, is newer than M.py, and was compiled by the same version of Python. Python saves
the bytecode file to the filesystem in the same directory as M.py (if permissions on the directory allow
writing) so that future runs will not needlessly recompile. When the bytecode file is newer than the
source file, Python does not recompile the module.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Once Python has the bytecode file, either from having constructed it by compilation or by reading it
from the filesystem, Python executes the module body to initialize the module object. If the module is
an extension, Python calls the module's initialization function.

7.2.3 The Main Program

Execution of a Python application normally starts with a top-level script (also known as the main
program), as explained in Chapter 3. The main program executes like any other module being loaded
except that Python keeps the bytecode in memory without saving it to disk. The module name for the
main program is always _ _main_ _, both as the _ _name_ _ global variable (module attribute) and as
the key in sys.modules. You should not normally import the same .py file that is in use as the main
program. If you do, the module is loaded again, and the module body is executed once more from the
top in a separate module object with a different _ _name_ _.

Code in a Python module can test whether the module is being used as the main program by checking
if global variable _ _name_ _ equals '_ _main_ _'. The idiom:

if _ _name_ _=  ='_ _main_ _':

is often used to guard some code so that it executes only when the module is run as the main
program. If a module is designed only to be imported, it should normally execute unit tests when it is
run as the main program, as covered in Chapter 17.

7.2.4 The reload Function

As I explained earlier, Python loads a module only the first time you import the module during a
program run. When you develop interactively, you need to make sure that your modules are reloaded
each time you edit them (some development environments provide automatic reloading).

To reload a module, pass the module object (not the module name) as the only argument to built-in
function reload. reload(M) ensures the reloaded version of M is used by client code that relies on
import M and accesses attributes with the syntax M.A. However, reload(M) has no effect on other
references bound to previous values of M's attributes (e.g., with the from statement). In other words,
already-bound variables remain bound as they were, unaffected by reload. reload's inability to rebind
such variables is a further incentive to avoid from.

7.2.5 Circular Imports

Python lets you specify circular imports. For example, you can write a module a.py that contains
import b, while module b.py contains import a. In practice, you are typically better off avoiding circular
imports, since circular dependencies are fragile and hard to manage. If you decide to use a circular
import for some reason, you need to understand how circular imports work in order to avoid errors in
your code.

Say that the main script executes import a. As discussed earlier, this import statement creates a new
empty module object as sys.modules['a'], and then the body of module a starts executing. When a
executes import b, this creates a new empty module object as sys.modules['b'], and then the body of
module b starts executing. The execution of a's module body is now suspended until b's module body
finishes.

Now, when b executes import a, the import statement finds sys.modules['a'] already defined and
therefore binds global variable a in module b to the module object for module a. Since the execution
of a's module body is currently suspended, module a may be only partly populated at this time. If the
code in b's module body tries to access some attribute of module a that is not yet bound, an error
results.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you do insist on keeping a circular import in some case, you must carefully manage the order in
which each module defines its own globals, imports the other module, and accesses the globals of the
other module. Generally, you can have greater control on the sequence in which things happen by
grouping your statements into functions and calling those functions in a controlled order, rather than
just relying on sequential execution of top-level statements in module bodies. However, removing
circular dependencies is almost always easier than ensuring bomb-proof ordering while keeping such
circular dependencies.

7.2.6 sys.modules Entries

The built-in _ _import_ _ function never binds anything other than a module object as a value in
sys.modules. However, if _ _import_ _ finds an entry that is already in sys.modules, it will try to use
that value, whatever type of object it may be. The import and from statements rely on the _ _import_
_ function, so therefore they too can end up using objects that are not modules. This lets you set
class instances as entries in sys.modules, and take advantage of features such as their _ _getattr_ _
and _ _setattr_ _ special methods, covered in Chapter 5. This advanced technique lets you import
module-like objects whose attributes can in fact be computed on the fly. Here's a trivial toy-like
example:

class TT:
    def _ _getattr_ _(self, name): return 23
import sys
sys.modules[_ _name_ _] = TT(  )

When you import this code as a module, you get a module-like object that appears to have any
attribute name you try to get from it, and all attribute names correspond to the integer value 23.

7.2.7 Custom Importers

You can rebind the _ _import_ _ attribute of module _ _builtin_ _ to your own custom importer
function by wrapping the _ _import_ _ function using the technique shown earlier in this chapter. Such
rebinding influences all import and from statements that execute after the rebinding. A custom
importer must implement the same interface as the built-in _ _import_ _, and is often implemented
with some help from the functions exposed by built-in module imp. Custom importer functions are an
advanced and rarely used technique.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

7.3 Packages

A package is a module that contains other modules. Modules in a package may be subpackages,
resulting in a hierarchical tree-like structure. A package named P resides in a subdirectory, also called
P, of some directory in sys.path. The module body of P is in the file P/_ _init_ _.py. You must have a
file named P/_ _init_ _.py, even if it's empty (representing an empty module body), in order to
indicate to Python that directory P is indeed a package. Other .py files in directory P are the modules
of package P. Subdirectories of P containing _ _init_ _.py files are subpackages of P. Nesting can
continue to any depth.

You can import a module named M in package P as P.M. More dots let you navigate a hierarchical
package structure. A package is always loaded before a module in the package is loaded. If you use
the syntax import P.M, variable P is bound to the module object of package P, and attribute M of
object P is bound to module P.M. If you use the syntax import P.M as V, variable V is bound directly to
module P.M.

Using from P import M to import a specific module M from package P is fully acceptable programming
practice. In other words, the from statement is specifically okay in this case.

A module M in a package P can import any other module X of P with the statement import X. Python
searches the module's own package directory before searching the directories in sys.path. However,
this applies only to sibling modules, not to ancestors or other more-complicated relationships. The
simplest, cleanest way to share objects (such as functions or constants) among modules in a package
P is to group the shared objects in a file named P/Common.py. Then you can import Common from
every module in the package that needs to access the objects, and then refer to the objects as
Common.f, Common.K, and so on.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

7.4 The Distribution Utilities (distutils)

Python modules, extensions, and applications can be packaged and distributed in several forms:

Compressed archive files

Generally .zip for Windows and .tar.gz or .tgz for Unix-based systems, but both forms are
portable

Self-unpacking or self-installing executables

Normally .exe for Windows

Platform-specific installers

For example, .msi on Windows, .rpm and .srpm on Linux, and .deb on Debian GNU/Linux

When you distribute a package as a self-installing executable or platform-specific installer, a user can
then install the package simply by running the installer. How to run such an installer program
depends on the platform, but it no longer matters what language the program was written in.

When you distribute a package as an archive file or as an executable that unpacks but does not install
itself, it does matter that the package was coded in Python. In this case, the user must first unpack
the archive file into some appropriate directory, say C:\Temp\MyPack on a Windows machine or
~/MyPack on a Unix-like machine. Among the extracted files there should be a script, conventionally
named setup.py, that uses the Python facility known as the distribution utilities (package distutils).
The distributed package is then almost as easy to install as a self-installing executable would be. The
user opens a command-prompt window and changes to the directory into which the archive is
unpacked. Then the user runs, for example:

C:\Temp\MyPack> python setup.py install

The setup.py script, run with this install command, installs the package as a part of the user's Python
installation, according to the options specified in the setup script by the package's author. distutils, by
default, provides tracing information when the user runs setup.py. Option --quiet, placed right before
the install command, hides most details (the user still sees error messages, if any). The following
command:

C:\> python setup.py --help

gives help on distutils.

When you are installing a package prepared with distutils, you can, if you wish, exert detailed control
over how distutils performs installations. You can record installation options in a text file with
extension .cfg, called a config file, so that distutils applies your favorite installation options by default.
Such customization can be done on a systemwide basis, for a single user, or even for a single package
installation. For example, if you want an installation with minimal amounts of output to be your
systemwide default, create the following text file named pydistutils.cfg:

 [global]
quiet=1

Place this file in the same directory in which the distutils package resides. On a typical Python 2.2
installation on Windows, for example, the file is C:\Python22\Lib\distutils\pydistutils.cfg. Chapter 26
provides more information on using distutils to prepare Python modules, packages, extensions, and
applications for distribution.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 8. Core Built-ins

The term built-in has more than one meaning in Python. In most contexts, a built-in is any object
directly accessible to a Python program without an import statement. Chapter 7 showed the
mechanism that Python uses to allow this direct access. Built-in types in Python include numbers,
sequences, dictionaries, functions (covered in Chapter 4), classes (covered in Chapter 5), the
standard exception classes (covered in Chapter 6), and modules (covered in Chapter 7). The built-in
file object is covered in Chapter 10, and other built-in types covered in Chapter 13 are intrinsic to
Python's internal operation. This chapter provides additional coverage of the core built-in types, and it
also covers the built-in functions available in module _ _builtin_ _.

As I mentioned in Chapter 7, some modules are called built-in because they are an integral part of the
Python standard library, even though it takes an import statement to access them. Built-in modules
are distinct from separate, optional add-on modules, also called Python extensions. This chapter
documents the following core built-in modules: sys, getopt, copy, bisect, UserList, UserDict, and
UserString. Chapter 9 covers some string-related core built-in modules, while Parts III and IV of the
book cover many other useful built-in modules.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.1 Built-in Types

This section documents Python's core built-in types, like int, float, and dict. Note that prior to Python
2.2, these names referred to factory functions for creating objects of these types. As of Python 2.2,
however, they refer to actual type objects. Since you can call type objects just as if they were
functions, this change does not break existing programs.

classmethod Python 2.2 and later

classmethod(function)

Creates and returns a class method object. In practice, you call this built-in type only within a class
body. See Section 5.2.2.2.

complex

complex(real,imag=0)

Converts any number, or a suitable string, to a complex number. imag may be present only when real
is a number, and is the imaginary part of the resulting complex number.

dict Python 2.2 and later

dict(x={  })

Returns a new dictionary object with the same items as argument x. When x is a dictionary, dict(x)
returns a copy of x, like x.copy( ) does. Alternatively, x can be a sequence of pairs, that is, a sequence
whose items are sequences with two items each. In this case, dict(x) returns a dictionary whose keys
are the first items of each pair in x, while the corresponding values are the corresponding second
items. In other words, when x is a sequence, c=dict(x) has the same effect as the following:

c = {  }
for key, value in x: c[key] = value

file, open

file(path,mode='r',bufsize=-1)
open(filename,mode='r',bufsize=-1)

Opens or creates a file and returns a new file object. In Python 2.2 and later, open is a synonym for
the built-in type file. In Python 2.1 and earlier, open was a built-in function and file was not a built-in
name at all. See Section 10.3.

float

float(x)

Converts any number, or a suitable string, to a floating-point number.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


int

int(x[,radix])

Converts any number, or a suitable string, to an int. When x is a number, int truncates toward 0,
dropping any fractional part. radix may be present only when x is a string. radix is the conversion
base, between 2 and 36, with 10 as the default. radix can be explicitly passed as 0: the base is then 8,
10, or 16, depending on the form of string x, just like for integer literals, as covered in Section 4.2.1.

list

list(seq=[  ])

Returns a new list object with the same items as the iterable object seq, in the same order. When seq
is a list, list(seq) returns a copy of seq, like seq[:] does.

long

long(x[,radix])

Converts any number, or a suitable string, to a long. The rules regarding the radix argument are
exactly the same as for int.

object

object(*args,**kwds)

Creates and returns a new instance of the most fundamental type. Such direct instances of type object
have no useful functionality so there is never a practical reason to create one, although Python does
let you call object for regularity. object accepts and ignores any positional and named arguments.

property Python 2.2 and later

property(fget=None,fset=None,fdel=None,doc=None)

Creates and returns a property accessor. In practice, you call this built-in type only within a class
body. See Section 5.2.4.1.

staticmethod Python 2.2 and later

staticmethod(function)

Creates and returns a static method object. In practice, you call this built-in type only within a class
body. See Section 5.2.2.1.

str

str(obj)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


str(obj)

Returns a concise and readable string representation of obj. If obj is a string, str returns obj. See also
repr later in this chapter and _ _str_ _ in Chapter 5.

super Python 2.2 and later

super(cls,obj)

Returns a super object of object obj (which must be an instance of class cls or of a subclass of cls),
suitable for calling superclass methods. In practice, you call this built-in type only within a method's
code. See Section 5.2.5.2.

tuple

tuple(seq)

Returns a tuple with the same items as the iterable object seq, in the same order. When seq is a
tuple, tuple returns seq itself, like seq[:] does.

type

type(obj)

Returns the type object that represents the type of obj (i.e., the most-derived type object of which obj
is an instance). All classic instance objects have the same type (InstanceType), even when they are
instances of different classes; use isinstance (covered later in this chapter) to check whether an
instance belongs to a particular class. In the new-style object model, however, type(x) is x._ _class_ _
for any x.

Checking type(x) for equality or identity to some other type object is known as type-checking. Type-
checking is rarely appropriate in production Python code because it interferes with polymorphism. The
normal idiom in Python is to try to use x as if it were of the type you expect, handling any problems
with a try/except statement, as discussed in Chapter 6. When you must type-check, typically for
debugging purposes, use isinstance instead. isinstance(x,atype) is a somewhat lesser evil than type(x)
is atype, since at least it accepts an x that is an instance of any subclass of atype, not just a direct
instance of atype itself.

unicode

unicode(string[,codec[,errors]])

Returns the Unicode string object obtained by decoding string. codec names the codec to use. If codec
is missing, unicode uses the default codec (generally 'ascii'). errors, if present, is a string that specifies
how to handle decoding errors. See also Section 9.6 in Chapter 9, particularly for information about
codecs and errors, and _ _unicode_ _ in Chapter 5.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.2 Built-in Functions

This section documents the Python functions available in module _ _builtin_ _ in alphabetical order.
Note that the names of these built-ins are not reserved words. Thus, your program can bind for its
own purposes, in local or global scope, an identifier that has the same name as a built-in function.
Names bound in local or global scope have priority over names bound in built-in scope, so local and
global names hide built-in ones. You can also rebind names in built-in scope, as covered in Chapter 7.
You should avoid hiding built-ins that your code might need.

_ _import_ _

_ _import_ _(module_name[,globals[,locals[,fromlist]]])

Loads the module named by string module_name and returns the resulting module object. globals,
which defaults to the result of globals( ), and locals, which defaults to the result of locals( ) (both
covered in this section), are dictionaries that _ _import_ _ treats as read-only and uses only to get
context for package-relative imports, covered in Section 7.3. fromlist defaults to an empty list, but can
be a list of strings that name the module attributes to be imported in a from statement. See Section
7.2 for more details on module loading.

In practice, when you call _ _import_ _, you generally pass only the first argument, except in the rare
and dubious case in which you use _ _import_ _ for a package-relative import. When you replace the
built-in _ _import_ _ function with your own in order to provide special import functionality, you may
have to take globals, locals, and fromlist into account.

abs

abs(x)

Returns the absolute value of number x. When x is complex, abs returns the square root of
x.imag**2+x.real**2. Otherwise, abs returns -x if x is less than 0, or x if x is greater than or equal to
0. See also _ _abs_ _ in Chapter 5.

apply

apply(func,args=(  ),keywords={  })

Calls a function (or other callable object) and returns its result. apply's behavior is exactly the same
as func(*args,**keywords). The * and ** forms are covered in Section 4.10 in Chapter 4. In almost all
cases of practical interest, you can just use the syntax func(*args,**keywords) and avoid apply.

bool Python 2.2 and later

bool(x)

Returns 0, also known as False, if argument x evaluates as false; returns 1, also known as True, if
argument x evaluates as true. See also Section 4.2.6 in Chapter 4. In Python 2.3, bool becomes a
type (a subclass of int), and built-in names False and True refer to the only two instances of type bool.
They are still numbers with values of 0 and 1 respectively, but str(True) becomes 'True', and str(False)
becomes 'False', while in Python 2.2 the corresponding strings are '0' and '1' respectively.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


buffer

buffer(obj,offset=0,size=-1)

Creates and returns a buffer object referring to obj's data. obj must be of a type that supports the
buffer call interface, such as a string or array. For more on buffer, see Chapter 13.

callable

callable(obj)

Returns True if obj can be called, otherwise False. An object can be called if it is a function, method,
class, type, or an instance with a _ _call_ _ method. See also _ _call_ _ in Chapter 5.

chr

chr(code)

Returns a string of length 1, a single character corresponding to integer code in the ASCII/ISO
encoding. See also ord and unichr in this section.

cmp

cmp(x,y)

Returns 0 when x equals y, -1 when x is less than y, or 1 when x is greater than y. See also _ _cmp_ _
in Chapter 5.

coerce

coerce(x,y)

Returns a pair whose two items are numbers x and y converted to a common type. See Section 4.5.1.

compile

compile(string,filename,kind)

Compiles a string and returns a code object usable by exec or eval. compile raises SyntaxError when
string is not syntactically valid Python. When string is a multiline compound statement, the last
character must be '\n'. kind must be 'eval' when string is an expression and the result is meant for
eval, otherwise kind must be 'exec'. filename must be a string, and is used only in error messages (if
and when errors occur). See also eval in this section and Section 13.1.

delattr

delattr(obj,name)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Removes attribute name from obj. delattr(obj,'ident') is like del obj.ident. If obj has an attribute named
name just because its type or class has it (as is normally the case, for example, with methods of obj),
you cannot delete that attribute from obj itself. You may or may not be able to delete that attribute
from the type or class itself, depending on what the type or class allows. If you can, obj would cease
to have the attribute, and so would every other object of that type or class.

dir

dir([obj])

Called without arguments, dir( ) returns the sorted list of all variable names that are bound in the
current scope. dir(obj) returns the sorted list of all names of attributes of obj. In Python 2.1 and
earlier, dir does not return attributes that obj gets from its type or by inheritance. In Python 2.2 and
later, dir returns all attributes, including ones that are inherited and from its type. See also vars in this
section.

divmod

divmod(dividend,divisor)

Divides two numbers and returns a pair whose items are the quotient and remainder. See also _
_divmod_ _ in Chapter 5.

eval

eval(expr,[globals[,locals]])

Returns the result of an expression. expr may be a code object ready for evaluation or a string. In the
case of a string, eval gets a code object by calling compile(expr, 'string', 'eval'). eval evaluates the code
object as an expression, using the globals and locals dictionaries as namespaces. When both
arguments are missing, eval uses the current namespace. eval cannot execute statements; it can only
evaluate expressions. For more information on eval, see Chapter 13.

execfile

execfile(filename,[globals[,locals]])

execfile is a shortcut for the following statement:

exec open(filename).read(  ) in globals, locals

See Section 13.1.

filter

filter(func,seq)

Constructs a list from those elements of seq for which func is true. func can be any callable object that
accepts a single argument or None. seq must be a sequence, iterator, or other iterable object. When
func is a callable object, filter calls func on each item of seq and returns the list of items for which
func's result is true, like this:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[item for item in seq if func(item)]

When seq is a string or tuple, filter's result is also a string or tuple, rather than a list. When func is
None, filter tests for true items like this:

[item for item in seq if item]

getattr

getattr(obj,name[,default])

Returns obj's attribute named by string name. getattr(obj,'ident') is like obj.ident. When default is
present and name is not found in obj, getattr returns default instead of raising AttributeError. See also
Section 5.1.4.

globals

globals(  )

Returns the _ _dict_ _ of the calling module (i.e., the dictionary used as the global namespace at the
point of call). See also locals in this section.

hasattr

hasattr(obj,name)

Returns False if obj has no attribute name (i.e., if getattr(obj,name) raises AttributeError). Otherwise,
hasattr returns True. See also Section 5.1.4.

hash

hash(obj)

Returns the hash value for obj. obj can be a dictionary key only if obj can be hashed. All numbers that
compare equal have the same hash value, even if they are of different types. If the type of obj does
not define equality comparison, hash(obj) returns id(obj). See also _ _hash_ _ in Chapter 5.

hex

hex(x)

Converts integer x to a hexadecimal string representation. See also _ _hex_ _ in Chapter 5.

id

id(obj)

Returns the integer value that denotes the identity of obj. The id of obj is unique and constant during
obj's lifetime, but may be reused at any later time after obj is garbage-collected. When a type or class

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


obj's lifetime, but may be reused at any later time after obj is garbage-collected. When a type or class
does not define equality comparison, Python uses id to compare and hash instances. For any objects x
and y, the identity check x is y has the same result as id(x)= =id(y).

input

input(prompt='')

input(prompt) is a shortcut for eval(raw_input(prompt)). In other words, input prompts the user for a
line of input, evaluates the resulting string as an expression, and returns the expression's result. The
implicit eval may raise SyntaxError or other exceptions. input is therefore rather user-unfriendly and
not appropriate for most programs, but it can be handy for experiments and your own test scripts.
See also eval and raw_input in this section.

intern

intern(string)

Ensures that string is held in the table of interned strings and returns string itself or a copy. Interned
strings compare for equality faster than other strings, but garbage collection cannot recover the
memory used for interned strings, so interning too many strings might slow down your program.

isinstance

isinstance(obj,cls)

Returns True when obj is an instance of class cls (or any subclass of cls) or when cls is a type object
and obj is an object of that type. Otherwise it returns False.

Since Python 2.2.1, cls can also be a tuple whose items are classes or types. In this case, isinstance
returns True if obj is an instance of any of the items of tuple cls, otherwise isinstance returns False.

issubclass

issubclass(cls1,cls2)

Returns True if cls1 is a direct or indirect subclass of cls2, otherwise returns False. cls1 and cls2 must
be types or classes.

iter

iter(obj)iter(func,sentinel)

Creates and returns an iterator: an object with a next method that you can call repeatedly to get one
item at a time (see Section 4.9.3.1 in Chapter 4). When called with one argument, iter(obj) normally
returns obj._ _iter_ _( ). When obj is a sequence without a special method _ _iter_ _, iter(obj) is
equivalent to the following simple generator:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


def iterSequence(obj):
    i = 0
    while 1:
        try: yield obj[i]
        except IndexError: raise StopIteration
        i += 1

See also Section 4.10.8 in Chapter 4 and _ _iter_ _ in Chapter 5.

When called with two arguments, the first argument must be callable without arguments, and
iter(func,sentinel) is equivalent to the following simple generator:

def iterSentinel(func, sentinel):
    while 1:
        item = func(  )
        if item =  = sentinel: raise StopIteration
        yield item

As discussed in Chapter 4, the statement for x in obj is equivalent to for x in iter(obj). iter is
idempotent. In other words, when x is an iterator, iter(x) is x, as long as x supplies an _ _iter_ _
method whose body is just return self, as an iterator should.

len

len(container)

Returns the number of items in container, which is a sequence or a mapping. See also _ _len_ _ in
Chapter 5.

locals

locals(  )

Returns a dictionary that represents the current local namespace. Treat the returned dictionary as
read-only; trying to modify it may or may not affect the values of local variables and might raise an
exception. See also globals and vars in this section.

map

map(func,seq,*seqs)

Applies func to every item of seq and returns a list of the results. When map is called with n+1
arguments, the first one, func, can be any callable object that accepts n arguments, or None. The
remaining arguments to map must be iterable. When func is callable, map repeatedly calls func with n
arguments (one corresponding item from each iterable) and returns the list of results. Thus,
map(func, seq) is the same as:

[func(item) for item in seq]

When func is None, map returns a list of tuples, each with n items (one item from each iterable); this
is similar to zip, covered in this section. When the iterable objects have different lengths, however,
map conceptually pads the shorter ones with None, while zip conceptually truncates the longer ones.

max

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


max(s,*args)

Returns the largest item in the only argument s (s must be iterable) or the largest of multiple
arguments.

min

min(s,*args)

Returns the smallest item in the only argument s (s must be iterable) or the smallest of multiple
arguments.

oct

oct(x)

Converts integer x to an octal string representation. See also _ _oct_ _ in Chapter 5.

ord

ord(ch)

Returns the ASCII/ISO integer code between 0 and 255 (inclusive) for the single-character string ch.
When ch is Unicode, ord returns an integer code between 0 and 65534 (inclusive). See also chr and
unichr in this section.

pow

pow(x,y[,z])

When z is present, pow(x,y,z) returns x**y%z. When z is missing, pow(x,y) returns x**y. See also _
_pow_ _ in Chapter 5.

range

range([start,]stop[,step=1])

Returns a list of integers in arithmetic progression:

[start, start+step, start+2*step, ...]

When start is missing, it defaults to 0. When step is missing, it defaults to 1. When step is 0, range
raises ValueError. When step is greater than 0, the last item is the largest start+i*step strictly less
than stop. When step is less than 0, the last item is the smallest start+i*step strictly greater than stop.
The result is an empty list when start is greater than or equal to stop and step is greater than 0, or
when start is less than or equal to stop and step is less than 0. Otherwise, the first item of the result
list is always start.

raw_input

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


raw_input(prompt='')

Writes prompt to standard output, reads a line from standard input, and returns the line (without \n)
as a string. When at end-of-file, raw_input raises EOFError. See also input in this section.

reduce

reduce(func,seq[,init])

Applies funct to the items of seq, from left to right, to reduce the sequence to a single value. func
must be callable with two arguments. reduce calls func on the first two items of seq, then on the result
of the first call and the third item, and so on. reduce returns the result of the last such call. When init
is present, it is used before seq's first item, if any. When init is missing, seq must be non-empty.
When init is missing and seq has only one item, reduce returns seq[0]. Similarly, when init is present
and seq is empty, reduce returns init. The built-in reduce is equivalent to:

def reduce_equivalent(func,seq,init=None):
    if init is None: init, seq = seq[0], seq[1:]
    for item in seq: init = func(init,item)
    return init

A typical use of reduce is to compute the sum of a sequence of numbers:

thesum = reduce(operator.add, seq, 0)

reload

reload(module)

Reloads and reinitializes module object module, and returns module. See Section 7.2.4.

repr

repr(obj)

Returns a complete and unambiguous string representation of obj. When feasible, repr returns a string
that eval can use to create a new object with the same value as obj. See also str in this section and _
_repr_ _ in Chapter 5.

round

round(x,n=0)

Returns a float whose value is number x rounded to n digits after the decimal point (i.e., the multiple
of 10**-n that is closest to x). When two such multiples are equally close to x, round returns the one
that is farther from 0. Since today's computers represent floating-point numbers in binary, not in
decimal, most of round's results are not exact.

setattr

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


setattr(obj,name,value)

Binds obj's attribute name to value. setattr(obj,'ident',val) is like obj.ident=val. See also Section 4.3.2
and Section 5.1.4.

slice

slice([start,]stop[,step])

Creates and returns a slice object with read-only attributes start, stop, and step bound to the
respective argument values, each defaulting to None when missing. Such a slice is meant to signify
the same set of indices as range(start,stop,step). Slicing syntax obj[start:stop:step] passes such a slice
object as the argument to the _ _getitem_ _, _ _setitem_ _, or _ _delitem_ _ method of object obj, as
appropriate. It is up to obj to interpret the slice objects that its methods receive. See also Section
5.3.2.4.

unichr

unichr(code)

Returns a Unicode string whose single character corresponds to code, where code is an integer
between 0 and 65536 (inclusive). See also chr and ord in this section.

vars

vars([obj])

When called with no argument, vars( ) returns a dictionary that represents all variables that are bound
in the current scope (exactly like locals, covered in this section). This dictionary should be treated as
read-only. vars(obj) returns a dictionary that represents all attributes currently bound in obj, as
covered in dir in this section. This dictionary may or may not be modifiable, depending on the type of
obj.

xrange

xrange([start,]stop[,step=1])

Returns a sequence object whose items are integers in arithmetic progression. The arguments are the
same as for range, covered in this section. While range creates and returns a normal list object,
xrange returns a sequence object of a special type, meant only for use in a for statement. xrange
consumes less memory than range for this specific, frequent use, although the performance difference
is usually small.

zip

zip(seq,*seqs)

Returns a list of tuples, where the nth tuple contains the nth element from each of the argument
sequences. zip is called with n iterable objects as arguments (where n is greater than 0). If the
iterable objects have different lengths, zip returns a list as long as the shortest iterable, ignoring

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


iterable objects have different lengths, zip returns a list as long as the shortest iterable, ignoring
trailing items in the other iterable objects. See also map in this section.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.3 The sys Module

The attributes of the sys module are bound to data and functions that provide information on the state
of the Python interpreter or that affect the interpreter directly. This section documents the most
frequently used attributes of sys, in alphabetical order.

argv

The list of command-line arguments passed to the main script. argv[0] is the name or full path of the
main script, or '-c' if the -c option was used. See Section 8.4 later in this chapter for a good way to
use sys.argv.

displayhook

displayhook(value)

In interactive sessions, the Python interpreter calls displayhook, passing it the result of each
expression-statement entered. The default displayhook does nothing if value is None, otherwise it
preserves and displays value:

if value is not None:
    _ _builtin_ _._ = value
    print repr(value)

You can rebind sys.displayhook in order to change interactive behavior. The original value is available
as sys._ _displayhook_ _.

excepthook

excepthook(type,value,traceback)

When an exception is not caught by any handler, Python calls excepthook, passing it the exception
class, exception object, and traceback object, as covered in Chapter 6. The default excepthook
displays the error and traceback. You can rebind sys.excepthook to change what is displayed for
uncaught exceptions (just before Python returns to the interactive loop or terminates). The original
value is also available as sys._ _excepthook_ _.

exc_info

exc_info(  )

If the current thread is handling an exception, exc_info returns a tuple whose three items are the
class, object, and traceback for the exception. If the current thread is not handling any exception,
exc_info returns (None,None,None). A traceback object indirectly holds references to all variables of all
functions that propagated the exception. Thus, if you hold a reference to the traceback object (for
example, indirectly, by binding a variable to the whole tuple that exc_info returns), Python has to
retain in memory data that might otherwise be garbage-collected. So you should make sure that any
binding to the traceback object is of short duration. To ensure that the binding gets removed, you can
use a try/finally statement (discussed in Chapter 6).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


exit

exit(arg=0)

Raises a SystemExit exception, which normally terminates execution after executing cleanup handlers
installed by try/finally statements. If arg is an integer, Python uses arg as the program's exit code: 0
indicates successful termination, while any other value indicates unsuccessful termination of the
program. Most platforms require exit codes to be between 0 and 127. If arg is not an integer, Python
prints arg to sys.stderr, and the exit code of the program is 1 (i.e., a generic unsuccessful termination
code).

getdefaultencoding

getdefaultencoding(  )

Returns the name of the default codec used to encode and decode Unicode and string objects
(normally 'ascii'). Unicode, codecs, encoding, and decoding are covered in Chapter 9.

getrefcount

getrefcount(object)

Returns the reference count of object. Reference counts are covered in Section 13.4.

getrecursionlimit

getrecursionlimit(  )

Returns the current limit on the depth of Python's call stack. See also Section 4.10.9 and
setrecursionlimit in this section.

_getframe

_getframe(depth=0)

Returns a frame object from the call stack. When depth is 0, the result is the frame of _getframe's
caller. When depth is 1, the result is the frame of the caller's caller, and so forth. The leading _ in
_getframe's name is a reminder that it's a private system function, to be used for internal specialized
purposes. Chapter 17 covers ways in which you can use frame objects for debugging.

maxint

The largest integer in this version of Python (at least 2147483647). Negative integers can go down to -
maxint-1, due to 2's complement notation.

modules

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A dictionary whose items are the names and module objects for all loaded modules. See Chapter 7 for
more information on sys.modules.

path

A list of strings that specifies the directories that Python searches when looking for a module to load.
See Chapter 7 for more information on sys.path.

platform

A string that names the platform on which this program is running. Typical values are brief operating
system names, such as 'sunos5', 'linux2', and 'win32'.

ps1, ps2

ps1 and ps2 specify the primary and secondary interpreter prompt strings, initially '>>> ' and '... ',
respectively. These attributes exist only in interactive interpreter sessions. If you bind either attribute
to a non-string object, Python prompts by calling str( ) on the object each time a prompt is output.
This feature lets you create dynamic prompting by coding a class that defines _ _str_ _ and assigning
an instance of that class to sys.ps1 and/or sys.ps2.

setdefaultencoding

setdefaultencoding(name)

Sets the default codec used to encode and decode Unicode and string objects (normally 'ascii').
setdefaultencoding is meant to be called only from sitecustomize.py during startup; the site module
removes this attribute from sys. You can call reload(sys) to make this attribute available again, but
this is not considered good programming practice. Unicode, codecs, encoding, and decoding are
covered in Chapter 9. The site and sitecustomize modules are covered in Chapter 13.

setprofile

setprofile(profilefunc)

Sets a global profile function, a callable object that Python then calls at each function entry and
return. Profiling is covered in Chapter 17.

setrecursionlimit

setrecursionlimit(limit)

Sets the limit on the depth of Python's call stack (the default is 1000). The limit prevents runaway

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sets the limit on the depth of Python's call stack (the default is 1000). The limit prevents runaway
recursion from crashing Python. Raising the limit may be necessary for programs that rely on deep
recursion, but most platforms cannot support very large limits on call-stack depth. Lowering the limit
may help you check, during debugging, that your program is gracefully degrading under situations of
almost-runaway recursion. See also Section 4.10.9.

settrace

settrace(tracefunc)

Sets a global trace function, a callable object that Python then calls as each logical source line
executes. Chapter 17 covers tracing.

stdin, stdout, stderr

stdin , stdout, and stderr are predefined file objects that correspond to Python's standard input,
output, and error streams. You can rebind stdout and stderr to file-like objects (objects that supply a
write method accepting a string argument) to redirect the destination of output and error messages.
You can rebind stdin to a file-like object open for reading (one that supplies a readline method
returning a string) to redirect the source from which built-in functions raw_input and input read. The
original values are available as _ _stdin_ _, _ _stdout_ _, and _ _stderr_ _. Chapter 10 covers file
objects and streams.

tracebacklimit

The maximum number of levels of traceback displayed for unhandled exceptions. By default, this
attribute is not set (i.e., there is no limit). When sys.tracebacklimit is less than or equal to 0, traceback
information is suppressed and only the exception type and value are printed.

version

A string that describes the Python version, build number and date, and C compiler used. version[:3] is
'2.1' for Python 2.1, '2.2' for 2.2, and so on.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.4 The getopt Module

The getopt module helps parse the command-line options and arguments passed to a Python
program, available in sys.argv. The getopt module distinguishes arguments proper from options:
options start with '-' (or '--' for long-form options). The first non-option argument terminates option
parsing (similar to most Unix commands, and differently from GNU and Windows commands). Module
getopt supplies a single function, also called getopt.

getopt

getopt(args,options,long_options=[  ])

Parses command-line options. args is usually sys.argv[1:]. options is a string: each character is an
option letter, followed by ':' if the option takes a parameter. long_options is a list of strings, each a
long-option name, without the leading '--', followed by '=' if the option takes a parameter.

When getopt encounters an error, it raises GetoptError, an exception class supplied by the getopt
module. Otherwise, getopt returns a pair (opts,args_proper), where opts is a list of pairs of the form
(option,parameter) in the same order in which options are found in args. Each option is a string that
starts with a single hyphen for a short-form option or two hyphens for a long-form one; each
parameter is also a string (an empty string for options that don't take parameters). args_proper is the
list of program argument strings that are left after removing the options.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.5 The copy Module

As discussed in Chapter 4, assignment in Python does not copy the right-hand side object being
assigned. Rather, assignment adds a reference to the right-hand side object. When you want a copy
of object x, you can ask x for a copy of itself. If x is a list, x[:] is a copy of x. If x is a dictionary,
x.copy( ) returns a copy of x.

The copy module supplies a copy function that creates and returns a copy of most types of objects.
Normal copies, such as x[:] for a list x and copy.copy(x), are also known as shallow copies. When x
has references to other objects (e.g., items or attributes), a normal copy of x has distinct references
to the same objects. Sometimes, however, you need a deep copy, where referenced objects are
copied recursively. Module copy supplies a deepcopy(x) function that performs a deep copy and
returns it as the function's result.

copy

copy(x)

Creates and returns a copy of x for x of most types (copies of modules, classes, frames, arrays, and
internal types are not supported). If x is immutable, copy.copy(x) may return x itself as an
optimization. A class can customize the way copy.copy copies its instances by having a special method
_ _copy_ _(self) that returns a new object, a copy of self.

deepcopy

deepcopy(x,[memo])

Makes a deep copy of x and returns it. Deep copying implies a recursive walk over a directed graph of
references. A precaution is needed to preserve the graph's shape: when references to the same object
are met more than once during the walk, distinct copies must not be made. Rather, references to the
same copied object must be used. Consider the following simple example:

sublist = [1,2]
original = [sublist, sublist]
thecopy = copy.deepcopy(original)

original[0] is original[1] is True (i.e., the two items of list original refer to the same object). This is an
important property of original and therefore must be preserved in anything that claims to be a copy of
it. The semantics of copy.deepcopy are defined to ensure that thecopy[0] is thecopy[1] is also True in
this case. In other words, the shapes of the graphs of references of original and thecopy are the same.
Avoiding repeated copying has an important beneficial side effect: preventing infinite loops that would
otherwise occur if the graph has cycles.

copy.deepcopy accepts a second, optional argument memo, which is a dictionary that maps the id( ) of
objects already copied to the new objects that are their copies. memo is passed by recursive calls of
deepcopy to itself, but you may also explicitly pass it (normally as an originally empty dictionary) if
you need to keep such a correspondence map between the identities of originals and copies of
objects.

A class can customize the way copy.deepcopy copies its instances by having a special method _
_deepcopy_ _(self,memo) that returns a new object, a deep copy of self. When _ _deepcopy_ _ needs
to deep copy some referenced object subobject, it must do so by calling
copy.deepcopy(subobject,memo). When a class has no special method _ _deepcopy_ _, copy.deepcopy
on an instance of that class tries to call special methods _ _getinitargs_ _, _ _getstate_ _, and _
_setstate_ _, which are covered in Section 11.1.2.3.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.6 The bisect Module

The bisect module uses a bisection algorithm to keep a list in sorted order as items are inserted.
bisect's operation is faster than calling a list's sort method after each insertion. This section documents
the main functions supplied by bisect.

bisect

bisect(seq,item,lo=0,hi=sys.maxint)

Returns the index i into seq where item should be inserted to keep seq sorted. In other words, i is
such that each item in seq[:i] is less than or equal to item, and each item in seq[i:] is greater than or
equal to item. seq must be a sorted sequence. For any sorted sequence seq, seq[bisect(seq,y)-1]= =y
is equivalent to y in seq, but faster if len(seq) is large. You may pass optional arguments lo and hi to
operate on the slice seq[lo:hi].

insort

insort(seq,item,lo=0,hi=sys.maxint)

Like seq.insert(bisect(seq,item),item). In other words, seq must be a sorted mutable sequence, and
insort modifies seq by inserting item at the right spot, so that seq remains sorted. You may pass
optional arguments lo and hi to operate on the slice seq[lo:hi].

Module bisect also supplies functions bisect_left, bisect_right, insort_left, and insort_right for explicit
control of search and insertion strategies into sequences that contain duplicates. bisect is a synonym
for bisect_right, and insort is a synonym for insort_right.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

8.7 The UserList, UserDict, and UserString Modules

The UserList, UserDict, and UserString modules each supply one class, with the same name as the
respective module, that implements all the methods needed for the class's instances to be mutable
sequences, mappings, and strings, respectively. When you need such polymorphism, you can subclass
one of these classes and override some methods rather than have to implement everything yourself.
In Python 2.2 and later, you can subclass built-in types list, dict, and str directly, to similar effect (see
Section 5.2). However, these modules can still be handy if you need to create a classic class in order
to keep your code compatible with Python 2.1 or earlier.

Each instance of one of these classes has an attribute called data that is a Python object of the
corresponding built-in type (list, dict, and str, respectively). You can instantiate each class with an
argument of the appropriate type (the argument is copied, so you can later modify it without side
effects). UserList and UserDict can also be instantiated without arguments to create initially empty
containers.

Module UserString also supplies class MutableString, which is very similar to class UserString except
that instances of MutableString are mutable. Instances of MutableString and its subclasses cannot be
keys into a dictionary. Instances of both UserString and MutableString can be Unicode strings rather
than plain strings: just use a Unicode string as the initializer argument at instantiation time.

If you subclass UserList, UserDict, UserString, or MutableString and then override _ _init_ _, make sure
the _ _init_ _ method you write can also be called with one argument of the appropriate type (as well
as without arguments for UserList and UserDict). Also be sure that your _ _init_ _ method explicitly
and appropriately calls the _ _init_ _ method of the superclass, as usual.

For maximum efficiency, you can arrange for your subclass to inherit from the appropriate built-in
type when feasible (i.e., when your program runs with Python 2.2), but keep the ability to fall back to
these modules when necessary (i.e., when your program runs with Python 2.1). Here is a typical
idiom you can use for this purpose:

try:                         # can we subclass list?
    class _Temp(list): 
        pass
except:                      # no: use UserList.UserList as base class
    from UserList import UserList as BaseList
else:                        # yes: remove _Temp and use list as base class
    del _Temp
    BaseList = list
class AutomaticallyExpandingList(BaseList):
    """a list such that you can always set L[i]=x even for a large i:
       L automatically grows, if needed, to make i a valid index."""
    def _ _setitem_ _(self, idx, val):
        self.extend((1+idx-len(self))*[None])
        BaseList._ _setitem_ _(self, idx, val)
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 9. Strings and Regular Expressions

Python supports plain and Unicode strings extensively, with statements, operators, built-in functions,
methods, and dedicated modules. This chapter covers the methods of string objects, talks about
string formatting, documents the string, pprint, and repr modules, and discusses issues related to
Unicode strings.

Regular expressions let you specify pattern strings and allow searches and substitutions. Regular
expressions are not easy to master, but they are a powerful tool for processing text. Python offers
rich regular expression functionality through the built-in re module, as documented in this chapter.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.1 Methods of String Objects

Plain and Unicode strings are immutable sequences, as covered in Chapter 4. All immutable-sequence
operations (repetition, concatenation, indexing, slicing) apply to strings. A string object s also supplies
several non-mutating methods, as documented in this section. Unless otherwise noted, each method
returns a plain string when s is a plain string, or a Unicode string when s is a Unicode string. Terms
such as letters, whitespace, and so on refer to the corresponding attributes of the string module,
covered later in this chapter. See also the later section Section 9.2.1.

capitalize

s.capitalize(  )

Returns a copy of s where the first character, if a letter, is uppercase, and all other letters, if any, are
lowercase.

center

s.center(n)

Returns a string of length max(len(s),n), with a copy of s in the central part, surrounded by equal
numbers of spaces on both sides (e.g., 'ciao'.center(2) is 'ciao', 'ciao'.center(7) is ' ciao ').

count

s.count(sub,start=0,end=sys.maxint)

Returns the number of occurrences of substring sub in s[start:end].

encode

s.encode(codec=None,errors='strict')

Returns a plain string obtained from s with the given codec and error handling. See Section 9.6 later
in this chapter for more details.

endswith

s.endswith(suffix,start=0,end=sys.maxint)

Returns True when s[start:end] ends with suffix, otherwise False.

expandtabs

s.expandtabs(tabsize=8)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns a copy of s where each tab character is changed into one or more spaces, with tab stops
every tabsize characters.

find

s.find(sub,start=0,end=sys.maxint)

Returns the lowest index in s where substring sub is found, such that sub is entirely contained in
s[start:end]. For example, 'banana'.find('na') is 2, as is 'banana'.find('na',1), while 'banana'.find('na',3) is
4, as is 'banana'.find('na',-2). find returns -1 if sub is not found.

index

s.index(sub,start=0,end=sys.maxint)

Like find, but raises ValueError when sub is not found.

isalnum

s.isalnum(  )

Returns True when len(s) is greater than 0 and all characters in s are letters or decimal digits. When s
is empty, or when at least one character of s is neither a letter nor a decimal digit, isalnum returns
False.

isalpha

s.isalpha(  )

Returns True when len(s) is greater than 0 and all characters in s are letters. When s is empty, or
when at least one character of s is not a letter, isalpha returns False.

isdigit

s.isdigit(  )

Returns True when len(s) is greater than 0 and all characters in s are decimal digits. When s is empty,
or when at least one character of s is not a digit, isdigit returns False.

islower

s.islower(  )

Returns True when all letters in s are lowercase. When s has no letters, or when at least one letter of
s is uppercase, islower returns False.

isspace

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


s.isspace(  )

Returns True when len(s) is greater than 0 and all characters in s are whitespace. When s is empty, or
when at least one character of s is not whitespace, isspace returns False.

istitle

s.istitle(  )

Returns True when letters in s are titlecase: a capital letter at the start of each contiguous sequence
of letters, all other letters lowercase (e.g., 'King Lear'.istitle( ) is True). When s has no letters, or when
at least one letter of s violates the titlecase constraint, istitle returns False (e.g., '1900'.istitle( ) and
'Troilus and Cressida'.istitle( ) are False).

isupper

s.isupper(  )

Returns True when all letters in s are uppercase. When s has no letters, or when at least one letter of
s is lowercase, isupper returns False.

join

s.join(seq)

Returns the string obtained by concatenating the items of seq, which must be a sequence of strings,
and interposing a copy of s between each pair of items (e.g., ''.join([str(x) for x in range(7)]) is
'0123456').

ljust

s.ljust(n)

Returns a string of length max(len(s),n), with a copy of s at the start, followed by zero or more trailing
spaces.

lower

s.lower(  )

Returns a copy of s with all letters, if any, converted to lowercase.

lstrip

s.lstrip(x=None)

Returns a copy of s with leading whitespace, if any, removed. Since Python 2.2.2, you can optionally
pass a string x as an argument, in which case lstrip removes characters found in x rather than

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


pass a string x as an argument, in which case lstrip removes characters found in x rather than
removing whitespace.

replace

s.replace(old,new,maxsplit=sys.maxint)

Returns a copy of s with the first maxsplit (or fewer, if there are fewer) non-overlapping occurrences
of substring old replaced by string new (e.g., 'banana'.replace('a','e',2) is 'benena').

rfind

s.rfind(sub,start=0,end=sys.maxint)

Returns the highest index in s where substring sub is found, such that sub is entirely contained in
s[start:end]. rfind returns -1 if sub is not found.

rindex

s.rindex(sub,start=0,end=sys.maxint)

Like rfind, but raises ValueError if sub is not found.

rjust

s.rjust(n)

Returns a string of length max(len(s),n), with a copy of s at the end, preceded by zero or more leading
spaces.

rstrip

s.rstrip(x=None)

Returns a copy of s with trailing whitespace, if any, removed. Since Python 2.2.2, you can optionally
pass a string x as an argument, in which case rstrip removes characters found in x rather than
removing whitespace.

split

s.split(sep=None,maxsplit=sys.maxint)

Returns a list L of up to maxsplit+1 strings. Each item of L is a "word" from s, where string sep
separates words. When s has more than maxsplit words, the last item of L is the substring of s that
follows the first maxsplit words. When sep is None, any string of whitespace separates words (e.g.,
'four score and seven years ago'.split(None,3) is ['four', 'score', 'and', 'seven years ago']).

splitlines

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


s.splitlines(keepends=False)

Like s.split('\n'). When keepends is true, however, the trailing '\n' is included in each item of the
resulting list.

startswith

s.startswith(prefix,start=0,end=sys.maxint)

Returns True when s[start:end] starts with prefix, otherwise False.

strip

s.strip(x=None)

Returns a copy of s with both leading and trailing whitespace removed. Since Python 2.2.2, you can
optionally pass a string x as an argument, in which case strip removes characters found in x rather
than removing whitespace.

swapcase

s.swapcase(  )

Returns a copy of s with all uppercase letters converted to lowercase and vice versa.

title

s.title(  )

Returns a copy of s transformed to titlecase: a capital letter at the start of each contiguous sequence
of letters, with all other letters, if any, lowercase.

translate

s.translate(table,deletechars='')

Returns a copy of s where all characters occurring in string deletechars are removed, and the
remaining characters are mapped through translation-table table. When s is a plain string, table must
be a plain string of length 256. When s is a Unicode string, table must be a Unicode string of length
65536. Each character c is mapped to character table[ord(c)]. A plain-string table is most often built
using function string.maketrans, covered later.

upper

s.upper(  )

Returns a copy of s with all letters, if any, converted to uppercase.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.2 The string Module

The string module supplies functions that duplicate each method of string objects, as covered in the
previous section. Each function takes the string object as its first argument. Module string also has
several useful string-valued attributes:

ascii_letters

The string ascii_lowercase+ascii_uppercase

ascii_lowercase

The string 'abcdefghijklmnopqrstuvwxyz'

ascii_uppercase

The string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

digits

The string '0123456789'

hexdigits

The string '0123456789abcdefABCDEF'

letters

The string lowercase+uppercase

lowercase

A string containing all characters that are deemed lowercase letters: at least
'abcdefghijklmnopqrstuvwxyz', but more letters (e.g., accented ones) may be present,
depending on the active locale

octdigits

The string '01234567'

punctuation

The string '!"#$%&\'( )*+,-./:;<=>?@[\\]^_'{|}~' (i.e., all ASCII characters that are deemed
punctuation characters in the "C" locale; does not depend on what locale is active)

printable

The string of those characters that are deemed printable (i.e., digits, letters, punctuation, and
whitespace)

uppercase

A string containing all characters that are deemed uppercase letters: at least
'ABCDEFGHIJKLMNOPQRSTUVWXYZ', but more letters (e.g., accented ones) may be present,
depending on the active locale

whitespace

A string containing all characters that are deemed whitespace: at least space, tab, linefeed,
and carriage return, but more characters (e.g., control characters) may be present, depending
on the active locale

You should not rebind these attributes, since other parts of the Python library may rely on them and
the effects of rebinding them would be undefined.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


9.2.1 Locale Sensitivity

The locale module is covered in Chapter 10. Locale setting affects some attributes of module string
(letters, lowercase, uppercase, whitespace). Through these attributes, locale setting also affects
functions of module string and methods of plain-string objects that deal with classification of
characters as letters, and conversion between upper- and lowercase, such as capitalize, isalnum, and
isalpha. The corresponding methods of Unicode strings are not affected by locale setting.

9.2.2 The maketrans Function

The method translate of plain strings, covered earlier in this chapter, takes as its first argument a
plain string of length 256 that it uses as a translation table. The easiest way to build translation tables
is to use the maketrans function supplied by module string.

maketrans

maketrans(from,onto)

Returns a translation table, which is a plain string of length 256 that provides a mapping from
characters in ascending ASCII order to another set of characters. from and onto must be plain strings,
with len(from) equal to len(onto). Each character in string from is mapped to the character at the
corresponding position in string onto. For each character not listed in from, the translation table maps
the character to itself. To get an identity table that maps each character to itself, call maketrans('','').

With the translate string method, you can delete characters as well as translate them. When you use
translate just to delete characters, the first argument you pass to translate should be the identity
table. Here's an example of using the maketrans function and the string method translate to delete
vowels:

import string
identity = string.maketrans('','')
print 'some string'.translate(identity,'aeiou')    # prints: sm strng

Here are examples of turning all other vowels into a's and also deleting s's:

intoas = string.maketrans('eiou','aaaa')
print 'some string'.translate(intoas)              # prints: sama strang
print 'some string'.translate(intoas,'s')          # prints: ama trang
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.3 String Formatting

In Python, a string-formatting expression has the syntax:

format % values

where format is a plain or Unicode string containing format specifiers and values is any single object or
a collection of objects in a tuple or dictionary. Python's string-formatting operator has roughly the
same set of features as the C language's printf and operates in a similar way. Each format specifier is
a substring of format that starts with a percent sign (%) and ends with one of the conversion
characters shown in Table 9-1.

Table 9-1. String-formatting conversion characters
Character Output format Notes
d, i Signed decimal integer Value must be number

u Unsigned decimal integer Value must be number

o Unsigned octal integer Value must be number

x Unsigned hexadecimal integer (lowercase letters) Value must be number

X Unsigned hexadecimal integer (uppercase letters) Value must be number

e Floating-point value in exponential form (lowercase e
for exponent) Value must be number

E Floating-point value in exponential form (uppercase E
for exponent) Value must be number

f, F Floating-point value in decimal form Value must be number

g, G Like e or E when exp is greater than 4 or less than the
precision; otherwise like f or F

exp is the exponent of the
number being converted

c Single character Value can be integer or single-
character string

r String Converts any value with repr
s String Converts any value with str
% Literal % character Consumes no value

Between the % and the conversion character, you can specify a number of optional modifiers, as we'll
discuss shortly.

The result of a formatting expression is a string that is a copy of format where each format specifier is
replaced by the corresponding item of values converted to a string according to the specifier. Here are
some simple examples:

x = 42
y = 3.14
z = "george"
print 'result = %d' % x                 # prints: result = 42
print 'answers are: %d %f' % (x,y)      # prints: answers are: 42 3.14
print 'hello %s' % z                    # prints: hello george

9.3.1 Format Specifier Syntax

A format specifier can include numerous modifiers that control how the corresponding item in values is
converted to a string. The components of a format specifier, in order, are:

The mandatory leading % character that marks the start of the specifier

An optional item name in parentheses (e.g. (name))

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Zero or more optional conversion flags:

#, which indicates that the conversion uses an alternate form (if any exists for its type)

0, which indicates that the conversion is zero-padded

-, which indicates that the conversion is left-justified

a space, which indicates that a space is placed before a positive number

+, which indicates that the numeric sign (+ or -) is included before any numeric
conversion

An optional minimum width of the conversion, specified using one or more digits or an asterisk
(*), which means that the width is taken from the next item in values

 An optional precision for the conversion, specified with a dot (.) followed by zero or more
digits or a *, which means that the width is taken from the next item in values

A mandatory conversion type from Table 9-1

Item names must be given either in all format specifiers in format or in none of them. When item
names are present, values must be a mapping (often the dictionary of a namespace, e.g., vars( )), and
each item name is a key in values. In other words, each format specifier corresponds to the item in
values keyed by the specifier's item name. When item names are present, you cannot use * in any
format specifier.

When item names are absent, values must be a tuple; when there is just one item, values may be the
item itself instead of a tuple. Each format specifier corresponds to an item in values by position, and
values must have exactly as many items as format has specifiers (plus one extra for each width or
precision given by *). When the width or precision component of a specifier is given by *, the *
consumes one item in values, which must be an integer and is taken as the number of characters to
use as minimum width or precision of the conversion.

9.3.2 Common String-Formatting Idioms

It is quite common for format to contain several occurrences of %s and for values to be a tuple with
exactly as many items as format has occurrences of %s. The result is a copy of format where each %s
is replaced with str applied to the corresponding item of values. For example:

'%s+%s is %s'%(23,45,68)                # results in: '23+45 is 68'

You can think of %s as a fast and concise way to put together a few values, converted to string form,
into a larger string. For example:

oneway = 'x' + str(j) + 'y' + str(j) + 'z'
another = 'x%sy%sz' % (j, j)

After this code is executed, variables oneway and another will always be equal, but the computation of
another, done via string formatting, is measurably faster. Which way is clearer and simpler is a matter
of habit: get used to the string-formatting idiom, and it will come to look simpler and clearer.

Apart from %s, other reasonably common format specifiers are those used to format floating-point
values: %f for decimal formatting, %e for exponential formatting, and %g for either decimal or
exponential formatting, depending on the number's magnitude. When formatting floating-point
values, you normally specify width and/or precision modifiers. A width modifier is a number right after
the % that gives the minimum width for the resulting conversion; you generally use a width modifier
if you're formatting a table for display in a fixed-width font. A precision modifier is a number following
a dot (.) right before the conversion type letter; you generally use a precision modifier in order to fix
the number of decimal digits displayed for a number, to avoid giving a misleading impression of
excessive precision and wasting display space. For example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


'%.2f'%(1/3.0)                          # results in: '0.33'
'%s'%(1/3.0)                            # results in: '0.333333333333'

With %s, you cannot specify how many digits to display after the decimal point. It is important to
avoid giving a mistaken impression of very high precision when you know that your numeric results
are only accurate to a few digits. Displaying high precision values might mislead people examining
those results into believing the results are much more accurate than is in fact the case.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.4 The pprint Module

The pprint module pretty-prints complicated data structures, with formatting that may be more
readable than that supplied by built-in function repr (see Chapter 8). To fine-tune the formatting, you
can instantiate the PrettyPrinter class supplied by module pprint and apply detailed control, helped by
auxiliary functions also supplied by module pprint. Most of the time, however, one of the two main
functions exposed by module pprint suffices.

pformat

pformat(obj)

Returns a string representing the pretty-printing of obj.

pprint

pprint(obj,stream=sys.stdout)

Outputs the pretty-printing of obj to file object stream, with a terminating newline.

The following statements are the same:

print pprint.pformat(x)
pprint.pprint(x)

Either of these constructs will be roughly the same as print x in many cases, such as when the string
representation of x fits within one line. However, with something like x=range(30), print x displays x in
two lines, breaking at an arbitrary point, while using module pprint displays x over 30 lines, one line
per item. You can use module pprint when you prefer the module's specific display effects to the ones
of normal string representation.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.5 The repr Module

The repr module supplies an alternative to the built-in function repr (see Chapter 8), with limits on
length for the representation string. To fine-tune the length limits, you can instantiate or subclass the
Repr class supplied by module repr and apply detailed control. Most of the time, however, the main
function exposed by module repr suffices.

repr

repr(obj)

Returns a string representing obj, with sensible limits on length.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.6 Unicode

Plain strings are converted into Unicode strings either explicitly, with the unicode built-in, or implicitly,
when you pass a plain string to a function that expects Unicode. In either case, the conversion is done
by an auxiliary object known as a codec (for coder-decoder). A codec can also convert Unicode strings
to plain strings either explicitly, with the encode method of Unicode strings, or implicitly.

You identify a codec by passing the codec name to unicode or encode. When you pass no codec name
and for implicit conversion, Python uses a default encoding, normally 'ascii'. (You can change the
default encoding in the startup phase of a Python program, as covered in Chapter 13; see also
setdefaultencoding in Chapter 8.) Every conversion has an explicit or implicit argument errors, a string
specifying how conversion errors are to be handled. The default is 'strict', meaning any error raises an
exception. When errors is 'replace', the conversion replaces each character causing an error with '?' in
a plain-string result or with u'\ufffd' in a Unicode result. When errors is 'ignore', the conversion silently
skips characters that cause errors.

9.6.1 The codecs Module

The mapping of codec names to codec objects is handled by the codecs module. This module lets you
develop your own codec objects and register them so that they can be looked up by name, just like
built-in codecs. Module codecs also lets you look up any codec explicitly, obtaining the functions the
codec uses for encoding and decoding, as well as factory functions to wrap file-like objects. Such
advanced facilities of module codecs are rarely used, and are not covered further in this book.

The codecs module, together with the encodings package, supplies built-in codecs useful to Python
developers dealing with internationalization issues. Any supplied codec can be installed as the default
by module sitecustomize, or can be specified by name when converting explicitly between plain and
Unicode strings. The codec normally installed by default is 'ascii', which accepts only characters with
codes between 0 and 127, the 7-bit range of the American Standard Code for Information Interchange
(ASCII) that is common to most encodings. A popular codec is 'latin-1', a fast, built-in implementation
of the ISO 8859-1 encoding that offers a one-byte-per-character encoding of all special characters
needed for Western European languages.

The codecs module also supplies codecs implemented in Python for most ISO 8859 encodings, with
codec names from 'iso8859-1' to 'iso8859-15'. On Windows systems only, the codec named 'mbcs'
wraps the platform's multibyte character set conversion procedures. In Python 2.2, many codecs are
added to support Asian languages. Module codecs also supplies several standard code pages (codec
names from 'cp037' to 'cp1258'), Mac-specific encodings (codec names from 'mac-cyrillic' to 'mac-
turkish'), and Unicode standard encodings 'utf-8' and 'utf-16' (the latter also have specific big-endian
and little-endian variants 'utf-16-be' and 'utf-16-le'). For use with UTF-16, module codecs also supplies
attributes BOM_BE and BOM_LE, byte-order marks for big-endian and little-endian machines
respectively, and BOM, byte-order mark for the current platform.

Module codecs also supplies two functions to make it easier to deal with encoded text during
input/output operations.

EncodedFile

EncodedFile(file,datacodec,filecodec=None,errors='strict')

Wraps the file-like object file, returning another file-like object ef that implicitly and transparently
applies the given encodings to all data read from or written to the file. When you write a string s to ef,
ef first decodes s with the codec named by datacodec, then encodes the result with the codec named
by filecodec, and lastly writes it to file. When you read a string, ef applies filecodec first, then
datacodec. When filecodec is None, ef uses datacodec for both steps in either direction.

For example, if you want to write strings that are encoded in latin-1 to sys.stdout and have the strings

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For example, if you want to write strings that are encoded in latin-1 to sys.stdout and have the strings
come out in utf-8, use the following:

import sys, codecs
sys.stdout = codecs.EncodedFile(sys.stdout,'latin-1',
                                                     'utf-8')

open

open(filename,mode='rb',encoding=None,errors='strict',
     buffering=1)

Uses the built-in function open (covered in Chapter 10) to supply a file-like object that accepts and/or
provides Unicode strings to/from Python client code, while the underlying file can either be in Unicode
(when encoding is None) or use the codec named by encoding. For example, if you want to write
Unicode strings to file uni.txt and have the strings implicitly encoded as latin-1 in the file, replacing
with '?' any character that cannot be encoded in Latin-1, use the following:

import codecs
flout = codecs.open('uni.txt','w','latin-1','replace')

# now you can write Unicode strings directly to flout
flout.write(u'élève')
flout.close(  )

9.6.2 The unicodedata Module

The unicodedata module supplies easy access to the Unicode Character Database. Given any Unicode
character, you can use functions supplied by module unicodedata to obtain the character's Unicode
category, official name (if any), and other, more exotic information. You can also look up the Unicode
character (if any) corresponding to a given official name. Such advanced facilities are rarely needed,
and are not covered further in this book.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

9.7 Regular Expressions and the re Module

A regular expression is a string that represents a pattern. With regular expression functionality, you
can compare that pattern to another string and see if any part of the string matches the pattern.

The re module supplies all of Python's regular expression functionality. The compile function builds a
regular expression object from a pattern string and optional flags. The methods of a regular
expression object look for matches of the regular expression in a string and/or perform substitutions.
Module re also exposes functions equivalent to a regular expression's methods, but with the regular
expression's pattern string as their first argument.

Regular expressions can be difficult to master, and this book does not purport to teach them—I cover
only the ways in which you can use them in Python. For general coverage of regular expressions, I
recommend the book Mastering Regular Expressions, by Jeffrey Friedl (O'Reilly). Friedl's book offers
thorough coverage of regular expressions at both the tutorial and advanced levels.

9.7.1 Pattern-String Syntax

The pattern string representing a regular expression follows a specific syntax:

Alphabetic and numeric characters stand for themselves. A regular expression whose pattern is
a string of letters and digits matches the same string.

Many alphanumeric characters acquire special meaning in a pattern when they are preceded by
a backslash (\).

Punctuation works the other way around. A punctuation character is self-matching when
escaped, and has a special meaning when unescaped.

The backslash character itself is matched by a repeated backslash (i.e., the pattern \\).

Since regular expression patterns often contain backslashes, you generally want to specify them using
raw-string syntax (covered in Chapter 4). Pattern elements (e.g., r'\t', which is equivalent to the non-
raw string literal '\\t') do match the corresponding special characters (e.g., the tab character '\t').
Therefore, you can use raw-string syntax even when you do need a literal match for some such
special character.

Table 9-2 lists the special elements in regular expression pattern syntax. The exact meanings of some
pattern elements change when you use optional flags, together with the pattern string, to build the
regular expression object. The optional flags are covered later in this chapter.

Table 9-2. Regular expression pattern syntax
Element Meaning

. Matches any character except \n (if DOTALL, also matches \n)

^ Matches start of string (if MULTILINE, also matches after \n)

$ Matches end of string (if MULTILINE, also matches before \n)

* Matches zero or more cases of the previous regular expression; greedy (match as many
as possible)

+ Matches one or more cases of the previous regular expression; greedy (match as many
as possible)

? Matches zero or one case of the previous regular expression; greedy (match one if
possible)

*? , +?, ?? Non-greedy versions of *, +, and ? (match as few as possible)

{m,n} Matches m to n cases of the previous regular expression (greedy)

{m,n}? Matches m to n cases of the previous regular expression (non-greedy)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[...] Matches any one of a set of characters contained within the brackets

| Matches expression either preceding it or following it

(...) Matches the regular expression within the parentheses and also indicates a group

(?iLmsux) Alternate way to set optional flags; no effect on match

(?:...) Like (...), but does not indicate a group

(?P<id>...) Like (...), but the group also gets the name id
(?P=id) Matches whatever was previously matched by group named id
(?#...) Content of parentheses is just a comment; no effect on match

(?=...) Lookahead assertion; matches if regular expression ... matches what comes next, but
does not consume any part of the string

(?!...) Negative lookahead assertion; matches if regular expression ... does not match what
comes next, and does not consume any part of the string

(?<=...) Lookbehind assertion; matches if there is a match for regular expression ... ending at the
current position (... must match a fixed length)

(?<!...) Negative lookbehind assertion; matches if there is no match for regular expression ...
ending at the current position (... must match a fixed length)

\number Matches whatever was previously matched by group numbered number (groups are
automatically numbered from 1 up to 99)

\A Matches an empty string, but only at the start of the whole string

\b Matches an empty string, but only at the start or end of a word (a maximal sequence of
alphanumeric characters; see also \w)

\B Matches an empty string, but not at the start or end of a word
\d Matches one digit, like the set [0-9]
\D Matches one non-digit, like the set [^0-9]
\s Matches a whitespace character, like the set [ \t\n\r\f\v]
\S Matches a non-white character, like the set [^ \t\n\r\f\v]

\w Matches one alphanumeric character; unless LOCALE or UNICODE is set, \w is like [a-zA-
Z0-9_]

\W Matches one non-alphanumeric character, the reverse of \w
\Z Matches an empty string, but only at the end of the whole string

\\ Matches one backslash character

9.7.2 Common Regular Expression Idioms

'.*' as a substring of a regular expression's pattern string means "any number of repetitions (zero or
more) of any character." In other words, '.*' matches any substring of a target string, including the
empty substring. '.+' is similar, but it matches only a non-empty substring. For example:

'pre.*post'

matches a string containing a substring 'pre' followed by a later substring 'post', even if the latter is
adjacent to the former (e.g., it matches both 'prepost' and 'pre23post'). On the other hand:

'pre.+post'

matches only if 'pre' and 'post' are not adjacent (e.g., it matches 'pre23post' but does not match
'prepost'). Both patterns also match strings that continue after the 'post'.

To constrain a pattern to match only strings that end with 'post', end the pattern with \Z. For
example:

r'pre.*post\Z'

matches 'prepost', but not 'preposterous'. Note that we need to express the pattern with raw-string
syntax (or escape the backslash \ by doubling it into \\), as it contains a backslash. Using raw-string

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


syntax (or escape the backslash \ by doubling it into \\), as it contains a backslash. Using raw-string
syntax for all regular expression pattern literals is good practice in Python, as it's the simplest way to
ensure you'll never fail to escape a backslash.

Another frequently used element in regular expression patterns is \b, which matches a word
boundary. If you want to match the word 'his' only as a whole word and not its occurrences as a
substring in such words as 'this' and 'history', the regular expression pattern is:

 r'\bhis\b'

with word boundaries both before and after. To match the beginning of any word starting with 'her',
such as 'her' itself but also 'hermetic', but not words that just contain 'her' elsewhere, such as 'ether',
use:

r'\bher'

with a word boundary before, but not after, the relevant string. To match the end of any word ending
with 'its', such as 'its' itself but also 'fits', but not words that contain 'its' elsewhere, such as 'itsy', use:

r'its\b'

with a word boundary after, but not before, the relevant string. To match whole words thus
constrained, rather than just their beginning or end, add a pattern element \w* to match zero or more
word characters. For example, to match any full word starting with 'her', use:

r'\bher\w*'

And to match any full word ending with 'its', use:

r'\w*its\b'

9.7.3 Sets of Characters

You denote sets of characters in a pattern by listing the characters within brackets ([ ]). In addition to
listing single characters, you can denote a range by giving the first and last characters of the range
separated by a hyphen (-). The last character of the range is included in the set, which is different
from other Python ranges. Within a set, special characters stand for themselves, except \, ], and -,
which you must escape (by preceding them with a backslash) when their position is such that,
unescaped, they would form part of the set's syntax. In a set, you can also denote a class of
characters by escaped-letter notation, such as \d or \S. However, \b in a set denotes a backspace
character, not a word boundary. If the first character in the set's pattern, right after the [, is a caret
(^), the set is complemented. In other words, the set matches any character except those that follow
^ in the set pattern notation.

A frequent use of character sets is to match a word, using a definition of what characters can make up
a word that differs from \w's default (letters and digits). To match a word of one or more characters,
each of which can be a letter, an apostrophe, or a hyphen, but not a digit (e.g., 'Finnegan-O'Hara'),
use:

r"[a-zA-z'\-]+"

It's not strictly necessary to escape the hyphen with a backslash in this case, since its position makes
it syntactically unambiguous. However, the backslash makes the pattern somewhat more readable, by
visually distinguishing the hyphen that you want to have as a character in the set from those used to
denote ranges.

9.7.4 Alternatives

A vertical bar (|) in a regular expression pattern, used to specify alternatives, has low precedence.
Unless parentheses change the grouping, | applies to the whole pattern on either side, up to the start
or end of the string, or to another |. A pattern can be made up of any number of subpatterns joined
by |. To match such a regular expression, the first subpattern is tried first, and if it matches, the
others are skipped. If the first subpattern does not match, the second subpattern is tried, and so on. |
is neither greedy nor non-greedy, as it doesn't take into consideration the length of the match.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you have a list L of words, a regular expression pattern that matches any of the words is:

'|'.join([r'\b%s\b' % word for word in L])

If the items of L can be more-general strings, not just words, you need to escape each of them with
function re.escape, covered later in this chapter, and you probably don't want the \b word boundary
markers on either side. In this case, use the regular expression pattern:

'|'.join(map(re.escape,L))

9.7.5 Groups

A regular expression can contain any number of groups, from none up to 99 (any number is allowed,
but only the first 99 groups are fully supported). Parentheses in a pattern string indicate a group.
Element (?P<id>...) also indicates a group, and in addition gives the group a name, id, that can be
any Python identifier. All groups, named and unnamed, are numbered from left to right, 1 to 99, with
group number 0 indicating the whole regular expression.

For any match of the regular expression with a string, each group matches a substring (possibly an
empty one). When the regular expression uses |, some of the groups may not match any substring,
although the regular expression as a whole does match the string. When a group doesn't match any
substring, we say that the group does not participate in the match. An empty string '' is used to
represent the matching substring for a group that does not participate in a match, except where
otherwise indicated later in this chapter.

For example:

r'(.+)\1+\Z'

matches a string made up of two or more repetitions of any non-empty substring. The (.+) part of the
pattern matches any non-empty substring (any character, one or more times), and defines a group
thanks to the parentheses. The \1+ part of the pattern matches one or more repetitions of the group,
and the \Z anchors the match to end-of-string.

9.7.6 Optional Flags

A regular expression pattern element with one or more of the letters "iLmsux" between (? and ) lets
you set regular expression options within the regular expression's pattern, rather than by the flags
argument to function compile of module re. Options apply to the whole regular expression, no matter
where the options element occurs in the pattern. For clarity, options should always be at the start of
the pattern. Placement at the start is mandatory if x is among the options, since x changes the way
Python parses the pattern.

Using the explicit flags argument is more readable than placing an options element within the pattern.
The flags argument to function compile is a coded integer, built by bitwise ORing (with Python's
bitwise OR operator, |) one or more of the following attributes of module re. Each attribute has both a
short name (one uppercase letter), for convenience, and a long name (an uppercase multiletter
identifier), which is more readable and thus normally preferable:

I or IGNORECASE

Makes matching case-insensitive

L or LOCALE

Causes \w, \W, \b, and \B matches to depend on what the current locale deems alphanumeric

M or MULTILINE

Makes the special characters ^ and $ match at the start and end of each line (i.e., right
after/before a newline), as well as at the start and end of the whole string

S or DOTALL

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Causes the special character . to match any character, including a newline

U or UNICODE

Makes \w, \W, \b, and \B matches depend on what Unicode deems alphanumeric

X or VERBOSE

Causes whitespace in the pattern to be ignored, except when escaped or in a character set, and
makes a # character in the pattern begin a comment that lasts until the end of the line

For example, here are three ways to define equivalent regular expressions with function compile,
covered later in this chapter. Each of these regular expressions matches the word "hello" in any mix
of upper- and lowercase letters:

import re
r1 = re.compile(r'(?i)hello')
r2 = re.compile(r'hello', re.I)
r3 = re.compile(r'hello', re.IGNORECASE)

The third approach is clearly the most readable, and thus the most maintainable, even though it is
slightly more verbose. Note that the raw-string form is not necessary here, since the patterns do not
include backslashes. However, using raw strings is still innocuous, and is the recommended style for
clarity.

Option re.VERBOSE (or re.X) lets you make patterns more readable and understandable by appropriate
use of whitespace and comments. Complicated and verbose regular expression patterns are generally
best represented by strings that take up more than one line, and therefore you normally want to use
the triple-quoted raw-string format for such pattern strings. For example:

repat_num1 = r'(0[0-7]*|0x[\da-fA-F]+|[1-9]\d*)L?\Z'
repat_num2 = r'''(?x)            # pattern matching integer numbers
              (0 [0-7]*        | # octal: leading 0, then 0+ octal digits
               0x [\da-f-A-F]+ | # hex: 0x, then 1+ hex digits
               [1-9] \d*       ) # decimal: leading non-0, then 0+ digits
               L?\Z              # optional trailing L, then end of string
              '''

The two patterns defined in this example are equivalent, but the second one is made somewhat more
readable by the comments and the free use of whitespace to group portions of the pattern in logical
ways.

9.7.7 Match Versus Search

So far, we've been using regular expressions to match strings. For example, the regular expression
with pattern r'box' matches strings such as 'box' and 'boxes', but not 'inbox'. In other words, a regular
expression match can be considered as implicitly anchored at the start of the target string, as if the
regular expression's pattern started with \A.

Often, you're interested in locating possible matches for a regular expression anywhere in the string,
without any anchoring (e.g., find the r'box' match inside such strings as 'inbox', as well as in 'box' and
'boxes'). In this case, the Python term for the operation is a search, as opposed to a match. For such
searches, you use the search method of a regular expression object, while the match method only
deals with matching from the start. For example:

import re
r1 = re.compile(r'box')
if r1.match('inbox'): print 'match succeeds'
else print 'match fails'                          # prints: match fails
if r1. search('inbox'): print 'search succeeds'   # prints: search succeeds
else print 'search fails'

9.7.8 Anchoring at String Start and End

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The pattern elements ensuring that a regular expression search (or match) is anchored at string start
and string end are \A and \Z respectively. More traditionally, elements ^ for start and $ for end are
also used in similar roles. ^ is the same as \A, and $ is the same as \Z, for regular expression objects
that are not multiline (i.e., that do not contain pattern element (?m) and are not compiled with the
flag re.M or re.MULTILINE). For a multiline regular expression object, however, ^ anchors at the start
of any line (i.e., either at the start of the whole string or at the position right after a newline character
\n). Similarly, with a multiline regular expression, $ anchors at the end of any line (i.e., either at the
end of the whole string or at the position right before \n). On the other hand, \A and \Z anchor at the
start and end of the whole string whether the regular expression object is multiline or not. For
example, here's how to check if a file has any lines that end with digits:

import re
digatend = re.compile(r'\d$', re.MULTILINE)
if re.search(open('afile.txt').read(  )): print "some lines end with digits"
else: print "no lines end with digits"

A pattern of r'\d\n' would be almost equivalent, but in that case the search would fail if the very last
character of the file were a digit not followed by a terminating end-of-line character. With the
example above, the search succeeds if a digit is at the very end of the file's contents, as well as in the
more usual case where a digit is followed by an end-of-line character.

9.7.9 Regular Expression Objects

A regular expression object r has the following read-only attributes detailing how r was built (by
function compile of module re, covered later in this chapter):

flags

The flags argument passed to compile, or 0 when flags is omitted

groupindex

A dictionary whose keys are group names as defined by elements (?P<id>); the corresponding
values are the named groups' numbers

pattern

The pattern string from which r is compiled

These attributes make it easy to get back from a compiled regular expression object to its pattern
string and flags, so you never have to store those separately.

A regular expression object r also supplies methods to locate matches for r's regular expression within
a string, as well as to perform substitutions on such matches. Matches are generally represented by
special objects, covered in the later Section 9.7.10.

findall

r.findall(s)

When r has no groups, findall returns a list of strings, each a substring of s that is a non-overlapping
match with r. For example, here's how to print out all words in a file, one per line:

import re
reword = re.compile(r'\w+')
for aword in reword.findall(open('afile.txt').read(  )):
    print aword

When r has one group, findall also returns a list of strings, but each is the substring of s matching r's

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


When r has one group, findall also returns a list of strings, but each is the substring of s matching r's
group. For example, if you want to print only words that are followed by whitespace (not
punctuation), you need to change only one statement in the previous example:

reword = re.compile('(\w+)\s')

When r has n groups (where n is greater than 1), findall returns a list of tuples, one per non-
overlapping match with r. Each tuple has n items, one per group of r, the substring of s matching the
group. For example, here's how to print the first and last word of each line that has at least two
words:

import re
first_last = re.compile(r'^\W*(\w+)\b.*\b(\w+)\W*$', 
                                      re.MULTILINE)
for first, last in \
first_last.findall(open('afile.txt').read(  )):
    print first, last

match

r.match(s,start=0,end=sys.maxint)

Returns an appropriate match object when a substring of s, starting at index start and not reaching as
far as index end, matches r. Otherwise, match returns None. Note that match is implicitly anchored at
the starting position start in s. To search for a match with r through s, from start onwards, call
r.search, not r.match. For example, here's how to print all lines in a file that start with digits:

import re
digs = re.compile(r'\d+')
for line in open('afile.txt'):
    if digs.match(line): print line,

search

r.search(s,start=0,end=sys.maxint)

Returns an appropriate match object for the leftmost substring of s, starting not before index start and
not reaching as far as index end, that matches r. When no such substring exists, search returns None.
For example, to print all lines containing digits, one simple approach is as follows:

import re
digs = re.compile(r'\d+')
for line in open('afile.txt'):
    if digs.search(line): print line,

split

r.split(s,maxsplit=0)

Returns a list L of the splits of s by r (i.e., the substrings of s that are separated by non-overlapping,
non-empty matches with r). For example, to eliminate all occurrences of substring 'hello' from a
string, in any mix of lowercase and uppercase letters, one way is:

import re
rehello = re.compile(r'hello', re.IGNORECASE)
astring = ''.join(rehello.split(astring))

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


astring = ''.join(rehello.split(astring))

When r has n groups, n more items are interleaved in L between each pair of splits. Each of the n
extra items is the substring of s matching r's corresponding group in that match, or None if that group
did not participate in the match. For example, here's one way to remove whitespace only when it
occurs between a colon and a digit:

import re
re_col_ws_dig = re.compile(r'(:)\s+(\d)')
astring = ''.join(re_col_ws_dig.split(astring))

If maxsplit is greater than 0, at most maxsplit splits are in L, each followed by n items as above, while
the trailing substring of s after maxsplit matches of r, if any, is L's last item. For example, to remove
only the first occurrence of substring 'hello' rather than all of them, change the last statement in the
first example above to:

astring = ''.join(rehello.split(astring, 1))

sub

r.sub(repl,s,count=0)

Returns a copy of s where non-overlapping matches with r are replaced by repl, which can be either a
string or a callable object, such as a function. An empty match is replaced only when not adjacent to
the previous match. When count is greater than 0, only the first count matches of r within s are
replaced. When count equals 0, all matches of r within s are replaced. For example, here's another
way to remove only the first occurrence of substring 'hello' in any mix of cases:

import re
rehello = re.compile(r'hello', re.IGNORECASE)
astring = rehello.sub('', astring, 1)

Without the final 1 argument to method sub, this example would remove all occurrences of 'hello'.

When repl is a callable object, repl must accept a single argument (a match object) and return a string
to use as the replacement for the match. In this case, sub calls repl, with a suitable match-object
argument, for each match with r that sub is replacing. For example, to uppercase all occurrences of
words starting with 'h' and ending with 'o' in any mix of cases, you can use the following:

import re
h_word = re.compile(r'\bh\w+o\b', re.IGNORECASE)
def up(mo): return mo.group(0).upper(  )
astring = h_word.sub(up, astring)

Method sub is a good way to get a callback to a callable you supply for every non-overlapping match
of r in s, without an explicit loop, even when you don't need to perform any substitution. The following
example shows this by using the sub method to build a function that works just like method findall for
a regular expression without groups:

import re
def findall(r, s):
    result = [  ]
    def foundOne(mo): result.append(mo.group(  ))
    r.sub(foundOne, s)
    return result

The example needs Python 2.2, not just because it uses lexically nested scopes, but because in
Python 2.2 re tolerates repl returning None and treats it as if it returned '', while in Python 2.1 re was
more pedantic and insisted on repl returning a string.

When repl is a string, sub uses repl itself as the replacement, except that it expands back references.
A back reference is a substring of repl of the form \g<id>, where id is the name of a group in r (as

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A back reference is a substring of repl of the form \g<id>, where id is the name of a group in r (as
established by syntax (?P<id>) in r's pattern string), or \dd, where dd is one or two digits, taken as a
group number. Each back reference, whether named or numbered, is replaced with the substring of s
matching the group of r that the back reference indicates. For example, here's how to enclose every
word in braces:

import re
grouped_word = re.compile('(\w+)')
astring = grouped_word.sub(r'{\1}', astring)

subn

r.subn(repl,s,count=0)

subn is the same as sub, except that subn returns a pair (new_string, n) where n is the number of
substitutions that subn has performed. For example, to count the number of occurrences of substring
'hello' in any mix of cases, one way is:

import re
rehello = re.compile(r'hello', re.IGNORECASE)
junk, count = rehello.subn('', astring)
print 'Found', count, 'occurrences of "hello"'

9.7.10 Match Objects

Match objects are created and returned by methods match and search of a regular expression object.
There are also implicitly created by methods sub and subn when argument repl is callable, since in
that case a suitable match object is passed as the actual argument on each call to repl. A match
object m supplies the following attributes detailing how m was created:

pos

The start argument that was passed to search or match (i.e., the index into s where the search
for a match began)

endpos

The end argument that was passed to search or match (i.e., the index into s before which the
matching substring of s had to end)

lastgroup

The name of the last-matched group (None if the last-matched group has no name, or if no
group participated in the match)

lastindex

The integer index (1 and up) of the last-matched group (None if no group participated in the
match)

re

The regular expression object r whose method created m

string

The string s passed to match, search, sub, or subn

A match object m also supplies several methods.

end, span, start

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


m.end(groupid=0)
m.span(groupid=0)
m.start(groupid=0)

These methods return the delimiting indices, within m.string, of the substring matching the group
identified by groupid, where groupid can be a group number or name. When the matching substring is
m.string[i:j], m.start returns i, m.end returns j, and m.span returns (i, j). When the group did not
participate in the match, i and j are -1.

expand

m.expand(s)

Returns a copy of s where escape sequences and back references are replaced in the same way as for
method r.sub, covered in the previous section.

group

m.group(groupid=0,*groupids)

When called with a single argument groupid (a group number or name), group returns the substring
matching the group identified by groupid, or None if that group did not participate in the match. The
common idiom m.group( ), also spelled m.group(0), returns the whole matched substring, since group
number 0 implicitly means the whole regular expression.

When group is called with multiple arguments, each argument must be a group number or name.
group then returns a tuple with one item per argument, the substring matching the corresponding
group, or None if that group did not participate in the match.

groups

m.groups(default=None)

Returns a tuple with one item per group in r. Each item is the substring matching the corresponding
group, or default if that group did not participate in the match.

groupdict

m.groupdict(default=None)

Returns a dictionary whose keys are the names of all named groups in r. The value for each name is
the substring matching the corresponding group, or default if that group did not participate in the
match.

9.7.11 Functions of Module re

The re module supplies the attributes listed in the earlier section Section 9.7.6. It also provides a
function that corresponds to each method of a regular expression object (findall, match, search, split,
sub, and subn), each with an additional first argument, a pattern string that the function implicitly
compiles into a regular expression object. It's generally preferable to compile pattern strings into
regular expression objects explicitly and call the regular expression object's methods, but sometimes,
for a one-off use of a regular expression pattern, calling functions of module re can be slightly

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


for a one-off use of a regular expression pattern, calling functions of module re can be slightly
handier. For example, to count the number of occurrences of substring 'hello' in any mix of cases, one
function-based way is:

import re
junk, count = re.subn(r'(?i)hello', '', astring)
print 'Found', count, 'occurrences of "hello"'

In cases such as this one, regular expression options (here, for example, case insensitivity) must be
encoded as regular expression pattern elements (here, (?i)), since the functions of module re do not
accept a flags argument.

Module re also supplies error, the class of exceptions raised upon errors (generally, errors in the
syntax of a pattern string), and two additional functions.

compile

compile(pattern,flags=0)

Creates and returns a regular expression object, parsing string pattern as per the syntax covered in
Section 9.7.1, and using integer flags as in the section Section 9.7.6, both earlier in this chapter.

escape

escape(s)

Returns a copy of string s where each non-alphanumeric character is escaped (i.e., preceded by a
backslash \). This is handy when you need to match string s literally as part (or all) of a regular
expression pattern string.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part III: Python Library and Extension Modules
Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 10. File and Text Operations

This chapter covers dealing with files and the filesystem in Python. A file is a stream of bytes that a
program can read and/or write, while a filesystem is a hierarchical repository of files on a particular
computer system. Because files are such a core programming concept, several other chapters also
contain material about handling files of specific kinds.

In Python, the os module supplies many of the functions that operate on the filesystem, so this
chapter starts by introducing the os module. The chapter then proceeds to cover operations on the
filesystem, including comparing, copying, and deleting directories and files, working with file paths,
and accessing low-level file descriptors.

Next, this chapter discusses the typical ways Python programs read and write data, via built-in file
objects and the polymorphic concept of file-like objects (i.e., objects that are not files, but still behave
to some extent like files). Python file objects directly support the concept of text files, which are
streams of characters encoded as bytes. The chapter also covers Python's support for data in
compressed form, such as archives in the popular ZIP format.

While many modern programs rely on a graphical user interface (GUI), text-based, non-graphical user
interfaces are often still useful, as they are simple, fast to program, and lightweight. This chapter
concludes with material about text input and output in Python, including information about presenting
text that is understandable to different users, no matter where they are or what language they speak.
This is known as internationalization (often abbreviated i18n).
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.1 The os Module

The os module is an umbrella module that presents a reasonably uniform cross-platform view of the
different capabilities of various operating systems. The module provides functionality for creating files,
manipulating files and directories, and creating, managing, and destroying processes. This chapter
covers the filesystem-related capabilities of the os module, while Chapter 14 covers the process-
related capabilities.

The os module supplies a name attribute, which is a string that identifies the kind of platform on which
Python is being run. Possible values for name are 'posix' (all kinds of Unix-like platforms), 'nt' (all
kinds of 32-bit Windows platforms), 'mac', 'os2', and 'java'. You can often exploit unique capabilities of
a platform, at least in part, through functions supplied by os. This book deals with cross-platform
programming, however, not with platform-specific functionality, so I do not cover parts of os that
exist only on one kind of platform, nor do I cover platform-specific modules. All functionality covered
in this book is available at least on both 'posix' and 'nt' platforms. However, I do cover any differences
among the ways in which each given piece of functionality is provided on different platforms.

10.1.1 OSError Exceptions

When a request to the operating system fails, os raises an exception, an instance of OSError. os also
exposes class OSError with the name os.error. Instances of OSError expose three useful attributes:

errno

The numeric error code of the operating system error

strerror

A string that summarily describes the error

filename

The name of the file on which the operation failed (for file-related functions only)

os functions can also raise other standard exceptions, typically TypeError or ValueError, when the error
is that they have been called with invalid argument types or values and the underlying operating
system functionality has not even been attempted.

10.1.2 The errno Module

The errno module supplies symbolic names for error code numbers. To handle possible system errors
selectively, based on error codes, use errno to enhance your program's portability and readability. For
example, here's how you might handle only "file not found" errors, while propagating others:

try: os.some_os_function_or_other(  )
except OSError, err:
    import errno
    # check for "file not found" errors
    if err.errno != errno.ENOENT: raise               # reraise other cases
    # proceed with the specific case you can handle
    print "Warning: file", err.filename, "not found -- continuing"

errno also supplies a dictionary named errorcode: the keys are error code numbers, and the
corresponding names are the error names, such as 'ENOENT'. Displaying errno.errorcode[err.errno], as
part of your diagnosis of some os.error instance err, can often make diagnosis clearer and more
understandable to readers who are specialists of the specific platform.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.2 Filesystem Operations

Using the os module, you can manipulate the filesystem in a variety of ways: creating, copying, and
deleting files and directories, comparing files, and examining filesystem information about files and
directories. This section documents the attributes and methods of the os module that you use for
these purposes, and also covers some related modules that operate on the filesystem.

10.2.1 Path-String Attributes of the os Module

A file or directory is identified by a string, known as its path, whose syntax depends on the platform.
On both Unix-like and Windows platforms, Python accepts Unix syntax for paths, with slash (/) as the
directory separator. On non-Unix-like platforms, Python also accepts platform-specific path syntax. On
Windows, for example, you can use backslash (\) as the separator. However, you do need to double
up each backslash to \\ in normal string literals or use raw-string syntax as covered in Chapter 4. In
the rest of this chapter, for brevity, Unix syntax is assumed in both explanations and examples.

Module os supplies attributes that provide details about path strings on the current platform. You
should typically use the higher-level path manipulation operations covered in Section 10.2.4 later in
this chapter, rather than lower-level string operations based on these attributes. However, the
attributes may still be useful at times:

curdir

The string that denotes the current directory ('.' on Unix and Windows)

defpath

The default search path used if the environment lacks a PATH environment variable

linesep

The string that terminates text lines ('\n' on Unix, '\r\n' on Windows)

extsep

The string that separates the extension part of a file's name from the rest of the name ('.' on
Unix and Windows)

pardir

The string that denotes the parent directory ('..' on Unix and Windows)

pathsep

The separator between paths in lists of paths, such as those used for the environment variable
PATH (':' on Unix, ';' on Windows)

sep

The separator of path components ('/' on Unix, '\\' on Windows)

10.2.2 Permissions

Unix-like platforms associate nine bits with each file or directory, three each for the file's owner
(user), its group, and anybody else, indicating whether the file or directory can be read, written, and
executed by the specified subject. These nine bits are known as the file's permission bits, part of the
file's mode (a bit string that also includes other bits describing the file). These bits are often displayed
in octal notation, which groups three bits in each digit. For example, a mode of 0664 indicates a file
that can be read and written by its owner and group, but only read, not written, by anybody else.
When any process on a Unix-like system creates a file or directory, the operating system applies to
the specified mode a bit mask known as the process's umask, which can remove some of the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


the specified mode a bit mask known as the process's umask, which can remove some of the
permission bits.

Non-Unix-like platforms handle file and directory permissions in very different ways. However, the
functions in Python's standard library that deal with permissions accept a mode argument according to
the Unix-like approach described in the previous paragraph. The implementation on each platform
maps the nine permission bits in a way appropriate for the given platform. For example, on versions
of Windows that distinguish only between read-only and read-write files and do not distinguish file
ownership, a file's permission bits show up as either 0666 (read-write) or 0444 (read-only). On such a
platform, when a file is created, the implementation looks only at bit 0200, making the file read-write
if that bit is 0 or read-only if that bit is 1.

10.2.3 File and Directory Functions of the os Module

The os module supplies several functions to query and set file and directory status.

access

access(path,mode)

Returns True if file path has all of the permissions encoded in integer mode, otherwise False. mode can
be os.F_OK to test for file existence, or one or more of os.R_OK, os.W_OK, and os.X_OK (with the
bitwise-OR operator | joining them if more than one) to test permissions to read, write, and execute
the file.

access does not use the standard interpretation for its mode argument, covered in Section 10.2.2
earlier in this chapter. access tests only if this specific process's real user and group identifiers have
the requested permissions on the file. If you need to study a file's permission bits in more detail, see
function stat in this section.

chdir

chdir(path)

Sets the current working directory to path.

chmod

chmod(path,mode)

Changes the permissions of file path, as encoded in integer mode. mode can be zero or more of
os.R_OK, os.W_OK, and os.X_OK (with the bitwise-OR operator | joining them if more than one) to set
permission to read, write, and execute. On Unix-like platforms, mode can also be a richer bit pattern,
as covered in Section 10.2.2 earlier in this chapter.

getcwd

getcwd(  )

Returns the path of the current working directory.

listdir

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


listdir(path)

Returns a list whose items are the names of all files and subdirectories found in directory path. The
returned list is in arbitrary order, and does not include the special directory names '.' and '..'.

The dircache module also supplies a function named listdir, which works like os.listdir, with two
enhancements. First, dircache.listdir returns a sorted list. Further, dircache caches the list it returns, so
repeated requests for lists of the same directory are faster if the directory's contents have not
changed in the meantime. dircache automatically detects changes, so the list that dircache.listdir
returns is always up to date.

makedirs, mkdir

makedirs(path,mode=0777)
mkdir(path,mode=0777)

makedirs creates all directories that are part of path and do not yet exist. mkdir creates only the
rightmost directory of path. Both functions use mode as permission bits of directories they create.
Both functions raise OSError if creation fails or if a file or directory named path already exists.

remove, unlink

remove(path)
unlink(path)

Removes the file named path (see rmdir later in this section to remove a directory). unlink is a
synonym of remove.

removedirs

removedirs(path)

Loops from right to left over the directories that are part of path, removing each one. The loop ends
when a removal attempt raises an exception, generally because a directory is not empty. removedirs
does not propagate the exception as long as it has removed at least one directory.

rename

rename(source,dest)

Renames the file or directory named source to dest.

renames

renames(source,dest)

Like rename, except that renames attempts to create all intermediate directories needed for dest. After
the renaming, renames tries to remove empty directories from path source using removedirs. It does
not propagate any resulting exception, since it's not an error if the starting directory of source does
not become empty after the renaming.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


rmdir

rmdir(path)

Removes the directory named path (raises OSError if it is not empty).

stat

stat(path)

Returns a value x that is a tuple of 10 integers that provide information about a file or subdirectory
path. See Section 10.2.5 later in this chapter for details about using the returned tuple. In Python 2.2
and later, x is of type stat_result. You can still use x as a tuple, but you can also access x's items as
read-only attributes x.st_mode, x.st_ino, and so on, using as attribute names the lowercase versions
of the names of constants listed later in Table 10-1.

A module named statcache also supplies a function named stat, like os.stat but with an enhancement:
the returned tuple (or stat_result instance) is cached, so repeated requests about the same file run
faster. statcache cannot detect changes automatically, so you should use it only for stable files that do
not change in the time between stat requests.

tempnam, tmpnam

tempnam(dir=None,prefix=None)
tmpnam(  )

Returns an absolute path usable as the name of a new temporary file. If dir is None, the path uses the
directory normally used for temporary files on the current platform; otherwise the path uses dir. If
prefix is not None, it should be a short string to be prefixed to the temporary file's name. tempnam
never returns the name of any already existing file. Your program must create the temporary file, use
the file, and remove the file when done, as in the following snippet:

import os
def work_on_temporary_file(workfun):
    nam = os.tempnam(  )
    fil = open(nam, 'rw+')
    try:
        workfun(fil)
    finally:
        fil.close(  )
        os.remove(nam)

tmpnam is a synonym for tempnam. However, tmpnam does not accept arguments, and always
behaves like tempnam(None,None). tempnam and tmpnam are potential weaknesses in your program's
security, and recent versions of Python emit a warning the first time your program calls these
functions to alert you to this fact. See Chapter 17 for information about ways in which your program
can interact with warnings.

utime

utime(path,times=None)

Sets the accessed and modified times of file or directory path. If times is None, utime uses the current

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sets the accessed and modified times of file or directory path. If times is None, utime uses the current
time. Otherwise, times must be a pair of numbers (in seconds since the epoch, as covered in Chapter
12) in the order (accessed, modified).

10.2.4 The os.path Module

The os.path module supplies functions to analyze and transform path strings.

abspath

abspath(path)

Returns a normalized absolute path equivalent to path, just like:

os.path.normpath(os.path.join(os.getcwd(  ),path))

For example, os.path.abspath(os.curdir) always returns the same string as os.getcwd( ).

basename

basename(path)

Returns the base name part of path, just like os.path.split(path)[1]. For example,
os.path.basename('b/c/d.e') returns 'd.e'.

commonprefix

commonprefix(list)

Accepts a list of strings and returns the longest string that is a prefix of all items in the list. Unlike
other functions in os.path, commonprefix works on arbitrary strings, not just on paths.

dirname

dirname(path)

Returns the directory part of path, just like os.path.split(path)[0]. For example,
os.path.basename('b/c/d.e') returns 'b/c'.

exists

exists(path)

Returns True when path names an existing file or directory, otherwise False. In other words,
os.path.exists(x) always returns the same result as os.access(x,os.F_OK).

expandvars

expandvars(path)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns a copy of string path, replacing each substring of the form "$name" or "${name}" with the
value of environment variable name. The replacement is an empty string if name does not exist in the
environment.

getatime, getmtime, getsize

getatime(path)

getmtime(path)
getsize(path)

Each of these functions returns an attribute from the result of os.stat(path), respectively the attributes
st_atime, st_mtime, and st_size. See Section 10.2.5 later in this chapter for more information about
these attributes.

isabs

isabs(path)

Returns True when path is absolute. A path is absolute when it starts with a slash /, or, on some non-
Unix-like platforms, with a drive designator followed by os.sep. When path is not absolute, isabs
returns False.

isfile

isfile(path)

Returns True when path names an existing regular file (in Unix, however, isfile also follows symbolic
links), otherwise False.

isdir

isdir(path)

Returns True when path names an existing directory (in Unix, however, isdir also follows symbolic
links), otherwise False.

islink

islink(path)

Returns True when path names a symbolic link. Otherwise (always, on platforms that don't support
symbolic links) islink returns False.

ismount

ismount(path)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns True when path names a mount point. Otherwise (always, on platforms that don't support
mount points) ismount returns False.

join

join(path,*paths)

Returns a string that joins the argument strings with the appropriate path separator for the current
platform. For example, on Unix, exactly one slash character / separates adjacent path components. If
any argument is an absolute path, join ignores all previous components. For example:

print os.path.join('a/b', 'c/d','e/f')        
# on Unix prints: a/b/c/d/e/f
print os.path.join('a/b', '/c/d', 'e/f')      
# on Unix prints: /c/d/e/f

The second call to os.path.join ignores its first argument 'a/b', since its second argument '/c/d' is an
absolute path.

normcase

normcase(path)

Returns a copy of path with case normalized for the current platform. On case-sensitive filesystems
(as typical in Unix), path is returned unchanged. On case-insensitive filesystems, all letters in the
returned string are lowercase. On Windows, normcase also converts each / to a \.

normpath

normpath(path)

Returns a normalized pathname equivalent to path, removing redundant separators and path-
navigation aspects. For example, on Unix, normpath returns 'a/b' when path is any of 'a//b', 'a/./b', or
'a/c/../b'. normpath converts path separators as appropriate for the current platform. For example, on
Windows, the returned string uses \ as the separator.

split

split(path)

Returns a pair of strings (dir,base) such that join(dir,base) equals path. base is the last pathname
component and never contains a path separator. If path ends in a separator, base is ''. dir is the
leading part of path, up to the last path separator, shorn of trailing separators. For example,
os.path.split('a/b/c/d') returns the pair ('a/b/c','d').

splitdrive

splitdrive(path)

Returns a pair of strings (drv,pth) such that drv+pth equals path. drv is either a drive specification or
''. drv is always '' on platforms that do not support drive specifications, such as Unix. For example, on

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


''. drv is always '' on platforms that do not support drive specifications, such as Unix. For example, on
Windows, os.path.splitdrive('c:d/e') returns the pair ('c:','d/e').

splitext

splitext(path)

Returns a pair of strings (root,ext) such that root+ext equals path. ext either is '', or starts with a '.'
and has no other '.' or path separator. For example, os.path.splitext('a/b.c') returns the pair ('a/b','.c').

walk

walk(path,func,arg)

Calls func(arg,dirpath,namelist) for each directory in the tree whose root is directory path, starting with
path itself. In each such call to func, dirpath is the path of the directory being visited, and namelist is
the list of dirpath's contents as returned by os.listdir. func may modify namelist in-place (e.g., with del)
to avoid visiting certain parts of the tree: walk further calls func only for subdirectories remaining in
namelist after func returns, if any. arg is provided only for func's convenience: walk just receives arg,
and passes arg back to func each time walk calls func. A typical use of os.path.walk is to print all files
and subdirectories in a tree:

import os
def print_tree(tree_root_dir):
    def printall(junk, dirpath, namelist):
        for name in namelist: 
            print os.path.join(dirpath, name)
    os.path.walk(tree_root_dir, printall, None)

10.2.5 The stat Module

Accessing items in the tuple returned by os.stat by their numeric indices is not advisable. The order of
the tuple's 10 items is guaranteed, but using numeric literals to index into the tuple is not readable.
The stat module supplies attributes whose values are indices into the tuple returned by os.stat. Table
10-1 lists the attributes of module stat and the meaning of corresponding items.

Table 10-1. Items of a stat tuple
Item stat attribute Meaning

0 ST_MODE Protection and other mode bits

1 ST_INO Inode number

2 ST_DEV Device ID

3 ST_NLINK Number of hard links

4 ST_UID User ID of owner

5 ST_GID Group ID of owner

6 ST_SIZE Size in bytes

7 ST_ATIME Time of last access

8 ST_MTIME Time of last modification

9 ST_CTIME Time of last status change

In Python 2.2, os.stat returns an instance of type stat_result, whose 10 items are also accessible as
attributes named st_mode, st_ino, and so on—the lowercase versions of the stat attributes listed in
Table 10-1.

For example, to print the size in bytes of file path, you can use any of:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


import os, stat

print os.path.getsize(path)
print os.stat(path)[6]
print os.stat(path)[stat.ST_SIZE]
print os.stat(path).st_size             # only in Python 2.2 and later

Time values are in seconds since the epoch, as covered in Chapter 12 (int on most platforms, float on
the Macintosh). Platforms unable to give a meaningful value for an item use a dummy value for that
item.

Module stat also supplies functions that examine the ST_MODE item to determine the kind of file.
os.path also supplies functions for such tasks, which operate directly on the file's path. The functions
supplied by stat are faster when performing several tests on the same file: they require only one
os.stat call at the start of a series of tests, while the functions in os.path ask the operating system for
the information at each test. Each function returns True if mode denotes a file of the given kind,
otherwise False.

S_ISDIR( mode)

Is the file a directory

S_ISCHR( mode)

Is the file a special device-file of the character kind

S_ISBLK( mode)

Is the file a special device-file of the block kind

S_ISREG( mode)

Is the file a normal file (not a directory, special device-file, and so on)

S_ISFIFO( mode)

Is the file a FIFO (i.e., a named pipe)

S_ISLNK( mode)

Is the file a symbolic link

S_ISSOCK( mode)

Is the file a Unix-domain socket

Except for stat.S_ISDIR and stat.S_ISREG, the other functions are meaningful only on Unix-like
systems, since most other platforms do not keep special files such as devices in the same namespace
as regular files.

Module stat supplies two more functions that extract relevant parts of a file's mode (x[ST_MODE], or
x.st_mode, in the result x of function os.stat).

S_IFMT

S_IFMT(mode)

Returns those bits of mode that describe the kind of file (i.e., those bits that are examined by
functions S_ISDIR, S_ISREG, etc.).

S_IMODE

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


S_IMODE(mode)

Returns those bits of mode that can be set by function os.chmod (i.e., the permission bits and, on
Unix-like platforms, other special bits such as the set-user-id flag).

10.2.6 The filecmp Module

The filecmp module supplies functionality to compare files and directories.

cmp

cmp(f1,f2,shallow=True,use_statcache=False)

Compares the files named by path strings f1 and f2. If the files seem equal, cmp returns True,
otherwise False. If shallow is true, files are deemed equal if their stat tuples are equal. If shallow is
false, cmp reads and compares files with equal stat tuples. If use_statcache is false, cmp obtains file
information via os.stat; if use_statcache is true, cmp calls statcache.stat instead. cmp remembers what
files have already been compared and does not repeat comparisons unless some file has changed, but
use_statcache makes cmp believe that no file ever changes.

cmpfiles

cmpfiles(dir1,dir2,common,shallow=True,use_statcache=False)

Loops on sequence common. Each item of common is a string naming a file present in both directories
dir1 and dir2. cmpfiles returns a tuple with three lists of strings: (equal,diff,errs). equal is the list of
names of files equal in both directories, diff the list of names of files that differ between directories,
and errs the list of names of files that could not be compared (not existing in both directories or no
permission to read them). Arguments shallow and use_statcache are just as for function cmp.

dircmp

class dircmp(dir1,dir2,ignore=('RCS','CVS','tags'),
             hide=('.','..'))

Creates a new directory-comparison instance object, comparing directories named dir1 and dir2,
ignoring names listed in ignore, and hiding names listed in hide. A dircmp instance d exposes three
methods:

d.report( )

Outputs to sys.stdout a comparison between dir1 and dir2

d.report_partial_closure( )

Outputs to sys.stdout a comparison between dir1 and dir2 and their common immediate
subdirectories

d.report_full_closure( )

Outputs to sys.stdout a comparison between dir1 and dir2 and their common subdirectories,
recursively

A dircmp instance d supplies several attributes, computed just in time (i.e., only if and when needed,
thanks to a _ _getattr_ _ special method) so that using a dircmp instance suffers no unnecessary

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


thanks to a _ _getattr_ _ special method) so that using a dircmp instance suffers no unnecessary
overhead. d's attributes are:

d.common

Files and subdirectories that are in both dir1 and dir2

d.common_dirs

Subdirectories that are in both dir1 and dir2

d.common_files

Files that are in both dir1 and dir2

d.common_funny

Names that are in both dir1 and dir2 for which os.stat reports an error or returns different kinds
for the versions in the two directories

d.diff_files

Files that are in both dir1 and dir2 but with different contents

d.funny_files

Files that are in both dir1 and dir2 but could not be compared

d.left_list

Files and subdirectories that are in dir1

d.left_only

Files and subdirectories that are in dir1 and not in dir2

d.right_list

Files and subdirectories that are in dir2

d.right_only

Files and subdirectories that are in dir2 and not in dir1

d.same_files

Files that are in both dir1 and dir2 with the same contents

d.subdirs

A dictionary whose keys are the strings in common_dirs: the corresponding values are
instances of dircmp for each subdirectory

10.2.7 The shutil Module

The shutil module (an abbreviation for shell utilities) supplies functions to copy files and to remove an
entire directory tree.

copy

copy(src,dst)

Copies the contents of file src, creating or overwriting file dst. If dst is a directory, the target is a file
with the same base name as src in directory dst. copy also copies permission bits, but not last-access
and modification times.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


copy2

copy2(src,dst)

Like copy, but also copies times of last access and modification.

copyfile

copyfile(src,dst)

Copies the contents only of file src, creating or overwriting file dst.

copyfileobj

copyfileobj(fsrc,fdst,bufsize=16384)

Copies file object fsrc, which must be open for reading, to file object fdst, which must be open for
writing. Copies no more than bufsize bytes at a time if bufsize is greater than 0. File objects are
covered later in this chapter.

copymode

copymode(src,dst)

Copies permission bits of file or directory src to file or directory dst. Both src and dst must exist. Does
not modify dst's contents, nor any other aspect of file or directory status.

copystat

copystat(src,dst)

Copies permission bits and times of last access and modification of file or directory src to file or
directory dst. Both src and dst must exist. Does not modify dst's contents, nor any other aspect of file
or directory status.

copytree

copytree(src,dst,symlinks=False)

Copies the whole directory tree rooted at src into the destination directory named by dst. dst must not
already exist, as copytree creates it. copytree copies each file by using function copy2. When symlinks
is true, copytree creates symbolic links in the new tree when it finds symbolic links in the source tree.
When symlinks is false, copytree follows each symbolic link it finds, and copies the linked-to file with
the link's name. On platforms that do not have the concept of a symbolic link, such as Windows,
copytree ignores argument symlinks.

rmtree

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


rmtree(path,ignore_errors=False,onerror=None)

Removes the directory tree rooted at path. When ignore_errors is true, rmtree ignores errors. When
ignore_errors is false and onerror is None, any error raises an exception. When onerror is not None, it
must be callable with parameters func, path, and excp. func is the function raising an exception
(os.remove or os.rmdir), path the path passed to func, and excp the tuple of information that
sys.exc_info( ) returns. If onerror raises any exception x, rmtree terminates, and exception x
propagates.

10.2.8 File Descriptor Operations

The os module supplies functions to handle file descriptors, integers that the operating system uses as
opaque handles to refer to open files. Python file objects, covered in the next section, are almost
invariably better for input/output tasks, but sometimes working at file-descriptor level lets you
perform some operation more rapidly or elegantly. Note that file objects and file descriptors are not
interchangeable in any way.

You can get the file descriptor n of a Python file object f by calling n=f.fileno( ). You can wrap a new
Python file object f around an open file descriptor fd by calling f=os.fdopen(fd). On Unix-like and
Windows platforms, some file descriptors are preallocated when a process starts: 0 is the file
descriptor for the process's standard input, 1 for the process's standard output, and 2 for the
process's standard error.

os provides the following functions for working with file descriptors.

close

close(fd)

Closes file descriptor fd.

dup

dup(fd)

Returns a file descriptor that duplicates file descriptor fd.

dup2

dup2(fd,fd2)

Duplicates file descriptor fd to file descriptor fd2. If file descriptor fd2 is already open, dup2 first closes
fd2.

fdopen

fdopen(fd,mode='r',bufsize=-1)

Returns a Python file object wrapping file descriptor fd. mode and bufsize have the same meaning as
for Python's built-in open, covered in the next section.

fstat

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


fstat

fstat(fd)

Returns a tuple x (x is a stat_result instance in Python 2.2 and later), with information about the file
open on file descriptor fd. Section 10.2.5 earlier in this chapter covers the format of x's contents.

lseek

lseek(fd,pos,how)

Sets the current position of file descriptor fd to the signed integer byte offset pos, and returns the
resulting byte offset from the start of the file. how indicates the reference (point 0): when how is 0,
the reference is the start of the file; when 1, the current position; and when 2, the end of the file. In
particular, lseek(fd,0,1) returns the current position's byte offset from the start of the file, without
affecting the current position. Normal disk files support such seeking operations, but calling lstat on a
file that does not support seeking (e.g., a file open for output to a terminal) raises an exception.

open

open(file,flags,mode=0777)

Returns a file descriptor, opening or creating a file named file. If open creates the file, it uses mode as
the file's permission bits. flags is an int, normally obtained by bitwise ORing one or more of the
following attributes of os:

O_RDONLY , O_WRONLY, O_RDWR

Opens file for read-only, write-only, or read-write respectively (mutually exclusive: exactly one
of these attributes must be in flags)

O_NDELAY , O_NONBLOCK

Opens file in non-blocking (no-delay) mode, if the platform supports this

O_APPEND

Appends any new data to file's previous contents

O_DSYNC , O_RSYNC, O_SYNC, O_NOCTTY

Sets synchronization mode accordingly, if the platform supports this

O_CREAT

Creates file, if file does not already exist

O_EXCL

Raises an exception if file already exists

O_TRUNC

Throws away previous contents of file (incompatible with O_RDONLY)

O_BINARY

Open file in binary rather than text mode on non-Unix platforms (innocuous and without effect
on Unix and Unix-like platforms)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


pipe

pipe(  )

Creates a pipe and returns a pair of file descriptors (r,w) open for reading and writing respectively.

read

read(fd,n)

Reads up to n bytes from file descriptor fd and returns them as a string. Reads and returns m<n bytes
when only m more bytes are currently available for reading from the file. In particular, returns the
empty string when no more bytes are currently available from the file, typically because the file is
ended.

write

write(fd,str)

Writes all bytes from string str to file descriptor fd, and returns the number of bytes written (i.e.,
len(str)).

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.3 File Objects

As discussed earlier in this chapter, file is a built-in type in Python. With a file object, you can read
and/or write data to a file as seen by the underlying operating system. Python reacts to any I/O error
related to a file object by raising an instance of built-in exception class IOError. Errors that cause this
exception include open failing to open or create a file, calling a method on a file object to which that
method doesn't apply (e.g., calling write on a read-only file object or calling seek on a non-seekable
file), and I/O errors diagnosed by a file object's methods. This section documents file objects, as well
as some auxiliary modules that help you access and deal with their contents.

10.3.1 Creating a File Object with open

You normally create a Python file object with the built-in open, which has the following syntax:

open(filename,mode='r',bufsize=-1)

open opens the file named by filename, which must be a string that denotes any path to a file. open
returns a Python file object, which is an instance of the built-in type file. Calling file is just like calling
open, but file was first introduced in Python 2.2. If you explicitly pass a mode string, open can also
create filename if the file does not already exist (depending on the value of mode, as we'll discuss in a
moment). In other words, despite its name, open is not limited to opening existing files, but is also
able to create new ones if needed.

10.3.1.1 File mode

mode is a string that denotes how the file is to be opened (or created). mode can have the following
values:

'r'

The file must already exist, and it is opened in read-only mode.

'w'

The file is opened in write-only mode. The file is truncated and overwritten if it already exists,
or created if it does not exist.

'a'

The file is opened in write-only mode. The file is kept intact if it already exists, and the data
you write is appended to what's already in the file. The file is created if it does not exist.
Calling f.seek is innocuous, but has no effect.

'r+'

The file must already exist and is opened for both reading and writing, so all methods of f can
be called.

'w+'

The file is opened for both reading and writing, so all methods of f can be called. The file is
truncated and overwritten if it already exists, or created if it does not exist.

'a+'

The file is opened for both reading and writing, so all methods of f can be called. The file is
kept intact if it already exists, and the data you write is appended to what's already in the file.
The file is created if it does not exist. Calling f.seek has no effect if the next I/O operation on f
writes data, but works normally if the next I/O operation on f reads data.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


10.3.1.2 Binary and text modes

The mode string may also have any of the values just explained followed by a b or t. b denotes binary
mode, while t denotes text mode. When the mode string has neither b nor t, the default is text mode
(i.e., 'r' is like 'rt', 'w' is like 'wt', and so on).

On Unix, there is no difference between binary and text modes. On other platforms, when a file is
open in text mode, '\n' is returned each time the string that is the value of os.linesep (the line
termination string) is encountered while reading the file. Conversely, a copy of os.linesep is written
each time you write '\n' to the file.

This widespread convention, originally developed in the C language, lets you read and write text files
on any platform, without worrying about the platform's line-separation conventions. However, except
on Unix platforms, you do have to know (and tell Python, by passing the proper mode argument to
open) whether a file is binary or text. In this chapter, for simplicity, I use \n to refer to the line
termination string, but remember that the string is in fact os.linesep in files on the filesystem,
translated to and from \n in memory only for files opened in text mode.

Python 2.3 will introduce a new concept, known as universal newlines, letting you open a text file for
reading in mode 'u' when you don't know how line separators are encoded in the file. This is useful,
for example, when you share files across a network between machines with different operating
systems. Mode 'u' guesses what line separator string to use based on each file's contents. However,
mode 'u' is not available in Python 2.2 and earlier.

10.3.1.3 Buffering

bufsize is an integer that denotes what buffering you request for the file. When bufsize is less than 0,
the operating system's default is used. Normally, this default is line buffering for files that correspond
to interactive consoles, and some reasonably sized buffer, such as 8192 bytes, for other files. When
bufsize equals 0, the file is unbuffered; the effect is as if the file's buffer were flushed every time you
write anything to the file. When bufsize equals 1, the file is line-buffered, which means the file's buffer
is flushed every time you write \n to the file. When bufsize is greater than 1, the file uses a buffer of
about bufsize bytes, rounded up to some reasonable amount. On some platforms, you can change the
buffering for files that are already open, but there is no cross-platform way to do this.

10.3.1.4 Sequential and non-sequential access

A file object f is inherently sequential (i.e., a stream of bytes). When you read from a file, you get
bytes in the sequential order in which the bytes are present in the file. When you write to a file, the
bytes you write are put in the file in the sequential order in which you write them.

To allow non-sequential access, the built-in file object keeps track of its current position (i.e., the
position on the underlying file where the next read or write operation will start transferring data).
When you open a file, the file's initial current position is at the start of the file. Any call to f.write on a
file object f opened with a mode of 'a' or 'a+' always sets f's current position to the end of the file
before writing data to f. Whenever you read or write some number n of bytes on file object f, f's
current position advances by n. You can query the current position by calling f.tell, and change the
current position by calling f.seek, both covered in the next section.

10.3.2 Attributes and Methods of File Objects

A file object f supplies the attributes and methods documented in this section.

close

f.close(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Closes the file. You can call no other method on f after f.close. Multiple calls to f.close are allowed and
innocuous.

closed

f.closed is a read-only attribute that is True if f.close( ) has been called, otherwise False.

flush

f.flush(  )

Requests that f's buffer be written out to the operating system, ensuring that the file as seen by the
system has exactly the contents that Python's code has written to f. Depending on the platform and
on the nature of f's underlying file, f.flush may or may not be able to ensure the desired effect.

isatty

f.isatty(  )

Returns True if f's file is an interactive terminal, otherwise False.

fileno

f.fileno(  )

Returns an integer, the file descriptor of f's file at operating system level. File descriptors were
covered in Section 10.2.8 earlier in this chapter.

mode

f.mode is a read-only attribute that is the value of the mode string used in the open call that created f.

name

f.name is a read-only attribute that is the value of the filename string used in the open call that
created f.

read

f.read(size=-1)

Reads up to size bytes from f's file and returns them as a string. read reads and returns less than size
bytes if the file ends before size bytes are read. When size is less than 0, read reads and returns all
bytes up to the end of the file. read returns an empty string only if the file's current position is at the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


bytes up to the end of the file. read returns an empty string only if the file's current position is at the
end of the file or if size equals 0.

readline

f.readline(size=-1)

Reads and returns one line from f's file, up to the end of line (\n) included. If size is greater than or
equal to 0, readline reads no more than about size bytes. In this case, the returned string may not end
with \n. \n may also be absent if readline reads up to the end of the file without finding \n. readline
returns an empty string only if the file's current position is at the end of the file or if size equals 0.

readlines

f.readlines(size=-1)

Reads and returns a list of all lines in f's file, each a string ending in \n. If size>0, readlines stops and
returns the list after collecting data for a total of about size bytes, rather than reading all the way to
the end of the file.

seek

f.seek(pos,how=0)

Sets f's current position to the signed integer byte offset pos from a reference point. how indicates the
reference point: when how is 0, the reference is the start of the file; when it is 1, the reference is the
current position; and when it is 2, the reference is the end of the file. When f is opened in text mode,
the effects of f.seek may not be as expected, due to the implied translations between os.linesep and
\n. This troublesome effect does not occur on Unix platforms, nor when f is opened in binary mode,
nor when f.seek is called with a pos that is the result of a previous call to f.tell and how is 0. When f is
opened in mode 'a' or 'a+', all data written to f is appended to the data that is already in f, regardless
of calls to f.seek.

softspace

f.softspace is a read-write attribute that is used internally by the print statement to keep track of its
own state. A file object does not alter nor interpret softspace in any way: it just lets the attribute be
freely read and written, and print takes care of the rest.

tell

f.tell(  )

Returns f's current position, an integer offset in bytes from the start of the file.

truncate

f.truncate([size])

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Truncates f's file. When size is present, truncates the file to be at most size bytes. When size is absent,
uses f.tell( ) as the file's new size.

write

f.write(str)

Writes the bytes of string str to the file.

writelines

f.writelines(lst)

Like:

for line in lst: f.write(line)

It does not matter whether the strings in sequence lst are lines: despite its name, method writelines
just writes the strings to the file, one after another, without alterations or additions.

xreadlines

f.xreadlines(  )

Like xreadlines.xreadlines(f), as covered in Section 10.4.4 later in this chapter. Method xreadlines will
be deprecated in Python 2.3.

10.3.3 Iteration on File Objects

A file object f open for text-mode reading supports iteration. In other words, iter(f) returns an iterator
whose items are the file's lines, so that the loop:

for line in f:

iterates on each line of the file. Interrupting such a loop prematurely (e.g., with break) leaves the
file's current position with an arbitrary value. Calling methods that modify f's state, such as f.seek,
during such a loop has an undefined effect. On the plus side, such a loop has very good performance,
since these specifications allow the loop to use internal buffering to minimize I/O. Iteration on file
objects is available only in Python 2.2 and later.

10.3.4 File-Like Objects and Polymorphism

An object x is file-like when it behaves polymorphically to a file, meaning that a function (or some
other subset of a program) can use x as if x were a file. Code that uses such an object (known as
client code of that object) typically receives the object as an argument or obtains it by calling a
factory function that returns the object as the result. If the only method that a client-code function
calls on x is x.read( ), without arguments, all that x needs to supply in order to be file-like for that
function is a method read that is callable without arguments and returns a string. Other client-code
functions, however, may need x to implement a broader subset of file object methods. Thus, file-like
objects and polymorphism are not absolute concepts, but are instead relative to demands placed upon
an object by client code.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Polymorphism is a powerful aspect of object-oriented programming, and file-like objects are an
excellent example of polymorphism. A client-code module that writes to or reads from files can
automatically be reused for data residing elsewhere, as long as the module does not break
polymorphism by the dubious practice of type testing. When we discussed the built-ins type and
isinstance in Chapter 8, I mentioned that type testing is often best avoided, since it blocks the normal
polymorphism that Python otherwise supplies. Sometimes you may have no choice. For example, the
marshal module, covered in Chapter 11, demands real file objects. Therefore, if your client code needs
to use marshal, your code must also deal with real file objects, not just file-like ones. However, such
situations are rare. Most often, supporting polymorphism in your client code takes nothing more than
some care in avoiding type testing.

You can implement a file-like object by coding your own class, as covered in Chapter 5, and defining
the specific methods needed by client code, such as read. A file-like object fl need not implement all
the attributes and methods of a true file object f. If you can determine which methods client code
calls on fl, you can choose to implement only that subset. For example, when fl is only meant to be
written, fl doesn't need methods read, readline, and readlines.

When you implement a file-like object fl, make sure that fl.softspace can be read and written if you
want fl to be usable by print. You need not alter nor interpret softspace in any way. Note that this
behavior is the default when you write fl's class in Python. You need to take specific care only when
fl's class overrides special methods _ _getattr_ _ and _ _setattr_ _ or otherwise controls access to its
instances' attributes (e.g., by defining _ _slots_ _) as covered in Chapter 5. For example, if your class
is a new-style class and defines _ _slots_ _, your class must have a slot named softspace, assuming
you want instances of your class to be usable with the print statement.

If the main reason you want to use a file-like object instead of a real file object is to keep the data in
memory, you can often make use of modules StringIO and cStringIO, covered later in this chapter.
These modules supply file-like objects that hold data in memory while behaving polymorphically to file
objects to a wide extent.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.4 Auxiliary Modules for File I/O

File objects supply all functionality that is strictly needed for file I/O. There are some auxiliary Python
library modules, however, that offer convenient supplementary functionality, making I/O even easier
and handier in several important special cases.

10.4.1 The fileinput Module

The fileinput module lets you loop over all the lines in a list of text files. Performance is quite good,
comparable to the performance of direct iteration on each file, since fileinput uses internal buffering to
minimize I/O. Therefore, you can use module fileinput for line-oriented file input whenever you find
the module's rich functionality convenient, without worrying about performance. The input function is
the main function of module fileinput, and the module also provides a FileInput class that supports the
same functionality as the module's functions.

close

close(  )

Closes the whole sequence, so that iteration stops and no file remains open.

FileInput

class FileInput(files=None,inplace=0,backup='',bufsize=0)

Creates and returns an instance f of class FileInput. Arguments are the same as for fileinput.input, and
methods of f have the same names, arguments, and semantics as functions of module fileinput. f also
supplies a method readline, which reads and returns the next line. You can use class FileInput
explicitly, rather than the single implicit instance used by the functions of module fileinput, when you
want to nest or otherwise mix loops that read lines from more than one sequence of files.

filelineno

filelineno(  )

Returns the number of lines read so far from the file now being read. For example, returns 1 if the
first line has just been read from the current file.

filename

filename(  )

Returns the name of the file being read, or None if no line has been read yet.

input

input(files=None,inplace=0,backup='',bufsize=0)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns the sequence of lines in the files, suitable for use in a for loop. files is a sequence of filenames
to open and read one after the other, in order. Filename '-' means standard input (sys.stdin). If files is
a string, it's a single filename to open and read. If files is None, input uses sys.argv[1:] as the list of
filenames If the sequence of filenames is empty, input reads sys.stdin.

The sequence object that input returns is an instance of class FileInput; that instance is also the global
state of module input, so all other functions of module fileinput operate on the same shared state.
Each function of module fileinput corresponds directly to a method of class FileInput.

When inplace is false (the default), input just reads the files. When inplace is true, however, input
moves each file being read (except standard input) to a backup file, and redirects standard output
(sys.stdout) to write to the file being read. This operation lets you simulate overwriting files in-place.
If backup is a string starting with a dot, input uses backup as the extension of the backup files and
does not remove the backup files. If backup is an empty string (the default), input uses extension
.bak, and deletes each backup file when the file is closed.

bufsize is the size of the internal buffer that input uses to read lines from the input files. If bufsize is 0,
input uses a buffer of 8192 bytes.

isfirstline

isfirstline(  )

Returns True or False, just like filelineno( )= =1.

isstdin

isstdin(  )

Returns True if the file now being read is sys.stdin, otherwise False.

lineno

lineno(  )

Returns the total number of lines read so far since the call to input.

nextfile

nextfile(  )

Closes the file now being read, so that the next line to be read will be the first one of the following
file.

10.4.2 The linecache Module

The linecache module lets you read a given line (specified by number) from a file with a given name.
The module keeps an internal cache, so if you need to read several lines from a file, the operation is
cheaper than opening and examining the file each time. Module linecache exposes the following
functions.

checkcache

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


checkcache(  )

Ensures that the module's cache holds no stale data, but rather reflects what's on the filesystem. Call
checkcache when the files you're reading may have changed on the filesystem, if you need to ensure
that future calls to getline return updated information.

clearcache

clearcache(  )

Drops the module's cache so that the memory can be reused for other purposes. Call clearcache when
you don't need to perform any more reading for now.

getline

getline(filename,lineno)

Reads and returns the lineno line from the text file named filename, including the trailing \n. For any
error, getline does not raise exceptions, but rather returns the empty string ''. If filename is not found,
getline also looks for the file in the directories listed in sys.path.

10.4.3 The struct Module

The struct module lets you pack binary data into a string, and then unpack the bytes of such a string
back into the data they represent. Such operations can be useful for various kinds of low-level
programming. Most often, you use module struct to interpret data records from binary files having
some specified format or to prepare records to be written to such binary files. The module's name
comes from C's keyword struct, which is usable for related purposes. On any error, functions of
module struct raise exceptions that are instances of exception class struct.error, the only class that the
module supplies.

Operations of module struct rely on struct format strings, which are ordinary strings that follow a
specified syntax. The first character of a format string can specify the byte order, size, and alignment
of packed data:

@

Native byte order, native data sizes, and native alignment for the current platform; this is the
default, if the first character is none of the characters listed here (note that format P in Table
10-2 is available only for this kind of format string)

=

Native byte order for the current platform, but standard size and alignment

<

Little-endian byte order (like Intel platforms), standard size and alignment

> , !

Big-endian byte order (network-standard), standard size and alignment

Standard sizes are indicated in Table 10-2. Standard alignment means that there is no forced
alignment and that explicit pad bytes are used if needed. Native sizes and alignment are whatever the
platform's C compiler uses. Native byte order is either little-endian or big-endian, depending on the
current platform.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


After the optional leading character, a format string is made up of one or more format characters that
can be preceded by an optional count (an integer represented by its decimal digits). The possible
format characters are shown in Table 10-2. For most format characters, the count indicates repetition
(e.g., '3h' is exactly the same as 'hhh'). When the format character is s or p, indicating a string, the
count is not a repetition, but rather the total number of bytes occupied by the string. Whitespace can
be freely and innocuously used between formats, but not between a count and its format character.

Table 10-2. Format characters for struct
Character C type Python type Standard size

B unsigned char int 1 byte

b signed char int 1 byte

c char str (length 1) 1 byte

d double float 8 bytes

f float float 4 bytes

H unsigned short int 2 bytes

h signed short int 2 bytes

I unsigned int long 4 bytes

i signed int int 4 bytes

L unsigned long long 4 bytes

l signed long int 4 bytes

P void* int N/A

p char[  ] string N/A

s char[  ] string N/A

x padding byte no value 1 byte

Format s denotes a fixed-length string, exactly as long as its count (the Python string is truncated or
padded with copies of the null character '\0', if needed). Format p denotes a Pascal-like string: the
first byte is the number of significant characters, and the characters start from the second byte. The
count indicates the total number of bytes, including the length byte.

Module struct supplies the following functions.

calcsize

calcsize(fmt)

Returns the size in bytes of the structure corresponding to format string fmt.

pack

pack(fmt,*values)

Packs the given values according to format string fmt and returns the resulting string. values must
match in number and types the values required by fmt.

unpack

unpack(fmt,str)

Unpacks binary string str according to format string fmt and returns a tuple of values. len(str) must be

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Unpacks binary string str according to format string fmt and returns a tuple of values. len(str) must be
equal to struct.calcsize(fmt).

10.4.4 The xreadlines Module

The xreadlines module will be deprecated in Python 2.3. You should avoid it in Python 2.2, since
directly iterating on a file object is at least as fast. If you need to support Python 2.1, module
xreadlines and the xreadlines method of file objects are a good choice in terms of input performance.
Module fileinput, covered earlier in this chapter, is a good compromise if your code needs to support
many different versions of Python, and still get good performance. The xreadlines module supplies one
function.

xreadlines

xreadlines(f)

Accepts argument f, which must be a file object or a file-like object with a readlines method like that
of file objects. Returns a sequence object x that is usable in a for statement or as the argument to
built-in functions such as filter. x represents the same sequence of strings as f.readlines( ), but x does
so in a lazy way, limiting memory consumption. xreadlines is to readlines much like xrange is to range.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.5 The StringIO and cStringIO Modules

You can implement file-like objects by writing Python classes that supply the methods you need. If all
you want is for data to reside in memory rather than on a file as seen by the operating system, you
can use the StringIO or cStringIO module. The two modules are almost identical: each supplies a
factory function to create in-memory file-like objects. The difference between them is that objects
created by module StringIO are instances of class StringIO.StringIO. You may inherit from this class to
create your own customized file-like objects, overriding the methods that you need to specialize.
Objects created by module cStringIO, on the other hand, are instances of a special-purpose type, not
of a class. Performance is much better when you can use cStringIO, but inheritance is not feasible.
Furthermore, cStringIO does not support Unicode.

Each module supplies a factory function named StringIO that creates a file-like object fl.

StringIO

StringIO(str='')

Creates and returns an in-memory file-like object fl, with all methods and attributes of a built-in file
object. The data contents of fl are initialized to be a copy of argument str, which must be a plain
string for the StringIO factory function in cStringIO, while it can be a plain or Unicode string for the
function in StringIO.

Besides all methods and attributes of built-in file objects, as covered in Section 10.3.2 earlier in this
chapter, fl supplies one supplementary method, getvalue.

getvalue

fl.

getvalue(  )

Returns the current data contents of fl as a string. You cannot call fl.getvalue after you call fl.close:
close frees the buffer that fl internally keeps, and getvalue needs to access the buffer to yield its
result.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.6 Compressed Files

Although storage space and transmission bandwidth are increasingly cheap and abundant, in many
cases you can save such resources, at the expense of some computational effort, by using
compression. Since computational power grows cheaper and more abundant even faster than other
resources, such as bandwidth, compression's popularity keeps growing. Python makes it easy for your
programs to support compression by supplying dedicated modules for compression as part of every
Python distribution.

10.6.1 The gzip Module

The gzip module lets you read and write files compatible with those handled by the powerful GNU
compression programs gzip and gunzip. The GNU programs support several compression formats, but
module gzip supports only the highly effective native gzip format, normally denoted by appending the
extension .gz to a filename. Module gzip supplies the GzipFile class and an open factory function.

GzipFile

class GzipFile(filename=None,mode=None,compresslevel=9,
               fileobj=None)

Creates and returns a file-like object f that wraps the file or file-like object fileobj. f supplies all
methods of built-in file objects except seek and tell. Thus, f is not seekable: you can only access f
sequentially, whether for reading or writing. When fileobj is None, filename must be a string that
names a file: GzipFile opens that file with the given mode (by default, 'rb'), and f wraps the resulting
file object. mode should be one of 'ab', 'rb', 'wb', or None. If mode is None, f uses the mode of fileobj if
it is able to find out the mode; otherwise it uses 'rb'. If filename is None, f uses the filename of fileobj
if able to find out the name; otherwise it uses ''. compresslevel is an integer between 1 and 9: 1
requests modest compression but fast operation, and 9 requests the best compression feasible, even
if that requires more computation.

File-like object f generally delegates all methods to the underlying file-like object fileobj, transparently
accounting for compression as needed. However, f does not allow non-sequential access, so f does not
supply methods seek and tell. Moreover, calling f.close does not close fileobj when f was created with
an argument fileobj that is not None. This behavior of f.close is very important when fileobj is an
instance of StringIO.StringIO, since it means you can call fileobj.getvalue after f.close to get the
compressed data as a string. This behavior also means that you have to call fileobj.close explicitly
after calling f.close.

open

open(filename,mode='rb',compresslevel=9)

Like GzipFile(filename,mode,compresslevel), but filename is mandatory and there is no provision for
passing an already opened fileobj.

Say that you have some function f(x) that writes data to a text file object x, typically by calling x.write
and/or x.writelines. Getting f to write data to a gzip-compressed text file instead is easy:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


import gzip
underlying_file = open('x.txt.gz', 'wb')
compressing_wrapper = gzip.GzipFile(fileobj=underlying_file, mode='wt')
f(compressing_wrapper)
compressing_wrapper.close(  )
underlying_file.close(  )

This example opens the underlying binary file x.txt.gz and explicitly wraps it with gzip.GzipFile, and
thus, at the end, we need to close each object separately. This is necessary because we want to use
two different modes: the underlying file must be opened in binary mode (any translation of line
endings would produce an invalid compressed file), but the compressing wrapper must be opened in
text mode because we want the implicit translation of os.linesep to \n. Reading back a compressed
text file, for example to display it on standard output, is similar:

import gzip, xreadlines
underlying_file = open('x.txt.gz', 'rb')
uncompressing_wrapper = gzip.GzipFile(fileobj= underlying_file, mode='rt')
for line in xreadlines.xreadlines(uncompressing_wrapper):
    print line,
uncompressing_wrapper.close(  )
underlying_file.close(  )

This example uses module xreadlines, covered earlier in this chapter, because GzipFile objects (at least
up to Python 2.2) are not iterable like true file objects, nor do they supply an xreadlines method.
GzipFile objects do supply a readlines method that closely emulates that of true file objects, and
therefore module xreadlines is able to produce a lazy sequence that wraps a GzipFile object and lets us
iterate on the GzipFile object's lines.

10.6.2 The zipfile Module

The zipfile module lets you read and write ZIP files (i.e., archive files compatible with those handled
by popular compression programs zip and unzip, pkzip and pkunzip, WinZip, and so on). Detailed
information on the formats and capabilities of ZIP files can be found at
http://www.pkware.com/appnote.html and http://www.info-zip.org/pub/infozip/. You need to study
this detailed information in order to perform advanced ZIP file handing with module zipfile.

Module zipfile can't handle ZIP files with appended comments, multidisk ZIP files, or .zip archive
members using compression types besides the usual ones, known as stored (when a file is copied to
the archive without compression) and deflated (when a file is compressed using the ZIP format's
default algorithm). For invalid .zip file errors, functions of module zipfile raise exceptions that are
instances of exception class zipefile.error. Module zipfile supplies the following classes and functions.

is_zipfile

is_zipfile(filename)

Returns True if the file named by string filename appears to be a valid ZIP file, judging by the first few
bytes of the file; otherwise returns False.

ZipInfo

class ZipInfo(filename='NoName',date_time=(1980,1,1,0,0,0))

Methods getinfo and infolist of ZipFile instances return instances of ZipInfo to supply information about
members of the archive. The most useful attributes supplied by a ZipInfo instance z are:

comment

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


comment

A string that is a comment on the archive member

compress_size

Size in bytes of the compressed data for the archive member

compress_type

An integer code recording the type of compression of the archive member

date_time

A tuple with 6 integers recording the time of last modification to the file: the items are year,
month, day (1 and up), hour, minute, second (0 and up)

file_size

Size in bytes of the uncompressed data for the archive member

filename

Name of the file in the archive

ZipFile

class ZipFile(filename,mode='r',compression=zipfile.ZIP_STORED)

Opens a ZIP file named by string filename. mode can be 'r', to read an existing ZIP file; 'w', to write a
new ZIP file or truncate and rewrite an existing one; or 'a', to append to an existing file.

When mode is 'a', filename can name either an existing ZIP file (in which case new members are
added to the existing archive) or an existing non-ZIP file. In the latter case, a new ZIP file-like archive
is created and appended to the existing file. The main purpose of this latter case is to let you build a
self-unpacking .exe file (i.e., a Windows executable file that unpacks itself when run). The existing file
must then be a fresh copy of an unpacking .exe prefix, as supplied by www.info-zip.org or by other
purveyors of ZIP file compression tools.

compression is an integer code that can be either of two attributes of module zipfile.
zipfile.ZIP_STORED requests that the archive use no compression, and zipfile.ZIP_DEFLATED requests
that the archive use the deflation mode of compression (i.e., the most usual and effective
compression approach used in .zip files).

A ZipFile instance z supplies the following methods.

close

z.close(  )

Closes archive file z. Make sure the close method is called, or else an incomplete and unusable ZIP file
might be left on disk. Such mandatory finalization is generally best performed with a try/finally
statement, as covered in Chapter 6.

getinfo

z.getinfo(name)

Returns a ZipInfo instance that supplies information about the archive member named by string name.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


infolist

z.infolist(  )

Returns a list of ZipInfo instances, one for each member in archive z, in the same order as the entries
in the archive itself.

namelist

z.namelist(  )

Returns a list of strings, the names of each member in archive z, in the same order as the entries in
the archive itself.

printdir

z.printdir(  )

Outputs a textual directory of the archive z to file sys.stdout.

read

z.read(name)

Returns a string containing the uncompressed bytes of the file named by string name in archive z. z
must be opened for 'r' or 'a'. When the archive does not contain a file named name, read raises an
exception.

testzip

z.testzip(  )

Reads and checks the files in archive z. Returns a string with the name of the first archive member
that is damaged, or None when the archive is intact.

write

z.write(filename,arcname=None,compress_type=None)

Writes the file named by string filename to archive z, with archive member name arcname. When
arcname is None, write uses filename as the archive member name. When compress_type is None, write
uses z's compression type; otherwise, compress_type is zipfile.ZIP_STORED or zipfile.ZIP_DEFLATED,
and specifies how to compress the file. z must be opened for 'w' or 'a'.

writestr

z.writestr(zinfo,bytes)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


zinfo must be a ZipInfo instance specifying at least filename and date_time. bytes is a string of bytes.
writestr adds a member to archive z, using the metadata specified by zinfo and the data in bytes. z
must be opened for 'w' or 'a'. When you have data in memory and need to write the data to the ZIP
file archive z, it's simpler and faster to use z.writestr rather than z.write. The latter approach would
require you to write the data to disk first, and later remove the useless disk file. The following
example shows both approaches, each encapsulated into a function, polymorphic to each other:

import zipfile
def data_to_zip_direct(z, data, name):
    import time
    zinfo = zipfile.ZipInfo(name, time.localtime(  )[:6])
    z.writestr(zinfo, data)
def data_to_zip_indirect(z, data, name):
    import os
    flob = open(name, 'wb')
    flob.write(data)
    flob.close(  )
    z.write(name)
    os.unlink(name)
zz = zipfile.ZipFile('z.zip', 'w', zipfile.ZIP_DEFLATED)
data = 'four score\nand seven\nyears ago\n'
data_to_zip_direct(zz, data, 'direct.txt')
data_to_zip_indirect(zz, data, 'indirect.txt')
zz.close(  )

Besides being faster and more concise, data_to_zip_direct is handier because, by working in memory,
it doesn't need to have the current working directory be writable, as data_to_zip_indirect does. Of
course, method write also has its uses, but that's mostly when you already have the data in a file on
disk, and just want to add the file to the archive. Here's how you can print a list of all files contained
in the ZIP file archive created by the previous example, followed by each file's name and contents:

import zipfile
zz = zipfile.ZipFile('z.zip')
zz.printdir(  )
for name in zz.namelist(  ):
    print '%s: %r' % (name, zz.read(name))
zz.close(  )

10.6.3 The zlib Module

The zlib module lets Python programs use the free InfoZip zlib compression library (see
http://www.info-zip.org/pub/infozip/zlib/), Version 1.1.3 or later. Module zlib is used by modules gzip
and zipfile, but the module is also available directly for any special compression needs. This section
documents the most commonly used functions supplied by module zlib.

Module zlib also supplies functions to compute Cyclic-Redundancy Check (CRC) checksums, in order to
detect possible damage in compressed data. It also provides objects that can compress and
decompress data incrementally, and thus enable you to work with data streams that are too large to
fit in memory at once. For such advanced functionality, consult the Python library's online reference.

Note that files containing data compressed with zlib are not automatically interchangeable with other
programs, with the exception of files that use the zipfile module and therefore respect the standard
format of ZIP file archives. You could write a custom program, with any language able to use InfoZip's
free zlib compression library, in order to read files produced by Python programs using the zlib
module. However, if you do need to interchange compressed data with programs coded in other
languages, I suggest you use modules gzip or zipfile instead. Module zlib may be useful when you
want to compress some parts of data files that are in some proprietary format of your own, and need
not be interchanged with any other program except those that make up your own application.

compress

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


compress(str,level=6)

Compresses string str and returns the string of compressed data. level is an integer between 1 and 9:
1 requests modest compression but fast operation, and 9 requests compression as good as feasible,
thus requiring more computation.

decompress

decompress(str)

Decompresses the compressed data string str and returns the string of uncompressed data.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.7 Text Input and Output

Python presents non-GUI text input and output channels to your programs as file objects, so you can
use the methods of file objects (covered in Section 10.3 earlier in this chapter) to manipulate these
channels.

10.7.1 Standard Output and Standard Error

The sys module, covered in Chapter 8, has attributes stdout and stderr, file objects to which you can
write. Unless you are using some sort of shell redirection, these streams connect to the terminal in
which your script is running. Nowadays, actual terminals are rare: the terminal is generally a screen
window that supports text input/output (e.g., an MS-DOS Prompt console on Windows or an xterm
window on Unix).

The distinction between sys.stdout and sys.stderr is a matter of convention. sys.stdout, known as your
script's standard output, is where your program emits results. sys.stderr, known as your script's
standard error, is where error messages go. Separating program results from error messages helps
you use shell redirection effectively. Python respects this convention, using sys.stderr for error and
warning messages.

10.7.2 The print Statement

Programs that output results to standard output often need to write to sys.stdout. Python's print
statement can be a convenient alternative to sys.stdout.write. The print statement has the following
syntax:

print [>>fileobject,] expressions [,]

The normal destination of print's output is the file or file-like object that is the value of the stdout
attribute of the sys module. However, when >>fileobject, is present right after keyword print, the
statement uses the given fileobject instead of sys.stdout. expressions is a list of zero or more
expressions separated by commas (,). print outputs each expression, in order, as a string (using the
built-in str, covered in Chapter 8), with a space to separate strings. After all expressions, print by
default outputs '\n' to terminate the line. When a trailing comma is present at the end of the
statement, however, print does not output the closing '\n'.

print works well for the kind of informal output used during development to help you debug your code.
For production output, you often need more control of formatting than print affords. You may need to
control spacing, field widths, the number of decimals for floating-point values, and so on. In this case,
prepare the output as a string with the string-formatting operator % covered in Chapter 9. Then, you
can output the resulting string, normally with the write method of the appropriate file object.

When you want to direct print's output to another file, you can temporarily change sys.stdout. The
following example shows a general-purpose redirection function that you can use for such a
temporary change:

def redirect(func, *args, **kwds):
    """redirect(func, ...) -> (output string result, func's return value)

    func must be a callable that outputs results to standard output.
    redirect captures those results in memory and returns a pair, with
    the results as the first item and func's return value as the second
    one.
    """
    import sys, cStringIO
    save_out = sys.stdout
    sys.stdout = cStringIO.StringIO(  )
    try: 
        retval = func(*args, **kwds)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        retval = func(*args, **kwds)
        return sys.stdout.getvalue(  ), retval
    finally: 
        sys.stdout.close(  )
        sys.stdout = save_out

When all you want is to output some text values to a file object f that isn't the current value of
sys.stdout, you won't normally perform complicated manipulations as shown in the previous example.
Rather, for such simple purposes, just calling f.write is usually best.

10.7.3 Standard Input

The sys module provides the stdin attribute, which is a file object from which you can read text. When
you need a line of text from the user, call the built-in function raw_input (covered in Chapter 8),
optionally with a string argument to use as a prompt.

When the input you need is not a string (for example, when you need a number), you can use built-in
function input. However, input is unsuitable for most programs. More often, you use raw_input to
obtain a string from the user, then other built-ins, such as int or float, to get a number from the
string. You can also use eval (normally preceded by compile, for better control of error diagnostics), as
long as you trust the user totally. A malicious user can easily exploit eval to breach security and cause
damage. When you do have to use eval on untrusted input, be sure to use the restricted-execution
tools covered in Chapter 13.

10.7.4 The getpass Module

Occasionally, you want the user to input a line of text in such a way that somebody looking at the
screen cannot see what the user is typing. This often occurs when you're asking the user for a
password. The getpass module provides the following functions.

getpass

getpass(prompt='Password: ')

Like raw_input, except that the line of text the user inputs in response is not echoed to the screen
while the user is typing it. Also, getpass's default prompt is different from raw_input's.

getuser

getuser(  )

Returns the current user's username. First, getuser tries to get the username as the value of one of
environment variables LOGNAME, USER, LNAME, and USERNAME, in this order. If none of these
variables are keys in os.environ, getuser tries asking the operating system for the username.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.8 Richer-Text I/O

The tools we have covered so far support the minimal subset of text I/O functionality that all
platforms supply. Most platforms also offer richer-text I/O capabilities, such as responding to single
keypresses (not just to entire lines of text) and showing text in any spot of the terminal (not just
sequentially).

Python extensions and core Python modules let you access platform-specific functionality.
Unfortunately, various platforms expose this functionality in different ways. To develop cross-platform
Python programs with rich-text I/O functionality, you may need to wrap different modules uniformly,
importing platform-specific modules conditionally (usually with the try/except idiom covered in
Chapter 6).

10.8.1 The readline Module

The readline module wraps the GNU Readline Library. Readline lets the user edit text lines during
interactive input, and also recall previous lines for further editing and re-entry. GNU Readline is widely
installed on Unix-like platforms, and is available at
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html. A Windows port
(http://starship.python.net/crew/kernr/) is available, but not widely deployed. Chris Gonnerman's
module, Alternative Readline for Windows, implements a subset of Python's standard readline module
(using a small dedicated .pyd file instead of GNU Readline) and can be freely downloaded from
http://newcenturycomputers.net/projects/readline.html.

When either readline module is loaded, Python uses Readline for all line-oriented input, such as
raw_input. The interactive Python interpreter always tries loading readline to enable line editing and
recall for interactive sessions. You can call functions supplied by module readline to control advanced
functionality, particularly the history functionality for recalling lines entered in previous sessions, and
the completion functionality for context-sensitive completion of the word being entered. See
http://cnswww.cns.cwru.edu/~chet/readline/rltop.html#Documentation for GNU Readline
documentation, with details on configuration commands. Alternative Readline also supports history,
but the completion-related functions it supplies are dummy ones: these functions don't perform any
operation, and exist only for compatibility with GNU Readline.

get_history_length

get_history_length(  )

Returns the number of lines of history that are saved to the history file. When the returned value is
less than 0, all lines in the history are saved.

parse_and_bind

parse_and_bind(readline_cmd)

Gives Readline a configuration command. To let the user hit Tab to request completion, call
parse_and_bind('tab: complete'). See the GNU Readline documentation for other useful values of
readline_cmd.

read_history_file

read_history_file(filename='~/.history')

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Loads history lines from the text file whose name or path is filename.

read_init_file

read_init_file(filename=None)

Makes Readline load a text file, where each line is a configuration command. When filename is None,
Readline loads the same file as last time.

set_completer

set_completer(f=None)

Sets the completion function. When f is None, Readline disables completion. Otherwise, when the user
enters a partial word start and then hits Tab, Readline calls f(start,i), where i is an int, initially 0. f
returns the ith possible word that begins with start, or None when there are no more. Readline calls f
repeatedly, with i set to 0, 1, 2, ..., until f returns None.

set_history_length

set_history_length(x)

Sets the number of lines of history that are saved to the history file. When x is less than 0, all lines in
the history are saved.

write_history_file

write_history_file(filename='~/.history')

Saves history lines to the text file whose name or path is filename.

An example of a completion function is in module rlcompleter. In an interactive interpreter session (or,
more practically, in the startup file that the interpreter runs at the start of each interactive session, as
covered in Chapter 3), you can enter:

import readline, rlcompleter
readline.parse_and_bind('tab: complete')

Now, for the rest of this interactive session, you can hit Tab during line editing and get completion for
global names and object attributes.

10.8.2 Console I/O

Terminals today are most often text windows on a graphical screen. You may also use a true terminal
or the console (main screen) of a personal computer in text mode. All kinds of terminals in use today
support advanced text I/O functionality, but you access this functionality in platform-dependent ways.
The curses package works only on Unix-like platforms (there are persistent rumors of Windows ports
of it, but I've never found a working one). Modules msvcrt, WConio, and Console work only on
Windows.

10.8.2.1 The curses package

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The traditional Unix approach to advanced terminal I/O is named curses, for obscure historical
reasons.[1] The Python package curses affords reasonably simple use, but still lets you exert detailed
if control required. I cover a small subset of curses, enough to let you write programs with rich text
I/O functionality. See also Eric Raymond's tutorial Curses Programming with Python, available at
http://py-howto.sourceforge.net/curses/curses.html, for more information. Whenever I mention the
screen in this section, I mean the screen of the terminal (for example, the text window of a terminal-
emulator program).

[1] "curses" does describe well the typical utterances of programmers faced with this
rich, complicated approach.

The simplest and most effective way to use curses is through the curses.wrapper module, which
supplies a single function.

wrapper

wrapper(func,*args)

Performs curses initialization, calls func(stdscr,*args), performs curses finalization (setting the terminal
back to normal behavior), and finally returns func's result. The first argument that wrapper passes to
func is stdscr, an object of type curses.Window that represents the whole terminal screen. wrapper
ensures that the terminal is set back to normal behavior, whether func terminates normally or by
propagating an exception.

func should be a function that performs all the tasks in your program that may need curses
functionality. In other words, func normally contains (or more commonly calls, directly or indirectly,
functions containing) all of your program's functionality, save perhaps for some non-interactive
initialization and/or finalization tasks.

curses models text and background colors of characters as character attributes. Colors available on
the terminal are numbered from 0 to curses.COLORS. Function color_content takes a color number n as
its argument, and returns a tuple (r,g,b) of integers between 0 and 1000 giving the amount of each
primary color in n. Function color_pair takes a color number n as its argument, and returns an
attribute code that you can pass to various methods of a curses.Window object in order to display text
in that color.

curses lets you create multiple instances of type curses.Window, each corresponding to a rectangle on
the screen. You can also create exotic variants, such as instances of Panel, which are polymorphic
with Window but not tied to a fixed screen rectangle. You do not need such advanced functionality in
simple curses programs: just use the Window object stdscr that curses.wrapper gives you. Call
w.refresh( ) to ensure that changes made to any Window instance w, including stdscr, show up on
screen. curses can buffer the changes until you call refresh. An instance w of Window supplies, among
many others, the following frequently used methods.

addstr

w.addstr([y,x,]str[,attr])

Puts the characters in string str, with attribute attr, on w at the given coordinates (x,y), overwriting
any previous contents. All curses functions and methods accept coordinate arguments in reverse
order, with y (the row number) before x (the column number). If you omit y,x, addstr uses w's current
cursor coordinates. If you omit attr, addstr uses w's current default attribute. In any case, addstr,
when done adding the string, sets w's current cursor coordinates to the end of the string it has added.

clrtobot, clrtoeol

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


w.clrtobot(  )
w.clrtoeol(  )

clrtoeol writes blanks from w's current cursor coordinates to the end of the line. clrtobot, in addition,
also blanks all lines lower down on the screen.

delch

w.delch([y,x])

Deletes one character from w at the given coordinates (x,y). If you omit the y,x arguments, delch uses
w's current cursor coordinates. In any case, delch does not change w's current cursor coordinates. All
the following characters in line y, if any, shift left by one.

deleteln

w.deleteln(  )

Deletes from w the entire line at w's current cursor coordinates, and scrolls up by one line all lines
lower down on the screen.

erase

w.erase(  )

Writes spaces to the entire terminal screen.

getch

w.getch(  )

Returns an integer c corresponding to a user keystroke. c between 0 and 255 represents an ordinary
character, while c greater than 255 represents a special key. curses supplies names for special keys,
so you can test c for equality with such readable constants as curses.KEY_HOME (the Home special
key), curses.KEY_LEFT (the left-arrow special key), and so on. The list of all curses special-key names
(about 100 of them) is in Python's free documentation, specifically, in the Python Library Reference,
Section 6.13.3 Constants, for current versions of Python. If you have set window w to no-delay mode
by calling w.nodelay(True), w.getch raises an exception if no keystroke is ready. By default, however,
w.getch waits until the user hits a key.

getyx

w.getyx(  )

Returns w's current cursor coordinates as a tuple (y,x).

insstr

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


w.insstr([y,x,]str[,attr])

Inserts the characters in string str, with attribute attr, on w at the given coordinates (x,y), shifting the
rest of line rightwards. Any characters that shift beyond the end of line are dropped. If you omit y,x,
insstr uses w's current cursor coordinates. If you omit attr, insstr uses w's current default attribute. In
any case, when done inserting the string, insstr sets w's current cursor coordinates to the first
character of the string it has inserted.

move

w.move(y,x)

Moves w's cursor to the given coordinates (x,y).

nodelay

w.nodelay(flag)

Sets w to no-delay mode when flag is true, resets w back to normal mode when flag is false. No-delay
mode affects method w.getch.

refresh

w.refresh(  )

Updates window w on-screen with all changes the program has effected on w.

The curses.textpad module supplies the Textpad class, which lets you support advanced input.

Textpad

class Textpad(window)

Creates and returns an instance t of class Textpad that wraps the curses window instance window.
Instance t has one frequently used method:

t.edit( )

Lets the user perform interactive editing on the contents of the window instance that t wraps.
The editing session supports simple Emacs-like key bindings: normal characters overwrite the
window's previous contents, arrow keys move the cursor, Ctrl-H deletes the character to the
cursor's left. When the user hits Ctrl-G, the editing session ends, and edit returns the window's
contents as a single string, with newlines as line separators.

10.8.2.2 The msvcrt module

The msvcrt module, available only on Windows, supplies functions that let Python programs access a
few proprietary extras supplied by the Microsoft Visual C++'s runtime library msvcrt.dll. Some msvcrt
functions let you read user input character by character, rather than reading a full line at a time.

getch, getche

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


getch(  )
getche(  )

Reads and returns one character from keyboard input, waiting if no character is yet available for
reading. getche also echoes the character to screen (if printable), while getch doesn't. When the user
presses a special key (arrows, function keys, etc.), it's seen as two characters: first a chr(0) or
chr(224), then a second character that, together with the first one, defines what special key the user
pressed. Here's how to find out what getch returns for any key:

import msvcrt
print "press z to exit, or any other key to see code"
while 1:
    c = msvcrt.getch(  )
    if c =  = 'z': break
    print "%d (%r)" % (c, c)

kbhit

kbhit(  )

Returns True when a character is available for reading (getch, if called, would return immediately),
otherwise False (getch, if called, would wait).

ungetch

ungetch(c)

Ungets character c: the next call to getch or getche returns c. It's an error to call ungetch twice
without intervening calls to getch or getche.

10.8.2.3 The WConio and Console modules

Two Windows-specific extension modules supply single-character keyboard input (like msvcrt) and the
ability to paint characters in specified positions of the text screen. Chris Gonnerman's Windows
Console I/O module is small, simple, and easy to use. Module WConio can be freely downloaded from
http://newcenturycomputers.net/projects/wconio.html. Fredrik Lundh's Console module is very
complete and functionally rich. Module Console can be freely downloaded from
http://www.effbot.org/efflib/console/.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.9 Interactive Command Sessions

The cmd module offers a simple way to handle interactive sessions of commands. Each command is a
line of text. The first word of each command is a verb defining the requested action. The rest of the
line is passed as an argument to the method that implements the action that the verb requests.

Module cmd supplies class Cmd to use as a base class, and you define your own subclass of cmd.Cmd.
The subclass supplies methods with names starting with do_ and help_, and may also optionally
override some of Cmd's methods. When the user enters a command line such as verb and the rest, as
long as the subclass defines a method named do_verb, Cmd.onecmd calls:

self.do_verb('and the rest')

Similarly, as long as the subclass defines a method named help_verb, Cmd.do_help calls it when the
command line starts with either 'help verb' or '?verb'. Cmd, by default, also shows suitable error
messages if the user tries to use, or asks for help about, a verb for which the subclass does not define
a needed method.

10.9.1 Methods of Cmd Instances

An instance c of a subclass of class Cmd supplies the following methods (many of these methods are
meant to be overridden by the subclass).

cmdloop

c.cmdloop(intro=None)

Performs an entire interactive session of line-oriented commands. cmdloop starts by calling c.preloop(
), then outputs string intro (c.intro, if intro is None). Then c.cmdloop enters a loop. In each iteration of
the loop, cmdloop reads line s with s=raw_input(c.prompt). When standard input reaches end-of-file,
cmdloop sets s='EOF'. If s is not 'EOF', cmdloop preprocesses string s with s=c.precmd(s), then calls
flag=c.onecmd(s). When onecmd returns a true value, this is a tentative request to terminate the
command loop. Now cmdloop calls flag=c.postcmd(flag,s) to check if the loop should terminate. If flag
is now true, the loop terminates; otherwise another iteration of the loop executes. If the loop is to
terminate, cmdloop calls c.postloop( ), then terminates. This structure of cmdloop is probably easiest
to understand by showing Python code equivalent to the method just described:

def cmdloop(self, intro=None):
    self.preloop(  )
    if intro is None: intro = self.intro
    print intro
    while True:
        try: s = raw_input(self.prompt)
        except EOFError: s = `EOF'
        else: s = self.precmd(s)
        flag = self.onecmd(s)
        flag = self.postcmd(flag, s)
        if flag: break
    self.postloop(  )

cmdloop is a good example of the design pattern known as Template Method. Such a method
performs little substantial work itself; rather, it structures and organizes calls to other methods.
Subclasses may override the other methods, to define the details of class behavior within the overall
framework thus established. When you inherit from Cmd, you almost never override method cmdloop,
since cmdloop's structure is the main thing you get by subclassing Cmd.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


default

c.default(s)

c .onecmd calls c.default(s) when there is no method c.do_verb for the first word verb of line s.
Subclasses often override default. The base class Cmd.default method prints an error message.

do_help

c.do_help(verb)

c .onecmd calls c.do_help(verb) when command line s starts with 'help verb' or '?verb'. Subclasses
rarely override do_help. The Cmd.do_help method calls method help_verb if the subclass supplies it,
otherwise it displays the docstring of method do_verb if the subclass supplies that method with a non-
empty docstring. If the subclass does not supply either source of help, Cmd.do_help outputs a
message to inform the user that no help is available on verb.

emptyline

c.emptyline(  )

c .onecmd calls c.emptyline( ) when command line s is empty or blank. Unless a subclass overrides this
method, the base-class method Cmd.emptyline is called and re-executes the last non-blank command
line seen, stored in the attribute c.lastcmd of c.

onecmd

c.onecmd(s)

c .cmdloop calls c.onecmd(s) for each command line s that the user inputs. You can also call onecmd
directly, if you have independently obtained a line s that you need to process as a command.
Normally, subclasses do not override method onecmd. Cmd.onecmd unconditionally sets c.lastcmd=s.
Then, onecmd calls do_verb if s starts with the word verb and if the subclass supplies such a method,
or else methods emptyline or default, as explained earlier. In any case, Cmd.onecmd returns the result
of whatever other method it ends up calling, to be interpreted by postcmd as a termination-request
flag.

postcmd

c.postcmd(flag,s)

c .cmdloop calls c.postcmd(flag,s) for each command line s, after c.onecmd(s) has returned value flag.
If flag is true, the command just executed is posing a conditional request to terminate the command
loop. If postcmd returns a true value, cmdloop's loop terminates. Unless your subclass overrides this
method, the base-class method Cmd.postcmd is called, and returns flag itself as the method's result.

postloop

c.postloop(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


c .cmdloop calls c.postloop( ) when cmdloop's loop terminates. Unless your subclass overrides this
method, the base-class method Cmd.postloop is called, and does nothing at all.

precmd

c.precmd(s)

c .cmdloop calls s=c.precmd(s) to preprocess each command line s. The current leg of the loop bases
all further processing on the string that precmd returns. Unless your subclass overrides this method,
the base-class method Cmd.precmd is called, and returns s itself as the method's result.

preloop

c.preloop(  )

c .cmdloop calls c.preloop( ) before cmdloop's loop begins. Unless your subclass overrides this method,
the base class Cmd.preloop method is called, and does nothing at all.

10.9.2 Attributes of Cmd Instances

An instance c of a subclass of class Cmd supplies the following attributes:

identchars

A string that contains all characters that can be part of a verb; by default, c.identchars contains
letters, digits, and underscore (_)

intro

The message that cmdloop outputs first, when called with no argument

lastcmd

The last non-blank command line seen by onecmd

prompt

The string that cmdloop uses to prompt the user for interactive input. You almost always bind
c.prompt explicitly, or override prompt as a class attribute of your subclass, because the default
Cmd.prompt is just '(Cmd) '.

use_rawinput

When false (default is true), cmdloop prompts and inputs via calls to methods of sys.stdout and
sys.stdin, rather than via raw_input

Other attributes of Cmd instances, which are not covered here, let you exert fine-grained control on
many formatting details of help messages.

10.9.3 A Cmd Example

The following example shows how to use cmd.Cmd to supply the verbs print (to output the rest of the
line) and stop (to end the loop):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


import cmd

class X(cmd.Cmd):
    def do_print(self, rest): print rest
    def help_print(self): print "print (any string): outputs (any string)"
    def do_stop(self, rest): return 1
    def help_stop(self): print "stop: terminates the command loop"

if _ _name_ _=  ='_ _main_ _': X(  ).cmdloop(  )

A session using this example might proceed as follows:

C:\>\python22\python \examples\chapter19\CmdEx.py
(Cmd) help
Documented commands (type help <topic>):
=  ==  ==  ==  ==  ==  ==  ==  ==  ==  ==  ==  ==  ==  ==  ==  ==  ==  ==  ==  =
print           stop
Undocumented commands:
=  ==  ==  ==  ==  ==  ==  ==  ==  ==  ==  =
help
(Cmd) help print
print (whatever): outputs string (whatever)
(Cmd) print hi there
hi there
(Cmd) stop

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

10.10 Internationalization

Most programs present some information to users as text. Such text should be understandable and
acceptable to the user. For example, in some countries and cultures, the date "March 7" can be
concisely expressed as "3/7". Elsewhere, "3/7" indicates "July 3", and the string that means "March 7"
is "7/3". In Python, such cultural conventions are handled with the help of standard module locale.

Similarly, a greeting can be expressed in one natural language by the string "Benvenuti", while in
another language the string to use is "Welcome". In Python, such translations are handled with the
help of standard module gettext.

Both kinds of issues are commonly called internationalization (often abbreviated i18n, as there are 18
letters between i and n in the full spelling). This is actually a misnomer, as the issues also apply to
programs used within one nation by users of different languages or cultures.

10.10.1 The locale Module

Python's support for cultural conventions is patterned on that of C, slightly simplified. In this
architecture, a program operates in an environment of cultural conventions known as a locale. The
locale setting permeates the program and is typically set early on in the program's operation. The
locale is not thread-specific, and module locale is not thread-safe. In a multithreaded program, set the
program's locale before starting secondary threads.

If a program does not call locale.setlocale, the program operates in a neutral locale known as the C
locale. The C locale is named from this architecture's origins in the C language, and is similar, but not
identical, to the U.S. English locale. Alternatively, a program can find out and accept the user's default
locale. In this case, module locale interacts with the operating system (via the environment, or in
other system-dependent ways) to establish the user's preferred locale. Finally, a program can set a
specific locale, presumably determining which locale to set on the basis of user interaction, or via
persistent configuration settings such as a program initialization file.

A locale setting is normally performed across the board, for all relevant categories of cultural
conventions. This wide-spectrum setting is denoted by the constant attribute LC_ALL of module locale.
However, the cultural conventions handled by module locale are grouped into categories, and in some
cases a program can choose to mix and match categories to build up a synthetic composite locale.
The categories are identified by the following constant attributes of module locale:

LC_COLLATE

String sorting: affects functions strcoll and strxfrm in locale

LC_CTYPE

Character types: affects aspects of module string (and string methods) that have to do with
letters, lowercase, and uppercase

LC_MESSAGES

Messages: may affect messages displayed by the operating system, for example function
os.strerror and module gettext

LC_MONETARY

Formatting of currency values: affects function locale.localeconv

LC_NUMERIC

Formatting of numbers: affects functions atoi, atof, format, localeconv, and str in locale

LC_TIME

Formatting of times and dates: affects function time.strftime

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The settings of some categories (denoted by the constants LC_CTYPE, LC_TIME, and LC_MESSAGES)
affect some of the behavior of other modules (string, time, os, and gettext, as indicated). The settings
of other categories (denoted by the constants LC_COLLATE, LC_MONETARY, and LC_NUMERIC) affect
only some functions of locale.

Module locale supplies functions to query, change, and manipulate locales, as well as functions that
implement the cultural conventions of locale categories LC_COLLATE, LC_MONETARY, and
LC_NUMERIC.

atof

atof(str)

Converts string str to a floating-point value according to the current LC_NUMERIC setting.

atoi

atoi(str)

Converts string str to an integer according to the LC_NUMERIC setting.

format

format(fmt,num,grouping=0)

Returns the string obtained by formatting number num according to the format string fmt and the
LC_NUMERIC setting. Except for cultural convention issues, the result is like fmt%num. If grouping is
true, format also groups digits in the result string according to the LC_NUMERIC setting. For example:

>>> locale.setlocale(locale.LC_NUMERIC,'en')
'English_United States.1252'
>>> locale.format('%s',1000*1000)
'1000000'
>>> locale.format('%s',1000*1000,1)
'1,000,000'

When the numeric locale is U.S. English, and argument grouping is true, format supports the
convention of grouping digits by threes with commas.

getdefaultlocale

getdefaultlocale(envvars=['LANGUAGE','LC_ALL',
                 'LC_TYPE','LANG'])

Examines the environment variables whose names are specified by argument envvars, in order. The
first variable found in the environment determines the default locale. getdefaultlocale returns a pair of
strings (lang,encoding) compliant with RFC 1766 (except for the 'C' locale), such as ('en_US','ISO8859-
1'). Each item of the pair may be None if gedefaultlocale is unable to discover what value the item
should have.

getlocale

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


getlocale(category=LC_TYPE)

Returns a pair of strings (lang,encoding) with the current setting for the given category. The category
cannot be LC_ALL.

localeconv

localeconv(  )

Returns a dictionary d containing the cultural conventions specified by categories LC_NUMERIC and
LC_MONETARY of the current locale. While LC_NUMERIC is best used indirectly via other functions of
module locale, the details of LC_MONETARY are accessible only through d. Currency formatting is
different for local and international use. The U.S. currency symbol, for example, is '$' for local use
only. '$' would be ambiguous in international use, since the same symbol is also used for other
currencies called "dollars" (Canadian, Australian, Hong Kong, etc.). In international use, therefore, the
U.S. currency symbol is the unambiguous string 'USD'. The keys into d to use for currency formatting
are the following strings:

'currency_symbol'

Currency symbol to use locally

'frac_digits'

Number of fractional digits to use locally

'int_curr_symbol'

Currency symbol to use internationally

'int_frac_digits'

Number of fractional digits to use internationally

'mon_decimal_point'

String to use as the "decimal point" for monetary values

'mon_grouping'

List of digit grouping numbers for monetary values

'mon_thousands_sep'

String to use as digit-groups separator for monetary values

'negative_sign', 'positive_sign'

String to use as the sign symbol for negative (positive) monetary values

'n_cs_precedes', 'p_cs_precedes'

True if the currency symbol comes before negative (positive) monetary values

'n_sep_by_space', 'p_sep_by_space'

True if a space goes between sign and negative (positive) monetary values

'n_sign_posn', 'p_sign_posn'

Numeric code to use to format negative (positive) monetary values:

0

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


0

The value and the currency symbol are placed inside parentheses

1

The sign is placed before the value and the currency symbol

2

The sign is placed after the value and the currency symbol

3

The sign is placed immediately before the value

4

The sign is placed immediately after the value

CHAR_MAX

The current locale does not specify any convention for this formatting

d['mon_grouping'] is a list of numbers of digits to group when formatting a monetary value. When
d['mon_grouping'][-1] is 0, there is no further grouping beyond the indicated numbers of digits. When
d['mon_grouping'][-1] is locale.CHAR_MAX, grouping continues indefinitely, as if d['mon_grouping'][-2]
were endlessly repeated. locale.CHAR_MAX is a constant used as the value for all entries in d for which
the current locale does not specify any convention.

normalize

normalize(localename)

Returns a string, suitable as an argument to setlocale, that is the normalized equivalent to localename.
If normalize cannot normalize string localename, then normalize returns localename unchanged.

resetlocale

resetlocale(category=LC_ALL)

Sets the locale for category to the default given by getdefaultlocale.

setlocale

setlocale(category,locale=None)

Sets the locale for category to the given locale, if not None, and returns the setting (the existing one
when locale is None; otherwise, the new one). locale can be a string, or a pair of strings
(lang,encoding). When locale is the empty string '', setlocale sets the user's default locale.

str

str(num)

Like locale.format('%f',num).

strcoll

strcoll(str1,str2)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Like cmp(str1,str2), but according to the LC_COLLATE setting.

strxfrm

strxfrm(str)

Returns a string sx such that the built-in comparison (e.g., by cmp) of strings so transformed is
equivalent to calling locale.strcoll on the original strings. strxfrm lets you use the decorate-sort-
undecorate (DSU) idiom for sorts that involve locale-conformant string comparisons. However, if all
you need is to sort a list of strings in a locale-conformant way, strcoll's simplicity can make it faster.
The following example shows two ways of performing such a sort; in this case, the simple variant is
often faster than the DSU one:

import locale
# simpler and often faster
def locale_sort_simple(list_of_strings):
    list_of_strings.sort(locale.strcoll)
# less simple and often slower
def locale_sort_DSU(list_of_strings):
    auxiliary_list = [(locale.strxfrm(s),s) for s in 
                                        list_of_strings]
    auxiliary_list.sort(  )
    list_of_strings[:] = [s for junk, s in auxiliary_list]

10.10.2 The gettext Module

A key issue in internationalization is the ability to use text in different natural languages, a task also
called localization. Python supports localization via module gettext, inspired by GNU gettext. Module
gettext is optionally able to use the latter's infrastructure and APIs, but is simpler and more general.
You do not need to install or study GNU gettext to use Python's gettext effectively.

10.10.2.1 Using gettext for localization

gettext does not deal with automatic translation between natural languages. Rather, gettext helps you
extract, organize, and access the text messages that your program uses. Use each string literal
subject to translation, also known as a message, as the argument of a function named _ (underscore)
rather than using it directly. gettext normally installs a function named _ in the _ _builtin_ _ module.
To ensure that your program can run with or without gettext, conditionally define a do-nothing
function, also named _, that just returns its argument unchanged. Then, you can safely use
_('message') wherever you would normally use the literal 'message'. The following example shows how
to start a module for conditional use of gettext:

try: _
except NameError:
    def _(s): return s
def greet(  ): print _('Hello world')

If some other module has installed gettext before you run the previous code, function greet outputs a
properly localized greeting. Otherwise, greet outputs the string 'Hello world' unchanged.

Edit your sources, decorating all message literals with function _. Then, use any of various tools to
extract messages into a text file (normally named messages.pot), and distribute the file to the people
who translate messages into the natural languages you support. Python supplies a script pygettext.py
(in directory Tools/i18n in the Python source distribution) to perform message extraction on your
Python sources.

Each translator edits messages.pot and produces a text file of translated messages with extension
.po. Compile the .po files into binary files with extension .mo, suitable for fast searching, using any of

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


.po. Compile the .po files into binary files with extension .mo, suitable for fast searching, using any of
various tools. Python supplies a script Tools/i18n/msgfmt.py usable for this purpose. Finally, install
each .mo file with a suitable name in an appropriate directory.

Conventions about which directories and names are suitable and appropriate differ among platforms
and applications. gettext's default is subdirectory share/locale/<lang>/LC_MESSAGES/ of directory
sys.prefix, where <lang> is the language's code (normally two letters). Each file is typically named
<name>.mo, where <name> is the name of your application or package.

Once you have prepared and installed your .mo files, you normally execute from somewhere in your
application code such as the following:

import os, gettext
os.environ.setdefault('LANG', 'en')          # application-default language
gettext.install('your_application_name')

This ensures that calls such as _('message') henceforward return the appropriate translated strings.
You can choose different ways to access gettext functionality in your program, for example if you also
need to localize C-coded extensions, or to switch back and forth between different languages during a
run. Another important consideration is whether you're localizing a whole application, or just a
package that is separately distributed.

10.10.2.2 Essential gettext functions

Module gettext supplies many functions; this section documents the ones that are most often used.

install

install(domain,localedir=None,unicode=False)

Installs in Python's built-in namespace a function named _ that performs translations specified by file
<lang>/LC_MESSAGES/<domain>.mo in directory localedir, with language code <lang> as per
getdefaultlocale. When localedir is None, install uses directory os.path.join(sys.prefix,'share','locale').
When unicode is true, function _ accepts and returns Unicode strings rather than plain strings.

translation

translation(domain,localedir=None,languages=None)

Searches for a .mo file similarly to function install. When languages is None, translation looks in the
environment for the lang to use, like install. However, languages can also be a list of one or more lang
names separated by colons (:), in which case translation uses the first of these names for which it
finds a .mo file. Returns an instance object that supplies methods gettext (to translate a plain string),
ugettext (to translate a Unicode string), and install (to install gettext or ugettext under name _ into
Python's built-in namespace).

Function translation offers more detailed control than install, which is like
translation(domain,localedir).install(unicode). With translation, you can localize a single package without
affecting the built-in namespace by binding name _ on a per-module basis, for example with:

_ = translation(domain).ugettext

translation also lets you switch globally between several languages, since you can pass an explicit
languages argument, keep the resulting instance, and call the install method of the appropriate
language as needed:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


import gettext
translators = {  }
def switch_to_language(lang, domain='my_app', 
                       use_unicode=False):
    if not translators.has_key(lang):
        translators[lang] = \
        gettext.translation(domain, languages=lang)
    translators[lang].install(use_unicode)
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 11. Persistence and Databases

Python supports a variety of ways of making data persistent. One such way, known as serialization,
involves viewing the data as a collection of Python objects. These objects can be saved, or serialized,
to a byte stream, and later loaded and recreated, or deserialized, back from the byte stream. Object
persistence layers on top of serialization and adds such features as object naming. This chapter
covers the built-in Python modules that support serialization and object persistence.

Another way to make data persistent is to store it in a database. One simple type of database is
actually just a file format that uses keyed access to enable selective reading and updating of relevant
parts of the data. Python supplies modules that support several variations of this file format, known
as DBM, and these modules are covered in this chapter.

A relational database management system (RDBMS), such as MySQL or Oracle, provides a more
powerful approach to storing, searching, and retrieving persistent data. Relational databases rely on
dialects of Structured Query Language (SQL) to create and alter a database's schema, insert and
update data in the database, and query the database according to search criteria. This chapter does
not provide any reference material on SQL. For that purpose, I recommend SQL in a Nutshell, by
Kevin Kline (O'Reilly). Unfortunately, despite the existence of SQL standards, no two RDBMSes
implement exactly the same SQL dialect.

The Python standard library does not come with an RDBMS interface. However, many free third-party
modules let your Python programs access a specific RDBMS. Such modules mostly follow the Python
Database API 2.0 standard, also known as the DBAPI. This chapter covers the DBAPI standard and
mentions some of the third-party modules that implement it.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

11.1 Serialization

Python supplies a number of modules that deal with I/O operations that serialize (save) entire Python
objects to various kinds of byte streams, and deserialize (load and recreate) Python objects back from
such streams. Serialization is also called marshaling.

11.1.1 The marshal Module

The marshal module supports the specific serialization tasks needed to save and reload compiled
Python files (.pyc and .pyo). marshal only handles instances of fundamental built-in data types: None,
numbers (plain and long integers, float, complex), strings (plain and Unicode), code objects, and
built-in containers (tuples, lists, dictionaries) whose items are instances of elementary types. marshal
does not handle instances of user-defined types, nor classes and instances of classes. marshal is faster
than other serialization modules. Code objects are supported only by marshal, not by other
serialization modules. Module marshal supplies the following functions.

dump, dumps

dump(value,fileobj)
dumps(value)

dumps returns a string representing object value. dump writes the same string to file object fileobj,
which must be opened for writing in binary mode. dump(v,f) is just like f.write(dumps(v)). fileobj
cannot be a file-like object: it must be an instance of type file.

load, loads

load(fileobj)
loads(str)

loads creates and returns the object v previously dumped to string str, so that, for any object v of a
supported type, v equals loads(dumps(v)). If str is longer than dumps(v), loads ignores the extra bytes.
load reads the right number of bytes from file object fileobj, which must be opened for reading in
binary mode, and creates and returns the object v represented by those bytes. fileobj cannot be a file-
like object: it must be an instance of type file.

Functions load and dump are complementary. In other words, a sequence of calls to load(f)
deserializes the same values previously serialized when f's contents were created by a sequence of
calls to dump(v,f). Objects that are dumped and loaded in this way can be instances of any mix of
supported types.

Suppose you need to analyze several text files, whose names are given as your program's arguments,
and record where each word appears in those files. The data you need to record for each word is a list
of (filename, line-number) pairs. The following example uses marshal to encode lists of (filename, line-
number) pairs as strings and store them in a DBM-like file (as covered later in this chapter). Since
those lists contain tuples, each made up of a string and a number, they are within marshal's abilities
to serialize.

import fileinput, marshal, anydbm
wordPos = {  }
for line in fileinput.input(  ):
    pos = fileinput.filename(  ), fileinput.filelineno(  )
    for word in line.split(  ):
        wordPos.setdefault(word,[  ]).append(pos)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        wordPos.setdefault(word,[  ]).append(pos)
dbmOut = anydbm.open('indexfilem','n')
for word in wordPos:
    dbmOut[word] = marshal.dumps(wordPos[word])
dbmOut.close(  )

We also need marshal to read back the data stored to the DBM-like file indexfilem, as shown in the
following example:

import sys, marshal, anydbm, linecache
dbmIn = anydbm.open('indexfilem')
for word in sys.argv[1:]:
    if not dbmIn.has_key(word):
         sys.stderr.write('Word %r not found in index file\n' % word)
         continue
    places = marshal.loads(dbmIn[word])
    for fname, lineno in places:
        print "Word %r occurs in line %s of file %s:" % (word,lineno,fname)
        print linecache.getline(fname, lineno),

11.1.2 The pickle and cPickle Modules

The pickle and cPickle modules supply factory functions, named Pickler and Unpickler, to generate
objects that wrap file-like objects and supply serialization mechanisms. Serializing and deserializing
via these modules is also known as pickling and unpickling. The difference between the modules is
that in pickle, Pickler and Unpickler are classes, so you can inherit from these classes to create
customized serializer objects, overriding methods as needed. In cPickle, Pickler and Unpickler are
factory functions, generating instances of special-purpose types, not classes. Performance is therefore
much better with cPickle, but inheritance is not feasible. In the rest of this section, I'll be talking about
module pickle, but everything applies to cPickle too.

Note that in releases of Python older than the ones covered in this book, unpickling from an untrusted
data source was a security risk—an attacker could exploit this to execute arbitrary code. No such
weaknesses are known in Python 2.1 and later.

Serialization shares some of the issues of deep copying, covered in Section 8.5 in Chapter 8. Module
pickle deals with these issues in much the same way as module copy does. Serialization, like deep
copying, implies a recursive walk over a directed graph of references. pickle preserves the graph's
shape when the same object is encountered more than once, meaning that the object is serialized
only the first time, and other occurrences of the same object serialize references to a single copy.
pickle also correctly serializes graphs with reference cycles. However, this implies that if a mutable
object o is serialized more than once to the same Pickler instance p, any changes to o after the first
serialization of o to p are not saved. For clarity and simplicity, I recommend you avoid altering objects
that are being serialized while serialization to a single Pickler instance is in progress.

pickle can serialize in either an ASCII format or a compact binary one. Although the ASCII format is
the default for backward compatibility, you should normally request binary format, as it saves both
time and storage space. When you reload objects, pickle transparently recognizes and uses either
format. I recommend you always specify binary format: the size and speed savings can be
substantial, and binary format has basically no downside except loss of compatibility with very old
versions of Python.

pickle serializes classes and functions by name, not by value. pickle can therefore deserialize a class or
function only by importing it from the same module where the class or function was found when pickle
serialized it. In particular, pickle can serialize and deserialize classes and functions only if they are
top-level names for their module (i.e., attributes of their module). For example, consider the
following:

def adder(augend):
    def inner(addend, augend=augend): return addend+augend
    return inner
plus5 = adder(5)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


plus5 = adder(5)

This code binds a closure to name plus5 (as covered in Section 4.10.6.2 in Chapter 4), which is a
nested function inner plus an appropriate nested scope. Therefore, trying to pickle plus5 raises a
pickle.PicklingError exception: a function can be pickled only when it is top-level, and function inner,
whose closure is bound to name plus5 in this code, is not top-level, but rather nested inside function
adder. Similar issues apply to other uses of nested functions, and also to nested classes (i.e., classes
that are not top-level).

11.1.2.1 Functions of pickle and cPickle

Modules pickle and cPickle expose the following functions.

dump, dumps

dump(value,fileobj,bin=0)
dumps(value,bin=0)

dumps returns a string representing object value. dump writes the same string to file-like object
fileobj, which must be opened for writing. dump(v,f,bin) is like f.write(dumps(v,bin)). If bin is true,
dump uses binary format, so f must be open in binary mode. dump(v,f,bin) is also like
Pickler(f,bin).dump(v).

load, loads

load(fileobj)
loads(str)

loads creates and returns the object v represented by string str, so that for any object v of a
supported type, v= =loads(dumps(v)). If str is longer than dumps(v), loads ignores the extra bytes.
load reads the right number of bytes from file-like object fileobj and creates and returns the object v
represented by those bytes. If two calls to dump are made in sequence on the same file, two later
calls to load from that file deserialize the two objects that dump serialized. load and loads
transparently support pickles performed in either binary or ASCII mode. If data is pickled in binary
format, the file must be open in binary format for both dump and load. load(f) is like Unpickler(f).load(
).

Pickler

Pickler(fileobj,bin=0)

Creates and returns an object p such that calling p.dump is equivalent to calling function dump with
the fileobj and bin argument values passed to Pickler. To serialize many objects to a file, Pickler is
more convenient and faster than repeated calls to dump. You can subclass pickle.Pickler to override
Pickler methods (particularly method persistent_id) and create your own persistence framework.
However, this is an advanced issue, and is not covered further in this book.

Unpickler

Unpickler(fileobj)

Creates and returns an object u such that calling u.load is equivalent to calling function load with the
fileobj argument value passed to Unpickler. To deserialize many objects from a file, Unpickler is more

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


fileobj argument value passed to Unpickler. To deserialize many objects from a file, Unpickler is more
convenient and faster than repeated calls to function load. You can subclass pickle.Unpickler to
override Unpickler methods (particularly the method persistent_load) and create your own persistence
framework. However, this is an advanced issue, and is not covered further in this book.

11.1.2.2 A pickling example

The following example handles the same task as the marshal example shown earlier, but uses cPickle
instead of marshal to encode lists of (filename, line-number) pairs as strings:

import fileinput, cPickle, anydbm
wordPos = {  }
for line in fileinput.input(  ):
    pos = fileinput.filename(  ), fileinput.filelineno(  )
    for word in line.split(  ):
        wordPos.setdefault(word,[  ]).append(pos)
dbmOut = anydbm.open('indexfilep','n')
for word in wordPos:
    dbmOut[word] = cPickle.dumps(wordPos[word], 1)
dbmOut.close(  )

We can use either cPickle or pickle to read back the data stored to the DBM-like file indexfilep, as
shown in the following example:

import sys, cPickle, anydbm, linecache
dbmIn = anydbm.open('indexfilep')
for word in sys.argv[1:]:
    if not dbmIn.has_key(word):
         sys.stderr.write('Word %r not found in index file\n' % word)
         continue
    places = cPickle.loads(dbmIn[word])
    for fname, lineno in places:
        print "Word %r occurs in line %s of file %s:" % (word,lineno,fname)
        print linecache.getline(fname, lineno),

11.1.2.3 Pickling instance objects

In order for pickle to reload an instance object x, pickle must be able to import x's class from the same
module in which the class was defined when pickle saved the instance. By default, to save the
instance-specific state of x, pickle saves x._ _dict_ _, and then, to restore state, reloads x._ _dict_ _.
Therefore, all instance attributes (values in x._ _dict_ _) must be instances of types suitable for
pickling and unpickling (i.e., a pickleable object). A class can supply special methods to control this
process.

By default, pickle does not call x._ _init_ _ to restore instance object x. If you do want pickle to call x._
_init_ _, x's class must supply the special method _ _getinitargs_ _. In this case, when pickle saves x,
pickle then calls x._ _getinitargs_ _( ), which must return a tuple t. When pickle later reloads x, pickle
calls x._ _init_ _(*t) (i.e., the items of tuple t are passed as positional arguments to x._ _init_ _).
When x._ _init_ _ returns, pickle restores x._ _dict_ _, overriding attribute values bound by x._ _init_ _.
Method _ _getinitargs_ _ is therefore useful only when x._ _init_ _ has other tasks to perform in
addition to the task of giving initial values to x's attributes.

When x's class has a special method _ _getstate_ _, pickle calls x._ _getstate_ _( ), which normally
returns a dictionary d. pickle saves d instead of x._ _dict_ _. When pickle later reloads x, it sets x._
_dict_ _ from d. When x's class supplies special method _ _setstate_ _, pickle calls x._ _setstate_ _(d)
for whatever d was saved, rather than x._ _dict_ _.update(d). When x's class supplies both methods _
_getstate_ _ and _ _setstate_ _, _ _getstate_ _ may return any pickleable object y, not just a
dictionary, since pickle reloads x by calling x._ _setstate_ _(y). A dictionary is often the handiest type
of object for this purpose. As mentioned in "The copy Module" in Chapter 8, special methods _
_getinitargs_ _, _ _getstate_ _, and _ _setstate_ _ are also used to control the way instance objects are
copied and deep-copied. If a new-style class defines _ _slots_ _, the class should also define _

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


copied and deep-copied. If a new-style class defines _ _slots_ _, the class should also define _
_getstate_ _ and _ _setstate_ _, otherwise the class's instances are not pickleable.

11.1.2.4 Pickling customization with the copy_reg module

You can control how pickle serializes and deserializes objects of an arbitrary type (not class) by
registering factory and reduction functions with module copy_reg. This is useful when you define a
type in a C-coded Python extension. Module copy_reg supplies the following functions.

constructor

constructor(fcon)

Adds fcon to the table of safe constructors, which lists all factory functions that pickle may call. fcon
must be callable, and is normally a function.

pickle

pickle(type,fred,fcon=None)

Registers function fred as the reduction function for type type, where type must be a type object (not
a class). To save any object o of type type, module pickle calls fred(o) and saves fred's result. fred(o)
must return a pair (fcon,t) or a tuple (fcon,t,d), where fcon is a safe constructor and t is a tuple. To
reload o, pickle calls o=fcon(*t). Then, if fred returned a d, pickle uses d to restore o's state, as in
"Pickling of instance objects" (o._ _setstate_ _(d) if o supplies _ _setstate_ _, otherwise o._ _dict_
_.update(d)). If fcon is not None, pickle also calls constructor(fcon) to register fcon as a safe
constructor.

11.1.3 The shelve Module

The shelve module orchestrates modules cPickle (or pickle, when cPickle is not available in the current
Python installation), cStringIO (or StringIO, when cStringIO is not available in the current Python
installation), and anydbm (and its underlying modules for access to DBM-like archive files, as
discussed later in this chapter) in order to provide a lightweight persistence mechanism.

shelve supplies a function open that is polymorphic to anydbm.open. The mapping object s returned by
shelve.open is less limited than the mapping object a returned by anydbm.open. a's keys and values
must be strings. s's keys must also be strings, but s's values may be of any type or class that pickle
can save and restore. pickle customizations (e.g., copy_reg, _ _getinitargs_ _, _ _getstate_ _, and _
_setstate_ _) also apply to shelve, since shelve delegates serialization to pickle.

Beware a subtle trap when you use shelve and mutable objects. When you operate on a mutable
object held in a shelf, the changes don't take unless you assign the changed object back to the same
index. For example:

import shelve
s = shelve.open('data')
s['akey'] = range(4)
print s['akey']                    # prints: [0, 1, 2, 3]
s['akey'].append('moreover')       # trying direct mutation
print s['akey']                    # doesn't take; prints: [0, 1, 2, 3]

x = s['akey']              # fetch the object
x.append('moreover')       # perform mutation
s['akey'] = x              # store the object back
print s['akey']            # now it takes, prints: [0, 1, 2, 3, 'moreover']

The following example handles the same task as the pickling example earlier, but uses shelve to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The following example handles the same task as the pickling example earlier, but uses shelve to
persist lists of (filename, line-number) pairs:

import fileinput, shelve
wordPos = {  }
for line in fileinput.input(  ):
    pos = fileinput.filename(  ), fileinput.filelineno(  )
    for word in line.split(  ):
        wordPos.setdefault(word,[  ]).append(pos)
shOut = shelve.open('indexfiles','n')
for word in wordPos:
    shOut[word] = wordPos[word]
shOut.close(  )

We must use shelve to read back the data stored to the DBM-like file indexfiles, as shown in the
following example:

import sys, shelve, linecache
shIn = shelve.open('indexfiles')

for word in sys.argv[1:]:
    if not shIn.has_key(word):
         sys.stderr.write('Word %r not found in index file\n' % word)
         continue
    places = shIn[word]
    for fname, lineno in places:
        print "Word %r occurs in line %s of file %s:" % (word,lineno,fname)
        print linecache.getline(fname, lineno),

These two examples are the simplest and most direct of the various equivalent pairs of examples
shown throughout this section. This reflects the fact that module shelve is higher level than the
modules used in previous examples.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

11.2 DBM Modules

A DBM-like file is a file that contains a set of pairs of strings (key,data), with support for fetching or
storing the data given a key, known as keyed access. DBM-like files were originally supported on early
Unix systems, with functionality roughly equivalent to that of access methods popular on other
mainframe and minicomputers of the time, such as ISAM, the Indexed-Sequential Access Method.
Today, several different libraries, available for many platforms, let programs written in many different
languages create, update, and read DBM-like files.

Keyed access, while not as powerful as the data access functionality of relational databases, may
often suffice for a program's needs. And if DBM-like files are sufficient, you may end up with a
program that is smaller, faster, and more portable than one that uses an RDBMS.

The classic dbm library, whose first version introduced DBM-like files many years ago, has limited
functionality, but tends to be available on most Unix platforms. The GNU version, gdbm, is richer and
also widespread. The BSD version, dbhash, offers superior functionality. Python supplies modules that
interface with each of these libraries if the relevant underlying library is installed on your system.
Python also offers a minimal DBM module, dumbdbm (usable anywhere, as it does not rely on other
installed libraries), and generic DBM modules, which are able to automatically identify, select, and
wrap the appropriate DBM library to deal with an existing or new DBM file. Depending on your
platform, your Python distribution, and what dbm-like libraries you have installed on your computer,
the default Python build may install some subset of these modules. In general, at a minimum, you
can rely on having module dbm on Unix-like platforms, module dbhash on Windows, and dumbdbm on
any platform.

11.2.1 The anydbm Module

The anydbm module is a generic interface to any other DBM module. anydbm supplies a single factory
function.

open

open(filename,flag='r',mode=0666)

Opens or creates the DBM file named by filename (a string that can denote any path to a file, not just
a name), and returns a suitable mapping object corresponding to the DBM file. When the DBM file
already exists, open uses module whichdb to determine which DBM library can handle the file. When
open creates a new DBM file, open chooses the first available DBM module in order of preference:
dbhash, gdbm, dbm, and dumbdbm.

flag is a one-character string that tells open how to open the file and whether to create it, as shown in
Table 11-1. mode is an integer that open uses as the file's permission bits if open creates the file, as
covered in Section 10.2.2 in Chapter 10. Not all DBM modules use flags and mode, but for portability's
sake you should always supply appropriate values for these arguments when you call anydbm.open.

Table 11-1. flag values for anydbm.open
Flag Read-only? If file exists If file does not exist

'r' yes open opens the file open raises error

'w' no open opens the file open raises error

'c' no open opens the file open creates the file

'n' no open truncates the file open creates the file

anydbm.open returns a mapping object m that supplies a subset of the functionality of dictionaries
(covered in Chapter 4). m only accepts strings as keys and values, and the only mapping methods m
supplies are m.has_key and m.keys. However, you can bind, rebind, access, and unbind items in m

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


supplies are m.has_key and m.keys. However, you can bind, rebind, access, and unbind items in m
with the same indexing syntax m[key] that you would use if m were a dictionary. If flag is 'r', open
returns a mapping m that is read-only so that you can only access m's items, not bind, rebind, or
unbind them. One extra method that m supplies is m.close, with the same semantics as the close
method of a built-in file object. You should ensure m.close( ) is called when you're done using m. The
try/finally statement (covered in Chapter 6) is the best way to ensure finalization.

11.2.2 The dumbdbm Module

The dumbdbm module supplies minimal DBM functionality and mediocre performance. dumbdbm's
only advantage is that you can use it anywhere, since dumbdbm does not rely on any library. You
don't normally import dumbdbm; rather, import anydbm, and let anydbm supply your program with the
best DBM module available, defaulting to dumbdbm if nothing better is available on the current Python
installation. The only case in which you import dumbdbm directly is the rare one in which you need to
create a DBM-like file that you can later read from any Python installation. Module dumbdbm supplies
an open function and an exception class error that are polymorphic to those anydbm supplies.

11.2.3 The dbm, gdbm, and dbhash Modules

The dbm module exists only on Unix platforms, where it can wrap any of the dbm, ndbm, and gdbm
libraries, since each supplies a dbm-compatibility interface. You never import dbm directly; rather, you
import anydbm, and let anydbm supply your program with the best DBM module available, defaulting
to dbm if appropriate. Module dbm supplies an open function and an exception class error that are
polymorphic to those anydbm supplies.

The gdbm module wraps the GNU DBM library, gdbm. The gdbm.open function accepts other values
for the flag argument, and returns a mapping object m supplying a few extra methods. You may need
to import gdbm directly, if you need to access non-portable functionality. I do not cover gdbm specifics
in this book, since the book is focused on cross-platform Python.

The dbhash module wraps the BSD DBM library in a DBM-compatible way. The dbhash.open function
accepts other values for the flag argument, and returns a mapping object m supplying a few extra
methods. You may choose to import dbhash directly, if you need to access non-portable functionality.
For full access to the BSD DB functionality, however, you can also import bsddb, covered in Section
11.3 later in this chapter.

11.2.4 The whichdb Module

The whichdb module attempts to guess which of the several DBM modules are available. whichdb
supplies a single function.

whichdb

whichdb(filename)

Opens the file specified by filename and determines which DBM-like package created the file. whichdb
returns None if the file does not exist or cannot be opened and read. whichdb returns '' if the file
exists and can be opened and read, but it cannot be determined which DBM-like package created the
file (i.e., the file is not a DBM file). whichdb returns a string naming a module, such as 'dbm',
'dumbdbm', or 'dbhash', if it can determine which module can read the DBM-like file named by
filename.

11.2.5 Examples of DBM-Like File Use

Keyed access is quite suitable when your program needs to record, in a persistent way, the equivalent
of a Python dictionary, with strings as both keys and values. For example, suppose you need to
analyze several text files, whose names are given as your program's arguments, and record where
each word appears in those files. In this case, the keys are words, and, therefore, intrinsically strings.
The data you need to record for each word is a list of (filename, line-number) pairs. However, you can

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The data you need to record for each word is a list of (filename, line-number) pairs. However, you can
encode the data as a string in several ways, for example by exploiting the fact that the path separator
string os.pathsep (covered in Chapter 10) does not normally appear in filenames. (Note that more
solid, general, and reliable approaches to the general issue of encoding data as strings are covered in
Section 11.1 earlier in this chapter.) With this simplification, the program that records word positions
in files might be as follows:

import fileinput, os, anydbm
wordPos = {  }
sep = os.pathsep
for line in fileinput.input(  ):
    pos = '%s%s%s'%(fileinput.filename(  ), sep, fileinput.filelineno(  ))
    for word in line.split(  ):
        wordPos.setdefault(word,[  ]).append(pos)
dbmOut = anydbm.open('indexfile','n')
sep2 = sep * 2
for word in wordPos:
    dbmOut[word] = sep2.join(wordPos[word])
dbmOut.close(  )

We can read back the data stored to the DBM-like file indexfile in several ways. The following example
accepts words as command-line arguments and prints the lines where the requested words appear:

import sys, os, anydbm, linecache
dbmIn = anydbm.open('indexfile')
sep = os.pathsep
sep2 = sep * 2
for word in sys.argv[1:]:
    if not dbmIn.has_key(word):
         sys.stderr.write('Word %r not found in index file\n' % word)
         continue
    places = dbmIn[word].split(sep2)
    for place in places:
        fname, lineno = place.split(sep)
        print "Word %r occurs in line %s of file %s:" % (word,lineno,fname)
        print linecache.getline(fname, int(lineno)),

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

11.3 The Berkeley DB Module

Python comes with the bsddb module, which wraps the Berkeley Database library (also known as BSD
DB) if that library is installed on your system and your Python installation is built to support it. With
the BSD DB library, you can create hash, binary tree, or record-based files that generally behave like
dictionaries. On Windows, Python includes a port of the BSD DB library, thus ensuring that module
bsddb is always usable. To download BSD DB sources, binaries for other platforms, and detailed
documentation on BSD DB, see http://www.sleepycat.com. Module bsddb supplies three factory
functions, btopen, hashopen, and rnopen.

btopen, hashopen, rnopen

btopen(filename,flag='r',*many_other_optional_arguments)
hashopen(filename,flag='r',*many_other_optional_arguments)
rnopen(filename,flag='r',*many_other_optional_arguments)

btopen opens or creates the binary tree format file named by filename (a string that denotes any path
to a file, not just a name), and returns a suitable BTree object to access and manipulate the file.
Argument flag has exactly the same values and meaning as for anydbm.open. Other arguments
indicate low-level options that allow fine-grained control, but are rarely used.

hashopen and rnopen work the same way, but open or create hash format and record format files,
returning objects of type Hash and Record. hashopen is generally the fastest format and makes sense
when you are using keys to look up records. However, if you also need to access records in sorted
order, use btopen, or if you need to access records in the same order in which you originally wrote
them, use rnopen. Using hashopen does not keep records in order in the file.

An object b of any of the types BTree, Hash, and Record can be indexed as a mapping, with both keys
and values constrained to being strings. Further, b also supports sequential access through the
concept of a current record. b supplies the following methods.

close

b.close(  )

Closes b. Call no other method on b after b.close( ).

first

b.first(  )

Sets b's current record to the first record, and returns a pair (key,value) for the first record. The order
of records is arbitrary, except for BTree objects, which ensure records are sorted in alphabetical order
of their keys. b.first( ) raises KeyError if b is empty.

has_key

b.has_key(key)

Returns True if string key is a key in b, otherwise returns False.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


keys

b.keys(  )

Returns the list of b's key strings. The order is arbitrary, except for BTree objects, which return keys
in alphabetical order.

last

b.last(  )

Sets b's current record to the last record and returns a pair (key,value) for the last record. Type Hash
does not supply method last.

next

b.next(  )

Sets b's current record to the next record and returns a pair (key,value) for the next record. b.next( )
raises KeyError if b has no next record.

previous

b.previous(  )

Sets b's current record to the previous record and returns a pair (key,value) for the previous record.
Type Hash does not supply method previous.

set_location

b.set_location(key)

Sets b's current record to the item with string key key, and returns a pair (key,value). If key is not a
key in b, and b is of type BTree, b.set_location(key) sets b's current record to the item whose key is
the smallest key larger than key and returns that key/value pair. For other object types, set_location
raises KeyError if key is not a key in b.

11.3.1 Examples of Berkeley DB Use

The Berkeley DB is suited to tasks similar to those for which DBM-like files are appropriate. Indeed,
anydbm uses dbhash, the DBM-like interface to the Berkeley DB, to create new DBM-like files. In
addition, the Berkeley DB can also use other file formats when you use module bsddb explicitly. The
binary tree format, while not quite as fast as the hashed format when all you need is keyed access, is
excellent when you also need to access keys in alphabetical order.

The following example handles the same task as the DBM example shown earlier, but uses bsddb
rather than anydbm:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


import fileinput, os, bsddb
wordPos = {  }
sep = os.pathsep
for line in fileinput.input(  ):
    pos = '%s%s%s'%(fileinput.filename(  ), sep, fileinput.filelineno(  ))
    for word in line.split(  ):
        wordPos.setdefault(word,[  ]).append(pos)
btOut = bsddb.btopen('btindex','n')
sep2 = sep * 2
for word in wordPos:
    btOut[word] = sep2.join(wordPos[word])
btOut.close(  )

The differences between this example and the DBM one are minimal: writing a new binary tree format
file with bsddb is basically the same task as writing a new DBM-like file with anydbm. Reading back
the data using bsddb.btopen('btindex') rather than anydbm.open('indexfile') is similarly trivial. To
illustrate the extra features of binary trees regarding access to keys in alphabetical order, we'll
perform a slightly more general task. The following example treats its command-line arguments as
specifying the beginning of words, and prints the lines in which any word with such a beginning
appears:

import sys, os, bsddb, linecache
btIn = bsddb.btopen('btindex')
sep = os.pathsep
sep2 = sep * 2

for word in sys.argv[1:]:
    key, pos = btIn.set_location(word)
    if not key.startswith(word):
         sys.stderr.write('Word-start %r not found in index file\n' % word)
    while key.startswith(word):
        places = pos.split(sep2)
        for place in places:
            fname, lineno = place.split(sep)
            print "%r occurs in line %s of file %s:" % (word,lineno,fname)
            print linecache.getline(fname, int(lineno)),
        try: key, pos = btIn.next(  )
        except IndexError: break

This example exploits the fact that btIn.set_location sets btIn's current position to the smallest key
larger than word, when word itself is not a key in btIn. When word is a word-beginning, and keys are
words, this means that set_location sets the current position to the first word, in alphabetical order,
that starts with word. The tests with key.startswith(word) let us check that we're still scanning words
with that beginning, and terminate the while loop when that is no longer the case. We perform the
first such test in an if statement, right before the while, because we want to single out the case where
no word at all starts with the desired beginning, and output an error message in that specific case.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

11.4 The Python Database API (DBAPI) 2.0

As I mentioned earlier, the Python standard library does not come with an RDBMS interface, but there
are many free third-party modules that let your Python programs access specific databases. Such
modules mostly follow the Python Database API 2.0 standard, also known as the DBAPI.

At the time of this writing, Python's DBAPI Special Interest Group (SIG) was busy preparing a new
version of the DBAPI (possibly to be known as 3.0 when it is ready). Programs written against DBAPI
2.0 should work with minimal or no changes with the future DBAPI 3.0, although 3.0 will no doubt
offer further enhancements that future programs will be able to take advantage of.

If your Python program runs only on Windows, you may prefer to access databases by using
Microsoft's ADO package through COM. For more information on using Python on Windows, see the
book Python Programming on Win32, by Mark Hammond and Andy Robinson (O'Reilly). Since ADO
and COM are platform-specific, and this book focuses on cross-platform use of Python, I do not cover
ADO nor COM further in this book.

After importing a DBAPI-compliant module, you call the module's connect function with suitable
parameters. connect returns an instance of class Connection, which represents a connection to the
database. This instance supplies commit and rollback methods to let you deal with transactions, a close
method to call as soon as you're done with the database, and a cursor method that returns an
instance of class Cursor. This instance supplies the methods and attributes that you'll use for all
database operations. A DBAPI-compliant module also supplies exception classes, descriptive
attributes, factory functions, and type-description attributes.

11.4.1 Exception Classes

A DBAPI-compliant module supplies exception classes Warning, Error, and several subclasses of Error.
Warning indicates such anomalies as data truncation during insertion. Error's subclasses indicate
various kinds of errors that your program can encounter when dealing with the database and the
DBAPI-compliant module that interfaces to it. Generally, your code uses a statement of the form:

try: 
    ...
except module.Error, err: 
    ...

in order to trap all database-related errors that you need to handle without terminating.

11.4.2 Thread Safety

When a DBAPI-compliant module has an attribute threadsafety that is greater than 0, the module is
asserting some specific level of thread safety for database interfacing. Rather than relying on this, it's
safer and more portable to ensure that a single thread has exclusive access to any given external
resource, such as a database, as outlined in Chapter 14.

11.4.3 Parameter Style

A DBAPI-compliant module has an attribute paramstyle that identifies the style of markers to use as
placeholders for parameters. You insert such markers in SQL statement strings that you pass to
methods of Cursor instances, such as method execute, in order to use runtime-determined parameter
values. Say, for example, that you need to fetch the rows of database table ATABLE where field
AFIELD equals the current value of Python variable x. Assuming the cursor instance is named c, you
could perform this task by using Python's string formatting operator % as follows:

c.execute('SELECT * FROM ATABLE WHERE AFIELD=%r' % x)

However, this is not the recommended approach. This approach generates a different statement
string for each value of x, requiring such statements to be parsed and prepared anew each time. With

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


string for each value of x, requiring such statements to be parsed and prepared anew each time. With
parameter substitution, you pass to execute a single statement string, with a placeholder instead of
the parameter value. This lets execute perform parsing and preparation just once, giving potentially
better performance. For example, if a module's paramstyle attribute is 'qmark', you can express the
above query as:

c.execute('SELECT * FROM ATABLE WHERE AFIELD=?', [x])

The read-only attribute paramstyle is meant to inform your program about the way to use parameter
substitution with that module. The possible values of paramstyle are:

format

The marker is %s, as in string formatting. A query looks like:

c.execute('SELECT * FROM ATABLE WHERE AFIELD=%s', [x])

named

The marker is :name and parameters are named. A query look like:

c.execute('SELECT * FROM ATABLE WHERE AFIELD=:x', {'x':x})

numeric

The marker is :n, giving the parameter's number. A query looks like:

c.execute('SELECT * FROM ATABLE WHERE AFIELD=:1', [x])

pyformat

The marker is %(name)s and parameters are named. A query looks like:

c.execute('SELECT * FROM ATABLE WHERE AFIELD=%(x)s', {'x':x})

qmark

The marker is ?. A query looks like:

c.execute('SELECT * FROM ATABLE WHERE AFIELD=?', [x])

When paramstyle does not imply named parameters, the second argument of method execute is a
sequence. When parameters are named, the second argument of method execute is a dictionary.

11.4.4 Factory Functions

Parameters passed to the database via placeholders must typically be of the right type. This means
Python numbers (integers or floating-point values), strings (plain or Unicode), and None to represent
SQL NULL. Python has no specific types to represent dates, times, and binary large objects (BLOBs). A
DBAPI-compliant module supplies factory functions to build such objects. The types used for this
purpose by most DBAPI-compliant modules are those supplied by module mxDateTime, covered in
Chapter 12, and strings or buffer types for BLOBs. The factory functions are as follows.

Binary

Binary(string)

Returns an object representing the given string of bytes as a BLOB.

Date

Date(year,month,day)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns an object representing the specified date.

DateFromTicks

DateFromTicks(s)

Returns an object representing the date that is s seconds after the epoch of module time, covered in
Chapter 12. For example, DateFromTicks(time.time( )) is today's date.

Time

Time(hour,minute,second)

Returns an object representing the specified time.

TimeFromTicks

TimeFromTicks(s)

Returns an object representing the time that is s seconds after the epoch of module time, covered in
Chapter 12. For example, TimeFromTicks(time.time( )) is the current time.

Timestamp

Timestamp(year,month,day,hour,minute,second)

Returns an object representing the specified date and time.

TimestampFromTicks

TimestampFromTicks(s)

Returns an object representing the date and time that is s seconds after the epoch of module time,
covered in Chapter 12. For example, TimestampFromTicks(time.time( )) is the current date and time.

11.4.5 Type Description Attributes

A Cursor instance's attribute description describes the types and other characteristics of each column
of a query. Each column's type (the second item of the tuple describing the column) equals one of the
following attributes of the DBAPI-compliant module:

BINARY

Describes columns containing BLOBs

DATETIME

Describes columns containing dates, times, or both

NUMBER

Describes columns containing numbers of any kind

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ROWID

Describes columns containing a row-identification number

STRING

Describes columns containing text of any kind

A cursor's description, and in particular each column's type, is mostly useful for introspection about
the database your program is working with. Such introspection can help you write general modules
that are able to work with databases that have different schemas, schemas that may not be fully
known at the time you are writing your code.

11.4.6 The connect Function

A DBAPI-compliant module's connect function accepts arguments that vary depending on the kind of
database and the specific module involved. The DBAPI standard recommends, but does not mandate,
that connect accept named arguments. In particular, connect should at least accept optional
arguments with the following names:

database

Name of the specific database to connect

dsn

Data-source name to use for the connection

host

Hostname on which the database is running

password

Password to use for the connection

user

Username for the connection

11.4.7 Connection Objects

A DBAPI-compliant module's connect function returns an object x that is an instance of class
Connection. x supplies the following methods.

close

x.close(  )

Terminates the database connection and releases all related resources. Call close as soon as you're
done with the database, since keeping database connections uselessly open can be a serious resource
drain on the system.

commit

x
.commit(  )

Commits the current transaction in the database. If the database does not support transactions,
x.commit( ) is an innocuous no-op.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


cursor

x.close(  )

Returns a new instance of class Cursor, covered later in this section.

rollback

x.rollback(  )

Rolls back the current transaction in the database. If the database does not support transactions,
x.rollback( ) raises an exception. The DBAPI recommends, but does not mandate, that for databases
that do not support transactions class Connection supplies no rollback method, so that x.rollback( )
raises AttributeError. You can test whether transaction support is present with hasattr(x,'rollback').

11.4.8 Cursor Objects

A Connection instance provides a cursor method that returns an object c that is an instance of class
Cursor. A SQL cursor represents the set of results of a query and lets you work with the records in
that set, in sequence, one at a time. A cursor as modeled by the DBAPI is a richer concept, since it
also represents the only way in which your program executes SQL queries in the first place. On the
other hand, a DBAPI cursor allows you only to advance in the sequence of results (some relational
databases, but not all, also provide richer cursors that are able to go backward as well as forward),
and does not support the SQL clause WHERE CURRENT OF CURSOR. These limitations of DBAPI cursors
enable DBAPI-compliant modules to provide cursors even on RDBMSes that provide no real SQL
cursors at all. An instance of class Cursor c supplies many attributes and methods; the most
frequently used ones are documented here.

close

c.close(  )

Closes the cursor and releases all related resources.

description

A read-only attribute that is a sequence of seven-item tuples, one per column in the last query
executed:

name, typecode, displaysize, internalsize, precision, scale, nullable

c.description is None if the last operation on c was not a query or returned no usable description of the
columns involved. A cursor's description is mostly useful for introspection about the database your
program is working with. Such introspection can help you write general modules that are able to work
with databases that have different schemas, including schemas that may not be fully known at the
time you are writing your code.

execute

c.execute(statement,parameters=None)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


c.execute(statement,parameters=None)

Executes a SQL statement on the database with the given parameters. parameters is a sequence when
the module's paramstyle is 'format', 'numeric', or 'qmark', and a dictionary when 'named' or 'pyformat'.

executemany

c.executemany(statement,*parameters)

Executes a SQL statement on the database, once for each item of the given parameters. parameters is
a sequence of sequences when the module's paramstyle is 'format', 'numeric', or 'qmark', and a
sequence of dictionaries when 'named' or 'pyformat'. For example, the statement:

c.executemany('UPDATE atable SET x=? WHERE y=?',
                     (12,23),(23,34))

that uses a module whose paramstyle is 'qmark' is equivalent to, but probably faster than, the two
statements:

c.execute('UPDATE atable SET x=12 WHERE y=23')
c.execute('UPDATE atable SET x=23 WHERE y=34')

fetchall

c.fetchall(  )

Returns all remaining result rows from the last query as a sequence of tuples. Raises an exception if
the last operation was not a SELECT query.

fetchmany

c.fetchmany(n)

Returns up to n remaining result rows from the last query as a sequence of tuples. Raises an
exception if the last operation was not a SELECT query.

fetchone

c.fetchone(  )

Returns the next result row from the last query as a tuple. Raises an exception if the last operation
was not a SELECT query.

rowcount

A read-only attribute that specifies the number of rows fetched or affected by the last operation, or -1
if the module is unable to determine this value.

11.4.9 DBAPI-Compliant Modules

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Whatever relational database you want to use, there's at least one (and often more than one) DBAPI-
compliant module that you can download from the Internet. All modules listed in the following
sections, except mxODBC, have liberal licenses that are mostly similar to Python's license (the SAP
DB, however, is licensed under GPL) and that let you use them freely in either open source or closed
source programs. mxODBC can be used freely for noncommercial purposes, but you must purchase a
license for any commercial use. There are so many relational databases that it's impossible to list
them all, but here are some of the most popular ones:

ODBC

Open DataBase Connectivity (ODBC) is a popular standard that lets you connect to many
different relational databases, including ones not otherwise supported by DBAPI-compliant
modules, such as Microsoft Jet (also known as the Access database). The Windows distribution
of Python contains an odbc module, but the module is unsupported and complies to an older
version of the DBAPI, not to the current version 2.0. On either Unix or Windows, use mxODBC,
available at http://www.lemburg.com/files/Python/mxODBC.html. mxODBC's paramstyle is
'qmark'. Its connect function accepts three optional arguments, named dsn, user, and password.

Oracle

Oracle is a widespread, commercial RDBMS. To interface to Oracle, I recommend module
DCOracle2, available at http://www.zope.org/Members/matt/dco2. DCOracle2's paramstyle is
'numeric'. Its connect function accepts a single optional, unnamed argument string with the
syntax:

'user/password@service'

Microsoft SQL Server

To interface to Microsoft SQL Server, I recommend module mssqldb, available at
http://www.object-craft.com.au/projects/mssql/. mssqldb's paramstyle is 'qmark'. Its connect
function accepts three arguments, named dsn, user, and passwd, as well as an optional
database argument.

DB2

For IBM DB/2, try module DB2, available at ftp://people.linuxkorea.co.kr/pub/DB2/. DB2's
paramstyle is 'format'. Its connect function accepts three optional arguments, named dsn, uid,
and pwd.

MySQL

MySQL is a widespread, open source RDBMS. To interface to MySQL, try MySQLdb, available at
http://sourceforge.net/projects/mysql-python. MySQLdb's paramstyle is 'format'. Its connect
function accepts four optional arguments, named db, host, user, and passwd.

PostgreSQL

PostgreSQL is an excellent open source RDBMS. To interface to PostgreSQL, I recommend
psycopg, available at http://initd.org/Software/psycopg. psycopg's paramstyle is 'pyformat'. Its
connect function accepts a single mandatory argument, named dsn, with the syntax:

'host=host dbname=dbname user=username password=password'

SAP DB

SAP DB, once known as Adabas, is a powerful RDBMS that used to be closed source, but is now
open source. SAP DB comes with sapdbapi, available at http://www.sapdb.org/sapdbapi.html,
as well as other useful Python modules. sapdbapi's paramstyle is 'pyformat'. Its connect function
accepts three mandatory arguments, named user, password, and database, and an optional
argument named host.

11.4.10 Gadfly

Gadfly, available at http://gadfly.sf.net, is not an interface to some other RDBMS, but rather a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Gadfly, available at http://gadfly.sf.net, is not an interface to some other RDBMS, but rather a
complete RDBMS engine written in Python. Gadfly supports a large subset of standard SQL. For
example, Gadfly lacks NULL, but it does support VIEW, which is a crucial SQL feature that engines
such as MySQL still lack at the time of this writing. Gadfly can run as a daemon server, to which
clients connect with TCP/IP. Alternatively, you can run the Gadfly engine directly in your application's
process, if you don't need other processes to be able to access the same database concurrently.

The gadfly module has several discrepancies from the DBAPI 2.0 covered in this chapter because
Gadfly implements a variant of the older DBAPI 1.0. The concepts are quite close, but several details
differ. The main differences are:

gadfly does not supply custom exception classes, so Gadfly operations that fail raise normal
Python exceptions, such as IOError, NameError, etc.

gadfly does not supply a paramstyle attribute. However, the module behaves as if it supplied a
paramstyle of 'qmark'.

gadfly does not supply a function named connect; use the gadfly.gadfly or gadfly.client.gfclient
functions instead.

gadfly does not supply factory functions for data types.

Gadfly cursors do not supply the executemany method. Instead, in the specific case in which
the SQL statement is an INSERT, the execute method optionally accepts as its second argument
a list of tuples and inserts all the data.

Gadfly cursors do not supply the rowcount method.

The gadfly module supplies the following functions.

gadfly

gadfly.gadfly(dbname,dirpath)

Returns a connection object for the database named dbname, which must have been previously
created in the directory indicated by string dirpath. The database engine runs in the same process as
your application.

gfclient

gadfly.client.gfclient(policyname, port, password, host)

Returns a connection object for the database served by a gfserve process on the given host and port.
policyname identifies the level of access required, and is often 'admin' to specify unlimited access.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 12. Time Operations

A Python program can handle time in several ways. Time intervals are represented by floating-point
numbers, in units of seconds (a fraction of a second is the fractional part of the interval). Particular
instants in time are expressed in seconds since a reference instant, known as the epoch. (Midnight,
UTC, of January 1, 1970, is a popular epoch used on both Unix and Windows platforms.) Time instants
often also need to be expressed as a mixture of units of measurement (e.g., years, months, days,
hours, minutes, and seconds), particularly for I/O purposes.

This chapter covers the time module, which supplies Python's core time-handling functionality. The
time module strongly depends on the system C library. The chapter also presents the sched and
calendar modules and the essentials of the popular extension module mx.DateTime. mx.DateTime has
more uniform behavior across platforms than time, which helps account for its popularity.

Python 2.3 will introduce a new datetime module to manipulate dates and times in other ways. At
http://starship.python.net/crew/jbauer/normaldate/, you can download Jeff Bauer's normalDate.py,
which gains simplicity by dealing only with dates, not with times. Neither of these modules is further
covered in this book.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

12.1 The time Module

The underlying C library determines the range of dates that the time module can handle. On Unix
systems, years 1970 and 2038 are the typical cut-off points, a limitation that mx.DateTime lets you
avoid. Time instants are normally specified in UTC (Coordinated Universal Time, once known as GMT,
or Greenwich Mean Time). Module time also supports local time zones and Daylight Saving Time
(DST), but only to the extent that support is supplied by the underlying C system library.

As an alternative to seconds since the epoch, a time instant can be represented by a tuple of nine
integers known as a time-tuple. Items in time-tuples are covered in Table 12-1. All items are integers,
and therefore time-tuples cannot keep track of fractions of a second. In Python 2.2 and later, the
result of any function in module time that used to return a time-tuple is now of type struct_time. You
can still use the result as a tuple, but you can also access the items as read-only attributes x.tm_year,
x.tm_mon, and so on, using the attribute names listed in Table 12-1. Wherever a function used to
require a time-tuple argument, you can now pass an instance of struct_time or any other sequence
whose items are nine integers in the applicable ranges.

Table 12-1. Tuple form of time representation
Item Meaning Field name Range Notes

0 Year tm_year 1970-2038 Wider on some platforms
1 Month tm_mon 1-12 1 is January; 12 is December

2 Day tm_mday 1-31  
3 Hour tm_hour 0-23 0 is midnight; 12 is noon

4 Minute tm_min 0-59  
5 Second tm_sec 0-61 60 and 61 for leap seconds
6 Weekday tm_wday 0-6 0 is Monday; 6 is Sunday
7 Year day tm_yday 1-366 Day number within the year
8 DST flag tm_isdst -1 to 1 -1 means library determines DST

To translate a time instant from "a seconds since the epoch" floating-point value into a time-tuple,
pass the floating-point value to a function (e.g., localtime) that returns a time-tuple with all nine items
valid. When you convert in the other direction, mktime ignores items six (tm_wday) and seven
(tm_yday) of the tuple. In this case, you normally set item eight (tm_isdst) to -1, so that mktime itself
determines whether to apply Daylight Saving Time (DST).

Module time supplies the following functions and attributes.

asctime

asctime([tupletime])

Accepts a time-tuple and returns a 24-character string such as 'Tue Dec 10 18:07:14 2002'. asctime( )
without arguments is like asctime(localtime(time( ))) (i.e., it formats the current time instant).

clock

clock(  )

Returns the current CPU time as a floating-point number of seconds. To measure computational costs
of different approaches, it is generally better to use the results of time.clock rather than those of
time.time. On Unix-like platforms, the reason is that the results of time.clock, using CPU time rather

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


time.time. On Unix-like platforms, the reason is that the results of time.clock, using CPU time rather
than elapsed time, are less dependent than those of time.time on unpredictable factors due to
machine load. On Windows, this reason does not apply, as Windows has no concept of CPU time, but
there is another reason: time.clock uses the higher-precision performance counter machine clock. The
epoch (the time corresponding to a 0.0 result from time.clock) is arbitrary, but differences between
the results of successive calls to time.clock in the same process are accurate.

ctime

ctime([secs])

Like asctime(localtime(secs)) (i.e., accepts an instant expressed in seconds since the epoch and returns
a 24-character string form of that time instant). ctime( ) without arguments is like
asctime(localtime(time( ))) (i.e., it formats the current time instant).

gmtime

gmtime([secs])

Accepts an instant expressed in seconds since the epoch and returns a nine-item time-tuple t with the
UTC time (DST, the last item of t, is always 0). gmtime( ) without arguments is like gmtime(time( ))
(i.e., it returns the nine-item time-tuple for the current time instant).

localtime

localtime([secs])

Accepts an instant expressed in seconds since the epoch and returns a nine-item tuple t with the local
time (DST, the last item of t, is set to 0 or 1, depending on whether DST applies to instant secs
according to local rules). localtime( ) without arguments is like localtime(time( )) (i.e., it returns the
nine-item time-tuple for the current time instant).

mktime

mktime(tupletime)

Accepts an instant expressed as a nine-item tuple in local time and returns a floating-point value with
the instant expressed in seconds since the epoch. DST, the last item in tupletime, is meaningful: set it
to 0 to get solar time, to 1 to get Daylight Saving Time, or to -1 to let mktime compute whether DST is
in effect or not at the given instant.

sleep

sleep(secs)

Suspends the calling thread for secs seconds (secs is a floating-point number and can indicate a
fraction of a second). The calling thread may start executing again before secs seconds (if some signal
wakes it up) or after a longer suspension (depending on system scheduling of processes and threads).

strftime

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


strftime(fmt[,tupletime])

Accepts an instant expressed as a nine-item tuple in local time and returns a string that represents
tupletime as specified by string fmt. If you omit tupletime, strftime uses localtime(time( )) instead (i.e.,
it formats the current time instant in the local time zone). The syntax of string format is similar to the
syntax specified in Section 9.3. However, conversion characters are different, as shown in Table 12-2,
and refer to the time instant specified by tupletime. Specifying width and precision explicitly works on
some platforms, but not on all.

Table 12-2. Conversion characters for strftime
Type char Meaning Special notes

a Weekday name, abbreviated Depends on locale

A Weekday name, full Depends on locale

b Month name, abbreviated Depends on locale

B Month name, full Depends on locale

c Complete date and time representation Depends on locale

d Day of the month Between 1 and 31

H Hour (24-hour clock) Between 0 and 23

I Hour (12-hour clock) Between 1 and 12

j Day of the year Between 1 and 366

m Month number Between 1 and 12

M Minute number Between 0 and 59

p `AM' or `PM' equivalent Depends on locale

S Second number Between 0 and 61

U Week number (Sunday first weekday) Between 0 and 53

w Weekday number 0 is Sunday, up to 6

W Week number (Monday first weekday) Between 0 and 53

x Complete date representation Depends on locale

X Complete time representation Depends on locale

y Year number within century Between 0 and 99

Y Year number 1970 to 2038, or wider

Z Name of time zone Empty if no time zone exists

% A literal % character Encoded as %%

You can obtain dates as formatted by asctime (e.g., 'Tue Dec 10 18:07:14 2002') with the format
string:

'%a %b %d %H:%M:%S %Y'

You can obtain dates compliant with RFC 822 (e.g., 'Tue, 10 Dec 2002 18:07:14 EST') with the format
string:

'%a, %d %b %Y %H:%M:%S %Z'

strptime

strptime(str,fmt='%a %b %d %H:%M:%S %Y')

Parses str according to format string fmt, and returns the instant in time-tuple format. With Python
2.2 and earlier, strptime is not available on all platforms. However, a pure Python implementation is
available at http://aspn.activestate.com/ASPN/Python/Cookbook/Recipe/56036. In Python 2.3, the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


available at http://aspn.activestate.com/ASPN/Python/Cookbook/Recipe/56036. In Python 2.3, the
pure Python implementation will be used as a fallback on platforms that provide no other, so that
time.strptime will always be available.

time

time(  )

Returns the current time instant, a floating-point number of seconds since the epoch. On some
platforms, the precision of time measurements is as low as one second.

timezone

Attribute time.timezone is the offset in seconds of the local time zone (without DST) from UTC (greater
than 0 in the Americas and less than 0 in most of Europe, Asia, and Africa).

tzname

Attribute time.tzname is a pair of locale-dependent strings, the names of the local time zone without
and with DST, respectively.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

12.2 The sched Module

The sched module supplies a class that implements an event scheduler. sched supplies a scheduler
class.

scheduler

class scheduler(timefunc,delayfunc)

An instance s of scheduler is initialized with two functions, which s then uses for all time-related
operations. timefunc must be callable without arguments to get the current time instant (in any unit of
measure), meaning that you can pass time.time. delayfunc must be callable with one argument (a time
duration, in the same units timefunc returns), and it should delay for about that amount of time,
meaning you can pass time.sleep. scheduler also calls delayfunc with argument 0 after each event, to
give other threads a chance; again, this is compatible with the behavior of time.sleep.

A scheduler instance s supplies the following methods.

cancel

s.cancel(event_token)

Removes an event from s's queue of scheduled events. event_token must be the result of a previous
call to s.enter or s.enterabs, and the event must not yet have happened; otherwise cancel raises
RuntimeError.

empty

s.empty(  )

Returns True if s's queue of scheduled events is empty, otherwise False.

enterabs

s.enterabs(when,priority,func,args)

Schedules a future event (i.e., a callback to func(*args)) at time when. when is expressed in the same
units of measure used by the time functions of s. If several events are scheduled for the same instant,
s executes them in increasing order of priority. enterabs returns an event token t, which you may later
pass to s.cancel to cancel this event.

enter

s.enter(delay,priority,func,args)

Like enterabs, except that argument delay is a relative time (the difference from the current instant, in
the same units of measure), while enterabs's argument when is an absolute time (a future instant).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


run

s.run(  )

Runs all scheduled events. s.run loops until s.empty( ), using delayfunc as passed on s's initialization to
wait for the next scheduled event, and then executes the event. If a callback func raises an exception,
s propagates it, but s keeps its own state, removing from the schedule the event whose callback
raised. If a callback func takes longer to run than the time available before the next scheduled event,
s falls behind, but keeps executing scheduled events in order and never drops events. You can call
s.cancel to drop an event explicitly if that event is no longer of interest.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

12.3 The calendar Module

The calendar module supplies calendar-related functions, including functions to print a text calendar
for any given month or year. By default, calendar considers Monday the first day of the week and
Sunday the last one. You can change this setting by calling function calendar.setfirstweekday. calendar
handles years in the range supported by module time, typically 1970 to 2038. Module calendar
supplies the following functions.

calendar

calendar(year,w=2,l=1,c=6)

Returns a multiline string with a calendar for year year formatted into three columns separated by c
spaces. w is the width in characters of each date; each line has length 21*w+18+2*c. l is the number
of lines used for each week.

firstweekday

firstweekday(  )

Returns the current setting for the weekday that starts each week. By default, when calendar is first
imported, this is 0, meaning Monday.

isleap

isleap(year)

Returns True if year is a leap year, otherwise False.

leapdays

leapdays(y1,y2)

Returns the total number of leap days in the years in range(y1,y2).

month

month(year,month,w=2,l=1)

Returns a multiline string with a calendar for month month of year year, one line per week plus two
header lines. w is the width in characters of each date; each line has length 7*w+6. l is the number of
lines for each week.

monthcalendar

monthcalendar(year,month)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns a list of lists of integers. Each sublist represents a week. Days outside month month of year
year are represented by a placeholder value of 0; days within the given month are represented by
their dates, from 1 on up.

monthrange

monthrange(year,month)

Returns a pair of integers. The first item is the code of the weekday for the first day of the month
month in year year; the second item is the number of days in the month. Weekday codes are 0
(Monday) to 6 (Sunday); month numbers are 1 (January) to 12 (December).

prcal

prcal(year,w=2,l=1,c=6)

Like print calendar.calendar(year,w,l,c).

prmonth

prmonth(year,month,w=2,l=1)

Like print calendar.month(year,month,w,l).

setfirstweekday

setfirstweekday(weekday)

Sets the first day of each week to the weekday code weekday. Weekday codes are 0 (Monday) to 6
(Sunday). Module calendar also supplies attributes MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
FRIDAY, SATURDAY, and SUNDAY, whose values are the integers 0 to 6. Use these attributes when
you mean weekday codes (e.g., calendar.FRIDAY instead of 4), to make your code clearer and more
readable.

timegm

timegm(tupletime)

The inverse of time.gmtime: accepts a time instant in time-tuple form and returns the same instant as
a floating-point number of seconds since the epoch.

weekday

weekday(year,month,day)

Returns the weekday code for the given date. Weekday codes are 0 (Monday) to 6 (Sunday); month
numbers are 1 (January) to 12 (December).

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

12.4 The mx.DateTime Module

DateTime is one of the modules in the mx package made available by eGenix GmbH. mx is open
source, and at the time of this writing, mx.DateTime has liberal license conditions similar to those of
Python itself. mx.DateTime's popularity stems from its functional richness and cross-platform
portability. I present only an essential subset of mx.DateTime's rich functionality here; the module
comes with detailed documentation about its advanced time and date handling features.

12.4.1 Date and Time Types

Module DateTime supplies several date and time types whose instances are immutable (and therefore
suitable as dictionary keys). Type DateTime represents a time instant and includes an absolute date,
which is the number of days since an epoch of January 1, year 1 CE, according to the Gregorian
calendar (0001-01-01 is day 1), and an absolute time, which is a floating-point number of seconds
since midnight. Type DateTimeDelta represents an interval of elapsed time, which is a floating-point
number of seconds. Class RelativeDateTime lets you specify dates in relative terms, such as "next
Monday" or "first day of next month." DateTime and DateTimeDelta are covered in detail later in this
section, but RelativeDateTime is not.

Date and time types supply customized string conversion, invoked via the built-in str or automatically
during implicit conversion (e.g., in a print statement). The resulting strings are in standard ISO 8601
formats, such as:

YYYY-MM-DD HH:MM:SS.ss

For finer-grained control of string formatting, use method strftime. Function DateTimeFrom constructs
DateTime instances from strings. Submodules of module mx.DateTime supply other formatting and
parsing functions, using different standards and conventions.

12.4.2 The DateTime Type

Module DateTime supplies factory functions to build instances of type DateTime, which in turn supply
methods, attributes, and arithmetic operators.

12.4.2.1 Factory functions for DateTime

Module DateTime supplies many factory functions that produce DateTime instances. Several of these
factory functions can also be invoked through synonyms. The most commonly used factory functions
are the following.

DateTime, Date, Timestamp

DateTime(year,month=1,day=1,hour=0,minute=0,second=0.0)

Creates and returns a DateTime instance representing the given absolute time. Date and Timestamp
are synonyms of DateTime. day can be less than 0 to denote days counted from the end of the month:
-1 is the last day of the month, -2 the next to last day, and so on. For example:

print mx.DateTime.DateTime(2002,12,-1)    
# prints: 2002-12-31 00:00:00.00

second is a floating-point value and can include an arbitrary fraction of a second.

DateTimeFrom, TimestampFrom

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DateTimeFrom(*args,**kwds)

Creates and returns a DateTime instance built from the given arguments. TimestampFrom is a
synonym of DateTimeFrom. DateTimeFrom can parse strings that represent a date and/or time.
DateTimeFrom can also accept named arguments, taking the same names as those of the arguments
of function DateTime.

DateTimeFromAbsDays

DateTimeFromAbsDays(days)

Creates and returns a DateTime instance representing an instant days days after the epoch. days is a
floating-point number and can include an arbitrary fraction of a day.

DateTimeFromCOMDate

DateTimeFromCOMDate(comdate)

Creates and returns a DateTime instance representing the COM-format date comdate. comdate is a
floating-point number and can include an arbitrary fraction of a day. The COM date epoch is midnight
of January 1, 1900.

DateFromTicks

DateFromTicks(secs)

Creates and returns a DateTime instance representing midnight, local time, of the day of instant secs.
secs is an instant as represented by the time module (i.e., seconds since time's epoch).

gmt, utc

gmt(  )

Creates and returns a DateTime instance representing the current GMT time. utc is a synonym of gmt.

gmtime, utctime

gmtime(secs=None)

Creates and returns a DateTime instance representing the GMT time of instant secs. secs is an instant
as represented by the time module (i.e., seconds since time's epoch). When secs is None, gmtime uses
the current instant as returned by function time.time. utctime is a synonym of gmtime.

localtime

localtime(secs=None)

Creates and returns a DateTime instance representing the local time of instant secs. secs is an instant

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Creates and returns a DateTime instance representing the local time of instant secs. secs is an instant
as represented by the time module (i.e., seconds since time's epoch). When secs is None, localtime
uses the current instant as returned by function time.time.

mktime

mktime(timetuple)

Creates and returns a DateTime instance representing the instant indicated by nine-item tuple
timetuple, which is in the format used by module time.

now

now(  )

Creates and returns a DateTime instance representing the current local time.

TimestampFromTicks

TimestampFromTicks(secs)

Creates and returns a DateTime instance representing the local time of instant secs. secs is an instant
as represented by the time module (i.e., seconds since time's epoch).

today

today(hour=0,minute=0,second=0.0)

Creates and returns a DateTime instance representing the local time for the given time (the default is
midnight) of today's date.

12.4.2.2 Methods of DateTime instances

The most commonly used methods of a DateTime instance d are the following.

absvalues

d.absvalues(  )

Returns a pair (ad,at) where ad is an integer representing d's absolute date and at is a floating-point
number representing d's absolute time.

COMDate

d.COMDate(  )

Returns d's instant in COM format (i.e., a floating-point number that is the number of days and
fraction of a day since midnight of January 1, 1900).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


gmticks

d.gmticks(  )

Returns a floating-point value representing d's instant as seconds (and fraction) since module time's
epoch, assuming d is represented in GMT.

gmtime

d.gmtime(  )

Returns a DateTime instance d1 representing d's instant in GMT, assuming d is represented in local
time.

gmtoffset

d.gmtoffset(  )

Returns a DateTimeDelta instance representing the time zone of d, assuming d is represented in local
time. gmtoffset returns negative values in the Americas, positive ones in most of Europe, Asia, and
Africa.

localtime

d.localtime(  )

Returns a DateTime instance d1 representing d's instant in local time, assuming d is represented in
GMT.

strftime, Format

d.strftime(fmt="%c")

Returns a string representing d as specified by string fmt. The syntax of fmt is the same as in
time.strftime, covered in Section 12.1 earlier in this chapter. Format is a synonym of strftime.

ticks

d.ticks(  )

Returns a floating-point number representing d's instant as seconds (and fraction) since module time's
epoch, assuming d is represented in local time.

tuple

d.tuple(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns d's instant as a nine-item tuple, in the format used by module time.

12.4.2.3 Attributes of DateTime instances

The most commonly used attributes of a DateTime instance d are the following (all read-only):

absdate

d's absolute date, like d.absvalues( )[0]

absdays

A floating-point number representing days (and fraction of a day) since the epoch

abstime

d's absolute time, like d.absvalues( )[1]

date

A string in format 'YYYY-MM-DD', the standard ISO format for the date of d

day

An integer between 1 and 31, the day of the month of d

day_of_week

An integer between 0 and 6, the day of the week of d (Monday is 0)

day_of_year

An integer between 1 and 366, the day of the year of d (January 1 is 1)

dst

An integer between -1 and 1, indicating whether DST is in effect on date d, assuming d is
represented in local time (-1 is unknown, 0 is no, 1 is yes)

hour

An integer between 0 and 23, the hour of the day of d

iso_week

A three-item tuple (year, week, day) with the ISO week notation for d (week is week-of-year;
day is between 1, Monday, and 7, Sunday)

minute

An integer between 0 and 59, the minute of the hour of d

month

An integer between 1 and 12, the month of the year of d

second

A floating-point number between 0.0 and 60.0, the second of the minute of d (DateTime
instances do not support leap seconds)

year

An integer, the year of d (1 is 1 CE, 0 is 1 BCE)

12.4.2.4 Arithmetic on DateTime instances

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


12.4.2.4 Arithmetic on DateTime instances

You can use binary operator - (minus) between two DateTime instances d1 and d2. In this case, d1-d2
is a DateTimeDelta instance representing the elapsed time between d1 and d2, which is greater than 0
if d1 is later than d2. You can use binary operators + and - between a DateTime instance d and a
number n. d+n, d-n, and n+d are all DateTime instances differing from d by n (or -n) days (and
fraction of a day, if n is a floating-point number), and n-d is arbitrarily defined to be equal to d-n.

12.4.3 The DateTimeDelta Type

Instances of type DateTimeDelta represent differences between time instants. Internally, a
DateTimeDelta instance stores a floating-point number that represents a number of seconds (and
fraction of a second).

12.4.3.1 Factory functions for DateTimeDelta

Module DateTime supplies many factory functions that produce DateTimeDelta instances. Some of
these factory functions can be invoked through one or more synonyms. The most commonly used are
the following.

DateTimeDelta

DateTimeDelta(days,hours=0.0,minutes=0.0,seconds=0.0)

Creates and returns a DateTimeDelta instance by the formula:

seconds+60.0*(minutes+60.0*(hours+24.0*days))

DateTimeDeltaFrom

DateTimeDeltaFrom(*args,**kwds)

Creates and returns a DateTimeDelta instance from the given arguments. See the DateTimeFrom
factory function for type DateTime earlier in this chapter.

DateTimeDeltaFromSeconds

DateTimeDeltaFromSeconds(seconds)

Like DateTimeDelta(0,0,0,seconds).

TimeDelta, Time

TimeDelta(hours=0.0,minutes=0.0,seconds=0.0)

Like DateTimeDelta(0,hours,minutes,seconds). Function TimeDelta is guaranteed to accept named
arguments. Time is a synonym for TimeDelta.

TimeDeltaFrom, TimeFrom

TimeDeltaFrom(*args,**kwds)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Like DateTimeDeltaFrom, except that the first positional numeric arguments, if any, indicate hours, not
days as for DateTimeDeltaFrom. TimeFrom is a synonym for TimeDeltaFrom.

TimeFromTicks

TimeFromTicks(secs)

Creates and returns a DateTimeDelta instance for the amount of time between the instant secs (in the
format used by the time module) and midnight of the same day as that of the instant secs.

12.4.3.2 Methods of DateTimeDelta instances

The most commonly used methods of a DateTimeDelta instance d are the following.

absvalues

d.absvalues(  )

Returns a pair (ad,at) where ad is an integer (d's number of days), at is a floating-point number (d's
number of seconds modulo 86400), and both have the same sign.

strftime, Format

d.strftime(fmt="%c")

Returns a string representing d as specified by string fmt. The syntax of fmt is the same as in
time.strftime, covered in Section 12.1 earlier in this chapter, but not all specifiers are meaningful. The
result of d.strftime does not reflect the sign of the time interval that d represents; to display the sign
as well, you must affix it to the string by separate string manipulation. For example:

if d.seconds >= 0.0: return d.strftime(fmt)
else: return '-' + d.strftime(fmt)

Format is a synonym of strftime.

tuple

d.tuple(  )

Returns a tuple (day,hour,minute,second) where each item is a signed number in the respective range.
second is a floating-point number, and the other items are integers.

12.4.3.3 Attributes of DateTimeDelta instances

A DateTimeDelta instance d supplies the following attributes (all read-only):

day , hour, minute, second

Like the four items of the tuple returned by d.tuple( )

days , hours, minutes, seconds

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Each is a floating-point value expressing d's value in the given unit of measure, so that:

d.seconds == 60.0*d.minutes == 3600.0*d.hours == 86400.0*d.days

12.4.3.4 Arithmetic on DateTimeDelta instances

You can add or subtract two DateTimeDelta instances d1 and d2, to add or subtract the signed time
intervals they represent. You can use binary operators + and - between a DateTimeDelta instance d
and a number n: n is taken as a number of seconds (and fraction of a second, if n is a floating-point
value). You can also multiply or divide d by n, to scale the time interval d represents. Each of these
operations yields another DateTimeDelta instance. You can also add or subtract a DateTimeDelta
instance dd to or from a DateTime instance d, yielding another DateTime instance d1 that differs from
d by the signed time interval indicated by dd.

12.4.4 Other Attributes

Module mx.DateTime also supplies many constant attributes. The attributes used most often are:

oneWeek , oneDay, oneHour, oneMinute, oneSecond

Instances of DateTimeDelta representing the indicated durations

Monday , Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday

Integers representing the weekdays: Monday is 0, Tuesday is 1, and so on

Weekday

A dictionary that maps integer weekday numbers to their string names and vice versa: 0 maps
to 'Monday', 'Monday' maps to 0, and so on

January , February, March, April, May, June, July, August, September, October, November, December

Integers representing the months: January is 1, February is 2, and so on

Month

A dictionary that maps integer month numbers to their string names and vice versa: 1 maps to
'January', 'January' maps to 1, and so on

Module mx.DateTime supplies one other useful function.

cmp

cmp(obj1,obj2,accuracy=0.0)

Compares two DateTime or DateTimeDelta instances obj1 and obj2, and returns -1, 0, or 1, like the
built-in function cmp. It also returns 0 (meaning that obj1 and obj2 are "equal") if the two instants or
durations differ by less than accuracy seconds.

12.4.5 Submodules

Module mx.DateTime also supplies several submodules for specialized purposes. Module
mx.DateTime.ISO supplies functions to parse and generate date and time strings in ISO 8601 formats.
Module mx.DateTime.ARPA supplies functions to parse and generate date and time strings in the ARPA
format that is widely used on the Internet:

[Day, ]DD Mon YYYY HH:MM[:SS] [ZONE]

Module mx.DateTime.Feasts supplies functions to compute the date of Easter Sunday, and other

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Module mx.DateTime.Feasts supplies functions to compute the date of Easter Sunday, and other
moveable feast days that depend on it, for any given year. If your machine is connected to the
Internet, you can use module mx.DateTime.NIST to access the accurate world standard time provided
by NIST atomic clocks. Thanks to NIST's atomic clocks, the module is able to compute the current
date and time very accurately. The module calibrates your computer's approximate clock with
reference to NIST's clocks and compensates for any network delays incurred while accessing NIST.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 13. Controlling Execution

Python directly exposes many of the mechanisms it uses internally. This helps you understand Python
at an advanced level, and means you can hook your own code into such documented Python
mechanisms and control those mechanisms to some extent. For example, Chapter 7 covered the
import statement and the way Python arranges for built-ins to be made implicitly visible. This chapter
covers other advanced techniques that Python offers for controlling execution, while Chapter 17
covers execution-control possibilities that apply specifically to the three crucial phases of
development: testing, debugging, and profiling.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

13.1 Dynamic Execution and the exec Statement

With Python's exec statement, it is possible to execute code that you read, generate, or otherwise
obtain during the running of a program. The exec statement dynamically executes a statement or a
suite of statements. exec is a simple keyword statement with the following syntax:

exec code[ in globals[,locals]]

code can be a string, an open file-like object, or a code object. globals and locals are dictionaries. If
both are present, they are the global and local namespaces, respectively, in which code executes. If
only globals is present, exec uses globals in the role of both namespaces. If neither globals nor locals is
present, code executes in the current scope. Running exec in current scope is not good programming
practice, since it can bind, rebind, or unbind any name. To keep things under control, you should use
exec only with specific, explicit dictionaries.

13.1.1 Avoiding exec

More generally, use exec only when it's really indispensable. Most often, it is better avoided in favor of
more specific mechanisms. For example, a frequently asked question is, "How do I set a variable
whose name I just read or constructed?" Strictly speaking, exec lets you do this. For example, if the
name of the variable you want to set is in variable varname, you might use:

exec varname+'=23'

Don't do this. An exec statement like this in current scope causes you to lose control of your
namespace, leading to bugs that are extremely hard to track and more generally making your
program unfathomably difficult to understand. An improvement is to keep the "variables" you need to
set, not as variables, but as entries in a dictionary, say mydict. You can then use the following
variation:

exec varname+'=23' in mydict

While this is not as terrible as the previous example, it is still a bad idea. The best approach is to keep
such "variables" as dictionary entries and not use exec at all to set them. You can just use:

mydict[varname] = 23

With this approach, your program is clearer, more direct, more elegant, and faster. While there are
valid uses of exec, they are extremely rare and they should always use explicit dictionaries.

13.1.2 Restricting Execution

If the global namespace is a dictionary without key '_ _builtins_ _', exec implicitly adds that key,
referring to module _ _builtin_ _ (or to the dictionary thereof), as covered in Chapter 8. If the global
namespace dictionary has a key '_ _builtins_ _' and the value doesn't refer to the real module _
_builtin_ _, code's execution is restricted, as covered in the upcoming section Section 13.2.

13.1.3 Expressions

exec can execute an expression because any expression is also a valid statement (called an
expression statement). However, Python ignores the value returned by an expression statement in
this case. To evaluate an expression and obtain the expression's value, see built-in function eval,
covered in Chapter 8.

13.1.4 Compile and Code Objects

To obtain a code object to use with exec, you normally call built-in function compile with the last
argument set to 'exec' (as covered in Chapter 8). I recommend using compile on statements held in a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


argument set to 'exec' (as covered in Chapter 8). I recommend using compile on statements held in a
string and then using exec on the resulting code object, rather than giving exec the string to compile
and execute. This separation lets you check for syntax errors separately from evaluation-time errors.
You can often arrange things so the string is compiled once and the code object is executed
repeatedly, speeding things up. eval can also benefit from such separation.

A code object has a read-only attribute co_names, the tuple of the names used in the code. Knowing
what names the code is about to access may sometimes help you optimize the preparation of the
dictionary you pass to exec or eval as the namespace. Since you need to provide values only for those
names, you may save work by not preparing other entries.

For example, your application may dynamically accept code from the user with the convention that
variable names starting with data_ refer to files residing in subdirectory data that user-written code
doesn't need to read explicitly. User-written code may in turn compute and leave results in global
variables with names starting with result_, which your application will write back as files in
subdirectory data. Thanks to this convention, you may later move the data elsewhere (e.g., to BLOBs
in a database), and user-written code won't be affected. Here's how you might implement these
conventions efficiently:

def exec_with_data(user_code_string):
    user_code = compile(user_code_string, '<user code>', 'exec')
    datadict = {  }
    for name in user_code.co_names:
        if name.startswith('data_'):
            datafile = open('data/%s' % name[5:], 'rb')
            datadict[name] = datafile.read(  )
            datafile.close(  )
    exec user_code in datadict
    for name in datadict:
         if name.startswith('result_'):
            datafile = open('data/%s' % name[7:], 'wb')
            datafile.write(datadict[name])
            datafile.close(  )

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

13.2 Restricted Execution

Python code executed dynamically normally suffers no special restrictions. Python's general
philosophy is to give the programmer tools and mechanisms that make it easy to write good, safe
code, and trust the programmer to use them appropriately. Sometimes, however, trust might not be
warranted. When code to execute dynamically comes from an untrusted source, the code itself is
untrusted. In such cases it's important to selectively restrict the execution environment so that such
code cannot accidentally or maliciously inflict damage. If you never need to execute untrusted code,
you can skip this section. However, Python makes it easy to impose appropriate restrictions on
untrusted code if you ever do need to execute it.

When the _ _builtins_ _ item in the global namespace isn't the standard _ _builtin_ _ module (or the
latter's dictionary), Python knows the code being run is restricted. Restricted code executes in a
sandbox environment, previously prepared by the trusted code, that requests the restricted code's
execution. Standard modules rexec and Bastion help you prepare an appropriate sandbox. To ensure
that restricted code cannot escape the sandbox, a few crucial internals (e.g., the _ _dict_ _ attributes
of modules, classes, and instances) are not directly available to restricted code.

There is no special protection against restricted code raising exceptions. On the contrary, Python
diagnoses any attempt by restricted code to violate the sandbox restrictions by raising an exception.
Therefore, you should generally run restricted code in the try clause of a try/except statement, as
covered in Chapter 6. Make sure you catch all exceptions and handle them appropriately if your
program needs to keep running in such cases.

There is no built-in protection against untrusted code attempting to inflict damage by consuming large
amounts of memory or time (so-called denial-of-service attacks). If you need to ward against such
attacks, you can run untrusted code in a separate process. The separate process uses the
mechanisms described in this section to restrict the untrusted code's execution, while the main
process monitors the separate one and terminates it if and when resource consumption becomes
excessive. Processes are covered in Chapter 14. Resource monitoring is currently supported by the
standard Python library only on Unix-like platforms (by platform-specific module resource), and this
book covers only cross-platform Python.

As a final note, you need to know that there are known, exploitable security weaknesses in the
restricted-execution mechanisms, even in the most recent versions of Python. Although restricted
execution is better than nothing, at the time of this writing there are no known ways to execute
untrusted code that are suitable for security-critical situations.

13.2.1 The rexec Module

The rexec module supplies the RExec class, which you can instantiate to prepare a typical restricted-
execution sandbox environment in which to run untrusted code.

RExec

class RExec(hooks=None,verbose=False)

Returns an instance of the RExec class, which corresponds to a new restricted-execution environment,
also known as a sandbox. hooks, if not None, lets you exert fine-grained control on import statements
executed in the sandbox. This is an advanced and rarely used functionality, and I do not cover it
further in this book. verbose, if true, causes additional debugging output to be sent to standard output
for many kinds of operations in the sandbox.

13.2.1.1 Methods

An instance r of RExec provides the following methods. Versions of RExec's methods whose names

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


An instance r of RExec provides the following methods. Versions of RExec's methods whose names
start with s_ rather than r_ are also available. An r_ method and its s_ variant are equivalent, but the
latter also ensures that untrusted code can call only safe methods on standard file objects sys.stdin,
sys.stdout, and sys.stderr. This is needed only in the unusual case in which you have replaced the
standard file objects with file-like objects that also expose additional, unsafe methods or attributes.

r_add_module

r.r_add_module(modname)

Adds and returns a new empty module if no module yet corresponds to name modname in the
sandbox. If the sandbox already contains a module object that corresponds to name modname,
r_add_module returns that module object.

r_eval, s_eval

r.r_eval(expr)
r.s_eval(expr)

r_eval executes expr, which must be an expression or a code object, in the restricted environment and
returns the expression's result.

r_exec, s_exec

r.r_exec(code)
r.s_exec(code)

r_exec executes code, which must be a string of code or a code object, in the restricted environment.

r_execfile, s_execfile

r.r_execfile(filename)
r.s_execfile(filename)

r_execfile executes the file identified by filename, which must contain Python code, in the restricted
environment.

r_import, s_import

r.r_import(modname[,globals[,locals[,fromlist]]])
r.s_import(modname[,globals[,locals[,fromlist]]])

Imports the module modname into the restricted environment. All parameters are just like for built-in
function _ _import_ _, covered in Chapter 7. r_import raises ImportError if the module is considered
unsafe. A subclass of RExec may override r_import, to change the set of modules available to import
statements in untrusted code and/or to otherwise change import functionality for the sandbox.

r_open

r.r_open(filename[,mode[,bufsize]])

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Executes when restricted code calls the built-in open. All parameters are just like for the built-in open,
covered in Chapter 10. The version of r_open in class RExec opens any file for reading, but none for
writing or appending. A subclass may ease or tighten these restrictions.

r_reload, s_reload

r.r_reload(module)
r.s_reload(module)

Reloads the module object module in the restricted-execution environment, similarly to built-in
function reload, covered in Chapter 7.

r_unload, s_unload

r.r_unload(module)
r.s_unload(module)

Unloads the module object module from the restricted-execution environment (i.e., removes it from
the dictionary sys.modules as seen by untrusted code executing in the sandbox).

13.2.1.2 Attributes

When RExec's defaults don't fully correspond to your application's specific needs, you can easily
customize the restricted-execution sandbox. Class RExec has several attributes that are tuples of
strings. The items of these tuples are names of functions, modules, or directories to be specifically
allowed or disallowed, as follows:

nok_builtin_names

Built-in functions not to be supplied in the sandbox

ok_builtin_modules

Built-in modules that the sandbox can import

ok_path

Used as sys.path for the sandbox's import statements

ok_posix_names

Attributes of os that the sandbox may import

ok_sys_names

Attributes of sys that the sandbox may import

When you instantiate RExec, the new instance uses class attributes to prepare the sandbox. If you
need to customize the sandbox, subclass RExec and instantiate the subclass. Your subclass can
override RExec's attributes, typically by copying the value that each attribute has in RExec and
selectively adding or removing specific items.

13.2.1.3 Using rexec

In the simplest case, you can instantiate RExec and call the instance's r_exec and r_eval methods
instead of using statement exec and built-in function eval. For example, here's a somewhat safer
variant of built-in function input:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


import rexec
rex = rexec.RExec(  )
def rexinput(prompt):
    expr = raw_input(prompt)
    return rex.r_eval(expr)

Function rexinput in this example is roughly equivalent to built-in function input, covered in Chapter 8.
However, rexinput wards against some of the abuses that are possible if you don't trust the user who's
supplying input. For example, with the normal, unrestricted eval, an expression such as _ _import_
_('os').system('xx') lets the interactive user run any external program xx. Built-in function input
implicitly uses normal, unrestricted eval on the user's input. Function rexinput uses restricted
execution instead, so that the same expression fails and raises AttributeError, claiming that module os
has no attribute named system. This example does not use a try/except around the r_eval call, but of
course your application code that calls rexinput should use try/except if you need your program to
keep executing when the user makes mistakes or unsuccessful attempts to break security. Mistakes
and attempts to break security both get diagnosed through exceptions.

This example's usefulness comes from the fact that a restricted-execution sandbox can hide some
functionality from untrusted code, so that untrusted code cannot take advantage of that functionality
to wreak havoc. Function os.system is a prime example of functionality that should always be
prohibited to untrusted code, so class RExec forbids it by default.

After creating a new restricted-execution environment r with r=rexec.RExec( ), you can optionally
complete r's initialization by inserting modules into r's sandbox with add_module, then inserting
attributes in those modules with built-in function setattr. Simple assignment statements also work just
fine if the attributes have names that you know at the time you're writing your sandbox-preparation
code. Here's how to enrich the previous example to let the user-entered expressions use all functions
from module math (covered in Chapter 15) as if they were built-ins, since you know that none of the
functions presents any security risk:

import rexec, math
rex = rexec.RExec(  )
burex = rex.add_module('_ _builtins_ _')
for function in dir(math):
    if function[0] != '_':
        setattr(burex, function, getattr(math, function))
def rich_input(prompt):
    expr = raw_input(prompt)
    return rex.r_eval(expr)

Function rich_input in this example is now both richer and safer than the built-in input. It's richer
because the user can now also input expressions such as sin(1.0). It's safer, just like rexinput in the
previous example, because it uses restricted execution to limit untrusted code.

Normally, you use add_module, and then add attributes, only for the modules named '_ _main_ _' and
'_ _builtins_ _'. If the untrusted code needs other modules that it is allowed to import (based on the
ok_builtin_modules and ok_path attributes of the RExec subclass you instantiated), the untrusted code
can import those other modules normally, usually with an import statement or a call to built-in
function _ _import_ _. However, you can also choose to use add_module for other module names in
order to synthesize, restrict, or otherwise modify modules that later get imported by the untrusted
code.

Once you have populated the sandbox, untrusted code can call the functions and other callables that
you added to the sandbox. When called, such functions and other callables execute in the normal
(non-sandbox) environment, without constraints. You should therefore ensure that untrusted code
cannot cause damage by misusing such callables. Module Bastion, covered in the next section, deals
with the specific task of selectively exposing object methods.

13.2.2 The Bastion Module

The Bastion module supplies a class, each of whose instances wraps an object and selectively exposes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The Bastion module supplies a class, each of whose instances wraps an object and selectively exposes
some of the wrapped object's methods, but no other attributes.

Bastion

class Bastion(obj,filter=lambda n: n[:1]!='_',name=None)

A Bastion instance b wrapping object obj exposes only those methods of obj for whose name filter
returns true. An access b.attr works like:

if filter('attr'): return obj.attr
else: raise AttributeError, 'attr'

plus a check that b.attr is a method, not an attribute of any other type.

The default filter accepts all method names that do not start with an underscore (_) (i.e., all methods
that are neither private nor special methods). When name is not None, repr(b) is the string '<Bastion
for name>'. When name is None, repr(b) is '<Bastion for %s>' % repr(obj).

Suppose, for example, that your application supplies a class MyClass whose public methods are all
safe, while private and special methods, as well as attributes that are not methods, should be hidden
from untrusted code. In the sandbox, you can provide a factory function that supplies safely wrapped
instances of MyClass to untrusted code as follows:

import rexec, Bastion
rex = rexec.RExec(  )
burex = rex.add_module('_ _builtins_ _')
def SafeMyClassFactory(*args, **kwds):
    return Bastion.Bastion(MyClass(*args, **kwds))
burex.MyClass = SafeMyClassFactory

Now, untrusted code that you run with rex.r_exec can instantiate and use safely wrapped instances of
MyClass:

m = MyClass(1,2,3)
m.somemethod(4,5)

However, any attempt by the untrusted code to access private or special methods, even indirectly
(e.g., m[6]=7 indirectly tries to use special method _ _setitem_ _), raises AttributeError, whether the
real MyClass supplies such methods or not. Suppose you want a slightly less tight wrapping, allowing
untrusted code to use special method _ _getitem_ _, as well as normal public methods, but no other.
You just need to provide a custom filter function when you instantiate Bastion:

import rexec, Bastion
rex = rexec.RExec(  )
burex = rex.add_module('_ _builtins_ _')
def SafeMyClassFactory(*args, **kwds):
    def is_safe(n): n=  ='_ _getitem_ _' or n[0]!='_'
    return Bastion.Bastion(MyClass(*args, **kwds), is_safe)
burex.MyClass = SafeMyClassFactory

Now, untrusted code that is run in sandbox rex can get, but not set, items of the instances of MyClass
it builds with the factory function (assuming, of course, that your class MyClass does supply method _
_getitem_ _).

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

13.3 Internal Types

Some of the internal Python objects that I mention in this section are hard to use. Using such objects
correctly requires some study of Python's own C (or Java) sources. Such black magic is rarely needed,
except to build general-purpose development frameworks and similar wizardly tasks. Once you do
understand things in depth, Python empowers you to exert control, if and when you need to. Since
Python exposes internal objects to your Python code, you can exert that control by coding in Python,
even when a nodding acquaintance with C (or Java) is needed to understand what is going on.

13.3.1 Type Objects

The built-in type named type acts as a factory object, returning objects that are types themselves
(type was a built-in function in Python 2.1 and earlier). Type objects don't need to support any special
operations except equality comparison and representation as strings. Most type objects are callable,
and return new instances of the type when called. In particular, built-in types such as int, float, list,
str, tuple, and dict all work this way. The attributes of the types module are the built-in types, each
with one or more names. For example, types.DictType and types.DictionaryType both refer to type({ }),
also known since Python 2.2 as the built-in type dict. Besides being callable to generate instances,
type objects are useful in Python 2.2 and later because you can subclass them, as covered in Chapter
5.

13.3.2 The Code Object Type

As well as by using built-in function compile, you can also get a code object via the func_code attribute
of a function or method object. A code object's co_varnames attribute is the tuple of names of local
variables, including the formal arguments; the co_argcount attribute is the number of arguments.
Code objects are not callable, but you can rebind the func_code attribute of a compatible function
object in order to wrap a code object into callable form. Module new supplies a function to create a
code object, as well as other functions to create instances, classes, functions, methods, and modules.
Such needs are both rare and advanced, and are not covered further in this book.

13.3.3 The frame Type

Function _getframe in module sys returns a frame object from Python's call stack. A frame object has
attributes that supply information about the code executing in the frame and the execution state.
Modules traceback and inspect help you access and display information, particularly when an exception
is being handled. Chapter 17 provides more information about frames and tracebacks.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

13.4 Garbage Collection

Python's garbage collection normally proceeds transparently and automatically, but you can choose to
exert some direct control. The general principle is that Python collects each object x at some time
after x becomes unreachable, that is, when no chain of references can reach x by starting from a local
variable of a function that is executing, nor from a global variable of a loaded module. Normally, an
object x becomes unreachable when there are no references at all to x. However, a group of objects
can also be unreachable when they reference each other.

Classic Python keeps in each object x a count, known as a reference count, of how many references to
x are outstanding. When x's reference count drops to 0, CPython immediately collects x. Function
getrefcount of module sys accepts any object and returns its reference count (at least 1, since
getrefcount itself has a reference to the object it's examining). Other versions of Python, such as
Jython, rely on different garbage collection mechanisms, supplied by the platform they run on (e.g.,
the JVM). Modules gc and weakref therefore apply only to CPython.

When Python garbage-collects x and there are no references at all to x, Python then finalizes x (i.e.,
calls x._ _del_ _( )) and makes the memory that x occupied available for other uses. If x held any
references to other objects, Python removes the references, which in turn may make other objects
collectable by leaving them unreachable.

13.4.1 The gc Module

The gc module exposes the functionality of Python's garbage collector. gc deals only with objects that
are unreachable in a subtle way, being part of mutual reference loops. In such a loop, each object in
the loop refers to others, keeping the reference counts of all objects positive. However, an outside
reference no longer exists to the whole set of mutually referencing objects. Therefore, the whole
group, also known as cyclic garbage, is unreachable, and therefore garbage collectable. Looking for
such cyclic garbage loops takes time, which is why module gc exists.

gc exposes functions you can use to help you keep garbage collection times under control. These
functions can sometimes help you track down a memory leak—objects that are not getting collected
even though there should be no more references to them—by letting you discover what other objects
are in fact holding on to references to them.

collect

collect(  )

Forces a full cyclic collection run to happen immediately.

disable

disable(  )

Suspends automatic garbage collection.

enable

enable(  )

Re-enables automatic garbage collection previously suspended with disable.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


garbage

A read-only attribute that lists the uncollectable but unreachable objects. This happens if any object in
a cyclic garbage loop has a _ _del_ _ special method, as there may be no safe order in which Python
can finalize such objects.

get_debug

get_debug(  )

Returns an integer, a bit string corresponding to the garbage collection debug flags set with
set_debug.

get_objects New as of Python 2.2

get_objects(  )

Returns a list whose items are all the objects currently tracked by the cyclic garbage collector.

get_referrers

get_referrers(*objs)

Returns a list whose items are all the container objects, currently tracked by the cyclic garbage
collector, that refer to any one or more of the arguments.

get_threshold

get_threshold(  )

Returns a three-item tuple (thresh0, thresh1, thresh2) corresponding to the garbage collection
thresholds set with set_threshold.

isenabled

isenabled(  )

Returns True if cyclic garbage collection is currently enabled. When collection is currently disabled,
isenabled returns False.

set_debug

set_debug(flags)

Sets the debugging flags for garbage collection. flags is an integer, a bit string composed by ORing
(with Python's normal bitwise-OR operator |) zero or more of the following constants exposed by
module gc:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DEBUG_COLLECTABLE

Prints information on collectable objects found during collection

DEBUG_INSTANCES

Meaningful only if DEBUG_COLLECTABLE and/or DEBUG_UNCOLLECTABLE are also set: prints
information on objects found during collection that are instances of classic Python classes

DEBUG_LEAK

The set of debugging flags that make the garbage collector print all information that can help
you diagnose memory leaks, equivalent to the inclusive-OR of all other constants (except
DEBUG_STATS, which serves a different purpose)

DEBUG_OBJECTS

Meaningful only if DEBUG_COLLECTABLE and/or DEBUG_UNCOLLECTABLE are also set: prints
information on objects found during collection that are not instances of classic Python classes

DEBUG_SAVEALL

Saves all collectable objects to list garbage (uncollectable ones are always saved there) to help
diagnose leaks

DEBUG_STATS

Prints statistics during collection to help tune the thresholds

DEBUG_UNCOLLECTABLE

Prints information on uncollectable objects found during collection

set_threshold

set_threshold(thresh0[,thresh1[,thresh2]])

Sets the thresholds that control how frequently cyclic garbage collection cycles run. If you set thresh0
to 0, garbage collection is disabled. Garbage collection is an advanced topic, and the details of the
generational garbage collection approach used in Python and its thresholds are beyond the scope of
this book.

When you know you have no cyclic garbage loops in your program, or when you can't afford the delay
of a cyclic garbage collection run at some crucial time, you can suspend automatic garbage collection
by calling gc.disable( ). You can enable collection again later by calling gc.enable( ). You can test
whether automatic collection is currently enabled by calling gc.isenabled( ), which returns True or
False. To control when the time needed for collection is spent, you can call gc.collect( ) to force a full
cyclic collection run to happen immediately. An idiom for wrapping some time-critical code is
therefore:

import gc
gc_was_enabled = gc.isenabled(  )
if gc_was_enabled:
    gc.collect(  )
    gc.disable(  )
# insert some time-critical code here
if gc_was_enabled:
    gc.enable(  )

The other functionality in module gc is more advanced and rarely used, and can be grouped into two
areas. Functions get_threshold and set_threshold and the debug flag DEBUG_STATS can help you fine-
tune garbage collection to optimize your program's performance. The rest of gc's functionality is there

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


tune garbage collection to optimize your program's performance. The rest of gc's functionality is there
to help you diagnose memory leaks in your program. While gc itself can automatically fix many such
leaks, your program will be faster if it can avoid creating them in the first place.

13.4.2 The weakref Module

Careful design can often avoid reference loops. However, at times you need certain objects to know
about each other, and avoiding mutual references would distort and complicate design. For example,
a container has references to its items, yet it can often be useful for an object to know about some
main container that holds it. The result is a reference loop: due to the mutual references, the
container and items keep each other alive, even when all other objects forget about them. Weak
references solve this problem by letting you have objects that mutually reference each other as long
as both are alive, but do not keep each other alive.

A weak reference is a special object w that refers to some other object x without incrementing x's
reference count. When x's reference count goes down to 0, Python finalizes and collects x, then
informs w of x's demise. The weak reference w can now either disappear or become invalid in a
controlled way. At any time, a given weak reference w refers to either the same target object x as
when w was created, or to nothing at all: a weak reference is never re-targeted. Not all types of
objects support being the target x of a weak reference w, but class instances and functions do.

Module weakref exposes functions and types to let you create and manage weak references.

getweakrefcount

getweakrefcount(x)

Returns len(getweakrefs(x)).

getweakrefs

getweakrefs(x)

Returns a list of all weak references and proxies whose target is x.

proxy

proxy(x[,f])

Returns a weak proxy p of type ProxyType (CallableProxyType, if x is callable), with object x as the
target. In most contexts, using p is just like using x, except that if you use p after x has been deleted,
Python raises ReferenceError. p is never hashable (therefore you cannot use p as a dictionary key),
even when x is. If f is present, it must be callable with one argument, and is the finalization callback
for p (i.e., right before finalizing x, Python calls f(p)). Note that when f is called, x is no longer
reachable from p.

ref

ref(x[,f])

Returns a weak reference w of type ReferenceType, with object x as the target. w is callable: calling
w( ) returns x if x is still alive, otherwise w( ) returns None. w is hashable if x is hashable. You can
compare weak references for equality (= =, !=), but not for order (<, >, <=, >=). Two weak
references x and y are equal if their targets are alive and equal, or if x is y. If f is present, it must be

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


references x and y are equal if their targets are alive and equal, or if x is y. If f is present, it must be
callable with one argument, and is the finalization callback for w (i.e., right before finalizing x, Python
calls f(w)). Note that when f is called, x is no longer reachable from w.

WeakKeyDictionary

class WeakKeyDictionary(adict={  })

A WeakKeyDictionary d is a mapping that references its keys weakly. When the reference count of a
key k in d goes to 0, item d[k] disappears. adict is used to initialize the mapping.

WeakValueDictionary

class WeakValueDictionary(adict={  })

A WeakValueDictionary d is a mapping that references its values weakly. When the reference count of
a value v in d goes to 0, all items of d such that d[k] is v disappear. adict is used to initialize the
mapping.

WeakKeyDictionary and WeakValueDictionary are useful when you need to non-invasively associate
additional data with objects without changing the objects. Weak mappings are also useful to non-
invasively record transient associations between objects and to build caches. In each case, the
specific consideration that can make a weak mapping preferable to a normal dictionary is that an
object that is otherwise garbage-collectable is not kept alive just by being used in a weak mapping.

A typical use could be a class that keeps track of its instances, but does not keep them alive just in
order to keep track of them:

import weakref
class Tracking:
    _instances_dict = weakref.WeakValueDictionary(  )
    _num_generated = 0
    def _ _init_ _(self):
        Tracking._num_generated += 1
        Tracking._instances_dict[Tracking._num_generated] = self
    def instances(  ): return _instances_dict.values(  )
    instances = staticmethod(instances)

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

13.5 Termination Functions

The atexit module lets you register termination functions (i.e., functions to be called at program
termination, last in, first out). Termination functions are similar to clean-up handlers established by
try/finally. However, termination functions are globally registered and called at the end of the whole
program, while clean-up handlers are established lexically and called at the end of a specific try
clause. Both termination functions and clean-up handlers are called whether the program terminates
normally or abnormally, but not when the termination is caused by calling os._exit. Module atexit
supplies a single function called register.

register

register(func,*args,**kwds)

Ensures that func(*args,**kwds) is called at program termination time.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

13.6 Site and User Customization

Python provides a specific hook to let each site customize some aspects of Python's behavior at the
start of each run. Customization by each single user is not enabled by default, but Python specifies
how programs that want to run user-provided code at startup can explicitly request such
customization.

13.6.1 The site and sitecustomize Modules

Python loads standard module site just before the main script. If Python is run with option -S, Python
does not load site. -S allows faster startup, but saddles the main script with initialization chores. site's
tasks are:

1. Putting sys.path in standard form (absolute paths, no duplicates).

2. Interpreting each .pth file found in the Python home directory, adding entries to sys.path,
and/or importing modules, as each .pth file indicates.

3. Adding built-ins used to display information in interactive sessions (quit, exit, copyright, credits,
and license).

4. Setting the default Unicode encoding to 'ascii'. site's source code includes two blocks, each
guarded by if 0:, one to set the default encoding to be locale dependent, and the other to
disable default encoding and decoding between Unicode and plain strings. You may optionally
edit site.py to select either block.

5.  Trying to import sitecustomize (should import sitecustomize raise an ImportError exception, site
catches and ignores it). sitecustomize is the module that each site's installation can optionally
use for further site-specific customization beyond site's tasks. It is generally best not to edit
site.py, as any Python upgrade or reinstallation might overwrite your customizations.
sitecustomize's main task is often to set the correct default encoding for the site. Western
European sites, for example, may choose to call sys.setdefaultencoding('iso-8859-1').

6. After sitecustomize is done, removing from module sys the attribute sys.setdefaultencoding.

Thus, Python's default Unicode encoding can be set only at the start of a run, not changed in
midstream during the run. In an emergency, if a specific main script desperately needs to break this
guideline and set a different default encoding from that used by all other scripts, you may place the
following snippet at the start of the main script:

import sys                               # get the sys module object
reload(sys)                              # restore module sys from disk
sys.setdefaultencoding('iso-8859-15')    # or whatever codec you need
del sys.setdefaultencoding               # ensure against later accidents

However, this is not good style. You should refactor your script so that it can accept whatever default
encoding the site has chosen, and pass the encoding name explicitly in those spots where a specific
codec is necessary.

13.6.2 User Customization

Each interactive Python interpreter session runs the script indicated by environment variable
PYTHONSTARTUP. Outside of interactive interpreter sessions, there is no automatic per-user
customization. To request per-user customization, a Python main script can explicitly import user.
Standard module user, when loaded, first determines the user's home directory, as indicated by
environment variable HOME (or, failing that, HOMEPATH, possibly preceded by HOMEDRIVE on
Windows systems only). If the environment does not indicate a home directory, user uses the current
directory. If module user locates a file named .pythonrc.py in the indicated directory, user executes
that file, with built-in function execfile, in module user's own global namespace.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Scripts that don't import user do not load .pythonrc.py. Of course, any given script is free to arrange
other specific ways to load whatever startup or plug-in user-supplied files it requires. Such
application-specific arrangements are more common than importing user. A generic .pythonrc.py, as
loaded via import user, needs to be usable with any application that loads it. Specialized, application-
specific startup and plug-in user-supplied files only need to follow whatever convention a specific
application documents.

For example, your application MyApp.py could document that it looks for a file named .myapprc.py in
the user's home directory, as indicated by environment variable HOME, and loads it in the application
main script's global namespace. You could then have the following code in your main script:

import os
homedir = os.environ.get('HOME')
if homedir is not None:
    userscript = os.path.join(homedir, '.myapprc.py')
    if os.path.isfile(userscript):
        execfile(userscript)

In this case, the .myapprc.py user customization script, if present, has to deal only with MyApp-
specific user customization tasks.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 14. Threads and Processes

A thread is a flow of control that shares global state with other threads; all threads appear to execute
simultaneously. Threads are not easy to master, but once you do, they may offer a simpler
architecture or better performance (faster response, but typically not better throughput) for some
problems. This chapter covers the facilities that Python provides for dealing with threads, including
the thread, threading, and Queue modules.

A process is an instance of a running program. Sometimes you get better results with multiple
processes than with threads. The operating system protects processes from one another. Processes
that want to communicate must explicitly arrange to do so, via local inter-process communication
(IPC). Processes may communicate via files (covered in Chapter 10) or via databases (covered in
Chapter 11). In both cases, the general way in which processes communicate using such data storage
mechanisms is that one process can write data, and another process can later read that data back.
This chapter covers the process-related parts of module os, including simple IPC by means of pipes,
and a cross-platform IPC mechanism known as memory-mapped files, supplied to Python programs
by module mmap.

Network mechanisms are well suited for IPC, as they work between processes that run on different
nodes of a network as well as those that run on the same node. Chapter 19 covers low-level network
mechanisms that provide a flexible basis for IPC. Other, higher-level mechanisms, known as
distributed computing, such as CORBA, DCOM/COM+, EJB, SOAP, XML-RPC, and .NET, make IPC
easier, whether locally or remotely. However, distributed computing is not covered in this book.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.1 Threads in Python

Python offers multithreading on platforms that support threads, such as Win32, Linux, and most
variants of Unix. The Python interpreter does not freely switch threads. Python uses a global
interpreter lock (GIL) to ensure that switching between threads happens only between bytecode
instructions or when C code deliberately releases the GIL (Python's C code releases the GIL around
blocking I/O and sleep operations). An action is said to be atomic if it's guaranteed that no thread
switching within Python's process occurs between the start and the end of the action. In practice, an
operation that looks atomic actually is atomic when executed on an object of a built-in type
(augmented assignment on an immutable object, however, is not atomic). However, in general it is
not a good idea to rely on atomicity. For example, you never know when you might be dealing with a
derived class rather than an object of a built-in type, meaning there might be callbacks to Python
code.

Python offers multithreading in two different flavors. An older and lower-level module, thread, offers a
bare minimum of functionality, and is not recommended for direct use by your code. The higher-level
module threading, built on top of thread, was loosely inspired by Java's threads, and is the
recommended tool. The key design issue in multithreading systems is most often how best to
coordinate multiple threads. threading therefore supplies several synchronization objects. Module
Queue is very useful for thread synchronization as it supplies a synchronized FIFO queue type, which
is extremely handy for communication and coordination between threads.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.2 The thread Module

The only part of the thread module that your code should use directly is the lock objects that module
thread supplies. Locks are simple thread-synchronization primitives. Technically, thread's locks are
non-reentrant and unowned: they do not keep track of what thread last locked them, so there is no
specific owner thread for a lock. A lock is in one of two states, locked or unlocked.

To get a new lock object (in the unlocked state), call the function named allocate_lock without
arguments. This function is supplied by both modules thread and threading. A lock object L supplies
three methods.

acquire

L.acquire(wait=True)

When wait is True, acquire locks L. If L is already locked, the calling thread suspends and waits until L
is unlocked, then locks L. Even if the calling thread was the one that last locked L, it still suspends and
waits until another thread releases L. When wait is False and L is unlocked, acquire locks L and returns
True. When wait is False and L is locked, acquire does not affect L, and returns False.

locked

L.locked(  )

Returns True if L is locked, otherwise False.

release

L.release(  )

Unlocks L, which must be locked. When L is locked, any thread may call L.release, not just the thread
that last locked L. When more than one thread is waiting on L (i.e., has called L.acquire, finding L
locked, and is now waiting for L to be unlocked), release wakes up an arbitrary waiting thread. The
thread that calls release is not suspended: it remains ready and continues to execute.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.3 The Queue Module

The Queue module supplies first-in, first-out (FIFO) queues that support multithread access, with one
main class and two exception classes.

Queue

class Queue(maxsize=0)

Queue is the main class for module Queue and is covered in the next section. When maxsize is greater
than 0, the new Queue instance q is deemed full when q has maxsize items. A thread inserting an item
with the block option, when q is full, suspends until another thread extracts an item. When maxsize is
less than or equal to 0, q is never considered full, and is limited in size only by available memory, like
normal Python containers.

Empty

Empty is the class of the exception that q.get(False) raises when q is empty.

Full

Full is the class of the exception that q.put(x,False) raises when q is full.

An instance q of class Queue supplies the following methods.

empty

q.empty(  )

Returns True if q is empty, otherwise False.

full

q.full(  )

Returns True if q is full, otherwise False.

get, get_nowait

q.get(block=True)

When block is False, get removes and returns an item from q if one is available, otherwise get raises
Empty. When block is True, get removes and returns an item from q, suspending the calling thread, if
need be, until an item is available. q.get_nowait( ) is like q.get(False). get removes and returns items
in the same order as put inserted them (first in, first out).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


put, put_nowait

q.put(item,block=True)

When block is False, put adds item to q if q is not full, otherwise put raises Full. When block is True, put
adds item to q, suspending the calling thread, if need be, until q is not full. q.put_nowait(item) is like
q.put(item,False).

qsize

q.qsize(  )

Returns the number of items that are currently in q.

Queue offers a good example of the idiom "it's easier to ask forgiveness than permission" (EAFP),
covered in Chapter 6. Due to multithreading, each non-mutating method of q can only be advisory.
When some other thread executes and mutates q, things can change between the instant a thread
gets the information and the very next moment, when the thread acts on the information. Relying on
the "look before you leap" (LBYL) idiom is futile, and fiddling with locks to try and fix things is a
substantial waste of effort. Just avoid LBYL code such as:

if q.empty(  ): print "no work to perform"
else: x=q.get_nowait(  )

and instead use the simpler and more robust EAFP approach:

try: x=q.get_nowait(  )
except Queue.Empty: print "no work to perform"

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.4 The threading Module

The threading module is built on top of module thread and supplies multithreading functionality in a
more usable form. The general approach of threading is similar to that of Java, but locks and
conditions are modeled as separate objects (in Java, such functionality is part of every object), and
threads cannot be directly controlled from the outside (meaning there are no priorities, groups,
destruction, or stopping). All methods of objects supplied by threading are atomic.

threading provides numerous classes for dealing with threads, including Thread, Condition, Event,
RLock, and Semaphore. Besides factory functions for the classes detailed in the following sections of
this chapter, threading supplies the currentThread factory function.

currentThread

currentThread(  )

Returns a Thread object for the calling thread. If the calling thread was not created by module
threading, currentThread creates and returns a semi-dummy Thread object with limited functionality.

14.4.1 Thread Objects

A Thread object t models a thread. You can pass t's main function as an argument when you create t,
or you can subclass Thread and override the run method (you may also override _ _init_ _, but should
not override other methods). t is not ready to run when you create it: to make t ready (active), call
t.start( ). Once t is active, it terminates when its main function ends, either normally or by
propagating an exception. A Thread t can be a daemon, meaning that Python can terminate even if t
is still active, while a normal (non-daemon) thread keeps Python alive until the thread terminates.
Class Thread exposes the following constructor and methods.

Thread

class Thread(name=None,target=None,args=(  ),kwargs={  })

Always call Thread with named arguments: the number and order of formal arguments may change in
the future, but the names of existing arguments are guaranteed to stay. When you instantiate class
Thread itself, you should specify target: t.run calls target(*args,**kwargs). When you subclass Thread
and override run, you normally don't specify target. In either case, execution doesn't begin until you
call t.start( ). name is t's name. If name is None, Thread generates a unique name for t. If a subclass T
of Thread overrides _ _init_ _, T._ _init_ _ must call Thread._ _init_ _ on self before any other Thread
method.

getName, setName

t.getName(  )
t.setName(name)

getName returns t's name, and setName rebinds t's name. The name string is arbitrary, and a thread's
name need not be unique among threads.

isAlive

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


t.isAlive(  )

Returns True if t is active (i.e., if t.start has executed and t.run has not yet terminated). Otherwise,
isAlive returns False.

isDaemon, setDaemon

t.isDaemon(  )
t.setDaemon(daemonic)

isDaemon returns True if t is a daemon (i.e., Python can terminate the whole process even if t is still
active—such a termination also terminates t); otherwise isDaemon returns False. Initially, t is a
daemon if and only if the thread creating t is a daemon. You can call t.setDaemon only before t.start: it
sets t to be a daemon if daemonic is true.

join

t.join(timeout=None)

The calling thread (which must not be t) suspends until t terminates. timeout is covered in the
upcoming section Section 14.4.2.1. You can call t.join only after t.start.

run

t.run(  )

run is the method that executes t's main function. Subclasses of Thread often override run. Unless
overridden, run calls the target callable passed on t's creation. Do not call t.run directly—calling t.run
appropriately is the job of t.start!

start

t.start(  )

start makes t active and arranges for t.run to execute in a separate thread. You must call t.start only
once for any given thread object t.

14.4.2 Thread Synchronization Objects

The threading module supplies several synchronization primitives, which are objects that let threads
communicate and coordinate. Each primitive has specialized uses. However, as long as you avoid
global variables that several threads access, Queue can often provide all the coordination you need.
"Threaded Program Architecture" later in this chapter shows how to use Queue objects to give your
multithreaded programs simple and effective architectures, often without needing any synchronization
primitives.

14.4.2.1 Timeout parameters

Synchronization primitives Condition and Event supply wait methods that accept a timeout argument. A
Thread object's join method also accepts a timeout argument. A timeout argument can be None, the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Thread object's join method also accepts a timeout argument. A timeout argument can be None, the
default, to obtain normal blocking behavior (the calling thread suspends and waits until the desired
condition is met). If not None, a timeout argument is a floating-point value that indicates an interval
of time in seconds (timeout can have a fractional part and so can indicate any time interval, even a
very short one). If timeout seconds elapse, the calling thread becomes ready again, even if the
desired condition has not been met. timeout lets you design systems that are able to overcome
occasional anomalies in one or a few threads, and thus are more robust. However, using timeout may
also make your program slower.

14.4.2.2 Lock and RLock objects

The Lock objects exposed by module threading are the same as those supplied by module thread and
covered in "The thread Module" earlier in this chapter. RLock objects supply the same methods as
Lock objects. The semantics of an RLock object r are, however, often more convenient. When r is
locked, it keeps track of the owning thread (i.e., the thread that locked it). The owning thread can call
r.acquire again without blocking: r just increments an internal count. In a similar situation involving a
Lock object, the thread would block forever (until the lock is released by some other thread).

An RLock object r is unlocked only when release has been called as many times as acquire. Only the
thread owning r should call r.release. An RLock is useful to ensure exclusive access to an object when
the object's methods call each other; each method can acquire at the start, and release at the end,
the same RLock instance. try/finally is a good way to ensure the lock is indeed released.

14.4.2.3 Condition objects

A Condition object c wraps a Lock or RLock object L. Class Condition exposes the following constructor
and methods.

Condition

class Condition(lock=None)

Condition creates and returns a new Condition object c with the lock L set to lock. If lock is None, L is
set to a newly created RLock object.

acquire, release

c.acquire(wait=1)
c.release(  )

These methods call L's corresponding methods. A thread must never call any other method on c
unless the thread holds lock L.

notify, notifyAll

c.notify(  )
c.notifyAll(  )

notify wakes up one of the threads waiting on c. The calling thread must hold L before it calls c.notify(
), and notify does not release L. The woken-up thread does not become ready until it can acquire L
again. Therefore, the calling thread normally calls release after calling notify. notifyAll is like notify, but
wakes up all waiting threads, not just one.

wait

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


wait

c.wait(timeout=None)

wait releases L, then suspends the calling thread until some other thread calls notify or notifyAll on c.
The calling thread must hold L before it calls c.wait( ). timeout is covered earlier in Section 14.4.2.1.
After a thread wakes up, either by notification or timeout, the thread becomes ready when it acquires
L again. When wait returns, the calling thread always holds L again.

In typical use, a Condition object c regulates access to some global state s that is shared between
threads. When a thread needs to wait for s to change, the thread loops as follows:

c.acquire(  )
while not is_ok_state(s):
    c.wait(  )
do_some_work_using_state(s)
c.release(  )

Meanwhile, each thread that modifies s calls notify (or notifyAll, if it needs to wake up all waiting
threads, not just one) each time s changes:

c.acquire(  )
do_something_that_modifies_state(s)
c.notify(  )    # or, c.notifyAll(  )
c.release(  )

As you see, you always need to acquire and release c around each use of c's methods, which makes
using Condition somewhat error-prone.

14.4.2.4 Event objects

Event objects let any number of threads suspend and wait. All threads waiting on Event object e
become ready when some other thread calls e.set( ). e has a flag recording whether the event
happened, initially False when e is created. Event is thus a bit like a simplified Condition. Event objects
are useful to signal one-shot changes, but are brittle for more general uses, as resetting an event
object (i.e., relying on calls to e.clear( )) is quite error-prone. Class Event exposes the following
methods.

Event

class Event(  )

Event creates and returns a new Event object e.

clear

e.clear(  )

Sets e's flag to False.

isSet

e.isSet(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns the value of e's flag, True or False.

set

e.set(  )

Sets e's flag to True. All threads waiting on e, if any, become ready to run.

wait

e.wait(timeout=None)

If e's flag is True, wait returns immediately. Otherwise, wait suspends the calling thread until some
other thread calls set. timeout is covered earlier in Section 14.4.2.1.

14.4.2.5 Semaphore objects

Semaphores are a generalization of locks. The state of a Lock can be seen as True or False; the state
of a Semaphore s is a number between 0 and some n set when s is created. Semaphores can be useful
to manage a fixed pool of resources (e.g., four printers or twenty sockets), although it's often more
robust to use a Queue. A semaphore object s exposes the following methods.

Semaphore

class Semaphore(n=1)

Semaphore creates and returns a semaphore object s with the state set to n.

acquire

s.acquire(wait=True)

When s's state is greater than 0, acquire decrements the state by 1 and returns True. When s's state is
0 and wait is True, acquire suspends the calling thread and waits until some other thread calls
s.release. When s's state is 0 and wait is False, acquire immediately returns False.

release

s.release(  )

When s's state is greater than 0 or when the state is 0 but no thread is waiting on s, release
increments the state by 1. When s's state is 0 and some thread is waiting on s, release leaves s's state
at 0 and wakes up an arbitrary waiting thread. The thread that calls release is not suspended: it
remains ready and continues to execute normally.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.5 Threaded Program Architecture

A threaded program should always arrange for a single thread to deal with any given object or
subsystem that is external to the program (such as a file, a database, a GUI, or a network
connection). Having multiple threads that deal with the same external object can often cause
unpredictable problems.

Whenever your threaded program must deal with some external object, devote a thread to such
dealings, using a Queue object from which the external-interfacing thread gets work requests that
other threads post. The external-interfacing thread can return results by putting them on one or more
other Queue objects. The following example shows how to package this architecture into a general,
reusable class, assuming that each unit of work on the external subsystem can be represented by a
callable object:

import Threading, Queue
class ExternalInterfacing(Threading.Thread):
    def _ _init_ _(self, externalCallable, **kwds):
        Threading.Thread._ _init_ _(self, **kwds)
        self.setDaemon(1)
        self.externalCallable = externalCallable
        self.workRequestQueue = Queue.Queue(  )
        self.resultQueue = Queue.Queue(  )
        self.start(  )
    def request(self, *args, **kwds):
        "called by other threads as externalCallable would be"
        self.workRequestQueue.put((args,kwds))
        return self.resultQueue.get(  )
    def run(self):
        while 1:
            args, kwds = self.workRequestQueue.get(  )
            self.resultQueue.put(self.externalCallable(*args, **kwds))

Once some ExternalInterfacing object ei is instantiated, all other threads may now call ei.request just
like they would call someExternalCallable without such a mechanism (with or without arguments as
appropriate). The advantage of the ExternalInterfacing mechanism is that all calls upon
someExternalCallable are now serialized. This means they are performed by just one thread (the
thread object bound to ei) in some defined sequential order, without overlap, race conditions (hard-
to-debug errors that depend on which thread happens to get there first), or other anomalies that
might otherwise result.

If several callables need to be serialized together, you can pass the callable as part of the work
request, rather than passing it at the initialization of class ExternalInterfacing, for greater generality.
The following example shows this more general approach:

import Threading, Queue
class Serializer(Threading.Thread):
    def _ _init_ _(self, **kwds):
        Threading.Thread._ _init_ _(self, **kwds)
        self.setDaemon(1)
        self.workRequestQueue = Queue.Queue(  )
        self.resultQueue = Queue.Queue(  )
        self.start(  )
    def apply(self, callable, *args, **kwds):
        "called by other threads as callable would be"
        self.workRequestQueue.put((callable, args,kwds))
        return self.resultQueue.get(  )
    def run(self):
        while 1:
            callable, args, kwds = self.workRequestQueue.get(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            callable, args, kwds = self.workRequestQueue.get(  )
            self.resultQueue.put(callable(*args, **kwds))

Once a Serializer object ser has been instantiated, other threads may call
ser.apply(someExternalCallable) just like they would call someExternalCallable without such a
mechanism (with or without further arguments as appropriate). The Serializer mechanism has the
same advantages as ExternalInterfacing, except that all calls to the same or different callables
wrapped by a single ser instance are now serialized.

The user interface of the whole program is an external subsystem and thus should be dealt with by a
single thread, specifically the main thread of the program (this is mandatory for some user interface
toolkits and advisable even when not mandatory). A Serializer thread is therefore inappropriate.
Rather, the program's main thread should deal only with user interface issues, and farm out actual
work to worker threads that accept work requests on a Queue object and return results on another. A
set of worker threads is also known as a thread pool. As shown in the following example, all worker
threads should share a single queue of requests and a single queue of results, since the main thread
will be the only one posting work requests and harvesting results:

import Threading
class Worker(Threading.Thread):
    requestID = 0
    def _ _init_ _(self, requestsQueue, resultsQueue, **kwds):
        Threading.Thread._ _init_ _(self, **kwds)
        self.setDaemon(1)
        self.workRequestQueue = requestsQueue
        self.resultQueue = resultsQueue
        self.start(  )
    def performWork(self, callable, *args, **kwds):
        "called by the main thread as callable would be, but w/o return"
        Worker.requestID += 1
        self.workRequestQueue.put((Worker.requestID, callable, args,kwds))
        return Worker.requestID
    def run(self):
        while 1:
            requestID, callable, args, kwds = self.workRequestQueue.get(  )
            self.resultQueue.put((requestID, callable(*args, **kwds)))

The main thread creates the two queues, then instantiates worker threads as follows:

import Queue
requestsQueue = Queue.Queue(  )
resultsQueue = Queue.Queue(  )
for i in range(numberOfWorkers):
    worker = Worker(requestsQueue, resultsQueue)

Now, whenever the main thread needs to farm out work (execute some callable object that may take
substantial time to produce results), the main thread calls worker.performWork(callable) much like it
would call callable without such a mechanism (with or without further arguments as appropriate).
However, performWork does not return the result of the call. Instead of the results, the main thread
gets an id that identifies the work request. If the main thread needs the results, it can keep track of
that id, since the request's results will be tagged with that id when they appear. The advantage of the
mechanism is that the main thread does not block waiting for the callable's lengthy execution to
complete, but rather becomes ready again at once and can immediately return to its main business of
dealing with the user interface.

The main thread must arrange to check the resultsQueue, since the result of each work request
eventually appears there, tagged with the request's id, when the worker thread that took that request
from the queue finishes computing the result. How the main thread arranges to check for both user
interface events and the results coming back from worker threads onto the results queue depends on
what user interface toolkit is used, or, if the user interface is text-based, on the platform on which the
program runs.

A widely applicable general strategy is for the main thread to poll (i.e., check the state of the results
queue periodically). On most Unix-like platforms, function alarm of module signal allows polling. The

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


queue periodically). On most Unix-like platforms, function alarm of module signal allows polling. The
Tkinter GUI toolkit supplies method after, usable for polling. Some toolkits and platforms afford more
effective strategies, letting a worker thread alert the main thread when it places some result on the
results queue, but there is no generally available, cross-platform, and cross-toolkit way to arrange for
this. Therefore, the following artificial example ignores user interface events, and just simulates work
by evaluating random expressions, with random delays, on several worker threads, thus completing
the previous example:

import random, time
def makeWork(  ):
    return "%d %s %d"%(random.randrange(2,10),
        random.choice(('+', '-', '*', '/', '%', '**')),
        random.randrange(2,10))
def slowEvaluate(expressionString):
    time.sleep(random.randrange(1,5))
    return eval(expressionString)
workRequests = {  }
def showResults(  ):
    while 1:
        try: id, results = resultsQueue.get_nowait(  )
        except Queue.Empty: return
        print 'Result %d: %s -> %s' % (id, workRequests[id], results)
        del workRequests[id]
for i in range(10):
    expressionString = makeWork(  )
    id = worker.performWork(slowEvaluate, expressionString)
    workRequests[id] = expressionString
    print 'Submitted request %d: %s' % (id, expressionString)
    time.sleep(1)
    showResults(  )
while workRequests:
    time.sleep(1)
    showResults(  )
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.6 Process Environment

The operating system supplies each process P with an environment, which is a set of environment
variables whose names are identifiers (most often, by convention, uppercase identifiers) and whose
contents are strings. For example, in Chapter 3, we covered environment variables that affect
Python's operations. Operating system shells offer various ways to examine and modify the
environment, by such means as shell commands and others mentioned in Chapter 3.

The environment of any process P is determined when P starts. After startup, only P itself can change
P's environment. Nothing that P does affects the environment of P's parent process (the process that
started P), nor those of child processes previously started from P and now running, nor of processes
unrelated to P. Changes to P's environment affect only P itself: the environment is not a means of
IPC. Child processes of P normally get a copy of P's environment as their starting environment: in this
sense, changes to P's environment do affect child processes that P starts after such changes.

Module os supplies attribute environ, a mapping that represents the current process's environment.
os.environ is initialized from the process environment when Python starts. Changes to os.environ
update the current process's environment if the platform supports such updates. Keys and values in
os.environ must be strings. On Windows, but not on Unix-like platforms, keys into os.environ are
implicitly uppercased. For example, here's how to try to determine what shell or command processor
you're running under:

import os
shell = os.environ.get('COMSPEC')
if shell is None: shell = os.environ.get('SHELL')
if shell is None: shell = 'an unknown command processor'
print 'Running under', shell

If a Python program changes its own environment (e.g., via os.environ['X']='Y'), this does not affect
the environment of the shell or command processor that started the program. Like in other cases,
changes to a process's environment affect only the process itself, not others.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.7 Running Other Programs

The os module offers several ways for your program to run other programs. The simplest way to run
another program is through function os.system, although this offers no way to control the external
program. The os module also provides a number of functions whose names start with exec. These
functions offer fine-grained control. A program run by one of the exec functions, however, replaces
the current program (i.e., the Python interpreter) in the same process. In practice, therefore, you use
the exec functions mostly on platforms that let a process duplicate itself by fork (i.e., Unix-like
platforms). Finally, os functions whose names start with spawn and popen offer intermediate simplicity
and power: they are cross-platform and not quite as simple as system, but simple and usable enough
for most purposes.

The exec and spawn functions run a specified executable file given the executable file's path,
arguments to pass to it, and optionally an environment mapping. The system and popen functions
execute a command, a string passed to a new instance of the platform's default shell (typically /bin/sh
on Unix, command.com or cmd.exe on Windows). A command is a more general concept than an
executable file, as it can include shell functionality (pipes, redirection, built-in shell commands) using
the normal shell syntax specific to the current platform.

execl, execle, execlp, execv, execve, execvp, execvpe

execl(path,*args)
execle(path,*args)
execlp(path,*args)
execv(path,args)
execve(path,args,env)
execvp(path,args)
execvpe(path,args,env)

These functions run the executable file (program) indicated by string path, replacing the current
program (i.e., the Python interpreter) in the current process. The distinctions encoded in the function
names (after the prefix exec) control three aspects of how the new program is found and run:

Does path have to be a complete path to the program's executable file, or can the function also
accept just a name as the path argument and search for the executable in several directories,
like operating system shells do? execlp, execvp, and execvpe can accept a path argument that is
just a filename rather than a complete path. In this case, the functions search for an
executable file of that name along the directories listed in os.environ['PATH']. The other
functions require path to be a complete path to the executable file for the new program.

Are arguments for the new program accepted as a single sequence argument args to the
function or as separate arguments to the function? Functions whose names start with execv
take a single argument args that is the sequence of the arguments to use for the new program.
Functions whose names start with execl take the new program's arguments as separate
arguments (execle, in particular, uses its last argument as the environment for the new
program).

Is the new program's environment accepted as an explicit mapping argument env to the
function, or is os.environ implicitly used? execle, execve, and execvpe take an argument env that
is a mapping to be used as the new program's environment (keys and values must be strings),
while the other functions use os.environ for this purpose.

Each exec function uses the first item in args as the name under which the new program is told it's
running (for example, argv[0] in a C program's main); only args[1:] are passed as arguments proper
to the new program.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


popen

popen(cmd,mode='r',bufsize=-1)

Runs the string command cmd in a new process P, and returns a file-like object f that wraps a pipe to
P's standard input or from P's standard output (depending on mode). mode and bufsize have the same
meaning as for Python's built-in open function, covered in Chapter 10. When mode is 'r' (or 'rb', for
binary-mode reading), f is read-only and wraps P's standard output. When mode is 'w' (or 'wb', for
binary-mode writing), f is write-only and wraps P's standard input.

The key difference of f with respect to other file objects is the behavior of method f.close. f.close waits
for P to terminate, and returns None, as close methods of file-like objects normally do, when P's
termination is successful. However, if the operating system associates an integer error code with P's
termination indicating that P's termination was unsuccessful, f.close also returns c. Not all operating
systems support this mechanism: on some platforms, f.close therefore always returns None. On Unix-
like platforms, if P terminates with the system call exit(n) (e.g., if P is a Python program and
terminates by calling sys.exit(n)), f.close receives from the operating system, and returns to f.close's
caller, the code 256*n.

popen2, popen3, popen4

popen2(cmd,mode='t',bufsize=-1)
popen3(cmd,mode='t',bufsize=-1)
popen4(cmd,mode='t',bufsize=-1)

Each of these functions runs the string command cmd in a new process P, and returns a tuple of file-
like objects that wrap pipes to P's standard input and from P's standard output and standard error.
mode must be 't' to get file-like objects in text mode, or 'b' to get them in binary mode. On Windows,
bufsize must be -1. On Unix, bufsize has the same meaning as for Python's built-in open function,
covered in Chapter 10.

popen2 returns a pair (fi,fo), where fi wraps P's standard input (so the calling process can write to fi)
and fo wraps P's standard output (so the calling process can read from fo). popen3 returns a tuple
with three items (fi,fo,fe), where fe wraps P's standard error (so the calling process can read from fe).
popen4 returns a pair (fi,foe), where foe wraps both P's standard output and error (so the calling
process can read from foe). While popen3 is in a sense the most general of the three functions, it can
be difficult to coordinate your reading from fo and fe. popen2 is simpler to use than popen3 when it's
okay for cmd's standard error to go to the same destination as your own process's standard error, and
popen4 is simpler when it's okay for cmd's standard error and output to be mixed with each other.

File objects fi, fo, fe, and foe are all normal ones, without the special semantics of the close method as
covered for function popen. In other words, there is no way in which the caller of popen2, popen3, or
popen4 can learn about P's termination code.

Depending on the buffering strategy of command cmd (which is normally out of your control, unless
you're the author of cmd), there may be nothing to read on files fo, fe, and/or foe until your process
has closed file fi. Therefore, the normal pattern of usage is something like:

import os
def pipethrough(cmd, list_of_lines):
    fi, fo = os.popen2(cmd, 't')
    fi.writelines(list_of_lines)
    fi.close(  )
    result_lines = fo.readlines(  )
    fo.close(  )
    return result_lines

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    return result_lines

Functions in the popen group are generally not suitable for driving another process interactively (i.e.,
writing something, then reading cmd's response to that, then writing something else, and so on). The
first time your program tries to read the response, if cmd is following a typical buffering strategy,
everything blocks. In other words, your process is waiting for cmd's output but cmd has already
placed its pending output in a memory buffer, which your process can't get at, and is now waiting for
more input. This is a typical case of deadlock.

If you have some control over cmd, you can try to work around this issue by ensuring that cmd runs
without buffering. For example, if cmd.py is a Python program, you can run cmd without buffering as
follows:

C:/> python -u cmd.py

Other possible approaches include module telnetlib, covered in Chapter 18, if your platform supports
telnet; and third-party, Unix-like-only extensions such as expectpy.sf.net and packages such as
pexpect.sf.net. There is no general solution applicable to all platforms and all cmds of interest.

spawnv, spawnve

spawnv(mode,path,args)
spawnve(mode,path,args,env)

These functions run the program indicated by path in a new process P, with the arguments passed as
sequence args. spawnve uses mapping env as P's environment (both keys and values must be
strings), while spawnv uses os.environ for this purpose. On Unix-like platforms only, there are other
variations of os.spawn, corresponding to variations of os.exec, but spawnv and spawnve are the only
two that exist on Windows.

mode must be one of two attributes supplied by the os module: os.P_WAIT indicates that the calling
process waits until the new process terminates, while os.P_NOWAIT indicates that the calling process
continues executing simultaneously with the new process. When mode is os.P_WAIT, the function
returns the termination code c of P: 0 indicates successful termination, c less than 0 indicates P was
killed by a signal, and c greater than 0 indicates normal but unsuccessful termination. When mode is
os.P_NOWAIT, the function returns P's process ID (on Windows, P's process handle). There is no
cross-platform way to use P's ID or handle; platform-specific ways (not covered further in this book)
include function os.waitpid on Unix-like platforms and the win32all extensions
(starship.python.net/crew/mhammond) on Windows.

For example, your interactive program can give the user a chance to edit a text file that your program
is about to read and use. You must have previously determined the full path to the user's favorite text
editor, such as c:\\windows\\notepad.exe on Windows or /bin/vim on a Unix-like platform. Say that
this path string is bound to variable editor, and the path of the text file you want to let the user edit is
bound to textfile:

import os
os.spawnv(os.P_WAIT, editor, [textfile])

When os.spawnv returns, the user has closed the editor (whether or not he has made any changes to
the file), and your program can continue by reading and using the file as needed.

system

system(cmd)

Runs the string command cmd in a new process, and returns 0 if the new process terminates

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Runs the string command cmd in a new process, and returns 0 if the new process terminates
successfully (or if Python is unable to ascertain the success status of the new process's termination,
as happens on Windows 95 and 98). If the new process terminates unsuccessfully (and Python is able
to ascertain this unsuccessful termination), system returns an integer error code not equal to 0.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

14.8 The mmap Module

The mmap module supplies memory-mapped file objects. An mmap object behaves similarly to a plain
(not Unicode) string, so you can often pass an mmap object where a plain string is expected.
However, there are differences:

An mmap object does not supply the methods of a string object

An mmap object is mutable, while string objects are immutable

An mmap object also corresponds to an open file and behaves polymorphically to a Python file
object (as covered in Chapter 10)

An mmap object m can be indexed or sliced, yielding plain strings. Since m is mutable, you can also
assign to an indexing or slicing of m. However, when you assign to a slice of m, the right-hand side of
the assignment statement must be a string of exactly the same length as the slice you're assigning to.
Therefore, many of the useful tricks available with list slice assignment (covered in Chapter 4) do not
apply to mmap slice assignment.

Module mmap supplies a factory function that is different on Unix-like systems and Windows.

mmap

mmap(filedesc,length,tagname='')    # Windows
mmap(filedesc,length,flags=MAP_SHARED,
     prot=PROT_READ|PROT_WRITE)     # Unix

Creates and returns an mmap object m that maps into memory the first length bytes of the file
indicated by file descriptor filedesc. filedesc must normally be a file descriptor opened for both reading
and writing (except, on Unix-like platforms, when argument prot requests only reading or only
writing). File descriptors are covered in Section 10.2.8. To get an mmap object m that refers to a
Python file object f, use m=mmap.mmap(f.fileno( ),length).

On Windows only, you can pass a string tagname to give an explicit tag name for the memory
mapping. This tag name lets you have several memory mappings on the same file, but this
functionality is rarely necessary. Calling mmap with only two arguments has the advantage of keeping
your code portable between Windows and Unix-like platforms. On Windows, all memory mappings are
readable and writable and shared between processes, so that all processes with a memory mapping
on a file can see changes made by each such process.

On Unix-like platforms only, you can pass mmap.MAP_PRIVATE as the flags argument to get a
mapping that is private to your process and copy-on-write. mmap.MAP_SHARED, the default, gets a
mapping that is shared with other processes, so that all processes mapping the file can see changes
made by one process (same as on Windows). You can pass mmap.PROT_READ as the prot argument
to get a mapping that you can only read, not write. Passing mmap.PROT_WRITE gets a mapping that
you can only write, not read. The bitwise-OR mmap.PROT_READ|mmap.PROT_WRITE, the default, gets
a mapping that you can both read and write (same as on Windows).

14.8.1 Methods of mmap Objects

An mmap object m supplies the following methods.

close

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


m.close(  )

Closes the file of m.

find

m.find(str,start=0)

Returns the lowest index I greater than or equal to start such that str= =m[i:i+len(str)]. If no such i
exists, m.find returns -1. This is the same functionality as for the find method of string objects,
covered in Chapter 9.

flush

m.flush([offset,n])

Ensures that all changes made to m also exist on m's file. Until you call m.flush, it's uncertain whether
the file reflects the current state of m. You can pass a starting byte offset offset and a byte count n to
limit the flushing effect's guarantee to a slice of m. You must pass both arguments, or neither: it is an
error to call m.flush with exactly one argument.

move

m.move(dstoff,srcoff,n)

Like the slicing m[dstoff:dstoff+n]=m[srcoff:srcoff+n], but potentially faster. The source and
destination slices can overlap. Apart from such potential overlap, move does not affect the source slice
(i.e., the move method copies bytes but does not move them, despite the method's name).

read

m.read(n)

Reads and returns a string s containing up to n bytes starting from m's file pointer, then advances m's
file pointer by len(s). If there are less than n bytes between m's file pointer and m's length, returns
the bytes available. In particular, if m's file pointer is at the end of m, returns the empty string ''.

read_byte

m.read_byte(  )

Returns a string of length 1 containing the character at m's file pointer, then advances m's file pointer
by 1. m.read_byte( ) is similar to m.read(1). However, if m's file pointer is at the end of m, m.read(1)
returns the empty string '', while m.read_byte( ) raises a ValueError exception.

readline

m.readline(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Reads and returns one line from the file of m, from m's current file pointer up to the next '\n',
included (or up to the end of m, if there is no '\n'), then advances m's file pointer to point just past
the bytes just read. If m's file pointer is at the end of m, readline returns the empty string ''.

resize

m.resize(n)

Changes the length of m, so that len(m) becomes n. Does not affect the size of m's file. m's length and
the file's size are independent. To set m's length to be equal to the file's size, call m.resize(m.size( )).
If m's length is larger than the file's size, m is padded with null bytes (\x00).

seek

m.seek(pos,how=0)

Sets the file pointer of m to the integer byte offset pos. how indicates the reference point (point 0):
when how is 0, the reference point is the start of the file; when 1, m's current file pointer; when 2, the
end of m. A seek that tries to set m's file pointer to a negative byte offset, or to a positive offset
beyond m's length, raises a ValueError exception.

size

m.size(  )

Returns the length (number of bytes) of the file of m, not the length of m itself. To get the length of
m, use len(m).

tell

m.tell(  )

Returns the current position of the file pointer of m, as a byte offset from the start of m's file.

write

m.write(str)

Writes the bytes in str into m and at the current position of m's file pointer, overwriting the bytes that
were there, and then advances m's file pointer by len(str). If there aren't at least len(str) bytes
between m's file pointer and the length of m, write raises a ValueError exception.

write_byte

m.write_byte(byte)

Writes byte, which must be a single-character string, into mapping m at the current position of m's file
pointer, overwriting the byte that was there, and then advances m's file pointer by 1. When x is a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


pointer, overwriting the byte that was there, and then advances m's file pointer by 1. When x is a
single-character string, m.write_byte(x) is similar to m.write(x). However, if m's file pointer is at the
end of m, m.write_byte(x) silently does nothing, while m.write(x) raises a ValueError exception. Note
that this is the reverse of the relationship between read and read_byte at end-of-file: write and
read_byte raise ValueError, while read and write_byte don't.

14.8.2 Using mmap Objects for IPC

The way in which processes communicate using mmap is similar to IPC using files: one process can
write data, and another process can later read the same data back. Since an mmap object rests on an
underlying file, you can also have some processes doing I/O directly on the file, as covered in Chapter
10, while others use mmap to access the same file. You can choose between mmap and I/O on file
objects on the basis of convenience: the functionality is the same. For example, here is a simple
program that uses file I/O to make the contents of a file equal to the last line interactively typed by
the user:

fileob = open('xxx','w')
while True:
    data = raw_input('Enter some text:')
    fileob.seek(0)
    fileob.write(data)
    fileob.truncate(  )
    fileob.flush(  )

And here is another simple program that, when run in the same directory as the former, uses mmap
(and the time.sleep function, covered in Chapter 12) to check every second for changes to the file and
print out the file's new contents:

import mmap, os, time
mx = mmap.mmap(os.open('xxx',os.O_RDWR), 1)
last = None
while True:
    mx.resize(mx.size(  ))
    data = mx[:]
    if data != last:
        print data
        last = data
    time.sleep(1)
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 15. Numeric Processing

In Python, you can perform numeric computations with operators (as covered in Chapter 4) and built-
in functions (as covered in Chapter 8). Python also provides the math, cmath, operator, and random
modules, which support additional numeric computation functionality, as documented in this chapter.

You can represent arrays in Python with lists and tuples (covered in Chapter 4), as well as with the
array standard library module, which is covered in this chapter. You can also build advanced array
manipulation functions with loops, list comprehensions, iterators, generators, and built-ins such as
map, reduce, and filter, but such functions can be complicated and slow. Therefore, when you process
large arrays of numbers in these ways, your program's performance can be below your machine's full
potential.

The Numeric package addresses these issues, providing high-performance support for
multidimensional arrays (matrices) and advanced mathematical operations, such as linear algebra and
Fourier transforms. Numeric does not come with standard Python distributions, but you can freely
download it at http://sourceforge.net/projects/numpy, either as source code (which is easy to build
and install on many platforms) or as a prebuilt self-installing .exe file for Windows. Visit
http://www.pfdubois.com/numpy/ for an extensive tutorial and other resources, such as a mailing list
about Numeric. Note that the Numeric package is not just for numeric processing. Much of Numeric is
about multidimensional arrays and advanced array handling that you can use for any Python
sequence.

Numeric is a large, rich package. For full understanding, study the tutorial, work through the
examples, and experiment interactively. This chapter presents a reference to an essential subset of
Numeric on the assumption that you already have some grasp of array manipulation and numeric
computing issues. If you are unfamiliar with this subject, the Numeric tutorial can help.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.1 The math and cmath Modules

The math module supplies mathematical functions on floating-point numbers, while the cmath module
supplies equivalent functions on complex numbers. For example, math.sqrt(-1) raises an exception,
but cmath.sqrt(-1) returns 1j.

Each module also exposes two attributes of type float bound to the values of fundamental
mathematical constants, pi and e.

acos math and cmath

acos(x)

Returns the arccosine of x in radians.

acosh cmath only

acosh(x)

Returns the arc hyperbolic cosine of x in radians.

asin math and cmath

asin(x)

Returns the arcsine of x in radians.

asinh cmath only

asinh(x)

Returns the arc hyperbolic sine of x in radians.

atan math and cmath

atan(x)

Returns the arctangent of x in radians.

atanh cmath only

atanh(x)

Returns the arc hyperbolic tangent of x in radians.

atan2 math only

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


atan2(y,x)

Like atan(y/x), except that when x equals 0, atan2 returns pi/2, while dividing by x would raise
ZeroDivisionError.

ceil math only

ceil(x)

Returns the lowest integer i such that i is greater than or equal to x as a floating-point value.

cos math and cmath

cos(x)

Returns the cosine of x in radians.

cosh math and cmath

cosh(x)

Returns the hyperbolic cosine of x in radians.

e math and cmath

The mathematical constant e.

exp math and cmath

exp(x)

Returns e**x.

fabs math only

fabs(x)

Returns the absolute value of x.

floor math only

floor(x)

Returns the highest integer i such that i is less than or equal to x as a floating-point value.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


fmod math only

fmod(x,y)

Returns x%y (on most platforms).

frexp math only

frexp(x)

Returns a pair (m,e) with the mantissa and exponent of x. m is a floating-point number and e is an
integer such that x= =m*(2**e) and 0.5<=abs(m)<1, except that frexp(0) returns (0.0,0).

hypot math only

hypot(x,y)

Returns sqrt(x*x+y*y).

ldexp math only

ldexp(x,i)

Returns x*(2**i).

log math and cmath

log(x)

Returns the natural logarithm of x.

log10 math and cmath

log10(x)

Returns the base-10 logarithm of x.

modf math only

modf(x)

Returns a pair (f,i) with fractional and integer parts of x, each a floating-point value with the same
sign as x.

pi math and cmath

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The mathematical constant .

pow math only

pow(x,y)

Returns x**y.

sin math and cmath

sin(x)

Returns the sine of x in radians.

sinh math and cmath

sinh(x)

Returns the hyperbolic sine of x in radians.

sqrt math and cmath

sqrt(x)

Returns the square root of x.

tan math and cmath

tan(x)

Returns the tangent of x in radians.

tanh math and cmath

tanh(x)

Returns the hyperbolic tangent of x in radians.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.2 The operator Module

The operator module supplies functions that are equivalent to Python's operators. These functions are
handy for use with map and reduce, and in other cases where callables must be stored, passed as
arguments, or returned as function results. The functions in operator have the same names as the
corresponding special methods (covered in Chapter 5). Each function is available with two names,
with and without the leading and trailing double underscores (e.g., both operator.add(a,b) and
operator._ _add_ _(a,b) return a+b). Table 15-1 lists the functions supplied by operator.

Table 15-1. Functions supplied by operator
Method Signature Behaves like

abs abs(a) abs(a)
add add(a,b) a+b
and_ and_(a,b) a&b
concat concat(a,b) a+b
contains contains(a,b) b in a
countOf countOf(a,b) a.count(b)
delitem delitem(a,b) del a[b]
delslice delslice(a,b,c) del a[b:c]
div div(a,b) a/b
getitem getitem(a,b) a[b]
getslice getslice(a,b,c) a[b:c]
indexOf indexOf(a,b) a.index(b)
invert, inv invert(a), inv(a) ~a
lshift lshift(a,b) a<<b
mod mod(a,b) a%b
mul mul(a,b) a*b
neg neg(a) -a
not_ not_(a) not a
or_ or_(a,b) a|b
pos pos(a) +a
repeat repeat(a,b) a*b
rshift rshift(a,b) a>>b
setitem setitem(a,b,c) a[b]=c
setslice setslice(a,b,c,d) a[b:c]=d
sub sub(a,b) a-b
truth truth(a) not not a
xor_ xor(a,b) a^b

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.3 The random Module

The random module generates pseudo-random numbers with various distributions. The underlying
uniform pseudo-random generator uses the Whichmann-Hill algorithm, with a period of length
6,953,607,871,644. The resulting pseudo-random numbers, while quite good, are not of
cryptographic quality. If you want physically generated random numbers rather than algorithmically
generated pseudo-random numbers, you may use /dev/random or /dev/urandom on platforms that
support such pseudo-devices (such as recent Linux releases). For an alternative, see
http://www.fourmilab.ch/hotbits.

All functions of module random are methods of a hidden instance of class random.Random. You can
instantiate Random explicitly to get multiple generators that do not share state. Explicit instantiation
is advisable if you require random numbers in multiple threads (threads are covered in Chapter 14).
This section documents the most frequently used functions exposed by module random.

choice

choice(seq)

Returns a random item from non-empty sequence seq.

getstate

getstate(  )

Returns an object S that represents the current state of the generator. You can later pass S to
function setstate in order to restore the generator's state.

jumpahead

jumpahead(n)

Advances the generator state as if n random numbers had been generated. Computing the new state
is faster than generating n random numbers would be.

random

random(  )

Returns a random floating-point number r from a uniform distribution, such that 0<=r<1.

randrange

randrange([start,]stop[,step])

Like choice(range(start,stop,step)), but faster, since randrange does not need to build the list that
range would create.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


seed

seed(x=None)

Initializes the generator state. x can be any hashable object. When x is None, and also automatically
when module random is first loaded, seed uses the current system time to get a seed. x is normally a
long integer up to 27814431486575L. Larger x values are accepted, but may produce the same
generator states as smaller ones.

setstate

setstate(S)

Restores the generator state. S must be the result of a previous call to getstate.

shuffle

shuffle(alist)

Shuffles, in place, mutable sequence alist.

uniform

uniform(a,b)

Returns a random floating-point number r from a uniform distribution, such that a<=r<b.

Module random also supplies functions that generate pseudo-random floating-point numbers from
many other probability distributions (Beta, Gamma, exponential, Gauss, Pareto, etc.). All of these
functions internally call random.random as their source of randomness.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.4 The array Module

The array module supplies a type, also called array, whose instances are mutable sequences, like lists.
An array a is a one-dimensional sequence whose items can be only characters, or only numbers of one
specific numeric type that is fixed when a is created.

The extension module Numeric, covered later in this chapter, also supplies a type called array that is
far more powerful than array.array. For advanced array operations and multidimensional arrays, I
recommend Numeric even if your array elements are not numbers.

array.array is a simple type, whose main advantage is that, compared to a list, it can save memory to
hold objects all of the same (numeric or character) type. An array object a has a one-character read-
only attribute a.typecode, set when a is created, that gives the type of a's items. Table 15-2 shows the
possible type codes for array.

Table 15-2. Type codes for the array module
Type code C type Python type Minimum size

'c' char str (length 1) 1 byte

'b' char int 1 byte

'B' unsigned char int 1 byte

'h' short int 2 bytes

'H' unsigned short int 2 bytes

'i' int int 2 bytes

'I' unsigned long 2 bytes

'l' long int 4 bytes

'L' unsigned long long 4 bytes

'f' float float 4 bytes

'd' double float 8 bytes

The size in bytes of each item may be larger than the minimum, depending on the machine's
architecture, and is available as the read-only attribute a.itemsize. Module array supplies just one
function, a factory function called array.

array

array(typecode,init='')

Creates and returns an array object a with the given typecode. init can be a plain string whose length
is a multiple of itemsize; the string's bytes, interpreted as machine values, directly initialize a's items.
Alternatively, init can be a list (of characters when typecode is 'c', otherwise of numbers): each item of
the list initializes one item of a.

Array objects expose all the methods and operations of mutable sequences, as covered in Chapter 4,
except method sort. Concatenation (with both + and extend) and assignment to slices require both
operands to be arrays with the same type code (i.e., there is no implicit coercion between
sequences). In addition to the methods of mutable sequences, an array object a also exposes the
following methods.

byteswap

a.byteswap(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Swaps the byte order of each item of a.

fromfile

a.fromfile(f,n)

Reads n items, taken as machine values, from file object f, and appends the items to a. Note that f
should be open for reading in binary mode, for example with mode 'rb'. When less than n items are
available in f, fromfile raises EOFError after appending the items that are available.

fromlist

a.fromlist(L)

Appends to a all items of list L.

fromstring

a.fromstring(s)

Appends to a the bytes, interpreted as machine values, of string s. len(s) must be a multiple of
a.itemsize.

tofile

a.tofile(f)

Writes all items of a, taken as machine values, to file object f. Note that f should be open for reading
in binary mode, for example with mode 'rb'.

tolist

a.tolist(  )

Creates and returns a list object with the same items as a.

tostring

a.tostring(  )

Returns the string with the bytes from all items of a, taken as machine values. For any a,
len(a.tostring( )) always equals len(a)*a.itemsize. f.write(a.tostring( )) is the same as a.tofile(f).
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.5 The Numeric Package

The main module in the Numeric package is the Numeric module, which provides the array object type,
a set of functions that manipulate these objects, and universal functions that operate on arrays and
other sequences. The Numeric package also supports a variety of optional modules for things like
linear algebra, random numbers, masked arrays, and Fast Fourier Transforms.

Numeric is one of the rare Python packages often used with the idiom from Numeric import *. You can
also use import Numeric and qualify each name by preceding it with Numeric. However, if you need
many of the package's names, importing all the names at once is handy. Another popular alternative
is to import Numeric with a shorter name (e.g., import Numeric as N) and qualify each name by
preceding it with N.

Although quite solid and stable, Numeric is under continuous development, with functionality being
added and limitations removed. This chapter describes specifically Numeric Version 21.3, the latest
released version at the time of this writing. A successor to Numeric, named numarray, is being
developed by the Numeric community, and is not quite ready for production use yet. numarray is not
totally compatible with Numeric, but shares most of Numeric's functionality and enriches it further.
Information on numarray is available at http://stsdas.stsci.edu/numarray/.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.6 Array Objects

Numeric provides an array type that represents a grid of items. An array object a has a specified
number of dimensions, known as its rank, up to some arbitrarily high limit (normally 40, when
Numeric is built with default options). A scalar (i.e., a single number) has rank 0, a vector has rank 1,
a matrix has rank 2, and so forth.

15.6.1 Type Codes

The values that occupy cells in the grid of an array object, known as the elements of the array, are
homogeneous, meaning they are all of the same type, and all element values are stored within one
memory area. This contrasts with a list or tuple, where the items may be of different types and each
is stored as a separate Python object. This means a Numeric array occupies far less memory than a
Python list or tuple with the same number of items. The type of a's elements is encoded as a's type
code, a one-character string, as shown in Table 15-3. Factory functions that build array instances,
covered in Section 15.6.6 later in this chapter, take a typecode argument that is one of the values in
Table 15-3.

Table 15-3. Type codes for Numeric arrays
Type code C type Python type Synonym

'c' char str (length 1) Character
'b' unsigned char int UnsignedInt8
'1' signed char int Int8
's' short int Int16
'i' int int Int32
'l' long int Int
'f' float float Float32
'F' two floats complex Complex32
'd' double float Float
'D' two doubles complex Complex
'O' PyObject* any PyObject

Numeric supplies readable attribute names for each type code, as shown in the last column of Table
15-3. Numeric also supplies, on all platforms, the names Int0, Float0, Float8, Float16, Float64,
Complex0, Complex8, Complex16, and Complex64. In each case, the name refers to the smallest type
of the requested kind with at least that many bits. For example, Float8 is the smallest floating-point
type of at least 8 bits (generally the same as Float32, but some platforms may provide very small
floating-point types), while Complex0 is the smallest complex type. On some platforms, but not all,
Numeric also supplies the names Int64, Int128, Float128, and Complex128, with similar meanings.
These names are not supplied on all platforms because not all platforms provide numbers with that
many bits. The next release of Numeric will also support unsigned integer types.

A type code of 'O' indicates that elements are references to Python objects. In this case, elements can
be of different types. This lets you use Numeric array objects as Python containers, for advanced
array-processing tasks that may have nothing to do with numeric processing. When you build an
array a with one of Numeric's factory functions, you can either specify a's type code explicitly or
accept a default data-dependent type code.

To get the type code of an array a, call a.typecode( ). a's type code determines how many bytes each
element of a takes up in memory. Call a.itemsize( ) to get this information. When the type code is 'O',
the item size is small (e.g., 4 bytes on a 32-bit platform), but this size accounts only for the reference
held in each of a's cells. The objects indicated by the references are stored elsewhere as separate
Python objects; each such object may occupy an arbitrary amount of extra memory, which is not
accounted for in the item size of an array with type code 'O'.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


15.6.2 Shape and Indexing

Each array object a has an attribute a.shape, which is a tuple of integer values. len(a.shape) is a's
rank, so for example, a one-dimensional array of numbers (also known as a vector) has rank 1, and
a.shape has just one item. More generally, each item of a.shape is the length of the corresponding
dimension of a. a's number of elements, known as its size, is the product of all items of a.shape. Each
dimension of a is also known as an axis. Axis indices are from 0 up, as usual in Python. Negative axis
indices are allowed and count from the right, so -1 is the last (rightmost) axis.

Each array a is a Python sequence. Each item a[i] of a is a subarray of a, meaning it is an array with a
rank one less than a's:

a[i].shape=  =a.shape[1:]

For example, if a is a two-dimensional matrix (a is of rank 2), a[i], for any valid index i, is a one-
dimensional subarray of a corresponding to a row of the matrix. When a's rank is 1 or 0, a's items are
a's elements. Since a is a sequence, you can index a with normal indexing syntax to access or change
a's items. Note that a's items are a's subarrays; only for an array of rank 1 or 0 are the array's items
the same thing as the array's elements.

You can also use a in a for loop, as for any other sequence. For example:

for x in a:
    process(x)

means the same thing as:

for i in range(len(a)):
    x = a[i]
    process(x)

In these examples, each item x of a in the for loop is a subarray of a. For example, if a is a two-
dimensional matrix, each x in either of these loops is a one-dimensional subarray of a corresponding
to a row of the matrix.

You can also index a by a tuple. For example, if a's rank is at least 2, you can write a[i][j] as a[i,j] for
any valid i and j, for rebinding as well as for access. Tuple indexing is faster and more convenient. You
do not need to use parentheses inside the brackets in order to indicate that you are indexing a by a
tuple: it suffices to write the indices one after the other, separated by commas. In other words, a[i,j]
means the same thing as a[(i,j)], but the syntax without the parentheses is more natural and
readable.

If the result of indexing is a single number, Numeric implicitly converts the result from a rank-zero
array to a scalar quantity of the appropriate Python type. In other words, as a result of such an
indexing you get a number, not an array with one number in it. While this makes it convenient to pass
array elements to other non-Numeric software, it also has unfortunate consequences, and this
behavior will change in numarray. With the present behavior, special-casing is required. For example:

a[i].shape=  =a.shape[1:]

does not execute correctly as Python code when a's rank is 1. In this case, a[i] is just a number, and
numbers don't have a shape attribute. Thus, an AttributeError exception results.

15.6.3 Storage

An array object a is usually stored in a continuous memory area, with the elements one after the other
in what is traditionally called row-major order. This means that, for example, when a's rank is 2, the
elements of a's first row (a[0]) come first, immediately followed by those of a's second row (a[1]), and
so on.

An array can be noncontiguous when it shares some of the storage of a larger array, as covered in the
following section Section 15.6.4. For example, if a's rank is 2, the slice b=a[:,0] is the first column of

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


following section Section 15.6.4. For example, if a's rank is 2, the slice b=a[:,0] is the first column of
a, and is stored noncontiguously because it occupies some of the same storage as a. In other words,
b[0] occupies the same storage as a[0,0], while b[1] occupies the same storage as a[1,0], which
cannot be adjacent to the memory occupied by a[0,0] when a has more than one column.

Numeric handles both contiguous and noncontiguous arrays transparently in most cases. In the rest of
this chapter, I will point out the rare exceptions where a contiguous array is needed. When you want
to copy a noncontiguous array b into a new contiguous array c, use method copy, covered in Section
15.6.7 later in this chapter.

15.6.4 Slicing

Arrays may share some or all of their data with other arrays. Numeric shares data between arrays
whenever feasible. If you want Numeric to copy data, explicitly ask for a copy. Data sharing
particularly applies to slices. For built-in Python lists and standard library array objects, slices are
copies, but for Numeric array objects, slices share data with the array they're sliced from:

from Numeric import *
alist=range(10)
list_slice=alist[3:7]
list_slice[2]=22
print list_slice, alist       # prints: [3,4,22,6] [0,1,2,3,4,5,6,7,8,9]
anarray=array(alist)
arr_slice=anarray[3:7]
arr_slice[2]=33
print arr_slice, anarray      # prints: [ 3 4 33 6] [ 0 1 2 3 4 33 6 7 8 9]

Rebinding an item of list_slice does not affect the list alist that list_slice is sliced from, since for built-in
lists, slicing performs a copy. However, because for Numeric arrays, slicing shares data, assigning to
an item of arr_slice does affect the array object anarray that arr_slice is sliced from. This behavior may
be unexpected for a beginner, but was chosen to enable high performance.

15.6.4.1 Slicing examples

You can use a tuple to slice an array, just as you can to index it. For arrays, slicing and indexing blend
into each other. Each item in a slicing tuple can be an integer, and the slice has one fewer axis than
the array being sliced. Slicing removes the axis for which you give a number by selecting the
indicated plane of the array.

A slicing tuple item can also be a slice expression; the general syntax is start:stop:step, and you can
omit one or more of the three parts (see Section 4.6 in Chapter 4, and function slice in Chapter 8, for
details on slice semantics and defaults). Here are some example slicings:

# a is [[ 0, 1, 2, 3, 4, 5],
#       [10,11,12,13,14,15],
#       [20,21,22,23,24,25],
#       [30,31,32,33,34,35],
#       [40,41,42,43,44,45],
#       [50,51,52,53,54,55]]
a[0,2:4)                        # array([2,3])
a[3:,3:]                        # array([[33,34,35],
                                #        [43,44,45],
                                #        [53,54,55]])
a[:,4]                          # array([4,14,24,34,44,54])
a[2::2,::2]                     # array([[20,22,24],
                                #        [40,42,44]])

A slicing-tuple item can also use an ellipsis (...) to indicate that the following items in the slicing tuple
apply to the last (rightmost) axes of the array you're slicing. For example, consider slicing an array b
of rank 3:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


b.shape                            # (4,2,3)
b[1].shape                         # (2,3)
b[...,1].shape                     # (4,2)

When we slice with b[1] (equivalent to indexing), we give an integer index for axis 0, and therefore
we select a specific plane along b's axis 0. By selecting a specific plane, we remove that axis from the
result's shape. Therefore, the result's shape is b.shape[1:]. When we slice with b[...,1], we select a
specific plane along b's axis -1 (the rightmost axis of b). Again, by selecting a specific plane, we
remove that axis from the result's shape. Therefore, the result's shape in this case is b.shape[:-1].

A slicing-tuple item can also be the pseudo-index NewAxis. The resulting slice has an additional axis at
the point at which you use NewAxis, with a value of 1 in the corresponding item of the shape tuple.
Continuing the previous example:

b[NewAxis,...,NewAxis].shape       # (1,4,2,3,1)

Here, rather than selecting and thus removing some of b's axes, we have added two new axes, one at
the start of the shape and one at the end, thanks to the ellipsis.

Axis removal and addition can both occur in the same slicing. For example:

b[NewAxis,:,0,:,NewAxis].shape     # (1,4,3,1)

Here, we both add new axes at the start and end of the shape, and select a specific index from the
middle axis (axis 1) of b by giving an index for that axis. Therefore, axis 1 of b is removed from the
result's shape. The colons (:) used as the second and fourth items in the slicing tuple in this example
are slice expressions with both start and stop omitted, meaning that all of the corresponding axis is
included in the slice. In all these examples, all slices share some or all of b's data. Slicing affects only
the shape of the resulting array. No data is copied, and no operations are performed on the data.

15.6.4.2 Assigning to array slices

Assignment to array slices is less flexible than assignment to list slices. Normally, you can assign to
an array slice only another array of the same shape as the slice. However, if the right-hand side of the
assignment is not an array, Numeric implicitly creates a temporary array from it. Each element of the
right-hand side is coerced to the left-hand side's type. If the right-hand side array is not the same
shape as the left-hand side slice, broadcasting applies, as covered in Section 15.6.8 later in this
chapter. So, for example, you can assign a scalar (a single number) to any slice of a numeric array. In
this case, the right-hand side number is coerced, then broadcast (replicated) as needed to make the
assignment succeed.

When you assign to an array slice (or indexing) a right-hand side of a type different from that of the
left-hand side, Numeric coerces the values to the left-hand side's type, for example by truncating
floating-point numbers to integers. This does not apply if the right-hand side values are complex. Full
coercion does not apply to in-place operators, which can only cast the right-hand side values upwards
(for example, an integer right-hand side may be used for in-place operations with a floating-point left-
hand side, but not vice versa), as covered in Section 15.6.8.2 later in this chapter.

15.6.5 Truth Values

Although an array object a is a Python sequence, in recent versions of Numeric a does not follow
Python's normal rule for truth values of sequences, where bool(a) depends only on len(a) and not on
a's elements (i.e., the rule by which any sequence is false only when empty, otherwise it is true).
Rather, a is false when a has no elements or all of a's elements are numeric 0. This lets you test for
element-wise equality of arrays in the natural way:

if a=  =b:

Without this proviso, such an if condition would be satisfied by any non-empty comparable arrays a
and b.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Do remember, however, that you have to be explicit when you want to test whether a has any items
or whether a has any elements, as these are two different conditions:

a = Numeric.array( [ [  ], [  ], [  ] ] )
if a: print 'a is true'
else: print 'a is false'                       # prints: a is false
if len(a): print 'a has some items'
else: print 'a has no items'                   # prints: a has some items
if Numeric.size(a): print 'a has some elements'
else: print 'a has no elements'                # prints: a has no elements

In most cases, the best way to compare arrays of numbers is for approximate equality with function
allclose, covered later in this chapter.

15.6.6 Factory Functions

Numeric supplies numerous factory functions that create array objects.

array

array(data,typecode=None,copy=True,savespace=False)

Returns a new array object a. a's shape depends on data. When data is a number, a has rank 0 and
a.shape is the empty tuple ( ). When data is a sequence of numbers, a has rank 1 and a.shape is the
singleton tuple (len(data),). When data is a sequence of sequences of numbers, all of data's items
must have the same length, a has rank 2, and a.shape is the pair (len(data),len(data[0])). This idea
generalizes to any nesting level of data as a sequence of sequences, up to the arbitrarily high limit on
rank mentioned earlier in this chapter. If data is nested over that limit, array raises TypeError. (This is
unlikely to be a problem in practice, as an array of rank at least 40, with each axis of length at least
2, would have well over a million of millions of elements).

typecode can be any of the values shown in Table 15-2 or None. When typecode is None, array chooses
a default type code depending on the types of the elements of data. When any one or more elements
in data are long integer values or are neither numbers nor plain strings (e.g., None or Unicode
strings), the type code is PyObject. When all elements are plain strings, the type code is Character.
When any one or more elements (but not all) are plain strings, all others are numbers (not long
integers), and typecode is None, array raises TypeError. You must explicitly pass 'O' or PyObject as
argument typecode if you want to have array build an array from some plain strings and some non-
long integers. When all elements are numbers (not long integers), the default type code depends on
the widest numeric type among the elements. When any of the elements is a complex, the type code
is Complex. When no elements are complex but some are floating-point values, the type code is Float.
When all elements are integers, the type code is Int.

Function array, by default, returns an array object a that doesn't share data with others. If data is an
array object, and you explicitly pass a false value for argument copy, array returns an array object a
that shares data with data, if feasible.

By default, an array object with a numeric type code is implicitly cast up when operated with numbers
of wider numeric types. When you do not need this implicit casting, you can save some memory by
explicitly passing a true value for argument savespace to the array factory function, to set the
resulting array object a into space-saving mode. For example:

array(range(4),typecode='b')+2.0    # array([2.,3.,4.,5.])
array(range(4),typecode='b',savespace=True)+2.0     
# array([2,3,4,5])
array(range(4),typecode='b',savespace=True)+258.7   
# array([2,3,4,5])

The first statement creates an array of floating-point values, as savespace is not specified and thus

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The first statement creates an array of floating-point values, as savespace is not specified and thus
each element is implicitly cast up to a float when added to 2.0. The second and third statements
create arrays of 8-bit integers, since savespace is specified. Therefore, instead of implicit casting up of
the array's element, we get implicit casting down of the float added to each element. 258.7 is cast
down to 2: the fractional part .7 is lost because of the cast to an integer, and the resulting 258
becomes 2 because, since the cast is to 8-bit integers, only the lowest 8 bits are kept. The savespace
mode can be very useful for large arrays, but be careful lest you suffer unexpected loss of precision
when using it.

arrayrange, arange

arrayrange([start,]stop[,step=1],typecode=None)

Like array(range(start,stop,step),typecode), but faster. See built-in function range, covered in Chapter
8, for details about start, stop, and step. arrayrange allows float values for these arguments, not just
int values. Be careful when exploiting this feature, since the approximations inherent in floating-point
arithmetic may lead to a result with one more or fewer items than you might expect. arange is a
synonym of arrayrange.

fromstring

fromstring(data,count=None,typecode=Int)

Returns a one-dimensional array a of shape (count,) with data copied from the bytes of string data.
When count is None, len(data) must be a multiple of typecode's item size, and a's shape is
(len(data)/a.itemsize( ),). When count is not None, len(data) must be greater than or equal to
count*a.itemsize( ), and fromstring ignores data's trailing bytes, if any.

Together with methods a.tostring and a.byteswapped (covered in the following section Section 15.6.7),
function fromstring allows binary input/output of array objects. When you need to save arrays and
later reload them, and don't need to use the saved form in non-Python programs, it's simpler and
faster to use module cPickle, covered in Chapter 11. Many experienced users prefer to use a portable
self-describing file format such as netCDF (see http://met-www.cit.cornell.edu/noon/ncmodule.html).

identity

identity(n,typecode=Int)

Returns a two-dimensional array a of shape (n,n). a's elements are 0, except those on the main
diagonal (a[j,j] for j in range(n)), which are 1.

ones

ones(shapetuple,typecode=Int,savespace=False)

Returns an array a such that a.shape= =shapetuple. All of a's elements are 1.

zeros

zeros(shapetuple,typecode=Int,savespace=False)

Returns an array a such that a.shape= =shapetuple. All of a's elements are 0.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Note that, by default, identity, ones, and zeros all return arrays whose type is Int. Be sure to specify
explicitly a different type code, such as Float, if that is what you really want. For example, be sure to
avoid the following common mistake:

a = zeros(3)
a[0] = 0.3                    # a is array([0,0,0])

Since a is Int in this snippet, the 0.3 we assign to one of its items gets truncated to the integer 0.
Instead, you typically want something closer to the following:

a = zeros(3,Float)
a[0] = 0.3                    # a is array([0.3,0.,0.])

Here, we have explicitly specified Float as the type code for a, and therefore no truncation occurs
when we assign 0.3 to one of a's items.

15.6.7 Attributes and Methods

For most array manipulations, Numeric supplies functions you can call with array arguments. You can
also use Python lists as arguments; this polymorphism offers flexibility that is not available for
functionality packaged up as array attributes and methods. Each array object a also supplies some
methods and attributes, for direct access to functionality that would not benefit from polymorphic
possibilities.

astype

a.astype(typecode)

Returns a new array b with the same shape as a. b's elements are a's elements coerced to the type
indicated by typecode. b does not share a's data, even if typecode equals a.typecode( ).

byteswapped

a.byteswapped(  )

Returns a new array object b with the same type code and shape as a. Each element of b is copied
from the corresponding element of a, inverting the order of the bytes in the value. This swapping
transforms each value from little-endian to big-endian or vice versa. Together with function fromstring
and method a.tostring, this helps when you have binary data from one kind of machine and need them
for the other kind (for example, Intel platforms are little-endian, while Sun platforms are big-endian).

copy

a.copy(  )

Returns a new contiguous array object b, identical to a, but not sharing a's data.

flat

a .flat is an attribute that contains an array with rank of one less than a and of the same size as a,
sharing a's data. Indexing or slicing a.flat lets you access or change a's elements through this
alternate view of a. Trying to access a.flat raises a TypeError exception if a is noncontiguous. When a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


alternate view of a. Trying to access a.flat raises a TypeError exception if a is noncontiguous. When a
is contiguous, a.flat is in row-major order. This means that, for example, when a's shape is (7,4) (i.e.,
a is a two-dimensional matrix with seven rows and four columns), a.flat[i] is the same as
a[divmod(i,4)] for all i in range(28).

imag, imaginary, real

Trying to access the a.real and a.imag attributes raises a TypeError exception unless a's type code is
complex. When a's type code is complex, each of a.real and a.imag is a noncontiguous array with the
same shape as a and a float type code, sharing data with a. By accessing or modifying a.real or
a.imag, you access or modify the real or imaginary parts of a's complex-number elements. imaginary
is a synonym of imag.

iscontiguous

a.iscontiguous(  )

Returns True if a's data occupies contiguous storage, otherwise False. This matters particularly when
interfacing to C-coded extensions. a.copy( ) makes a contiguous copy of a. Noncontiguous arrays arise
when slicing or transposing arrays, as well as for attributes a.real and a.imag of an array a with a
complex type code.

itemsize

a.itemsize(  )

Returns the number of bytes of memory used by each of a's elements (not by each of a's items, which
are subarrays of a).

savespace

a.savespace(flag=True)

Sets or resets the space-saving mode of array a, depending on the truth value of flag. When flag is
true, a.savespace(flag) sets a's space-saving mode so that a's elements are not implicitly cast up when
operated with arrays of wider numeric types. For more details on this, see the discussion of savespace
for function array earlier in this chapter. When flag is false, a.savespace(flag) resets a's space-saving
mode so that a's elements are implicitly cast up when needed.

shape

The a.shape attribute is a tuple with one item per axis of a, giving the length of that axis. You can
assign a sequence of integers to a.shape to change the shape of a, but a's size (the total number of
elements) must remain the same. When you assign to a.shape another sequence s, one of s's items
can be -1, meaning that the length along that axis is whatever is needed to keep a's size unchanged.
However, the product of the other items of s must evenly divide a's size, or else the reshaping raises
an exception. When you need to change the total number of elements in a, call function resize
(covered in Section 15.6.9 later in this chapter).

spacesaver

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


spacesaver

a.spacesaver(  )

Returns True if space-saving mode is on for array a, otherwise False. See the discussion of savespace
for function array earlier in this chapter.

tolist

a.tolist(  )

Returns a list L equivalent to a. For example, if a.shape is (2,3) and a's type code is 'd', L is a list of
two lists of three float values each. In other words, for each valid i and j, L[i][j]= =a[i,j]. Note that
list(a) converts only the top-level (axis 0) of array a into a list, and thus is not equivalent to a.tolist( )
if a's rank is 2 or more. For example:

a=array([[1,2,3],[4,5,6]],typecode='d')
print a.shape             # prints: (2,3)
print a                   # prints: [[1. 2. 3.]
                          #          [4. 5. 6.]]
print list(a)             
# prints: [array([1.,2.,3.]), array([4.,5.,6.])]
print a.tolist(  )          
# prints: [[1.0,2.0,3.0],[4.0,5.0,6.0]]

tostring

a.tostring(  )

Returns a binary string s whose bytes are a copy of the bytes of a's elements.

typecode

a.typecode(  )

Returns the type code of a as a one-character string.

15.6.8 Operations on Arrays

Arithmetic operators +, -, *, /, %, and **, comparison operators >, >=, <, <=, = =, and !=, and
bitwise operators &, |, ^, and ~ (all covered in Chapter 4) also apply to arrays. If both operands a
and b are arrays with equal shapes and type codes, the result is a new array c with the same shape
and type code. Each element of c is the result of the operator on corresponding elements of a and b
(element-wise operation).

Arrays do not follow sequence semantics for * (replication) and + (concatenation), but rather use *
and + for element-wise arithmetic. Similarly, * does not mean matrix multiplication, but element-wise
multiplication. Numeric supplies functions to perform replication, concatenation, and matrix
multiplication; all operators on arrays perform element-wise operations.

When the type codes of a and b differ, the narrower numeric type is converted to the wider one, like
for other Python numeric operations. As usual, operations between numeric and non-numeric values
are disallowed. In the case of arrays, you can inhibit casting up by setting an array into space-saving
mode with method savespace. Use space-saving mode with care, since it can result in silent loss of
significant data. For more details on this, see the discussion of savespace for function array earlier in

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


significant data. For more details on this, see the discussion of savespace for function array earlier in
this chapter.

15.6.8.1 Broadcasting

Element-wise operations between arrays of different shapes are generally not possible: attempting
such operations raises an exception. Numeric allows some such operations by broadcasting
(replicating) a smaller array up to the shape of the larger one when feasible. To make broadcasting
efficient, the replication is only conceptual: Numeric does not need to physically copy the data being
broadcast (i.e., you need not worry that performance will be degraded because an operation involves
broadcasting).

The simplest case of broadcasting is when one operand, a, is a scalar (an array of rank 0), while b,
the other operand, is an array. In this case, Numeric conceptually builds a temporary array t, with
shape b.shape, where each element of t equals a. Numeric then performs the requested operation
between t and b. In practice, therefore, when you operate an array b with a scalar a, as in a+b or
b+a, the resulting array has the same shape as b, and each element is the result of applying the
operator to the corresponding element of b and the single number a.

More generally, broadcasting can also apply when both operands a and b are arrays. Conceptually,
broadcasting works according to rather complicated general rules:

1. When a and b differ in rank, the one whose shape tuple is shorter is padded up to the other's
rank by adding leading axes, each with a length of 1.

2. a.shape and b.shape, padded to the same length as per rule 1, are compared starting from the
right (i.e., from the length of the last axis).

3. When the axis length along the axis being examined is the same for a and b, that axis is okay,
and examination moves leftward to the previous axis.

4. When the lengths of the axes differ and both are greater than 1, Numeric raises an exception.

5. When one axis length is 1, Numeric broadcasts the corresponding array by replication along
that plane to the axis length of the other array.

Broadcasting's rules are complicated because of their generality, but most typical applications of
broadcasting are in simple cases. For example, say we compute a+b, and a.shape is (5,3) (a matrix of
five rows, three columns). Further, say typical values for b.shape include ( ) (a scalar), (3,) (a one-
dimensional vector with three elements), and (5,1) (a matrix with five rows, one column). In each of
these cases, b is broadcast up to a temporary array t with shape (5,3) by replicating b's elements
along the needed axis (both axes, when b is a scalar), and Numeric computes a+t. The simplest and
most frequent case, of course, is when b.shape is (5,3), the same shape as a's. In this case, no
broadcasting is needed.

15.6.8.2 In-place operations

Arrays support in-place operations through augmented assignment operators +=, -=, and so on. The
left-hand side array or slice cannot be broadcast, but the right-hand side can be. Similarly, the left-
hand side cannot be cast up, but the right-hand side can be. In other words, in-place operations treat
the left-hand side as rigid in both shape and type, but the right-hand side is subject to the normal,
more lenient rules.

15.6.9 Functions

Numeric defines several functions that operate on arrays, or polymorphically on Python sequences,
conceptually forming temporary arrays from non-array operands.

allclose

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


allclose(x,y,rtol=1.e-5,atol=1.e-8)

Returns True when every element of x is close to the corresponding element of y, otherwise False.
Two elements ex and ey are defined to be close if:

abs(ex-ey)<atol+rtol*abs(ey)

In other words, ex and ey are close if both are tiny (less than atol) or if the relative difference is small
(less than rtol). allclose is generally a better way to check array equality than = =, since floating-point
arithmetic requires some comparison tolerance. However, allclose is not applicable to complex arrays,
only to floating-point and integer arrays. To compare two complex arrays x and y for approximate
equality, you can use:

allclose(x.real, y.real) and allclose(x.imag, y.imag)

argmax, argmin

argmax(a,axis=-1)
argmin(a,axis=-1)

argmax returns a new integer array m whose shape tuple is a.shape minus the indicated axis. Each
element of m is the index of a maximal element of a along axis. argmin is similar, but indicates
minimal elements rather than maximal ones.

argsort

argsort(a,axis=-1)

Returns a new integer array m with the same shape as a. Each vector of m along axis is the index
sequence needed to sort the corresponding axis of a. In particular, if a has rank 1, the most common
case, take(a,argsort(a))= =sort(a). For example:

x = [52, 115, 99, 111, 114, 101, 97, 110, 100, 55]
print Numeric.argsort(x)   # prints: [0 9 6 2 8 5 7 3 4 1]
print Numeric.sort(x)      
# prints: [52 55 97 99 100 101 110 111 114 115]
print Numeric.take(x, Numeric.argsort(x))
# prints: [52 55 97 99 100 101 110 111 114 115]

Here, the result of Numeric.argsort(x) tells us that x's smallest element is x[0], the second smallest is
x[9], the third smallest is x[6], and so on. The call to Numeric.take in the last print statement takes x's
elements exactly in this order, and therefore produces the same sorted array as the call to
Numeric.sort in the second print statement.

array2string

array2string(a,max_line_width=None,precision=None,
             suppress_small=None,separator=' ',
            array_output=False)

Returns a string representation s of array a, showing elements within brackets, separated by string
separator. The last dimension is horizontal, the penultimate one vertical, and further dimensions are
denoted by bracket nesting. If array_output is true, s starts with 'array(' and ends with ')'. s ends with
",'X')" instead if X, which is a's type code, is not Float, Complex, or Int, which lets you later use eval(s)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


",'X')" instead if X, which is a's type code, is not Float, Complex, or Int, which lets you later use eval(s)
if separator is ','.

Lines longer than max_line_width (by default, 77) are broken up. precision determines how many digits
are used per element (by default, 8). If suppress_small is true, very small numbers are shown as 0.
You can change these defaults by binding attributes of module sys named output_line_width,
float_output_precision, and float_output_suppress_small.

str(a) is like array2string(a). repr(a) is like array2string(a,separator=', ',array_output=True).

average

average(a,axis=0,weights=None,returned=False)

Returns a's average along axis. When axis is None, returns the average of all a's elements. When
weights is not None, weights must be an array with a's shape, or a one-dimensional array with the
length of a's given axis, and average computes a weighted average. When returned is true, returns a
pair: the first item is the average, the second item is the sum of weights (the count of values, when
weights is None).

choose

choose(a,values)

Returns an array c with the same shape as a. values is a sequence. a's elements are integers between
0, included, and len(values), excluded. Each element of c is the item of values whose index is the
corresponding element of a. For example:

print Numeric.choose(Numeric.identity(3),'ox')   
# prints: [[x o o]
#          [o x o]
#          [o o x]]

clip

clip(m,min,max)

Returns an array c with the same type code and shape as a. Each element ec of c is the corresponding
element ea of a, where min<=ea<=max. Where ea<min, ec is min; where ea>max, ec is max. For
example:

print Numeric.clip(Numeric.arange(10),2,7)  
# prints: [2 2 2 3 4 5 6 7 7 7]

compress

compress(condition,a,axis=0)

Returns an array c with the same type code and rank as a. c includes only the elements of a for which
the item of condition, corresponding along the given axis, is true. For example, compress((1,0,1),a) =
= take(a,(0,2),0) since (1,0,1) has true values only at indices 0 and 2. Here's how to get only the even
numbers from an array:

a = Numeric.arange(10)
print Numeric.compress(a%2=  =0, a)   # prints: [0 2 4 6 8]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


print Numeric.compress(a%2=  =0, a)   # prints: [0 2 4 6 8]

concatenate

concatenate(arrays, axis=0)

arrays is a sequence of arrays, all with the same shape except possibly along the given axis.
concatenate returns an array that is the concatenation of the arrays along the given axis. In particular,
concatenate((s,)*n) has the same sequence replication semantics that s*n would have if s were a
generic Python sequence rather than an array. For example:

print Numeric.concatenate([Numeric.arange(5),
                           Numeric.arange(3)])
# prints: [0 1 2 3 4 0 1 2]

convolve

convolve(a,b,mode=2)

Returns an array c with rank 1, the linear convolution of rank 1 arrays a and b. Linear convolution is
defined over unbounded sequences. convolve conceptually extends a and b to infinite length by
padding with 0, then clips the infinite-length result to its central part, yielding c. When mode is 2, the
default, convolve clips only the padding, so c's shape is (len(a)+len(b)-1,). Otherwise, convolve clips
more. Say len(a) is greater than or equal to len(b): when mode is 0, len(c) is len(a)-len(b)+1; when
mode is 1, len(c) is len(a). When len(a) is less than len(b), the effect is symmetrical. For example:

a = Numeric.arange(6)
b = Numeric.arange(4)
print Numeric.convolve(a, b)          
# prints: [0 0 1 4 10 16 22 22 15]
print Numeric.convolve(a, b, 1)       
# prints: [0 1 4 10 16 22]
print Numeric.convolve(a, b, 0)       # prints: [4 10 16]

cross_correlate

cross_correlate(a,b,mode=0)

Like convolve(a,b[::-1],mode).

diagonal

diagonal(a,k=0,axis1=0,axis2=1)

Returns the elements of a whose index along axis1 and index along axis2 differ by k. When a has rank
2, this means the main diagonal when k equals 0, subdiagonals above the main one when k is greater
than 0, and subdiagonals below the main one when k is less than 0. For example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# a is [[0 1 2 3]
#       [4 5 6 7]
#       [8 9 10 11]
#       [12 13 14 15]]
print Numeric.diagonal(a)        # prints: [0 5 10 15]
print Numeric.diagonal(a,1)      # prints: [1 6 11]
print Numeric.diagonal(a,-1)     # prints: [4 9 14]

As shown, diagonal(a) is the main diagonal, diagonal(a,1) the subdiagonal just above the main one,
and diagonal(a,-1) the subdiagonal just below the main one.

indices

indices(shapetuple,typecode=None)

Returns an integer array x of shape (len(shapetuple),)+shapetuple. Each element of subarray x[i] is
equal to the element's i index in the subarray. For example:

print Numeric.indices((2,4))     # prints: [[[0 0 0 0]
                                 #           [1 1 1 1]]
                                 #          [[0 1 2 3]
                                 #           [0 1 2 3]]]

innerproduct

innerproduct(a,b)

Returns an array m with the result of the inner product of a and b, like matrixmultiply(a,transpose(b)).
a.shape[-1] must equal b.shape[-1], and m.shape is the tuple a.shape[:-1]+b.shape[0:-1:-1].

matrixmultiply

matrixmultiply(a,b)

Returns an array m with a times b in the matrix-multiplication sense, rather than element-wise
multiplication. a.shape[-1] must equal b.shape[0], and m.shape is the tuple a.shape[:-1]+b.shape[1:].

nonzero

nonzero(a)

Returns the indices of those elements of a that are not equal to 0, like the expression:

array([i for i in range(len(a)) if a[i] != 0])

a must be a sequence or one-dimensional array.

put

put(a,indices,values)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


a must be a contiguous array. indices is a sequence of integers, taken as indices into a.flat. values is a
sequence of values that can be converted to a's type code (if shorter than indices, values is repeated
as needed). Each element of a indicated by an item in indices is replaced by the corresponding item in
values. put is therefore similar to (but faster than) the loop:

for i,v in zip(indices,values*len(indices)):
    a.flat[i]=v

putmask

putmask(a,mask,values)

a must be a contiguous array. mask is a sequence with the same length as a.flat. values is a sequence
of values that can be converted to a's type code (if shorter than mask, values is repeated as needed).
Each element of a corresponding to a true item in mask is replaced by the corresponding item in
values. putmask is therefore similar to (but faster than) the loop:

for i,v in zip(xrange(len(mask)),values*len(mask)):
    if mask[i]: a.flat[i]=v

rank

rank(a)

Returns the rank of a, just like len(array(a,copy=False).shape).

ravel

ravel(a)

Returns the flat form of a, just like array(a,copy=False).flat.

repeat

repeat(a,repeat,axis=0)

Returns an array with the same type code and rank as a, where each of a's elements is repeated
along axis as many times as the value of the corresponding element of repeat. repeat is an integer, or
an integer sequence of length a.shape[axis].

reshape

reshape(a,shapetuple)

Returns an array r with shape shapetuple, sharing a's data. r=reshape(a,shapetuple) is just like
r=a;r.shape=shapetuple. The product of shapetuple's items must equal the product of a.shape's, but
one of shapetuple's items may be -1 to ask for adaptation of that axis's length. For example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


print Numeric.reshape(range(12),(3,-1))     
# prints: [[0 1 2 3]
#          [4 5 6 7]
#          [8 9 10 11]]

resize

resize(a,shapetuple)

Returns an array r with shape shapetuple and data copied from a. If r's size is smaller than a's size,
r.flat is copied from the start of ravel(a); if r's size is larger, the data in ravel(a) is replicated as many
times as needed. In particular, resize(s,(n*len(s),)) has the sequence replication semantics that s*n
would have if s were a generic Python sequence rather than an array. For example:

print Numeric.resize(range(5),(3,4))        
# prints: [[0 1 2 3]
#          [4 0 1 2]
#          [3 4 0 1]]

searchsorted

searchsorted(a,values)

a must be a sorted rank 1 array. searchsorted returns an array of integers s with the same shape as
values. Each element of s is the index in a where the corresponding element of values would fit in the
sorted order of a. For example:

print Numeric.searchsorted([0,1],
    [0.2,-0.3,0.5,1.3,1.0,0.0,0.3])
# prints: [1 0 1 2 1 0 1]

This specific idiom returns an array with 0 in correspondence to each element x of values when x is
less than or equal to 0; 1 when x is greater than 0 and less than or equal to 1; and 2 when x is
greater than 1. With slight generalization, and with appropriate thresholds as the elements of sorted
array a, this idiom allows very fast classification of what subrange each element x of values falls into.

shape

shape(a)

Returns the shape of a, just like array(a,copy=False).shape.

size

size(a,axis=None)

When axis is None, returns the total number of elements in a. Otherwise, returns the number of
elements of a along axis, like array(a,copy=False).shape[axis].

sort

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


sort(a,axis=-1)

Returns an array s with the same type code and shape as a, with elements along each plane of the
given axis reordered so that the plane is sorted in increasing order. For example:

# x is [[0 1 2 3]
#       [4 0 1 2]
#       [3 4 0 1]]
print Numeric.sort(x)       # prints: [[0 1 2 3]
                            #          [0 1 2 4]
                            #          [0 1 3 4]]
print Numeric.sort(x,0)     # prints: [[0 0 0 1]
                            #          [3 1 1 2]
                            #          [4 4 2 3]]

sort(x) returns a result where each row is sorted. sort(x,0) returns a result where each column is
sorted.

swapaxes

swapaxes(a,axis1,axis2)

Returns an array s with the same type code, rank, and size as a, sharing a's data. s's shape is the
same as a, but with the lengths of axes axis1 and axis2 swapped. In other words,
s=swapaxes(a,axis1,axis2) is like:

swapped_shape=range(length(a.shape))
swapped_shape[axis1]=axis2
swapped_shape[axis2]=axis1
s=transpose(a,swapped_shape)

take

take(a,indices,axis=0)

Returns an array t with the same type code and rank as a, containing the subset of a's elements that
would be in a slice along axis comprising the given indices. For example, after t=take(a,(1,3)),
t.shape= =(2,)+a.shape[1:], and t's elements are those in the second and fourth rows of a.

trace

trace(a,k=0)

Returns the sum of a's elements along the k diagonal, like sum(diagonal(a,k)).

transpose

transpose(a,axes=None)

Returns an array t, with the same type code, rank, and size as a, sharing a's data. t's axes are
permuted with respect to a's by the axis indices in sequence axes. When axes is None, t's axes invert
the order of a's, as if axes were a.shape[::-1].

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


where

where(condition,x,y)

Returns an array w with the same shape as condition. Where an element of condition is true, the
corresponding element of w is the corresponding element of x; otherwise it is the corresponding
element of y. For example, clip(a,min,max) is the same as
where(greater(a,max),max,where(greater(a,min),a,min)).
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.7 Universal Functions (ufuncs)

Numeric supplies named functions with the same semantics as Python's arithmetic, comparison, and
bitwise operators. Similar semantics (element-wise operation, broadcasting, coercion) are also
available with other mathematical functions, both binary and unary, that Numeric supplies. For
example, Numeric supplies typical mathematical functions similar to those supplied by built-in module
math, such as sin, cos, log, and exp.

These functions are objects of type ufunc (which stands for universal function) and share several traits
in addition to those they have in common with array operators. Every ufunc instance u is callable, is
applicable to sequences as well as to arrays, and lets you specify an optional output argument. If u is
binary (i.e., if u accepts two operand arguments), u also has four callable attributes, named
u.accumulate, u.outer, u.reduce, and u.reduceat. The ufunc objects supplied by Numeric apply only to
arrays with numeric type codes (i.e., not to arrays with type code 'O' or 'c').

Any ufunc u applies to sequences, not just to arrays. When you start with a list L, it's faster to call u
directly on L rather than to convert L to an array. u's return value is an array a; you can perform
further computation, if any, on a, and then, if you need a list result, you can convert the resulting
array to a list by calling its method tolist. For example, say you must compute the logarithm of each
item of a list and return another list. On my system, with N set to 2222 and using python -O, a list
comprehension such as:

def logsupto(N):
    return [math.log(x) for x in range(2,N)]

takes about 5.6 milliseconds. Using Python's built-in map:

def logsupto(N):
    return map(math.log, range(2,N))

takes around half the time, 2.8 milliseconds. Using Numeric's ufunc named log:

def logsupto(N):
    return Numeric.log(range(2,N)).tolist(  )

reduces the time to about 2.0 milliseconds. Taking some care to exploit the output argument to the
log ufunc:

def logsupto(N):
    temp = Numeric.arange(2, N, typecode=Numeric.Float)
    Numeric.log(temp, temp)
    return temp.tolist(  )

further reduces the time, down to just 0.9 milliseconds. The ability to accelerate such simple but
massive computations (here by about 6 times) with so little effort is a good part of the attraction of
Numeric, and particularly of Numeric's ufunc objects.

15.7.1 The Optional output Argument

Any ufunc u accepts an optional last argument output that specifies an output array. If supplied,
output must be an array or array slice of the right shape and type for u's results (i.e., no coercion, no
broadcasting). u stores results in output and does not create a new array. output can be the same as
an input array argument a of u. Indeed, output is normally specified in order to substitute common
idioms such as a=u(a,b) with faster equivalents such as u(a,b,a). However, output cannot share data
with a without being a (i.e., output can't be a different view of some or all of a's data). If you pass
such a disallowed output argument, Numeric is normally unable to diagnose your error and raise an
exception, so instead you get wrong results.

Whether you pass the optional output argument or not, a ufunc u returns its results as the function's

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Whether you pass the optional output argument or not, a ufunc u returns its results as the function's
return value. When you do not pass output, u stores the results it returns in a new array object, so
you normally bind u's return value to some reference in order to be able to access u's results later.
When you pass the output argument, u stores the results in output, so you need not bind u's return
value. You can later access u's results as the new contents of the array object passed as output.

15.7.2 Callable Attributes

Every binary ufunc u supplies four attributes that are also callable objects.

accumulate

u.accumulate(a,axis=0)

Returns an array r with the same shape and type code as a. Each element of r is the accumulation of
elements of a along the given axis with the function or operator underlying u. For example:

print add.accumulate(range(10))      
# prints: [0 1 3 6 10 15 21 28 36 45]

Since add's underlying operator is +, and a is sequence 0,1,2,...,9, r is 0,0+1,0+1+2,...,0+1+...+8+9.
In other words, r[0] is a[0], r[1] is r[0] + a[1], r[2] is r[1] + a[2], and so on (i.e., each r[i] is r[i-1] +
a[i]).

outer

u.outer(a,b)

Returns an array r whose shape tuple is a.shape+b.shape. For each tuple ta indexing a and tb indexing
b, a[ta], operated (with the function or operator underlying u) with b[tb], is put in r[ta+tb] (the + here
indicates tuple concatenation). The overall operation is known in mathematics as the outer product
when u is multiply. For example:

a = Numeric.arange(3, 5)
b = Numeric.arange(1, 6)
c = Numeric.multiply.outer(a, b)
print a.shape, b.shape, c.shape # prints: (2,) (5,) (2,5)
print c                         # prints: [[3 6 9 12 15]
                                #          [4 8 12 16 20]]

c.shape is (2,5), the concatenation of the shape tuples of operands a and b. Each i row of c is the
whole of b multiplied by the corresponding i element of a.

reduce

u.reduce(a,axis=0)

Returns an array r with the same type code as a and rank one less than a's rank. Each element of r is
the reduction of the elements of a, along the given axis, with the function or operator underlying u.
The functionality of u.reduce is therefore close to that of Python's built-in reduce function, covered in
Chapter 8. For example, since 0+1+2+...+9 is 45, add.reduce(range(10)) is 45. This is just like, when
using built-in reduce and import operator, reduce(operator.add,range(10)) is also 45.

reduceat

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


u.reduceat(a,indices)

Returns an array r with the same type code as a and the same shape as indices. Each element of r is
the reduction, with the function or operator underlying u, of elements of a starting from the
corresponding item of indices up to the next one excluded (up to the end, for the last one). For
example:

print add.reduceat(range(10),(2,6,8)) # prints: [14 13 17]

Here, r's elements are the partial sums 2+3+4+5, 6+7, and 8+9.

15.7.3 ufunc Objects Supplied by Numeric

Numeric supplies several ufunc objects, as listed in Table 15-4.

Table 15-4. ufunc objects supplied by Numeric
ufunc Behavior

absolute Behaves like the abs built-in function

add Behaves like the + operator

arccos Behaves like the acos function in math and cmath
arccosh Behaves like the acosh function in cmath
arcsin Behaves like the asin function in math and cmath
arcsinh Behaves like the asinh function in cmath
arctan Behaves like the atan function in math and cmath
arctanh Behaves like the atanh function in cmath
bitwise_and Behaves like the & operator

bitwise_not Behaves like the ~ operator

bitwise_or Behaves like the | operator

bitwise_xor Behaves like the ^ operator

ceil Behaves like the ceil function in math
conjugate Computes the complex conjugate of each element (unary)

cos Behaves like the cos function in math and cmath
cosh Behaves like the cosh function in cmath
divide Behaves like the / operator

equal Behaves like the = = operator

exp Behaves like the exp function in math and cmath
fabs Behaves like the fabs function in math
floor Behaves like the floor function in math
fmod Behaves like the fmod function in math
greater Behaves like the > operator

greater_equal Behaves like the /= operator

less Behaves like the < operator

less_equal Behaves like the <= operator

log Behaves like the log function in math and cmath
log10 Behaves like the log10 function in math and cmath

logical_and Behaves like the & operator; always returns an array containing 0s and 1s, the truth
values of the operands' elements

logical_not Returns an array of 0s and 1s, logical negations of the operand's elements

logical_or Behaves like the | operator; always returns an array containing 0s and 1s, the truth
values of the operands' elements

logical_xor Behaves like the ^ operator; always returns an array containing 0s and 1s, the truth

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


logical_xor Behaves like the ^ operator; always returns an array containing 0s and 1s, the truth
values of the operands' elements

maximum Returns element-wise the larger of the two elements being operated on

minimum Returns element-wise the smaller of the two elements being operated on

multiply Behaves like the * operator

not_equal Behaves like the != operator

power Behaves like the ** operator

remainder Behaves like the % operator

sin Behaves like the sin function in math and cmath
sinh Behaves like the sinh function in cmath
sqrt Behaves like the sqrt function in math and cmath
subtract Behaves like the - operator

tan Behaves like the tan function in math and cmath
tanh Behaves like the tanh function in cmath

Here's how you might use the maximum ufunc to get a numeric ramp that goes down and then back
up again:

print Numeric.maximum(range(1,20),range(20,1,-1))
# prints: [20 19 18 17 16 15 14 13 12 11 11 12 13 14 15 16 17 18 19]

15.7.4 Shorthand for Commonly Used ufunc Methods

Numeric defines function synonyms for some commonly used methods of ufunc objects, as listed in
Table 15-5.

Table 15-5. Synonyms for ufunc methods
Synonym Stands for

alltrue logical_and.reduce
cumproduct multiply.accumulate
cumsum add.accumulate
product multiply.reduce
sometrue logical_or.reduce
sum add.reduce

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

15.8 Optional Numeric Modules

Many other modules are built on top of Numeric or cooperate with it. You can download some of them
from the same URL as Numeric (http://sourceforge.net/projects/numpy). Some of these extra
modules may already be included in the package you have downloaded. Documentation for the
modules is also part of the documentation for Numeric. A rich library of scientific tools that work well
with Numeric is SciPy, available at http://www.scipy.org. I highly recommend it if you are using
Python for scientific or engineering computing.

Here are some key optional Numeric modules:

MLab

MLab supplies many Python functions written on top of Numeric. MLab's functions are similar in
name and operation to functions supplied by the product Matlab.

FFT

FFT supplies Python-callable Fast Fourier Transforms (FFTs) of data held in Numeric arrays. FFT
can wrap either the well-known FFTPACK Fortran-coded library or the compatible C-coded
fftpack library.

LinearAlgebra

LinearAlgebra supplies Python-callable functions, operating on data held in Numeric arrays, that
wrap either the well-known LAPACK Fortran-coded library or the compatible C-coded
lapack_lite library. LinearAlgebra lets you invert matrices, solve linear systems, compute
eigenvalues and eigenvectors, perform singular value decomposition, and least-squares-solve
overdetermined linear systems.

RandomArray

RandomArray supplies fast, high-quality pseudo-random number generators, using various
random distributions, that work with Numeric arrays.

MA

MA supports masked arrays (i.e., arrays that can have missing or invalid values). MA supplies a
large subset of Numeric's functionality, albeit sometimes at reduced speed. The extra
functionality of MA is the ability to associate to each array an optional mask, an auxiliary array
of False and True, where True indicates array elements that are missing, unknown, or invalid.
Computations propagate masks, and you can turn masked arrays into plain Numeric ones by
using a fill-in value for invalid elements. MA is widely applicable because experimental data
quite often has missing or inapplicable elements. Furthermore, when you need to extend or
specialize some aspect of Numeric's behavior for your application's purposes, it often turns out
to be simplest and most effective to start with MA's sources rather than with Numeric's. The
latter are often quite hard to understand and modify, due to the extreme degree of
optimization applied to them over the years.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 16. Tkinter GUIs

Most professional applications interact with users through a graphical user interface (GUI). A GUI is
normally programmed through a toolkit, which is a library that implements controls (also known as
widgets) that are visible objects such as buttons, labels, text entry fields, and menus. A GUI toolkit
lets you compose controls into a coherent whole, display them on-screen, and interact with the user,
receiving input via such devices as the keyboard and mouse.

Python gives you a choice among many GUI toolkits. Some are platform-specific, but most are cross-
platform to different degrees, supporting at least Windows and Unix-like platforms, and often the
Macintosh as well. Check http://phaseit.net/claird/comp.lang.python/python_GUI.html for a list of
dozens of GUI toolkits available for Python. One package, anygui (http://anygui.org), lets you
program simple GUIs to one common programming interface and deploy them with any of a variety of
backends.

The most widespread Python GUI toolkit is Tkinter. Tkinter is an object-oriented Python wrapper
around the cross-platform toolkit Tk, which is also used with other scripting languages such as Tcl (for
which it was originally developed) and Perl. Tkinter, like the underlying Tcl/Tk, runs on Windows,
Macintosh, and Unix-like platforms. Tkinter itself comes with standard Python distributions. On
Windows, the standard Python distribution also includes the Tcl/Tk components needed to run Tkinter.
On other platforms, you must obtain and install Tcl/Tk separately.

This chapter covers an essential subset of Tkinter, sufficient to build simple graphical frontends for
Python applications. A richer introduction is available at
http://www.pythonware.com/library/tkinter/introduction/.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.1 Tkinter Fundamentals

The Tkinter module makes it easy to build simple GUI applications. You simply import Tkinter, create,
configure, and position the widgets you want, and then enter the Tkinter main loop. Your application
becomes event-driven, which means that the user interacts with the widgets, causing events, and
your application responds via the functions you installed as handlers for these events.

The following example shows a simple application that exhibits this general structure:

import sys, Tkinter
Tkinter.Label(text="Welcome!").pack(  )
Tkinter.Button(text="Exit", command=sys.exit).pack(  )
Tkinter.mainloop(  )

The calls to Label and Button create the respective widgets and return them as results. Since we
specify no parent windows, Tkinter puts the widgets directly in the application's main window. The
named arguments specify each widget's configuration. In this simple case, we don't need to bind
variables to the widgets. We just call the pack method on each widget, handing control of the widget's
geometry to a layout manager object known as the packer. A layout manager is an invisible
component whose job is to position widgets within other widgets (known as container or parent
widgets), handling geometrical layout issues. The previous example passes no arguments to control
the packer's operation, so therefore the packer operates in a default way.

When the user clicks on the button, the command callable of the Button widget executes without
arguments. The example passes function sys.exit as the argument named command when it creates
the Button. Therefore, when the user clicks on the button, sys.exit( ) executes and terminates the
application (as covered in Chapter 8).

After creating and packing the widgets, the example calls Tkinter's mainloop function, and thus enters
the Tkinter main loop and becomes event-driven. Since the only event for which the example installs a
handler is a click on the button, nothing happens from the application's viewpoint until the user clicks
the button. Meanwhile, however, the Tkinter toolkit responds in the expected way to other user
actions, such as moving the Tkinter window, covering and uncovering the window, and so on. When
the user resizes the window, the packer layout manager works to update the widgets' geometry. In
this example, the widgets remain centered, close to the upper edge of the window, with the label
above the button.

All strings going to or coming from Tkinter are Unicode strings, so be sure to review Section 9.6 in
Chapter 9 if you need to show, or accept as input, characters outside of the ASCII encoding (you may
then need to use some other appropriate codec).

Note that all the scripts in this chapter are meant to be run standalone (i.e., from a command line or
in a platform-dependent way, such as by double clicking on a script's icon). Running a GUI script from
inside another program that has its own GUI, such as a Python integrated development environment
(e.g., IDLE or PythonWin), can cause various anomalies. This can be a particular problem when the
GUI script attempts to terminate (and thus close down the GUI), since the script's GUI and the other
program's GUI may interfere with each other.

Note also that this chapter refers to several all-uppercase, multi-letter identifiers (e.g., LEFT, RAISED,
ACTIVE). All these identifiers are constant attributes of module Tkinter, used for a wide variety of
purposes. If your code uses from Tkinter import *, you can then use the identifiers directly. If your
code uses import Tkinter instead, you need to qualify those identifiers, just like all others you import
from Tkinter, by preceding them with 'Tkinter.'. Tkinter is one of the rare Python modules designed to
support from Tkinter import *, but of course you may choose to use import Tkinter anyway, sacrificing
some convenience and brevity in favor of greater clarity. A good compromise between convenience
and clarity is often to import Tkinter with a shorter name (e.g., import Tkinter as Tk).

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.2 Widget Fundamentals

The Tkinter module supplies many kinds of widgets, and most of them have several things in
common. All widgets are instances of classes that inherit from class Widget. Class Widget itself is
abstract; that is, you never instantiate Widget itself. You only instantiate concrete subclasses
corresponding to specific kinds of widgets. Class Widget's functionality is common to all the widgets
you instantiate.

To instantiate any kind of widget, call the widget's class. The first argument is the parent window of
the widget, also known as the widget's master. If you omit this positional argument, the widget's
master is the application's main window. All other arguments are in named form, option=value. You
can also set or change options on an existing widget w by calling w.config(option=value). You can get
an option of w by calling w.cget('option'), which returns the option's value. Each widget w is a
mapping, so you can also get an option as w['option'] and set or change it with w['option']=value.

16.2.1 Common Widget Options

Many widgets accept some common options. Some options affect a widget's colors, others affect
lengths (normally in pixels), and there are various other kinds. This section details the most
commonly used options.

16.2.1.1 Color options

Tkinter represents colors with strings. The string can be a color name, such as 'red' or 'orange', or it
may be of the form '#RRGGBB', where each of R, G, and B is a hexadecimal digit, to represent a color
by the values of red, green, and blue components on a scale of 0 to 255. Don't worry; if your screen
can't display millions of different colors, as implied by this scheme; Tkinter maps any requested color
to the closest color that your screen can display. The common color options are:

activebackground

Background color for the widget when the widget is active, meaning that the mouse is over the
widget and clicking on it makes something happen

activeforeground

Foreground color for the widget when the widget is active

background (also bg)

Background color for the widget

disabledforeground

Foreground color for the widget when the widget is disabled, meaning that clicking on the
widget is ignored

foreground (also fg)

Foreground color for the widget

highlightbackground

Background color of the highlight region when the widget has focus

highlightcolor

Foreground color of the highlight region when the widget has focus

selectbackground

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


selectbackground

Background color for the selected items of the widget, for widgets that have selectable items,
such as Listbox

selectforeground

Foreground color for the selected items of the widget

16.2.1.2 Length options

Tkinter normally expresses a length as an integer number of pixels; other units of measure are
possible, but rarely used. The common length options are:

borderwidth

Width of the border (if any), giving a 3D look to the widget

highlightthickness

Width of the highlight rectangle when the widget has focus (when 0, the widget does not draw
a highlight rectangle)

padx, pady

Extra space the widget requests from its geometry manager beyond the minimum the widget
needs to display its contents, in the x and y directions

selectborderwidth

Width of the 3D border (if any) around selected items of the widget

wraplength

Maximum line length for widgets that perform word wrapping (when less than or equal to 0, no
wrapping: the widget breaks lines of text only at '\n')

16.2.1.3 Options expressing numbers of characters

Some options indicate a widget's requested geometry not in pixels, but rather as a number of
characters, using average width or height of the widget's fonts:

height

Desired height of the widget; must be greater than or equal to 1

underline

Index of the character to underline in the widget's text (0 is the first character, 1 the second
one, and so on). The underlined character also determines what shortcut key reaches or
activates the widget.

width

Desired width of the widget (when less than or equal to 0, desired width is just enough to hold
the widget's current contents)

16.2.1.4 Other common options

Other options accepted by many kinds of widgets are a mixed bag, dealing with both behavior and
presentation issues.

anchor

Where the information in the widget is displayed; must be N, NE, E, SE, S, SW, W, NW, or

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Where the information in the widget is displayed; must be N, NE, E, SE, S, SW, W, NW, or
CENTER (all except CENTER are compass directions)

command

Callable without arguments; executes when the user clicks on the widget (only for widgets
Button, Checkbutton, and Radiobutton)

font

Font for the text in this widget (see Section 16.6.6 later in this chapter)

image

An image to display in the widget instead of text; the value must be a Tkinter image object
(see Section 16.2.4 later in this chapter)

justify

How lines are justified when a widget shows more than a line of text; must be LEFT, CENTER,
or RIGHT

relief

The 3D effect that indicates how the interior of the widget appears relative to the exterior;
must be RAISED, SUNKEN, FLAT, RIDGE, SOLID, or GROOVE

state

Widget look and behavior on mouse and keyboard clicks; must be NORMAL, ACTIVE, or
DISABLED

takefocus

If true, the widget accepts focus when the user navigates among widgets by pressing the Tab
or Shift-Tab keys

text

The text string displayed by the widget

textvariable

The Tkinter variable object associated with the widget (see Section 16.2.3 later in this chapter)

16.2.2 Common Widget Methods

A widget w supplies many methods. Besides event-related methods, mentioned in Section 16.9 later
in this chapter, commonly used widget methods are the following.

cget

w.cget(option)

Returns the value configured in w for option.

config

w.config(**options)

w .config( ), without arguments, returns a dictionary where each possible option of w is mapped to a
tuple that describes it. Called with one or more named arguments, config sets those options in w's

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


tuple that describes it. Called with one or more named arguments, config sets those options in w's
configuration.

focus_set

w.focus_set(  )

Sets focus to w, so that all keyboard events for the application are sent to w.

grab_set,grab_release

w.grab_set(  ) 
w.grab_release(  )

grab_set ensures that all of the application's events are sent to w until a corresponding call to
grab_release.

mainloop

w.mainloop(  )

Enters a Tkinter event loop. Event loops may be nested; each call to mainloop enters one further-
nested level of the event loop.

quit

w.quit(  )

Quits a Tkinter event loop. When event loops are nested; each call to quit exits one nested level of the
event loop.

update

w.update(  )

Handles all pending events. Never call this while handling an event!

update_idletasks

w.update_idletasks(  )

Handles those pending events that would normally be handled only when the event loop is idle (such
as layout-manager updates and widget redrawing) but does not perform any callbacks. You can safely
call this method at any time.

wait_variable

w.wait_variable(v)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


v must be a Tkinter variable object (covered in the next section). wait_variable returns only when the
value of v changes. Meanwhile, other parts of the application remain active.

wait_visibility

w.wait_visibility(w1)

w1 must be a widget. wait_visibility returns only when w1 becomes visible. Meanwhile, other parts of
the application remain active.

wait_window

w.wait_window(w1)

w1 must be a widget. wait_window returns only when w1 is destroyed. Meanwhile, other parts of the
application remain active.

winfo_height

w.winfo_height(  )

Returns w's height in pixels.

winfo_width

w.winfo_width(  )

Returns w's width in pixels.

w supplies many other methods whose names start with winfo_, but the two above are the most often
called, typically after calling w.update_idletasks. They let you ascertain a widget's dimensions after the
user has resized a window, causing the layout manager to rearrange the widgets' geometry.

16.2.3 Tkinter Variable Objects

The Tkinter module supplies classes whose instances represent variables. Each class deals with a
specific data type: DoubleVar for float, IntVar for int, StringVar for str. You can instantiate any of these
classes without arguments to obtain an instance x, also known in Tkinter as a variable object. Then,
x.set(datum) sets x's value to the given value, and x.get( ) returns x's current value.

You can pass x as the textvariable or variable configuration option for a widget. Once you do this, the
widget's text changes to track any change to x's value, and x's value, in turn, tracks changes to the
widget (for some kinds of widgets). Further, a single Tkinter variable can control more than one
widget. Tkinter variables let you control widget contents more transparently, and sometimes more
conveniently, than explicitly querying and setting widget properties. The following example shows
how to use a StringVar to connect an Entry widget and a Label widget automatically:

import Tkinter

root = Tkinter.Tk(  )
tv = Tkinter.StringVar(  )
Tkinter.Label(textvariable=tv).pack(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Tkinter.Label(textvariable=tv).pack(  )
Tkinter.Entry(textvariable=tv).pack(  )
tv.set('Welcome!')
Tkinter.Button(text="Exit", command=root.quit).pack(  )

Tkinter.mainloop(  )
print tv.get(  )

As you edit the Entry, you'll see the Label change automatically. This example instantiates the Tkinter
main window explicitly, binds it to name root, and then sets as the Button's command the bound
method root.quit, which quits Tkinter's main loop but does not terminate the Python application. Thus,
the example ends with a print statement, to show on standard output the final value of variable object
tv.

16.2.4 Tkinter Images

The Tkinter class PhotoImage supports Graphical Interchange Format (GIF) and Portable PixMap (PPM)
images. You instantiate class PhotoImage with a keyword argument file=path to load the image's data
from the image file at the given path and get an instance x.

You can set x as the image configuration option for one or more widgets. When you do this, the
widget displays the image rather than text. If you need image processing functionality and support for
many image formats (including JPEG, PNG, and TIFF), use PIL, the Python Imaging Library
(http://www.pythonware.com/products/pil/), designed to work with Tkinter. I do not cover PIL further
in this book.

Tkinter also supplies class BitmapImage, whose instances are usable wherever instances of
PhotoImage are. BitmapImage supports some file formats known as bitmaps. I do not cover
BitmapImage further in this book.

Being set as the image configuration option of a widget does not suffice to keep instances of
PhotoImage and BitmapImage alive. Be sure to hold such instances in a Python container object,
typically a list or dictionary, to ensure that the instances are not garbage-collected. The following
example shows how to display GIF images:

import os
import Tkinter

root = Tkinter.Tk(  )
L = Tkinter.Listbox(selectmode=Tkinter.SINGLE)
gifsdict = {  }

dirpath = 'imgs'
for gifname in os.listdir(dirpath):
    if not gifname[0].isdigit(  ): continue
    gifpath = os.path.join(dirpath, gifname)
    gif = Tkinter.PhotoImage(file=gifpath)
    gifsdict[gifname] = gif
    L.insert(Tkinter.END, gifname)

L.pack(  )
img = Tkinter.Label(  )
img.pack(  )
def list_entry_clicked(*ignore):
    imgname = L.get(L.curselection(  )[0])
img.config(image=gifsdict[imgname])
L.bind('<ButtonRelease-1>', list_entry_clicked)
root.mainloop(  )

Assuming you have in some directory ('imgs' in the example) several GIF files whose filenames start
with digits, the example loads the images into memory, shows the filenames in a Listbox instance,
and shows in a Label instance the GIF whose filename you click on. Note that for simplicity, the
example does not give the Listbox widget a Scrollbar (we'll see how to equip a Listbox with a Scrollbar

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


example does not give the Listbox widget a Scrollbar (we'll see how to equip a Listbox with a Scrollbar
shortly).
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.3 Commonly Used Simple Widgets

The Tkinter module provides a number of simple widgets that cover most needs of basic GUI
applications. This section documents the Button, Checkbutton, Entry, Label, Listbox, Radiobutton, Scale,
and Scrollbar widgets.

16.3.1 Button

Class Button implements a pushbutton, which the user clicks to execute an action. Instantiate Button
with option text=somestring to let the button show text, or image=imageobject to let the button show
an image. You normally use option command=callable to have callable execute without arguments
when the user clicks the button. callable can be a function, a bound method of an object, an instance
of a class with a _ _call_ _ method, or a lambda.

Besides methods common to all widgets, an instance b of class Button supplies two button-specific
methods.

flash

b.flash(  )

Draws the user's attention to button b by redrawing b a few times, alternatively in normal and active
states.

invoke

b.invoke(  )

Calls without arguments the callable object that is b's command option, just like b.cget('command')( ).
This can be handy when, within some other action, you want the program to act just as if the button
had been clicked.

16.3.2 Checkbutton

Class Checkbutton implements a checkbox, which is a little box, optionally displaying a checkmark,
that the user clicks to toggle on or off. You normally instantiate Checkbutton with exactly one of the
two options text=somestring, to label the box with text, or image=imageobject, to label the box with an
image. Optionally, use option command=callable to have callable execute without arguments when the
user clicks the box. callable can be a function, a bound method of an object, an instance of a class
with a _ _call_ _ method, or a lambda.

An instance c of Checkbutton must be associated with a Tkinter variable object v, using configuration
option variable=v of c. Normally, v is an instance of IntVar, and v's value is 0 when the box is
unchecked, and 1 when the box is checked. The value of v changes when the box is checked or
unchecked (either by the user clicking on it, or by your code calling c's methods deselect, select,
toggle). Vice versa, when the value of v changes, c shows or hides the checkmark as appropriate.

Besides methods common to all widgets, an instance c of class Checkbutton supplies five checkbox-
specific methods.

deselect

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


c.deselect(  )

Removes c's checkmark, like c.cget('variable').set(0).

flash

c.flash(  )

Draws the user's attention to checkbox c by redrawing c a few times, alternately in normal and active
states.

invoke

c.invoke(  )

Calls without arguments the callable object that is c's command option, just like c.cget('command')( ).

select

c.select(  )

Shows c's checkmark, like c.cget('variable').set(1).

toggle

c.deselect(  )

Toggles the state of c's checkmark, as if the user had clicked on c.

16.3.3 Entry

Class Entry implements a text entry field (i.e., a widget in which the user can input and edit a line of
text). An instance e of Entry supplies several methods and configuration options allowing fine-grained
control of widget operation and contents, but in most GUI p rograms you can get by with just three
Entry-specific idioms:

e.delete(0, END)           # clear the widget's contents
e.insert(END, somestring)  # append somestring to the widget's contents
somestring = e.get(  )     # get the widget's contents

An Entry instance with state=DISABLED is a good way to display a line of text while letting the user
copy it to the clipboard. To display more than one line of text, use an instance of class Text, covered
later in this chapter. DISABLED stops your program, as well as the user, from altering e's contents. To
perform any alteration, temporarily set state=NORMAL:

e.config(state=NORMAL)     # allow alteration of e's contents
# call e.delete and/or e.insert as needed
e.config(state=DISABLED)   # make e's contents inalterable again

16.3.4 Label

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Class Label implements a widget that just displays text or an image without interacting with user
input. Instantiate Label either with option text=somestring to let the widget display text, or
image=imageobject to let the widget display an image.

An instance L of class Label does not let the user copy text from L to the clipboard. L is therefore not
the right widget to use when you show text that the user may want to copy, say in order to paste it
into an email or some other document. Instead, use an instance e of class Entry, with option
state=DISABLED to avoid alteration of e's contents, as discussed in the previous section.

16.3.5 Listbox

Class Listbox displays textual items and lets the user select one or more items. To set the text items
for an instance L of class Listbox, in most GUI programs you can get by with just two Listbox-specific
idioms:

L.delete(0, END)           # clear the listbox's items
L.insert(END, somestring)  # add somestring to the listbox's items

To get the text item at index idx, call L.get(idx). To get a list of all text items between indices idx1 and
idx2, call L.get(idx1,idx2). To get the list of all text items, call L.get(0,END).

Option selectmode defines the selection mode of a Listbox instance L. The selection mode indicates
how many items the user can select at once: only one in modes SINGLE and BROWSE, more than one
in modes MULTIPLE and EXTENDED. Secondarily, selectmode also defines the details of what user
actions cause items to be selected or unselected. BROWSE mode is the default; it differs from SINGLE
mode in that the user may change the one selected item by moving up and down while holding down
the left mouse button. In MULTIPLE mode, each click on a list item selects or deselects the item
without affecting the selection state of other items. In EXTENDED mode, a normal click on a list item
selects that item and deselects all other items; however, clicking while holding down a Ctrl key selects
an item without deselecting others, and clicking while holding down a Shift key selects a contiguous
range of items.

An instance L of class Listbox supplies three selection-related methods.

curselection

L.curselection(  )

Returns a sequence of zero or more indices, from 0 upwards, of selected items. Depending on the
underlying release of Tk, curselection may return string representations of the integer indices, rather
than the integers themselves. To remove this uncertainty, you can use:

indices = [ int(x) for x in L.curselection(  ) ]

However, [L.get(x) for x in L.curselection( )] is always the list of the zero or more text items that are
selected, no matter what form of indices curselection returns. Therefore, if you're interested in
selected text items rather than selected indices, the uncertainty may not be an issue.

select_clear

L.select_clear(i,j=None)

Deselects the i item (all items from the i to the j, if j is not None).

select_set

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


L.select_set(i,j=None)

Selects the i item (all items from the i to the j, if j is not None). select_set does not automatically
deselect other items, even if L's selection mode is SINGLE or BROWSE.

16.3.6 Radiobutton

Class Radiobutton implements a little box that is optionally checked. The user clicks the radiobutton to
toggle it on or off. Radiobuttons come in groups: checking a radiobutton automatically unchecks all
other radiobuttons of the same group. Instantiate Radiobutton with option text=somestring to label the
button with text, or image=imageobject to label the button with an image. Optionally, use option
command=callable to have callable execute without arguments when the user clicks the radiobutton.
callable can be a function, a bound method of an object, an instance of a class with a _ _call_ _
method, or a lambda.

An instance r of Radiobutton must be associated with a Tkinter variable object v, using configuration
option variable=v of r, and with a designated value X, using option value=X of r. Most often, v is an
instance of IntVar. The value of v changes to X when r is checked, either by the user clicking on r or
by your code calling r.select( ). Vice versa, when the value of v changes, r is checked if, and only if,
v.get( )= =X. Several instances of Radiobutton form a group if they have the same variable and
different values; selecting an instance changes the variable's value, and therefore automatically
unchecks whichever other instance was previously checked.

Note that Radiobutton instances form a group if, and only if, they share the same value for the variable
option. There is no special container to use to make Radiobutton instances into a group, nor is it even
necessary for the Radiobutton instances to be children of the same widget. However, it would be
confusing to the user if you dispersed a group of Radiobutton instances among several disparate
locations.

Besides methods common to all widgets, an instance r of class Radiobutton supplies four radiobutton-
specific methods.

deselect

r.deselect(  )

Unchecks r and sets the associated variable object to an empty string, like r.cget('variable').set('').

flash

c.flash(  )

Draws the user's attention to r by redrawing r a few times, alternately in normal and active states.

invoke

c.invoke(  )

Calls without arguments the callable object that is r's command option, just like r.cget('command')( ).

select

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


r.select(  )

Checks r and sets the associated variable object to r's value, like r.cget('variable').set(r.cget('value')).

16.3.7 Scale

Class Scale implements a widget in which the user can input a value by sliding a cursor along a line.
Scale supports configuration options to control the widget's looks and the value's range, but in most
GUI programs the only option you specify is orient=HORIZONTAL when you want the line to be
horizontal (by default, the line is vertical).

Besides methods common to all widgets, an instance s of class Scale supplies two scale-specific
methods.

get

s.get(  )

Returns the current position of s's cursor, normally on a scale of 0 to 100.

set

s.set(p)

Sets the current position of s's cursor, normally on a scale of 0 to 100.

16.3.8 Scrollbar

Class Scrollbar implements a widget similar to class Scale, almost always used to scroll another widget
(most often a Listbox, covered earlier, or a Text or Canvas, covered later) rather than to let the user
input a value.

A Scrollbar instance s is connected to the widget that s controls (e.g., a Listbox instance L) through
one configuration option on each of s and L. Exactly for this purpose, the widgets most often
associated with a scrollbar supply a method named yview and a configuration option named
yscrollcommand for vertical scrolling. (For horizontal scrolling, widgets such as Text, Canvas, and Entry
supply a method named xview and a configuration option named xscrollcommand.) For vertical
scrolling, use s's option command=L.yview so that user actions on s call L's bound method yview to
control L's scrolling, and also use L's option yscrollcommand=s.set so that changes to L's scrolling, in
turn, adjust the way s displays by calling s's bound method set. The following example uses a Scrollbar
to control vertical scrolling of a Listbox:

import Tkinter
s = Tkinter.Scrollbar(  )
L = Tkinter.Listbox(  )
s.pack(side=Tkinter.RIGHT, fill=Tkinter.Y)
L.pack(side=Tkinter.LEFT, fill=Tkinter.Y)
s.config(command=L.yview)
L.config(yscrollcommand=s.set)
for i in range(30): L.insert(Tkinter.END, str(i)*3)
Tkinter.mainloop(  )

Since s and L need to refer to each other, we cannot set their respective options on construction in
both cases, so for uniformity we call their config methods to set the options later for both. Clearly, in
this example we do need to bind names to the widgets in order to be able to call pack and config
methods of the widgets, use the widgets' bound methods, and populate the Listbox. Note that

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


methods of the widgets, use the widgets' bound methods, and populate the Listbox. Note that
L=Tkinter.Listbox( ).pack( ) does not bind L to the Listbox, but rather to the result of method pack (i.e.,
None). Therefore, code this in two statements instead (as shown in the previous example):

L = Tkinter.Listbox(  )
L.pack(  )

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.4 Container Widgets

The Tkinter module supplies widgets whose purpose is to contain other widgets. A Frame instance
does nothing more than act as a container. A Toplevel instance (including Tkinter's root window, also
known as the application's main window) is a top-level window, so your window manager interacts
with it (typically by supplying suitable decoration and handling certain requests). To ensure that a
widget parent, which must be a Frame or Toplevel instance, is the parent (also known as master) of
another widget child, pass parent as the first parameter when you instantiate child.

16.4.1 Frame

Class Frame represents a rectangular area of the screen contained in other frames or top-level
windows. Frame's only purpose is to contain other widgets. Option borderwidth defaults to 0, so an
instance of Frame normally displays no border. You can configure the option with borderwidth=1 if you
want the frame border's outline to be visible.

16.4.2 Toplevel

Class Toplevel represents a rectangular area of the screen that is a top-level window and therefore
receives decoration from whatever window manager handles your screen. Each instance of Toplevel
can interact with the window manager and can contain other widgets. Every program using Tkinter
has at least one top-level window, known as the root window. You can instantiate Tkinter's root
window explicitly using root=Tkinter.Tk( ); otherwise Tkinter instantiates its root window implicitly as
and when first needed. If you want to have more than one top-level window, first instantiate the main
one with root=Tkinter.Tk( ). Later in your program, you can instantiate other top-level windows as
needed, with calls such as another_toplevel=Tkinter.Toplevel( ).

An instance T of class Toplevel supplies many methods enabling interaction with the window manager.
Many are platform-specific, relevant only with some window managers for the X Windowing System
(used mostly on Unix and Unix-like systems). The cross-platform methods used most often are as
follows.

deiconify

T.deiconify(  )

Makes T display normally, even if previously T was iconic or invisible.

geometry

T.geometry([geometry_string])

T.geometry( ), without arguments, returns a string encoding T's size and position:
widthxheight+x_offset+y_offset, with width, height, x_offset, and y_offset being the decimal forms of
the corresponding numbers of pixels. T.geometry(S), with one argument S (a string of the same form),
sets T's size and position according to S.

iconify

T.deiconify(  )

Makes T display as an icon (in Windows, as a button in the taskbar).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


maxsize

T.maxsize([width,height])

T.maxsize( ), without arguments, returns a pair of integers whose two items are T's maximum width
and height in pixels. T.maxsize(W,H), with two integer arguments W and H, sets T's maximum width
and height in pixels to W and H, respectively.

minsize

T.minsize([width,height])

T.minsize( ), without arguments, returns a pair of integers whose two items are T's minimum width
and height in pixels. T.minsize(W,H), with two integer arguments W and H, sets T's minimum width
and height in pixels to W and H, respectively.

overrideredirect

T.overrideredirect([avoid_decoration])

T.overrideredirect( ), without arguments, returns False for a normal window, True for a window that
has asked the window manager to avoid decorating it. T.overrideredirect(x), with one argument x, asks
the window manager to avoid decorating T if, and only if, x is true. A top-level window without
decoration has no title. The user cannot act via the window manager to close, move, or resize such an
undecorated top-level window.

protocol

T.protocol(protocol_name,callable)

By calling protocol with a first argument of 'WM_DELETE_WINDOW' (the only meaningful protocol on
most platforms), you install callable as the handler for attempts by the user to close T through the
window manager (for example by clicking on the X in the upper right corner on Windows and KDE).
Python then calls callable without arguments when the user makes such an attempt. callable itself
must call T.destroy( ) in order to close T, otherwise T stays open. By default, if T.protocol has not been
called, such attempts implicitly call T.destroy( ) and thus unconditionally close T.

resizable

T.resizable([width,height])

T.resizable( ), without arguments, returns a pair of integers (each 0 or 1) whose two items indicate if
user action via the window manager can change T's width and height, respectively. T.resizable(W,H),
with two integer arguments W and H (each 0 or 1), sets the user's ability to change T's width and
height according to the truth values of W and H. With some releases of Tk, resizable, when called
without arguments, returns a string such as '1 1' rather than a pair of integers such as (1,1). To
remove this uncertainty, use:

resizable_wh = T.resizable(  )
if len(resizable_wh) != 2: resizable_wh = map(int, 

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


if len(resizable_wh) != 2: resizable_wh = map(int, 
resizable_wh.split(  ))
resizable_w, resizable_h = resizable_wh

state

T.state(  )

Returns 'normal' if T is displaying normally, 'withdrawn' if T is invisible, 'icon' or 'iconic' (depending on
the window manager) if T is displaying as an icon (e.g., in Windows, only as a button in the taskbar).

title

T.title([title_string])

T.title( ), without arguments, returns a string that is T's window title. T.title(title_string), with one
argument title_string, sets T's window title to string title_string.

withdraw

T.withdraw(  )

Makes T invisible.

The following example shows a root window with an Entry widget that lets the user edit the window's
title and buttons to perform various root window operations.

import Tkinter
root = Tkinter.Tk(  )
var = Tkinter.StringVar(  )
entry = Tkinter.Entry(root, textvariable=var)
entry.focus_set(  )
entry.pack(  )
var.set(root.title(  ))
def changeTitle(  ): root.title(var.get(  ))
Tkinter.Button(root, text="Change Title", command=changeTitle).pack(  )
Tkinter.Button(root, text="Iconify", command=root.iconify).pack(  )
Tkinter.Button(root, text="Close", command=root.destroy).pack(  )
Tkinter.mainloop(  )
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.5 Menus

Class Menu implements all kinds of menus: menubars of top-level windows, submenus, and pop-up
menus. To use a Menu instance m as the menubar for a top-level window w, set w's configuration
option menu=m. To use m as a submenu of a Menu instance x, call x.add_cascade with a named
argument menu=m. To use m as a pop-up menu, call method m.post.

Besides configuration options covered in Section 16.2.1 earlier in this chapter, a Menu instance m
supports option postcommand=callable. Tkinter calls callable without arguments each time it is about to
display m (whether because of a call to m.post or because of user actions). You can use this option to
update a dynamic menu just in time when necessary.

By default, a Tkinter menu shows a tear-off entry (a dashed line before other entries), which lets the
user get a copy of the menu in a separate Toplevel window. Since such tear-offs are not part of user
interface standards on popular platforms, you may want to disable tear-off functionality by using
configuration option tearoff=0 for the menu.

16.5.1 Menu-Specific Methods

Besides methods common to all widgets, an instance m of class Menu supplies several menu-specific
methods.

add, add_cascade, add_checkbutton, add_command,
add_radiobutton, add_separator

m.add(entry_kind, **entry_options)

Adds after m's existing entries a new entry whose kind is the string entry_kind, which is one of the
strings 'cascade', 'checkbutton', 'command', 'radiobutton', or 'separator'. Section 16.5.2 later in this
chapter covers entry kinds and options.

Methods whose names start with add_ work just like method add, but they accept no positional
argument; what kind of entry each method adds is implied by the method's name.

delete

m.delete(i[,j])

m.delete(i) removes m's i entry. m.delete(i,j) removes m's entries from the i one to the j one, included.
The first entry has index 0.

entryconfigure, entryconfig

m.entryconfigure(i, **entry_options)

Changes entry options for m's i entry. entryconfig is an exact synonym.

insert, insert_cascade, insert_checkbutton,
insert_command, insert_radiobutton,
insert_separator

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


m.insert(i,entry_kind, **entry_options)

Adds before m's entry i a new entry whose kind is the string entry_kind, which is one of the strings
'cascade', 'checkbutton', 'command', 'radiobutton', or 'separator'. Section 16.5.2 later in this chapter
covers entry kinds and options.

Methods whose names start with insert_ work just like method insert, except that they don't accept a
second positional argument; what kind of entry each method inserts is implied by the method's name.

invoke

m.invoke(i)

Invokes m's i entry, just as if the user clicked on it.

post

m.post(x,y)

Displays m as a pop-up menu, with m's upper left corner at coordinates x,y (offsets in pixels from
upper left corner of Tkinter's root window).

unpost

m.unpost(  )

Closes m if m was displaying as a pop-up menu, otherwise does nothing.

16.5.2 Menu Entries

When a menu m displays, it shows a vertical (horizontal for a menubar) list of entries. Each entry can
be one of the following kinds:

cascade

A submenu; option menu=x must give as x another Menu instance

checkbutton

Similar to a Checkbutton widget; typical options are variable (which must indicate a Tkinter
variable object), onvalue, offvalue, and optionally command, quite similarly to a Checkbutton
instance

command

Similar to a Button widget; typical option is command=callable

radiobutton

Similar to a Radiobutton widget; typical options are variable (which must indicate a Tkinter
variable object), value, and optionally command, quite similarly to a Radiobutton instance

separator

A line segment that separates groups of other entries

Other entry options often used with menu entries are:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


image

Option image=x uses x, a Tkinter image object, to label the entry with an image rather than
text

label

Option label=somestring labels the entry with a text string

underline

Option underline=x gives x as the index of the character to underline within the entry's label (0
is the first character, 1 the second one, and so on)

16.5.3 Menu Example

The following example shows how to add a menubar with typical File and Edit menus:

import Tkinter

root = Tkinter.Tk(  )
bar = Tkinter.Menu(  )

def show(menu, entry): print menu, entry

fil = Tkinter.Menu(  )
for x in 'New', 'Open', 'Close', 'Save':
    fil.add_command(label=x,command=lambda x=x:show('File',x))
bar.add_cascade(label='File',menu=fil)

edi = Tkinter.Menu(  )
for x in 'Cut', 'Copy', 'Paste', 'Clear':
    edi.add_command(label=x,command=lambda x=x:show('Edit',x))
bar.add_cascade(label='Edit',menu=edi)

In this example, each menu command just outputs information to standard output for demonstration
purposes. Note the x=x idiom to snapshot the value of x at the time we create each lambda.
Otherwise, the current value of x at the time a lambda executes, 'Clear', would show up at each menu
selection. A good alternative to the lambda expressions would be a closure. Instead of def show, use:

def mkshow(menu):
    def emit(entry, menu=menu): print menu, entry
    return emit

and use command=mkshow('File') and command=mkshow('Edit'), respectively, in the calls to the
add_command methods of fil and edi.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.6 The Text Widget

Class Text implements a powerful multiline text editor, able to display images and embedded widgets
as well as text in one or more fonts and colors. An instance t of Text supports many ways to refer to
specific points in t's contents. t supplies methods and configuration options allowing fine-grained
control of operations, content, and rendering. This section covers a large, frequently used subset of
this vast functionality. In some very simple cases, you can get by with just three Text-specific idioms:

t.delete('1.0', END)             # clear the widget's contents
t.insert(END, astring)           # append astring to the widget's contents
somestring = t.get('1.0', END)   # get the widget's contents as a string

END is an index on any Text instance t, indicating the end of t's text. '1.0' is also an index, indicating
the start of t's text (first line, first column). For more about indices, see Section 16.6.5 later in this
chapter.

16.6.1 Text Widget Methods

An instance t of class Text supplies many methods. Methods dealing with marks and tags are covered
in later sections. Many methods accept one or two indices into t's contents. The most frequently used
methods are the following.

delete

t.delete(i[,j])

t.delete(i) removes t's character at index i. t.delete(i,j) removes all characters from index i to index j,
included.

get

t.get(i[,j])

t.get(i) returns t's character at index i. t.get(i,j) returns a string made up of all characters from index i
to index j, included.

image_create

t.image_create(i,**window_options)

Inserts an embedded image in t's contents at index i. Call image_create with option image=e, where e
is a Tkinter image object, as covered in Section 16.2.4 earlier in this chapter.

insert

t.insert(i,s[,tags])

Inserts string s in t's contents at index i. tags, if supplied, is a sequence of strings to attach as tags to
the new text, as covered in Section 16.6.4 later in this chapter.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


search

t.search(pattern,i,**search_options)

Finds the first occurrence of string pattern in t's contents not earlier than index i and returns a string
that is the index of the occurrence, or an empty string '' if not found. Option nocase=True makes the
search case-insensitive; by default, or with an explicit option nocase=False, the search is case-
sensitive. Option stop=j makes the search stop at index j; by default, the search wraps around to the
start of t's contents. When you need to avoid wrapping, you can use stop=END.

see

t.see(i)

Scrolls t, if needed, to make sure the contents at index i are visible. If the contents at index i are
already visible, see does nothing.

window_create

t.window_create(i,**window_options)

Inserts an embedded widget in t's contents at index i. t must be the parent of the widget w that you
are inserting. Call window_create either with option window=w to insert an already existing widget w,
or with option create=callable. If you use option create, Tkinter calls callable without arguments the
first time the embedded widget needs to be displayed, and callable must create a widget w (with t as
w's parent) and return w as callable's result. Option create lets you arrange creation of embedded
widgets just in time and only if needed, and is useful as an optimization when you have many
embedded widgets in a very long text.

xview, yview

t.xview([...]) 
t.yview([...])

xview and yview handle scrolling in horizontal and vertical directions respectively, and accept several
different patterns of arguments. t.xview( ), without arguments, returns a tuple of two floats between
0.0 and 1.0 indicating the fraction of t's contents corresponding to the first (leftmost) and last
(rightmost) currently visible columns. t.xview(MOVETO,frac) scrolls t left or right so that the first
(leftmost) visible column becomes the one corresponding to fraction frac of t's contents, between 0.0
and 1.0. yview supports the same patterns of arguments, but uses lines rather than columns, and
scrolls up and down rather than left and right. yview supports one more pattern of arguments:
t.yview(i), for any index i, scrolls t up or down so that the first (topmost) visible line becomes the one
of index i.

16.6.2 Giving Text a Scrollbar

You'll often want to couple a Scrollbar instance to a Text instance in order to let the user scroll through
the text. The following example shows how to use a Scrollbar s to control vertical scrolling of a Text
instance T:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


import Tkinter

root = Tkinter.Tk(  )
s = Tkinter.Scrollbar(root)
T = Tkinter.Text(root)
T.focus_set(  )
s.pack(side=Tkinter.RIGHT, fill=Tkinter.Y)
T.pack(side=Tkinter.LEFT, fill=Tkinter.Y)
s.config(command=T.yview)
T.config(yscrollcommand=s.set)
for i in range(40): T.insert(Tkinter.END, "This is line %d\n" % i)
Tkinter.mainloop(  )

16.6.3 Marks

A mark on a Text instance t is a symbolic name indicating a point within the contents of t. INSERT and
CURRENT are predefined marks on any Text instance t, with special predefined meanings. INSERT
names the point where the insertion cursor (also known as the text caret) is located in t. By default,
when the user enters text at the keyboard with the focus on t, t inserts the text at index INSERT.
CURRENT names the point in t that was closest to the mouse cursor when the user last moved the
mouse within t. By default, when the user clicks the mouse on t, t gets focus and sets INSERT to
CURRENT.

To create other marks on t, call method t.mark_set. Each mark is an arbitrary string containing no
whitespace. To avoid any confusion with other forms of index, use no punctuation in a mark. A mark
is an index, as covered in Section 16.6.5 later in this chapter; you can pass a string that is a mark on
t wherever a method of t accepts an index argument.

When you insert or delete text before a mark m, m moves accordingly. Deleting a portion of text that
surrounds m does not remove m. To remove a mark on t, call method t.mark_unset. What happens
when you insert text at a mark m depends on m's gravity setting, which can be RIGHT (the default) or
LEFT. When m has gravity RIGHT, m moves to remain at the end (i.e., to the right) of text inserted at
m. When m has gravity LEFT, m does not move when you insert text at m: text inserted at m goes
after m, and m itself remains at the start (i.e., to the left) of such inserted text.

A Text instance t supplies the following methods related to marks on t.

mark_gravity

t.mark_gravity(mark[,gravity])

mark is a mark on t. t.mark_gravity(mark) returns mark's gravity setting, RIGHT or LEFT.
t.mark_gravity(mark,gravity) sets mark's gravity to gravity, which must be RIGHT or LEFT.

mark_set

t.mark_set(mark,i)

If mark was not yet a mark on t, mark_set creates mark at index i. If mark was already a mark on t,
mark_set moves mark to index i.

mark_unset

t.mark_unset(mark)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


mark is a user-defined mark on t (not one of the predefined marks INSERT or CURRENT). mark_unset
removes mark from among the marks on t.

16.6.4 Tags

A tag on a Text instance t is a symbolic name indicating zero or more regions (ranges) in the contents
of a Text instance t. SEL is a predefined tag on any Text instance t, and names a single range of t that
is selected, normally by the user dragging over it with the mouse. Tkinter typically displays the SEL
range with distinctive background and foreground colors. To create other tags on t, call the t.tag_add
or t.tag_config method, or use optional parameter tags of method t.insert. Ranges of various tags on t
may overlap. t renders text having several tags by using options from the uppermost tag, according
to calls to methods t.tag_raise or t.tag_lower. By default, a tag created more recently is above one
created earlier.

Each tag is an arbitrary string containing no whitespace. Each tag has two indices, first (start of the
tag's first range) and last (end of the tag's last range). You can pass a tag's index wherever a method
of t accepts an index argument. SEL_FIRST and SEL_LAST indicate the first and last indices of
predefined tag SEL.

A Text instance t supplies the following methods related to tags on t.

tag_add

t.tag_add(tag,i[,j])

t.tag_add(tag,i) adds tag tag to the single character at index i in t. t.tag_add(tag,i,j) adds tag tag to
characters from index i to index j.

tag_bind

t.tag_bind(tag,event_name,callable[,'+'])

t.tag_bind(tag,event_name,callable) sets callable as the callback object for event_name on tag's ranges.
t.tag_bind(tag,event_name,callable,'+') adds callable to the previous bindings. Events, callbacks, and
bindings are covered in Section 16.9 later in this chapter.

tag_cget

t.tag_cget(tag,tag_option)

Returns the value currently associated with option tag_option for tag tag. For example,
t.tag_cget(SEL,'background') returns the color that t is using as the background of t's selected range.

tag_config

t.tag_config(tag,**tag_options)

Sets or changes tag options associated with tag tag, determining the way t renders text in tag's
region. The most frequently used tag options are:

background, foreground

Background and foreground colors

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


bgstipple, fgstipple

Background and foreground stipples, typically 'gray12', 'gray25', 'gray50', or 'gray75'; by
default, solid colors (no stippling)

borderwidth

Width in pixels of the text border; default is 0 (no border)

font

Font used for text in the tag's ranges (see Section 16.6.6 later in this chapter)

justify

Text justification, LEFT (default), CENTER, or RIGHT

lmargin1, lmargin2, rmargin

Left margin (first line, other lines) and right margin (all lines), in pixels; default is 0 (no
margin)

offset

Offset from baseline in pixels (greater than 0 for superscript, less than 0 for subscript); default
is 0 (no offset, i.e., text aligned with the baseline)

overstrike

If true, draw a line right over the text

relief

Text relief: FLAT (default), SUNKEN, RAISED, GROOVE, or RIDGE

spacing1, spacing2, spacing3

Extra spacing in pixels (before first line, between lines, after last line); default is 0 (no extra
spacing)

underline

If true, draw a line under the text

wrap

Wrapping mode: WORD (default), CHAR, or NONE

For example:

t.tag_config(SEL,background='black',foreground='yellow')

tells t to display t's selected range with yellow text on a black background.

tag_delete

t.tag_delete(tag)

Forgets all information associated with tag tag on t.

tag_lower

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


t.tag_lower(tag)

Gives tag's options minimum priority for ranges overlapping with other tags.

tag_names

t.tag_names([i])

Returns a sequence of strings whose items are all the tags that include index i. Called without
arguments, returns a sequence of strings whose items are all the tags that currently exist on t.

tag_raise

t.tag_raise(tag)

Gives tag's options maximum priority for ranges overlapping with other tags.

tag_ranges

t.tag_ranges(tag)

Returns a sequence with an even number of strings (zero if tag is not a tag on t or has no ranges),
alternating start and stop indices of tag's ranges.

tag_remove

t.tag_remove(tag,i[,j])

t.tag_remove(tag,i) removes tag tag from the single character at index i in t. t.tag_remove(tag,i,j)
removes tag tag from characters from index i to index j. Removing a tag from characters that do not
have that tag is not an error; it's an innocuous no-operation.

tag_unbind

t.tag_unbind(tag,event)

t.tag_unbind(tag,event) removes any binding for event on tag's ranges. Events and bindings are
covered in Section 16.9 later in this chapter.

16.6.5 Indices

All ways to indicate a spot in the contents of a Text instance t are known as indices on t. The basic
form of an index is a string of the form '%d.%d'%(L,C), indicating the spot in the text that is at line L
(the first line is 1), column C (the first column is 0). For example, '1.0' is a basic-form index indicating
the start of text for any t. t.index(i) returns the basic-form equivalent to an index i of any form.

END is an index indicating the end of text for any t. '%d.end'%L, for any line number L, is an index
indicating the end (the '\n' end-of-line marker) of line L. For example, '1.end' indicates the end of the
first line. To get the number of characters in line number L of a Text instance t, you can use:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


def line_length(t, L):
    return int(t.index('%d.end'%L).split('.')[-1])

'@%d,%d'%(x,y) is also an index on t, where x and y are coordinates in pixels within t's window.

Any tag on t is associated with two indices, strings '%s.first'%tag (the start of tag's first range) and
'%s.last'%tag (the end of tag's last range). For example, right after t.tag_add('mytag',i,j), 'mytag.first'
indicates the same spot in t as index i, and 'mytag.last' indicates the same spot in t as index j. Trying
to use an index such as 'x.first' or 'x.last' when no characters in t are tagged with 'x' raises an
exception.

SEL_FIRST and SEL_LAST are indices (the start and end of the selection, the SEL tag). Trying to use
SEL_FIRST or SEL_LAST when there is no selected range on t, however, raises an exception.

Marks (covered earlier), including predefined marks INSERT and CURRENT, are also indices. Moreover,
any image or widget embedded in t is also an index on t (methods image_create and window_create
are also covered earlier in this chapter).

Another form of index, index expressions, are obtained by concatenating to the string form of any
index one or more of the following modifier string literals:

'+ n chars ', '- n chars '

n characters toward the end or start of the text (including newlines)

'+ n lines ', '- n lines '

n lines toward the end or start of the text

'linestart', 'lineend'

Column 0 in the index's line or the '\n' in the index's line

'wordstart', 'wordend'

Start or end of the word that comprises the index (in this context, a word is a sequence of
letters, digits, and underscores)

You can optionally omit spaces and abbreviate keywords (even down to one character). For example,
'%s-4c'%END means "four characters before the end of t's text contents," and '%s+1line
linestart'%SEL_LAST means "the start of the line immediately after the line where t's selection ends."

A Text instance t supplies two methods related to indices on t.

compare

t.compare(i,op,j)

Returns True or False reflecting the comparison of indices i and j, where a lower number means
earlier, and op is one of '<', '>', '<=', '>=', '= =', or '!='. For example, t.compare('1.0+90c','<',END)
returns True if t contains more than 90 characters, counting each line end as a character.

index

t.index(i)

Returns the basic form 'L.C' of index i where L and C are decimal string forms of the line and column
of i (lines start from 1, columns start from 0).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


16.6.6 Fonts

You can change fonts on any Tkinter widget with option font=font. In most cases it makes no sense to
change widgets' fonts. However, in Text instances, and for specific tags on them, changing fonts can
be quite useful.

Module tkFont supplies class Font, attributes BOLD, ITALIC, and NORMAL to define font characteristics,
and functions families (returns a sequence of strings naming all families of available fonts) and names
(returns a sequence of strings naming all user-defined fonts). Frequently used font options are:

family

Font family (e.g. 'courier' or 'helvetica')

size

Font size (in points if positive, in pixels if negative)

slant

NORMAL (default) or ITALIC

weight

NORMAL (default) or BOLD

An instance F of Font supplies the following frequently used methods.

actual

F.actual([font_option])

F.actual( ), without arguments, returns a dictionary with all options actually used in F (best available
approximations to those requested). F.actual(font_option) returns the value actually used in F for the
option font_option.

cget

F.cget(font_option)

Returns the value configured (i.e., requested) in F for font_option.

config

F.config(**font_options)

F.config( ), without arguments, returns a dictionary with all options configured (i.e., requested) in F.
Called with one or more named arguments, config sets font options in F's configuration.

copy

F.copy(  )

Returns a font G that is a copy of F. You can then modify either or both of F and G separately, and any
modifications on one do not affect the other.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


16.6.7 Text Example

To exemplify some of the many features of class Text, the following example shows one way to
highlight all occurrences of a string in the text:

from Tkinter import *

root = Tk(  )

# at top of root, left to right, put a Label, an Entry, and a Button
fram = Frame(root)
Label(fram,text='Text to find:').pack(side=LEFT)
edit = Entry(fram)
edit.pack(side=LEFT, fill=BOTH, expand=1)
edit.focus_set(  )
butt = Button(fram, text='Find')
butt.pack(side=RIGHT)
fram.pack(side=TOP)

# fill rest of root with a Text and put some text there
text = Text(root)
text.insert('1.0',
'''Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la diritta via era smarrita
''')
text.pack(side=BOTTOM)

# action-function for the Button: highlight all occurrences of string
def find(  ):
    # remove previous uses of tag `found', if any
    text.tag_remove('found', '1.0', END)
    # get string to look for (if empty, no searching)
    s = edit.get(  )
    if s:
        # start from the beginning (and when we come to the end, stop)
        idx = '1.0'
        while 1:
            # find next occurrence, exit loop if no more
            idx = text.search(s, idx, nocase=1, stopindex=END)
            if not idx: break
            # index right after the end of the occurrence
            lastidx = '%s+%dc' % (idx, len(s))
            # tag the whole occurrence (start included, stop excluded)
            text.tag_add('found', idx, lastidx)
            # prepare to search for next occurrence
            idx = lastidx
        # use a red foreground for all the tagged occurrences
        text.tag_config('found', foreground='red')
    # give focus back to the Entry field
    edit.focus_set(  )

# install action-function to execute when user clicks Button
butt.config(command=find)

# start the whole show (go event-driven)
root.mainloop(  )

This example also shows how to use a Frame to perform a simple widget layout task (put three
widgets side by side, with the Text below them all). Figure 16-1 shows this example in action.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 16-1. Highlighting in a Text instance

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.7 The Canvas Widget

Class Canvas is a powerful, flexible widget used for many purposes, including plotting and, in
particular, building custom widgets. Building custom widgets is an advanced topic, and I do not cover
it further in this book. This section covers only a subset of Canvas functionality used for the simplest
kind of plotting.

Coordinates within a Canvas instance c are in pixels, with the origin at the upper left corner of c and
positive coordinates growing rightward and downward. There are advanced methods that let you
change c's coordinate system, but I do not cover them in this book.

What you draw on a Canvas instance c are canvas items, which can be lines, polygons, Tkinter images,
arcs, ovals, texts, and others. Each item has an item handle by which you can refer to the item. You
can also assign symbolic names called tags to sets of canvas items (the sets of items with different
tags can overlap). ALL is a predefined tag that applies to all items; CURRENT is a predefined tag that
applies to the item under the mouse pointer.

Tags on a Canvas instance are different from tags on a Text instance. The canvas tags are nothing
more than sets of items with no independent existence. When you perform any operation, passing a
Canvas tag as the item identifier, the operation occurs on those items that are in the tag's current set.
It makes no difference if items are later removed from or added to that tag's set.

You create a canvas item by calling on c a method with a name of the form create_kindofitem, which
returns the new item's handle. Methods itemcget and itemconfig of c let you get and change items'
options.

16.7.1 Canvas Methods on Items

A Canvas instance c supplies methods that you can call on items. The item argument can be an item's
handle, as returned for example by c.create_line, or a tag, meaning all items in that tag's set (or no
items at all, if the tag's set is currently empty), unless otherwise indicated in the method's
description.

bbox

c.bbox(item)

Returns an approximate bounding box for item, a tuple of four integers: the pixel coordinates of
minimum x, minimum y, maximum x, maximum y, in this order. For example, c.bbox(ALL) returns the
minimum and maximum x and y coordinates of all items on c. When c has no items at all, c.bbox(ALL)
returns None.

coords

c.coords(item,*coordinates)

Changes the coordinates for item. Operates on just one item. If item is a tag, coords operates on an
arbitrary one of the items currently in the tag's set. If item is a tag with an empty set, coords is an
innocuous no-operation.

delete

c.delete(item)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Deletes item. For example, c.delete(ALL) deletes all items on c.

gettags

c.gettags(item)

Returns the sequence of all tags whose sets include item (but not tag ALL, which includes all items,
nor CURRENT, whether or not it includes item).

itemcget

c.itemcget(item,option)

Returns the value of option for item. Operates on just one item. If item is a tag, itemcget returns the
value of option for an arbitrary one of the items currently in the tag's set. If item is a tag with an
empty set, itemcget returns the empty string ''.

itemconfig

c.itemconfig(item,**options)

Sets or changes the value of options for item. For example, c.itemconfig(ALL, fill='red') sets all items on
c to color red.

tag_bind

c.tag_bind(tag,event_name,callable[,'+'])

c.tag_bind(tag,event_name,callable) sets callable as the callback object for event_name on the items
currently in tag's set. Calling c.tag_bind(tag,event_name,callable,'+') adds callable to the previous
bindings. Events, callbacks, and bindings are covered in Section 16.9 later in this chapter.

tag_unbind

c.tag_unbind(tag,event)

c.tag_unbind(tag,event) removes any binding for event on the items currently in tag's set. Events and
bindings are covered in Section 16.9 later in this chapter.

16.7.2 The Line Canvas Item

A Canvas instance c supplies one method to create a line item.

create_line

c.create_line(*coordinates, **line_options)

Creates a line item with vertices at the given coordinates and returns the item's handle. coordinates

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Creates a line item with vertices at the given coordinates and returns the item's handle. coordinates
must be an even number of positional parameters, alternately x and y values for each vertex of the
line. Canvas coordinates, by default, are in pixels, with the origin (coordinates 0,0) in the upper left
corner, the x coordinate growing rightward, and the y coordinate growing downward. You may set
different coordinate systems on c, but I do not cover these possibilities in this book. line_options may
include:

arrow

Sets which ends of the line have arrow heads; may be NONE (default), FIRST, LAST, or BOTH

fill

The line's color (default is black)

smooth

If true, the line is drawn as a smooth curve (a B-spline); otherwise (default), the line is drawn
as a polygonal (a sequence of line segments)

tags

A string (to assign a single tag to this item) or a tuple of strings (to assign multiple tags to this
item)

width

Width of the line in pixels (default 1)

For example:

x=c.create_line(0,150, 50,100, 0,50, 50,0 smooth=1)

draws a somewhat S-like curve on c, and binds the curve's handle to variable x. You can then change
the curve's color to blue with:

c.itemconfig(x,fill='blue')

16.7.3 The Polygon Canvas Item

A Canvas instance c supplies one method to create a polygon item.

create_polygon

c.create_polygon(*coordinates, **poly_options)

Creates a polygon item with vertices at the given coordinates and returns the item's handle.
coordinates must be an even number of positional parameters, alternately x and y values for each
vertex of the polygon, and there must be at least six positional parameters (three vertices).
poly_options may include:

fill

The polygon's interior color (default is black)

outline

The polygon's perimeter color (default is black)

smooth

If true, the polygon is drawn as a smooth curve (a B-spline); otherwise (default), the line is
drawn as a normal polygon (a sequence of sides)

tags

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


tags

A string (to assign a single tag to this item) or a tuple of strings (to assign multiple tags to this
item)

width

Width of the perimeter line in pixels (default 1)

For example:

x=c.create_polygon(0,150, 50,100, 0,50, 50,0 fill='',  
                   outline='red')

draws two empty red triangles on c as a single polygon, and binds the polygon's handle to variable x.
You can then fill the triangles with blue using:

c.itemconfig(x,fill='blue')

16.7.4 The Rectangle Canvas Item

A Canvas instance c supplies one method to create a rectangle item.

create_rectangle

c.create_rectangle(x0,y0,x1,y1,**rect_options)

Creates a rectangle item with vertices at the given coordinates and returns the item's handle.
rect_options may include:

fill

The rectangle's interior color (default is empty)

outline

The rectangle's perimeter color (default is black)

tags

A string (to assign a single tag to this item) or a tuple of strings (to assign multiple tags to this
item)

width

Width of the perimeter line in pixels (default 1)

16.7.5 The Text Canvas Item

A Canvas instance c supplies one method to create a text item.

create_text

c.create_text(x,y,**text_options)

Creates a text item at the given x and y coordinates and returns the item's handle. text_options may
include:

anchor

The exact spot of the text's bounding box that x and y refer to: may be N, E, S, W, NE, NW, SE,
or SW, compass directions indicating the corners and sides of the bounding box, or CENTER

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


or SW, compass directions indicating the corners and sides of the bounding box, or CENTER
(the default)

fill

The text's color (default is black)

font

Font to use for this text

tags

A string (to assign a single tag to this item) or a tuple of strings (to assign multiple tags to this
item)

text

The text to display

16.7.6 A Simple Plotting Example

The following example shows how to use a Canvas to perform an elementary plotting task, graphing a
user-specified function:

from Tkinter import *
import math

root = Tk(  )

# first, a row for function entry and action button
fram = Frame(root)
Label(fram,text='f(x):').pack(side=LEFT)
func = Entry(fram)
func.pack(side=LEFT, fill=BOTH, expand=1)
butt = Button(fram, text='Plot')
butt.pack(side=RIGHT)
fram.pack(side=TOP)

# then a row to enter bounds in
fram = Frame(root)
bounds = [  ]
for label in 'minX', 'maxX', 'minY', 'maxY':
    Label(fram,text=label+':').pack(side=LEFT)
    edit = Entry(fram, width=6)
    edit.pack(side=LEFT)
    bounds.append(edit)
fram.pack(side=TOP)

# and finally the canvas
c = Canvas(root)
c.pack(side=TOP, fill=BOTH, expand=1)

def minimax(values=[0.0, 1.0, 0.0, 1.0]):
    "Adjust and display X and Y bounds"
    for i in range(4):
        edit = bounds[i]
        try: values[i] = float(edit.get(  ))
        except: pass
        edit.delete(0, END)
        edit.insert(END, '%.2f'%values[i])
    return values

def plot(  ):

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


def plot(  ):
    "Plot given function with given bounds"
    minx, maxx, miny, maxy = minimax(  )

    # get and compile the function
    f = func.get(  )
    f = compile(f, f, 'eval')

    # get Canvas X and Y dimensions
    CX = c.winfo_width(  )
    CY = c.winfo_height(  )

    # compute coordinates for line
    coords = [  ]
    for i in range(0,CX,5):
        coords.append(i)
        x = minx + ((maxx-minx)*i)/CX
        y = eval(f, vars(math), {'x':x})
        j = CY*(y-miny)/(maxy-miny)
        coords.append(j)

    # draw line
    c.delete(ALL)
    c.create_line(*coords)

butt.config(command=plot)

# give an initial sample in lieu of docs
f = 'sin(x) + cos(x)'
func.insert(END, f)
minimax([0.0, 10.0, -2.0, 2.0])

root.mainloop(  )

Figure 16-2 shows the output resulting from this example.

Figure 16-2. A sample Canvas

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.8 Geometry Management

In all the examples so far, we have made each widget visible by calling method pack on the widget.
This is representative of real-life Tkinter usage. However, two other layout managers exist and are
sometimes useful. This section covers all three layout managers provided by the Tkinter module.

Never mix geometry managers for the same container widget: all children of each given container
widget must be handled by the same geometry manager, or very strange effects (including Tkinter
going into infinite loops) may result.

16.8.1 The Packer

Calling method pack on a widget delegates widget geometry management to a simple and flexible
layout manager component called the Packer. The Packer sizes and positions each widget within a
container (parent) widget, according to each widget's space needs (including options padx and pady).
Each widget w supplies the following Packer-related methods.

pack

w.pack(**pack_options)

Delegates geometry management to the packer. pack_options may include:

expand

When true, w expands to fill any space not otherwise used in w's parent.

fill

Determines whether w fills any extra space allocated to it by the packer, or keeps its own
minimal dimensions: NONE (default), X (fill only horizontally), Y (fill only vertically), or BOTH
(fill both horizontally and vertically).

side

Determines which side of the parent w packs against: TOP (default), BOTTOM, LEFT, or RIGHT.
To avoid confusion, don't mix different values for option side= in widgets that are children of
the same container. When more than one child requests the same side (for example TOP), the
rule is first come, first served: the first child packs at the top, the second child packs second
from the top, and so on.

pack_forget

w.pack_forget(  )

The packer forgets about w. w remains alive but invisible, and you may show w again later (by calling
w.pack again, or perhaps w.grid or w.place).

pack_info

w.pack_info(  )

Returns a dictionary with the current pack_options of w.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


16.8.2 The Gridder

Calling method grid on a widget delegates widget geometry management to a specialized layout
manager component called the Gridder. The Gridder sizes and positions each widget into cells of a
table (grid) within a container (parent) widget. Each widget w supplies the following Gridder-related
methods.

grid

w.grid(**grid_options)

Delegates geometry management to the gridder. grid_options may include:

column

The column to put w in; default 0 (leftmost column).

columnspan

How many columns w occupies; default 1.

ipadx, ipady

How many pixels to pad w, horizontally and vertically, inside w's borders.

padx, pady

How many pixels to pad w, horizontally and vertically, outside w's borders.

row

The row to put w in; default the first row that is still empty.

rowspan

How many rows w occupies; default 1.

sticky

What to do if the cell is larger than w. By default, with sticky='', w is centered in its cell. sticky
may be the string concatenation of zero or more of N, E, S, W, NE, NW, SE, and SW, compass
directions indicating the sides and corners of the cell to which w sticks. For example, sticky=N
means that w sticks to the cell's top and is centered horizontally, while sticky=N+S means that
w expands vertically to fill the cell and is centered horizontally.

For example:

import Tkinter
root = Tkinter.Tk(  )
for r in range(3):
    for c in range(4):
        Tkinter.Label(root, text='R%s/C%s'%(r,c),
            borderwidth=1 ).grid(row=r,column=c)
root.mainloop(  )

displays 12 labels arrayed in a 3 x 4 grid.

grid_forget

w.grid_forget(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The gridder forgets about w. w remains alive but invisible, and you may show w again later (by calling
w.grid again, or perhaps w.pack or w.place).

grid_info

w.grid_info(  )

Returns a dictionary with the current grid_options of w.

16.8.3 The Placer

Calling method place on a widget explicitly handles widget geometry management, thanks to a simple
layout manager component called the Placer. The Placer sizes and positions each widget w within a
container (parent) widget exactly as w explicitly requires. Other layout managers are usually
preferable, but the Placer can help you implement custom layout managers. Each widget w supplies
the following Placer-related methods.

place

w.place(**place_options)

Delegates geometry management to the placer. place_options may include:

anchor

The exact spot of w other options refer to: may be N, E, S, W, NE, NW, SE, or SW, compass
directions indicating the corners and sides of w; default is NW (the upper left corner of w)

bordermode

INSIDE (the default) to indicate that other options refer to the parent's inside (ignoring the
parent's border); OUTSIDE otherwise

height, width

Height and width in pixels

relheight, relwidth

Height and width as a float between 0.0 and 1.0, as a fraction of the height and width of the
parent widget

relx, rely

Horizontal and vertical offset as a float between 0.0 and 1.0, as a fraction of the height and
width of the parent widget

x, y

Horizontal and vertical offset in pixels

place_forget

w.place_forget(  )

The placer forgets about w. w remains alive but invisible, and you may show w again later (by calling
w.place again, or perhaps w.pack or w.grid).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


place_info

w.place_info(  )

Returns a dictionary with the current place_options of w.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

16.9 Tkinter Events

So far, we've seen only the most elementary kind of event handling: the callbacks performed on
callables installed with the command= option of buttons and menu entries of various kinds. Tkinter
also lets you install callables to call back when needed to handle a variety of events. However, Tkinter
does not let you create your own custom events; you are limited to working with events predefined by
Tkinter itself.

16.9.1 The Event Object

General event callbacks must accept one argument event that is a Tkinter event object. Such an event
object has several attributes describing the event:

char

A single-character string that is the key's code (only for keyboard events)

keysym

A string that is the key's symbolic name (only for keyboard events)

num

Button number (only for mouse-button events); 1 and up

x, y

Mouse position, in pixels, relative to the upper left corner of the widget

x_root , y_root

Mouse position, in pixels, relative to the upper left corner of the screen

widget

The widget in which the event has occurred

16.9.2 Binding Callbacks to Events

To bind a callback to an event in a widget w, call w.bind, describing the event with a string, usually
enclosed in angle brackets ('<...>'). The following example prints 'Hello World' each time the user
presses the Enter key:

from Tkinter import *

root = Tk(  )
def greet(*ignore): print 'Hello World'
root.bind('<Return>', greet)
root.mainloop(  )

Method tag_bind of classes Canvas and Text, covered earlier in this chapter, lets you bind event
callbacks to specific sets of items of a Canvas instance, or to ranges within a Text instance.

16.9.3 Event Names

Frequently used event names, which are almost all enclosed in angle brackets, fall into a few
categories.

16.9.3.1 Keyboard events

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


16.9.3.1 Keyboard events

Key

The user clicked any key. The event object's attribute char tells you which key, but for normal
keys only, not for special keys. The event object's attribute keysym is equal to attribute char for
letters and digits, is the character's name for punctuation characters, and is the key name for
special keys, as covered in the next paragraph.

Special keys

Special keys are associated with event names: F1, F2, ..., up to F12 for function keys; Left,
Right, Up, Down for arrow keys; Prior, Next for page-up, page-down; BackSpace, Delete, End,
Home, Insert, Print, Tab, for keys so labeled; Escape for the key often labeled Esc; Return for
the key often labeled Enter; Caps_Lock, Num_Lock, Scroll_Lock for locking-request keys; Alt_L,
Control_L, Shift_L for the modifier keys Alt, Ctrl, Shift (without distinction among the multiple
instances of such modifier keys in a typical keyboard). All of these event names are placed
within angle brackets, like almost all event names.

Normal keys

Normal keys are associated with event names without surrounding angle brackets—the only
event names to lack such brackets. The event name of each normal key is just the associated
character, such as 'w', '1', or '+'. Two exceptions are the Space key, whose event name is
'<space>', and the key associated with the less-than character, whose event name is '<less>'.

All key event names can be modified by prefixing 'Alt-', 'Shift-', or 'Control-'. In this case, the
whole event name does always have to be surrounded with '<...>'. For example, '<Control-Q>'
and '<Alt-Up>' name events corresponding to normal or special keys with modifiers.

16.9.3.2 Mouse events

Button-1, Button-2, Button-3

The user pressed the left, middle, or right mouse-button. A two-button mouse produces only
events Button-1 and Button-3, since it has no middle button.

B1-Motion, B2-Motion, B3-Motion

The user moved the mouse while pressing the left, middle, or right mouse button (there is no
mouse event for mouse motion without pressing a button, except for Enter and Leave).

ButtonRelease-1, ButtonRelease-2, ButtonRelease-3

The user released the left, middle, or right mouse button.

Double-Button-1, Double-Button-2, Double-Button-3

The user double-clicked the left, middle, or right mouse button (such an action also generates
Button-1, Button-2, or Button-3 before the double-click event).

Enter

The user moved the mouse so that the mouse entered the widget.

Leave

The user moved the mouse so that the mouse exited the widget.

16.9.4 Event-Related Methods

Each widget w supplies the following event-related methods.

bind

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


w.bind(event_name,callable[,'+'])

w.bind(event_name,callable) sets callable as the callback for event_name on w.
w.bind(event_name,callable,'+') adds callable to the previous bindings for event_name on w.

bind_all

w.bind_all(event_name,callable[,'+'])

w.bind_all(event_name,callable) sets callable as the callback for event_name on any widget of the
application, whatever widget w you call the method on. w.bind_all(event_name,callable,'+') adds
callable to the previous bindings for event_name on any widget.

unbind

w.unbind(event_name)

Removes all callbacks for event_name on w.

unbind_all

w.unbind_all(event_name)

Removes all callbacks for event_name on any widget, previously set by calling method bind_all on any
widget.

16.9.5 An Events Example

The following example shows how to detect key presses and mouse-button presses and releases using
the bind_all method:

import Tkinter
from Tkinter import *

root = Tk(  )
prompt='Click any button, or press a key'
L = Label(root, text=prompt, width=len(prompt))
L.pack(  )

def key(event):
    if event.char=  =event.keysym:
        msg ='Normal Key %r' % event.char
    elif len(event.char)=  =1:
        msg ='Punctuation Key %r (%r)' % (event.keysym, event.char)
    else:
        msg ='Special Key %r' % event.keysym
    L.config(text=msg)
L.bind_all('<Key>', key)

def do_mouse(eventname):
    def mouse_binding(event):
        msg = 'Mouse event %s' % eventname
        L.config(text=msg)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        L.config(text=msg)
    L.bind_all('<%s>'%eventname, mouse_binding)

for i in range(1,4):
    do_mouse('Button-%s'%i)
    do_mouse('ButtonRelease-%s'%i)
    do_mouse('Double-Button-%s'%i)

root.mainloop(  )

16.9.6 Other Callback-Related Methods

Each widget w supplies the following other callback-related methods.

after

w.after(ms,callable,*args)

Starts a timer that calls callable(*args) about ms milliseconds from now. Returns an ID that you can
pass to after_cancel to cancel the timer. The timer is one-shot: for a function to be called periodically,
the function itself must call after to install itself as a callback again.

after_cancel

w.after_cancel(id)

Cancels the timer identified by id.

after_idle

w.after_idle(callable,*args)

Registers a callback to callable(*args) to be performed when the event loop is idle (i.e., when all
pending events have been processed).

The following example shows how to use after to implement a simple digital clock:

import Tkinter
import time

curtime = ''
clock = Tkinter.Label(  )
clock.pack(  )

def tick(  ):
    global curtime
    newtime = time.strftime('%H:%M:%S')
    if newtime != curtime:
        curtime = newtime
        clock.config(text=curtime)
    clock.after(200, tick)

tick(  )
clock.mainloop(  )

The kind of polling that method after lets you establish is an important Tkinter technique. Several
Tkinter widgets have no callbacks to let you know about user actions on them, so if you want to track

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Tkinter widgets have no callbacks to let you know about user actions on them, so if you want to track
such actions in real-time, polling may be your only option. For example, here's how to use polling
established with after to track a Listbox selection in real time:

import Tkinter

F1 = Tkinter.Frame(  )
s = Tkinter.Scrollbar(F1)
L = Tkinter.Listbox(F1)
s.pack(side=Tkinter.RIGHT, fill=Tkinter.Y)
L.pack(side=Tkinter.LEFT, fill=Tkinter.Y)
s['command'] = L.yview
L['yscrollcommand'] = s.set
for i in range(30): L.insert(Tkinter.END, str(i))
F1.pack(side=Tkinter.TOP)

F2 = Tkinter.Frame(  )
lab = Tkinter.Label(F2)
def poll(  ):
    lab.after(200, poll)
    sel = L.curselection(  )
    lab.config(text=str(sel))
lab.pack(  )
F2.pack(side=Tkinter.TOP)

poll(  )
Tkinter.mainloop(  )

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 17. Testing, Debugging, and Optimizing

You're not finished with a programming task when you're done writing the code: you're finished when
your code is running correctly and with acceptable performance. Testing means verifying that your
code is running correctly by exercising the code under known conditions and checking that the results
are as expected. Debugging means discovering the causes of incorrect behavior and removing them
(the removal is often easy once you have figured out the causes).

Optimizing is often used as an umbrella term for activities meant to ensure acceptable performance.
Optimizing breaks down into benchmarking (measuring performance for given tasks and checking that
it's within acceptable bounds), profiling (instrumenting the program to find out what parts are
performance bottlenecks), and optimizing proper (removing bottlenecks to make overall program
performance acceptable). Clearly, you can't remove performance bottlenecks until you've found out
where they are (using profiling), which in turn requires knowing that there are performance problems
(using benchmarking).

All of these tasks are large and important, and each could fill a book by itself. This chapter does not
explore every related technique and implication; it focuses on Python-specific techniques, approaches,
and tools.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

17.1 Testing

In this chapter, I distinguish between two rather different kinds of testing: unit testing and system
testing. Testing is a rich and important field, and even more distinctions could be drawn, but my goal
is to focus on the issues of most immediate importance to software developers.

17.1.1 Unit Testing and System Testing

Unit testing means writing and running tests to exercise a single module or an even smaller unit, such
as a class or function. System testing (also known as functional testing) involves running an entire
program with known inputs. Some classic books on testing draw the distinction between white-box
testing, done with knowledge of a program's internals, and black-box testing, done from the outside.
This classic viewpoint parallels the modern one of unit versus system testing.

Unit and system testing serve different goals. Unit testing proceeds apace with development; you can
and should test each unit as you're developing it. Indeed, one modern approach is known as test-first
coding: for each feature that your program must have, you first write unit tests, and only then do you
proceed to write code that implements the feature. Test-first coding seems a strange approach, but it
has several advantages. For example, it ensures that you won't omit unit tests for some feature.
Further, test-first coding is helpful because it urges you to focus first on what tasks a certain function,
class, or method should accomplish, and to deal only afterwards with implementing that function,
class, or method. In order to test a unit, which may depend on other units not yet fully developed,
you often have to write stubs, which are fake implementations of various units' interfaces that give
known and correct responses in cases needed to test other units.

System testing comes afterwards, since it requires the system to exist with some subset of system
functionality believed to be in working condition. System testing provides a sanity check: given that
each module in the program works properly (passes unit tests), does the whole program work? If
each unit is okay but the system as a whole is not, there is a problem with integration between units.
For this reason, system testing is also known as integration testing.

System testing is similar to running the system in production use except that you fix the inputs in
advance, so any problems you find are easy to reproduce. The cost of failure in system testing is
lower than in production use, since outputs from system testing are not used to make decisions,
control external systems, and so on. Rather, outputs from system testing are systematically compared
with the outputs that the system should produce given the known inputs. The purpose of the whole
procedure is to find discrepancies between what the program should do and what the program
actually does in a cheap and reproducible way.

Failures discovered by system testing, just like system failures in production use, reveal defects in
unit tests as well as defects in the code. Unit testing may have been insufficient; a module's unit tests
may have failed to exercise all needed functionality of that module. In this case, the unit tests clearly
need to be beefed up.

More often, failures in system testing reveal communication problems within the development team: a
module may correctly implement a certain interface functionality, but another module expects
different functionality. This kind of problem (an integration problem in the strict sense) is harder to
pinpoint in unit testing. In good development practice, unit tests must run often, so it is crucial that
they run fast. It's therefore essential that each unit can assume other units are working correctly and
as expected.

Unit tests that are run in reasonably late stages of development can reveal integration problems if the
system architecture is hierarchical, a common and reasonable organization. In such an architecture,
lower-level modules depend on no others (except perhaps library modules, which you can assume to
be correct), and thus their unit tests, if complete, suffice to assure correctness. Higher-level modules
depend on lower-level ones, and therefore also depend on correct team communication about what
interfaces each module expects and supplies. Running complete unit tests on higher-level modules,
using the true lower-level modules rather than stubs, automatically exercises the interface between
modules, as well as the higher-level modules' own code.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Unit tests for higher-level modules are thus run in two ways. You run the tests with stubs for the
lower levels during the early stages of development when the lower-level modules are not yet ready,
or, later, when you need to check correctness of the higher levels only. During later stages of
development, you also regularly run the higher-level modules' unit tests using the true lower-level
modules. In this way, you check the correctness of the whole subsystem, from the higher levels
downwards.

System testing is similar to running the program in normal ways. You need special support only to
ensure that known inputs are supplied and that outputs are captured for comparison with expected
outputs. This is easy for programs whose I/O uses files, but terribly hard for programs whose I/O
relies on a GUI, network, or other communication with independent external entities. To simulate
such external entities and make them predictable and entirely observable, platform-dependent
infrastructure is generally necessary.

Another useful piece of supporting infrastructure for system testing is a testing framework that
automates the running of system tests, including logging of successes and failures. Such a framework
can also help testers prepare sets of known inputs and corresponding expected outputs.

Both free and commercial programs for these purposes exist, but they are not dependent on what
programming languages are used in the system under test. As mentioned, system testing is akin to
what was classically known as black-box testing—testing independent of the implementation of the
system under test, and therefore, in particular, of the programming languages used for
implementation. Instead, testing frameworks usually depend on the operating system platform on
which they run, since the tasks they perform are platform-dependent: running programs with given
inputs, capturing their outputs, and particularly simulating and capturing GUI, network, and other
interprocess communication I/O. Since frameworks for system testing depend on the platform and not
on programming languages, I do not cover them further in this book.

17.1.2 The doctest Module

The doctest module has the primary purpose of letting you create good usage examples in your code's
docstrings, by checking that the examples do in fact produce the results that your docstrings show for
them.

As you're developing a module, keep the docstrings up to date, and gradually enrich them with
examples. Each time part of the module (e.g., a function) is ready, or even partially ready, make it a
habit to add examples to the docstrings. Import the module into an interactive session, and
interactively use the parts you just developed in order to provide examples with a mix of typical
cases, limit cases, and failing cases. For this specific purpose only, use from module import * so that
your examples don't prefix module. to each name the module supplies. Copy and paste the text of the
interactive session into the docstring in your favorite editor, adjust any mistakes, and you're almost
done.

Your documentation is now enriched with examples, and readers will have an easier time following it,
assuming you chose a good mix of examples and seasoned it wisely with non-example text. Make
sure you have docstrings, with examples, for your module as a whole, and for each function, class,
and method that the module exports. You may skip functions, classes, and methods whose names
start with _, since, as their names indicate, they're meant to be private implementation details;
doctest by default ignores them, and so should most readers of your module's sources.

Examples that don't match the way your code works are worse than useless. Documentation and
comments are useful only if they match reality. Docstrings and comments often get out of date as
code changes, and then they become misinformation, hampering rather than helping any reader of
the source. Better to have no comments and docstrings at all than to have ones that lie. doctest can
help, at least, with the examples in your docstrings. A failing doctest run will often prompt you to
review the whole docstring that contains the failing examples, thus reminding you to keep the
docstring's text updated, too.

At the end of your module's source, insert the following small snippet:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


if _ _name_ _ =  = '_ _main_ _':
    import doctest, sys
    doctest.testmod(sys.modules[_ _name_ _])

This code calls function testmod of module doctest on your module when you run your module as the
main program. testmod examines all relevant docstrings (the module docstring, and docstrings of all
public functions, public classes, and public methods of public classes). In each docstring, testmod
finds all examples (by looking for occurrences of the interpreter prompt '>>> ', possibly preceded by
whitespace) and runs each example. testmod checks that each example's results are equal to the
output given in the docstring right after the example. In the case of exceptions, testmod ignores the
traceback, but checks that the expected and observed error messages are equal.

When everything goes right, testmod terminates silently. Otherwise, it outputs detailed messages
about examples that failed, showing expected and actual output. Example 17-1 shows a typical
example of doctest at work on a module mod.py.

Example 17-1. Using doctest

"""
This module supplies a single function reverseWords that reverses
a string by words.

>>> reverseWords('four score and seven years')
'years seven and score four'
>>> reverseWords('justoneword')
'justoneword'
>>> reverseWords('')
''

You must call reverseWords with one argument, and it must be a string:

>>> reverseWords(  )
Traceback (most recent call last):
    ...
TypeError: reverseWords(  ) takes exactly 1 argument (0 given)
>>> reverseWords('one', 'another')
Traceback (most recent call last):
    ...
TypeError: reverseWords(  ) takes exactly 1 argument (2 given)
>>> reverseWords(1)
Traceback (most recent call last):
    ...
AttributeError: 'int' object has no attribute 'split'
>>> reverseWords(u'however, unicode is all right too')
u'too right all is unicode however,'

As a side effect, reverseWords eliminates any redundant spacing:

>>> reverseWords('with   redundant   spacing')
'spacing redundant with'

"""
def reverseWords(astring):
    words = astring.split(  )
    words.reverse(  )
    return ' '.join(words)
if _ _name_ _=  ='_ _main_ _':
    import doctest, sys
    doctest.testmod(sys.modules[_ _name_ _])

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    doctest.testmod(sys.modules[_ _name_ _])

I have snipped the tracebacks from the docstring, as is commonly done, since doctest ignores them
and they add nothing to the explanatory value of each failing case. Apart from this, the docstring is
the copy and paste of an interactive session, with the addition of some explanatory text and empty
lines for readability. Save this source as mod.py, and then run it with python mod.py. It produces no
output, meaning that all examples work just right. Also try python mod.py -v to get an account of all
tests tried and a verbose summary at the end. Finally, try altering the example results in the module
docstring, making them incorrect, to see the messages doctest provides for errant examples.

doctest is not meant for general-purpose unit testing, but can nevertheless be a convenient tool for
the purpose. The recommended way to do unit testing in Python is with module unittest, covered in
the next section. However, unit testing with doctest can be easier and faster to set up, since it
requires little more than copy and paste from an interactive session. If you need to maintain a module
that lacks unit tests, retrofitting such tests into the module with doctest may be a reasonable
compromise. It's certainly better to have doctest-based unit tests than not to have any unit tests at
all, as might otherwise happen should you decide that setting up tests properly with unittest would
take you too long.

If you do decide to use doctest for unit testing, don't cram extra tests into your module's docstrings.
That would damage the docstrings by making them too long and hard to read. Keep in the docstrings
the right amount and kind of examples, strictly for explanatory purposes, just as if unit testing was
not in the picture. Instead, put the extra tests into a global variable of your module, a dictionary
named _ _test_ _. The keys in _ _test_ _ are strings used as arbitrary test names, and the
corresponding values are strings that doctest picks up and uses just as it uses docstrings. The values
in _ _test_ _ may also be function and class objects, in which case doctest examines their docstrings
for tests to run. This is also a convenient way to run doctest on objects with private names, which
doctest skips by default.

17.1.3 The unittest Module

The unittest module is the Python version of a unit-testing framework originally developed by Kent
Beck for Smalltalk. Similar and equally widespread versions of the same framework also exist for
other programming languages (e.g., the JUnit package for Java).

To use unittest, you don't put your testing code in the same source file as the tested module, but
instead write a separate test module per module being tested. A popular convention is to name the
test module the same as the module being tested, with a prefix such as 'test_', and put it in a
subdirectory named test of the directory where you keep your sources. For example, the test module
for mod.py can be test/test_mod.py. You need a simple and consistent naming convention to make it
easy for you to write and maintain auxiliary scripts that find and run all unit tests for a package.

Separation between a module's source code and its unit-testing code lets you refactor the module
more easily, including possibly recoding its functionality in C, without perturbing the unit-testing code.
Knowing that test_mod.py stays intact, whatever changes you make to mod.py, enhances your
confidence that passing the tests in test_mod.py indicates that mod.py still works correctly after the
changes.

A unit-testing module defines one or more subclasses of unittest's TestCase class. Each subclass may
define a single test case by overriding method runTest. Better yet, the subclass may define one or
more test cases, not by overriding runTest, but rather by defining test-case methods, which are
methods that are callable without arguments and whose names start with test. The subclass may also
override methods setUp, which the framework calls to prepare a new instance for each test case, and
tearDown, which the framework calls to clean things up after each test case. Each test-case method
calls methods of class TestCase whose names start with assert, in order to express the conditions that
the test must meet. unittest runs the test-case methods within a TestCase subclass in arbitrary order,
running setUp just before each test case and tearDown just after each test case.

unittest provides other facilities, such as grouping test cases into test suites, and other more advanced
functionality. You do not need such extras unless you're defining a custom unit-testing framework or,
at the very least, structuring complicated testing procedures for equally complicated packages. In
almost all cases, the concepts and details covered in this section are sufficient to perform effective
and systematic unit testing. Example 17-2 shows how to use unittest to provide unit tests for the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


and systematic unit testing. Example 17-2 shows how to use unittest to provide unit tests for the
module mod.py of Example 17-1. For illustration purposes, this example uses unittest to perform
exactly the same tests that Example 17-1 encoded as examples in docstrings using doctest.

Example 17-2. Using unittest

""" This module tests function reverseWords provided by module mod.py. """
import unittest
import mod

class ModTest(unittest.TestCase):

    def testNormalCase(self):
        self.assertEqual(mod.reverseWords('four score and seven years'),
            'years seven and score four')

    def testSingleWord(self):
        self.assertEqual(mod.reverseWords('justoneword'), 'justoneword')

    def testEmpty(self):
        self.assertEqual(mod.reverseWords(''), '')

    def testRedundantSpacing(self):
        self.assertEqual(mod.reverseWords('with   redundant   spacing'),
            'spacing redundant with')

    def testUnicode(self):
        self.assertEqual(mod.reverseWords(u'unicode is all right too'),
            u'too right all is unicode')

    def testExactlyOneArgument(self):
        self.assertRaises(TypeError, mod.reverseWords)
        self.assertRaises(TypeError, mod.reverseWords, 'one', 'another')

    def testMustBeString(self):
        self.assertRaises((AttributeError,TypeError), mod.reverseWords, 1)

if _ _name_ _=  ='_ _main_ _':
    unittest.main(  )

Running this module with python test_mod.py is by default a bit more verbose, than using python
mod.py to run doctest, as in Example 17-1. test_mod.py outputs a single . for each test-case method
it runs, then a separator line of dashes, and finally a summary line, such as "Ran 7 tests in 0.110s",
and a final line of "OK" if every test was indeed okay.

Each test-case method makes one or more calls to methods whose names start with assert (or their
synonyms whose names start with fail). Here, we have only one test-case method in which we make
two such calls, method testExactly1Argument. In more complicated cases, such multiple calls to assert
methods from a single test-case method can be quite common.

Even in a case as simple as this, one minor aspect shows that, for unit testing, unittest is more
powerful and flexible than doctest. In method testMustBeString, we pass as the first argument to
assertRaises a pair of exception classes, meaning we accept either kind of exception. test_mod.py
therefore accepts as valid different implementations of mod.py. It accepts the implementation in
Example 17-1, which tries calling method split on its argument, and therefore raises AttributeError
when called with an argument that is not a string. However, it also accepts a different hypothetical
implementation, one that raises TypeError instead when called with an argument of the wrong type. It
would be possible to code this testing functionality with doctest, but it would be awkward and non-
obvious, while unittest makes it simple and natural.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This kind of flexibility is crucial for real-life unit tests, which essentially act as executable
specifications for their modules. You could, pessimistically, view the need for flexibility as indicating
that the interface of the code we're testing is not well defined. However, it's best to view the interface
as being defined with a useful amount of flexibility for the implementer: under circumstance X
(argument of invalid type passed to function reverseWords, in this example), either of two things
(raising AttributeError or TypeError) is allowed to happen.

Thus, implementations with either of the different behaviors can be correct, and the implementer can
choose between them on the basis of such considerations as performance and clarity. By viewing unit
tests as executable specifications for their modules (the modern view, and the basis of test-first
coding) rather than as white-box tests strictly constrained to a specific implementation (as in some
traditional taxonomies of testing), the tests become a more vital component of the software
development process.

17.1.3.1 The TestCase class

With unittest, you write test cases by subclassing class TestCase and adding methods, callable without
arguments, whose names start with test. Such test-case methods, in turn, call methods that your
subclass inherits from TestCase, whose names start with assert (or their synonyms, whose names
start with fail), to indicate conditions that must hold for the test to succeed.

Class TestCase also defines two methods that your subclass can optionally override in order to group
actions to perform right before and right after each test-case method runs. This doesn't exhaust
TestCase's functionality, but you won't need the rest unless you're developing testing frameworks or
performing some similarly advanced task. The frequently called methods in a TestCase instance t are
the following.

assert_, failUnless

t.assert_(condition,msg=None)

Fails and outputs msg if condition is false, otherwise does nothing. The underscore in the name is
needed because assert is a Python keyword. failUnless is a synonym.

assertEqual, failUnlessEqual

t.assertEqual(first,second,msg=None)

Fails and outputs msg if first!=second, otherwise does nothing. failUnlessEqual is a synonym.

assertNotEqual, failIfEqual

t.assertNotEqual(first,second,msg=None)

Fails and outputs msg if first= =second, otherwise does nothing. failIfEqual is a synonym.

assertRaises, failUnlessRaises

t.assertRaises(exceptionSpec,callable,*args)

Calls callable(*args). Fails if the call doesn't raise any exception. If the call raises an exception not
meeting exceptionSpec, assertRaises propagates the exception. If the call raises an exception meeting

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


meeting exceptionSpec, assertRaises propagates the exception. If the call raises an exception meeting
exceptionSpec, assertRaises does nothing. exceptionSpec can be an exception class or a tuple of
classes, just like the first argument to the except clause of a try/except statement. failUnlessRaises is a
synonym.

fail

t.fail(msg=None)

Fails unconditionally and outputs msg.

failIf

t.failIf(condition, msg=None)

Fails and outputs msg if condition is true, otherwise does nothing.

setUp

t.setUp(  )

The framework calls t.setUp( ) just before calling a test-case method. The implementation in TestCase
does nothing. This method is provided in order to let your subclass override it if it needs to perform
some preparation for each test.

tearDown

t.tearDown(  )

The framework calls t.tearDown( ) just after calling a test-case method. The implementation in
TestCase does nothing. This method is provided in order to let your subclass override it if it needs to
perform some cleanup after each test.

17.1.3.2 Unit tests dealing with large amounts of data

Unit tests must be fast, since they are run frequently during development. Therefore, it's best to unit-
test each aspect of your modules' functionality on small amounts of data when possible. This makes
each unit test faster, and also lets you conveniently embed all needed data in the test's source code.
When you test a function that reads from or writes to a file object, in particular, you normally use an
instance of class cStringIO (covered in Chapter 10) to simulate a file object while holding the data in
memory.

However, in some rare cases, it may be impossible to fully exercise a module's functionality without
supplying and/or comparing data in quantities larger than can be reasonably embedded in a test's
source code. In such cases, your unit test will have to rely on auxiliary external data files to hold the
data it needs to supply to the module it tests, and/or the data it needs to compare to the tested
module's output. Even then, you're generally better off reading the data into instances of cStringIO
rather than directing the tested module to perform actual disk I/O. Similarly, I suggest you generally
use stubs to test modules meant to interact with other external entities, such as a database, a GUI, or
some other program over a network. It's easier for you to control all aspects of the test when using
stubs rather than real external entities. Also, to reiterate, the speed at which you can run tests is
important, and it's invariably faster to perform simulated operations in stubs, rather than real
operations.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

17.2 Debugging

Since Python's development cycle is so fast, the most effective way to debug is often to edit your code
to make it output relevant information at key points. Python has many ways to let your code explore
its own state in order to extract information that may be relevant for debugging. The inspect and
traceback modules specifically support such exploration, which is also known as reflection or
introspection.

Once you have obtained debugging-relevant information, statement print is often the simplest way to
display it. You can also log debugging information to files. Logging is particularly useful for programs
that run unattended for a long time, as is typically the case for server programs. Displaying
debugging information is like displaying other kinds of information, as covered in Chapter 10 and
Chapter 16, and similarly for logging it, as covered in Chapter 10 and Chapter 11. Python 2.3 will also
include a module specifically dedicated to logging. As covered in Chapter 8, rebinding attribute
excepthook of module sys lets your program log detailed error information just before your program is
terminated by a propagating exception.

Python also offers hooks enabling interactive debugging. Module pdb supplies a simple text-mode
interactive debugger. Other interactive debuggers for Python are part of integrated development
environments (IDEs), such as IDLE and various commercial offerings. However, I do not cover IDEs in
this book.

17.2.1 The inspect Module

The inspect module supplies functions to extract information from all kinds of objects, including the
Python call stack (which records all function calls currently executing) and source files. At the time of
this writing, module inspect is not yet available for Jython. The most frequently used functions of
module inspect are as follows.

getargspec, formatargspec

getargspec(f)

f is a function object. getargspec returns a tuple with four items (arg_names, extra_args, extra_kwds,
arg_defaults). arg_names is the sequence of names of f's formal arguments. extra_args is the name of
the special formal argument of the form *args, or None if f has no such special argument. extra_kwds
is the name of the special formal argument of the form **kwds, or None if f has no such special
argument. arg_defaults is the tuple of default values for f's arguments. You can deduce other details
about f's signature from getargspec's results. For example, f has len(arg_names)-len(arg_defaults)
mandatory arguments, and the names of f's optional arguments are the strings that are the items of
the list slice arg_names[-len(arg_defaults):].

formatargspec accepts one to four arguments that are the same as the items of the tuple that
getargspec returns, and returns a formatted string that displays this information. Thus,
formatargspec(*getargspec(f)) returns a formatted string with f's formal arguments (i.e., f's signature)
in parentheses, as used in the def statement that created f.

getargvalues, formatargvalues

getargvalues(f)

f is a frame object, for example the result of a call to the function _getframe in module sys (covered in
Chapter 8) or to function currentframe in module inspect. getargvalues returns a tuple with four items
(arg_names, extra_args, extra_kwds, locals). arg_names is the sequence of names of f's function's

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


(arg_names, extra_args, extra_kwds, locals). arg_names is the sequence of names of f's function's
formal arguments. extra_args is the name of the special formal argument of form *args, or None if f's
function has no such special argument. extra_kwds is the name of the special formal argument of form
**kwds, or None if f's function has no such special argument. locals is the dictionary of local variables
for f. Since arguments, in particular, are local variables, the value of each actual argument can be
obtained from locals by indexing the locals dictionary with the argument's name.

formatargvalues accepts one to four arguments that are the same as the items of the tuple that
getargvalues returns, and returns a formatted string that displays this information.
formatargvalues(*getargvalues(f)) returns a formatted string with f's actual arguments in parentheses,
in named (keyword) form, as used in the call statement that created f. For example:

def f(x=23): return inspect.currentframe(  )
print inspect.formatargvalues(inspect.getargvalues(f(  )))  
# prints: (x=23)

currentframe

currentframe(  )

Returns the frame object for the current function (caller of currentframe).
formatargvalues(getargvalues(currentframe( )), for example, returns a formatted string with the actual
arguments of the calling function.

getdoc

getdoc(obj)

Returns the docstring for obj, with tabs expanded to spaces and redundant whitespace stripped from
each line.

getfile, getsourcefile

getfile(obj)

Returns the name of the file that defined obj, and raises TypeError when unable to determine the file.
For example, getfile raises TypeError if obj is built-in. getfile returns the name of a binary or source
file. getsourcefile returns the name of a source file, and raises TypeError when it can determine only a
binary file, not the corresponding source file.

getmembers

getmembers(obj, filter=None)

Returns all attributes (members) of obj, a sorted list of (name,value) pairs. When filter is not None,
returns only attributes for which callable filter returns a true result when called on the attribute's
value, like:

[ (n, v) for n, v in getmembers(obj) if filter(v) ]

getmodule

getmodule(obj)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


getmodule(obj)

Returns the module object that defined obj, or None if unable to determine it.

getmro

getmro(c)

Returns a tuple of bases and ancestors of class c in method resolution order. c is the first item in the
tuple. Each class appears only once in the tuple.

getsource, getsourcelines

getsource(obj)

Returns a single multiline string that is the source code for obj, and raises IOError if unable to
determine or fetch it. getsourcelines returns a pair: the first item is the source code for obj (a list of
lines), and the second item is the line number of the list's first line in the source file it comes from.

isbuiltin,isclass,iscode, isframe, isfunction, ismethod,
ismodule, isroutine

isbuiltin(obj)

Each of these functions accepts a single argument obj and returns True if obj belongs to the type
indicated in the function name. Accepted objects are, respectively: built-in (C-coded) functions, class
objects, code objects, frame objects, Python-coded functions (including lambda expressions),
methods, modules, and, for isroutine, all methods or functions, either C-coded or Python-coded. These
functions are often used as the filter argument to getmembers.

stack

stack(context=1)

Returns a list of six-item tuples. The first tuple is about stack's caller, the second tuple is about the
caller's caller, and so on. Each tuple's items, in order, are: frame object, filename, line number,
function name, list of context source code lines around the current line, and index of current line
within the list.

For example, suppose that at some point in your program you execute a statement such as:

x.f(  )

and unexpectedly receive an AttributeError informing you that object x has no attribute named f. This
means that object x is not as you expected, so you want to determine more about x as a preliminary
to ascertaining why x is that way and what you should do about it. Change the statement to:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


try: x.f(  )
except AttributeError:
    import sys, inspect
    sys.stderr.write('x is type %s(%r)\n'%(x,type(x)))
    sys.stderr.write("x's methods are: ")
    for n, v in inspect.getmembers(x, callable):
       sys.stderr.write('%s '%n)
    sys.stderr.write('\n')
    raise

This example uses sys.stderr (covered in Chapter 8), since it's displaying diagnostic information
related to an error, not program results. Function getmembers of module inspect obtains the name of
all methods available on x in order to display them. Of course, if you need this kind of diagnostic
functionality often, you should package it up into a separate function, such as:

import sys, inspect
def show_obj_methods(obj, name, show=sys.stderr.write):
    show('%s is type %s(%r)\n'%(name,obj,type(obj)))
    show("%s's methods are: "%name)
    for n, v in inspect.getmembers(obj, callable):
       show('%s '%n)
    show('\n')

And then the example becomes just:

try: x.f(  )
except AttributeError:
    show_obj_methods(x, 'x')
    raise

Good program structure and organization are just as necessary in code intended for diagnostic and
debugging purposes as they are in code that implements your program's functionality. See also
Section 6.6.4 in Chapter 6 for a good technique to use when defining diagnostic and debugging
functions.

17.2.2 The traceback Module

The traceback module lets you extract, format, and output information about tracebacks as normally
produced by uncaught exceptions. By default, module traceback reproduces the formatting Python
uses for tracebacks. However, module traceback also lets you exert fine-grained control. The module
supplies many functions, but in typical use you will use only one of them.

print_exc

print_exc(limit=None, file=sys.stderr)

Call print_exc from an exception handler or a function directly or indirectly called by an exception
handler. print_exc outputs to file-like object file the traceback information that Python outputs to
stderr for uncaught exceptions. When limit is not None, print_exc outputs only limit traceback nesting
levels. For example, when, in an exception handler, you want to cause a diagnostic message just as if
the exception propagated, but actually stop the exception from propagating any further (so that your
program keeps running, and no further handlers are involved), call traceback.print_exc( ).

17.2.3 The pdb Module

The pdb module exploits the Python interpreter's debugging and tracing hooks to implement a simple,
command-line-oriented interactive debugger. pdb lets you set breakpoints, single-step on sources,
examine stack frames, and so on.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To run some code under pdb's control, you import pdb and then call pdb.run, passing as the single
argument a string of code to execute. To use pdb for post-mortem debugging (meaning debugging of
code that terminated by propagating an exception at an interactive prompt), call pdb.pm( ) without
arguments. When pdb starts, it first reads text files named .pdbrc in your home directory and in the
current directory. Such files can contain any pdb commands, but most often they use the alias
command in order to define useful synonyms and abbreviations for other commands.

When pdb is in control, it prompts you with the string '(Pdb) ', and you can enter pdb commands.
Command help (which you can also enter in the abbreviated form h) lists all available commands. Call
help with an argument (separated by a space) to get help about any specific command. You can
abbreviate most commands to the first one or two letters, but you must always enter commands in
lowercase: pdb, like Python itself, is case-sensitive. Entering an empty line repeats the previous
command. The most frequently used pdb commands are the following.

!

! statement

Executes Python statement statement in the currently debugged context.

alias, unalias

alias [ name [ command ] ]

alias without arguments lists currently defined aliases. alias name outputs the current definition of the
alias name. In the full form, command is any pdb command, with arguments, and may contain %1,
%2, and so on to refer to arguments passed to the new alias name being defined, or %* to refer to all
such arguments together. Command unalias name removes an alias.

args, a

args

Lists all actual arguments passed to the function you are currently debugging.

break, b

break [ location [ ,condition ] ]

break without arguments lists currently defined breakpoints and the number of times each breakpoint
has triggered. With an argument, break sets a breakpoint at the given location. location can be a line
number or a function name, optionally preceded by filename: to set a breakpoint in a file that is not
the current one or at the start of a function whose name is ambiguous (i.e., a function that exists in
more than one file). When condition is present, condition is an expression to evaluate (in the
debugged context) each time the given line or function is about to execute; execution breaks only
when the expression returns a true value. When setting a new breakpoint, break returns a breakpoint
number, which you can then use to refer to the new breakpoint in any other breakpoint-related pdb
command.

clear, cl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


clear [ breakpoint-numbers ]

Clears (removes) one or more breakpoints. clear without arguments removes all breakpoints after
asking for confirmation. To deactivate a breakpoint without removing it, see disable.

condition

condition breakpoint-number [ expression ]

condition n expression sets or changes the condition on breakpoint n. condition n, without expression,
makes breakpoint n unconditional.

continue, c, cont

continue

Continues execution of the code being debugged, up to a breakpoint if any.

disable

disable [ breakpoint-numbers ]

Disables one or more breakpoints. disable without arguments disables all breakpoints (after asking for
confirmation). This differs from clear in that the debugger remembers the breakpoint, and you can
reactivate it via enable.

down, d

down

Moves one frame down in the stack (i.e., toward the most recent function call). Normally, the current
position in the stack is at the bottom (i.e., at the function that was called most recently and is now
being debugged). Therefore, command down can't go further down. However, command down is
useful if you have previously executed command up, which moves the current position upward.

enable

enable [ breakpoint-numbers ]

Enables one or more breakpoints. enable without arguments enables all breakpoints after asking for
confirmation.

ignore

ignore breakpoint-number [ count ]

Sets the breakpoint's ignore count (to 0, if count is omitted). Triggering a breakpoint whose ignore
count is greater than 0 just decrements the count. Execution stops, presenting you with an interactive

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


count is greater than 0 just decrements the count. Execution stops, presenting you with an interactive
pdb prompt, only when you trigger a breakpoint whose ignore count is 0. For example, say that
module fob.py contains the following code:

def f(  ):
    for i in range(1000):
        g(i)

def g(i):
    pass

Now, consider the following interactive pdb session:

>>> import pdb
>>> import fob
>>> pdb.run('fob.f(  )')
> <string>(0)?(  )
(Pdb) break fob.g
Breakpoint 1 at C:\mydir\fob.py:6
(Pdb) ignore 1 500
Will ignore next 500 crossings of breakpoint 1.
(Pdb) continue
> <string>(1)?(  )
(Pdb) continue
> C:\mydir\fob.py(6)g(  )
-> pass
(Pdb) print i
500

The ignore command, as pdb shows in response to it, asks pdb to ignore the next 500 hits on
breakpoint 1, which we just set at fob.g in the previous break statement. Therefore, when execution
finally stops, function g has already been called 500 times, as we show by printing its argument i,
which indeed is now 500. Note that the ignore count of breakpoint 1 is now 0; if we give another
continue and print i, i will then show as 501. In other words, once the ignore count is decremented
back to 0, execution stops every time the breakpoint is hit. If we want to skip some more hits, we
need to give pdb another ignore command, in order to set the ignore count of breakpoint 1 at some
value greater than 0 yet again.

list, l

list [ first [ , last ] ]

list without arguments lists 11 lines centered on the current one, or the next 11 lines if the previous
command was also a list. By giving arguments to the list command, you may explicitly specify the first
and last lines to list within the current file. The list command deals with physical lines, including
comments and empty lines, not with logical lines.

next, n

next

Executes the current line, without stepping into any function called from the current line. However,
hitting breakpoints in functions called directly or indirectly from the current line does stop execution.

p

p expression

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Evaluates expression in the current context and displays the result.

quit, q

quit

Immediately terminates both pdb and the program being debugged.

return, r

return

Executes the rest of the current function, stopping only at breakpoints if any.

step, s

step

Executes the current line, stepping into any function called from the current line.

tbreak

tbreak [ location [ ,condition ] ]

Like break, but the breakpoint is temporary (i.e., pdb automatically removes the breakpoint as soon
as the breakpoint is triggered).

up, u

up

Moves one frame up in the stack (i.e., away from the most recent function call and toward the calling
function).

where, w

where

Shows the stack of frames and indicates the current one (i.e., in what frame's context command !
executes statements, command args shows arguments, command p evaluates expressions, etc.).

17.2.4 Debugging in IDLE

IDLE, the Interactive DeveLopment Environment that comes with Python, offers debugging
functionality similar to that of pdb, although not quite as powerful. Thanks to IDLE's GUI, however,
you may find the functionality easier to access. For example, instead of having to ask for source lists
and stack lists explicitly with such pdb commands as list and where, you just activate one or more of
four checkboxes in the Debug Control window to see source, stack, locals, and globals always
displayed in the same window at each step.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


To start IDLE's interactive debugger, use menu Debug  Debugger in IDLE's *Python Shell*
window. IDLE opens the Debug Control window, outputs [DEBUG ON] in the shell window, and gives
you another >>> prompt in the shell window. Keep using the shell window as you normally would—
any command you give at the shell window's prompt now runs under the debugger. To deactivate the
debugger, use Debug  Debugger again; IDLE then toggles the debug state, closes the Debug
Control window, and outputs [DEBUG OFF] in the shell window. To control the debugger when the
debugger is active, use the GUI controls in the Debug Control window. You can toggle the debugger
away only when it is not busy actively tracking code: otherwise, IDLE disables the Quit button in the
Debug Control window.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

17.3 The warnings Module

Warnings are messages about errors or anomalies that may not be serious enough to be worth
disrupting the program's control flow (as would happen by raising a normal exception). The warnings
module offers you fine-grained control over which warnings are output and what happens to them.
Your code can conditionally output a warning by calling function warn in module warnings. Other
functions in the module let you control how warnings are formatted, set their destinations, and
conditionally suppress some warnings (or transform some warnings into exceptions).

17.3.1 Classes

Module warnings supplies several exception classes representing warnings. Class Warning subclasses
Exception and is the base class for all warnings. You may define your own warning classes; they must
subclass Warning, either directly or via one of its other existing subclasses, which are:

DeprecationWarning

Using deprecated features only supplied for backward compatibility

RuntimeWarning

Using features whose semantics are error-prone

SyntaxWarning

Using features whose syntax is error-prone

UserWarning

Other user-defined warnings that don't fit any of the above cases

17.3.2 Objects

In the current version of Python, there are no concrete warning objects. A warning is composed of a
message (a text string), a category (a subclass of Warning), and two pieces of information that identify
where the warning was raised from: module (name of the module raising the warning) and lineno (line
number of the source code line raising the warning). Conceptually, you may think of these as
attributes of a warning object w, and I use attribute notation later for clarity, but no specific warning
object w actually exists.

17.3.3 Filters

At any time, module warnings keeps a list of active filters for warnings. When you import warnings for
the first time in a run, the module examines sys.warnoptions to determine the initial set of filters. You
can run Python with option -W to set sys.warnoptions for a given run. Do not rely on the initial set of
filters being held specifically in sys.warnoptions, as this is an implementation aspect that may change
in future releases of Python.

As each warning w occurs, warnings tests w against each filter until a filter matches. The matching
filter determines what happens to w. Each filter is a tuple of five items. The first item, action, is a
string that defines what happens on a match. The other four items, message, category, module, and
lineno, control what it means for w to match the filter, and all conditions must be satisfied for a
match. Here are the meanings of these items (using attribute notation to indicate conceptual
attributes of w):

message

A regular expression object; the match condition is message.match(w.message) (the match is
case-insensitive)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


category

Warning or a subclass of Warning; the match condition is issubclass(w.category,category)

module

A regular expression object; the match condition is module.match(w.module) (the match is
case-sensitive)

lineno

An integer; the match condition is lineno in (0, w.lineno), i.e., either lineno is 0, meaning
w.lineno does not matter, or w.lineno must exactly equal lineno

Upon a match, the first field of the filter, the action, determines what happens:

'always'

w.message is output whether or not w has already occurred

'default'

w.message is output if, and only if, this is the first time w occurs from this specific location
(i.e., this specific w.module, w.location pair)

'error'

w.category(w.message) is raised as an exception

'ignore'

w is ignored

'module'

w.message is output if, and only if, this is the first time w occurs from w.module

'once'

w.message is output if, and only if, this is the first time w occurs from any location

17.3.4 Functions

Module warnings supplies the following functions.

filterwarnings

filterwarnings(action,message='.*',category=Warning,
               module='.*',lineno=0, append=False)

Adds a filter to the list of active filters. When append is true, filterwarnings adds the filter after all
other existing filters (i.e., appends the filter to the list of existing filters); otherwise filterwarnings
inserts the filter before any other existing filter. All components, save action, have default values
meaning match everything. As detailed above, message and module are pattern strings for regular
expressions, category is some subclass of Warning, lineno is an integer, and action is a string that
determines what happens when a message matches this filter.

formatwarning

formatwarning(message,category,filename,lineno)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns a string that represents the given warning with standard formatting.

resetwarnings

resetwarnings(  )

Removes all filters from the list of filters. resetwarnings also discards any filters originally added with
the -W command-line option.

showwarning

showwarning(message,category,filename,lineno,file=sys.stderr)

Outputs the given warning to the given file object. Filter actions that output warnings call
showwarning, letting argument file default to sys.stderr. To change what happens when filter actions
output warnings, code your own function with this signature and bind it to warnings.showwarning.

warn

warn(message,category=UserWarning,stacklevel=1)

Sends a warning, so that the filters examine and possibly output it. The location of the warning is the
current function (caller of warn) if stacklevel is 1, or its caller if stacklevel is 2. Thus, passing 2 as the
value of stacklevel lets you write functions that send warnings on their caller's behalf, such as:

def toUnicode(astr):
    try: 
        return unicode(astr)
    except UnicodeError:
        warnings.warn("Invalid characters in (%s)"%astr, 
                      stacklevel=2)
        return unicode(astr, errors='ignore')

Thanks to parameter stacklevel=2, the warning appears as coming from the caller of toUnicode, rather
than from function toUnicode itself. This is particularly important when the action of the filter matching
this warning is default or module, since these actions output a warning only the first time the warning
occurs from a given location or module.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

17.4 Optimization

"First make it work. Then make it right. Then make it fast." This quotation, often with slight
variations, is widely known as the golden rule of programming. As far as I've been able to ascertain,
the quotation is attributed to Kent Beck, who credits his father with it. Being widely known makes the
principle no less important, particularly because it's more honored in the breach than in the
observance. A negative form, slightly exaggerated for emphasis, is in a quotation by Don Knuth:
"Premature optimization is the root of all evil in programming."

Optimization is premature if your code is not working yet. First make it work. Optimization is also
premature if your code is working but you are not satisfied with the overall architecture and design.
Remedy structural flaws before worrying about optimization: first make it work, then make it right.
These first two steps are not optional—working, well-architected code is always a must.

In contrast, you don't always need to make it fast. Benchmarks may show that your code's
performance is already acceptable after the first two steps. When performance is not acceptable,
profiling often shows that all performance issues are in a small subset, perhaps 10% to 20% of the
code where your program spends 80% or 90% of the time. Such performance-crucial regions of your
code are also known as its bottlenecks, or hot spots. It's a waste of effort to optimize large portions of
code that account for, say, 10% of your program's running time. Even if you made that part run 10
times as fast (a rare feat), your program's overall runtime would only decrease by 9%, a speedup no
user will even notice. If optimization is needed, focus your efforts where they'll matter, on
bottlenecks. You can optimize bottlenecks while keeping your code 100% pure Python. In some cases,
you can resort to recoding some computational bottlenecks as Python extensions, potentially gaining
even better performance.

17.4.1 Developing a Fast-Enough Python Application

Start by designing, coding, and testing your application in Python, often using some already available
extension modules. This takes much less time than it would take with a classic compiled language.
Then benchmark the application to find out if the resulting code is fast enough. Often it is, and you're
done—congratulations!

Since much of Python itself is coded in highly optimized C, as are many of its standard and extension
modules, your application may even turn out to be already faster than typical C code. However, if the
application is too slow, you need to re-examine your algorithms and data structures. Check for
bottlenecks due to application architecture, network traffic, database access, and operating system
interactions. For typical applications, each of these factors is more likely than language choice to
cause slowdowns. Tinkering with large-scale architectural aspects can often speed up an application
dramatically, and Python is an excellent medium for such experimentation.

If your program is still too slow, you should profile it to find out where the time is going. Applications
often exhibit computational bottlenecks—small areas of the source code, generally between 10% and
20%, which account for 80% or more of the running time. You can now optimize the bottlenecks,
applying the techniques suggested in the rest of this chapter.

If normal Python-level optimizations still leave some outstanding computational bottlenecks, you can
recode them as Python extension modules, as covered in Chapter 24. In the end, your application will
run at roughly the same speed as if you had coded it all in C, C++, or Fortran—or faster, when large-
scale experimentation has let you find a better architecture. Your overall programming productivity
with this process is not much less than if you coded everything in Python. Future changes and
maintenance are easy, since you use Python to express the overall structure of the program, and
lower-level, harder-to-maintain languages only for a few specific computational bottlenecks.

As you produce applications in a given area according to this process, you will accumulate a library of
reusable Python extension modules for that area. You therefore become more and more productive at
developing other fast-running Python applications in the same field.

Even if external constraints should eventually force you to recode the whole application in a lower-
level language, you're still better off for having started in Python. Rapid prototyping has long been

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


level language, you're still better off for having started in Python. Rapid prototyping has long been
acknowledged as the best way to get a software architecture just right. A working prototype lets you
check that you have identified the right problems and taken the best path to their solution. A
prototype affords the kind of large-scale architectural experimentation that can make a real difference
to performance. Starting your prototype with Python allows a gradual migration to other languages by
way of extension modules. The application remains in a fully functional and testable state at each
stage. This ensures against the risk of compromising a design's architectural integrity in the coding
stage. The resulting software is likely to be faster and more robust than if all of the coding had been
lower-level from the start, and your productivity, while not quite as good as with a pure Python or
mostly Python application, is still better than if you had been coding at a lower level throughout.

17.4.2 Benchmarking

Benchmarking is similar to system testing: both activities are like running the program as it's meant
to be run for production purposes. In both cases, you need to have at least some subset of the
program's intended functionality working, and you need to use known, reproducible inputs. In the
case of benchmarking, you don't need to capture and check your program's output: since you make it
work and make it right before you make it fast, you are already confident about your program's
correctness by the time you benchmark it. You do need inputs that are representative of typical
system operations, particularly those that may be most challenging for your program's performance.
If your program performs several kinds of operations, make sure you run one or two benchmarks for
each different kind of operation.

Elapsed time as measured by your wristwatch is probably precise enough to benchmark most
programs. Programs with hard real-time constraints are obviously another matter, but they have
needs very different from those of normal programs in most respects. A 5% or 10% difference in
performance, except for programs with very peculiar constraints, makes no practical difference to a
program's real-life usability.

When you benchmark "toy" programs in order to help you choose an algorithm or data structure, you
may need more precision. In that case, you may want to set up an artificial environment, with a
machine as quiescent as possible, no network activity, and accurate timekeeping. Python time
operations are covered in Chapter 12. The benchmarking discussed in this section is a different kind of
issue: an approximation of real-life program operation, for the sole purpose of checking whether the
program's performance at each task is acceptable, before embarking on profiling and other
optimization activities. For such system benchmarking, a situation that approximates the program's
normal operating conditions is best, and accuracy in timing is not particularly important.

17.4.3 Large-Scale Optimization

The aspects of your program that are most important for performance are large-scale ones: choice of
algorithms, overall architecture, and choice of data structures.

The performance issues that you must almost always take into account are those connected with the
traditional big-O notation of computer science. Informally, if you call N the input size of an algorithm,
big-O notation expresses algorithm performance, for large values of N, as proportional to a function of
N (in precise computer science lingo, this should actually be called big-Theta, but in practical use
programmers in the field call this big-O). An O(N) algorithm is one where, for large enough N,
handling twice as much data takes about twice as much time, three times as much data three times
as much time, and so on, growing linearly with N. An O(N2) algorithm is one where, for large enough
N, handling twice as much data takes about four times as much time, three times as much data nine
times as much time, and so on, growing with N squared.

You will find more information on big-O notation, as well as other issues about algorithms and their
complexity, in any good book about algorithms and data structures. Unfortunately, at the time of this
writing, there aren't yet any such books using Python. However, if you are at least moderately
familiar with C, I can recommend Mastering Algorithms with C, by Kyle Loudon (O'Reilly).

To understand the practical importance of big-O considerations in your programs, consider two
different ways to accept all items from an input iterator and accumulate them into a list in reverse
order:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


def slow(it):
    result = [  ]
    for item in it: result.insert(0, item)
    return result

def fast(it):
    result = [  ]
    for item in it: result.append(item)
    result.reverse(  )
    return result

We could express each of these functions more concisely, but the key difference is best appreciated
by presenting them in these elementary terms. Function slow builds the result list by inserting each
input item before all previously received ones. Function fast appends each input item after all
previously received ones, then reverses the result list just before returning it. Intuitively, one might
think that the final reversing represents extra work, and therefore slow should be faster than fast. But
that's not the way things work out.

Each call to result.append takes roughly the same amount of time, independent of how many items
are already in list result, since there is always a free slot for an extra item at the end of the list. The
for loop in function fast executes N times to receive N items. Since each iteration of the loop takes a
constant time, overall loop time is O(N). result.reverse also takes time O(N), as it is directly
proportional to the total number of items. Thus, the total running time of fast is also O(N). (If you
don't understand why a sum of two quantities, each O(N), is also O(N), consider that the sum of two
linear functions of N is also a linear function of N).

In contrast, each call to result.insert must make space at slot 0 for the new item to insert, by moving
all items that are already in list result forward one slot. That takes a time proportional to the number
of items that are already in the list. The overall amount of time to receive N items is therefore
proportional to 1+2+3+...N-1, a sum whose value is O(N2). Therefore, the total running time of slow is
also O(N2).

It's almost always worth replacing an O(N2) solution with an O(N) one, unless you can somehow
assign rigorous limits to the input size N. If N can grow without bounds, the O(N2) solution will
inevitably turn out to be disastrously slower than the O(N) one for large enough values of N, no
matter what the proportionality constants in each case may be (and no matter what profiling tells
you). Unless you have other O(N2) or even worse bottlenecks elsewhere that you cannot eliminate, a
part of the program that is O(N2) will inevitably turn into the program's bottleneck and dominate
runtime for large enough values of N. Do yourself a favor and watch out for the big O: all other
performance issues, in comparison, are insignificant.

Incidentally, function fast can be made substantially faster by expressing it in more idiomatic Python.
Just replace the first two lines with the single statement:

result = list(it)

This change does not affect fast's big-O character (fast is still O(N) after the change), but does speed
things up by a constant factor. Often, in Python, the simplest, clearest, most idiomatic way to express
something is also the fastest.

Choosing algorithms with good big-O characteristics is roughly the same task in Python as in any
other language. You just need a few indications about the big-O performance of Python's elementary
building blocks.

17.4.3.1 List operations

Python lists are internally implemented with vectors (also known as arrays), not with linked lists. This
fundamental implementation choice determines just about all performance characteristics of Python
lists, in big-O terms.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Chaining two lists of length N1 and N2 is O(N1+N2). Multiplying a list of length N by the number M is
O(N*M). Accessing or rebinding any list item is O(1) (also known as constant time, meaning that the
time taken does not depend on how many items are in the list). len( ) on a list is also O(1). Accessing
any slice of length M is O(M). Rebinding a slice of length M with one of identical length is also O(M).
Rebinding a slice of length M1 with one of different length M2 is O(M1+M2+N1), where N1 is the
number of items after the slice in the target list.

Most list methods, as shown way back in Table 4-3, are equivalent to slice rebindings and have the
same big-O performance. Methods count, index, remove, and reverse, and operator in, are O(N).
Method sort is generally O(N*log(N)), but has optimizations that let it be O(N) in some important
special cases, like when the list is already sorted, reverse sorted, or sorted except for a few items at
the end (in Python 2.3, sort will also be O(N) in a few more important special cases). range(a,b,c) is
O((b-a)/c). xrange(a,b,c) is O(1), but looping on xrange's result is O((b-a)/c).

17.4.3.2 String operations

Most methods on a string of length N (be it plain or Unicode) are O(N). len(astring) is O(1). The fastest
way to produce a copy of a string with transliterations and/or removal of specified characters is the
string's method translate. The most practically important big-O consideration involving strings is
covered in Section 17.4.5 later in this chapter.

17.4.3.3 Dictionary operations

Python dictionaries are internally implemented with hash tables. This fundamental implementation
choice determines just about all performance characteristics of Python dictionaries, in big-O terms.

Accessing, rebinding, adding, or removing a dictionary item is generally O(1), as are methods
has_key, get, setdefault, and popitem, and operator in. d1.update(d2) is O(len(d2)). len(adict) is O(1).
Methods keys, items, and values are O(N). Methods iterkeys, iteritems, and itervalues are O(1), but
looping on the iterators that those methods return is O(N). When the keys in a dictionary are
instances of classes that define _ _hash_ _ and equality comparison methods, dictionary performance
is of course affected by those methods. The indications presented in this paragraph are valid only if
both hashing and equality comparison are O(1).

17.4.4 Profiling

Most programs have hot spots (i.e., regions of source code that account for most of the time elapsed
during a program run). Don't try to guess where your program's hot spots are; programmers' intuition
is notoriously unreliable in this field. Use module profile to collect profile data over one or more runs
of your program, with known inputs. Then, use module pstats to collate, interpret, and display that
profile data. To gain accuracy, you can calibrate the Python profiler for your machine (i.e., determine
what overhead profiling incurs on your machine). Module profile can then subtract this overhead from
the times it measures so that the profile data you collect is closer to reality.

17.4.4.1 The profile module

The profile module supplies one function you will often use.

run

run(code,filename=None)

code is a string such as you could use with statement exec, normally a call to the main function of the
program you're profiling. filename is the path of a file that run creates or rewrites with profile data.
Usually you call run a few times, specifying different filenames, and possibly different arguments to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Usually you call run a few times, specifying different filenames, and possibly different arguments to
your program's main function, in order to exercise various program parts proportionately. Then, you
use module pstats to display collated results.

You may call run without a filename to obtain a summary report, similar to the one module pstats
could give you, directly on standard output. However, this approach gives no control at all over output
format, nor does it offer any way to consolidate several runs into one report. In practice, you rarely
use this feature: collecting profile data into files is generally preferable.

Module profile also supplies class Profile, mentioned in the next section. By instantiating Profile
directly, you can access advanced functionality, such as the ability to run a command in specified local
and global dictionaries. I do not cover such advanced functionality of class profile.Profile further in this
book.

17.4.4.2 Calibration

To calibrate profile for your machine, you need to use class Profile, which module profile supplies and
internally uses in function run. An instance p of Profile supplies one method you use for calibration.

calibrate

p.calibrate(N)

Loops N times, then returns a number that is the profiling overhead per call on your machine. N must
be large if your machine is fast. Call p.calibrate(10000) a few times and check that the various
numbers it returns are very close to each other, then pick the smallest one of them. If the numbers
exhibit substantial variation, try again with larger values of N.

The calibration procedure can be time consuming. However, you need to perform it only once,
repeating it only when you make changes that could alter your machine's characteristics, such as
applying patches to your operating system, adding memory, or changing Python version. Once you
know your machine's overhead, you can tell profile about it each time you import it, right before using
profile.run. The simplest way to do this is as follows:

import profile
profile.Profile.bias = ...the overhead you measured...
profile.run('main(  )', 'somefile')

17.4.4.3 The pstats module

The pstats module supplies a single class, Stats, that you use to analyze, consolidate, and report on
the profile data contained in one or more files written by function profile.run.

Stats

class Stats(filename,*filenames)

Instantiates Stats with one or more filenames of files of profile data written by function profile.run.

An instance s of class Stats provides methods to add profile data and sort and output results. Each
method returns s, so you can chain several calls in the same expression. s's main methods are as
follows.

add

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


s.add(filename)

Adds another file of profile data to the set that s is holding for analysis.

print_callees, print_callers

s

.print_callees(*restrictions)

Outputs the list of functions in s's profile data, sorted according to the latest call to s.sort_stats, and
subject to the given restrictions, if any. You can call each printing method with zero or more
restrictions, which are applied one after the other, in order, to reduce the number of output lines. A
restriction that is an integer n limits the output to the first n lines. A restriction that is a floating-point
value f between 0.0 and 1.0 limits the output to a fraction f of the lines. A restriction that is a string is
compiled as a regular expression (as covered in Chapter 9); only lines satisfying a search method call
on the regular expressions are output. Restrictions are cumulative. For example, s.print_calls(10,0.5)
outputs the first 5 lines (half of 10). Output restrictions apply only after the summary and header
lines: summary and header are output unconditionally.

Each function f that is output is accompanied by the list of f's callers (the functions that called f) or f's
callees (the functions that f called) according to the name of the method.

print_stats

s.print_stats(*restrictions)

Outputs statistics about s's profile data, sorted according to the latest call to s.sort_stats, and subject
to the given restrictions, if any, as covered in print_callees. After a few summary lines (date and time
on which profile data was collected, number of function calls, and sort criteria used), the output,
absent restrictions, is one line per function, with six fields per line, labeled in a header line. For each
function f, print_stats outputs six fields:

1. Total number of calls to function f

2. Total time spent in function f, exclusive of other functions that f called

3. Total time per call (i.e., field 2 divided by field 1)

4. Cumulative time spent in function f, and in all functions directly or indirectly called from f

5. Cumulative time per call (i.e., field 4 divided by field 1)

6. The name of function f

sort_stats

s.sort_stats(key, *keys)

Gives one or more keys (primary first, if more than one) on which to sort future output. Each key is a
string. The sort is descending for keys indicating times or numbers, alphabetical (ascending) for key
'nfl'. The most frequently used keys when calling sort_stats are:

'calls'

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Number of calls to the function (like field 1 covered in print_stats)

'cumulative'

Cumulative time spent in the function and all functions it called (like field 4 i covered in
print_stats)

'nfl'

Name of the function, its module, line number of the function in its file (like field 6 covered in
print_stats)

'time'

Total time spent in the function itself, exclusive of functions it called (like field 2 covered in
print_stats)

strip_dirs

s.strip_dirs(  )

Alters s by stripping directory names from all the module names that s holds, to make future output
more compact. s is unsorted after s.strip_dirs( ), and therefore you normally call s.sort_stats with the
arguments you desire right after calling s.strip_dirs.

17.4.5 Small-Scale Optimization

Fine tuning of program operations is rarely important. Such tuning may make a small but meaningful
difference in some particularly hot spot, but hardly ever is it a decisive factor. And yet, such fine
tuning, in the pursuit of mostly irrelevant microefficiencies, is where a programmer's instincts are
likely to lead. It is in good part because of this that most optimization is premature and best avoided.
The most that can be said in favor of fine tuning is that, if one idiom is always speedier than another
when the difference is measurable, it's worth getting into the habit of always using the former and not
the latter.

Most often, in Python, if you do what comes naturally and choose simplicity and elegance, you end up
with code that has good performance as well as clarity and maintainability. In a few cases, an
approach that may not be intuitive offers performance advantages, as discussed in the rest of this
section.

The simplest possible optimization is to run your Python programs using python -O or -OO. -OO makes
little direct difference to performance compared to -O, but -OO may save memory, since it removes
docstrings from the bytecode, and memory availability is sometimes (indirectly) a performance
bottleneck. The optimizer is not very powerful in current releases of Python, but it may still gain you
performance advantages on the order of 10%, sometimes as large as 20% (potentially even larger, if
you make heavy use of assert statements and if _ _debug_ _: guards as suggested in Chapter 6). The
best aspect of -O is that it costs nothing—as long as your optimization isn't premature, of course. -O
does impede use of debuggers, such as pdb, and may thus make debugging somewhat harder if your
program isn't fully tested and working correctly. So, don't use -O on a program you're still developing.

17.4.5.1 Building up a string from pieces

The single Python anti-idiom that's likeliest to kill your program's performance, to the point that you
should never use it, is to build up a large string from pieces by looping on string concatenation
statements such as big_string+=piece. Since Python strings are immutable, such a concatenation
makes Python free the M bytes previously allocated for big_string, and allocate and fill M+K bytes for
the new version. Doing this repeatedly in a loop, you end up with roughly O(N2) performance, where
N is the total number of characters. More often than not, O(N2) performance where O(N) is available is

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


N is the total number of characters. More often than not, O(N2) performance where O(N) is available is
a performance disaster. On some platforms, things may be even bleaker due to memory
fragmentation effects caused by freeing many memory areas, all of different sizes, and allocating
progressively larger ones.

To achieve O(N) performance, accumulate intermediate pieces in a list rather than building up the
string piece by piece. Lists, unlike strings, are mutable, so appending to a list has O(1) performance
(amortized). Change each occurrence of big_string+=piece into temp_list.append(piece). Then, when
you're done accumulating, use the following to build your desired string result in O(N) time:

big_string = ''.join(temp_list)

Other O(N) ways to build up big strings are to concatenate the pieces to an instance of array.array('c'),
or to write the pieces to an instance of cStringIO.StringIO.

In the special case where you want to output the resulting string, you may gain a further small slice
of performance by using writelines on temp_list (never building big_string in memory). When feasible
(i.e., when you have the output file object open and available in the loop), it's at least as effective to
perform a write call for each piece, without any accumulation.

Although not nearly as crucial as += on a big string in a loop, another case where removing string
concatenation may give a slight performance improvement is when you're concatenating several
values in an expression:

oneway = str(x)+' eggs and '+str(y)+' slices of '+k+' ham'
another = '%s eggs and %s slices of %s ham' % (x, y, k)

Using operator % for string formatting is often a good performance choice.

17.4.5.2 Searching and sorting

Operator in, the most natural tool for searching, is O(1) when the right-hand side operand is a
dictionary, but O(N) when the right-hand side operand is a list. If you need to perform many searches
on a container, you're generally much better off using a dictionary, rather than a list, as the
container. Python dictionaries are highly optimized for searching and fetching items by key.

Method sort of Python lists is also a highly optimized and sophisticated tool. You can rely on sort's
performance. Performance dramatically degrades, however, if you pass sort a custom callable to
perform comparisons in order to sort a list based on anything but built-in comparisons. To satisfy such
needs, consider using the decorate-sort-undecorate (DSU) idiom instead. This idiom has the following
steps:

decorate

Build an auxiliary list A where each item is a tuple made up of the sort keys, ending with the
item of the original list L or with the item's index

sort

Call A.sort( ) without arguments

undecorate

Extract the items in order from the now-sorted A

The decorate and undecorate steps are most often handily performed with list comprehensions. If you
need the sort to be in-place, assign the final sorted list to L[:]. Otherwise, DSU provides a sorted
copy, without disturbing the original list L.

For example, say we have in L a large list of strings, each of at least two words, and we want to sort L
in-place by the second word of each string:

A = [ (s.split(  )[1], s) for s in L ]
A.sort(  )
L[:] = [ t[1] for t in A ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


L[:] = [ t[1] for t in A ]

This is much faster than passing to L.sort a function that compares two strings by their second words,
as in:

def cmp2ndword(a, b): return cmp(a.split(  )[1], b.split(  )[1])
L.sort(cmp2ndword)

On a series of benchmarks with Python 2.2 on lists of 10,000 strings, I measured the DSU version as
7 to 10 times faster than the non-DSU one.

17.4.5.3 Avoiding exec and from ... import *

If a function contains an exec statement without explicit dictionaries, the whole function slows down
substantially. The presence of such an exec statement forces the Python compiler to avoid the modest
but precious optimizations it normally performs because such an exec might cause any alteration at all
to the function's namespace. A from statement of the form:

from MyModule import *

causes similar performance loss, since it, too, can alter a function's namespace unpredictably.

exec itself is also quite slow, particularly if you apply it to a string of source code rather than to a code
object. By far the best approach, for performance, for correctness, and for clarity, is to avoid exec
altogether. It's most often possible to find better (faster, more solid, and clearer) solutions. If you
must use exec, always use it with explicit dictionaries. If you need to exec a dynamically obtained
string more than once, compile the string one time and repeatedly exec the resulting code object.

eval works on expressions, not on statements; therefore, although it's still slow, at least it avoids
some of the worst performance impacts of exec. With eval, too, you're best advised to use explicit
dictionaries, and, if you need repeated evaluation of the same dynamically obtained string, compile
the string just once, then repeatedly eval the resulting code object.

17.4.5.4 Optimizing loops

Most of your program's bottlenecks will be in loops, particularly nested loops, because loop bodies
often execute repeatedly. Python does not implicitly perform any code hoisting: if you have any code
inside a loop that might be executed just once by hoisting it out of the loop, and the loop is a
performance bottleneck, hoist the code out yourself. Sometimes the presence of code to hoist may
not be immediately obvious:

def slower(anobject, ahugenumber):
    for i in xrange(ahugenumber): anobject.amethod(i)
def faster(anobject, ahugenumber):
    themethod = anobject.amethod
    for i in xrange(ahugenumber): themethod(i)

In this case, the code that faster hoists out of the for loop is the attribute lookup anobject.amethod.
slower repeats the lookup each and every time, while faster performs it just once. The two functions
are not 100% equivalent: it is (just barely) conceivable that executing amethod might cause such
changes on anobject that the next lookup for the same named attribute fetches a different method
object. This is part of why Python doesn't perform such optimizations itself. In practice, such subtle,
obscure, and tricky cases happen far less than one time in ten thousand. So you're quite safe
performing such optimizations yourself, when you're trying to squeeze the last drop of performance
out of some crucial bottleneck.

It's faster for Python to use local variables than global ones. So, if one of your loops is repeatedly
accessing a global variable whose value does not change between iterations of the loop, put the value
in a local variable and have the loop access the local variable instead. This also applies to built-in
functions:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


def slightly_slower(asequence, adict):
    for x in asequence: adict[x] = hex(x)
def slightly_faster(asequence, adict):
    myhex = hex
    for x in asequence: adict[x] = myhex(x)

Here, the speedup is very modest, on the order of 5% or so.

Do not cache None. None is currently an ordinary built-in identifier, but it is scheduled to become a
keyword in Python 2.3 or 2.4, so no further optimization will be needed.

List comprehensions can be faster than loops, and so can map and filter. For optimization purposes,
try changing loops into list comprehensions or map and filter calls where feasible. However, the
performance advantage of map and filter is nullified if you have to use a lambda or an extra level of
function call. Only when you pass to map or filter a built-in function, or a function you'd have to call
anyway even from an explicit loop, do you stand to gain.

The loops that you can replace most naturally with list comprehensions, or map and filter calls, are
loops that build up a list by repeatedly calling append on the list. In such cases, if you know in
advance the length of the resulting list, a further optimization is available. Predefine the result list to
the right length (e.g., with result=[None]*N), introduce an explicit index i that starts at 0 and grows
by one at each iteration of the loop, and change each call to result.append(x) into result[i]=x. The
following example shows this optimization in the context of a typical microperformance benchmark
script:

import time

def slow(asequence):
    result = [  ]
    for x in asequence: result.append(-x)
    return result

def middling(asequence):
    return [ -x for x in asequence ]

def fast(asequence):
    result = [None]*len(asequence)
    for i in xrange(len(asequence)): result[i] = -asequence[i]
    return result

biggie = xrange(500*1000)
tentimes = [None]*10
def timit(afunc):
    lobi = biggie
    start = time.clock(  )
    for x in tentimes: afunc(lobi)
    stend = time.clock(  )
    return "%-10s: %.2f" % (afunc._ _name_ _, stend-start)

for afunc in slow, middling, fast, fast, middling, slow:
    print timit(afunc)

Running this example with python -O (on a PC with a 1.2 GHz Athlon CPU, Python 2.2.1) shows fast
taking 4.30 seconds, middling 4.81 to 4.84 seconds, and slow 6.50 to 7.02 seconds, on Windows 98.
The time ranges on Linux are 4.19- 4.20, 5.15-5.20, and 6.91-7.00, respectively. With the current
alpha version of Python 2.3 on Linux, the time ranges are 3.35-3.37 for fast, 4.61-4.64 for middling,
and 6.43-6.44 for slow. In summary, on this machine, slow is 35%-40% slower than middling, and
middling is about 15%-25% slower than fast (and Python 2.2 is 10%-25% slower than the current
alpha of Python 2.3).

17.4.5.5 Optimizing I/O

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


17.4.5.5 Optimizing I/O

If your program does substantial amounts of I/O, it's likely that performance bottlenecks are due to
I/O, not to computation. Such programs are said to be I/O bound, rather than CPU bound. Your
operating system tries to optimize I/O performance, but you can help it in a couple of ways. One such
way is to perform your I/O in chunks of a size that is optimal for performance, rather than simply
being convenient for your program's operations. Another way is to use threading.

From the point of view of a program's convenience and simplicity, the ideal amount of data to read or
write at a time is generally small (one character or one line) or very large (an entire file at a time).
That's often okay, because Python and your operating system work behind the scenes to let your
program use convenient logical chunks for I/O, while arranging physical I/O operations with chunk
sizes that are more attuned to performance. Reading and writing a whole file at a time is quite likely
to be okay for performance as long as the file is not inordinately large. Specifically, file-at-a-time I/O
is fine as long as the file's data fits in your machine's physical memory, leaving enough physical
memory available for your program and operating system to perform whatever other tasks they need
to perform at the same time. The hard problems of I/O-bound program performance tend to come
with huge files.

If performance is an issue, don't use a file object's readline method, which is limited in the amount of
chunking and buffering it can perform. Using writeline, on the other hand, gives no performance
problem when that method is the one most convenient for your program. Loop directly on the file
object (in Python 2.2) to get one line at a time with the best performance. If the file isn't too huge,
time two versions of your program, one that loops directly on the file object and one that calls method
readlines, which reads the whole file into memory. Either solution may prove faster. In Python 2.1,
you can't loop directly on the file object. Instead, use method xreadlines in a for loop. xreadlines will be
deprecated in Python 2.3, but if you need top performance in this specific case and need to support
Python 2.1, there is no alternative.

For binary files, specifically large binary files of whose contents you need just a part on each run of
your program, module mmap, covered in Chapter 14, can often give you both good performance and
program simplicity.

Making an I/O-bound program multithreaded may sometimes afford substantial performance gains if
you can arrange your program's architecture accordingly. Start a few worker threads devoted
exclusively to I/O, have the computational threads request I/O operations from the I/O threads via
Queue instances, and try to post the request for each input operation as soon as you know you'll
eventually need that data. Performance will increase only if there are other tasks your computational
threads can perform while an I/O thread is blocked waiting for data. Basically, you get better
performance this way if you can manage to overlap computation and waiting for data, by having
different threads do the computing and the waiting. See Chapter 14 for detailed coverage of Python
threading and a suggested architecture.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part IV: Network and Web Programming
Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 18. Client-Side Network Protocol Modules

A program can work on the Internet as a client (a program that accesses resources) or as a server (a
program that makes services available). Both kinds of program deal with protocol issues, such as how
to access and communicate data, and with data formatting issues. For order and clarity, the Python
library deals with these issues in several different modules. This book will cover the topics in separate
chapters. This chapter deals with the modules in the Python library that support protocol issues of
client programs.

Nowadays, data access can often be achieved most simply through Uniform Resource Locators (URLs).
Python supports URLs with modules urlparse, urllib, and urllib2. For rarer cases, when you need fine-
grained control of data access protocols normally accessed via URLs, Python supplies modules httplib
and ftplib. Protocols for which URLs are often insufficient include mail (modules poplib and smtplib),
Network News (module nntplib), and Telnet (module telnetlib). Python also supports the XML-RPC
protocol for distributed computing with module xmlrpclib.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

18.1 URL Access

A URL identifies a resource on the Internet. A URL is a string composed of several optional parts,
called components, known as scheme, location, path, query, and fragment. A URL with all its parts
looks something like:

scheme://lo.ca.ti.on/pa/th?query#fragment

For example, in http://www.python.org:80/faq.cgi?src=fie, the scheme is http, the location is
www.python.org:80, the path is /faq.cgi, the query is src=fie, and there is no fragment. Some of the
punctuation characters form a part of one of the components they separate, while others are just
separators and are part of no component. Omitting punctuation implies missing components. For
example, in mailto:me@you.com, the scheme is mailto, the path is me@you.com, and there is no
location, query, or fragment. The missing // means the URL has no location part, the missing ? means
it has no query part, and the missing # means it has no fragment part.

18.1.1 The urlparse Module

The urlparse module supplies functions to analyze and synthesize URL strings. In Python 2.2, the most
frequently used functions of module urlparse are urljoin, urlsplit, and urlunsplit.

urljoin

urljoin(base_url_string,relative_url_string)

Returns a URL string u, obtained by joining relative_url_string, which may be relative, with
base_url_string. The joining procedure that urljoin performs to obtain its result u may be summarized
as follows:

When either of the argument strings is empty, u is the other argument.

When relative_url_string explicitly specifies a scheme different from that of base_url_string, u is
relative_url_string. Otherwise, u's scheme is that of base_url_string.

When the scheme does not allow relative URLs (e.g., mailto), or relative_url_string explicitly
specifies a location (even when it is the same as the location of base_url_string), all other
components of u are those of relative_url_string. Otherwise, u's location is that of
base_url_string.

u's path is obtained by joining the paths of base_url_string and relative_url_string according to
standard syntax for absolute and relative URL paths. For example:

import urlparse
urlparse.urljoin(
    'http://somehost.com/some/path/here',
    '../other/path')
# Result is: 'http://somehost.com/some/other/path'

urlsplit

urlsplit(url_string,default_scheme='',allow_fragments=True)

Analyzes url_string and returns a tuple with five string items: scheme, location, path, query, and
fragment. default_scheme is the first item when the url_string lacks a scheme. When allow_fragments

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


fragment. default_scheme is the first item when the url_string lacks a scheme. When allow_fragments
is False, the tuple's last item is always '', whether or not url_string has a fragment. Items
corresponding to missing parts are always ''. For example:

urlparse.urlsplit(
    'http://www.python.org:80/faq.cgi?src=fie')
# Result is: 
# ('http','www.python.org:80','/faq.cgi','src=fie','')

urlunsplit

urlunsplit(url_tuple)

url_tuple is a tuple with exactly five items, all strings. For example, any return value from a urlsplit call
is an acceptable argument for urlunsplit. urlunsplit returns a URL string with the given components and
the needed separators, but with no redundant separators (e.g., there is no # in the result when the
fragment, url_tuple's last item, is ''). For example:

urlparse.urlunsplit(('http','www.python.org:80',
    '/faq.cgi','src=fie',''))
# Result is: 'http://www.python.org:80/faq.cgi?src=fie'

urlunsplit(urlsplit(x)) returns a normalized form of URL string x, not necessarily equal to x because x
need not be normalized. For example:

urlparse.urlunsplit(
    urlparse.urlsplit('http://a.com/path/a?'))
# Result is: 'http://a.com/path/a'

In this case, the normalization ensures that redundant separators, such as the trailing ? in the
argument to urlsplit, are not present in the result.

Module urlparse also supplies functions urlparse and urlunparse. In Python 2.1, urlparse did not supply
urlsplit and urlunsplit, so you had to use urlparse and urlunparse instead. urlparse and urlunparse are
akin to urlsplit and urlunsplit, but are based on six components rather than five. The parse functions
insert a parameters component between path and query using an older standard for URLs, where
parameters applied to the entire path. According to the current standard, parameters apply to each
part of the path separately. Therefore, the path URL component may now include parameters to
subdivide in further phases of the analysis. For example:

u.urlsplit('http://a.com/path;with/some;params?anda=query')
# Result is: ('http','a.com','/path;with/some;params','anda=query','')
u.urlparse('http://a.com/path;with/some;params?anda=query')
# Result is: ('http','a.com','/path;with/some','params','anda=query','')

In this code, urlparse is able to split off the ';params' part of the parameters, but considers the
'/path;with/some' substring to be the path. urlsplit considers the entire '/path;with/some;params' to be
the path, returned as the third item in the result tuple. Should you then need to separate the 'with'
and 'params' parameters parts of the path component, you can perform further string processing on
the third item of urlsplit's return tuple, such as splitting on / and then on ;. In practice, very few URLs
on the Net make use of parameters, so you may not care about this subtle distinction.

18.1.2 The urllib Module

The urllib module supplies simple functions to read data from URLs. urllib supports the following
protocols (schemes): http, https, ftp, gopher, and file. file indicates a local file. urllib uses file as the
default scheme for URLs that lack an explicit scheme. You can find simple, typical examples of urllib
use in Chapter 22 and Chapter 23, where urllib.urlopen is used to fetch HTML and XML pages that
various examples parse and analyze.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


18.1.2.1 Functions

Module urllib supplies a number of functions, with urlopen being the most frequently used.

quote

quote(str,safe='/')

Returns a copy of str where special characters are changed into Internet-standard quoted form %xx.
Does not quote alphanumeric characters, spaces, any of the characters '_,.-', nor any of the
characters in string safe.

quote_plus

quote_plus(str, safe='/')

Like quote, but also changes spaces into plus signs.

unquote

unquote(str)

Returns a copy of str where each quoted form %xx is changed into the corresponding character.

unquote_plus

unquote_plus(str)

Like unquote, but also changes plus signs into spaces.

urlcleanup

urlcleanup(  )

Clears the cache of function urlretrieve, covered later in this section.

urlencode

urlencode(query,doseq=False)

Returns a string with the URL-encoded form of query. query can be either a sequence of (name, value)
pairs, or a mapping, in which case the resulting string encodes the mapping's (key, value) pairs. For
example:

urllib.urlencode([('ans',42),('key','val')])
# 'ans=42&key=val'
urllib.urlencode({'ans':42, 'key':'val'})
# 'key=val&ans=42'

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


# 'key=val&ans=42'

Remember that the order of items in a dictionary is not defined: if you need the URL-encoded form to
have the key/value pairs in a specific order, use a sequence as the query argument, as in the first call
in this example.

When doseq is true, any value in query that is a sequence is encoded as separate parameters, one per
item in value. For example:

u.urlencode([('K',('x','y','z'))],1)
# 'K=x&K=y&K=z'
u.urlencode([('K',('x','y','z'))],0)
# 'K=%28%27x%27%2C+%27y%27%2C+%27z%27%29'

When doseq is false (the default), each value is encoded as the quote_plus of its string form given by
built-in str, whether the value is a sequence or not.

urlopen

urlopen(urlstring,data=None)

Accesses the given URL and returns a read-only file-like object f. f supplies file-like methods read,
readline, readlines, and close, as well as two others:

f.geturl( )

Returns the URL of f. This may differ from urlstring both because of normalization (as
mentioned for function urlunsplit earlier) and because the server may issue HTTP redirects (i.e.,
indications that the requested data is located elsewhere). urllib supports redirects
transparently, and method geturl lets you check for them if you want.

f.info( )

Returns an instance m of class Message of module mimetools, covered in Chapter 21. The main
use of m is as a container of headers holding metadata about f. For example, m['Content-Type']
is the MIME type and subtype of the data in f. You can also access this information by calling
m's methods m.gettype( ), m.getmaintype( ), and m.getsubtype( ).

When data is None and urlstring's scheme is http, urlopen sends a GET request. When data is not None,
urlstring's scheme must be http, and urlopen sends a POST request. data must then be in URL-encoded
form, and you normally prepare it with function urlencode, covered earlier in this section.

urlopen can transparently use proxies that do not require authentication. Set environment variables
http_proxy, ftp_proxy, and gopher_proxy to the proxies' URLs to exploit this. You normally perform
such settings in your system's environment, in platform-dependent ways, before you start Python. On
the Macintosh only, urlopen transparently and implicitly retrieves proxy URLs from your Internet
configuration settings. urlopen does not support proxies that require authentication—for such
advanced needs, use the richer and more complicated library module urllib2, covered in a moment.

urlretrieve

urlretrieve(urlstring,filename=None,reporthook=None,data=None)

Similar to urlopen(urlstring,data), but instead returns a pair (f,m). f is a string that specifies the path
to a file on the local filesystem. m is an instance of class Message of module mimetools, like the result
of method info called on the result value of urlopen, covered earlier in this section.

When filename is None, urlretrieve copies retrieved data to a temporary local file, and f is the path to
the temporary local file. When filename is not None, urlretrieve copies retrieved data to the file named
filename, and f is filename. When reporthook is not None, it must be a callable with three arguments,

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


filename, and f is filename. When reporthook is not None, it must be a callable with three arguments,
as in the function:

def reporthook(block_count, block_size, file_size):
    print block_count

urlretrieve calls reporthook zero or more times while retrieving data. At each call, it passes
block_count, the number of blocks of data retrieved so far; block_size, the size in bytes of each block;
and file_size, the total size of the file in bytes. urlretrieve passes file_size as -1 when unable to
determine file size, which depends on the protocol involved and on how completely the server
implements that protocol. The purpose of reporthook is to let your program give graphical or textual
feedback to the user about the progress of the file retrieval operation that urlretrieve performs.

18.1.2.2 The FancyURLopener class

You normally use module urllib through the functions it supplies (most often urlopen). To customize
urllib's functionality, however, you can subclass urllib's FancyURLopener class and bind an instance of
your subclass to attribute _urlopener of module urllib. The customizable aspects of an instance f of a
subclass of FancyURLopener are the following.

prompt_user_passwd

f.prompt_user_passwd(host,realm)

Returns a pair (user,password) to use to authenticate access to host in the security realm. The default
implementation in class FancyURLopener prompts the user for this data in interactive text mode. Your
subclass can override this method for such purposes as interacting with the user via a GUI or fetching
authentication data from persistent storage.

version

f.version

The string that f uses to identify itself to the server, for example via the User-Agent header in the
HTTP protocol. You can override this attribute by subclassing, or rebind it directly on an instance of
FancyURLopener.

18.1.3 The urllib2 Module

The urllib2 module is a rich, highly customizable superset of module urllib. urllib2 lets you work directly
with rather advanced aspects of protocols such as HTTP. For example, you can send requests with
customized headers as well as URL-encoded POST bodies, and handle authentication in various
realms, in both Basic and Digest forms, directly or via HTTP proxies.

In the rest of this section, I cover only the ways in which urllib2 lets your program customize these
advanced aspects of URL retrieval. I do not try to impart the advanced knowledge of HTTP and other
network protocols, independent of Python, that you need to make full use of urllib2's rich functionality.
As an HTTP tutorial, I recommend Python Web Programming, by Steve Holden (New Riders): it offers
good coverage of HTTP basics with examples coded in Python, and a good bibliography if you need
further details about network protocols.

18.1.3.1 Functions

urllib2 supplies a function urlopen basically identical to urllib's urlopen. To customize urllib2's behavior,
you can install, before calling urlopen, any number of handlers grouped into an opener using the
build_opener and install_opener functions.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can also optionally pass to urlopen an instance of class Request instead of a URL string. Such an
instance may include both a URL string and supplementary information on how to access it, as
covered shortly in Section 18.1.3.2.

build_opener

build_opener(*handlers)

Creates and returns an instance of class OpenerDirector, covered later in this chapter, with the given
handlers. Each handler can be a subclass of class BaseHandler, instantiable without arguments, or an
instance of such a subclass, however instantiated. build_opener adds instances of various handler
classes provided by module urllib2 in front of the handlers you specify, to handle proxies, unknown
schemes, the http, file, and https schemes, HTTP errors, and HTTP redirects. However, if you have
instances or subclasses of said classes in handlers, this indicates that you want to override these
defaults.

install_opener

install_opener(opener)

Installs opener as the opener for further calls to urlopen. opener can be an instance of class
OpenerDirector, such as the result of a call to function build_opener, or any signature-compatible
object.

urlopen

urlopen(url,data=None)

Almost identical to the urlopen function in module urllib. However, you customize behavior via the
opener and handler classes of urllib2, covered later in this chapter, rather than via class
FancyURLopener as in module urllib. Argument url can be a URL string, like for the urlopen function in
module urllib. Alternatively, url can be an instance of class Request, covered in the next section.

18.1.3.2 The Request class

You can optionally pass to function urlopen an instance of class Request instead of a URL string. Such
an instance can embody both a URL and, optionally, other information on how to access the target
URL.

Request

class Request(urlstring,data=None,headers={})

urlstring is the URL that this instance of class Request embodies. For example, if there are no data and
headers, calling:

urllib2.urlopen(urllib2.Request(urlstring))

is just like calling:

urllib2.urlopen(urlstring)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


urllib2.urlopen(urlstring)

When data is not None, the Request constructor implicitly calls on the new instance r its method
r.add_data(data). headers must be a mapping of header names to header values. The Request
constructor executes the equivalent of the loop:

for k,v in headers.items(  ): r.add_header(k,v)

An instance r of class Request supplies the following methods.

add_data

r.add_data(data)

Sets data as r's data. Calling urlopen(r) then becomes like calling urlopen(r,data), i.e., it requires r's
scheme to be http, and uses a POST request with a body of data, which must be a URL-encoded
string.

Despite its name, method add_data does not necessarily add the data. If r already had data, set in r's
constructor or by previous calls to r.add_data, the latest call to r.add_data replaces the previous value
of r's data with the new given one. In particular, r.add_data(None) removes r's previous data, if any.

add_header

r.add_header(key,value)

Adds a header with the given key and value to r's headers. If r's scheme is http, r's headers are sent
as part of the request. When you add more than one header with the same key, later additions
overwrite previous ones, so out of all headers with one given key, only the one given last matters.

get_data

r.get_data(  )

Returns the data of r, either None or a URL-encoded string.

get_full_url

r.get_full_url(  )

Returns the URL of r, as given in the constructor for r.

get_host

r.get_host(  )

Returns the host component of r's URL.

get_selector

r.get_selector(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns the selector components of r's URL (i.e., the path and all following components).

get_type

r.get_type(  )

Returns the scheme component of r's URL (i.e., the protocol).

has_data

r.has_data(  )

Like r.get_data( ) is not None.

set_proxy

r.set_proxy(host,scheme)

Sets r to use a proxy at the given host and scheme for accessing r's URL.

18.1.3.3 The OpenerDirector class

An instance d of class OpenerDirector collects instances of handler classes and orchestrates their use
to open URLs of various schemes and to handle errors. Normally, you create d by calling function
build_opener, and then install it by calling function install_opener. For advanced uses, you may also
access various attributes and methods of d, but this is a rare need and I do not cover it further in this
book.

18.1.3.4 Handler classes

Module urllib2 supplies a class BaseHandler to use as the superclass of any custom handler classes you
write. urllib2 also supplies many concrete subclasses of BaseHandler that handle schemes gopher, ftp,
http, https, and file, as well as authentication, proxies, redirects, and errors. Writing custom handlers
is an advanced topic and I do not cover it further in this book.

18.1.3.5 Handling authentication

urllib2 's default opener does not include authentication handlers. To get authentication, call
build_opener to build an opener that includes instances of classes HTTPBasicAuthHandler,
ProxyBasicAuthHandler, HTTPDigestAuthHandler, and/or ProxyDigestAuthHandler, depending on whether
you need the authentication to be directly in HTTP or to a proxy, and on whether you need Basic or
Digest authentication.

To instantiate each of these authentication handlers, use an instance x of class
HTTPPasswordMgrWithDefaultRealm as the only argument to the authentication handler's constructor.
You normally use the same x to instantiate all the authentication handlers you need. To record users
and passwords for given authentication realms and URLs, call x.add_password one or more times.

add_password

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


x.add_password(realm,URLs,user,password)

Records in x the pair (user,password) as the authentication in the given realm of applicable URLs, as
determined by argument URLs. realm is either a string, the name of an authentication realm, or None,
to apply this authentication as the default for any realm not specifically recorded. URLs is a URL string
or a sequence of URL strings. A URL u is deemed applicable for this authentication if there is an item
u1 of URLs such that the location components of u and u1 are equal, and the path component of u1 is
a prefix of that of u. Note that other components (scheme, query, and fragment) don't matter to
applicability for authentication purposes.

The following example shows how to use urllib2 with basic HTTP authentication:

import urllib2

x = urllib2.HTTPPasswordMgrWithDefaultRealm(  )
x.add_password(None, 'http://myhost.com/', 'auser',
               'apassword')
auth = urrlib2.HTTPBasicAuthHandler(x)
opener = urllib2.build_opener(auth)
urllib2.install_opener(opener)

flob = urllib2.urlopen('http://myhost.com/index.html')
for line in flob.readlines(  ): print line,

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

18.2 Email Protocols

Most email today is sent via servers that implement the Simple Mail Transport Protocol (SMTP) and
received via servers that implement the Post Office Protocol Version 3 (POP3). These protocols are
supported by the Python standard library modules smtplib and poplib, respectively. Some servers,
instead of or in addition to POP3, implement the richer and more advanced Internet Message Access
Protocol Version 4 (IMAP4), supported by the Python standard library module imaplib, which I do not
cover in this book.

18.2.1 The poplib Module

The poplib module supplies a class POP3 to access a POP mailbox.

POP3

class POP3(host,port=110)

Returns an instance p of class POP3 connected to the given host and port.

Instance p supplies many methods, of which the most frequently used are the following.

dele

p.dele(msgnum)

Marks message msgnum for deletion. The server performs deletions when this connection terminates
by a call to method quit. Returns the response string.

list

p.list(msgnum=None)

Returns a pair (response,messages) where response is the response string and messages is a list of
strings, each of two words 'msgnum bytes', giving the message number and the length in bytes of
each message in the mailbox. When msgnum is not None, list messages has only one item, a string
with two words: msgnum as requested, and the length bytes.

pass_

p.pass_(password)

Sends the password. Must be called after method user. The trailing underscore in the function's name
is necessary because pass is a Python keyword. Returns the response string.

quit

p.quit(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Ends the session and performs the deletions that were requested by calls to method dele. Returns the
response string.

retr

p.retr(msgnum)

Returns a three-item tuple (response,lines,bytes), where response is the response string, lines is a list
of all lines in message msgnum, and bytes is the total number of bytes in the message.

set_debuglevel

p.set_debuglevel(debug_level)

Sets the debug level to integer debug_level: 0, the default, for no debugging; 1 to get a modest
amount of debugging output; 2 or more to get a complete output trace of all control information
exchanged with the server.

stat

p.stat(  )

Returns a pair (num_messages,bytes), where num_messages is the number of messages in the
mailbox, and bytes is the total number of bytes.

top

p.top(msgnum,maxlines)

Like retr, but returns no more than maxlines lines of text from the message after the headers. Can be
useful to view the start of long messages.

user

p.user(username)

Sends the username. Must be followed by a call to method pass_.

18.2.2 The smtplib Module

The smtplib module supplies a class SMTP to send mail to any SMTP server.

SMTP

class SMTP([host,port=25])

Returns an instance s of class SMTP. When host (and optionally port) is given, implicitly calls
s.connect(host,port).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Instance s supplies many methods, of which the most frequently used are the following.

connect

s.connect(host=127.0.0.1,port=25)

Connects to an SMTP server on the given host (by default, the local host) and port (port 25 is the
default port for the SMTP service).

login

s.login(user,password)

Logs in to the server with the given user and password. Needed only if the SMTP server requires
authentication.

quit

s.quit(  )

Terminates the SMTP session.

sendmail

s.sendmail(from_addr,to_addrs,msg_string)

Sends mail message msg_string from the sender whose email address is in string from_addr to each of
the recipients whose email addresses are the items of list to_addrs. msg_string must be a complete
RFC-822 message in a single multiline string: the headers, an empty line for separation, followed by
the body. from_addr and to_addrs are used only to direct the mail transport, not to add or change
headers within msg_string. To prepare RFC-822-compliant messages, use package email, covered in
Chapter 21.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

18.3 The HTTP and FTP Protocols

Modules urllib and urllib2 are most often the handiest ways to access servers for http, https, and ftp
protocols. The Python standard library also supplies specific modules to use for these data access
protocols.

18.3.1 The httplib Module

Module httplib supplies a class HTTPConnection to connect to an HTTP server.

HTTPConnection

class HTTPConnection(host,port=80)

Returns an instance h of class HTTPConnection, ready for connection (but not yet connected) to the
given host and port.

Instance h supplies several methods, of which the most frequently used are the following.

close

h.close(  )

Closes the connection to the HTTP server.

getresponse

h.getresponse(  )

Returns an instance r of class HTTPResponse, which represents the response received from the HTTP
server. Call after method request has returned. Instance r supplies the following attributes and
methods:

r.getheader( name,default=None)

Returns the contents of header name, or default if no such header exists.

r.msg

An instance of class Message of module mimetools, covered in Chapter 21. You can use r.msg to
access the response's headers and body.

r.read( )

Returns a string that is the body of the server's response.

r.reason

The string that the server gave as the reason for errors or anomalies. If the request was
successful, r.reason could, for example, be 'OK'.

r.status

An integer, the status code that the server returned. If the request was successful, r.status
should be between 200 and 299 according to the HTTP standards. Values between 400 and 599

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


should be between 200 and 299 according to the HTTP standards. Values between 400 and 599
are typical error codes, again according to HTTP standards. For example, 404 is the error code
that a server sends when the page you request cannot be found.

r.version

10 if the server supports only HTTP 1.0, 11 if the server supports HTTP 1.1.

request

h.request(command,URL,data=None,headers={})

Sends a request to the HTTP server. command is an HTTP command string, such as 'GET' or 'POST'.
URL is an HTTP selector (i.e., a URL string without the scheme and location components—just the
path component, possibly followed by query and/or fragment components). data, if not None, is a
string sent as the body of the request, normally meaningful only for such commands as 'POST' and
'PUT'. request computes and sends the Content-Length header to describe the length of data. To send
other headers, pass them as part of dictionary argument headers, with the header name as the key
and the header contents as the corresponding value.

Module httplib also supplies class HTTPSConnection, used in exactly the same way as class
HTTPConnection but supporting connections that use protocol https rather than protocol http.

18.3.2 The ftplib Module

The ftplib module supplies a class FTP to connect to an FTP server.

FTP

class FTP([host[,user,passwd='']])

Returns an instance f of class FTP. When host is given, implicitly calls f.connect(host). When user (and
optionally passwd) is also given, implicitly calls f.login(user,passwd) afterward.

Instance f supplies many methods, of which the most frequently used are the following.

connect

f.connect(host,port=21)

Connects to an FTP server on the given host and port. Call once per instance f, as f's first method call.
Don't call if host was given on creation.

cwd

f.cwd(pathname)

Sets the current directory on the FTP server to pathname.

delete

f.delete(filename)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Tells the FTP server to delete a file, and returns a string, the server's response.

login

f.login(user='anonymous',passwd='')

Logs in to the FTP server. When user is 'anonymous' and passwd is '', login determines the real user
and host and sends user@host as the password, as normal anonymous FTP conventions require. Call
once per instance of f, as the first method call on f after connecting.

mkd

f.mkd(pathname)

Makes a new directory, named pathname, on the FTP server.

pwd

f.pwd(  )

Returns the current directory on the FTP server.

quit

f.quit(  )

Closes the connection to the FTP server. Call as the last method call on f.

rename

f.rename(oldname,newname)

Tells the FTP server to rename a file from oldname to newname.

retrbinary

f.retrbinary(command,callback,blocksize=8192,rest=None)

Retrieves data in binary mode. command is a string with an appropriate FTP command, typically 'RETR
filename'. callback is a callable that retrbinary calls for each block of data returned, passing the block of
data, a string, as the only argument. blocksize is the maximum size of each block of data. When rest is
not None, it's the offset in bytes from the start of the file at which you want to start the retrieval, if
the FTP server supports the 'REST' command. When rest is not None and the FTP server does not
support the 'REST' command, retrbinary raises an exception.

retrlines

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


f.retrlines(command,callback=None)

Retrieves data in text mode. command is a string with an appropriate FTP command, typically 'RETR
filename' or 'LIST'. callback is a callable that retrlines calls for each line of text returned, passing the
line of text, a string, as the only argument (without the end-of-line marker). When callback is None,
retrlines writes the lines of text to sys.stdout.

rmd

f.rmd(pathname)

Removes directory pathname on the FTP server.

sendcmd

f.sendcmd(command)

Sends string command as a command to the server and returns the server's response string. Suitable
only for commands that don't open data connections.

set_pasv

f.set_pasv(pasv)

Sets passive mode on if pasv is true, off if false. Passive mode defaults to on.

size

f.size(filename)

Returns the size in bytes of the named file on the FTP server, or None if unable to determine the file's
size.

storbinary

f.storbinary(command,file,blocksize=8192)

Stores data in binary mode. command is a string with an appropriate FTP command, typically 'STOR
filename'. file is a file open in binary mode, which storbinary reads, repeatedly calling
file.read(blocksize), to obtain the data to transfer to the FTP server.

storlines

f.storlines(command,file)

Stores data in text mode. command is a string with an appropriate FTP command, typically 'STOR
filename'. file is a file open in text mode, which storlines reads, repeatedly calling file.readline( ), to
obtain the data to transfer to the FTP server.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Here is a typical, simple example of ftplib use in an interactive interpreter session:

>>> import ftplib
>>> f = ftplib.FTP('ftp.python.org')
>>> f.login(  )
'230 Anonymous access granted, restrictions apply.'
>>> f.retrlines('LIST')
drwxrwxr-x   4 webmaster webmaster      512 Oct 12  2001 pub
'226 Transfer complete.'
>>> f.cwd('pub')
'250 CWD command successful.'
>>> f.retrlines('LIST')
drwxrwsr-x   2 barry    webmaster      512 Oct 12  2001 jython
lrwx------   1 root     ftp            25 Aug  3  2001 python -> www.python.org/ftp/python
drwxrwxr-x  43 webmaster webmaster     2560 Sep  3 17:22 www.python.org
'226 Transfer complete.'
>>> f.cwd('python')
'250 CWD command successful.'
>>> f.retrlines('LIST')
drwxrwxr-x   2 webmaster webmaster      512 Aug 23  2001 2.0
  [ many result lines snipped ]
drwxrwxr-x   2 webmaster webmaster      512 Aug  2  2001 wpy
'226 Transfer complete.'
>>> f.retrlines('RETR README')
Python Distribution
===================

Most subdirectories have a README or INDEX files explaining the
contents.
  [ many result lines snipped ]
gzipped version of this file, and 'get misc.tar.gz' will fetch a
gzipped tar archive of the misc subdir.
'226 Transfer complete.'

In this case, the following far simpler code is equivalent:

print urllib.urlopen('ftp://ftp.python.org/pub/python/README').read(  )

However, ftplib affords much more detailed control of FTP operations than urllib does. Thus, in some
cases, ftplib may be useful for your programs.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

18.4 Network News

Network News, also known as Usenet News, is mostly transmitted with the Network News Transport
Protocol (NNTP). The Python standard library supports this protocol in its module nntplib. The nntplib
module supplies a class NNTP to connect to an NNTP server.

NNTP

class NNTP(
    host,port=119,user=None,passwd=None,readermode=False)

Returns an instance n of class NNTP connected to the given host and port, and optionally
authenticated with the given user and passwd if user is not None. When readermode is True, also sends
a 'mode reader' command; you may need this, depending on what NNTP server you connect to and on
what NNTP commands you send to that server.

18.4.1 Response Strings

An instance n of NNTP supplies many methods. Each of n's methods returns a tuple whose first item is
a string (referred to as response in the following section) that is the response from the NNTP server to
the NNTP command corresponding to the method (method post just returns the response string, not a
tuple). Each method returns the response string just as the NNTP server supplies it. The string starts
with an integer in decimal form (the integer is known as the return code), followed by a space,
followed by more text.

For some commands, the extra text after the return code is just a comment or explanation supplied
by the NNTP server. For other commands, the NNTP standard specifies the format of the text that
follows the return code on the response line. In those cases, the relevant method also parses the text
in question, yielding other items in the method's resulting tuple, so your code need not perform such
parsing itself; rather, you can just access further items in the method's result tuple, as specified in
the following sections.

Return codes of the form 2xx, for any two digits xx, are success codes (i.e., they indicate that the
corresponding NNTP command succeeded). Return codes of other forms, such as 4xx and 5xx, indicate
failures in the corresponding NNTP command. In these cases, the method does not return a result.
Rather, the method raises an instance of exception class nntplib.NNTPError or some appropriate
subclass of it, such as NNTPTemporaryError for errors that may (or may not) be automatically resolved
if you try the operation again, or NNTPPermanentError for errors that are sure to occur again if you
retry. When a method of an NNTP instance raises an NNTPError instance e, the server's response
string, starting with a return code such as 4xx, is accessible as str(e).

18.4.2 Methods

The most frequently used methods of an NNTP instance n are as follows.

article

n.article(id)

id is a string, either an article ID enclosed in angle brackets (<>) or an article number in the current
group. Returns a tuple of three strings and a list (response,number,id,list), where number is the article
number in the current group, id is the article ID enclosed in angle brackets, and list is a list of strings
that are the lines in the entire article (headers then body, with an empty-line separator, and without
end-of-line characters).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


body

n.body(id,file)

id is a string, either an article ID enclosed in angle brackets (<>) or an article number in the current
group. Returns a tuple of three strings and a list (response,number,id,list), where number is the article
number in the current group, id is the article ID enclosed in angle brackets, and list is a list of strings
that are the lines in the article's body, without end-of-line characters. When file is not None, it can be
either a string naming a file that head then opens for writing, or a file object already open for writing.
In either case, body writes the article's body to the file, and list in the tuple it returns is an empty list.

group

n.group(group_name)

Makes group_name the current group, and returns a tuple of five strings
(response,count,first,last,group_name), where count is the total number of articles in the group, last is
the number of the most recent article, first is the number of the oldest article, and group_name is the
group's name. Normally, the group_name that is the last item in the returned tuple will be the same
as the one you requested (i.e., the argument to n.group). However, an NNTP server could conceivably
set up aliases, or synonyms; therefore, you should always check the last item of the returned tuple to
ascertain what newsgroup has been in fact set as the current one.

head

n.head(id)

Returns an article's headers. id is a string, either an article ID enclosed in angle brackets (<>) or an
article number in the current group. head returns a tuple of three strings and a list
(response,number,id,list), where number is the article number in the current group, id is the article ID
enclosed in angle brackets, and list is a list of strings that are the lines in the article's headers,
without end-of-line characters.

last

n.last(  )

Returns a tuple of three strings (response,number,id), where number is the article number in the
current group and id is the article ID, enclosed in angle brackets, for the last article in the current
group.

list

n.list(  )

Returns a pair (response,group_stats), where group_stats is a list of tuples with information about each
group on the server. Each item of group_stats is a tuple of four strings
(group_name,last,first,group_flag), where group_name is the group's name, last is the number of the
most recent article, first is the number of the oldest article, and group_flag is 'y' when you're allowed
to post, 'n' when you're not allowed to post, and 'm' when the group is moderated.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


newgroups

n.newgroups(date,time)

date is a string indicating a date, of the form 'yymmdd'. time is a string indicating a time, of the form
'hhmmss'. newgroups returns a pair (response,group_names), where group_names is the list of the
names of groups created since the given date and time.

newnews

n.newnews(group,date,time)

group is a string that is either a group name, meaning you only want data about articles in that group,
or '*', meaning you want data about articles in any newsgroup on the server. date is a string
indicating a date, of the form 'yymmdd'. time is a string indicating a time, of the form 'hhmmss'.
newnews returns a pair (response,article_ids), where article_ids is the list of the identifiers of articles
received since the given date and time.

next

n.next(  )

Returns a tuple of three strings (response,number,id), where number is the article number in the
current group and id is the article ID, enclosed in angle brackets, for the next article in the current
group. The current group is set by calling n.group. Each time you call n.next, you receive information
about another article (i.e., n implicitly maintains a pointer to a current article within the group and
advances the pointer on each call to n.next). When there is no next article (i.e., the current article is
the last one in the current group), n.next raises NNTPTemporaryError.

post

n.post(file)

Posts an article to the current group, reading it from file. file is a file-like object open for reading; post
reads the article's headers and body from the file by repeatedly calling file.readline. Note that file must
contain all needed headers, then an empty-line separator, then the body. post returns a string, the
response from the server to the posting request.

quit

n.quit(  )

Closes the connection to the NNTP server. Call as the last method call on n.

stat

n.stat(id)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


id is a string, either an article ID enclosed in angle brackets, or an article number in the current
group. Returns a tuple of three strings (response,number,id), where number is the article number in
the current group and id is the article ID enclosed in angle brackets.

18.4.3 Example

Here is a typical, simple example of nntplib use in an interactive interpreter session, using the free
public NNTP server at sunsite.dk:

>>> import nntplib
>>> n = nntplib.NNTP('sunsite.dk')
>>> response, groups = n.list(  )
>>> print response
215 Newsgroups in form "group high low flags".
>>> print 'sunsite.dk carries', len(groups), 'newsgroups'
sunsite.dk carries 679 newsgroups
>>> linux_groups = [g for g in groups if g[0].startswith('linux')]
>>> print 'sunsite.dk carries', len(linux_groups), 'newsgroups about linux'
sunsite.dk carries 311 newsgroups about linux
>>> n.group('linux.postgres')
('211 13 974 986 linux.postgres', '13', '974', '986', 'linux.postgres')
>>> response, artnum, artid, headers = n.head('974')
>>> len(headers)
17
>>> [h for h in headers if h.startswith('Subject:')]
['Subject: newbie question on networking in postgresql']
>>> n.quit(  )
'205 .'

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

18.5 Telnet

Telnet is an old protocol, specified by RFC 854 (see http://www.faqs.org/rfcs/rfc854.html), and
normally used for interactive user sessions. The Python standard library supports this protocol in its
module telnetlib. Module telnetlib supplies a class Telnet to connect to a Telnet server.

Telnet

class Telnet(host=None,port=23)

Returns an instance t of class Telnet. When host (and optionally port) is given, implicitly calls
t.open(host,port).

Instance t supplies many methods, of which the most frequently used are as follows.

close

t.close(  )

Closes the connection.

expect

t.expect(res,timeout=None)

Reads data from the connection until it matches any of the regular expressions that are the items of
list res, or until timeout seconds elapse when timeout is not None. Regular expressions and match
objects are covered in Chapter 9. Returns a tuple of three items (i,mo,txt), where i is the index in res
of the regular expression that matched, mo is the match object, and txt is all the text read until the
match, included. Raises EOFError when the connection is closed and no data is available; otherwise,
when it gets no match, returns (-1,None,txt), where txt is all the text read, or possibly '' if nothing was
read before a timeout. Results are non-deterministic if more than one item in res can match, or if any
of the items in res include greedy parts (such as '.*').

interact

t.interact(  )

Enters interactive mode, connecting standard input and output to the two channels of the connection,
like a dumb Telnet client.

open

t.open(host,port=23)

Connects to a Telnet server on the given host and port. Call once per instance t, as t's first method
call. Don't call if host was given on creation.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


read_all

t.read_all(  )

Reads data from the connection until the connection is closed, then returns all available data. Blocks
until the time the connection is closed.

read_eager

t.read_eager(  )

Reads and returns everything that can be read from the connection without blocking; may be the
empty string ''. Raises EOFError if the connection is closed and no data is available.

read_some

t.read_some(  )

Reads and returns at least one byte of data from the connection, unless the connection is closed, in
which case it returns ''. Blocks until at least one byte of data is available.

read_until

t.read_until(expected,timeout=None)

Reads data from the connection until it encounters string expected, or until timeout seconds elapse
when timeout is not None. Returns whatever data is available at that time, or possibly the empty
string ''. Raises EOFError if the connection is closed and no data is available.

write

t.write(astring)

Writes string astring to the connection.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

18.6 Distributed Computing

There are many standards for distributed computing, from simple Remote Procedure Call (RPC) ones
to rich object-oriented ones such as CORBA. You can find several third-party Python modules
supporting these standards on the Internet.

The Python standard library comes with support for both server and client use of a simple yet
powerful standard known as XML-RPC. For in-depth coverage of XML-RPC, I recommend the book
Programming Web Services with XML-RPC, by Simon St. Laurent and Joe Johnson (O'Reilly). XML-RPC
uses HTTP as the underlying transport and encodes requests and replies in XML. For server-side
support, see Section 19.2.2.4 in Chapter 19. Client-side support is supplied by module xmlrpclib.

The xmlrcplib module supports a class ServerProxy, which you instantiate to connect to an XML-RPC
server. An instance s of ServerProxy is a proxy for the server it connects to. In other words, you call
arbitrary methods on s, and s packages up the method name and argument values as an XML-RPC
request, sends the request to the XML-RPC server, receives the server's response, and unpackages
the response as the method's result. The arguments to such method calls can be of any type
supported by XML-RPC:

Boolean

Constant attributes True and False of module xmlrpclib (since module xlmrpclib predates the
introduction of bool into Python, it does not use Python's built-in True and False values for this
purpose)

Integers, floating-point numbers, strings, arrays

Passed and returned as Python int, float, Unicode, and list values

Structures

Passed and returned as Python dict values whose keys must be strings

Dates

Passed as instances of class xmlrpclib.DateTime; value is represented in seconds since the
epoch, as in module time (see Chapter 12)

Binary data

Passed as instances of class xmlrpclib.Binary; value is an arbitrary string of bytes

Module xmlrpclib supplies two factory functions.

binary

binary(bytestring)

Creates and returns an instance of Binary wrapping the given bytestring.

boolean

boolean(x)

Creates and returns an instance of Boolean with the truth value of x.

Module xmlrpclib supplies several classes.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Binary

class Binary(x)

x is a Python string of arbitrary bytes. b represents the same bytes as an XML-RPC binary object.

Boolean

class Boolean(x)

x is any Python value, and b has the same truth value as x.

DateTime

class DateTime(x)

x is a number of seconds since the epoch, as used in module time, covered in Chapter 12.

ServerProxy

class ServerProxy(url)

If the server at the given url supports introspection, s supplies an attribute s.server that in turn
supplies three methods:

s.server.listMethods( )

Returns a list of strings, one per each method supported by the server.

s.server.methodSignature( name)

Returns a list of strings, each a signature of method name on the server. A signature string is
composed of type names separated by commas: first the type of the return value, then the
type of each argument. When method name has no defined signature,
s.server.methodSignature(name) returns some object that is not a list.

s.server.methodHelp( name)

Returns a string with help about method name. The string can be either plain text or HTML.
When the method name has no defined help, s.server.methodHelp(name) returns an empty
string ''.

The following example uses xmlrpclib to access O'Reilly's Meerkat open wire service (see
http://www.oreillynet.com/meerkat/ for more information about Meerkat) and displays the last few
news items about Python.

import xmlrpclib

proxy = xmlrpclib.ServerProxy(
    'http://www.oreillynet.com/meerkat/xml-rpc/server.php')
results = proxy.meerkat.getItems({'search':'Python', 'num_items':7})

want_keys = 'title link description'.split(  )
n = 0
for result in results:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


for result in results:
    n = n + 1
    for key in want_keys:
        print '%d. %s: %s' % (n, key.title(  ), result.get(key))
    print
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 19. Sockets and Server-Side Network Protocol Modules

To communicate with the Internet, programs use devices known as sockets. The Python library
supports sockets through module socket, as well as wrapping them into higher-level modules covered
in Chapter 18. To help you write server programs, the Python library also supplies higher-level
modules to use as frameworks for socket servers. Standard and third-party Python modules and
extensions also support timed and asynchronous socket operations. This chapter covers socket, the
server-side framework modules, and the essentials of other, more advanced modules.

The modules covered in this chapter offer many conveniences compared to C-level socket
programming. However, in the end, the modules rely on native socket functionality supplied by the
underlying operating system. While it is often possible to write effective network clients by using just
the modules covered in Chapter 18, without needing to understand sockets, writing effective network
servers most often does require some understanding of sockets. Thus, the lower-level module socket
is covered in this chapter and not in Chapter 18, even though both clients and servers use sockets.

However, I only cover the ways in which module socket lets your program access sockets; I do not try
to impart the detailed understanding of sockets, and of other aspects of network behavior
independent of Python, that you may need to make use of socket's functionality. To understand socket
behavior in detail on any kind of platform, I recommend W. Richard Stevens' Unix Network
Programming, Volume 1 (Prentice-Hall). Higher-level modules are simpler and more powerful, but a
detailed understanding of the underlying technology is always useful, and sometimes it can prove
indispensable.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.1 The socket Module

The socket module supplies a factory function, also named socket, that you call to generate a socket
object s. You perform network operations by calling methods on s. In a client program, you connect to
a server by calling s.connect. In a server program, you wait for clients to connect by calling s.bind and
s.listen. When a client requests a connection, you accept the request by calling s.accept, which returns
another socket object s1 connected to the client. Once you have a connected socket object, you
transmit data by calling its method send, and receive data by calling its method recv.

Python supports both current Internet Protocol (IP) standards. IPv4 is more widespread, while IPv6 is
newer. In IPv4, a network address is a pair (host,port), where host is a Domain Name System (DNS)
hostname such as 'www.python.org' or a dotted-quad IP address string such as '194.109.137.226'. port
is an integer indicating a socket's port number. In IPv6, a network address is a tuple (host, port,
flowinfo, scopeid). Since IPv6 infrastructure is not yet widely deployed, I do not cover IPv6 further in
this book. When host is a DNS hostname, Python implicitly looks up the name, using your platform's
DNS infrastructure, and uses the dotted-quad IP address corresponding to that name.

Module socket supplies an exception class error. Functions and methods of the module raise error
instances to diagnose socket-specific errors. Module socket also supplies many functions. Several of
these functions translate data, such as integers, between your host's native format and network
standard format. The higher-level protocol that your program and its counterpart are using on a
socket determines what kind of conversions you must perform.

19.1.1 socket Functions

The most frequently used functions of module socket are as follows.

getfqdn

getfqdn(host='')

Returns the fully qualified domain name string for the given host. When host is '', returns the fully
qualified domain name string for the local host.

gethostbyaddr

gethostbyaddr(ipaddr)

Returns a tuple with three items (hostname, alias_list, ipaddr_list). hostname is a string, the primary
name of the host whose IP dotted-quad address you pass as string ipaddr. alias_list is a list of 0 or
more alias names for the host. ipaddr_list is a list of one or more dotted-quad addresses for the host.

gethostbyname_ex

gethostbyname_ex(hostname)

Returns the same results as gethostbyaddr, but takes as an argument a hostname string that can be
either an IP dotted-quad address or a DNS name.

htonl

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


htonl(i32)

Converts the 32-bit integer i32 from this host's format into network format.

htons

htons(i16)

Converts the 16-bit integer i16 from this host's format into network format.

inet_aton

inet_aton(ipaddr_string)

Converts IP dotted-quad address string ipaddr_string to 32-bit network packed format and returns a
string of 4 bytes.

inet_ntoa

inet_ntoa(packed_string)

Converts the 4-byte network packed format string packed_string and returns an IP dotted-quad
address string.

ntohl

htonl(i32)

Converts the 32-bit integer i32 from network format into this host's format, and returns a normal
native integer.

ntohs

htons(i16)

Converts the 16-bit integer i16 from network format into this host's format, and returns a normal
native integer.

socket

socket(family,type)

Creates and returns a socket object with the given family and type. family is usually the constant
attribute AF_INET of module socket, indicating you want a normal, Internet (i.e., TCP/IP) kind of
socket. Depending on your platform, family may also be another constant attribute of module socket.
For example, AF_UNIX, on Unix-like platforms only, indicates that you want a Unix-kind socket. This
book does not cover sockets that are not of the Internet kind, since it focuses on cross-platform
Python. type is one of a few constant attributes of module socket; generally, type is SOCK_STREAM to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Python. type is one of a few constant attributes of module socket; generally, type is SOCK_STREAM to
create a TCP (connection-based) socket, or SOCK_DGRAM to create a UDP (datagram-based) socket.

19.1.2 The socket Class

A socket object s supplies many methods. The most frequently used ones are as follows.

accept

s.accept(  )

Accepts a connection request and returns a pair (s1,(ipaddr,port)), where s1 is a new connected socket
and ipaddr and port are the IP address and port number of the counterpart. s must be of type
SOCK_STREAM, and you must have previously called s.bind and s.listen. If no client is trying to
connect, accept blocks until some client tries to connect.

bind

s.bind((host,port))

Binds socket s to accept connections from host host serving on port number port. host can be the
empty string '' to accept connections from any host. It's an error to call s.bind twice on any given
socket object s.

close

s.close(  )

Closes the socket, terminating any listening or connection on it. It's an error to call any other method
on s after s.close.

connect

s.connect((host,port))

Connects socket s to the server on the given host and port. Blocks until the server accepts or rejects
the connection attempt.

getpeername

s.getpeername(  )

Returns a pair (ipaddr,port), giving the IP address and port number of the counterpart. s must be
connected, either because you called s.connect or because s was generated by another socket's accept
method.

listen

s.listen(maxpending)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listens for connection attempts to the socket, allowing up to maxpending queued attempts at any
time. maxpending must be greater than 0 and less than or equal to a system-dependent value, which
on all contemporary systems is at least 5.

makefile

s.makefile(mode='r')

Creates and returns a file object f, as covered in Chapter 10, that reads from and/or writes to the
socket. You can close f and s independently; Python closes the underlying socket only when both f
and s are closed.

recv

s.recv(bufsize)

Receives up to bufsize bytes from the socket and returns a string with the data received. Returns an
empty string when the socket is disconnected. If there is currently no data, blocks until the socket is
disconnected or some data arrives.

recvfrom

s.recvfrom(bufsize)

Receives up to bufsize bytes from the socket and returns a tuple (data,(ipaddr,port)), where data is a
string with the data received, and ipaddr and port are the IP address and port number of the sender.
Useful with datagram-oriented sockets, which can receive data from different senders. If there is
currently no data in the socket, blocks until some data arrives.

send

s.send(string)

Sends the bytes of string on the socket. Returns the number n of bytes sent. n may be lower than
len(string); your program must check, and resend the unsent substring string[n:] if non-empty. If
there is no space in the socket's buffer, blocks until some space appears.

sendall

s.sendall(string)

Sends the bytes of string on the socket, blocking until all the bytes are sent.

sendto

s.sendto(string,(host,port))

Sends the bytes of string on the socket to the destination host and port, and returns the number n of

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sends the bytes of string on the socket to the destination host and port, and returns the number n of
bytes sent. Useful with datagram-oriented sockets, which can send data to various destinations. You
must not have previously called method s.bind. n may be lower than len(string); your program must
check, and resend the unsent substring string[n:] if non-empty.

19.1.3 Echo Server and Client Using TCP Sockets

Example 19-1 shows a TCP server that listens for connections on port 8881. When connected, the
server loops, echoing all data back to the client, and goes back to accept another connection when the
client is finished. To terminate the server, hit the interrupt key with the focus on the server's terminal
window (console). The interrupt key combination, depending on your platform and settings, may be
Ctrl-Break (typical on Windows) or Ctrl-C.

Example 19-1. TCP echo server

import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('', 8881))
sock.listen(5)

# loop waiting for connections 
# terminate with Ctrl-Break on Win32, Ctrl-C on Unix
try:
    while True:
        newSocket, address = sock.accept(  )
        print "Connected from", address
        while True:
            receivedData = newSocket.recv(8192)
            if not receivedData: break
            newSocket.sendall(receivedData)
        newSocket.close(  )
        print "Disconnected from", address
finally:
    sock.close(  )

The argument passed to the newSocket.recv call, here 8192, is the maximum number of bytes to
receive at a time. Receiving up to a few thousand bytes at a time is a good compromise between
performance and memory consumption, and it's usual to specify a power of 2 (e.g., 8192==2**13)
since memory allocation tends to round up to such powers anyway. It's important to close sock (to
ensure we free its well-known port number 8881 as soon as possible), so we use a try/finally
statement to ensure sock.close is called. Closing newSocket, which is system-allocated on any suitable
free port, is not of the same importance; therefore we do not use a try/finally for it, although it would
be fine to do so.

Example 19-2 shows a simple TCP client that connects to port 8881 on the local host, sends lines of
data, and prints what it receives back from the server.

Example 19-2. TCP echo client

import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(('localhost', 8881))
print "Connected to server"
data = """A few lines of data
to test the operation
of both server and client."""
for line in data.splitlines(  ):
    sock.sendall(line)
    print "Sent:", line
    response = sock.recv(8192)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    response = sock.recv(8192)
    print "Received:", response
sock.close(  )

Run the server of Example 19-1 on a terminal window, and try a few runs of Example 19-2 while the
server is running.

19.1.4 Echo Server and Client Using UDP Sockets

Example 19-3 and Example 19-4 implement an echo server and client with UDP (i.e., using datagram
rather than stream sockets).

Example 19-3. UDP echo server

import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(('', 8881))

# loop waiting for datagrams 
(terminate with Ctrl-Break on Win32, Ctrl-C on Unix)
try:
    while True:
        data, address = sock.recvfrom(8192)
        print "Datagram from", address
        sock.sendto(data, address)
finally:
    sock.close(  )

Example 19-4. UDP echo client

import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
data = """A few lines of data
to test the operation
of both server and client."""
for line in data.splitlines(  ):
    sock.sendto(line, ('localhost', 8881))
    print "Sent:", line
    response = sock.recv(8192)
    print "Received:", response
sock.close(  )

Run the server of Example 19-3 on a terminal window, and try a few runs of Example 19-4 while the
server is running. Example 19-3 and Example 19-4, as well as Example 19-1 and Example 19-2, can
run independently at the same time. There is no interference nor interaction, even though all are
using port number 8881 on the local host, because TCP and UDP ports are separate. Note that if you
run Example 19-4 when the server of Example 19-3 is not running, you don't receive an error
message: the client of Example 19-4 hangs forever, waiting for a response that will never arrive.
Datagrams are not as robust and reliable as connections.

19.1.5 The timeoutsocket Module

Standard sockets, as supplied by module socket, have no concept of timing out. By default, each
socket operation blocks until it either succeeds or fails. There are advanced ways to ask for non-
blocking sockets and to ensure that you perform socket operations only when they can't block (relying
on module select, covered later in this chapter). However, explicitly arranging for such behavior,
particularly in a cross-platform way, can be complicated and difficult.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


It's generally simpler to deal with socket objects enriched by a timeout concept. Each operation on
such an object fails, with an exception indicating a timeout condition, if the operation still has neither
succeeded nor failed after a timeout period has elapsed. Such objects are internally implemented by
using non-blocking sockets and selects, but your program is shielded from the complexities and deals
only with objects that present a simple and intuitive interface.

In Python 2.3, sockets with timeout behavior will be part of the standard Python library. However, you
can use such objects with earlier releases of Python by downloading Timothy O'Malley's timeoutsocket
module from http://www.timo-tasi.org/python/timeoutsocket.py. Copy the file to your library
directory (e.g., C:\Python22\Lib\). Then, have your program execute a statement:

import timeoutsocket

before the program imports socket or any other module using sockets, such as urllib and others
covered in Chapter 18. Afterwards, any creation of a connection-oriented (TCP) socket creates instead
an instance t of class timeoutsocket.TimeoutSocket. In addition to socket methods, t supplies two
additional methods.

get_timeout

t.get_timeout(  )

Returns the timeout value of t, in seconds.

set_timeout

t.set_timeout(s)

Sets the timeout value of t to s seconds. s is a float or None.

The default timeout value of each new instance t of TimeoutSocket is None, meaning that there is no
timeout—t behaves like an ordinary socket instance. To change this, module timeoutsocket supplies
two functions.

getDefaultSocketTimeout

getDefaultSocketTimeout(  )

Returns the default timeout value, in seconds, used for newly created instances of class
TimeoutSocket. Initially returns None.

setDefaultSocketTimeout

setDefaultSocketTimeout(s)

Sets the default timeout value, used for newly created instances of class TimeoutSocket, to s seconds.
s is a float or None.

Socket methods that may block and wait forever when you call them on normal sockets, such as
connect, accept, recv, and send, may time out when you call them on an instance t of TimeoutSocket
with a timeout value s that is not None. If s seconds elapse after the call, and the wait is still going
on, then t stops waiting and raises timeoutsocket.Timeout.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.2 The SocketServer Module

The Python library supplies a framework module, SocketServer, to help you implement Internet
servers. SocketServer supplies server classes TCPServer, for connection-oriented servers using TCP,
and UDPServer, for datagram-oriented servers using UDP, with the same interface.

An instance s of either TCPServer or UDPServer supplies many attributes and methods, and you can
subclass either class and override some methods to architect your own specialized server framework.
However, I do not cover such advanced and rarely used possibilities in this book.

Classes TCPServer and UDPServer implement synchronous servers, able to serve one request at a
time. Classes ThreadingTCPServer and ThreadingUDPServer implement threaded servers, spawning a
new thread per request. You are responsible for synchronizing the resulting threads as needed.
Threading is covered in Chapter 14.

19.2.1 The BaseRequestHandler Class

For normal use of SocketServer, subclass the BaseRequestHandler class provided by SocketServer and
override the handle method. Then, instantiate a server class, passing the address pair on which to
serve and your subclass of BaseRequestHandler. Finally, call method serve_forever on the server class
instance.

An instance h of BaseRequestHandler supplies the following methods and attributes.

client_address

The h.client_address attribute is the pair (host,port) of the client, set by the base class at connection.

handle

h.handle(  )

Your subclass overrides this method, called by the server, on a new instance of your subclass for each
new incoming request. Typically, for a TCP server, your implementation of handle conducts a
conversation with the client on socket h.request to service the request. For a UDP server, your
implementation of handle examines the datagram in h.request[0] and sends a reply string with
h.request[1].sendto.

request

For a TCP server, the h.request attribute is the socket connected to the client. For a UDP server, the
h.request attribute is a pair (data,sock), where data is the string of data the client sent as a request
(up to 8192 bytes) and sock is the server socket. Your handle method typically calls method sendto on
sock to send a reply to the client.

server

The h.server attribute is the instance of the server class that instantiated this handler object.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 19-5 uses module SocketServer to reimplement the server of Example 19-1 with the added
ability to serve multiple clients simultaneously by threading.

Example 19-5. Threaded TCP echo server using SocketServer

import SocketServer
class EchoHandler(SocketServer.BaseRequestHandler):
    def handle(self):
        print "Connected from", self.client_address
        while True:
            receivedData = self.request.recv(8192)
            if not receivedData: break
            self.request.sendall(receivedData)
        self.request.close(  )
        print "Disconnected from", self.client_address
srv = SocketServer.ThreadingTCPServer(('',8881),EchoHandler)
srv.serve_forever(  )

Run the server of Example 19-5 on a terminal window, and try a few runs of Example 19-2 while the
server is running. Try also telnet localhost 8881 on other terminal windows (or other platform-
dependent Telnet-like programs) to verify the behavior of longer-term connections.

19.2.2 HTTP Servers

The BaseHTTPServer, SimpleHTTPServer, CGIHTTPServer, and SimpleXMLRPCServer modules implement
HTTP servers of different completeness and sophistication on top of module SocketServer.

19.2.2.1 The BaseHTTPServer module

The BaseHTTPServer module supplies a server class HTTPServer that subclasses
SocketServer.TCPServer and is used in the same way. It also provides a request handler class
BaseHTTPRequestHandler, which subclasses SocketServer.BaseRequestHandler and adds attributes and
methods useful for HTTP servers, of which the most commonly used are as follows.

command

The h.command attribute is the HTTP verb of the client's request, such as 'get', 'head', or 'post'.

handle

h.handle(  )

Overrides the superclass's method handle and delegates request handling to methods whose names
start with 'do_', such as do_get, do_head, and do_post. Class BaseHTTPRequestHandler supplies no do_
methods; you must subclass it to supply the methods you want to implement.

end_headers

h.end_headers(  )

Terminates the response's MIME headers by sending a blank line.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


path

The h.path attribute is the HTTP path of the client's request, such as '/index.html'.

rfile

The h.rfile attribute is a file-like object open for reading, from which you can read optional data sent
as the body of the client's request (e.g., URL-encoded form data for a POST).

send_header

h.send_header(keyword,value)

Adds to the response a MIME header with the given keyword and value. Each time send_header is
called, another header is added to the response. Even when send_header is called repeatedly with the
same keyword, multiple headers with that keyword are added, one per call to send_header, in the
same order as the calls to send_header.

send_error

h.send_error(code,message=None)

Sends a complete error reply with HTTP code code and, optionally, more specific text from string
message, when message is not None.

send_response

h.send_response(code,message=None)

Sends a response header with HTTP code code and, optionally, more specific text from string message,
when message is not None. The headers sent automatically are Server and Date.

wfile

The h.wfile attribute is a file-like object open for writing, to which you can write the response body
after calling send_response, optionally send_header, and end_headers.

As an example, here's a trivial HTTP server that just answers every request with the 404 error code
and the corresponding message 'File not found'.

import BaseHTTPServer

class TrivialHTTPRequestHandler(BaseHTTPServer.BaseHTTPRequestHandler):
"""Trivial HTTP request handler, answers not found to every request"""

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


"""Trivial HTTP request handler, answers not found to every request"""

    server_version = "TrivialHTTP/1.0"

    def do_GET(self):
        """Serve a GET request."""
        self.send_error(404, "File not found")

    do_HEAD = do_POST = do_GET

19.2.2.2 The SimpleHTTPServer module

The SimpleHTTPServer module builds on top of BaseHTTPServer, supplying what's needed to serve GET
HTTP requests for files in a given directory. It is most useful as an example of how to use
BaseHTTPServer for a real, although simple, HTTP serving task.

19.2.2.3 The CGIHTTPServer module

The CGIHTTPServer module builds on top of SimpleHTTPServer, supplying the ability to serve GET and
POST HTTP requests via CGI scripts, covered in Chapter 20. You can use it to debug CGI scripts on
your local machine.

19.2.2.4 The SimpleXMLRPCServer module

XML-RPC is a higher-level protocol that runs on top of HTTP. Python supports XML-RPC clients with
module xmlrpclib, covered in Chapter 18. The SimpleXMLRPCServer module, introduced in Python 2.2,
supplies class SimpleXMLRPCServer to instantiate with the address pair on which to serve.

In Python 2.2 and 2.2.1, SimpleXMLRPCServer as supplied in the standard Python library has a defect:
when a method called via XML-RPC raises an exception, the server does not correctly communicate
exception details to the XML-RPC client. The defect is fixed in Python 2.3 and later. To get a fixed
version for Python 2.2, download SimpleXMLRPCServer.py from URL
http://www.sweetapp.com/xmlrpc to replace the file of the same name in the Python library directory
(e.g., c:\python22\Lib for a standard Python 2.2 installation on Windows).

An instance x of class SimpleXMLRPCServer supplies two methods to call before x.serve_forever( ).

register_function

x.register_function(callable,name=None)

Registers callable, callable with a single argument, to respond to XML-RPC requests for name. name
can be an identifier or a sequence of identifiers joined by dots. When name is None, uses name
callable._ _name_ _. The argument to callable is the result of xmlrpclib.loads(payload) where payload is
the request's payload.

register_instance

x.register_instance(inst)

Registers inst to respond to XML-RPC requests with names not registered via register_function. When
inst supplies a method _dispatch, inst._dispatch is called with the request's name and parameters as
arguments. When inst does not supply _dispatch, the request's name is used as an attribute name to
search on inst. When the request's name contains dots, the search repeats recursively for each
component. The attribute found by this search is then called with the request's parameters as
arguments. Only one instance at a time can be registered with register_instance: if you call

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


arguments. Only one instance at a time can be registered with register_instance: if you call
x.register_instance again, the instance passed in the previous call to x.register_instance is replaced by
the one passed in the later call.

Simple examples of all typical usage patterns for impleXMLRPCServer are given in the docstring of
module SimpleXMLRPCServer.py, which you can find in the Lib directory of your Python installation
(Python 2.2 and later only). Here is a toy example of using the _dispatch method. In one terminal
window, run the following tiny script:

import SimpleXMLRPCServer
class with_dispatch:
    def _dispatch(self, *args):
        print '_dispatch', args
        return args
server = SimpleXMLRPCServer.SimpleXMLRPCServer(('localhost',8888))
server.register_instance(with_dispatch(  ))
server.serve_forever(  )

From a Python interactive session on another terminal window of the same machine (or an IDLE
interactive session on the same machine), you can now run:

>>> import xmlrpclib
>>> proxy = xmlrpclib.ServerProxy('http://localhost:8888')
>>> print proxy.whatever.method('any', 'args')
['whatever.method', ['any', 'args']]

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

19.3 Event-Driven Socket Programs

Socket programs, particularly servers, must often be ready to perform many tasks at once. Example
19-1 accepts a connection request, then serves a single client until that client has finished—other
connection requests must wait. This is not acceptable for servers in production use. Clients cannot
wait too long: the server must be able to service multiple clients at once.

One approach that lets your program perform several tasks at once is threading, covered in Chapter
14. Module SocketServer optionally supports threading, as covered earlier in this chapter. An
alternative to threading that can offer better performance and scalability is event-driven (also known
as asynchronous) programming.

An event-driven program sits in an event loop, where it waits for events. In networking, typical
events are "a client requests connection," "data arrived on a socket," and "a socket is available for
writing." The program responds to each event by executing a small slice of work to service that event,
then goes back to the event loop to wait for the next event. The Python library supports event-driven
network programming with low-level select module and higher-level asyncore and asynchat modules.
Even more complete support for event-driven programming is in the Twisted package (available at
http://www.twistedmatrix.com), particularly in subpackage twisted.internet.

19.3.1 The select Module

The select module exposes a cross-platform low-level function that lets you implement high-
performance asynchronous network servers and clients. Module select offers additional platform-
dependent functionality on Unix-like platforms, but I cover only cross-platform functionality in this
book.

select

select(inputs,outputs,excepts,timeout=None)

inputs, outputs, and excepts are lists of socket objects waiting for input events, output events, and
exceptional conditions, respectively. timeout is a float, the maximum time to wait in seconds. When
timeout is None, there is no maximum wait: select waits until one or more objects receive events.
When timeout is 0, select returns at once, without waiting.

select returns a tuple with three items (i,o,e). i is a list of zero or more of the items of inputs, those
that received input events. o is a list of zero or more of the items of outputs, those that received
output events. e is a list of zero or more of the items of excepts, those that received exceptional
conditions (i.e., out-of-band data). Any or all of i, o, and e can be empty, but at least one of them is
non-empty if timeout is None.

In addition to sockets, you can have in lists inputs, outputs, and excepts other objects that supply a
method fileno, callable without arguments, returning a socket's file descriptor. For example, the
server classes of module SocketServer, covered earlier in this chapter, follow this protocol. Therefore,
you can have instances of those classes in the lists. On Unix-like platforms, select.select has wider
applicability, since it can also accept file descriptors that do not refer to sockets. On Windows,
however, select.select can accept only file descriptors that do refer to sockets.

Example 19-6 uses module select to reimplement the server of Example 19-1 with the added ability to
serve any number of clients simultaneously.

Example 19-6. Asynchronous TCP echo server using select

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 19-6. Asynchronous TCP echo server using select

import socket
import select
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('', 8881))
sock.listen(5)

# lists of sockets to watch for input and output events
ins = [sock]
ous = []
# mapping socket -> data to send on that socket when feasible
data = {}
# mapping socket -> (host, port) on which the client is running
adrs = {}

try:
    while True:
        i, o, e = select.select(ins, ous, [])  # no excepts nor timeout
        for x in i:
            if x is sock:
                # input event on sock means client trying to connect
                newSocket, address = sock.accept(  )
                print "Connected from", address
                ins.append(newSocket)
                adrs[newSocket] = address
            else:
                # other input events mean data arrived, or disconnections
                newdata = x.recv(8192)
                if newdata:
                    # data arrived, prepare and queue the response to it
                    print "%d bytes from %s" % (len(newdata), adrs[x])
                    data[x] = data.get(x, '') + newdata
                    if x not in ous: ous.append(x)
                else:
                    # a disconnect, give a message and clean up
                    print "disconnected from", adrs[x]
                    del adrs[x]
                    try: ous.remove(x)
                    except ValueError: pass
                    x.close(  )
        for x in o:
            # output events always mean we can send some data
            tosend = data.get(x)
            if tosend:
                nsent = x.send(tosend)
                print "%d bytes to %s" % (nsent, adrs[x])
                # remember data still to be sent, if any
                tosend = tosend[nsent:]
            if tosend: 
                print "%d bytes remain for %s" % (len(tosend), adrs[x])
                data[x] = tosend
            else:
                try: del data[x]
                except KeyError: pass
                ous.remove(x)
                print "No data currently remain for", adrs[x]
finally:
    sock.close(  )

Programming at such a low level incurs substantial complications, as shown by the complexity of
Example 19-6 and its data structures. Run the server of Example 19-6 on a terminal window and try a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 19-6 and its data structures. Run the server of Example 19-6 on a terminal window and try a
few runs of Example 19-2 while the server is running. You should also try telnet localhost 8881 on
other terminal windows (or other platform-dependent Telnet-like programs) to verify the behavior of
longer-term connections.

19.3.2 The asyncore and asynchat Modules

The asyncore and asynchat modules help you implement high-performance asynchronous network
servers and clients at a higher, more productive level than module select affords.

19.3.2.1 The asyncore module

Module asyncore supplies one function.

loop

loop(  )

Implements the asynchronous event loop, dispatching all network events to previously instantiated
dispatcher objects. loop terminates when all dispatcher objects (i.e., all communication channels) are
closed.

Module asyncore also supplies class dispatcher, which supplies all methods of socket objects, plus
specific methods for event-driven programming, with names starting with 'handle_'. Your class X
subclasses dispatcher and overrides the handle_ methods for all events you need to handle. To
initialize an instance d of dispatcher, you can pass an argument s, an already connected socket object.
Otherwise, you must call:

d.create_socket(socket.AF_INET,socket.SOCK_STREAM)

and then call on d either connect, to connect to a server, or bind and listen, to have d itself be a
server. The most frequently used methods of an instance d of a subclass X of dispatcher are the
following.

create_socket

d.create_socket(family,type)

Creates d's socket with the given family and type. family is generally socket.AF_INET. type is generally
socket.SOCK_STREAM, since class dispatcher normally uses a TCP (i.e., connection-based) socket.

handle_accept

d.handle_accept(  )

Called when a new client has connected. Your class X normally responds by calling self.accept, then
instantiating another subclass Y of dispatcher with the resulting new socket, in order to handle the
new client connection.

Your implementation of handle_accept need not return the resulting instance of Y: all instances of
subclasses of dispatcher register themselves with the asyncore framework in method dispatcher._ _init_
_, so that asyncore calls back to their methods as appropriate.

handle_close

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


d.handle_close(  )

Called when the connection is closing.

handle_connect

d.handle_connect(  )

Called when the connection is starting.

handle_read

d.handle_read(  )

Called when the socket has new data that you can read without blocking.

handle_write

d.handle_write(  )

Called when the socket has buffer space, so you can write without blocking.

Module asyncore also supplies class dispatcher_with_send, a subclass of dispatcher that overrides one
method.

send

d.send(data)

In class dispatcher_with_send, method d.send is equivalent to a socket object's method send_all in that
it sends all the data. However, d.send does not send all the data at once and does not block; rather, d
sends the data in small packets of 512 bytes each in response to handle_write events (callbacks). This
strategy ensures good performance in simple cases.

Example 19-7 uses module asyncore to reimplement the server of Example 19-1, with the added
ability to serve any number of clients simultaneously.

Example 19-7. Asynchronous TCP echo server using asyncore

import asyncore
import socket

class MainServerSocket(asyncore.dispatcher):
    def __init_  _(self, port):
        asyncore.dispatcher.__init_  _(self)
        self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
        self.bind(('',port))
        self.listen(5)
    def handle_accept(self):
        newSocket, address = self.accept(  )
        print "Connected from", address
        SecondaryServerSocket(newSocket)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        SecondaryServerSocket(newSocket)

class SecondaryServerSocket(asyncore.dispatcher_with_send):
    def handle_read(self):
        receivedData = self.recv(8192)
        if receivedData: self.send(receivedData)
        else: self.close(  )
    def handle_close(self):
        print "Disconnected from", self.getpeername(  )

MainServerSocket(8881)
asyncore.loop(  )

The complexity of Example 19-7 is modest, comparable with that of Example 19-1. The additional
functionality of serving multiple clients simultaneously, with the high performance and scalability of
asynchronous event-driven programming, comes quite cheaply thanks to asyncore's power.

Note that method handle_read of SecondaryServerSocket can freely use self.send without precautions
because SecondaryServerSocket subclasses dispatcher_with_send, which overrides method send to
ensure that it sends all data passed to it. We could not do that if we had instead chosen to subclass
asyncore.dispatcher directly.

19.3.2.2 The asynchat module

The asynchat module supplies class async_chat, which subclasses asyncore.dispatcher and adds
methods to support data buffering and line-oriented protocols. You subclass async_chat with your
class X and override some methods. The most frequently used additional methods of an instance x of
a subclass of async_chat are the following.

collect_incoming_data

x.collect_incoming_data(data)

Called whenever a byte string data of data arrives. Normally, x adds data to some buffer that x keeps,
most often a list using the list's append method.

found_terminator

x.found_terminator(  )

Called whenever the terminator, set by method set_terminator, is found. Normally, x processes the
buffer it keeps, then clears the buffer.

push

x.push(data)

Your class X normally doesn't override this method. The implementation in base class async_chat adds
string data to an output buffer that it sends as appropriate. Method push is therefore quite similar to
method send of class asyncore.dispatcher_with_send, but method push has a more sophisticated
implementation to ensure good performance in more cases.

set_terminator

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


x.set_terminator(terminator)

Your class X normally doesn't override this method. terminator is normally '\r\n', the line terminator
specified by most Internet protocols. terminator can also be None, to disable calls to found_terminator.

Example 19-8 uses module asynchat to reimplement the server of Example 19-7, with small
differences due to using class asynchat.async_chat instead of class asyncore.dispatcher_with_send. To
highlight async_chat's typical use, Example 19-8 responds (by echoing the received data back to the
client, like all other server examples in this chapter) only when it has received a complete line (i.e.,
one ending with \n).

Example 19-8. Asynchronous TCP echo server using asynchat

import asyncore, asynchat, socket

class MainServerSocket(asyncore.dispatcher):
    def __init_  _(self, port):
        print 'initing MSS'
        asyncore.dispatcher.__init_  _(self)
        self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
        self.bind(('',port))
        self.listen(5)
    def handle_accept(self):
        newSocket, address = self.accept(  )
        print "Connected from", address
        SecondaryServerSocket(newSocket)

class SecondaryServerSocket(asynchat.async_chat):
    def __init_  _(self, *args):
        print 'initing SSS'
        asynchat.async_chat.__init_  _(self, *args)
        self.set_terminator('\n')
        self.data = []
    def collect_incoming_data(self, data):
        self.data.append(data)
    def found_terminator(self):
        self.push(''.join(self.data))
        self.data = []
    def handle_close(self):
        print "Disconnected from", self.getpeername(  )
        self.close(  )

MainServerSocket(8881)
asyncore.loop(  )

To try out Example 19-8, we cannot use Example 19-2 as it stands because it does not ensure that it
sends only entire lines terminated with \n. It doesn't take much to fix that, however. The following
client program, for example, is quite suitable for testing Example 19-8, as well as any of the other
server examples in this chapter:

import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(('localhost', 8881))
print "Connected to server"
data = """A few lines of data
to test the operation
of both server and client."""
for line in data.splitlines(  ):
    sock.sendall(line+'\n')

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    sock.sendall(line+'\n')
    print "Sent:", line
    response = sock.recv(8192)
    print "Received:", response
sock.close(  )

The only difference in this code with respect to Example 19-2 is the change to the argument in the
call to sock.sendall, in the first line of the loop body. This code simply adds a line terminator '\n', to
ensure it interoperates with Example 19-8.

19.3.3 The Twisted Framework

The Twisted package (available at http://www.twistedmatrix.com) is a freely available framework for
network clients and servers. Twisted includes powerful, high-level components such as a web server,
a user authentication system, a mail server, instant messaging, and so on. Each is highly scalable and
easily customizable, and all are integrated to interoperate smoothly. It's a tribute to the power of
Python and to the ingenuity of Twisted's developers that so much can be accomplished within the
small compass of half a megabyte's worth of download.

19.3.3.1 The twisted.internet and twisted.protocols packages

The twisted.internet package is the low-level, highly stable part of Twisted that supports event-driven
clients and servers. twisted.internet supplies module protocol, supporting protocol handlers and
factories, and object reactor, embodying the concept of an event loop. Note that to make fully
productive use of twisted.internet, you need a good understanding of the design patterns used in
distributed computing. Douglas Schmidt, of the Center for Distributed Object Computing of
Washington University, documents such design patterns at
http://www.cs.wustl.edu/~schmidt/patterns-ace.html.

twisted.protocols implements many protocols that use twisted.internet's infrastructure, including SSH,
DNS, FTP, HTTP, IRC, NNTP, POP3, SMTP, SocksV4, and Telnet.

19.3.3.2 Reactors

A reactor object allows you to establish protocol factories as listeners (servers) on given TCP/IP ports
(or other transports, such as SSL), and to connect protocol handlers as clients. You can choose
different reactor implementations. The default reactor uses the select module covered earlier in this
chapter. Other specialized reactors integrate with GUI toolkits' event loops, or use platform-specific
techniques such as the Windows event loop or the poll system call support available in the select
module on some Unix-like systems. The default reactor is often sufficient, but the extra flexibility of
being able to use other implementations can help you to integrate GUIs or other platform-specific
capabilities, or to achieve even higher performance and scalability.

A reactor object r supplies many methods. Client TCP APIs should be finalized by the time you read
this book, but they're not definitive yet, so I do not cover them. The reactor methods most frequently
used for programs that implement TCP/IP servers with twisted.internet are the following.

callLater

r.callLater(delay,callable,*args,**kwds)

Schedules a call to callable(*args,**kwds) to happen delay seconds from now. delay is a float, so it can
also express fractions of a second. Returns an ID that you may pass to method cancelCallLater.

cancelCallLater

r.cancelCallLater(ID)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Cancels a call scheduled by method callLater. ID must be the result of a previous call to r.callLater.

listenTCP

r.listenTCP(port,factory,backlog=5)

Establishes factory, which must be an instance of class Factory (or any subclass of Factory), as the
protocol handler for a TCP server on the given port. No more than backlog clients can be kept waiting
for connection at any given time.

run

r.run(  )

Runs the event loop until r.stop( ) is called.

stop

r.stop(  )

Stops the event loop started by calling r.run( ).

19.3.3.3 Transports

A transport object embodies a network connection. Each protocol object calls methods on
self.transport to write data to its counterpart and to disconnect. A transport object t supplies the
following methods.

getHost

t.getHost(  )

Returns a tuple identifying this side of the connection. The first item indicates the kind of connection,
while other items depend on the kind of connection. For a TCP connection, returns ('INET', host, port).

getPeer

t.getPeer(  )

Returns a tuple identifying the other side of the connection (easily confused by proxies,
masquerading, firewalls, and so on), just like getHost's result.

loseConnection

t.loseConnection(  )

Tells t to disconnect as soon as t has finished writing all pending data.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


write

t.write(data)

Transmits string data to the counterpart, or queues it up for transmission. t tries its best to ensure
that all data you pass to write is eventually sent.

19.3.3.4 Protocol handlers and factories

The reactor instantiates protocol handlers using a factory, and calls methods on protocol handler
instances when events occur. A protocol handler subclasses class Protocol and overrides some
methods. A protocol handler may use its factory, available as self.factory, as a repository for state that
needs to be shared among handlers or persist across multiple instantiations. A protocol factory may
subclass class Factory, but this subclassing is not always necessary since in many cases the stock
Factory supplies all you need. Just set the protocol attribute of a Factory instance f to a class object
that is an appropriate subclass of Protocol, then pass f to the reactor.

An instance p of a subclass of Protocol supplies the following methods.

connectionLost

p.connectionLost(reason)

Called when the connection to the counterpart has been closed. Argument reason is an object
explaining why the connection has been closed. reason is not an instance of a Python exception, but
has an attribute reason.value that normally is such an instance. You can use str(reason) to get an
explanation string, including a brief traceback, or str(reason.value) to get just the explanation string
without any traceback.

connectionMade

p.connectionMade(  )

Called when the connection to the counterpart has just succeeded.

dataReceived

p.dataReceived(data)

Called when string data has just been received from the counterpart.

19.3.3.5 Echo server using twisted

Example 19-9 uses twisted.internet to implement an echo server with the ability to serve any number
of clients simultaneously.

Example 19-9. Asynchronous TCP echo server using twisted

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Example 19-9. Asynchronous TCP echo server using twisted

import twisted.internet.protocol
import twisted.internet.reactor

class EchoProtocol(twisted.internet.protocol.Protocol):
    def connectionMade(self):
        self.peer = self.transport.getPeer(  )[1:]
        print "Connected from", self.peer
    def dataReceived(self, data):
        self.transport.write(data)
    def connectionLost(self, reason):
        print "Disconnected from", self.peer, reason.value

factory = twisted.internet.protocol.Factory(  )
factory.protocol = EchoProtocol

twisted.internet.reactor.listenTCP(8881, factory)
twisted.internet.reactor.run(  )

Example 19-9 exhibits scalability at least as good as Example 19-7, yet it's easily the simplest of the
echo server examples in this chapter—a good indication of Twisted's power and simplicity. Note the
statement:

factory.protocol = EchoProtocol

This binds the class object EchoProtocol as the attribute protocol of object factory. The right-hand side
of the assignment must not be EchoProtocol( ), with parentheses after the class name. Such a right-
hand side would call, and therefore instantiate, class EchoProtocol, and therefore the statement would
bind to factory.protocol a protocol instance object rather than a protocol class object. Such a mistake
would make the server fail pretty quickly.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 20. CGI Scripting and Alternatives

When a web browser (or other web client) requests a page from a web server, the server may return
either static or dynamic content. Serving dynamic content involves server-side web programs that
generate and deliver content on the fly, often based on information that is stored in a database. The
one longstanding Web-wide standard for server-side programming is known as CGI, which stands for
Common Gateway Interface. In server-side programming, a client sends a structured request to a
web server. The server runs another program, passing the content of the request. The server captures
the output of the other program, and sends that output to the client as the response to the original
request. In other words, the server's role is that of a gateway between the client and the other
program. The other program is called a CGI program or CGI script.

CGI enjoys the typical advantages of standards. When you program to the CGI standard, your
program can be deployed on different web servers, and work despite the differences. This chapter
focuses on CGI scripting in Python. It also mentions the downsides of CGI (basically, issues of
scalability under high load) and some of the alternative, nonstandard server-side architectures that
you can use instead of CGI.

This chapter assumes that you are familiar with both HTML and HTTP. For reference material on both
of these standards, see Webmaster in a Nutshell, by Stephen Spainhour and Robert Eckstein
(O'Reilly). For detailed coverage of HTML, I recommend HTML & XHTML: The Definitive Guide, by
Chuck Musciano and Bill Kennedy (O'Reilly). And for additional coverage of HTTP, see the HTTP Pocket
Reference, by Clinton Wong (O'Reilly).
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

20.1 CGI in Python

CGI's standardization lets you use any language to code CGI scripts. Python is a very-high-level, high-
productivity language, and thus quite suitable for CGI coding. The Python standard library supplies
modules to handle typical CGI-related tasks.

20.1.1 Form Submission Methods

CGI scripts are often used to handle HTML form submissions. In this case, the action attribute of the
form tag specifies a URL for a CGI script to handle the form, and the method attribute is either GET or
POST, indicating how the form data is sent to the script. According to the CGI standard, the GET
method should be used for forms without side effects, such as asking the server to query a database
and display the results, while the POST method is meant for forms with side effects, such as asking
the server to update a database. In practice, however, GET is also often used to create side effects.
The distinction between GET and POST in practical use is that GET encodes the form's contents as a
query string joined to the action URL to form a longer URL, while POST transmits the form's contents
as an encoded stream of data, which a CGI script sees as the script's standard input.

The GET method is slightly faster. You can use a fixed GET-form URL wherever you can use a
hyperlink. However, GET cannot send large amounts of data to the server, since many clients and
servers limit URL lengths (you're safe up to about 200 bytes). The POST method has no size limits.
You must use POST when the form contains input tags with type=file—the form tag must then have
enctype=multipart/form-data.

The CGI standard does not specify whether a single script can access both the query string (used for
GET) and the script's standard input (used for POST). Many clients and servers let you get away with
it, but relying on this nonstandard practice may negate the portability advantages that you would
otherwise get from the fact that CGI is a standard. Python's standard module cgi, covered in the next
section, recovers form data from the query string only, when any query string is present; otherwise,
when no query string is present, cgi recovers form data from standard input.

20.1.2 The cgi Module

The cgi module supplies several functions and classes, mostly for backward compatibility or unusual
needs. CGI scripts use one function and one class from module cgi.

escape

escape(str,quote=0)

Returns a copy of string str, replacing each occurrence of characters &, <, and > with the appropriate
HTML entity (&amp;, &lt;, &gt;). When quote is true, escape also replaces double quote characters (")
with &quot;. Function escape lets a script prepare arbitrary text strings for output within an HTML
document, whether or not the strings contain characters that HTML interprets in special ways.

FieldStorage

class FieldStorage(keep_blank_values=0)

When your script instantiates a FieldStorage instance f, module cgi parses the query string, and/or
standard input, as appropriate. You need not determine whether the client used the POST or GET
method, as cgi hides the distinction. Your script must instantiate FieldStorage only once, since the
instantiation may consume standard input.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


An instance f of class FieldStorage is a mapping. f's keys are the name attributes of the form's
controls. When keep_blank_values is true, f also includes controls whose values are blank strings. By
default, f ignores such controls. f supplies methods f.has_key and f.keys, with normal mapping
semantics. The value for each key n, f[n], can be either:

A list of k FieldStorage instances, if name n occurs more than once in the form (k is the number
of occurrences of n)

A single FieldStorage instance, if name n occurs exactly once in the form

How often a name occurs in a form depends on HTML form rules. Groups of radio or checkbox controls
share a name, but an entire group amounts to just one occurrence of the name.

Values in a FieldStorage instance are in turn FieldStorage instances, to let you handle nested forms. In
practice, you don't need such complications. For each nested instance, just access the value (and
occasionally other attributes), ignoring potential nested-mapping aspects. Avoid type tests: module
cgi can optimize, using instances of MiniFieldStorage, a lightweight signature-compatible class instead
of FieldStorage instances. You usually know what name values are repeated in the form, and thus you
know which items of f can be lists. When you don't know, find out with try/except, not with type tests
(see Section 6.6 in Chapter 6 for details on this idiom).

An instance f of class FieldStorage supplies the following three methods.

getfirst

f.getfirst(key,default=None)

When f.has_key(key), and f[key].value is a single value, not a list of values, getfirst returns
f[key].value. When f.has_key(key), and f[key].value is a list of values, getfirst returns f[key].value[0].
When key is not a key in f, getfirst returns default.

Use getfirst when you know that there should be just one input field (or at most one input field)
named key in the form from which your script's input comes. getfirst was introduced in Python 2.2, so
don't use it if your script must remain compatible with older versions of Python.

getlist

f.getlist(key)

When f.has_key(key), and f[key].value is a single value, not a list of values, getlist returns
[f[key].value], i.e., a list whose only item is f[key].value. When f.has_key(key), and f[key].value is a list
of values, getlist returns f[key].value. When key is not a key in f, getlist returns the empty list [].

Use getlist when you know that there can be more than one input field named key in the form from
which your script's input comes. getlist was introduced in Python 2.2, so don't use it if your script
must remain compatible with older versions of Python.

getvalue

f.getvalue(key,default=None)

Like f[key].value when f.has_key(key), otherwise returns default. getvalue is slightly less convenient
than methods getfirst or getlist; the only reason to use getvalue is if your script must remain
compatible with old versions of Python, since methods getfirst and getlist were introduced in Python
2.2.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


An instance f of class FieldStorage supplies the following attributes:

disposition

The Content-Disposition header, or None if no such header is present

disposition_options

A mapping of all the options in the Content-Disposition header, if any

headers

A mapping of all headers, normally an instance of the rfc822.Message class covered in Chapter
21

file

A file-like object from which you can read the control's value, if applicable; None if the value is
held in memory as a string, as happens for most controls

filename

The filename as specified by the client, for file controls; otherwise None

name

The name attribute of the control, or None if no such attribute is present

type

The Content-Type header, or None if no such header is present

type_options

A mapping of all the options in the Content-Type header, if any

value

The control's value as a string; if f is keeping the control's value in a file, then f implicitly reads
the file into memory each time you access f.value

In most cases, attribute value is all you need. Other attributes are useful for file controls, which may
have very large values and metadata such as content type and content disposition headers. checkbox
controls that share a name, and multiple-choice select controls, have values that are strings
representing comma-separated lists of options. The idiom:

values=f.getfirst(n,'').split(',')

breaks apart such composite value strings into a list of their individual component strings.

20.1.3 CGI Output and Errors

When the server runs a CGI script to meet a request, the response to the request is the standard
output of the script. The script must output the HTTP headers it needs, then an empty line, then the
response's body. In particular, the script must always output the Content-Type header. Most often,
the script outputs the Content-Type header as:

Content-Type: text/html

In this case, the response body must be HTML. However, the script may also choose to output a
content type of text/plain (i.e., the response body must be plain text) or any other MIME type followed
by a response body conforming to that MIME type. The MIME type must be compatible with the Accept
header that the client sent, if any.

Here is the simplest possible Python CGI script in the tradition of "Hello World," ignoring its input and
outputting just one line of plain text output:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


print "Content-Type: text/plain"
print
print "Hello, CGI World!"

Most often, you want to output HTML, and this is similarly easy:

print "Content-Type: text/html"
print
print "<html><head><title>Hello, HTML</title></head>"
print "<body><p>Hello, CGI and HTML together!</p></body></html>"

Browsers are quite forgiving in parsing HTML: you could get by without the HTML structure tags that
this code outputs. However, being fully correct costs little. For other ways to generate HTML output,
see Chapter 22.

The web server collects all output from a CGI script, then sends it to the client browser in one gulp.
Therefore, you cannot send to the client any progress information, just final results. If you need to
output binary data (on a platform where binary and text files differ, such as Windows), you must
ensure python is called with the -u switch, covered in Chapter 3. A more robust approach is to text-
encode your output, using the encoding modules covered in Chapter 21 (typically with Base-64
encoding) and a suitable Content-Transfer-Encoding header. A standards-compliant browser will then
decode your output according to the Content-Transfer-Encoding header and recover the binary data
thus encoded.

Such encoding makes your output about 30% larger, which in some cases can give performance
problems. In such cases, ensuring that your script's standard output stream is a binary file can be
preferable. On Windows, specifically, an alternative to using the -u switch for this purpose is:

import msvcrt, os
msvcrt.setmode(1, os.OS_BINARY)

However, if you can ensure it's used, the -u switch is preferable, since it's cross-platform.

20.1.3.1 Error messages

If exceptions propagate from your script, Python outputs traceback diagnostics to standard error. With
most web servers, error information ends up in error logs. The client browser receives a concise
generic error message. This may be okay, if you can access the error logs. Seeing detailed error
information in the client browser makes your life easier when you debug a CGI script. When you know
that a script has bugs and you need an error trace for debugging, you can use a content type of
text/plain and redirect standard error to standard output as shown here:

print "Content-Type: text/plain"
print
import sys
sys.stderr = sys.stdout
def witherror(  ):
    return 1/0
print "Hello, CGI with an error!"
print "Trying to divide by 0 produces:",witherror(  )
print "The script does not reach this part..."

If your script fails only occasionally and you want to see HTML-formatted output up to the point of
failure, you can use a more sophisticated approach based on the traceback module covered in Chapter
17, as shown here:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


import sys
sys.stderr = sys.stdout
import traceback
print "Content-Type: text/html"
print
try:
    def witherror(  ):
        return 1/0
    print "<html><head><title>Hello, traceback</title></head><body>"
    print "<p>Hello, CGI with an error traceback!"
    print "<p>Trying to divide by 0 produces:",witherror(  )
    print "<p>The script does not reach this part..."
except:
    print "<br><strong>ERROR detected:</strong><br><pre>"
    traceback.print_exc(  )
    sys.stderr = sys.__stderr_  _
    traceback.print_exc(  )

After imports, redirection, and content-type output, this example runs the script's substantial part in
the try clause of a try/except statement. In the except clause, the script outputs a <br> tag,
terminating any current line, and then a <pre> tag to ensure that further line breaks are honored.
Function print_exc of module traceback outputs all error information. Lastly, the script restores
standard error and outputs error information again. Thus, the information is also in the error logs for
later study, not just transiently displayed in the client browser. These refinements are not very useful
in this specific example, of course, since the error is repeatable, but they help track down real-life
errors.

20.1.3.2 The cgitb module

The simplest way to provide good error reporting in CGI scripts is to use module cgitb. Module cgitb
supplies two functions.

handle

handle(exception=None)

Reports an exception's traceback to the browser. exception is a tuple with three items (type,value,tb),
just like the result of calling sys.exc_info( ), covered in Chapter 8. When exception is None, handle calls
exc_info to get the information about the exception to display.

enable

enable(display=True,logdir=None,context=5)

Installs an exception hook, via sys.excepthook, to diagnose propagated exceptions. The hook displays
the exception traceback on the browser if display is true. The hook logs the exception traceback to a
file in directory logdir if logdir is not None. In the traceback, the hook shows context lines of source
code per frame.

In practice, you can start all of your CGI scripts with:

import cgitb
cgitb.enable(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


cgitb.enable(  )

and be assured of good error reporting to the browser with minimal effort on your part. Of course,
when you don't want users of your page to see Python tracebacks from your scripts on their browsers,
you can call cgitb(False,'/my/log/dir') and get the error reports, with exception tracebacks, as files in
directory /my/log/dir instead.

20.1.4 Installing Python CGI Scripts

Installation of CGI scripts depends on the web browser and host platform. A script coded in Python is
no different in this respect from scripts coded in other languages. Of course, you must ensure that the
Python interpreter and standard library are installed and accessible. On Unix-like platforms, you must
set the x permission bits for the script and use a so-called shebang line as the script's first line. For
example:

#!/usr/local/bin/python

depending on the details of your platform and Python installation. If you copy or share files between
Unix and Windows platforms, make sure the shebang line does not end with a carriage return (\r),
which might confuse the shell or web server that parses the shebang line to find out which interpreter
to use for your script.

20.1.4.1 Python CGI scripts on Microsoft web servers

If your web server is Microsoft IIS 3 or 4 or Microsoft PWS (Personal Web Server), assign file
extensions to CGI scripts via entries in registry path
HKLM\System\CurrentControlSet\Services\W3Svc\Parameters\Script_Map. Each value in this path is
named by a file extension, such as .pyg (each value's name starts with a period). The value is the
interpreter command (e.g., C:\Python22\Python.Exe -u %s %s). You may also use file extensions such
as .cgi or .py for this purpose, but I recommend a unique one such as .pyg instead. Assigning Python
as the interpreter for all scripts named .cgi might interfere with your ability to use other interpreters
for CGI purposes. Having all modules with a .py extension interpreted as CGI scripts is more accident-
prone than dedicating a unique extension such as .pyg to this purpose, and may interfere with your
ability to have your Python-coded CGI scripts import utility modules from the same directories.

With IIS 5, you can use the Administrative Tools  Computer Management applet to associate a file
extension with an interpreter command line. This is performed via Services and Applications 
Internet Information Services. Right-click either on [IISAdmin], for all sites, or on a specific web site,
and choose Properties  Configuration  Add Mappings  Add. Enter the extension, such as
.pyg, in the Extension field, and the interpreter command line, such as C:\Python22\Python.Exe -u %s
%s, in the Executable field.

20.1.4.2 Python CGI scripts on Apache

The popular free web server Apache is configured via directives in a text file (by default, httpd.conf).
When the configuration has ScriptAlias entries, such as:

ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

any executable script in the aliased directory can run as a CGI script. You may also enable CGI
execution in a specific directory by using for that directory the Apache directive:

Options +ExecCGI

In this case, to let scripts with a certain extension run as CGI scripts, you may also add a global
AddHandler directive, such as:

AddHandler cgi-script pyg

to enable scripts with extension .pyg to run as CGI scripts. Apache determines what interpreter to use
for a script by the shebang line at the script's start. Another way to enable CGI scripts in a directory
(if global directive AllowOverride Options is set) is to use Options +ExecCGI in a file named .htaccess in

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


(if global directive AllowOverride Options is set) is to use Options +ExecCGI in a file named .htaccess in
that directory.

20.1.4.3 Python CGI scripts on Xitami

The free, lightweight, simple web server Xitami (http://www.xitami.org) makes it easy to install CGI
scripts. When any component of a URL is named cgi-bin, Xitami takes the URL as a request for CGI
execution. Xitami determines what interpreter to use for a script by the shebang line at the script's
start, even on Windows platforms.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

20.2 Cookies

HTTP is a stateless protocol, meaning that it retains no session state between transactions. Cookies,
as specified by the HTTP 1.1 standard, let web clients and servers cooperate to build a stateful session
from a sequence of HTTP transactions.

Each time a server sends a response to a client's request, the server may initiate or continue a
session by sending one or more Set-Cookie headers, whose contents are small data items called
cookies. When a client sends another request to the server, the client may continue a session by
sending Cookie headers with cookies previously received from that server or other servers in the
same domain. Each cookie is a pair of strings, the name and value of the cookie, plus optional
attributes. Attribute max-age is the maximum number of seconds the cookie should be kept. The
client should discard saved cookies after their maximum age. If max-age is missing, then the client
should discard the cookie when the user's interactive session ends.

Cookies have no intrinsic privacy nor authentication. Cookies travel in the clear on the Internet, and
therefore are vulnerable to sniffing. A malicious client might return cookies different from cookies
previously received. To use cookies for authentication or identification or to hold sensitive information,
the server must encrypt and encode cookies sent to clients, and decode, decrypt, and verify cookies
received back from clients.

Encryption, encoding, decoding, decryption, and verification may all be slow when applied to large
amounts of data. Decryption and verification require the server to keep some amount of server-side
state. Sending substantial amounts of data back and forth on the network is also slow. The server
should therefore persist most state data locally, in files or databases. In most cases, a server should
use cookies only as small, encrypted, verifiable keys confirming the identity of a user or session,
using DBM files or a relational database (covered in Chapter 11) for session state. HTTP sets a limit of
2 KB on cookie size, but I suggest you normally use substantially smaller cookies.

20.2.1 The Cookie Module

The Cookie module supplies several classes, mostly for backward compatibility. CGI scripts normally
use the following classes from module Cookie.

Morsel

A script does not directly instantiate class Morsel. However, instances of cookie classes hold instances
of Morsel. An instance m of class Morsel represents a single cookie element: a key string, a value
string, and optional attributes. m is a mapping. The only valid keys in m are cookie attribute names:
'comment', 'domain', 'expires', 'max-age', 'path', 'secure', and 'version'. Keys into m are case-
insensitive. Values in m are strings, each holding the value of the corresponding cookie attribute.

SimpleCookie

class SimpleCookie(input=None)

A SimpleCookie instance c is a mapping. c's keys are strings. c's values are Morsel instances that wrap
strings. c[k]=v implicitly expands to:

c[k]=Morsel(  ); c[k].set(k,str(v),str(v))

If input is not None, instantiating c implicitly calls c.load(input).

SmartCookie

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


SmartCookie

class SmartCookie(input=None)

A SmartCookie instance c is a mapping. c's keys are strings. c's values are Morsel instances that wrap
arbitrary values serialized with pickle. c[k]=v has the semantics:

c[k]=Morsel(  ); c[k].set(k,str(v),pickle.dumps(v))

Module pickle was covered in Chapter 11. Since you have little control on what code executes during
implicit deserialization via pickle.loads, class SmartCookie offers correspondingly little security. Unless
your script is exposed only on a trusted intranet, avoid SmartCookie—use SimpleCookie instead. You
can use any cryptographic approach to build, and take apart again, the strings wrapped by Morsel
instance values in SimpleCookie instances. Modules covered in Chapter 21 make it easy to encode
arbitrary byte strings as text strings, quite apart from any cryptographic measures.

SmartCookie is more convenient than SimpleCookie plus cryptography, encoding, and decoding.
Convenience and security are often in conflict. The choice is yours. Do not labor under the
misapprehension that your system is secure because "after all, nobody knows what I'm doing":
security through obscurity isn't. Good cryptography is a necessary (but not sufficient) condition for
strong security.

20.2.1.1 Cookie methods

An instance c of SimpleCookie or SmartCookie supplies the following methods.

js_output

c.js_output(attrs=None)

Returns a string s, a JavaScript snippet that sets document.cookie to the cookies held in c. You can
embed s in an HTML response to simulate cookies without sending an HTTP Set-Cookie header if the
client browser supports JavaScript. If attrs is not None, s's JavaScript sets cookie attributes whose
names are in attrs.

load

c.load(data)

When data is a string, load parses it and adds to c each parsed cookie. When data is a mapping, load
adds to c a new Morsel instance for each item in data. Normally, data is string
os.environ.get('HTTP_COOKIE',''), to recover the cookies the client sent.

output

c.output(attrs=None,header='Set-Cookie',sep='\n')

Returns a string s formatted as HTTP headers. You can print c.output( ) among your response's HTTP
headers to send to the client the cookies held in c. Each header's name is string header, and headers
are separated by string sep. If attrs is not None, s's headers contain only cookie attributes whose
names are in attrs.

20.2.1.2 Morsel attributes and methods

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


20.2.1.2 Morsel attributes and methods

An instance m of class Morsel supplies three read-write attributes:

coded_value

The cookie's value, encoded as a string; m's output methods use m.coded_value

key

The cookie's name

value

The cookie's value, an arbitrary Python object

Instance m also supplies the following methods.

js_output

m.js_output(attrs=None)

Returns a string s, a JavaScript snippet that sets document.cookie to the cookie held in m. See also
the js_output method of cookie instances.

output

m.output(attrs=None,header='Set-Cookie')

Returns a string s formatted as an HTTP header that sets the cookie held in m. See also the output
method of cookie instances.

OutputString

m.OutputString(attrs=['path','comment','domain','max-age',
    'secure','version','expires'])

Return a string s that represents the cookie held in m, without decorations. attrs can be any container
suitable as the right-hand operand of in, such as a list or a dictionary.

set

m.set(key,value,coded_value)

Sets m's attributes. key and coded_value must be strings.

20.2.1.3 Using module Cookie

Module Cookie supports cookie handling in both client-side and server-side scripts. Typical usage is
server-side, often in a CGI script. The following example shows a simple CGI script using cookies:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


import Cookie, time, os, sys, traceback

sys.stderr = sys.stdout

try:
    # first, the script emits HTTP headers
    c = Cookie.SimpleCookie(  )
    c["lastvisit"]=str(time.time(  ))
    print c.output(  )
    print "Content-Type: text/html"
    print
    # then, the script emits the response's body
    print "<html><head><title>Hello, visitor!</title></head><body>"
    # for the rest of the response, the scripts gets and decodes the cookie
    c = Cookie.SimpleCookie(os.environ.get("HTTP_COOKIE"))
    when = c.get("lastvisit")
    if when is None:
        print "<p>Welcome to this site on your first visit!</p>"
        print "<p>Please click the 'Refresh' button to proceed</p>"
    else:
        try: lastvisit = float(when.value)
        except:
            print "<p>Sorry, cannot decode cookie (%s)</p>"%when.value
            print "</br><pre>"
            traceback.print_exc(  )
        else:
            formwhen = time.asctime(time.localtime(lastvisit))
            print "<p>Welcome back to this site!</p>"
            print "<p>You last visited on %s</p>"%formwhen
    print "</body></html>"
except:
    print "Content-Type: text/html"
    print
    print "</br><pre>"
    traceback.print_exc(  )

Each time a client visits the script, the script sets a cookie encoding the current time. On successive
visits, if the client browser supports cookies, the script greets the visitor appropriately. Module time is
covered in Chapter 12. Note that this example uses no cryptography or server-side persistence of
state, since session state is small and not confidential.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

20.3 Other Server-Side Approaches

A CGI script runs as a new process each time a client requests it. Process startup time, interpreter
initialization, connection to databases, and script initialization all add up to measurable overhead. On
fast, modern server platforms, the overhead is bearable for light to moderate loads. On a busy server,
CGI may not scale up well. Web servers support server-specific ways to reduce overhead, running
scripts in processes that can serve for several hits rather than starting up a new CGI process per hit.

Microsoft's ASP (Active Server Pages) is a server extension leveraging a lower-level library, ISAPI,
and Microsoft's COM technology. Most ASP pages are coded in the VBScript language, but ASP is
language-independent. As the reptilian connection suggests, Python and ASP go very well together, as
long as Python is installed with the platform-specific win32all extensions, specifically ActiveScripting.
Many other server extensions are cross-platform, not tied to specific operating systems.

The popular content server framework Zope (http://www.zope.org) is a Python application. If you
need advanced content management features, Zope should definitely be among the solutions you
consider. However, Zope is a large, rich, powerful system, needing a full book of its own to do it
justice. Therefore, I do not cover Zope further in this book.

20.3.1 FastCGI

FastCGI lets you write scripts similar to CGI scripts, yet use each process to handle multiple hits,
either sequentially or simultaneously in separate threads. FastCGI is available for Apache and other
free web servers, but at the time of this writing not for Microsoft IIS. See http://www.fastcgi.com for
FastCGI overviews and details. Go to http://alldunn.com/python/fcgi.py for a pure Python interface to
FastCGI, letting scripts exploit FastCGI if available and fall back to normal CGI otherwise.

20.3.2 LRWP

Long-Running Web Processes (LRWP) are currently available only for Xitami (see
http://www.xitami.org). Go to http://alldunn.com/python/lrwp.py for a pure Python module (by Robin
Dunn, the architect of LRWP) that lets scripts exploit LRWP if available and fall back to normal CGI
otherwise. LRWP peer processes connect to the web server via sockets. The server can use any
number of peers that offer the same service. The server uses simple round-robin scheduling among
equivalent available peers. If a request arrives when all peers are busy, the web server queues the
request until a peer is free. This simple, clean protocol makes it easy to load-balance service requests
among any number of hosts connected to the server's host by a fast, trusted local area network.
Robin Dunn's article about LRWP, at http://www.imatix.com/html/xitami/index12.htm, gives
architectural details and C and Python examples of LRWP peers.

20.3.3 PyApache and mod_python

Apache's architecture is modular. Besides CGI and FastCGI, other modules support Python server-side
scripting with Apache. Simple, lightweight PyApache (http://bel-epa.com/pyapache/) focuses on
letting you use CGI-like scripts with low overhead. mod_python (http://www.modpython.org) affords
fuller access to Apache internals, including the ability to write authentication scripts. Both modules
support the classic, widespread Apache 1.3 and the newer Apache 2.0.

20.3.4 Webware

Webware for Python (http://webware.sf.net) is a highly modular collection of software components for
Python server-side web scripting. You can code Python scripts according to different programming
models, such as CGI scripts with added-value wrappers, servlets, or Python Server Pages (PSP), and
run them under Webware. Webware, in turn, can interface to your web server in many ways,
including CGI, FastCGI, mod_python, the specialized Apache module mod_webkit, and special
interfaces for Microsoft IIS and AOLServer. Webware offers you a lot of flexibility in architecting,
coding, and deploying your server-side Python web scripts.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Among the many ways that Webware offers for you to generate web pages, one that will often be of
interest is templating (i.e., automatic insertion of Python-computed values and some control logic in
nearly formed HTML scripts). Webware supports templating via PSP, but also, with more power and
sharper separation between logic and presentation parts, via the Cheetah package, covered in
Chapter 22.

20.3.5 Quixote

Quixote (http://www.mems-exchange.org/software/quixote/) is another framework for Python web
applications that can interface to your web server via CGI, FastCGI, or mod_python. Quixote defines a
new language, the Python Template Language (PTL), and an import hook that lets your Python
application directly import PTL-coded modules.

Quixote's PTL is nearly the same as Python, but has a few extras that may be handy in web
applications. For example, PTL keyword template defines functions returning string results,
automatically called to respond to web requests, with expression statements taken as appending
strings to the function's return value. For example, the PTL code:

template hw(  ):
    'hello'
    'world'

is roughly the same as the following Python code:

def hw(  ):
    _result = []
    _result.append('hello')
    _result.append('world')
    return ''.join(_result)

20.3.6 Custom Pure Python Servers

In Chapter 19, we saw that the standard Python library includes modules that implement web servers.
You can subclass BaseHTTPServer and implement special-purpose web servers with little effort. Such
special-purpose servers are useful in low-volume applications, but they may not scale up well to
handle moderate to high server loads.

Modules asyncore and asynchat, also covered in Chapter 19, exhibit very different performance
characteristics. The event-driven architecture of asynchat-based applications affords high scalability
and performance, beating applications that use lower-level languages and traditional architectures
(multiprocess or multithreading).

The Twisted package, also covered in Chapter 19, has the same performance advantages as asyncore,
and supplies much richer functionality. With Twisted, you can program a web site at high levels of
abstraction and still obtain superb scalability and performance.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 21. MIME and Network Encodings

What travels on a network are streams of bytes or text. However, what you want to send over the
network often has more structure. The Multipurpose Internet Mail Extensions (MIME) and other
encoding standards bridge the gap by specifying how to represent structured data as bytes or text.
Python supports such encodings through many library modules, such as base64, quopri, uu, and the
modules of the email package. This chapter covers these modules.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

21.1 Encoding Binary Data as Text

Several kinds of media (e.g., email messages) contain only text. When you want to transmit binary
data via such media, you need to encode the data as text strings. The Python standard library
supplies modules that support the standard encodings known as Base 64, Quoted Printable, and UU.

21.1.1 The base64 Module

The base64 module supports the encoding specified in RFC 1521 as Base 64. The Base 64 encoding is
a compact way to represent arbitrary binary data as text, without any attempt to produce human-
readable results. Module base64 supplies four functions.

decode

decode(infile,outfile)

Reads text-file-like object infile, by calling infile.readline until end of file (i.e, until a call to
infile.readline returns an empty string), decodes the Base 64-encoded text thus read, and writes the
decoded data to binary-file-like object outfile.

decodestring

decodestring(s)

Decodes text string s, which contains one or more complete lines of Base 64-encoded text, and
returns the byte string with the corresponding decoded data.

encode

encode(infile,outfile)

Reads binary-file-like object infile, by calling infile.read (for a few bytes at a time—the amount of data
that Base 64 encodes into a single output line) until end of file (i.e, until a call to infile.read returns an
empty string). Then it encodes the data thus read in Base 64, and writes the encoded text as lines to
text-file-like object outfile. encode appends \n to each line of text it emits, including the last one.

encodestring

encodestring(s)

Encodes binary string s, which contains arbitrary bytes, and returns a text string with one or more
complete lines of Base 64-encoded data. encodestring always returns a text string ending with \n.

21.1.2 The quopri Module

The quopri module supports the encoding specified in RFC 1521 as Quoted Printable (QP). QP can
represent any binary data as text, but it's mainly intended for data that is textual, with a relatively
modest amount of characters with the high bit set (i.e., characters outside of the ASCII range). For
such data, QP produces results that are both compact and rather human-readable. Module quopri
supplies four functions.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


decode

decode(infile,outfile,header=False)

Reads file-like object infile, by calling infile.readline until end of file (i.e, until a call to infile.readline
returns an empty string), decodes the QP-encoded ASCII text thus read, and writes the decoded data
to file-like object outfile. When header is true, decode also decodes _ (underscores) into spaces.

decodestring

decodestring(s,header=False)

Decodes string s, which contains QP-encoded ASCII text, and returns the byte string with the decoded
data. When header is true, decodestring also decodes _ (underscores) into spaces.

encode

encode(infile,outfile,spaces,header=False)

Reads file-like object infile, by calling infile.readline until end of file (i.e, until a call to infile.readline
returns an empty string), encodes the data thus read in QP, and writes the encoded ASCII text to file-
like object outfile. When spaces is true, encode also encodes spaces and tabs. When header is true,
encode encodes spaces as _ (underscores).

encodestring

encodestring(s,spaces=False,header=False)

Encodes string s, which contains arbitrary bytes, and returns a string with QP-encoded ASCII text.
When spaces is true, encodestring also encodes spaces and tabs. When header is true, encodestring
encodes spaces as _ (underscores).

21.1.3 The uu Module

The uu module supports the traditional Unix-to-Unix (UU) encoding, as implemented by Unix
programs uuencode and uudecode. UU begins encoded data with a begin line, which also gives the
filename and permissions of the file being encoded, and ends it with an end line. Therefore, UU
encoding lets you embed encoded data in otherwise unstructured text, while Base 64 encoding relies
on the existence of other indications of where the encoded data starts and finishes. Module uu
supplies two functions.

decode

decode(infile,outfile=None,mode=None)

Reads file-like object infile, by calling infile.readline until end of file (i.e, until a call to infile.readline
returns an empty string) or until a terminator line (the string 'end' surrounded by any amount of
whitespace). decode decodes the UU-encoded text thus read, and writes the decoded data to file-like
object outfile. When outfile is None, decode creates the file specified in the UU-format begin line, with
the permission bits given by mode (the permission bits specified in the begin line, when mode is

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


the permission bits given by mode (the permission bits specified in the begin line, when mode is
None). In this case, decode raises an exception if the file already exists.

encode

encode(infile,outfile,name='-',mode=0666)

Reads file-like object infile, by calling infile.read (for a few bytes at a time—the amount of data that UU
encodes into a single output line) until end of file (i.e, until a call to infile.read returns an empty
string). Then it encodes the data thus read in UU, and writes the encoded text to file-like object
outfile. encode also writes a UU begin line before the encoded text, and a UU end line after the
encoded text. In the begin line, encode specifies the filename as name and the mode as mode.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

21.2 MIME and Email Format Handling

Python supplies the email package to handle parsing, generation, and manipulation of MIME files such
as email messages, network news posts, and so on. The Python standard library also contains other
modules that handle some parts of these jobs. However, the new email package offers a more
complete and systematic approach to these important tasks. I therefore suggest you use package
email, not the older modules that partially overlap with parts of email's functionality. Package email
has nothing to do with receiving or sending email; for such tasks, see modules poplib and smtplib,
covered in Chapter 18. Instead, package email deals with how you handle messages after you receive
them or before you send them.

21.2.1 Functions in Package email

Package email supplies two factory functions returning an instance m of class email.Message.Message.
These functions rely on class email.Parser.Parser, but the factory functions are handier and simpler.
Therefore, I do not cover module Parser further in this book.

message_from_string

message_from_string(s)

Builds m by parsing string s.

message_from_file

message_from_file(f)

Builds m by parsing the contents of file-like object f, which must be open for reading.

21.2.2 The email.Message Module

The email.Message module supplies class Message. All parts of package email produce, modify, or use
instances of class Message. An instance m of Message models a MIME message, including headers and
a payload (data content). You can create m, initially empty, by calling class Message, which accepts
no arguments. More often, you create m by parsing via functions message_from_string and
message_from_file of module email, or by other indirect means such as the classes covered in
"Creating Messages" later in this chapter. m's payload can be a string, a single other instance of
Message, or a list of other Message instances for a multipart message.

You can set arbitrary headers on email messages you're building. Several Internet RFCs specify
headers that you can use for a wide variety of purposes. The main applicable RFC is RFC 2822 (see
http://www.faqs.org/rfcs/rfc2822.html). An instance m of class Message holds headers as well as a
payload. m is a mapping, with header names as keys and header value strings as values. The
semantics of m as a mapping are rather different from those of a dictionary, to make m more
convenient. m's keys are case-insensitive. m keeps headers in the order in which you add them, and
methods keys, values, and items return headers in that order. m can have more than one header
named key—m[key] returns an arbitrary one of them, del m[key] deletes all of them. len(m) returns
the total number of headers, counting duplicates, not just the number of distinct header names. If
there is no header named key, m[key] returns None and does not raise KeyError (i.e., behaves like
m.get(key)), and del m[key] is a no-operation.

An instance m of Message supplies the following attributes and methods dealing with m's headers and
payload.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


add_header

m.add_header(_name,_value,**_params)

Like m[_name]=_value, but you can also supply header parameters as keyword arguments. For each
keyword argument pname=pvalue, add_header changes underscores to dashes, then appends to the
header's value a parameter of the form:

; pname="pvalue"

If pvalue is None, add_header appends only a parameter '; pname'.

add_payload

m.add_payload(payload)

Adds the payload to m's payload. If m's payload was None, m's payload is now payload. If m's payload
was a list, appends payload to the list. If m's payload was a single item x, m's payload becomes the
list [x,payload], but only if m's Content-Type header is missing or has a main type of multipart.
Otherwise, when m has a single payload and a Content-Type whose main type is not multipart,
m.add_payload(payload) raises a MultipartConversionError exception.

as_string

m.as_string(unixfrom=False)

Returns the entire message as a string. When unixfrom is true, also includes a first line, normally
starting with 'From ', known as the envelope header of the message.

epilogue

Attribute m.epilogue can be None, or a string that becomes part of the message's string form after the
last boundary line. Mail programs normally don't display this text. epilogue is a normal attribute of m:
your program can access it when you're examining an m that is fully built by whatever means, and
your program can bind it when you're building or modifying m in your program.

get_all

m.get_all(name,default=None)

Returns a list with all values of headers named name, in the order in which the headers were added to
m. When m has no header named name, get_all returns default.

get_boundary

m.get_boundary(default=None)

Returns the string value of the boundary parameter of m's Content-Type header. When m has no

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Returns the string value of the boundary parameter of m's Content-Type header. When m has no
Content-Type header, or the header has no boundary parameter, get_boundary returns default.

get_charsets

m.get_charsets(default=None)

Returns the list L of string values of parameter charset of m's Content-Type headers. When m is
multipart, L has one item per part, otherwise L has length 1. For parts that have no Content-Type, no
charset parameter, or a main type different from 'text', the corresponding item in L is default.

get_filename

m.get_filename(default=None)

Returns the string value of the filename parameter of m's Content-Disposition header. When m has no
Content-Disposition, or the header has no filename parameter, get_filename returns default.

get_maintype

m.get_maintype(default=None)

Returns m's main content type, a string 'maintype' taken from header Content-Type converted to
lowercase. When m has no header Content-Type, get_maintype returns default.

get_param

m.get_param(param,default=None,header='Content-Type')

Returns the string value of the parameter named param of m's header named header. Returns the
empty string for a parameter specified just by name. When m has no header header, or the header
has no parameter named param, get_param returns default.

get_params

m.get_params(default=None,header='Content-Type')

Returns the parameters of m's header named header, a list of pairs of strings giving each parameter's
name and value. Uses the empty string as the value for parameters specified just by name. When m
has no header header, get_params returns default.

get_payload

m.get_payload(i=None,decode=False)

Returns m's payload. When m.is_multipart( ) is False, i must be None, and m.get_payload( ) returns m's
entire payload, a string or a Message instance. If decode is true, and the value of header Content-
Transfer-Encoding is either 'quoted-printable' or 'base64', m.get_payload also decodes the payload. If
decode is false, or header Content-Transfer-Encoding is missing or has other values, m.get_payload
returns the payload unchanged.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


When m.is_multipart( ) is True, decode must be false. When i is None, m.get_payload( ) returns m's
payload as a list. Otherwise, m.get_payload( ) returns the ith item of the payload, and raises TypeError
if i is less than 0 or is too large.

get_subtype

m.get_subtype(default=None)

Returns m's content subtype, a string 'subtype' taken from header Content-Type converted to
lowercase. When m has no header Content-Type, get_subtype returns default.

get_type

m.get_type(default=None)

Returns m's content type, a string 'maintype/subtype' taken from header Content-Type converted to
lowercase. When m has no header Content-Type, get_type returns default.

get_unixfrom

m.get_unixfrom(  )

Returns the envelope header string for m, or None if the envelope header was never set.

is_multipart

m.is_multipart(  )

Returns True when m's payload is a list, otherwise False.

preamble

Attribute m.preamble can be None or a string that becomes part of the message's string form before
the first boundary line. Only mail programs that don't support multipart messages display this text to
the user, so you can use this attribute to alert the user that your message is multipart and that a
different mail program is needed to view it. preamble is a normal attribute of m: your program can
access it when you're examining an m that is fully built by whatever means, and your program can
bind it when you're building or modifying m in your program.

set_boundary

m.set_boundary(boundary)

Sets the boundary parameter of m's Content-Type header to boundary. When m has no Content-Type
header, raises HeaderParseError.

set_payload

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


m.set_payload(payload)

Sets m's payload to payload, which must be a string or list, as appropriate.

set_unixfrom

m.set_unixfrom(unixfrom)

Sets the envelope header string for m. unixfrom is the entire envelope header line, including the
leading 'From ' but not including the trailing '\n'.

walk

m.walk(  )

Returns an iterator on all parts and subparts of m, to walk the tree of parts depth-first.

21.2.3 The email.Generator Module

The email.Generator module supplies class Generator, which you can use to generate the textual form
of a message m. m.as_string and str(m) may be sufficient, but class Generator gives you slightly more
flexibility. You instantiate Generator with a mandatory argument and two optional ones.

Generator

class Generator(outfp,mangle_from_=False,maxheaderlen=78)

outfp is a file or file-like object supplying method write. When mangle_from_ is true, g prepends a '>'
to any line in a message's payload that starts with 'From ' This helps make the message's textual form
more safely parseable. g wraps each header line at semicolons, into physical lines of no more than
maxheaderlen characters, for readability. To use g, just call it:

g(m, unixfrom=False)

This emits m in text form to outfp, like outfp.write(m.as_string(unixfrom)).

21.2.4 Creating Messages

Package email supplies modules with names starting with 'MIME', each module supplying a subclass of
Message named like the module. These classes make it easier to create Message instances of various
MIME types. The MIME classes are as follows.

MIMEAudio

class MIMEAudio(_audiodata,_subtype=None,_encoder=None,**_params)

_audiodata is a byte string of audio data to pack in a message of MIME type 'audio/_subtype'. When
_subtype is None, _audiodata must be parseable by standard Python module sndhdr to determine the
subtype; otherwise MIMEAudio raises a TypeError. When _encoder is None, MIMEAudio encodes data as
Base 64, which is generally optimal. Otherwise, _encoder must be callable with one parameter m, the
message being constructed; _encoder must then call m.get_payload( ) to get the payload, encode the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


message being constructed; _encoder must then call m.get_payload( ) to get the payload, encode the
payload, put the encoded form back by calling m.set_payload, and set m['Content-Transfer-Encoding']
appropriately. MIMEAudio passes the _params dictionary of keyword argument names and values to
m.add_header to construct m's Content-Type.

MIMEBase

class MIMEBase(_maintype,_subtype,**_params)

The base class of all MIME classes; directly subclasses Message. Instantiating:

m = MIMEBase(main,sub,**parms)

is equivalent to the longer and less convenient idiom:

m = Message(  )
m.add_header('Content-Type','%s/%s'%(main,sub),**parms)
m.add_header('Mime-Version','1.0')

MIMEImage

class MIMEAudio(_imagedata,_subtype=None,_encoder=None,**_params)

Like MIMEAudio, but with maintype 'image' and using standard Python module imghdr to determine
the subtype if needed.

MIMEMessage

class MIMEMessage(msg,_subtype='rfc822')

Packs msg, which must be an instance of Message (or a subclass), as the payload of a message of
MIME type 'message/_subtype'.

MIMEText

class MIMEText(_text,_subtype='plain',_charset='us-ascii',_encoder=None)

Packs text string _text as the payload of a message of MIME type 'text/_subtype' with the given
charset. When _encoder is None, MIMEText does not encode the text, which is generally optimal.
Otherwise, _encoder must be callable with one parameter m, the message being constructed;
_encoder must then call m.get_payload( ) to get the payload, encode the payload, put the encoded
form back by calling m.set_payload, and set m['Content-Transfer-Encoding'] appropriately.

21.2.5 The email.Encoders Module

The email.Encoders module supplies functions that take a message m as their only argument, encode
m's payload, and set m's headers appropriately.

encode_base64

encode_base64(m)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Uses Base 64 encoding, optimal for arbitrary binary data.

encode_noop

encode_noop(m)

Does nothing to m's payload and headers.

encode_quopri

encode_quopri(m)

Uses Quoted Printable encoding, optimal for textual data that is not fully ASCII.

encode_7or8bit

encode_7or8bit(m)

Does nothing to m's payload, sets header Content-Transfer-Encoding to '8bit' if any byte of m's
payload has the high bit set, or otherwise to '7bit'.

21.2.6 The email.Utils Module

The email.Utils module supplies miscellaneous functions useful for email processing.

decode

decode(s)

Decodes string s as per the rules in RFC 2047 and returns the resulting Unicode string.

dump_address_pair

dump_address_pair(pair)

pair is a pair of strings (name,email_address). dump_address_pair returns a string s with the address to
insert in header fields such as To and Cc. When name is false (e.g., ''), dump_address_pair returns
email_address.

encode

encode(s,charset='iso-8859-1',encoding='q')

Encodes string s (which must use the given charset) as per the rules in RFC 2047. encoding must be
'q' to specify Quoted Printable, or 'b' to specify Base 64.

formatdate

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


formatdate(timeval=None,localtime=False)

timeval is a number of seconds since the epoch. When timeval is None, formatdate uses the current
time. When localtime is true, formatdate uses the local timezone; otherwise it uses UTC. formatdate
returns a string with the given time instant formatted in the way specified by RFC 2822.

getaddresses

getaddresses(L)

Parses each item of L, a list of address strings as used in header fields such as To and Cc, and returns
a list of pairs of strings (name,email_address). When getaddresses cannot parse an item of L as an
address, getaddresses uses (None,None) as the corresponding item in the list it returns.

mktime_tz

mktime_tz(t)

t is a tuple with 10 items, the first 9 in the same format used in module time covered in Chapter 12,
t[-1] is a time zone as an offset in seconds from UTC (with the opposite sign from time.timezone, as
specified by RFC 2822). When t[-1] is None, mktime_tz uses the local time zone. mktime_tz returns a
float with the number of seconds since the epoch, in UTC, corresponding to the time instant that t
denotes.

parseaddr

parseaddr(s)

Parses string s, which contains an address as typically specified in header fields such as To and Cc,
and returns a pair of strings (name,email_address). When parseaddr cannot parse s as an address,
parseaddr returns (None,None).

parsedate

parsedate(s)

Parses string s as per the rules in RFC 2822 and returns a tuple t with 9 items, as used in module time
covered in Chapter 12 (the items t[-3:] are not meaningful). parsedate also attempts to parse
erroneous variations on RFC 2822 that widespread mailers use. When parsedate cannot parse s,
parsedate returns None.

parsedate_tz

parsedate_tz(s)

Like parsedate, but returns a tuple t with 10 items, where t[-1] is s's time zone as an offset in seconds
from UTC (with the opposite sign from time.timezone, as specified by RFC 2822), like in the argument
that mktime_tz accepts. Items t[-4:-1] are not meaningful. When s has no time zone, t[-1] is None.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


quote

quote(s)

Returns a copy of string s where each double quote (") becomes '\"' and each existing backslash is
repeated.

unquote

unquote(s)

Returns a copy of string s where leading and trailing double quote characters (") and angle brackets
(<>) are removed if they surround the rest of s.

21.2.7 The Message Classes of the rfc822 and mimetools Modules

The best way to handle email-like messages is with package email. However, other modules covered
in Chapter 18 and Chapter 20 use instances of class rfc822.Message or its subclass mimetools.Message.
This section covers the subset of these classes' functionality that you need to make effective use of
the modules covered in Chapter 18 and Chapter 20.

An instance m of class Message is a mapping, with the headers' names as keys and the corresponding
header value strings as values. Keys and values are strings, and keys are case-insensitive. m supports
all mapping methods except clear, copy, popitem, and update. get and setdefault default to '', instead
of None. Instance m also supplies convenience methods (e.g., to combine getting a header's value
and parsing it as a date or an address). I suggest you use for such purposes the functions of module
email.Utils, covered earlier in this chapter, and use m just as a mapping.

When m is an instance of mimetools.Message, m supplies additional methods.

getmaintype

m.getmaintype(  )

Returns m's main content type, taken from header Content-Type converted to lowercase. When m has
no header Content-Type, getmaintype returns 'text'.

getparam

m.getparam(param)

Returns the string value of the parameter named param of m's header Content-Type.

getsubtype

m.getsubtype(  )

Returns m's content subtype, taken from header Content-Type converted to lowercase. When m has
no header Content-Type, getsubtype returns 'plain'.

gettype

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


m.gettype(  )

Returns m's content type, taken from header Content-Type converted to lowercase. When m has no
header Content-Type, gettype returns 'text/plain'.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 22. Structured Text: HTML

Most documents on the Web use HTML, the HyperText Markup Language. Markup is the insertion of
special tokens, known as tags, in a text document to give structure to the text. HTML is an application
of the large, general standard known as SGML, the Standard General Markup Language. In practice,
many of the Web's documents use HTML in sloppy or incorrect ways. Browsers have evolved many
practical heuristics over the years to try and compensate for this, but even so, it still often happens
that a browser displays an incorrect web page in some weird way.

Moreover, HTML was never suitable for much more than presenting documents on a screen. Complete
and precise extraction of the information in the document, working backward from the document's
presentation, is often unfeasible. To tighten things up again, HTML has evolved into a more rigorous
standard called XHTML. XHTML is very similar to traditional HTML, but it is defined in terms of XML
and more precisely than HTML. You can handle XHTML with the tools covered in Chapter 23.

Despite the difficulties, it's often possible to extract at least some useful information from HTML
documents. Python supplies the sgmllib, htmllib, and HTMLParser modules for the task of parsing HTML
documents, whether this parsing is for the purpose of presenting the documents, or, more typically,
as part of an attempt to extract information from them. Generating HTML and embedding Python in
HTML are also frequent tasks. No standard Python library module supports HTML generation or
embedding directly, but you can use normal Python string manipulation, and third-party modules can
also help.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

22.1 The sgmllib Module

The name of the sgmllib module is misleading: sgmllib parses only a tiny subset of SGML, but it is still
a good way to get information from HTML files. sgmllib supplies one class, SGMLParser, which you
subclass to override and add methods. The most frequently used methods of an instance s of your
subclass X of SGMLParser are as follows.

close

s.close(  )

Tells the parser that there is no more input data. When X overrides close, x.close must call
SGMLParser.close to ensure that buffered data get processed.

do_tag

s.do_tag(attributes)

X supplies a method with such a name for each tag, with no corresponding end tag, that X wants to
process. tag must be in lowercase in the method name, but can be in any mix of cases in the parsed
text. SGMLParser's handle_tag method calls do_tag as appropriate. attributes is a list of pairs
(name,value), where name is each attribute's name, lowercased, and value is the value, processed to
resolve entity references and character references and to remove surrounding quotes.

end_tag

s.end_tag(  )

X supplies a method with such a name for each tag whose end tag X wants to process. tag must be in
lowercase in the method name, but can be in any mix of cases in the parsed text. X must also supply
a method named start_tag, otherwise end_tag is ignored. SGMLParser's handle_endtag method calls
end_tag as appropriate.

feed

s.feed(data)

Passes to the parser some of the text being parsed. The parser may process some prefix of the text,
holding the rest in a buffer until the next call to s.feed or s.close.

handle_charref

s.handle_charref(ref)

Called to process a character reference '&#ref;'. SGMLParser's implementation of handle_charref
handles decimal numbers in range(0,256), like:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


def handle_charref(self, ref):
    try: 
        c = chr(int(ref))
    except (TypeError, ValueError): 
        self.unknown_charref(ref)
    else: self.handle_data(c)

Your subclass X may override handle_charref or unknown_charref in order to support other forms of
character references '&#...;'.

handle_comment

s.handle_comment(comment)

Called to handle comments. comment is the string within '<!--...-->', without the delimiters.
SGMLParser's implementation of handle_comment does nothing.

handle_data

s.handle_data(data)

Called to process each arbitrary string data. Your subclass X normally overrides handle_data.
SGMLParser's implementation of handle_data does nothing.

handle_endtag

s.handle_endtag(tag,method)

Called to handle termination tags for which X supplies methods named start_tag and end_tag. tag is
the tag string, lowercased. method is the bound method for end_tag. SGMLParser's implementation of
handle_endtag calls method( ).

handle_entityref

s.handle_entityref(ref)

Called to process an entity reference '&ref;'. SGMLParser's implementation of handle_entityref looks ref
up in s.entitydefs, like:

def handle_entityref(self, ref):

    try: t = self.entitydefs[ref]
    except KeyError: self.unknown_entityref(ref)
    else: self.handle_data(t)

Your subclass X may override handle_entityref or unknown_entityref in order to support entity
references '&...;' in different ways. SGMLParser's attribute entitydefs includes keys 'amp', 'apos', 'gt',
'lt', and 'quot'.

handle_starttag

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


s.handle_starttag(tag, method, attributes)

Called to handle tags for which X supplies a method start_tag or do_tag. tag is the tag string,
lowercased. method is the bound method for start_tag or do_tag. attributes is a list of pairs
(name,value), where name is each attribute's name, lowercased, and value is the value, processed to
resolve entity references and character references and to remove surrounding quotes. When X
supplies both start_tag and do_tag methods, start_tag has precedence and do_tag is ignored.
SGMLParser's implementation of handle_starttag calls method(attributes).

report_unbalanced

s.report_unbalanced(tag)

Called when tags terminate without being open. tag is the tag string, lowercased. SGMLParser's
implementation of report_unbalanced does nothing.

start_tag

s.start_tag(attributes)

X supplies a method thus named for each tag, with an end tag, that X wants to process. tag must be
in lowercase in the method name, but can be in any mix of cases in the parsed text. SGMLParser's
handle_tag method calls start_tag as appropriate. attributes is a list of pairs (name,value), where name
is each attribute's name, lowercased, and value is the value, processed to resolve entity references
and character references and to remove surrounding quotes.

unknown_charref

s.unknown_charref(ref)

Called to process invalid or unrecognized character references. SGMLParser's implementation of
unknown_charref does nothing.

unknown_endtag

s.unknown_endtag(tag)

Called to process termination tags for which X supplies no specific method. SGMLParser's
implementation of unknown_endtag does nothing.

unknown_entityref

s.unknown_entityref(ref)

Called to process unknown entity references. SGMLParser's implementation of unknown_entityref does
nothing.

unknown_starttag

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


s.unknown_starttag(tag, attributes)

Called to process tags for which X supplies no specific method. tag is the tag string, lowercased.
attributes is a list of pairs (name,value), where name is each attribute's name, lowercased, and value is
the value, processed to resolve entity references and character references and to remove surrounding
quotes. SGMLParser's implementation of unknown_starttag does nothing.

The following example uses sgmllib for a typical HTML-related task: fetching a page from the Web with
urllib, parsing it, and outputting the hyperlinks. The example uses urlparse to check the page's links,
and outputs only links whose URLs have an explicit scheme of 'http'.

import sgmllib, urllib, urlparse

class LinksParser(sgmllib.SGMLParser):
    def __init_  _(self):
        sgmllib.SGMLParser.__init_  _(self)
        self.seen = {}
    def do_a(self, attributes):
        for name, value in attributes:
            if name == 'href' and value not in self.seen:
                self.seen[value] = True
                pieces = urlparse.urlparse(value)
                if pieces[0] != 'http': return
                print urlparse.urlunparse(pieces)
                return

p = LinksParser(  )
f = urllib.urlopen('http://www.python.org/index.html')
BUFSIZE = 8192
while True:
    data = f.read(BUFSIZE)
    if not data: break
    p.feed(data)
p.close(  )

Class LinksParser only needs to define method do_a. The superclass calls back to this method for all
<a> tags, and the method loops on the attributes, looking for one named 'href', then works with the
corresponding value (i.e., the relevant URL).
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

22.2 The htmllib Module

The htmllib module supplies a class named HTMLParser that subclasses SGMLParser and defines
start_tag, do_tag, and end_tag methods for tags defined in HTML 2.0. HTMLParser implements and
overrides methods in terms of calls to methods of a formatter object, covered later in this chapter.
You can subclass HTMLParser to add or override methods. In addition to the start_tag, do_tag, and
end_tag methods, an instance h of HTMLParser supplies the following attributes and methods.

anchor_bgn

h.anchor_bgn(href,name,type)

Called for each <a> tag. href, name, and type are the string values of the tag's attributes with the
same names. HTMLParser's implementation of anchor_bgn maintains a list of outgoing hyperlinks (i.e.,
href arguments of method s.anchor_bgn) in an instance attribute named s.anchorlist.

anchor_end

h.anchor_end(  )

Called for each </a> end tag. HTMLParser's implementation of anchor_end emits to the formatter a
footnote reference that is an index within s.anchorlist. In other words, by default, HTMLParser asks the
formatter to format an <a>/</a> tag pair as the text inside the tag, followed by a footnote reference
number that points to the URL in the <a> tag. Of course, it's up to the formatter to deal with this
formatting request.

anchorlist

The h.anchor_list attribute contains the list of outgoing hyperlink URLs built by h.anchor_bgn.

formatter

The h.formatter attribute is the formatter object f associated with h, which you pass as the only
argument when you instantiate HTMLParser(f).

handle_image

h.handle_image(source,alt,ismap='',align='',width='',height='')

Called for each <img> tag. Each argument is the string value of the tag's attribute of the same name.
HTMLParser's implementation of handle_image calls h.handle_data(alt).

nofill

h.nofill

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


h.nofill

The h.nofill attribute is false when the parser is collapsing whitespace, the normal case. It is true when
the parser must preserve whitespace, typically within a <pre> tag.

save_bgn

h.save_bgn(  )

Diverts data to an internal buffer instead of passing it to the formatter, until the next call to
h.save_end( ). h has only one buffer, so you cannot nest save_bgn calls.

save_end

h.save_end(  )

Returns a string with all data in the internal buffer, and directs data back to the formatter from now
on. If save_bgn state was not on, raises TypeError.

22.2.1 The formatter Module

The formatter module defines formatter and writer classes. You instantiate a formatter by passing to
the class a writer instance, and then you pass the formatter instance to class HTMLParser of module
htmllib. You can define your own formatters and writers by subclassing formatter's classes and
overriding methods appropriately, but I do not cover this advanced and rarely used possibility in this
book. An application with special output requirements would typically define an appropriate writer,
subclassing AbstractWriter and overriding all methods, and use class AbstractFormatter without needing
to subclass it. Module formatter supplies the following classes.

AbstractFormatter

class AbstractFormatter(writer)

The standard formatter implementation, suitable for most tasks.

AbstractWriter

class AbstractWriter(  )

A writer implementation that prints each of its method names when called, suitable for debugging
purposes only.

DumbWriter

class DumbWriter(file=sys.stdout,maxcol=72)

A writer implementation that emits text to file object file, with word wrapping to ensure that no text
line is longer than maxcol characters.

NullFormatter

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


class NullFormatter(writer=None)

A formatter implementation whose methods are do-nothing stubs. When writer is None, instantiates
NullWriter. Suitable when you subclass HMTLParser to analyze an HTML document but don't want any
output to happen.

NullWriter

class NullWriter(  )

A writer implementation whose methods are do-nothing stubs.

22.2.2 The htmlentitydefs Module

The htmlentitydefs module supplies just one attribute, a dictionary named entitydefs that maps each
entity defined in HTML 2.0 to the corresponding string in the ISO-8859-1 (also known as Latin-1)
encoding. Module htmllib uses module htmlentitydefs internally.

22.2.3 Parsing HTML with htmllib

The following example uses htmllib to perform the same task as in the previous example for sgmllib,
fetching a page from the Web with urllib, parsing it, and outputting the hyperlinks:

import htmllib, formatter, urllib, urlparse

p = htmllib.HTMLParser(formatter.NullFormatter(  ))
f = urllib.urlopen('http://www.python.org/index.html')
BUFSIZE = 8192
while True:
    data = f.read(BUFSIZE)
    if not data: break
    p.feed(data)
p.close(  )

seen = {}
for url in p.anchorlist:
    if url in seen: continue
    seen[url] = True
    pieces = urlparse.urlparse(url)
    if pieces[0] == 'http':
        print urlparse.urlunparse(pieces)

The example exploits the anchorlist attribute of class htmllib.HTMLParser, and therefore does not need
to perform any subclassing. htmllib.HTMLParser builds the anchorlist attribute as it parses the HTML
page, so the code need only loop on the list and work with the list's items, each a relevant URL.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

22.3 The HTMLParser Module

Module HTMLParser supplies one class, HTMLParser, that you subclass to override and add methods.
HTMLParser.HTMLParser is similar to sgmllib.SGMLParser, but is simpler and able to parse XHTML as
well. The main differences between HTMLParser and SGMLParser are the following:

HMTLParser does not call back to methods named do_tag, start_tag, and end_tag. To process
tags and end tags, your subclass X of HTMLParser must override methods handle_starttag
and/or handle_endtag and check explicitly for the tags it wants to process.

HMTLParser does not keep track of, nor check, tag nesting in any way.

HMTLParser does nothing, by default, to resolve character and entity references. Your subclass
X of HTMLParser must override methods handle_charref and/or handle_entityref if it needs to
perform processing of such references.

The most frequently used methods of an instance h of a subclass X of HTMLParser are as follows.

close

h.close(  )

Tells the parser that there is no more input data. When X overrides close, h.close must also call
HTMLParser.close to ensure that buffered data gets processed.

feed

h.feed(data)

Passes to the parser a part of the text being parsed. The parser processes some prefix of the text and
holds the rest in a buffer until the next call to h.feed or h.close.

handle_charref

h.handle_charref(ref)

Called to process a character reference '&#ref;'. HTMLParser's implementation of handle_charref does
nothing.

handle_comment

h.handle_comment(comment)

Called to handle comments. comment is the string within '<!--...-->', without the delimiters.
HTMLParser's implementation of handle_comment does nothing.

handle_data

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


h.handle_data(data)

Called to process each arbitrary string data. Your subclass X almost always overrides handle_data.
HTMLParser's implementation of handle_data does nothing.

handle_endtag

h.handle_endtag(tag)

Called to handle termination tags. tag is the tag string, lowercased. HTMLParser's implementation of
handle_endtag does nothing.

handle_entityref

h.handle_entityref(ref)

Called to process an entity reference '&ref;'. HTMLParser's implementation of handle_entityref does
nothing.

handle_starttag

h.handle_starttag(tag, attributes)

Called to handle tags. tag is the tag string, lowercased. attributes is a list of pairs (name,value), where
name is each attribute's name, lowercased, and value is the value, processed to resolve entity
references and character references and to remove surrounding quotes. HTMLParser's implementation
of handle_starttag does nothing.

The following example uses HTMLParser to perform the same task as our previous examples: fetching
a page from the Web with urllib, parsing it, and outputting the hyperlinks.

import HTMLParser, urllib, urlparse

class LinksParser(HTMLParser.HTMLParser):
    def __init_  _(self):
        HTMLParser.HTMLParser.__init_  _(self)
        self.seen = {}
    def handle_starttag(self, tag, attributes):
        if tag != 'a': return
        for name, value in attributes:
            if name == 'href' and value not in self.seen:
                self.seen[value] = True
                pieces = urlparse.urlparse(value)
                if pieces[0] != 'http': return
                print urlparse.urlunparse(pieces)
                return

p = LinksParser(  )
f = urllib.urlopen('http://www.python.org/index.html')
BUFSIZE = 8192
while True:
    data = f.read(BUFSIZE)
    if not data: break

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    if not data: break
    p.feed(data)

p.close(  )

This example is similar to the one for sgmllib. However, since the HTMLParser.HTMLParser superclass
performs no per-tag dispatching to methods, class LinksParser needs to override method
handle_starttag and check that the tag is indeed 'a'.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

22.4 Generating HTML

Python does not come with tools to generate HTML. If you want an advanced framework for
structured HTML generation, I recommend Robin Friedrich's HTMLGen 2.2 (available at
http://starship.python.net/crew/friedrich/HTMLgen/html/main.html), but I do not cover the package
in this book. To generate XHTML, you can also use the approaches covered in Section 23.4 in Chapter
23.

22.4.1 Embedding

If your favorite approach is to embed Python code within HTML in the manner made popular by JSP,
ASP, and PHP, one possibility is to use Python Server Pages (PSP) as supported by Webware,
mentioned in Chapter 20. Another package, focused more specifically on the embedding approach, is
Spyce (available at http://spyce.sf.net/). For all but the simplest problems, development and
maintenance are eased by separating logic and presentation issues through templating, covered in the
next section. Both Webware and Spyce optionally support templating in lieu of embedding.

22.4.2 Templating

To generate HTML, the best approach is often templating. With templating, you start with a template,
which is a text string (often read from a file, database, etc.) that is valid HTML, but includes markers,
also known as placeholders, where dynamically generated text must be inserted. Your program
generates the needed text and substitutes it into the template. In the simplest case, you can use
markers of the form '%(name)s'. Bind the dynamically generated text as the value for key 'name' in
some dictionary d. The Python string formatting operator %, covered in Chapter 9, now does all you
need. If t is your template, t%d is a copy of the template with all values properly substituted.

22.4.3 The Cheetah Package

For advanced templating tasks, I recommend Cheetah (available at http://www.cheetahtemplate.org).
Cheetah interoperates particularly well with Webware. When you have Webware installed, Cheetah's
template objects are Webware servlets, so you can immediately deploy them under Webware. You
can also use Cheetah in other contexts, and Spyce can also optionally use Cheetah for templating.
Cheetah can process HTML templates for any purpose whatsoever. In fact, I recommend Cheetah to
process templates for any kind of structured text, HTML or not.

22.4.3.1 The Cheetah templating language

In a Cheetah template, use $name or ${name} to request the insertion of the value of a variable
named name. name can contain dots to request lookups of object attributes or dictionary keys. For
example, $a.b.c requests insertion of the value of attribute c of attribute b of the variable named a.
When b is a dictionary, this translates to the Python expression a.b['c']. If an object encountered
during $ substitution is callable, Cheetah calls the object, without arguments, as a part of the lookup.
This high degree of polymorphism makes authoring and maintaining Cheetah templates easier for
non-developers, as it saves them the need to learn and understand these distinctions.

A Cheetah template can contain directives, which are verbs starting with # that allow comments, file
inclusion, flow control (conditionals, loops, exception handling), and more. Cheetah basically provides
a rich templating language on top of Python. The most frequently used verbs in simple Cheetah
templates are the following (mostly similar to Python, but with $ in front of names, no trailing :, and
no mandatory indents, but #end clauses instead):

#break, #continue, #pass

Like the Python statements with the same names

#echo expression

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Computes a Python expression (with $ in front of names) and outputs the result

#for $ variable in $ container ... #end for

Like the Python for statement

#if ... #else if ... #else ... #end if

Like the Python if statement

#repeat $ times ... #end repeat

Repeats some text $times times

#set $ variable = expression

Assigns a value to a variable (the variable is local to this template)

#silent expression

Computes a Python expression (with $ in front of names) and hides the result

#slurp

Consumes the following newline (i.e., joins the following line onto this one)

#while $ condition ... #end while

Like the Python while statement

Note the differences between #echo, #silent, and $ substitution. #echo $a(2) inserts in the template's
output the result of calling function a with an argument of 2. Without the #echo, $a(2) inserts the
string form of a (calling a( ) without arguments, if a is callable) followed by the three characters '(2)'.
#silent $a(2) calls a with an argument of 2 and inserts nothing in the template's output.

Cheetah has many other verbs. A Cheetah template object is a class instance and may use
inheritance, override methods, and so on. However, for simple templates you will most often not need
such powerful mechanisms.

22.4.3.2 The Template class

The Cheetah.Template module supplies one class.

Template

class Template(source=None,searchList=[],file=None)

Always call Template with named arguments (except, optionally, the first one); number and order of
formal arguments may change in the future, but the names are guaranteed to stay. You must pass
either source or file, but not both. source is a template string. file is a file-like object open for reading,
or the path to a file to open for reading.

searchList is a sequence of objects to use as top-level sources for $name insertion. An instance t of
class Template is implicitly appended at the end of t's search list (e.g., $a in the template inserts the
value of t.a if no other object in the search list has an attribute a or an item with a key of 'a').
searchList defaults to the empty list, so, by default, t's template expansion uses only t's attributes as
variables for $ substitution.

Class Template also allows other keyword arguments, but these are the most frequently used. The
instance t supplies many methods, but normally you only call str(t), which returns the string form of
the expanded template.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


22.4.3.3 A Cheetah example

The following example uses Cheetah.Template to output HTML with dynamic content:

import Cheetah.Template
import os, time, socket

tt = Cheetah.Template.Template('''
<html><head><title>Report by $USER</title></head><body>
<h1>Report on host data</h1>
<p>Report written at $asctime:<br/>
#for $hostline in $uname
  $hostline<br/>
#end for
</p></body></html>
''', searchList=[time, os.environ])

try: tt.uname = os.uname
except AttributeError:
     tt.uname = [socket.gethostname(  )]

print tt

This example instantiates and binds to name tt a Template instance, whose source is an HTML
document string with some Cheetah placeholders ($USER, $asctime, $uname) and a Cheetah
#for...#end for directive. The placeholder $hostline is the loop variable in the #for statement, so
therefore the template does not search the search-list objects for name 'hostline' when it expands.
The example instantiates tt with a searchList argument, which sets module time and dictionary
os.environ as part of the search. For names that cannot be found in objects on the search list, tt's
expansion looks in instance tt itself. Therefore, the example binds attribute tt.uname, either to
function os.uname (which returns a tuple of host description data, but exists only on certain
platforms), if available, or else to a list whose only item is the hostname returned by function
gethostname of module socket.

The last statement of the example is print tt. The print statement transforms its arguments into
strings, as if str were called on each argument. Therefore, print tt expands tt. Some of the
placeholders' expansions use dictionary lookup ($USER looks up os.environ['USER']); some need a
function call ($asctime calls time.asctime( )); and some may behave in different ways ($uname,
depending on what it finds as tt.uname, calls that attribute—if callable, as when it's os.uname—or just
takes it as is, when it's already a list).

One important note applies to all templating tasks, not just to Cheetah. Templates are almost
invariably not the right place for program logic to reside. Don't put more logic than strictly needed in
your templates. Templating engines let you separate the task of computing results (best done in
Python, outside of any template) from that of presenting the results as HTML or other kinds of
structured text. Templates should deal just with presentation issues, and contain as little program
logic as feasible.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 23. Structured Text: XML

XML, the eXtensible Markup Language, has taken the programming world by storm over the last few
years. Like SGML, XML is a metalanguage, a language to describe markup languages. On top of the
XML 1.0 specification, the XML community (in good part inside the World Wide Web Consortium, W3C)
has standardized other technologies, such as various schema languages, Namespaces, XPath, XLink,
XPointer, and XSLT.

Industry consortia in many fields have defined industry-specific markup languages on top of XML, to
facilitate data exchange among applications in the various fields. Such industry standards let
applications exchange data even if the applications are coded in different languages and deployed on
different platforms by different firms. XML, related technologies, and XML-based markup languages
are the basis of interapplication, cross-language, cross-platform data interchange in modern
applications.

Python has excellent support for XML. The standard Python library supplies the xml package, which
lets you use fundamental XML technology quite simply. The third-party package PyXML (available at
http://pyxml.sf.net) extends the standard library's xml with validating parsers, richer DOM
implementations, and advanced technologies such as XPath and XSLT. Downloading and installing
PyXML upgrades Python's own xml packages, so it can be a good idea to do so even if you don't use
PyXML-specific features.

On top of PyXML, you can choose to install yet another freely available third-party package, 4Suite
(available at http://4suite.org). 4Suite provides yet more XML parsers for special niches, advanced
technologies such as XLink and XPointer, and code supporting standards built on top of XML, such as
the Resource Description Framework (RDF).

As an alternative to Python's built-in XML support, PyXML, and 4Suite, you can try ReportLab's new
pyRXP, a fast validating XML parser based on Tobin's RXP. pyRXP is DOM-like in that it constructs an
in-memory representation of the whole XML document you're parsing. However, pyRXP does not
construct a DOM-compliant tree, but rather a lightweight tree of Python tuples to save memory and
enhance speed. For more information on pyRXP, see http://www.reportlab.com/xml/pyrxp.html.

For coverage of all aspects of XML and of how you can process XML with Python, I recommend Python
& XML, by Christopher Jones and Fred Drake (O'Reilly). In this chapter, I cover only the essentials of
the standard library's xml package, taking some elementary knowledge of XML itself for granted.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

23.1 An Overview of XML Parsing

When your application must parse XML documents, your first, fundamental choice is what kind of
parsing to use. You can use event-driven parsing, where the parser reads the document sequentially
and calls back to your application each time it parses a significant aspect of the document (such as an
element). Or you can use object-based parsing, where the parser reads the whole document and
builds in-memory data structures, representing the document, that you can then navigate. SAX is the
main, normal way to perform event-driven parsing, and DOM is the main, normal way to perform
object-based parsing. In each case there are alternatives, such as direct use of expat for event-driven
parsing and pyRXP for object-based parsing, but I do not cover these alternatives in this book.
Another interesting possibility is offered by pulldom, which is covered later in this chapter.

Event-driven parsing requires fewer resources, which makes it particularly suitable when you need to
parse very large documents. However, event-driven parsing requires you to structure your application
accordingly, performing your processing (and typically building auxiliary data structures) in your
methods that are called by the parser. Object-based parsing gives you more flexibility about the ways
in which you can structure your application. It may be more suitable when you need to perform very
complicated processing, as long as you can afford the extra resources needed for object-based
parsing (typically, this means that you are not dealing with very large documents). Object-based
approaches also support programs that need to modify or create XML documents, as covered later in
this chapter.

As a general guideline, when you are still undecided after studying the various trade-offs, I suggest
you try event-driven parsing when you can see a reasonably direct way to perform your program's
tasks through this approach. Event-driven parsing is more scalable; therefore, if your program can
perform its task via event-driven parsing, it will be applicable to larger documents than it would be
able to handle otherwise. If event-driven parsing is too confining, try pulldom instead. I suggest you
consider (non-pull) DOM only when you think DOM is the only way to perform your program's tasks
without excessive contortions. In that case DOM may be best, as long as you can accept the resulting
limitations, in terms of the maximum size of documents that your program is able to support and the
costs in time and memory for processing.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

23.2 Parsing XML with SAX

In most cases, the best way to extract information from an XML document is to parse the document
with a parser compliant with SAX, the Simple API for XML. SAX defines a standard API that can be
implemented on top of many different underlying parsers. The SAX approach to parsing has
similarities to the HTML parsers covered in Chapter 22. As the parser encounters XML elements, text
contents, and other significant events in the input stream, the parser calls back to methods of your
classes. Such event-driven parsing, based on callbacks to your methods as relevant events occur, also
has similarities to the event-driven approach that is almost universal in GUIs and in some networking
frameworks. Event-driven approaches in various programming fields may not appear natural to
beginners, but enable high performance and particularly high scalability, making them very suitable
for high-workload cases.

To use SAX, you define a content handler class, subclassing a library class and overriding some
methods. Then, you build a parser object p, install an instance of your class as p's handler, and feed p
the input stream to parse. p calls methods on your handler to reflect the document's structure and
contents. Your handler's methods perform application-specific processing. The xml.sax package
supplies a factory function to build p, as well as convenience functions for simpler operation in typical
cases. xml.sax also supplies exception classes, used to diagnose invalid input and other errors.

Optionally, you can also register with parser p other kinds of handlers besides the content handler.
You can supply a custom error handler to use an error diagnosis strategy different from normal
exception raising, and try to diagnose several errors during a parse. You can supply a custom DTD
handler to receive information about notation and unparsed entities from the XML document's
Document Type Definition (DTD). You can supply a custom entity resolver to handle external entity
references in advanced, customized ways. These additional possibilities are advanced and rarely used,
so I do not cover them in this book.

23.2.1 The xml.sax Package

The xml.sax package supplies exception class SAXException, and subclasses of it to support fine-
grained exception handling. xml.sax also supplies three functions.

make_parser

make_parser(parsers_list=[])

parsers_list is a list of strings, names of modules from which you would like to build your parser.
make_parser tries each module in sequence until it finds one that defines a suitable function
create_parser. After the modules in parsers_list, if any, make_parser continues by trying a list of default
modules. make_parser terminates as soon as it can generate a parser p, and returns p.

parse

parse(file,handler,error_handler=None)

file is a filename or a file-like object open for reading, containing an XML document. handler is
generally an instance of your own subclass of class ContentHandler, covered later in this chapter.
error_handler, if given, is generally an instance of your own subclass of class ErrorHandler. You don't
necessarily have to subclass ContentHandler and/or ErrorHandler: you just need to provide the same
interfaces as the classes do. Subclassing is often a convenient means to this end.

Function parse is equivalent to the code:

p = make_parser(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


p = make_parser(  )
p.setContentHandler(handler)
if error_handler is not None: 
    p.setErrorHandler(error_handler)
p.parse(file)

This idiom is quite frequent in SAX parsing, so having it in a single function is convenient. When
error_handler is None, the parser diagnoses errors by propagating an exception that is an instance of
some subclass of SAXException.

parseString

parseString(string,handler,error_handler=None)

Like parse, except that string is the XML document in string form.

xml.sax also supplies a class, which you subclass to define your content handler.

ContentHandler

class ContentHandler(  )

An instance h of a subclass of ContentHandler may override several methods, of which the most
frequently useful are the following:

h.characters( data)

Called when textual content data is parsed. The parser may split each range of text in the
document into any number of separate callbacks to h.characters. Therefore, your
implementation of method characters usually buffers data, generally by appending it to a list
attribute. When your class knows from some other event that all relevant data has arrived,
your class calls ''.join on the list and processes the resulting string.

h.endDocument( )

Called once when the document finishes.

h.endElement( tag)

Called when the element named tag finishes.

h.endElementNS( name,qname)

Called when an element finishes and the parser is handling namespaces. name and qname are
like for startElementNS, covered later in this chapter.

h.startDocument( )

Called once when the document begins.

h.startElement( tag,attrs)

Called when the element named tag begins. attrs is a mapping of attribute names to values, as
covered in the next section.

h.startElementNS( name,qname,attrs)

Called when an element begins and the parser is handling namespaces. name is a pair
(uri,localname), where uri is the namespace's URI or None, and localname is the name of the
tag. qname (which stands for qualified name) is either None, if the parser does not supply the
namespace prefixes feature, or the string prefix:name used in the document's text for this tag.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


namespace prefixes feature, or the string prefix:name used in the document's text for this tag.
attrs is a mapping of attribute names to values, as covered in the next section.

23.2.1.1 Attributes

The last argument of methods startElement and startElementNS is an attributes object attr, a read-only
mapping of attribute names to attribute values. For method startElement, names are identifier strings.
For method startElementNS, names are pairs (uri,localname), where uri is the namespace's URI or
None, and localname is the name of the tag. The object attr also supports methods that let you work
with the qname (qualified name) of each attribute.

getValueByQName

attr.getValueByQName(name)

Returns the attribute value for a qualified name name.

getNameByQName

attr.getNameByQName(name)

Returns the (namespace, localname) pair for a qualified name name.

getQNameByName

attr.getQNameByName(name)

Returns the qualified name for name, which is a (namespace, localname) pair.

getQNames

attr.getQNames(  )

Returns the list of qualified names of all attributes.

For startElement, each qname is the same string as the corresponding name. For startElementNS, a
qname is the corresponding local name for attributes not associated with a namespace (i.e., attributes
whose uri is None); otherwise, the qname is the string prefix:name used in the document's text for this
attribute.

The parser may reuse in later processing the attr object that it passes to methods startElement and
startElementNS. If you need to keep a copy of the attributes of an element, call attr.copy( ) to get the
copy.

23.2.1.2 Incremental parsing

All parsers support a method parse, which you call with the XML document as either a string or a file-
like object open for reading. parse does not return until the end of the XML document. Most SAX
parsers, though not all, also support incremental parsing, letting you feed the XML document to the
parser a little at a time, as the document arrives from a network connection or other source. A parser
p that is capable of incremental parsing supplies three more methods.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


close

p.close(  )

Call when the XML document is finished.

feed

p.feed(data)

Passes to the parser a part of the document. The parser processes some prefix of the text and holds
the rest in a buffer until the next call to p.feed or p.close.

reset

p.reset(  )

Call after an XML document is finished or abandoned, before you start feeding another XML document
to the parser.

23.2.1.3 The xml.sax.saxutils module

The saxutils module of package xml.sax supplies two functions and a class that are quite handy to
generate XML output based on an input XML document.

escape

escape(data,entities={})

Returns a copy of string data with characters <, >, and & changed into entity references &lt;, &gt;,
and &amp;. entities is a dictionary with strings as keys and values; each substring s of data that is a
key in entities is changed in escape's result string into string entities[s]. For example, to escape single
and double quote characters, in addition to angle brackets and ampersands, you can call:

xml.sax.saxutils.escape(data,{'"':'&quot;', "'":"&apos;"})

quoteattr

escape(data,entities={})

Same as escape, but also quotes the result string to make it immediately usable as an attribute value,
and escapes any quote characters that have to be escaped.

XMLGenerator

class XMLGenerator(out=sys.stdout, encoding='iso-8859-1')

Subclasses xml.sax.ContentHandler and implements all that is needed to reproduce the input XML

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Subclasses xml.sax.ContentHandler and implements all that is needed to reproduce the input XML
document on the given file-like object out with the specified encoding. When you must generate an
XML document that is a small modification of the input one, you can subclass XMLGenerator,
overriding methods and delegating most of the work to XMLGenerator's implementations of the
methods. For example, if all you need to do is rename some tags according to a dictionary,
XMLGenerator makes it quite simple, as shown in the following example:

import xml.sax, xml.sax.saxutils

def tagrenamer(infile, outfile, renaming_dict):
    base = xml.sax.saxutils.XMLGenerator

    class Renamer(base):
        def rename(self, name):
            return renaming_dict.get(name, name)
        def startElement(self, name, attrs):
            base.startElement(self, self.rename(name),
                              attrs)
        def endElement(self, name):
            base.endElement(self, self.rename(name))

    xml.sax.parse(infile, Renamer(outfile))

23.2.2 Parsing XHTML with xml.sax

The following example uses xml.sax to perform a typical XHTML-related task, very similar to the tasks
performed in the examples of Chapter 22. The example fetches an XHTML page from the Web with
urllib, parses it, and outputs all unique links from the page to other sites. The example uses urlparse
to examine the links for the given site, and outputs only the links whose URLs have an explicit scheme
of 'http':

import xml.sax, urllib, urlparse

class LinksHandler(xml.sax.ContentHandler):
    def startDocument(self):
        self.seen = {}
    def startElement(self, tag, attributes):
        if tag != 'a': return
        value = attributes.get('href')
        if value is not None and value not in self.seen:
            self.seen[value] = True
            pieces = urlparse.urlparse(value)
            if pieces[0] != 'http': return
            print urlparse.urlunparse(pieces)

p = xml.sax.make_parser(  )
p.setContentHandler(LinksHandler(  ))
f = urllib.urlopen('http://www.w3.org/MarkUp/')
BUFSIZE = 8192

while True:
    data = f.read(BUFSIZE)
    if not data: break
    p.feed(data)

p.close(  )

This example is quite similar to the HTMLParser example in Chapter 22. With the xml.sax module, the
parser and the handler are separate objects (while in the examples of Chapter 22 they coincided).
Method names differ (startElement in this example versus handle_starttag in the HTMLParser example).
The attributes argument is a mapping here, so its method get immediately gives us the attribute value
we're interested in, while in the examples of Chapter 22 it was a sequence of (name,value) pairs, so

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


we're interested in, while in the examples of Chapter 22 it was a sequence of (name,value) pairs, so
we had to loop on the sequence until we found the right name. Despite these differences in detail, the
overall structure is very close, and typical of simple event-driven parsing tasks.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

23.3 Parsing XML with DOM

SAX parsing does not build any structure in memory to represent the XML document. This makes SAX
fast and highly scalable, as your application builds exactly as little or as much in-memory structure as
needed for its specific tasks. However, for particularly complicated processing tasks involving
reasonably small XML documents, you may prefer to let the library build in-memory structures that
represent the whole XML document, and then traverse those structures. The XML standards describe
the DOM (Document Object Model) for XML. A DOM object represents an XML document as a tree
whose root is the document object, while other nodes correspond to elements, text contents, element
attributes, and so on.

The Python standard library supplies a minimal implementation of the XML DOM standard,
xml.dom.minidom. minidom builds everything up in memory, with the typical pros and cons of the DOM
approach to parsing. The Python standard library also supplies a different DOM-like approach in
module xml.dom.pulldom. pulldom occupies an interesting middle ground between SAX and DOM,
presenting the stream of parsing events as a Python iterator object so that you do not code callbacks,
but rather loop over the events and examine each event to see if it's of interest. When you do find an
event of interest to your application, you can ask pulldom to build the DOM subtree rooted in that
event's node by calling method expandNode, and then work with that subtree as you would in
minidom. Paul Prescod, pulldom's author and XML and Python expert, describes the net result as "80%
of the performance of SAX, 80% of the convenience of DOM." Other DOM parsers are part of the
PyXML and 4Suite extension packages, mentioned at the start of this chapter.

23.3.1 The xml.dom Package

The xml.dom package supplies exception class DOMException and subclasses of it to support fine-
grained exception handling. xml.dom also supplies a class Node, typically used as a base class for all
nodes by DOM implementations. Class Node only supplies constant attributes giving the codes for
node types, such as ELEMENT_NODE for elements, ATTRIBUTE_NODE for attributes, and so on.
xml.dom also supplies constant module attributes with the URIs of important namespaces:
XML_NAMESPACE, XMLNS_NAMESPACE, XHTML_NAMESPACE, and EMPTY_NAMESPACE.

23.3.2 The xml.dom.minidom Module

The xml.dom.minidom module supplies two functions.

parse

parse(file,parser=None)

file is a filename or a file-like object open for reading, containing an XML document. parser, if given, is
an instance of a SAX parser class; otherwise, parse generates a default SAX parser by calling
xml.sax.make_parser( ). parse returns a minidom document object instance representing the given XML
document.

parseString

parseString(string,parser=None)

Like parse, except that string is the XML document in string form.

xml.dom.minidom also supplies many classes as specified by the XML DOM standard. Almost all of
these classes subclass Node. Class Node supplies the methods and attributes that all kinds of nodes
have in common. A notable class of module xml.dom.minidom that is not a subclass of Node is

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


have in common. A notable class of module xml.dom.minidom that is not a subclass of Node is
AttributeList, identified in the DOM standard as NamedNodeMap, which is a mapping that collects the
attributes of a node of class Element.

For methods and attributes related to changing and creating XML documents, see Section 23.4 later in
this chapter. Here, I present the classes, methods, and attributes that you use most often when
traversing a DOM tree without changes, normally after the tree has been built by parsing an XML
document. For concreteness and simplicity, I mention Python classes. However, the DOM
specifications deal strictly with abstract interfaces, never with concrete classes. Your code must never
deal with the class objects directly, only with instances of those classes. Do not type-test nodes (for
example, don't use isinstance on them) and do not instantiate node classes directly (rather, use the
factory methods covered later in Section 23.4). This is good Python practice in general, but it's
particularly important here.

23.3.2.1 Node objects

Each node n in the DOM tree is an instance of some subclass of Node; therefore n supplies all
attributes and methods that Node supplies, with appropriate overriding implementations if needed.
The most frequently used methods and attributes are as follows.

attributes

The n.attributes attribute is either None or an AttributeList instance with all attributes of n.

childNodes

The n.childNodes attribute is a list of all nodes that are children of n, possibly an empty list.

firstChild

The n.firstChild attribute is None when n.childNodes is empty, otherwise like n.childNodes[0].

hasChildNodes

n.hasChildNodes(  )

Like len(n.childNodes)!=0, but possibly faster.

isSameNode

n.isSameNode(other)

True when n and other refer to the same DOM node, otherwise False. Do not use the normal Python
idiom n is other: a Python DOM implementation is free to generate multiple Node instances that refer
to the same DOM node. Therefore, to check the identity of DOM node references, always and
exclusively use method isSameNode.

lastChild

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The n.lastChild attribute is None when n.childNodes is empty, otherwise like n.childNodes[-1].

localName

The n.localName attribute is the local part of n's qualified name (relevant when namespaces are
involved).

namespaceURI

The n.namespaceURI attribute is None when n's qualified name has no namespace part, otherwise the
namespace's URI.

nextSibling

The n.nextSibling attribute is None when n is the last child of n's parent, otherwise the next child of n's
parent.

nodeName

The n.nodeName attribute is n's name string. The string is a node-specific name when that makes
sense for n's node type (e.g., the tag name when n is an Element), otherwise a string starting with
'#'.

nodeType

The n.nodeType attribute is n's type code, an integer that is one of the constant attributes of class
Node.

nodeValue

The n.nodeValue attribute is None when n has no value (e.g., when n is an Element), otherwise n's
value (e.g., the text content when n is an instance of class Text).

normalize

n.normalize(  )

Normalizes the entire subtree rooted at n, merging adjacent Text nodes. Parsing may separate ranges
of text in the XML document into arbitrary chunks; normalize ensures that text ranges remain

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


of text in the XML document into arbitrary chunks; normalize ensures that text ranges remain
separate only when there is markup between them.

ownerDocument

The n.ownerDocument attribute is the Document instance that contains n.

parentNode

The n.parentNode attribute is n's parent node in the DOM tree, or None for attribute nodes and nodes
not in the tree.

prefix

The n.prefix attribute is None when n's qualified name has no namespace prefix, otherwise the
namespace prefix. Note that a name may have a namespace even if it has no namespace prefix.

previousSibling

The n.previousSibling attribute is None when n is the first child of n's parent, otherwise the previous
child of n's parent.

23.3.2.2 Attr objects

The Attr class is a subclass of Node that represents an attribute of an Element. Besides attributes and
methods of class Node, an instance a of Attr supplies the following attributes.

ownerElement

The a.ownerElement attribute is the Element instance of which a is an attribute.

specified

The a.specified attribute is true if a was explicitly specified in the document, false if obtained by
default.

23.3.2.3 Document objects

The Document class is a subclass of Node whose instances are returned by the parse and parseString
functions of module xml.dom.minidom. All nodes in the document refer to the same Document node as
their ownerDocument attribute. To check this, you must use the isSameNode method, not Python
identity checking (operator is). Besides the attributes and methods of class Node, d supplies the
following attributes and methods.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


doctype

The d.doctype attribute is the DocumentType instance corresponding to d's DTD. This attribute comes
directly from the !DOCTYPE declaration in d's XML source.

documentElement

The d.documentElement attribute is the Element instance corresponding to d's root element.

getElementById

d.getElementById(elementId)

Returns the Element instance within the document that has the given ID (what element attributes are
IDs is specified by the DTD), or None if there is no such instance (or the underlying parser does not
supply ID information).

getElementsByTagName

d.getElementsByTagName(tagName)

Returns the list of Element instances within the document whose tag equals string tagName, in the
same order as in the parsed XML document. May be the empty list. When name is '*', returns the list
of all Element instances within the document, with any tag.

getElementsByTagNameNS

d.getElementsByTagNameNS(namespaceURI,localName)

Returns the list of Element instances within the document with the given namespaceURI and
localName, in the order found in the XML document. May be the empty list. A value of '*' for
namespaceURI, localName, or both matches all values of the corresponding field.

23.3.2.4 Element objects

The Element class is a subclass of Node that represents tagged elements. Besides attributes and
methods of Node, an instance e of Element supplies the following methods.

getAttribute

e.getAttribute(name)

Returns the value of e's attribute with the given name. Returns the empty string '' if e has no attribute
with the given name.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


getAttributeNS

e.getAttributeNS(namespaceURI,localName)

Returns the value of e's attribute with the given namespaceURI and localName.

getAttributeNode

e.getAttributeNode(name)

Returns the Attr instance that is e's attribute with the given name, or None if no attribute with that
name is among e's attributes.

getAttributeNodeNS

e.getAttributeNodeNS(namespaceURI,localName)

Returns the Attr instance that is e's attribute with the given namespaceURI and localName, or None if
no such attribute is among e's attributes.

getElementsByTagName

e.getElementsByTagName(tagName)

Returns the list of Element instances within the subtree rooted at e whose tag equals string tagName,
in the same order as in the XML document. e is included in the list that getElementsbyTagName
returns if e's tag equals tagName. getElementsbyTagName may return the empty list when no node in
the subtree rooted at e has a tag equal to tagName. When tagName is '*', getElementsbyTagName
returns the list of all Element instances within the subtree, with any tag, including e.

getElementsByTagNameNS

e.getElementsByTagNameNS(namespaceURI,localName)

Returns the list of Element instances within the subtree rooted at e, with the given namespaceURI and
localname, in the same order as in the XML document. A value of '*' for namespaceURI, localname, or
both matches all values of the corresponding field. The list may include e or may be empty, just as for
method getElementsByTagName.

hasAttribute

e.hasAttribute(name)

True if and only if e has an attribute with the given name. If the underlying parser extracts the
relevant information from the DTD, hasAttribute is also true for attributes of e that have a default
value, even when they are not explicitly specified.

hasAttributeNS

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


e.hasAttributeNS(namespaceURI,localName)

True if and only if e has an attribute with the given namespaceURI and localName. Same as method
hasAttribute regarding attributes with default values from the DTD.

23.3.3 Parsing XHTML with xml.dom.minidom

The following example uses xml.dom.minidom to perform the same task as in the previous example for
xml.sax, fetching a page from the Web with urllib, parsing it, and outputting the hyperlinks:

import xml.dom.minidom, urllib, urlparse

f = urllib.urlopen('http://www.w3.org/MarkUp/')
doc = xml.dom.minidom.parse(f)
as = doc.getElementsByTagName('a')
seen = {}
for a in as:
    value = a.getAttribute('href')
    if value and value not in seen:
        seen[value] = True
        pieces = urlparse.urlparse(value)
        if pieces[0] == 'http' and pieces[1]!='www.w3.org':
            print urlparse.urlunparse(pieces)

In this example, we get the list of all elements with tag 'a', and the relevant attribute, if any, for each
of them. We then work in the usual way with the attribute's value.

23.3.4 The xml.dom.pulldom Module

The xml.dom.pulldom module supplies two functions.

parse

parse(file,parser=None)

file is a filename or a file-like object open for reading, containing an XML document. parser, if given, is
an instance of a SAX parser class; otherwise parse generates a default SAX parser by calling
xml.sax.make_parser( ). parse returns a pulldom event stream instance representing the given XML
document.

parseString

parseString(string,parser=None)

Like parse, except that string is the XML document in string form.

xml.dom.pulldom also supplies class DOMEventStream, an iterator whose items are pairs (event,node),
where event is a string giving the event type, and node is an instance of an appropriate subclass of
class Node. The possible values for event are constant uppercase strings that are also available as
constant attributes of module xml.dom.pulldom with the same names: CHARACTERS, COMMENT,
END_DOCUMENT, END_ELEMENT, IGNORABLE_WHITESPACE, PROCESSING_INSTRUCTION,
START_DOCUMENT, and START_ELEMENT.

An instance d of class DOMEventStream supplies one other important method.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


expandNode

d.expandNode(node)

node must be the latest instance of Node so far returned by iterating on d, i.e., the instance of Node
returned by the latest call to d.next( ). expandNode processes that part of the XML document stream
that corresponds to the subtree rooted at node, ensuring that you can then access the subtree with
the usual minidom approach. d iterates on itself for the purpose so that after calling expandNode, the
next call to next continues right after the subtree thus expanded.

23.3.5 Parsing XHTML with xml.dom.pulldom

The following example uses xml.dom.pulldom to perform the same task as our previous examples,
fetching a page from the Web with urllib, parsing it, and outputting the hyperlinks:

import xml.dom.pulldom, urllib, urlparse

f = urllib.urlopen('http://www.w3.org/MarkUp/')
doc = xml.dom.pulldom.parse(f)
seen = {}
for event, node in doc:
    if event=='START_ELEMENT' and node.nodeName=='a':
        doc.expandNode(node)
        value = node.getAttribute('href')
        if value and value not in seen:
            seen[value] = True
            pieces = urlparse.urlparse(value)
            if pieces[0] == 'http' and pieces[1]!='www.w3.org':
                print urlparse.urlunparse(pieces)

In this example, we select only elements with tag 'a'. For each of them we request full expansion, and
then proceed just like in the minidom example (i.e., we get the relevant attribute, if any, then work in
the usual way with the attribute's value). The expansion is in fact not necessary in this specific case,
since we do not need to work with the subtree rooted in each element with tag 'a', just with the
attributes, and attributes can be accessed without calling expandNode. Therefore, this example works
just as well if you change the call to doc.expandNode into a comment. However, I put the expandNode
call in the example to show how this crucial method of pulldom is normally used in context.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

23.4 Changing and Generating XML

Just like for HTML and other kinds of structured text, the simplest way to output an XML document is
often to prepare and write it using Python's normal string and file operations, covered in Chapter 9
and Chapter 10. Templating, covered in Chapter 22, is also often the best approach. Subclassing class
XMLGenerator, covered earlier in this chapter, is a good way to generate an XML document that is like
an input XML document, except for a few changes.

The xml.dom.minidom module offers yet another possibility, because its classes support methods to
generate, insert, remove, and alter nodes in a DOM tree representing the document. You can create a
DOM tree by parsing and then alter it, or you can create an empty DOM tree and populate it, and then
output the resulting XML document with methods toxml, toprettyxml, or writexml of the Document
instance. You can also output a subtree of the DOM tree by calling these methods on the Node that is
the subtree's root.

23.4.1 Factory Methods of a Document Object

The Document class supplies factory methods to create new instances of subclasses of Node. The most
frequently used factory methods of a Document instance d are as follows.

createComment

d.createComment(data)

Builds and returns an instance c of class Comment for a comment with text data.

createElement

d.createElement(tagname)

Builds and returns an instance e of class Element for an element with the given tag.

createTextNode

d.createTextNode(data)

Builds and returns an instance t of class TextNode for a text node with text data.

23.4.2 Mutating Methods of an Element Object

An instance e of class Element supplies the following methods to remove and add attributes.

removeAttribute

e.removeAttribute(name)

Removes e's attribute with the given name.

setAttribute

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


e.setAttribute(name,value)

Changes e's attribute with the given name to have the given value, or adds to e a new attribute with
the given name and value if e had no attribute named name.

23.4.3 Mutating Methods of a Node Object

An instance n of class Node supplies the following methods to remove, add, and replace children.

appendChild

n.appendChild(child)

Makes child the last child of n, whatever child's parent was (including n or None).

insertBefore

n.insertBefore(child,nextChild)

Makes child the child of n immediately before nextChild, whatever child's parent was (including n or
None). nextChild must be a child of n.

removeChild

n.removeChild(child)

Makes child parentless and returns child. child must be a child of n.

replaceChild

n.replaceChild(child,oldChild)

Makes child the child of n in oldChild's place, whatever child's parent was (including n or None).
oldChild must be a child of n. Returns oldChild.

23.4.4 Output Methods of a Node Object

An instance n of class Node supplies the following methods to output the subtree rooted at n.

toprettyxml

n.toprettyxml(indent='\t',newl='\n')

Returns a string, plain or Unicode, with the XML source for the subtree rooted at n, using indent to
indent nested tags and newl to end lines.

toxml

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


n.toxml(  )

Like n.toprettyxml('',''), i.e., inserts no extraneous whitespace.

writexml

n.writexml(file)

Writes the XML source for the subtree rooted at n to file-like object file, open for writing. Note that
file.write must accept Unicode strings (as covered in Section 9.6.1), unless all text in the XML source
produced can be converted implicitly to plain strings using the current default encoding (normally
'ascii').

23.4.5 Changing and Outputting XHTML with xml.dom.minidom

The following example uses xml.dom.minidom to analyze an XHTML page and output it to standard
output with each hyperlink's destination URL shown, in three sets of parentheses, just before the
hyperlink:

import xml.dom.minidom, urllib, sys

f = urllib.urlopen('http://www.w3.org/MarkUp/')
doc = xml.dom.minidom.parse(f)
as = doc.getElementsByTagName('a')
for a in as:
    value = a.getAttribute('href')
    if value:
        newtext = doc.createTextNode(' (((%s)))'%value)
        a.parentNode.insertBefore(newtext,a)

class UnicodeStdoutWriter:
    def write(self, data):
        sys.stdout.write(data.encode('utf-8'))

doc.writexml(UnicodeStdoutWriter(  ))

This example wraps sys.stdout in a little UnicodeStdoutWriter class in order to encode Unicode output.
Further, it uses encoding 'utf-8' because that is the encoding that the XML standard specifies as the
default, and up to Python 2.2.2 we have no way of asking object doc to explicitly request a different
encoding. In Python 2.3, method writexml accepts an optional keyword argument named encoding that
lets us control the encoding attribute in the XML declaration.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part V: Extending and Embedding
Chapter 24

Chapter 25

Chapter 26

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 24. Extending and Embedding Classic Python

Classic Python runs on a portable C-coded virtual machine. Python's built-in objects, such as
numbers, sequences, dictionaries, and files, are coded in C, as are several modules in Python's
standard library. Modern platforms support dynamic-load libraries, with file extensions such as .dll on
Windows and .so on Linux, and building Python produces such binary files. You can code your own
extension modules for Python in C, using the Python C API covered in this chapter, to produce and
deploy dynamic libraries that Python scripts and interactive sessions can later use with the import
statement, covered in Chapter 7.

Extending Python means building modules that Python code can import to access the features the
modules supply. Embedding Python means executing Python code from your application. For such
execution to be useful, Python code must in turn be able to access some of your application's
functionality. In practice, therefore, embedding implies some extending, as well as a few embedding-
specific operations.

Embedding and extending are covered extensively in Python's online documentation; you can find an
in-depth tutorial at http://www.python.org/doc/ext/ext.html and a reference manual at
http://www.python.org/doc/api/api.html. Many details are best studied in Python's extensively
documented sources. Download Python's source distribution and study the sources of Python's core,
C-coded extension modules and the example extensions supplied for study purposes.

This chapter covers the basics of extending and embedding Python with C. It also mentions, but does
not cover, other possibilities for extending Python.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

24.1 Extending Python with Python's C API

A Python extension module named x resides in a dynamic library with the same filename (x.pyd on
Windows, x.so on most Unix-like platforms) in an appropriate directory (normally the site-packages
subdirectory of the Python library directory). You generally build the x extension module from a C
source file x.c with the overall structure:

#include <Python.h>

/* omitted: the body of the x module */

void
initx(void)
{
    /* omitted: the code that initializes the module named x */
}

When you have built and installed the extension module, a Python statement import x loads the
dynamic library, then locates and calls the function named initx, which must do all that is needed to
initialize the module object named x.

24.1.1 Building and Installing C-Coded Python Extensions

To build and install a C-coded Python extension module, it's simplest and most productive to use the
distribution utilities, distutils, covered in Chapter 26. In the same directory as x.c, place a file named
setup.py that contains at least the following statements:

from distutils.core import setup, Extension
setup(name='x', ext_modules=[ Extension('x',sources=['x.c']) ])

From a shell prompt in this directory, you can now run:

C:\> python setup.py install

to build the module and install it so that it becomes usable in your Python installation. The distutils
perform all needed compilation and linking steps, with the right compiler and linker commands and
flags, and copy the resulting dynamic library in an appropriate directory, dependent on your Python
installation. Your Python code can then access the resulting module with the statement import x.

24.1.2 Overview of C-Coded Python Extension Modules

Your C function initx generally has the following overall structure:

void
initx(void)
{
    PyObject* thismod = Py_InitModule3("x", x_methods, "docstring for x");
    /* optional: calls to PyModule_AddObject(thismod, "somename", someobj)
       and other Python C API calls to finish preparing module object
       thismod and its types (if any) and other objects.
    */
}

More details are covered in Section 24.1.4 later in this chapter. x_methods is an array of PyMethodDef
structs. Each PyMethodDef struct in the x_methods array describes a C function that your module x
makes available to Python code that imports x. Each such C function has the following overall
structure:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


static PyObject*
func_with_named_arguments(PyObject* self, PyObject* args, PyObject* kwds)
{
    /* omitted: body of function, which accesses arguments via the Python C
       API function PyArg_ParseTupleAndKeywords, and returns a PyObject*
       result, NULL for errors */
}

or some simpler variant, such as:

static PyObject*
func_with_positional_args_only(PyObject* self, PyObject* args)
{
    /* omitted: body of function, which accesses arguments via the Python C
       API function PyArg_ParseTuple, and returns a PyObject* result,
       NULL for errors */
}

How C-coded functions access arguments passed by Python code is covered in Section 24.1.6 later in
this chapter. How such functions build Python objects is covered in Section 24.1.7, and how they raise
or propagate exceptions back to the Python code that called them is covered in Section 24.1.8. When
your module defines new Python types (as well as or instead of Python-callable functions), your C
code defines one or more instances of struct PyTypeObject. This subject is covered in Section 24.1.12
later in this chapter.

A simple example that makes use of all these concepts is shown in Section 24.1.11 later in this
chapter. A toy-level "Hello World" example could be as simple as:

#include <Python.h>

static PyObject*
helloworld(PyObject* self)
{
    return Py_BuildValue("s", "Hello, C-coded Python extensions world!");
}

static char helloworld_docs[] = 
    "helloworld(  ): return a popular greeting phrase\n";

static PyMethodDef helloworld_funcs[] = {
    {"helloworld", (PyCFunction)helloworld, METH_NOARGS, helloworld_docs},
    {NULL}
};

void
inithelloworld(void)
{
    Py_InitModule3("helloworld", helloworld_funcs, 
                   "Toy-level extension module");
}

Save this as helloworld.c, and build it through a setup.py script with distutils. After you have run
python setup.py install, you can use the newly installed module, for example from a Python
interactive session, such as:

>>> import helloworld
>>> print helloworld.helloworld(  )
Hello, C-coded Python extensions world!
>>>

24.1.3 Return Values of Python's C API Functions

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


All functions in the Python C API return either an int or a PyObject*. Most functions returning int return
0 in case of success, and -1 to indicate errors. Some functions return results that are true or false:
those functions return 0 to indicate false and an integer not equal to 0 to indicate true, and never
indicate errors. Functions returning PyObject* return NULL in case of errors. See "Exceptions" later in
this chapter for more details on how C-coded functions handle and raise errors.

24.1.4 Module Initialization

Function initx must contain, at a minimum, a call to one of the module initialization functions supplied
by the C API. You can always use the Py_InitModule3 function.

Py_InitModule3

PyObject* Py_InitModule3(char* name,PyMethodDef* methods,char* doc)

name is the C string name of the module you are initializing (e.g., "name"). methods is an array of
PyMethodDef structures, covered next in this chapter. doc is the C string that becomes the docstring
of the module. Py_InitModule3 returns a PyObject* that is a borrowed reference to the new module
object, as covered in Section 24.1.5 later in this chapter. In practice, this means that you can ignore
the return value if you need to perform no more initialization operations on this module. Otherwise,
assign the return value to a C variable of type PyObject* and continue initialization.

Py_InitModule3 initializes the module object to contain the functions described in table methods.
Further initialization, if any, may add other module attributes, and is generally best performed with
calls to the following convenience functions.

PyModule_AddIntConstant

int PyModule_AddIntConstant(PyObject* module,char* name,int value)

Adds to module module an attribute named name with integer value value.

PyModule_AddObject

int PyModule_AddObject(PyObject* module,char* name,PyObject* value)

Adds to module module an attribute named name with value value and steals a reference to value, as
covered in Section 24.1.5.

PyModule_AddStringConstant

int PyModule_AddStringConstant(PyObject* module,char* name,char* value)

Adds to module module an attribute named name with string value value.

Some module initialization operations may be conveniently performed by executing Python code with
PyRun_String, covered later in Section 24.3.4, with the module's dictionary as both the globals and
locals argument. If you find yourself using PyRun_String extensively, rather than just as an occasional
convenience, consider the possibility of splitting your extension module in two: a C-coded extension
module offering raw, fast functionality, and a Python module wrapping the C-coded extension to
provide further convenience and handy utilities.

When you do need to get a module's dictionary, use the PyModule_GetDict function.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PyModule_GetDict

PyObject* PyModule_GetDict(PyObject* module)

Returns a borrowed reference to the dictionary of module module. You should not use
PyModule_GetDict for the specific tasks supported by the PyModule_Add functions covered earlier in
this section; I suggest using PyModule_GetDict only for such purposes as supporting the use of
PyRun_String.

If you need to access another module, you can import it by calling the PyImport_Import function.

PyImport_Import

PyObject* PyImport_Import(PyObject* name)

Imports the module named in Python string object name and returns a new reference to the module
object, like Python's _ _import_ _(name). PyImport_Import is the highest-level, simplest, and most
often used way to import a module.

Beware, in particular, of using function PyImport_ImportModule, which may often look more
convenient because it accepts a char* argument. PyImport_ImportModule operates on a lower level,
bypassing any import hooks that may be in force, so extensions that use it will be far harder to
incorporate in packages such as those built by tools py2exe and Installer, covered in Chapter 26.
Therefore, always do your importing by calling PyImport_Import, unless you have very specific needs
and know exactly what you're doing.

To add functions to a module (or non-special methods to new types, as covered later in Section
24.1.12), you must describe the functions or methods in an array of PyMethodDef structures, and
terminate the array with a sentinel (i.e., a structure whose fields are all 0 or NULL). PyMethodDef is
defined as follows:

typedef struct {
    char* ml_name;        /* Python name of function or method */
    PyCFunction ml_meth;  /* pointer to C function impl */
    int ml_flags;         /* flag describing how to pass arguments */
    char* ml_doc;         /* docstring for the function or method */
} PyMethodDef

You must cast the second field to (PyCFunction) unless the C function's signature is exactly PyObject*
function(PyObject* self, PyObject* args), which is the typedef for PyCFunction. This signature is correct
when ml_flags is METH_O, meaning a function that accepts a single argument, or METH_VARARGS,
meaning a function that accepts positional arguments. For METH_O, args is the only argument. For
METH_VARARGS, args is a tuple of all arguments, to be parsed with the C API function
PyArg_ParseTuple. However, ml_flags can also be METH_NOARGS, meaning a function that accepts no
arguments, or METH_KEYWORDS, meaning a function that accepts both positional and named
arguments. For METH_NOARGS, the signature is PyObject* function(PyObject* self), without
arguments. For METH_KEYWORDS, the signature is:

PyObject* function(PyObject* self, PyObject* args, PyObject* kwds)

args is the tuple of positional arguments, and kwds the dictionary of named arguments. args and kwds
are parsed together with the C API function PyArg_ParseTupleAndKeywords.

When a C-coded function implements a module's function, the self parameter of the C function is
always NULL for any value of the ml_flags field. When a C-coded function implements a non-special
method of an extension type, the self parameter points to the instance on which the method is being
called.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


24.1.5 Reference Counting

Python objects live on the heap, and C code sees them via PyObject*. Each PyObject counts how many
references to itself are outstanding, and destroys itself when the number of references goes down to
0. To make this possible, your code must use Python-supplied macros: Py_INCREF to add a reference
to a Python object, and Py_DECREF to abandon a reference to a Python object. The Py_XINCREF and
Py_XDECREF macros are like Py_INCREF and Py_DECREF, but you may also use them innocuously on a
null pointer. The test for a non-null pointer is implicitly performed inside the Py_XINCREF and
Py_XDECREF macros, which saves you from needing to write out that test explicitly.

A PyObject* p, which your code receives by calling or being called by other functions, is known as a
new reference if the code that supplies p has already called Py_INCREF on your behalf. Otherwise, it is
called a borrowed reference. Your code is said to own new references it holds, but not borrowed ones.
You can call Py_INCREF on a borrowed reference to make it into a reference that you own; you must
do this if you need to use the reference across calls to code that might cause the count of the
reference you borrowed to be decremented. You must always call Py_DECREF before abandoning or
overwriting references that you own, but never on references you don't own. Therefore,
understanding which interactions transfer reference ownership and which ones rely on reference
borrowing is absolutely crucial. For most functions in the C API, and for all functions that you write
and Python calls, the following general rules apply:

1. PyObject* arguments are borrowed references

2. A PyObject* returned as the function's result transfers ownership

For each of the two rules, there are occasional exceptions. PyList_SetItem and PyTuple_SetItem steal a
reference to the item they are setting (but not to the list or tuple object into which they're setting it).
So do the faster versions of these two functions that exist as C preprocessor macros, PyList_SET_ITEM
and PyTuple_SET_ITEM. So does PyModule_AddObject, covered earlier in this chapter. There are no
other exceptions to the first rule. The rationale for these exceptions, which may help you remember
them, is that the object you're setting is most often one you created for the purpose, so the
reference-stealing semantics save you from having to call Py_DECREF immediately afterward.

The second rule has more exceptions than the first one: there are several cases in which the returned
PyObject* is a borrowed reference rather than a new reference. The abstract functions, whose names
begin with PyObject_, PySequence_, PyMapping_, and PyNumber_, return new references. This is
because you can call them on objects of many types, and there might not be any other reference to
the resulting object that they return (i.e., the returned object might be created on the fly). The
concrete functions, whose names begin with PyList_, PyTuple_, PyDict_, and so on, return a borrowed
reference when the semantics of the object they return ensure that there must be some other
reference to the returned object somewhere.

In this chapter, I indicate all cases of exceptions to these rules (i.e., the return of borrowed
references and the rare cases of reference stealing from arguments) regarding all functions that I
cover. When I don't explicitly mention a function as being an exception, it means that the function
follows the rules: its PyObject* arguments, if any, are borrowed references, and its PyObject* result, if
any, is a new reference.

24.1.6 Accessing Arguments

A function that has ml_flags in its PyMethodDef set to METH_NOARGS is called from Python with no
arguments. The corresponding C function has a signature with only one argument, self. When ml_flags
is METH_O, Python code must call the function with one argument. The C function's second argument
is a borrowed reference to the object that the Python caller passes as the argument's value.

When ml_flags is METH_VARARGS, Python code can call the function with any number of positional
arguments, which are collected as a tuple. The C function's second argument is a borrowed reference
to the tuple. Your C code can then call the PyArg_ParseTuple function.

PyArg_ParseTuple

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


int PyArg_ParseTuple(PyObject* tuple,char* format,...)

Returns 0 for errors, a value not equal to 0 for success. tuple is the PyObject* that was the C
function's second argument. format is a C string that describes mandatory and optional arguments.
The following arguments of PyArg_ParseTuple are the addresses of the C variables in which to put the
values extracted from the tuple. Any PyObject* variables among the C variables are borrowed
references. Table 24-1 lists the commonly used code strings, of which zero or more are joined to form
string format.

Table 24-1. Format codes for PyArg_ParseTuple
Code C type Meaning
c char A Python string of length 1 becomes a C char
d double A Python float becomes a C double
D Py_Complex A Python complex becomes a C Py_Complex
f float A Python float becomes a C float
i int A Python int becomes a C int
l long A Python int becomes a C long
L long long A Python int becomes a C long long (or _int64 on Windows)

O PyObject* Gets non-NULL borrowed reference to a Python argument

O! type + PyObject* Like code O, plus type checking or TypeError (see below)

O& convert + void* Arbitrary conversion (see below)

s char* Python string without embedded nulls to C char*
s# char* + int Any Python string to C address and length

t# char* + int Read-only single-segment buffer to C address and length

u Py_UNICODE* Python Unicode without embedded nulls to C (UTF-16)

u# Py_UNICODE* + int Any Python Unicode C (UTF-16) address and length

w# char* + int Read-write single-segment buffer to C address and length

z char* Like code s, also accepts None (sets C's char* to NULL)

z# char* + int Like code s#, also accepts None (sets C's char* to NULL)

(...) as per ... A Python sequence is treated as one argument per item

|  The following arguments are optional

:  Format finished, followed by function name for error messages

;  Format finished, followed by entire error message text

Code formats d to L accept numeric arguments from Python. Python coerces the corresponding
values. For example, a code of i can correspond to a Python float—the fractional part gets truncated,
as if built-in function int had been called. Py_Complex is a C struct with two fields named real and
imag, both of type double.

O is the most general format code and accepts any argument, which you can later check and/or
convert as needed. Variant O! corresponds to two arguments in the variable arguments: first the
address of a Python type object, then the address of a PyObject*. O! checks that the corresponding
value belongs to the given type (or any subtype of that type) before setting the PyObject* to point to
the value. Variant O& also corresponds to two arguments in the variable arguments: first the address
of a converter function you coded, then a void* (i.e., any address at all). The converter function must
have signature int convert(PyObject*, void*). Python calls your conversion function with the value
passed from Python as the first argument and the void* from the variable arguments as the second
argument. The conversion function must either return 0 and raise an exception (as covered in Section
24.1.8 later in this chapter) to indicate an error, or return 1 and store whatever is appropriate via the
void* it gets.

Code format s accepts a string from Python and the address of a char* (i.e., a char**) among the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Code format s accepts a string from Python and the address of a char* (i.e., a char**) among the
variable arguments. It changes the char* to point at the string's buffer, which your C code must then
treat as a read-only, null-terminated array of chars (i.e., a typical C string; however, your code must
not modify it). The Python string must contain no embedded null characters. s# is similar, but
corresponds to two arguments among the variable arguments: first the address of a char*, then the
address of an int to set to the string's length. The Python string can contain embedded nulls, and
therefore so can the buffer to which the char* is set to point. u and u# are similar, but accept any
Unicode string, and the C-side pointers must be Py_UNICODE* rather than char*. Py_UNICODE is a
macro defined in Python.h, and corresponds to the type of a Python Unicode character in the
implementation (this is often, but not always, the same as a wchar_t in C).

t# and w# are similar to s#, but the corresponding Python argument can be any object of a type that
respects the buffer protocol, respectively read-only and read-write. Strings are a typical example of
read-only buffers. mmap and array instances are typical examples of read-write buffers, and they are
also acceptable where a read-only buffer is required (i.e., for a t#).

When one of the arguments is a Python sequence of known length, you can use format codes for each
of its items, and corresponding C addresses among the variable arguments, by grouping the format
codes in parentheses. For example, code (ii) corresponds to a Python sequence of two numbers, and,
among the remaining arguments, corresponds to two addresses of ints.

The format string may include a vertical bar (|) to indicate that all following arguments are optional.
You must initialize the C variables, whose addresses you pass among the variable arguments for later
arguments, to suitable default values before you call PyArg_ParseTuple. PyArg_ParseTuple does not
change the C variables corresponding to optional arguments that were not passed in a given call from
Python to your C-coded function.

The format string may optionally end with :name to indicate that name must be used as the function
name if any error messages are needed. Alternatively, the format string may end with ;text to indicate
that text must be used as the entire error message if PyArg_ParseTuple detects errors (this is rarely
used).

A function that has ml_flags in its PyMethodDef set to METH_KEYWORDS accepts positional and
keyword arguments. Python code calls the function with any number of positional arguments, which
get collected as a tuple, and keyword arguments, which get collected as a dictionary. The C function's
second argument is a borrowed reference to the tuple, and the third one is a borrowed reference to
the dictionary. Your C code then calls the PyArg_ParseTupleAndKeywords function.

PyArg_ParseTupleAndKeywords

int PyArg_ParseTupleAndKeywords(PyObject* tuple,PyObject* dict, 
char* format,char** kwlist,...)

Returns 0 for errors, a value not equal to 0 for success. tuple is the PyObject* that was the C
function's second argument. dict is the PyObject* that was the C function's third argument. format is
like for PyArg_ParseTuple, except that it cannot include the (...) format code to parse nested
sequences. kwlist is an array of char* terminated by a NULL sentinel, with the names of the
parameters, one after the other. For example, the following C code:

static PyObject*
func_c(PyObject* self, PyObject* args, PyObject* kwds)
{
    static char* argnames[] = {"x", "y", "z", NULL};
    double x, y=0.0, z=0.0;
    if(!PyArg_ParseTupleAndKeywords(
        args,kwds,"d|dd",argnames,&x,&y,&z))
        return NULL;
    /* rest of function snipped */

is roughly equivalent to this Python code:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


def func_py(x, y=0.0, z=0.0):
    x, y, z = map(float, (x,y,z))
    # rest of function snipped

24.1.7 Creating Python Values

C functions that communicate with Python must often build Python values, both to return as their
PyObject* result and for other purposes, such as setting items and attributes. The simplest and
handiest way to build a Python value is most often with the Py_BuildValue function.

Py_BuildValue

PyObject* Py_BuildValue(char* format,...)

format is a C string that describes the Python object to build. The following arguments of
Py_BuildValue are C values from which the result is built. The PyObject* result is a new reference.
Table 24-2 lists the commonly used code strings, of which zero or more are joined into string format.
Py_BuildValue builds and returns a tuple if format contains two or more format codes, or if format
begins with ( and ends with ). Otherwise, the result is not a tuple. When you pass buffers, as for
example in the case of format code s#, Py_BuildValue copies the data. You can therefore modify,
abandon, or free( ) your original copy of the data after Py_BuildValue returns. Py_BuildValue always
returns a new reference (except for format code N). Called with an empty format, Py_BuildValue("")
returns a new reference to None.

Table 24-2. Format codes for Py_BuildValue
Code C type Meaning
c char A C char becomes a Python string of length 1
d double A C double becomes a Python float
D Py_Complex A C Py_Complex becomes a Python complex
i int A C int becomes a Python int
l long A C long becomes a Python int
N PyObject* Passes a Python object and steals a reference

O PyObject* Passes a Python object and INCREFs it as per normal rules

O& convert + void* Arbitrary conversion (see below)

s char* C null-terminated char* to Python string, or NULL to None
s# char* + int C char* and length to Python string, or NULL to None
u Py_UNICODE* C wide (UCS-2) null-terminated string to Python Unicode, or NULL to None
u# Py_UNICODE* + int C wide (UCS-2) string and length to Python Unicode, or NULL to None
(...) as per ... Build Python tuple from C values

[...] as per ... Build Python list from C values

{...} as per ... Build Python dictionary from C values, alternating keys and values (must
be an even number of C values)

Code O& corresponds to two arguments among the variable arguments: first the address of a
converter function you code, then a void* (i.e., any address at all). The converter function must have
signature PyObject* convert(void*). Python calls the conversion function with the void* from the
variable arguments as the only argument. The conversion function must either return NULL and raise
an exception (as covered in Section 24.1.8 later in this chapter) to indicate an error, or return a new
reference PyObject* built from the data in the void*.

Code {...} builds dictionaries from an even number of C values, alternately keys and values. For
example, Py_BuildValue("{issi}",23,"zig","zag",42) returns a dictionary like Python's {23:'zig','zag':42}.

Note the important difference between codes N and O. N steals a reference from the PyObject*

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Note the important difference between codes N and O. N steals a reference from the PyObject*
corresponding value among the variable arguments, so it's convenient when you're building an object
including a reference you own that you would otherwise have to Py_DECREF. O does no reference
stealing, so it's appropriate when you're building an object including a reference you don't own, or a
reference you must also keep elsewhere.

24.1.8 Exceptions

To propagate exceptions raised from other functions you call, return NULL as the PyObject* result
from your C function. To raise your own exceptions, set the current-exception indicator and return
NULL. Python's built-in exception classes (covered in Chapter 6) are globally available, with names
starting with PyExc_, such as PyExc_AttributeError, PyExc_KeyError, and so on. Your extension module
can also supply and use its own exception classes. The most commonly used C API functions related
to raising exceptions are the following.

PyErr_Format

PyObject* PyErr_Format(PyObject* type,char* format,...)

Raises an exception of class type, a built-in such as PyExc_IndexError, or an exception class created
with PyErr_NewException. Builds the associated value from format string format, which has syntax
similar to printf's, and the following C values indicated as variable arguments above. Returns NULL, so
your code can just call:

return PyErr_Format(PyExc_KeyError, 
    "Unknown key name (%s)", thekeystring);

PyErr_NewException

PyObject* PyErr_NewException(char* name,PyObject* base,PyObject* dict)

Subclasses exception class base, with extra class attributes and methods from dictionary dict
(normally NULL, meaning no extra class attributes or methods), creating a new exception class named
name (string name must be of the form "modulename.classname") and returning a new reference to
the new class object. When base is NULL, uses PyExc_Exception as the base class. You normally call
this function during initialization of a module object module. For example:

PyModule_AddObject(module, "error", 
    PyErr_NewException("mymod.error", NULL, NULL));

PyErr_NoMemory

PyObject* PyErr_NoMemory(  )

Raises an out-of-memory error and returns NULL, so your code can just call:

return PyErr_NoMemory(  );

PyErr_SetObject

void PyErr_SetObject(PyObject* type,PyObject* value)

Raises an exception of class type, a built-in such as PyExc_KeyError, or an exception class created with
PyErr_NewException, with value as the associated value (a borrowed reference). PyErr_SetObject is a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PyErr_NewException, with value as the associated value (a borrowed reference). PyErr_SetObject is a
void function (i.e., returns no value).

PyErr_SetFromErrno

PyObject* PyErr_SetFromErrno(PyObject* type)

Raises an exception of class type, a built-in such as PyExc_OSError, or an exception class created with
PyErr_NewException. Takes all details from global variable errno, which C library functions and system
calls set for many error cases, and the standard C library function strerror. Returns NULL, so your code
can just call:

return PyErr_SetFromErrno(PyExc_IOError);

PyErr_SetFromErrnoWithFilename

PyObject* PyErr_SetFromErrnoWithFilename(PyObject* type,char* filename)

Like PyErr_SetFromErrno, but also provides string filename as part of the exception's value. When
filename is NULL, works like PyErr_SetFromErrno.

Your C code may want to deal with an exception and continue, as a try/except statement would let
you do in Python code. The most commonly used C API functions related to catching exceptions are
the following.

PyErr_Clear

void PyErr_Clear(  )

Clears the error indicator. Innocuous if no error is pending.

PyErr_ExceptionMatches

int PyErr_ExceptionMatches(PyObject* type)

Call only when an error is pending, or the whole program might crash. Returns a value not equal to 0
when the pending exception is an instance of the given type or any subclass of type, or 0 when the
pending exception is not such an instance.

PyErr_Occurred

PyObject* PyErr_Occurred(  )

Returns NULL if no error is pending, otherwise a borrowed reference to the type of the pending
exception. (Don't use the returned value; call PyErr_ExceptionMatches instead, in order to catch
exceptions of subclasses as well, as is normal and expected.)

PyErr_Print

void PyErr_Print(  )

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Call only when an error is pending, or the whole program might crash. Outputs a standard traceback
to sys.stderr, then clears the error indicator.

If you need to process errors in highly sophisticated ways, study other error-related functions of the C
API, such as PyErr_Fetch, PyErr_Normalize, PyErr_GivenExceptionMatches, and PyErr_Restore. However,
I do not cover such advanced and rarely needed possibilities in this book.

24.1.9 Abstract Layer Functions

The code for a C extension typically needs to use some Python functionality. For example, your code
may need to examine or set attributes and items of Python objects, call Python-coded and built-in
functions and methods, and so on. In most cases, the best approach is for your code to call functions
from the abstract layer of Python's C API. These are functions that you can call on any Python object
(functions whose names start with PyObject_), or any object within a wide category, such as
mappings, numbers, or sequences (with names respectively starting with PyMapping_, PyNumber_,
and PySequence_).

Some of the functions callable on objects within these categories duplicate functionality that is also
available from PyObject_ functions; in these cases, you should use the PyObject_ function instead. I
don't cover such redundant functions in this book.

Functions in the abstract layer raise Python exceptions if you call them on objects to which they are
not applicable. All of these functions accept borrowed references for PyObject* arguments, and return
a new reference (NULL for an exception) if they return a PyObject* result.

The most frequently used abstract layer functions are the following.

PyCallable_Check

int PyCallable_Check(PyObject* x)

True if x is callable, like Python's callable(x).

PyEval_CallObject

PyObject* PyEval_CallObject(PyObject* x,PyObject* args)

Calls callable Python object x with the positional arguments held in tuple args. Returns the call's
result, like Python's return x(*args).

PyEval_CallObjectWithKeywords

PyObject* PyEval_CallObjectWithKeywords(PyObject* x,PyObject* args,PyObject* kwds)

Calls callable Python object x with the positional arguments held in tuple args and the named
arguments held in dictionary kwds Returns the call's result, like Python's return x(*args,**kwds).

PyIter_Check

int PyIter_Check(PyObject* x)

True if x supports the iterator protocol (i.e., if x is an iterator).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PyIter_Next

PyObject* PyIter_Next(PyObject* x)

Returns the next item from iterator x. Returns NULL without raising any exception if x's iteration is
finished (i.e., when Python's x.next( ) raises StopIteration).

PyNumber_Check

int PyNumber_Check(PyObject* x)

True if x supports the number protocol (i.e., if x is a number).

PyObject_CallFunction

PyObject* PyObject_CallFunction(PyObject* x,char* format,...)

Calls the callable Python object x with positional arguments described by format string format, using
the same format codes as Py_BuildValue, covered earlier. When format is NULL, calls x with no
arguments. Returns the call's result.

PyObject_CallMethod

PyObject* PyObject_CallMethod(PyObject* x,char* method,char* format,...)

Calls the method named method of Python object x with positional arguments described by format
string format, using the same format codes as Py_BuildValue. When format is NULL, calls the method
with no arguments. Returns the call's result.

PyObject_Cmp

int PyObject_Cmp(PyObject* x1,PyObject* x2,int* result)

Compares objects x1 and x2 and places the result (-1, 0, or 1) in *result, like Python's
result=cmp(x1,x2).

PyObject_DelAttrString

int PyObject_DelAttrString(PyObject* x,char* name)

Deletes x's attribute named name, like Python's del x.name.

PyObject_DelItem

int PyObject_DelItem(PyObject* x,PyObject* key)

Deletes x's item with key (or index) key, like Python's del x[key].

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PyObject_DelItemString

int PyObject_DelItemString(PyObject* x,char* key)

Deletes x's item with key key, like Python's del x[key].

PyObject_GetAttrString

PyObject* PyObject_GetAttrString(PyObject* x,char* name)

Returns x's attribute named name, like Python's x.name.

PyObject_GetItem

PyObject* PyObject_GetItem(PyObject* x,PyObject* key)

Returns x's item with key (or index) key, like Python's x[key].

PyObject_GetItemString

int PyObject_GetItemString(PyObject* x,char* key)

Returns x's item with key key, like Python's x[key].

PyObject_GetIter

PyObject* PyObject_GetIter(PyObject* x)

Returns an iterator on x, like Python's iter(x).

PyObject_HasAttrString

int PyObject_HasAttrString(PyObject* x,char* name)

True if x has an attribute named name, like Python's hasattr(x,name).

PyObject_IsTrue

int PyObject_IsTrue(PyObject* x)

True if x is true for Python, like Python's bool(x).

PyObject_Length

int PyObject_Length(PyObject* x)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


int PyObject_Length(PyObject* x)

Returns x's length, like Python's len(x).

PyObject_Repr

PyObject* PyObject_Repr(PyObject* x)

Returns x's detailed string representation, like Python's repr(x).

PyObject_RichCompare

PyObject* PyObject_RichCompare(PyObject* x,PyObject* y,int op)

Performs the comparison indicated by op between x and y, and returns the result as a Python object.
op can be Py_EQ, Py_NE, Py_LT, Py_LE, Py_GT, or Py_GE, corresponding to Python comparisons x==y,
x!=y, x<y, x<=y, x>y, or x>=y, respectively.

PyObject_RichCompareBool

int PyObject_RichCompareBool(PyObject* x,PyObject* y,int op)

Like PyObject_RichCompare, but returns 0 for false, 1 for true.

PyObject_SetAttrString

int PyObject_SetAttrString(PyObject* x,char* name,PyObject* v)

Sets x's attribute named name to v, like Python's x.name=v.

PyObject_SetItem

int PyObject_SetItem(PyObject* x,PyObject* k,PyObject *v)

Sets x's item with key (or index) key to v, like Python's x[key]=v.

PyObject_SetItemString

int PyObject_SetItemString(PyObject* x,char* key,PyObject *v)

Sets x's item with key key to v, like Python's x[key]=v.

PyObject_Str

PyObject* PyObject_Str(PyObject* x)

Returns x's readable string form, like Python's str(x).

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PyObject_Type

PyObject* PyObject_Type(PyObject* x)

Returns x's type object, like Python's type(x).

PyObject_Unicode

PyObject* PyObject_Unicode(PyObject* x)

Returns x's Unicode string form, like Python's unicode(x).

PySequence_Contains

int PySequence_Contains(PyObject* x,PyObject* v)

True if v is an item in x, like Python's v in x.

PySequence_DelSlice

int PySequence_DelSlice(PyObject* x,int start,int stop)

Delete x's slice from start to stop, like Python's del x[start:stop].

PySequence_Fast

PyObject* PySequence_Fast(PyObject* x)

Returns a new reference to a tuple with the same items as x, unless x is a list, in which case returns a
new reference to x. When you need to get many items of an arbitrary sequence x, it's fastest to call
t=PySequence_Fast(x) once, then call PySequence_Fast_GET_ITEM(t,i) as many times as needed, and
finally call Py_DECREF(t).

PySequence_Fast_GET_ITEM

PyObject* PySequence_Fast_GET_ITEM(PyObject* x,int i)

Returns the i item of x, where x must be the result of PySequence_Fast, x!=NULL, and
0<=i<PySequence_Fast_GET_SIZE(t). Violating these conditions can cause program crashes: this
approach is optimized for speed, not for safety.

PySequence_Fast_GET_SIZE

int PySequence_Fast_GET_SIZE(PyObject* x)

Returns the length of x. x must be the result of PySequence_Fast, x!=NULL.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PySequence_GetSlice

PyObject* PySequence_GetSlice(PyObject* x,int start,int stop)

Returns x's slice from start to stop, like Python's x[start:stop].

PySequence_List

PyObject* PySequence_List(PyObject* x)

Returns a new list object with the same items as x, like Python's list(x).

PySequence_SetSlice

int PySequence_SetSlice(PyObject* x,int start,int stop,PyObject* v)

Sets x's slice from start to stop to v, like Python's x[start:stop]=v. Just as in the equivalent Python
statement, v must be a sequence of the same type as x.

PySequence_Tuple

PyObject* PySequence_Tuple(PyObject* x)

Returns a new reference to a tuple with the same items as x, like Python's tuple(x).

The functions whose names start with PyNumber_ allow you to perform numeric operations. Unary
PyNumber functions, which take one argument PyObject* x and return a PyObject*, are listed in Table
24-3 with their Python equivalents.

Table 24-3. Unary PyNumber functions
Function Python equivalent

PyNumber_Absolute abs(x)
PyNumber_Float float(x)
PyNumber_Int int(x)
PyNumber_Invert ~x
PyNumber_Long long(x)
PyNumber_Negative -x
PyNumber_Positive +x

Binary PyNumber functions, which take two PyObject* arguments x and y and return a PyObject*, are
similarly listed in Table 24-4.

Table 24-4. Binary PyNumber functions
Function Python equivalent

PyNumber_Add x + y
PyNumber_And x & y
PyNumber_Divide x / y
PyNumber_Divmod divmod(x, y)
PyNumber_FloorDivide x // y

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PyNumber_Lshift x << y
PyNumber_Multiply x * y
PyNumber_Or x | y
PyNumber_Remainder x % y
PyNumber_Rshift x >> y
PyNumber_Subtract x - y
PyNumber_TrueDivide x / y (non-truncating)

PyNumber_Xor x ^ y

All the binary PyNumber functions have in-place equivalents whose names start with
PyNumber_InPlace, such as PyNumber_InPlaceAdd and so on. The in-place versions try to modify the
first argument in-place, if possible, and in any case return a new reference to the result, be it the first
argument (modified) or a new object. Python's built-in numbers are immutable; therefore, when the
first argument is a number of a built-in type, the in-place versions work just the same as the ordinary
versions. Function PyNumber_Divmod returns a tuple with two items (the quotient and the remainder)
and has no in-place equivalent.

There is one ternary PyNumber function, PyNumber_Power.

PyNumber_Power

PyObject* PyNumber_Power(PyObject* x,PyObject* y,PyObject* z)

When z is Py_None, returns x raised to the y power, like Python's x**y or equivalently pow(x,y).
Otherwise, returns x**y%z, like Python's pow(x,y,z). The in-place version is named
PyNumber_InPlacePower.

24.1.10 Concrete Layer Functions

Each specific type of Python built-in object supplies concrete functions to operate on instances of that
type, with names starting with Pytype_ (e.g., PyInt_ for functions related to Python ints). Most such
functions duplicate the functionality of abstract-layer functions or auxiliary functions covered earlier in
this chapter, such as Py_BuildValue, which can generate objects of many types. In this section, I cover
some frequently used functions from the concrete layer that provide unique functionality or
substantial convenience or speed. For most types, you can check if an object belongs to the type by
calling Pytype_Check, which also accepts instances of subtypes, or Pytype_CheckExact, which accepts
only instances of type, not of subtypes. Signatures are as for functions PyIter_Check, covered earlier
in this chapter.

PyDict_GetItem

PyObject* PyDict_GetItem(PyObject* x,PyObject* key)

Returns a borrowed reference to the item with key key of dictionary x.

PyDict_GetItemString

int PyDict_GetItemString(PyObject* x,char* key)

Returns a borrowed reference to the item with key key of dictionary x.

PyDict_Next

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


int PyDict_Next(PyObject* x,int* pos,PyObject** k,PyObject** v)

Iterates over items in dictionary x. You must initialize *pos to 0 at the start of the iteration:
PyDict_Next uses and updates *pos to keep track of its place. For each successful iteration step,
returns 1; when there are no more items, returns 0. Updates *k and *v to point to the next key and
value respectively (borrowed references) at each step that returns 1. You can pass either k or v as
NULL if you are not interested in the key or value. During an iteration, you must not change in any
way the set of x's keys, but you can change x's values as long as the set of keys remains identical.

PyDict_Merge

int PyDict_Merge(PyObject* x,PyObject* y,int override)

Updates dictionary x by merging the items of dictionary y into x. override determines what happens
when a key k is present in both x and y: if override is 0, then x[k] remains the same; otherwise x[k] is
replaced by the value y[k].

PyDict_MergeFromSeq2

int PyDict_MergeFromSeq2(PyObject* x,PyObject* y,int override)

Like PyDict_Merge, except that y is not a dictionary but a sequence of sequences, where each
subsequence has length 2 and is used as a (key,value) pair.

PyFloat_AS_DOUBLE

double PyFloat_AS_DOUBLE(PyObject* x)

Returns the C double value of Python float x, very fast, without error checking.

PyList_New

PyObject* PyList_New(int length)

Returns a new, uninitialized list of the given length. You must then initialize the list, typically by
calling PyList_SET_ITEM length times.

PyList_GET_ITEM

PyObject* PyList_GET_ITEM(PyObject* x,int pos)

Returns the pos item of list x, without error checking.

PyList_SET_ITEM

int PyList_SET_ITEM(PyObject* x,int pos,PyObject* v)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Sets the pos item of list x to v, without error checking. Steals a reference to v. Use only immediately
after creating a new list x with PyList_New.

PyString_AS_STRING

char* PyString_AS_STRING(PyObject* x)

Returns a pointer to the internal buffer of string x, very fast, without error checking. You must not
modify the buffer in any way, unless you just allocated it by calling
PyString_FromStringAndSize(NULL,size).

PyString_AsStringAndSize

int PyString_AsStringAndSize(PyObject* x,char** buffer,int* length)

Puts a pointer to the internal buffer of string x in *buffer, and x's length in *length. You must not
modify the buffer in any way, unless you just allocated it by calling
PyString_FromStringAndSize(NULL,size).

PyString_FromFormat

PyObject* PyString_FromFormat(char* format,...)

Returns a Python string built from format string format, which has syntax similar to printf's, and the
following C values indicated as variable arguments above.

PyString_FromStringAndSize

PyObject* PyString_FromFormat(char* data,int size)

Returns a Python string of length size, copying size bytes from data. When data is NULL, the Python
string is uninitialized, and you must initialize it. You can get the pointer to the string's internal buffer
by calling PyString_AS_STRING.

PyTuple_New

PyObject* PyTuple_New(int length)

Returns a new, uninitialized tuple of the given length. You must then initialize the tuple, typically by
calling PyTuple_SET_ITEM length times.

PyTuple_GET_ITEM

PyObject* PyTuple_GET_ITEM(PyObject* x,int pos)

Returns the pos item of tuple x, without error checking.

PyTuple_SET_ITEM

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


int PyTuple_SET_ITEM(PyObject* x,int pos,PyObject* v)

Sets the pos item of tuple x to v, without error checking. Steals a reference to v. Use only immediately
after creating a new tuple x with PyTuple_New.

24.1.11 A Simple Extension Example

Example 24-1 exposes the functionality of Python C API functions PyDict_Merge and
PyDict_MergeFromSeq2 for Python use. The update method of dictionaries works like PyDict_Merge with
override=1, but Example 24-1 is more general.

Example 24-1. A simple Python extension module merge.c

#include <Python.h>

static PyObject*
merge(PyObject* self, PyObject* args, PyObject* kwds)
{
    static char* argnames[] = {"x","y","override",NULL};
    PyObject *x, *y;
    int override = 0;
    if(!PyArg_ParseTupleAndKeywords(args, kwds, "O!O|i", argnames,
        &PyDict_Type, &x, &y, &override))
            return NULL;
    if(-1 == PyDict_Merge(x, y, override)) {
        if(!PyErr_ExceptionMatches(PyExc_TypeError)):
            return NULL;
        PyErr_Clear(  );
        if(-1 == PyDict_MergeFromSeq2(x, y, override))
            return NULL;
    }
    return Py_BuildValue("");
}

static char merge_docs[] = "\
merge(x,y,override=False): merge into dict x the items of dict y (or the pairs\n\
    that are the items of y, if y is a sequence), with optional override.\n\
    Alters dict x directly, returns None.\n\
";

static PyObject*
mergenew(PyObject* self, PyObject* args, PyObject* kwds)
{
    static char* argnames[] = {"x","y","override",NULL};
    PyObject *x, *y, *result;
    int override = 0;
    if(!PyArg_ParseTupleAndKeywords(args, kwds, "O!O|i", argnames,
        &PyDict_Type, &x, &y, &override))
            return NULL;
    result = PyObject_CallMethod(x, "copy", "");
    if(!result)
        return NULL;
    if(-1 == PyDict_Merge(result, y, override)) {
        if(!PyErr_ExceptionMatches(PyExc_TypeError)):
            return NULL;
        PyErr_Clear(  );
        if(-1 == PyDict_MergeFromSeq2(result, y, override))
            return NULL;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


            return NULL;
    }
    return result;
}

static char merge_docs[] = "\
mergenew(x,y,override=False): merge into dict x the items of dict y (or\n\
     the pairs that are the items of y, if y is a sequence), with optional\n\
     override.  Does NOT alter x, but rather returns the modified copy as\n\
     the function's result.\n\
";

static PyMethodDef funcs[] = {
    {"merge", (PyCFunction)merge, METH_KEYWORDS, merge_docs},
    {"mergenew", (PyCFunction)mergenew, METH_KEYWORDS, mergenew_docs},
    {NULL}
};

void
initmerge(void)
{
    Py_InitModule3("merge", funcs, "Example extension module");
}

This example declares as static every function and global variable in the C source file, except
initmerge, which must be visible from the outside to let Python call it. Since the functions and
variables are exposed to Python via the PyMethodDef structures, Python does not need to see their
names directly. Therefore, declaring them static is best: this ensures that names don't accidentally
end up in the whole program's global namespace, as might otherwise happen on some platforms,
possibly causing conflicts and errors.

The format string "O!O|i" passed to PyArg_ParseTupleAndKeywords indicates that function merge
accepts three arguments from Python: an object with a type constraint, a generic object, and an
optional integer. At the same time, the format string indicates that the variable part of
PyArg_ParseTupleAndKeywords's arguments must contain four addresses: in order, the address of a
Python type object, then two addresses of PyObject* variables, and finally the address of an int
variable. The int variable must have been previously initialized to its intended default value, since the
corresponding Python argument is optional.

And indeed, after the argnames argument, the code passes &PyDict_Type (i.e., the address of the
dictionary type object). Then it passes the addresses of the two PyObject* variables. Finally, it passes
the address of variable override, an int that was previously initialized to 0, since the default, when the
override argument isn't explicitly passed from Python, should be no overriding. If the return value of
PyArg_ParseTupleAndKeywords is 0, the code immediately returns NULL to propagate the exception;
this automatically diagnoses most cases where Python code passes wrong arguments to our new
function merge.

When the arguments appear to be okay, it tries PyDict_Merge, which succeeds if y is a dictionary.
When PyDict_Merge raises a TypeError, indicating that y is not a dictionary, the code clears the error
and tries again, this time with PyDict_MergeFromSeq2, which succeeds when y is a sequence of pairs.
If that also fails, it returns NULL to propagate the exception. Otherwise, it returns None in the
simplest way (i.e., with return Py_BuildValue("")) to indicate success.

Function mergenew basically duplicates merge's functionality; however, mergenew does not alter its
arguments, but rather builds and returns a new dictionary as the function's result. The C API function
PyObject_CallMethod lets mergenew call the copy method of its first Python-passed argument, a
dictionary object, and obtain a new dictionary object that it then alters (with exactly the same logic as
function merge). It then returns the altered dictionary as the function result (thus, no need to call
Py_BuildValue in this case).

The code of Example 24-1 must reside in a source file named merge.c. In the same directory, create
the following script named setup.py:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


from distutils.core import setup, Extension
setup(name='merge', ext_modules=[ Extension('merge',sources=['merge.c']) ])

Now, run python setup.py install at a shell prompt in this directory. This command builds the
dynamically loaded library for the merge extension module, and copies it to the appropriate directory,
depending on your Python installation. Now your Python code can use the module. For example:

import merge
x = {'a':1,'b':2 }
merge.merge(x,[['b',3],['c',4]])
print x                               # prints: {'a':1, 'b':2, 'c':4 }
print merge.mergenew(x,{'a':5,'d':6},override=1) 
# prints: {'a':5, 'b':2, 'c':4, 'd':6 }
print x                               # prints: {'a':1, 'b':2, 'c':4 }

This example shows the difference between merge (which alters its first argument) and mergenew
(which returns a new object and does not alter its argument). It also shows that the second argument
can be either a dictionary or a sequence of two-item subsequences. Further, it demonstrates default
operation (where keys that are already in the first argument are left alone) as well as the override
option (where keys coming from the second argument take precedence, as in Python dictionaries'
update method).

24.1.12 Defining New Types

In your extension modules, you often want to define new types and make them available to Python. A
type's definition is held in a large struct named PyTypeObject. Most of the fields of PyTypeObject are
pointers to functions. Some fields point to other structs, which in turn are blocks of pointers to
functions. PyTypeObject also includes a few fields giving the type's name, size, and behavior details
(option flags). You can leave almost all fields of PyTypeObject set to NULL if you do not supply the
related functionality. You can point some fields to functions in the Python C API in order to supply
certain aspects of fundamental object functionality in standard ways.

The best way to implement a type is to copy from the Python sources the file Modules/xxsubtype.c,
which Python supplies exactly for such didactical purposes, and edit it. It's a complete module with
two types, subclassing from list and dict respectively. Another example in the Python sources,
Objects/xxobject.c, is not a complete module, and the type in this file is minimal and old-fashioned,
not using modern recommended approaches. See http://www.python.org/dev/doc/devel/api/type-
structs.html for detailed documentation on PyTypeObject and other related structs. File
Include/object.h in the Python sources contains the declarations of these types, as well as several
important comments that you would do well to study.

24.1.12.1 Per-instance data

To represent each instance of your type, declare a C struct that starts, right after the opening brace,
with macro PyObject_HEAD. The macro expands into the data fields that your struct must begin with
in order to be a Python object. Those fields include the reference count and a pointer to the instance's
type. Any pointer to your structure can be correctly cast to a PyObject*.

The PyTypeObject struct that defines your type's characteristics and behavior must contain the size of
your per-instance struct, as well as pointers to the C functions you write to operate on your structure.
Therefore, you normally place the PyTypeObject toward the end of your code, after the per-instance
struct and all the functions that operate on instances of the per-instance struct. Each x that points to
a structure starting with PyObject_HEAD, and in particular each PyObject* x, has a field x->ob_type
that is the address of the PyTypeObject structure that is x's Python type object.

24.1.12.2 The PyTypeObject definition

Given a per-instance struct such as:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


typedef struct {
    PyObject_HEAD
    /* other data needed by instances of this type, omitted */
} mytype;

the corresponding PyTypeObject struct almost invariably begins in a way similar to:

static PyTypeObject t_mytype = {
/* tp_head */        PyObject_HEAD_INIT(NULL)   /* use NULL, for MSVC++ */
/* tp_internal */    0,                 /* must be 0 */
/* tp_name /        "mymodule.mytype",  /* type name with module */
/* tp_basicsize */   sizeof(mytype),
/* tp_itemsize */    0,                 /* 0 except variable-size type */
/* tp_dealloc */     (destructor)mytype_dealloc,
/* tp_print */       0,                 /* usually 0, use str instead */
/* tp_getattr */     0,                 /* usually 0 (see getattro) */
/* tp_setattr */     0,                 /* usually 0 (see setattro) */
/* tp_compare*/      0,                 /* see also richcompare */
/* tp_repr */        (reprfunc)mytype_str,    /* like Python's _  _repr_  _ */
    /* rest of struct omitted */

For portability to Microsoft Visual C++, the PyObject_HEAD_INIT macro at the start of the
PyTypeObject must have an argument of NULL. During module initialization, you must call
PyType_Ready(&t_mytype), which, among other tasks, inserts in t_mytype the address of its type (the
type of a type is also known as a metatype), normally &PyType_Type. Another slot in PyTypeObject
that points to another type object is tp_base, later in the structure. In the structure definition itself,
you must have a tp_base of NULL, again for compatibility with Microsoft Visual C++. However, before
you invoke PyType_Ready(&t_mytype), you can optionally set t_mytype.tp_base to the address of
another type object. When you do so, your type inherits from the other type, just like a class coded in
Python 2.2 can optionally inherit from a built-in type. For a Python type coded in C, inheriting means
that for most fields in the PyTypeObject, if you set the field to NULL, PyType_Ready copies the
corresponding field from the base type. A type must specifically assert in its field tp_flags that it is
usable as a base type, otherwise no other type can inherit from it.

The tp_itemsize field is of interest only for types that, like tuples, have instances of different sizes, and
can determine instance size once and forever at creation time. Most types just set tp_itemsize to 0.
Fields such as tp_getattr and tp_setattr are generally set to NULL because they exist only for backward
compatibility: modern types use fields tp_getattro and tp_setattro instead. Field tp_repr is typical of
most of the following fields, which are omitted here: the field holds the address of a function, which
corresponds directly to a Python special method (here, _ _repr_ _). You can set the field to NULL,
indicating that your type does not supply the special method, or else set the field to point to a
function with the needed functionality. If you set the field to NULL, but also point to a base type from
the tp_base slot, you inherit the special method, if any, from your base type. You often need to cast
your functions to the specific typedef type that a field needs (here, type reprfunc for field tp_repr)
because the typedef has a first argument PyObject* self, while your functions, being specific to your
type, normally use more specific pointers. For example:

static PyObject* mytype_str(mytype* self) { ... /* rest omitted */

Alternatively, you can declare mytype_str with a PyObject* self, then use a cast (mytype*)self in the
function's body. Either alternative is acceptable, but it's more common to locate the casts in the
PyTypeObject declaration.

24.1.12.3 Instance initialization and finalization

The task of finalizing your instances is split among two functions. The tp_dealloc slot must never be
NULL, except for immortal types (i.e., types whose instances are never deallocated). Python calls x-
>ob_type->tp_dealloc(x) on each instance x whose reference count decreases to 0, and the function
thus called must release any resource held by object x, including x's memory. When an instance of
mytype holds no other resources that must be released (in particular, no owned references to other

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


mytype holds no other resources that must be released (in particular, no owned references to other
Python objects that you would have to DECREF), mytype's destructor can be extremely simple:

static void mytype_dealloc(PyObject *x)
{
    x->ob_type->tp_free((PyObject*)x);
}

The function in the tp_free slot has the specific task of freeing x's memory. In Python 2.2, the function
has signature void name(PyObject*). In Python 2.3, the signature has changed to void name(void*).
One way to ensure your sources compile under both versions of Python is to put in slot tp_free the C
API function _PyObject_Del, which has the right signature in each version.

The task of initializing your instances is split among three functions. To allocate memory for new
instances of your type, put in slot tp_alloc the C API function PyType_GenericAlloc, which does
absolutely minimal initialization, clearing the newly allocated memory bytes to 0 except for the type
pointer and reference count. Similarly, you can often set field tp_new to the C API function
PyType_GenericNew. In this case, you can perform all per-instance initialization in the function you put
in slot tp_init, which has the signature:

int init_name(PyObject *self,PyObject *args,PyObject *kwds)

The positional and named arguments to the function in slot tp_init are those passed when calling the
type to create the new instance, just like, in Python, the positional and named arguments to _ _init_ _
are those passed when calling the class object. Again like for types (classes) defined in Python, the
general rule is to do as little initialization as possible in tp_new and as much as possible in tp_init.
Using PyType_GenericNew for tp_new accomplishes this. However, you can choose to define your own
tp_new for special types, such as ones that have immutable instances, where initialization must
happen earlier. The signature is:

PyObject* new_name(PyObject *subtype,PyObject *args,PyObject *kwds)

The function in tp_new must return the newly created instance, normally an instance of subtype
(which may be a type that inherits from yours). The function in tp_init, on the other hand, must return
0 for success, or -1 to indicate an exception.

If your type is subclassable, it's important that any instance invariants be established before the
function in tp_new returns. For example, if it must be guaranteed that a certain field of the instance is
never NULL, that field must be set to a non-NULL value by the function in tp_new. Subtypes of your
type might fail to call your tp_init function; therefore such indispensable initializations should be in
tp_new for subclassable types.

24.1.12.4 Attribute access

Access to attributes of your instances, including methods (as covered in Chapter 5) is mediated by the
functions you put in slots tp_getattro and tp_setattro of your PyTypeObject struct. Normally, you put
there the standard C API functions PyObject_GenericGetAttr and PyObject_GenericSetAttr, which
implement standard semantics. Specifically, these API functions access your type's methods via the
slot tp_methods, pointing to a sentinel-terminated array of PyMethodDef structs, and your instances'
members via the slot tp_members, a similar sentinel-terminated array of PyMemberDef structs:

typedef struct {
    char* name;        /* Python-visible name of the member */
    int type;          /* code defining the data-type of the member */
    int offset;        /* offset of the member in the per-instance struct */
    int flags;         /* READONLY for a read-only member */
    char* doc;         /* docstring for the member */
} PyMemberDef

As an exception to the general rule that including Python.h gets you all the declarations you need, you
have to include structmember.h explicitly in order to have your C source see the declaration of
PyMemberDef.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


type is generally T_OBJECT for members that are PyObject*, but many other type codes are defined in
Include/structmember.h for members that your instances hold as C-native data (e.g., T_DOUBLE for
double or T_STRING for char*). For example, if your per-instance struct is something like:

typedef struct {
    PyObject_HEAD
    double datum;
    char* name;
} mytype;

to expose to Python per-instance attributes datum (read/write) and name (read-only), you can define
the following array and point your PyTypeObject's tp_members to it:

static PyMemberDef[] mytype_members = {
    {"datum", T_DOUBLE, offsetof(mytype, datum), 0, "The current datum"},
    {"name", T_STRING, offsetof(mytype, name), READONLY, 
     "Name of the datum"},
    {NULL}
};

Using PyObject_GenericGetAttr and PyObject_GenericSetAttr for tp_getattro and tp_setattro also provides
further possibilities, which I will not cover in detail in this book. Field tp_getset points to a sentinel-
terminated array of PyGetSetDef structs, the equivalent of having property instances in a Python-coded
class. If your PyTypeObject's field tp_dictoffset is not equal to 0, the field's value must be the offset,
within the per-instance struct, of a PyObject* that points to a Python dictionary. In this case, the
generic attribute access API functions use that dictionary to allow Python code to set arbitrary
attributes on your type's instances, just like for instances of Python-coded classes.

Another dictionary is per-type, not per-instance: the PyObject* for the per-type dictionary is slot
tp_dict of your PyTypeObject struct. You can set slot tp_dict to NULL, and then PyType_Ready initializes
the dictionary appropriately. Alternatively, you can set tp_dict to a dictionary of type attributes, and
then PyType_Ready adds other entries to that same dictionary, in addition to the type attributes you
set. It's generally easier to start with tp_dict set to NULL, call PyType_Ready to create and initialize the
per-type dictionary, and then, if need be, add any further entries to the dictionary.

Field tp_flags is a long whose bits determine your type struct's exact layout, mostly for backward
compatibility. Normally, set this field to Py_TPFLAGS_DEFAULT to indicate that you are defining a
normal, modern type. You should set tp_flags to Py_TPFLAGS_DEFAULT|Py_TPFLAGS_HAVE_GC if your
type supports cyclic garbage collection. Your type should support cyclic garbage collection if instances
of the type contain PyObject* fields that might point to arbitrary objects and form part of a reference
loop. However, to support cyclic garbage collection, it's not enough to add Py_TPFLAGS_HAVE_GC to
field tp_flags; you also have to supply appropriate functions, indicated by slots tp_traverse and
tp_clear, and register and unregister your instances appropriately with the cyclic garbage collector.
Supporting cyclic garbage collection is an advanced subject, and I do not cover it further in this book.
Similarly, I do not cover the advanced subject of supporting weak references.

Field tp_doc, a char*, is a null-terminated character string that is your type's docstring. Other fields
point to structs (whose fields point to functions); you can set each such field to NULL to indicate that
you support none of the functions of that kind. The fields pointing to such blocks of functions are
tp_as_number, for special methods typically supplied by numbers; tp_as_sequence, for special
methods typically supplied by sequences; tp_as_mapping, for special methods typically supplied by
mappings; and tp_as_buffer, for the special methods of the buffer protocol.

For example, objects that are not sequences can still support one or a few of the methods listed in the
block to which tp_as_sequence points, and in that case the PyTypeObject must have a non-NULL field
tp_as_sequence, even if the block of function pointers it points to is in turn mostly full of NULLs. For
example, dictionaries supply a _ _contains_ _ special method so that you can check if x in d when d is
a dictionary. At the C code level, the method is a function pointed to by field sq_contains, which is part
of the PySequenceMethods struct to which field tp_as_sequence points. Therefore, the PyTypeObject
struct for the dict type, named PyDict_Type, has a non-NULL value for tp_as_sequence, even though a
dictionary supplies no other field in PySequenceMethods except sq_contains, and therefore all other

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


dictionary supplies no other field in PySequenceMethods except sq_contains, and therefore all other
fields in *(PyDict_Type.tp_as_sequence) are NULL.

24.1.12.5 Type definition example

Example 24-2 is a complete Python extension module that defines the very simple type intpair, each
instance of which holds two integers named first and second.

Example 24-2. Defining a new intpair type

#include "Python.h"
#include "structmember.h"

/* per-instance data structure */
typedef struct {
    PyObject_HEAD
    int first, second;
} intpair;

static int
intpair_init(PyObject *self, PyObject *args, PyObject *kwds)
{
    static char* nams[] = {"first","second",NULL};
    int first, second;
    if(!PyArg_ParseTupleAndKeywords(args, kwds, "ii", nams, &first, &second))
        return -1;
    ((intpair*)self)->first = first;
    ((intpair*)self)->second = second;
    return 0;
}

static void
intpair_dealloc(PyObject *self)
{
    self->ob_type->tp_free(self);
}

static PyObject*
intpair_str(PyObject* self)
{
    return PyString_FromFormat("intpair(%d,%d)",
        ((intpair*)self)->first, ((intpair*)self)->second);
}

static PyMemberDef intpair_members[] = {
    {"first", T_INT, offsetof(intpair, first), 0, "first item" },
    {"second", T_INT, offsetof(intpair, second), 0, "second item" },
    {NULL}
};

static PyTypeObject t_intpair = {
    PyObject_HEAD_INIT(0)               /* tp_head */
    0,                                  /* tp_internal */
    "intpair.intpair",                  /* tp_name */
    sizeof(intpair),                    /* tp_basicsize */
    0,                                  /* tp_itemsize */
    intpair_dealloc,                    /* tp_dealloc */
    0,                                  /* tp_print */
    0,                                  /* tp_getattr */
    0,                                  /* tp_setattr */
    0,                                  /* tp_compare */

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    0,                                  /* tp_compare */
    intpair_str,                        /* tp_repr */
    0,                                  /* tp_as_number */
    0,                                  /* tp_as_sequence */
    0,                                  /* tp_as_mapping */
    0,                                  /* tp_hash */
    0,                                  /* tp_call */
    0,                                  /* tp_str */
    PyObject_GenericGetAttr,            /* tp_getattro */
    PyObject_GenericSetAttr,            /* tp_setattro */
    0,                                  /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT,
    "two ints (first,second)",
    0,                                  /* tp_traverse */
    0,                                  /* tp_clear */
    0,                                  /* tp_richcompare */
    0,                                  /* tp_weaklistoffset */
    0,                                  /* tp_iter */
    0,                                  /* tp_iternext */
    0,                                  /* tp_methods */
    intpair_members,                    /* tp_members */
    0,                                  /* tp_getset */
    0,                                  /* tp_base */
    0,                                  /* tp_dict */
    0,                                  /* tp_descr_get */
    0,                                  /* tp_descr_set */
    0,                                  /* tp_dictoffset */
    intpair_init,                       /* tp_init */
    PyType_GenericAlloc,                /* tp_alloc */
    PyType_GenericNew,                  /* tp_new */
    _PyObject_Del,                      /* tp_free */
};

void
initintpair(void)
{
    static PyMethodDef no_methods[] = { {NULL} };
    PyObject* this_module = Py_InitModule("intpair", no_methods);
    PyType_Ready(&t_intpair);
    PyObject_SetAttrString(this_module, "intpair", (PyObject*)&t_intpair);
}

The intpair type defined in Example 24-2 gives just about no substantial benefits when compared to
an equivalent definition in Python, such as:

class intpair(object):
    __slots_  _ = 'first', 'second'
    def __init_  _(self, first, second):
        self.first = first
        self.second = second
    def __repr_  _(self):
        return 'intpair(%s,%s)' % (self.first, self.second)

The C-coded version does ensure the two attributes are integers, truncating float or complex number
arguments as needed. For example:

import intpair
x=intpair.intpair(1.2,3.4)                 # x is: intpair(1,3)

Each instance of the C-coded version of intpair occupies somewhat less memory than an instance of
the Python version in the above example. However, the purpose of Example 24-2 is purely didactic: to
present a C-coded Python extension that defines a new type.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

24.2 Extending Python Without Python's C API

You can code Python extensions in other classic compiled languages besides C. For Fortran, the choice
is between Paul Dubois's Pyfort (available at http://pyfortran.sf.net) and Pearu Peterson's F2PY
(available at http://cens.ioc.ee/projects/f2py2e/). Both packages support and require the Numeric
package covered in Chapter 15, since numeric processing is Fortran's typical application area.

For C++, the choice is between Gordon McMillan's simple, lightweight SCXX (available at
http://www.mcmillan-inc.com/scxx.html), which uses no templates and is thus suitable for older C++
compilers, Paul Dubois's CXX (available at http://cxx.sf.net), and David Abrahams's Boost Python
Library (available at http://www.boost.org/libs/python/doc). Boost is a package of C++ libraries of
uniformly high quality for compilers that support templates well, and includes the Boost Python
component. Paul Dubois, CXX's author, recommends considering Boost. You may also choose to use
Python's C API from your C++ code, using C++ in this respect as if it was C, and foregoing the extra
convenience that C++ affords. However, if you're already using C++ rather than C anyway, then
using SCXX, CXX, or Boost can substantially improve your programming productivity when compared
to using Python's C API.

If your Python extension is basically a wrapper over an existing C or C++ library (as many are),
consider SWIG, the Simplified Wrapper and Interface Generator (available at http://www.swig.org).
SWIG generates the C source code for your extension based on the library's header files, generally
with some help in terms of further annotations in an interface description file.

Greg Ewing is developing a language, Pyrex, specifically for coding Python extensions. Pyrex (found at
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/) is an interesting mix of Python and C
concepts, and is already quite usable despite being a new development.

The weave package (available at http://www.scipy.org/site_content/weave), lets you run inline
C/C++ code within Python. The blitz function, in particular, generates and runs C++ code from
expressions using the Numeric package, and thus requires Numeric.

If your application runs only on Windows, the most practical way to extend and embed Python is
generally through COM. In particular, COM is by far the best way to use Visual Basic modules
(packaged as ActiveX classes) from Python. COM is also the best way to make Python-coded
functionality (packaged as COM servers) available to Visual Basic programs. The standard Python
distribution for Windows does not directly support COM: you also need to download and install the
platform-specific win32all extension package (available at
http://starship.python.net/crew/mhammond/). I do not cover Windows-specific functionality,
including COM, any further in this book. For excellent coverage of platform-specific Python use on
Windows, I recommend Python Programming on Win32, by Mark Hammond and Andy Robinson
(O'Reilly).

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

24.3 Embedding Python

If you have an application already written in C or C++ (or any other classic compiled language), you
may want to embed Python as your application's scripting language. To embed Python in languages
other than C, the other language must be able to call C functions. In the following, I cover only the C
view of things, since other languages vary widely regarding what you have to do in order to call C
functions from them.

24.3.1 Installing Resident Extension Modules

In order for Python scripts to communicate with your application, your application must supply
extension modules with Python-accessible functions and classes that expose your application's
functionality. If these modules are linked with your application rather than residing in dynamic
libraries that Python can load when necessary, register your modules with Python as additional built-
in modules by calling the PyImport_AppendInittab C API function.

PyImport_AppendInittab

int PyImport_AppendInittab(char* name,void (*initfunc)(void))

name is the module name, which Python scripts use in import statements to access the module.
initfunc is the module initialization function, taking no argument and returning no result, as covered
earlier in this chapter (i.e., initfunc is the module's function that would be named initname for a
normal extension module residing in a dynamic library). PyImport_AppendInittab must be called before
calling Py_Initialize.

24.3.2 Setting Arguments

You may want to set the program name and arguments, which Python scripts can access as sys.argv,
by calling either or both of the following C API functions.

Py_SetProgramName

void Py_SetProgramName(char* name)

Sets the program name, which Python scripts can access as sys.argv[0]. Must be called before calling
Py_Initialize.

PySys_SetArgv

void PySys_SetArgv(int argc,char** argv)

Sets the program arguments, which Python scripts can access as sys.argv[1:]. Must be called after
calling Py_Initialize.

24.3.3 Python Initialization and Finalization

After installing extra built-in modules and optionally setting the program name, your application
initializes Python. At the end, when Python is no longer needed, your application finalizes Python. The
relevant functions in the C API are as follows.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Py_Finalize

void Py_Finalize(void)

Frees all memory and other resources that Python is able to free. You should not make other Python C
API calls after calling this function.

Py_Initialize

void Py_Initialize(void)

Initializes the Python environment. Make no other Python C API call before this one, except
PyImport_AppendInittab and Py_SetProgramName, as covered earlier in this chapter.

24.3.4 Running Python Code

Your application can run Python source code from a character string or from a file. To run or compile
Python source code, choose the mode of execution as one of the following three constants defined in
Python.h:

Py_eval_input

The code is an expression to evaluate (like passing 'eval' to Python built-in function compile)

Py_file_input

The code is a block of one or more statements to execute (like 'exec' for compile—just like in
that case, a trailing '\n' must close compound statements)

Py_single_input

The code is a single statement for interactive execution (like 'single' for compile—implicitly
outputs the results of expression statements)

Running Python source code directly is similar to passing a source code string to Python statement
exec or built-in function eval, or a source code file to built-in function execfile. Two general functions
you can use for this task are the following.

PyRun_File

PyObject* PyRun_File(FILE* fp,char* filename,int start, 
PyObject* globals,PyObject* locals)

fp is a file of source code open for reading. filename is the name of the file, to use in error messages.
start is one of the constants that define execution mode. globals and locals are dictionaries (may be
the same dictionary twice) to use as global and local namespace for the execution. Returns the result
of the expression when start is Py_eval_input, a new reference to Py_None otherwise, or NULL to
indicate that an exception has been raised (often, but not always, due to a syntax error).

PyRun_String

PyObject* PyRun_String(char* astring,int start,
PyObject* globals,PyObject* locals)

Like PyRun_File, but the source code is in null-terminated string astring.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Dictionaries locals and globals are often new, empty dictionaries (most conveniently built by
Py_BuildValue("{}")) or the dictionary of a module. PyImport_Import is a convenient way to obtain an
existing module object; PyModule_GetDict obtains a module's dictionary. Sometimes you want to
create a new module object on the fly and populate it with PyRun_ calls. To create a new, empty
module, you can use the PyModule_New C API function.

PyModule_New

PyObject* PyModule_New(char* name)

Returns a new, empty module object for a module named name. Before the new object is usable, you
must add to the object a string attribute named _ _file_ _. For example:

PyObject* newmod = PyModule_New("mymodule");
PyModule_AddStringConstant(newmod, "__file_  _",
    "<synthetic>");

After this code is run, module object newmod is ready; you can obtain the module's dictionary with
PyModule_GetDict(newmod) and pass it directly to such functions as PyRun_String as the globals and
possibly also the locals argument.

To run Python code repeatedly, and to discern the diagnosis of syntax errors from that of runtime
exceptions raised by the code when it runs, you can compile the Python source to a code object, then
keep the code object and run it repeatedly. This is just as true when using the C API as when
dynamically executing from Python, as covered in Chapter 13. Two C API functions you can use for
this task are the following.

Py_CompileString

PyObject* Py_CompileString(char* code,char* filename,int start)

code is a null-terminated string of source code. filename is the name of the file, to use in error
messages. start is one of the constants that define execution mode. Returns the Python code object
containing the bytecode, or NULL for syntax errors.

PyEval_EvalCode

PyObject* PyEval_EvalCode(PyObject* co,PyObject* globals,
PyObject* locals)

co is a Python code object, as returned by Py_CompileString, for example. globals and locals are
dictionaries (may be the same dictionary twice) to use as global and local namespace for the
execution. Returns the result of the expression when co was compiled with Py_eval_input, a new
reference to Py_None otherwise, or NULL to indicate the execution has raised an exception.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 25. Extending and Embedding Jython

Jython implements Python on a Java Virtual Machine (JVM). Jython's built-in objects, such as
numbers, sequences, dictionaries, and files, are coded in Java. To extend Classic Python with C, you
code C modules using the Python C API (as covered in Chapter 24). To extend Jython with Java, you
do not have to code Java modules in special ways: every Java package on the Java CLASSPATH (or on
Jython's sys.path) is automatically available to your Jython scripts and Jython interactive sessions for
use with the import statement covered in Chapter 7. This applies to Java's standard libraries, third-
party Java libraries you have installed, and Java classes you have coded yourself. You can also extend
Java with C using the Java Native Interface (JNI), and such extensions will also be available to Jython
code, just as if they had been coded in pure Java rather than in JNI-compliant C.

For details on advanced issues related to interoperation between Java and Jython, I recommend
Jython Essentials, by Samuele Pedroni and Noel Rappin (O'Reilly). In this chapter, I offer a brief
overview of the simplest interoperation scenarios, which suffices for a large number of practical
needs. Importing, using, extending, and implementing Java classes and interfaces in Jython just
works in most practical cases of interest. In some cases, however, you need to be aware of issues
related to accessibility, type conversions, and overloading, as covered in this chapter. Embedding the
Jython interpreter in Java-coded applications is similar to embedding the Python interpreter in C-
coded applications (as covered in Chapter 24), but the Jython task is easier. Jython offers yet another
possibility for interoperation with Java, using the jythonc compiler to turn your Python sources into
classic, static JVM bytecode .class and .jar files. You can then use these bytecode files in Java
applications and frameworks, exactly as if their source code had been in Java rather than in Python.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

25.1 Importing Java Packages in Jython

Unlike Java, Jython does not implicitly and automatically import java.lang. Your Jython code can
explicitly import java.lang, or even just import java, and then use classes such as java.lang.System and
java.lang.String as if they were Python classes. Specifically, your Jython code can use imported Java
classes as if they were Python classes with a _ _slots_ _ class attribute (i.e., you cannot create
arbitrary new instance attributes). You can subclass a Java class with your own Python class, and
instances of your class let you create new attributes just by binding them, as usual.

You may choose to import a top-level Java package (such as java) rather than specific subpackages
(such as java.lang). Your Python code acquires the ability to access all subpackages when you import
the top-level package. For example, after import java, your code can use classes java.lang.String,
java.util.Vector, and so on.

The Jython runtime wraps every Java class you import in a transparent proxy, which manages
communication between Python and Java code behind the scenes. This gives an extra reason to avoid
the dubious idiom from somewhere import *, in addition to the reasons mentioned in Chapter 7. When
you perform such a bulk import, the Jython runtime must build proxy wrappers for all the Java classes
in package somewhere, spending substantial amounts of memory and time wrapping classes your
code will probably not use. Avoid from ... import * except for occasional convenience in interactive
exploratory sessions, and stick with the import statement. Alternatively, it's okay to use specific,
explicit from statements for classes you know your Python code wants to use (e.g., from java.lang
import System).

25.1.1 The Jython Registry

Jython relies on a registry of Java properties as a cross-platform equivalent of the kind of settings that
would normally use the Windows registry, or environment variables on Unix-like systems. Jython's
registry file is a standard Java properties file named registry, located in a directory known as the
Jython root directory. The Jython root directory is normally the directory where jython.jar is located,
but you can override this by setting Java properties python.home or install.root. For special needs, you
may tweak the Jython registry settings via an auxiliary Java properties file named .jython in your
home directory, and/or via command-line options to the jython interpreter command. The registry
option python.path is equivalent to classic Python's PYTHONPATH environment variable. This is the
option you may most often be interested in, as it can help you install extra Python packages outside
of the Jython installation directories (e.g., sharing Python packages installed for CPython use).

25.1.2 Accessibility

Normally, your Jython code can access only public features (methods, fields, inner classes) of Java
classes. You may choose to make private and protected features available by setting an option in the
Jython registry before you run Jython:

python.security.respectJavaAccessibility=false

Such bending of normal Java rules should never be necessary for normal operation. However, the
ability to access private and protected features may be useful to Jython scripts meant to thoroughly
test a Java package, which is why Jython gives you this option.

25.1.3 Type Conversions

The Jython runtime converts data between Python and Java transparently. However, when a Java
method expects a boolean argument, you have to pass an int or an instance of java.lang.Boolean in
order to call that method from Python. In Python, any object can be taken as true or false, but Jython
does not perform the conversion to boolean implicitly on method calls, to avoid confusion and the risk
of errors.

25.1.3.1 Calling overloaded Java methods

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


25.1.3.1 Calling overloaded Java methods

A Java class can supply overloaded methods (i.e., several methods with the same name, distinguished
by the number and types of their arguments). Jython resolves calls to overloaded methods at
runtime, based on the number and types of arguments that Python code is passing in each given call.
If Jython's automatic overload resolution is not giving the results you expect, you can help it along by
explicitly passing instances of Java's java.lang wrapper classes, such as java.lang.Integer where the
Java method expects an int argument, java.lang.Float where the Java method expects a float
argument, and so on. For example, if a Java class C supplies a method named M in two overloaded
versions, M(long x) and M(int x), consider the following Python code:

import C, java.lang

c = C(  )
c.M(23)                     # calls M(long)
c.M(java.lang.Integer(23))  # calls M(int)

c.M(23) calls the long overloaded method, due to the rules of Jython overload resolution.
c.M(java.lang.Integer(23)), however, explicitly calls the int overloaded method.

25.1.3.2 The jarray module

When you pass Python sequences to Java methods that expect array arguments, Jython performs
automatic conversion, copying each item of the Python sequence into an element of the Java array.
When you call a Java method that accepts and modifies an array argument, the Python sequence that
you pass cannot reflect any changes the Java method performs on its array argument. To let you
effectively call methods that change their array arguments, Jython offers module jarray, which
supplies two factory functions that let you build Java arrays directly.

array

array(seq,typecode)

seq is any Python sequence. typecode is either a Java class or a single character (specifying a
primitive Java type according to Table 25-1). array creates a Java array a with the same length as seq
and elements of the class or type given by typecode. array initializes a's elements from seq's
corresponding items.

Table 25-1. Typecodes for the jarray module
Typecode Java type

'b' byte
'c' char
'd' double
'f' float
'h' short
'i' int
'l' long
'z' boolean

zeros

zeros(length,typecode)

Creates a Java array z with length length and elements of the class or type given by typecode, which

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Creates a Java array z with length length and elements of the class or type given by typecode, which
has the same meaning as in function array. zeros initializes each element of z to 0, null, or false, as
appropriate for the type or class. Of course, when you access such elements from Jython code, you
see them as the equivalent Python 0 values (or None as the Jython equivalent of Java null), but when
Java code accesses the elements, it sees them with the appropriate Java types and values.

You can use instances created by functions array and zeros as Python sequences of fixed length. When
you pass such an instance to a Java method that accepts an array argument and modifies the
argument, the changes are visible in the instance, so your Python code can effectively call such
methods.

25.1.3.3 The java.util collection classes

Jython performs no automatic conversion either way between Python containers and the collection
classes of package java.util, such as java.util.Vector, java.util.Dictionary, and so on. However, Jython
adds to the wrappers it builds for the Java collection classes a minimal amount of support to let you
treat instances of collection classes as Python sequences, iterables, or mappings, as appropriate.

25.1.4 Subclassing a Java Class

A Python class may inherit from a Java class (equivalent to Java construct extends) and/or from Java
interfaces (equivalent to Java construct implements), as well as from other Python classes. A Jython
class cannot inherit, directly or indirectly, from more than one Java class. There is no limit on
inheriting from interfaces. Your Jython code can access protected methods of the Java superclass, but
not protected fields. You can override non-final superclass methods. In particular, you should always
override the methods of interfaces you inherit from. If a method is overloaded in the superclass, your
overriding method must support all of the signatures of the overloads. To accomplish this, you can
define your method to accept a variable number of arguments (by having its last formal argument use
special form *args) and check at runtime as needed for the number and types of arguments you
receive on each call.

25.1.5 JavaBeans

Jython offers special support for the typical JavaBeans idiom of naming accessor methods
getSomeThing, isSomeThing, setSomeThing. When such methods exist in a Java class, Python code can
access and set a property named someThing on instances of that Java class, using the Python syntax
of attribute access and binding. The Jython runtime transparently translates such accesses into calls
to appropriate accessor methods.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

25.2 Embedding Jython in Java

Your Java-coded application can embed the Jython interpreter in order to use Jython for scripting.
jython.jar must be in your Java CLASSPATH. Your Java code must import org.python.core.* and
org.python.util.* in order to access Jython's classes. To initialize Jython's state and instantiate an
interpreter, use the Java statements:

PySystemState.initialize(  );
PythonInterpreter interp = new PythonInterpreter(  );

Jython also supplies several advanced overloads of this method and constructor in order to let you
determine in detail how PySystemState is set up, and to control the system state and global scope for
each interpreter instance. However, in typical, simple cases, the previous Java code is all your
application needs.

25.2.1 The PythonInterpreter Class

Once you have an instance interp of class PythonInterpreter, you can call method interp.eval to have
the interpreter evaluate a Python expression held in a Java string. You can also call any of several
overloads of interp.exec and interp.execfile to have the interpreter execute Python statements held in a
Java string, a precompiled Jython code object, a file, or a Java InputStream.

The Python code you execute can import your Java classes in order to access your application's
functionality. Your Java code can set attributes in the interpreter namespace by calling overloads of
interp.set, and get attributes from the interpreter namespace by calling overloads of interp.get. The
methods' overloads give you a choice. You can work with native Java data and let Jython perform type
conversions, or you can work directly with PyObject, the base class of all Python objects, covered later
in this chapter. The most frequently used methods and overloads of a PythonInterpreter instance interp
are the following.

eval

PyObject interp.eval(String s)

Evaluates, in interp's namespace, the Python expression held in Java string s, and returns the
PyObject that is the expression's result.

exec

void interp.exec(String s)
void interp.exec(PyObject code)

Executes, in interp's namespace, the Python statements held in Java string s or in compiled PyObject
code (produced by function _ _builtin_ _.compile of package org.python.core, covered later in this
chapter).

execfile

void interp.execfile(String name)
void interp.execfile(java.io.InputStream s)
void interp.execfile(java.io.InputStream s,String name)

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Executes, in interp's namespace, the Python statements read from the stream s or from the file
named name. When you pass both s and name, execfile reads the statements from s, and uses name
as the filename in error messages.

get

PyObject interp.get(String name)
Object interp.get(String name,Class javaclass)

Fetches the value of the attribute named name from interp's namespace. The overload with two
arguments also converts the value to the specified javaclass, throwing a Java PyException exception
that wraps a Python TypeError if the conversion is unfeasible. Either overload raises a
NullPointerException if name is unbound. Typical use of the two-argument form might be a Java
statement such as:

String s = (String)interp.get("attname", String.class);

set

void interp.set(String name,PyObject value)
void interp.set(String name,Object value)

Binds the attribute named name in interp's namespace to value. The second overload also converts the
value to a PyObject.

The org.python.core package supplies a class _ _builtin_ _ whose static methods let your Java code
access the functionality of Python built-in functions. The compile method, in particular, is quite similar
to Python built-in function compile, covered in Chapter 8 and Chapter 13. Your Java code can call
compile with three String arguments (a string of source code, a filename to use in error messages, and
a kind that is normally "exec"), and compile returns a PyObject instance p that is a precompiled Python
bytecode object. You can repeatedly call interp.exec(p) to execute the Python statements in p without
the overhead of compiling the Python source for each execution. The advantages are the same as
covered in Chapter 13.

25.2.2 The PyObject Class

Seen from Java, all Jython objects are instances of classes that extend PyObject. Class PyObject
supplies methods named like Python objects' special methods, such as _ _len_ _, _ _str_ _, and so on.
Concrete subclasses of PyObject override some special methods to supply meaningful
implementations. For example, _ _len_ _ makes sense for Python sequences and mappings, but not
for numbers; _ _add_ _ makes sense for numbers and sequences, but not for mappings. When your
Java code calls a special method on a PyObject instance that does not in fact supply the method, the
call raises a Java PyException exception wrapping a Python AttributeError.

PyObject methods that set, get, and delete attributes exist in two overloads, as the attribute name
can be a PyString or a Java String. PyObject methods that set, get, and delete items exist in three
overloads, as the key or index can be a PyObject, a Java String, or an int. The Java String instances
that you use as attribute names or item keys must be Java interned strings (i.e., either string literals
or the result of calling s.intern( ) on any Java String instance s). In addition to the usual Python special
methods _ _getattr_ _ and _ _getitem_ _, class PyObject also provides similar methods _ _findattr_ _
and _ _finditem_ _, the difference being that, when the attribute or item is not found, the _ _find
methods return a Java null, while the _ _get methods raise exceptions.

Every PyObject instance p has a method _ _tojava_ _ that takes a single argument, a Java Class c, and
returns an Object that is the value of p converted to c (or raises an exception if the conversion is
unfeasible). Typical use might be a Java statement such as:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


String s = (String)mypyobj._  _tojava_  _(String.class);

Method _ _call_ _ of PyObject has several convenience overloads, but the semantics of all the
overloads come down to _ _call_ _'s fundamental form:

PyObject p._  _call_  _(PyObject args[], String keywords[]);

When array keywords has length L, array args must have length N greater than or equal to L, and the
last L items of args are taken as named actual arguments, the names being the corresponding items
in keywords. When args has length N greater than L, args's first N-L items are taken as positional
actual arguments. The equivalent Python code is therefore similar to:

def docall(p, args, keywords):
    assert len(args) >= len(keywords)
    deltalen = len(args) - len(keywords)
    return p(*args[:deltalen], ** dict(zip(keywords, args[deltalen:])))

Jython supplies concrete subclasses of PyObject that represent all built-in Python types. You can
sometimes usefully instantiate a concrete subclass in order to create a PyObject for further use. For
example, class PyList extends PyObject, implements a Python list, and has constructors that take an
array or a java.util.Vector of PyObject instances, as well as an empty constructor that builds the empty
list [].

25.2.3 The Py Class

The Py class supplies several utility class attributes and static methods. Py.None is Python's None.
Method Py.java2py takes a single Java Object argument and returns the corresponding PyObject.
Methods Py.py2type, for all values of type that name a Java primitive type (boolean, byte, long, short,
etc.), take a single PyObject argument and return the corresponding value of the given primitive Java
type.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

25.3 Compiling Python into Java

Jython comes with the jythonc compiler. You can feed jythonc your .py source files, and jythonc
compiles them into normal JVM bytecode and packages them into .class and .jar files. Since jythonc
generates static, classic bytecode, it cannot quite cope with the whole range of dynamic possibilities
that Python allows. For example, jythonc cannot successfully compile Python classes that determine
their base classes dynamically at runtime, as the normal Python interpreters allow. However, except
for such extreme examples of dynamically changeable class structures, jythonc does support
compilation of essentially the whole Python language into Java bytecode.

25.3.1 The jythonc command

jythonc resides in the Tools/jythonc directory of your Jython installation. You invoke it from a shell
(console) command line with the syntax:

jythonc options modules

options are zero or more option flags starting with --. modules are zero or more names of Python
source files to compile, either as Python-style names of modules residing on Python's sys.path, or as
relative or absolute paths to Python source files. Include the .py extension in each path to a source
file, but not in a module name.

More often than not, you will specify the jythonc option --jar jarfile, to build a .jar file of compiled
bytecode rather than separate .class files. Most other options deal with what to put in the .jar file. You
can choose to make the file self-sufficient (for browsers and other Java runtime environments that do
not support using multiple .jar files) at the expense of making the file larger. Option --all ensures all
Jython core classes are copied into the .jar file, while --core tries to be more conservative, copying as
few core classes as feasible. Option --addpackages packages lets you list (in packages, a comma-
separated list) those external Java packages whose classes are copied into the .jar file if any of the
Python classes jythonc is compiling depends on them. An important alternative to --jar is --bean jarfile,
which also includes a bean manifest in the .jar file as needed for Python-coded JavaBeans
components.

Another useful jythonc option is --package package, which instructs Jython to place all the new Java
classes it's creating in the given package (and any subpackages of package needed to reflect the
Python-side package structure).

25.3.2 Adding Java-Visible Methods

The Java classes that jythonc creates normally extend existing classes from Java libraries and/or
implement existing interfaces. Other Java-coded applications and frameworks instantiate the jythonc-
created classes via constructor overloads, which have the same signatures as the constructors of their
Java superclasses. The Python-side _ _init_ _ executes after the superclass is initialized, and with the
same arguments (therefore, don't _ _init_ _ a Java superclass in the _ _init_ _ of a Python class meant
to be compiled by jythonc). Afterward, Java code can access the functionality of instances of Python-
coded classes by calling instance methods defined in known interfaces or superclasses and overridden
by Python code.

Python code can never supply Java-visible static methods or attributes, only instance methods. By
default, each Python class supplies only the instance methods it inherits from the Java class it extends
or the Java interfaces it implements. However, Python code can also supply other Java-visible
instance methods via the @sig directive.

To expose a method of your Python class to Java when jythonc compiles the class, code the method's
docstring as @sig followed by a Java method signature. For example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


class APythonClass:
    def __init_  _(self, greeting="Hello, %s!"):
        "@sig public APythonClass(String greeting)"
        self.greeting = greeting
    def hello(self, name):
        "@sig public String hello(String name)"
        return self.greeting % name

To expose a constructor, use the @sig signature for the class, as shown in the previous example. All
names of classes in @sig signatures must be fully qualified, except for names coming from java.lang
and names supplied by the Python-coded module being compiled. When a Python method with a @sig
has optional arguments, jythonc generates Java-visible overloads of the method with each legal
signature, and deals with supplying the default argument values where needed. An _ _init_ _
constructor with a @sig, for a Python class that extends a Java class, initializes the superclass using
the superclass's empty constructor.

Since a Python class cannot expose data attributes directly to Java, you may need to code accessors
with the usual JavaBeans convention and expose them via the @sig mechanism. For example,
instances of APythonClass in the above example do not allow Java code to directly access or change
the greeting attribute. When such functionality is needed, you can supply it in a subclass as follows:

class APythonBean(APythonClass):
    def getGreeting(self):
        "@sig public String getGreeting(  )"
        return self.greeting
    def setGreeting(self, greeting):
        "@sig public void setGreeting(String greeting)"
        self.greeting = greeting

25.3.3 Python Applets and Servlets

Two typical examples of using Jython within existing Java frameworks are applets and servlets.
Applets are typical examples of jythonc use (with specific caveats), while servlets are specifically
supported by a Jython-supplied utility.

25.3.3.1 Python applets

A Jython applet class must import java.applet.Applet and extend it, typically overriding method paint
and others. You compile the applet into a .jar file by calling jythonc with options --jar somejar.jar and
either --core or --all. Normally, Jython is installed in a modern Java 2 environment, which is okay for
most uses. It is fine for applets, as long as the applets run only in browsers that support Java 2,
typically with a Sun-supplied browser plug-in. However, if you need to support browsers that are
limited to Java 1.1, you must ensure that the JDK you use is Release 1.1, and that you compile your
applet with Jython under a JDK 1.1 environment. It's possible to share a single Jython installation
between different JDKs, such as 1.1 and 1.4. However, I suggest you perform separate installations of
Jython, one under each JDK you need to support, in separate directories, in order to minimize the risk
of confusion and accidents.

25.3.3.2 Python servlets

You can use jythonc to build and deploy servlets. However, Jython also supports an alternative that
lets you deploy Python-coded servlets as source .py files. Use the servlet class
org.python.util.PyServlet, supplied with Jython, and a servlet mapping of all *.py URLs to PyServlet.
Each servlet .py file must reside in the web-app top-level directory, and must expose an object
callable without arguments (normally a class) with the same name as the file. PyServlet uses that
callable as a factory for instances of the servlet, and calls methods on the instance according to the
Java Servlet API. Your servlet instance, in turn, accesses Servlet API objects such as the request and
response objects, passed as method arguments, and those objects' attributes and methods such as
response.outputStream and request.getSession. PyServlet provides an excellent, fast-turnaround way to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


response.outputStream and request.getSession. PyServlet provides an excellent, fast-turnaround way to
experiment with servlets and rapidly deploy them.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Chapter 26. Distributing Extensions and Programs

Python's distutils allow you to package Python programs and extensions in several ways, and to install
programs and extensions to work with your Python installation. As I mentioned in Chapter 24, the
distutils also afford the most effective way to build C-coded extensions you write yourself, even when
you are not interested in distributing such extensions. This chapter covers the distutils, as well as
third-party tools that complement the distutils and let you package Python programs for distribution as
standalone applications, installable on machines with specific hardware and operating systems without
a separate installation of Python.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

26.1 Python's distutils

The distutils are a rich and flexible set of tools to package Python programs and extensions for
distribution to third parties. I cover typical, simple use of the distutils for the most common packaging
needs. For in-depth, highly detailed discussion of distutils, I recommend two manuals that are part of
Python's online documentation: Distributing Python Modules (available at
http://www.python.org/doc/current/dist/), and Installing Python Modules (available at
http://www.python.org/doc/current/inst/), both by Greg Ward, the principal author of the distutils.

26.1.1 The Distribution and Its Root

A distribution is the set of files to package into a single file for distribution purposes. A di stribution
may include zero, one, or more Python packages and other Python modules (as covered in Chapter
7), as well as, optionally, Python scripts, C-coded (and other) extensions, supporting data files, and
auxiliary files containing metadata about the distribution itself. A distribution is said to be pure if all
code it includes is Python, and non-pure if it also includes non-Python code (most often, C-coded
extensions).

You should normally place all the files of a distribution in a directory, known as the distribution root
directory, and in subdirectories of the distribution root. Mostly, you can arrange the subtree of files
and directories rooted at the distribution root to suit your own organizational needs. However,
remember from Chapter 7 that a Python package must reside in its own directory, and a package's
directory must contain a file named _ _init_ _.py (or subdirectories with _ _init_ _.py files, for
subpackages) as well as other modules belonging to that package.

26.1.2 The setup.py Script

The distribution root directory must contain a Python script that by convention is named setup.py. The
setup.py script can, in theory, contain arbitrary Python code. However, in practice, setup.py always
boils down to some variation of:

from distutils.core import setup, Extension

setup( many keyword arguments go here )

All the action is in the parameters you supply in the call to setup. You should not import Extension if
your setup.py deals with a pure distribution. Extension is needed only for non-pure distributions, and
you should import it only when you need it. It is fine to have a few statements before the call to
setup, in order to arrange setup's arguments in clearer and more readable ways than could be
managed by having everything inline as part of the setup call.

The distutils.core.setup function accepts only keyword arguments, and there are a large number of
such arguments that you could potentially supply. A few deal with the internal operations of the
distutils themselves, and you never supply such arguments unless you are extending or debugging the
distutils, an advanced subject that I do not cover in this book. Other keyword arguments to setup fall
into two groups: metadata about the distribution, and information about what files are in the
distribution.

26.1.3 Metadata About the Distribution

You should provide metadata about the distribution by supplying some of the following keyword
arguments when you call the distutils.core.setup function. The value you associate with each argument
name you supply is a string that is intended mostly to be human-readable; therefore, any
specifications about the string's format are just advisory. The explanations and recommendations
about the metadata fields in the following are also non-normative, and correspond only to common,
not universal, conventions. Whenever the following explanations refer to "this distribution," it can be
taken to refer to the material included in the distribution, rather than to the packaging of the
distribution.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


author

The name(s) of the author(s) of material included in the distribution. You should always
provide this information, as the authors deserve credit for their work.

author_email

Email address(es) of the author(s) named in argument author. You should provide this
information only if the author is willing to receive email about this work.

contact

The name of the principal contact person or mailing list for this distribution. You should provide
this information if there is somebody who should be contacted in preference to people named
in arguments author and maintainer.

contact_email

Email address of the contact named in argument contact. You should provide this information if
and only if you supply the contact argument.

description

A concise description of this distribution, preferably fitting within one line of 80 characters or
less. You should always provide this information.

fullname

The full name of this distribution. You should provide this information if the name supplied as
argument name is in abbreviated or incomplete form (e.g., an acronym).

keywords

A list of keywords that would likely be searched for by somebody looking for the functionality
provided by this distribution. You should provide this information if it might be useful to index
this distribution in some kind of search engine.

license

The licensing terms of this distribution, in a concise form that may refer for details to a file in
the distribution or to a URL. You should always provide this information.

maintainer

The name(s) of the current maintainer(s) of this distribution. You should normally provide this
information if the maintainer is different from the author.

maintainer_email

Email address(es) of the maintainer(s) named in argument maintainer. You should provide this
information only if you supply the maintainer argument and if the maintainer is willing to
receive email about this work.

name

The name of this distribution as a valid Python identifier (this often requires abbreviations,
e.g., by an acronym). You should always provide this information.

platforms

A list of platforms on which this distribution is known to work. You should provide this
information if you have reasons to believe this distribution may not work everywhere. This
information should be reasonably concise, so this field may refer for details to a file in the
distribution or to a URL.

url

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A URL at which more information can be found about this distribution. You should always
provide this information if any such URL exists.

version

The version of this distribution and/or its contents, normally structured as major.minor or even
more finely. You should always provide this information.

26.1.4 Distribution Contents

A distribution can contain a mix of Python source files, C-coded extensions, and other files. setup
accepts optional keyword arguments detailing files to put in the distribution. Whenever you specify file
paths, the paths must be relative to the distribution root directory and use / as the path separator.
distutils adapts location and separator appropriately when it installs the distribution. Note, however,
that the keyword arguments packages and py_modules do not list file paths, but rather Python
packages and modules respectively. Therefore, in the values of these keyword arguments, use no
path separators or file extensions. When you list subpackage names in argument packages, use
Python syntax (e.g., top_package.sub_package).

26.1.4.1 Python source files

By default, setup looks for Python modules (which you list in the value of the keyword argument
py_modules) in the distribution root directory, and for Python packages (which you list in the value of
the keyword argument packages) as sub-directories of the distribution root directory. You may specify
keyword argument package_dir to change these defaults. However, things are simpler when you
locate files according to setup's defaults, so I do not cover package_dir further in this book.

The setup keyword arguments you will most frequently use to detail what Python source files to put in
the distribution are the following.

packages

packages=[ list of package name strings ]

For each package name string p in the list, setup expects to find a subdirectory p in the distribution
root directory, and includes in the distribution the file p/_ _init_ _.py, which must be present, as well
as any other file p/*.py (i.e., all the modules of package p). setup does not search for subpackages of
p: you must explicitly list all subpackages, as well as top-level packages, in the value of keyword
argument packages.

py_modules

py_modules=[ list of module name strings ]

For each module name string m in the list, setup expects to find a file m.py in the distribution root
directory, and includes m.py in the distribution.

scripts

scripts=[ list of script file path strings ]

Scripts are Python source files meant to be run as main programs (generally from the command line).
The value of the scripts keyword lists the path strings of these files, complete with .py extension,
relative to the distribution root directory.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Each script file should have as its first line a shebang line, that is, a line starting with #! and
containing the substring python. When distutils install the scripts included in the distribution, distutils
adjust each script's first line to point to the Python interpreter. This is quite useful on many platforms,
since the shebang line is used by the platform's shells or by other programs that may run your
scripts, such as web servers.

26.1.4.2 Other files

To put data files of any kind in the distribution, supply the following keyword argument.

data_files

data_files=[ list of pairs (target_directory,[list of files]) ]

The value of keyword argument data_files is a list of pairs. Each pair's first item is a string and names
a target directory (i.e., a directory where distutils places data files when installing the distribution);
the second item is the list of file path strings for files to put in the target directory. At installation
time, distutils places each target directory as a subdirectory of Python's sys.prefix for a pure
distribution, or of Python's sys.exec_prefix for a non-pure distribution. distutils places the given files
directly in the respective target directory, never in subdirectories of the target. For example, given
the following data_files usage:

data_files = [ ('miscdata', ['conf/config.txt',
    'misc/sample.txt']) ]

distutils includes in the distribution the file config.txt from sub-directory conf of the distribution root,
and the file sample.txt from subdirectory misc of the distribution root. At installation time, distutils
creates a subdirectory named miscdata in Python's sys.prefix directory (or in the sys.exec_prefix
directory, if the distribution is non-pure), and copies the two files into miscdata/config.txt and
miscdata/sample.txt.

26.1.4.3 C-coded extensions

To put C-coded extensions in the distribution, supply the following keyword argument.

ext_modules

ext_modules=[ list of instances of class Extension ]

All the details about each extension are supplied as arguments when instantiating the
distutils.core.Extension class.

Extension's constructor accepts two mandatory arguments and many optional keyword arguments, as
follows.

Extension

class Extension(name, sources, **kwds)

name is the module name string for the C-coded extension. name may include dots to indicate that
the extension module resides within a package. sources is the list of source files that the distutils must
compile and link in order to build the extension. Each item of sources is a string giving a source file's
path relative to the distribution root directory, complete with file extension .c. kwds lets you pass

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


path relative to the distribution root directory, complete with file extension .c. kwds lets you pass
other, optional arguments to Extension, as covered later in this section.

The Extension class also supports other file extensions besides .c, indicating other languages you may
use to code Python extensions. On platforms having a C++ compiler, file extension .cpp indicates
C++ source files. Other file extensions that may be supported, depending on the platform and on
add-ons to the distutils that are still in experimental stages at the time of this writing, include .f for
Fortran, .i for SWIG, and .pyx for Pyrex files. See Chapter 24 for information about using different
languages to extend Python.

In some cases, your extension needs no further information besides mandatory arguments name and
sources. The distutils implicitly perform all that is necessary to make the Python headers directory and
the Python library available for your extension's compilation and linking, and also provide whatever
compiler or linker flags or options are needed to build extensions on a given platform.

When it takes additional information to compile and link your extension correctly, you can supply such
information via the keyword arguments of class Extension. Such arguments may potentially interfere
with the cross-platform portability of your distribution. In particular, whenever you specify file or
directory paths as the values of such arguments, the paths should be relative to the distribution root
directory—using absolute paths seriously impairs your distribution's cross-platform portability.

Portability is not a problem when you just use the distutils as a handy way to build your extension, as
suggested in Chapter 24. However, when you plan to distribute your extensions to other platforms,
you should examine whether you really need to provide build information via keyword arguments to
Extension. It is sometimes possible to bypass such needs by careful coding at the C level, and the
already mentioned Distributing Python Modules manual provides important examples.

The keyword arguments that you may pass when calling Extension are the following:

define_macros = [ ( macro_name,macro_value) ... ]

Each of the items macro_name and macro_value, in the pairs listed as the value of
define_macros, is a string, respectively the name and value for a C preprocessor macro
definition, equivalent in effect to the C preprocessor directive:

#define macro_name macro_value

macro_value can also be None, to get the same effect as the C preprocessor directive:

#define macro_name

extra_compile_args = [ list of compile_arg strings ]

Each of the strings compile_arg listed as the value of extra_compile_args is placed among the
command-line arguments for each invocation of the C compiler.

extra_link_args = [ list of link_arg strings ]

Each of the strings link_arg listed as the value of extra_link_args is placed among the command-
line arguments for the invocation of the linker.

extra_objects = [ list of object_name strings ]

Each of the strings object_name listed as the value of extra_objects names an object file to add
to the invocation of the linker. Do not specify the file extension as part of the object name:
distutils adds the platform-appropriate file extension (such as .o on Unix-like platforms and .obj
on Windows) to help you keep cross-platform portability.

include_dirs = [ list of directory_path strings ]

Each of the strings directory_path listed as the value of include_dirs identifies a directory to
supply to the compiler as one where header files are found.

libraries = [ list of library_name strings ]

Each of the strings library_name listed as the value of libraries names a library to add to the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Each of the strings library_name listed as the value of libraries names a library to add to the
invocation of the linker. Do not specify the file extension or any prefix as part of the library
name: distutils, in cooperation with the linker, adds the platform-appropriate file extension and
prefix (such as .a (and a prefix lib) on Unix-like platforms, and .lib on Windows) to help you
keep cross-platform portability.

library_dirs = [ list of directory_path strings ]

Each of the strings directory_path listed as the value of library_dirs identifies a directory to
supply to the linker as one where library files are found.

runtime_library_dirs = [ list of directory_path strings ]

Each of the strings directory_path listed as the value of runtime_library_dirs identifies a directory
where dynamically loaded libraries are found at runtime.

undef_macros = [ list of macro_name strings ]

Each of the strings macro_name listed as the value of undef_macros is the name for a C
preprocessor macro definition, equivalent in effect to the C preprocessor directive:

#undef macro_name

26.1.5 The setup.cfg File

The distutils let the user who is installing your distribution specify many options at installation time.
Most often the user will simply enter the following command at a command line:

C:\> python setup.py install

but the already mentioned manual Installing Python Modules explains many alternatives in detail. If
you wish to provide suggested values for some installation options, you can put a setup.cfg file in
your distribution root directory. setup.cfg can also provide appropriate defaults for options you can
supply to build-time commands. For copious details on the format and contents of file setup.cfg, see
the already mentioned manual Distributing Python Modules.

26.1.6 The MANIFEST.in and MANIFEST Files

When you run:

python setup.py sdist

to produce a packaged-up source distribution (typically a .zip file on Windows, or a .tgz file, also
known as a tarball, on Unix), the distutils by default insert the following in the distribution:

All Python and C source files, as well as data files, explicitly mentioned or directly implied by
your setup.py file's options, as covered earlier in this chapter

Test files, located at test/test*.py under the distribution root directory

Files README.txt (if any), setup.cfg (if any), and setup.py

You can add yet more files in the source distribution .zip file or tarball by placing in the distribution
root directory a manifest template file named MANIFEST.in, whose lines are rules, applied
sequentially, about files to add (include) or subtract (prune) from the overall list of files to place in the
distribution. The sdist command of the distutils also produces an exact list of the files placed in the
source distribution as a text file named MANIFEST in the distribution root directory.

26.1.7 Creating Prebuilt Distributions with distutils

The packaged source distributions you create with python setup.py sdist are the most widely useful
files you can produce with distutils. However, you can make life even easier for users with specific
platforms by also creating prebuilt forms of your distribution with the command python setup.py bdist.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For a pure distribution, supplying prebuilt forms is merely a matter of convenience for the users. You
can create prebuilt pure distributions for any platform, including ones different from those on which
you work, as long as you have available on your path the needed commands (such as zip, gzip, bzip2,
and tar). Such commands are freely available on the Net for all sorts of platforms, so you can easily
stock up on them in order to provide maximum convenience to users who want to install your
distribution.

For a non-pure distribution, making prebuilt forms available may be more than just an issue of
convenience. A non-pure distribution, by definition, includes code that is not pure Python, generally C
code. Unless you supply a prebuilt form, users need to have the appropriate C compiler installed in
order to build and install your distribution. This is not a terrible problem on platforms where the
appropriate C compiler is the free and ubiquitous gcc. However, on other platforms, the C compiler
needed for normal building of Python extensions is commercial and costly. For example, on Windows,
the normal C compiler used by Python and its C-coded extensions is Microsoft Visual C++ (Release 6,
at the time of this writing). It is possible to substitute other compilers, including free ones such as the
mingw32 and cygwin versions of gcc, and Borland C++ 5.5, whose command-line version you can
download from the Net at no cost. However, the process of using such alternative compilers, as
documented in the Python online manuals, is rather complex and intricate, particularly for end users
who may not be experienced programmers.

Therefore, if you want your non-pure distribution to be widely adopted on such platforms as Windows,
it's highly advisable to make your distribution also available in prebuilt form. However, unless you
have developed or purchased advanced cross-compilation environments, building a non-pure
distribution and packaging it up in prebuilt form is only feasible on the target platform. You also need
to have the necessary C compiler installed. When those conditions are satisfied, however, the distutils
make the procedure quite simple. In particular, the command:

python setup.py bdist_wininst

creates an .exe file that is a Windows installer for your distribution. If your distribution is non-pure,
the prebuilt distribution is dependent on the specific Python version. The distutils reflect this fact in
the name of the .exe installer they create for you. Say, for example, that your distribution's name
metadata is mydist, your distribution's version metadata is 0.1, and the Python version you use is 2.2.
In this case, the distutils build a Windows installer named mydist-0.1.win32-py2.2.exe.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

26.2 The py2exe Tool

The distutils help you package up your Python extensions and applications. However, an end user can
install the resulting packaged form only after installing Python. This is particularly a problem on
Windows, where end users want to run a single installer to get an application working on their
machine. Installing Python first and then running your application's installer may prove too much of a
hassle for such end users.

Thomas Heller has developed a simple solution, a distutils add-on named py2exe, freely available for
download from http://starship.python.net/crew/theller/py2exe/. This URL also contains detailed
documentation of py2exe, and I recommend that you study that documentation if you intend to use
py2exe in advanced ways. However, the simplest kinds of use, which I cover in the rest of this
section, cover most practical needs.

After downloading and installing py2exe (on a Windows machine where Microsoft Visual C++ 6 is also
installed), you just need to add the line:

import py2exe

at the start of your otherwise normal distutils script setup.py. Now, in addition to other distutils
commands, you have one more option. Running:

python setup.py py2exe

builds and collects in a subdirectory of your distribution root directory an .exe file and one or more .dll
files. If your distribution's name metadata is, for example, myapp, then the directory into which the
.exe and .dll files are collected is named dist\myapp\. Any files specified by option data_files in your
setup.py script are placed in subdirectories of dist\myapp\. The .exe file corresponds to your
application's first or single entry in the scripts keyword argument value, and also contains the
bytecode-compiled form of all Python modules and packages that your setup.py specifies or implies.
Among the .dll files is, at minimum, the Python dynamic load library, for example python22.dll if you
use Python 2.2, plus any other .pyd or .dll files that your application needs, excluding .dll files that
py2exe knows are system files (i.e., guaranteed to be available on any Windows installation).

py2exe provides no direct means to collect the contents of the dist\myapp\ directory for easy
distribution and installation. You have several options, ranging from a .zip file (which may be given an
.exe extension and made self-extracting, in ways that vary depending on the .zip file handling tools
you choose), all the way to a professional Windows installer construction system, such as those sold
by companies such as Wise and InstallShield. One option that is particularly worth considering is Inno
Setup, a free, professional-quality installer construction system (see
http://www.jrsoftware.org/isinfo.php). Since the files to be packaged up for end user installation are
an .exe file, one or more .dll files, and perhaps some data files in subdirectories, the issue becomes
totally independent from Python. You may package up and redistribute such files just as if they had
originally been built from sources written in any other programming language.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

26.3 The Installer Tool

Gordon McMillan has developed a richer and more general solution to the same problem that py2exe
solves—preparing compact ways to package up Python applications for installation on end user
machines that may not have Python installed. The Installer tool, freely downloadable from
http://www.mcmillan-inc.com/installer, is more general than py2exe, which supports only Windows
platforms. Installer natively supports Linux as well as Windows. Also, Installer's portable, cross-
platform architecture may allow you to extend it to support other Unix-like platforms with a
reasonable amount of effort.

Installer does not rely on distutils. To use Installer, you must learn its own specification files' syntax
and semantics. Installer can do much more than py2exe, so it's not surprising that there is more for
you to learn before making full use of it. However, I recommend studying and trying out Installer if
you have the specific need of building standalone Python applications for Linux or other Unix-like
architectures, or if you have tried py2exe and found it did not quite meet your needs.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of Python in a Nutshell is an African rock python, one of approximately 18
species of python. Pythons are nonvenomous constrictor snakes that live in tropical regions of Africa,
Asia, Australia, and some Pacific Islands. Pythons live mainly on the ground, but they are also
excellent swimmers and climbers. Both male and female pythons retain vestiges of their ancestral
hind legs. The male python uses these vestiges, or spurs, when courting a female.

The python kills its prey by suffocation. While the snake's sharp teeth grip and hold the prey in place,
the python's long body coils around its victim's chest, constricting tighter each time it breathes out.
They feed primarily on mammals and birds. Python attacks on humans are extremely rare.

Emily Quill was the production editor and copyeditor for Python in a Nutshell. Linley Dolby and Tatiana
Apandi Diaz provided quality control. Philip Dangler, Judy Hoer, and Genevieve d'Entremont provided
production assistance. Nancy Crumpton wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover
layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Bret Kerr designed the interior layout, based on a series design by David Futato. This book was
converted by Mike Sierra to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray,
Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is
Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert Romano
and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written
by Nicole Arigo.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

! (exclamation point)
    comparisons  
    pdb command  
    struct format strings  
" (double quote), string literals  
# (pound sign)
    comments  
    regular expressions  
    string formatting  
$ (dollar sign)
    MULTILINE attribute  
    regular expressions  
% (percent sign)
    HTML templates  
    remainder  
    string formatting  
& (ampersand), bitwise AND  
> (greater than sign)
    >> (double greater than)
        right shift  
    comparisons  
    struct format strings  
< (less than sign)
    << (double less than)
        left shift  
    comparisons  
    struct format strings  
<> (angle brackets)
    event names  
    HTML comments  
' (single quote)
    string literals  
() (parentheses)
    class statements  
    def statement  
    function calls  
    line continuation  
    plain assignment statements  
    regular expressions  
    string formatting  
    tuple creation  
* (asterisk)
    ** (double asterisk)
        raising to a power  
    from statement  
    multiplication  
    regular expressions  
    sequence repetition  
    string formatting  
*? (asterisk-question mark), regular expressions  
+ (plus sign)
    addition  
    DateTime instances  
    DateTimeDelta instances  
    regular expressions  
    sequence concatenation  
    string formatting  
    unary plus  
+? (plus sign-question mark), regular expressions  
, (comma)
    dictionaries  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    functions  
    lists  
    plain assignment statements  
    tuples  
- (hyphen)
    regular expressions  
    string formatting  
    subtraction  
    unary minus  
-Qnew switch  
. (period)
    attributes  
        attribute reference  
        instance objects  
    current directory designation  
    DOTALL attribute  
    regular expressions  
    string formatting  
/ (forward slash)  
    // (double forward slash)
        truncating division  
    directory paths  2nd  
        Unix/Windows  
    division operator  
        determining behavior of  
: (colon)
    compound statements  
    dictionaries  
    Unix directory paths  
; (semicolon)
    statement separators  
    Windows directory paths  
= (equal sign)
    comparisons  
    struct format strings  
? (question mark), regular expressions  
@ (at sign), struct format strings  
[] (square brackets)
    indexing  
    item indexes  
    line continuation  
    list creation  
    lists  
    plain assignment statements  
    python command-line syntax  
    regular expressions  2nd  
    slicing  
\ (backslash)
    \n (newline)
        string literals  
    directory paths  
        Windows  
    line continuation  
    regular expressions  
    string literals  
^ (caret)
    bitwise XOR  
    MULTILINE attribute  
    regular expressions  2nd  
_ (underscore)
    class-private variables  
    gettext module  
    identifiers  2nd  
    interactive sessions  
    module-private variables  
    special methods  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


` (backtick), string conversion  
{} (curly braces)
    dictionaries  
    dictionary creation  
    line continuation  
    python command-line syntax  
| (vertical bar)
    bitwise OR  
    regular expressions  2nd  
~ (tilde), bitwise NOT  
4Suite  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

abs function (built-in)  
abs method (operator module)  
__abs__ special method  
absdate attribute (DateTime class)  
absdays attribute (DateTime class)  
abspath function (os.path module)  
abstime attribute (DateTime class)  
AbstractFormatter class (formatter module)  
AbstractWriter class (formatter module)  
absvalues method
    DateTime class  
    DateTimeDelta class  
accept method (socket object)  
Access database  
access function (os module)  
accumulate attribute (ufunc object)  
acos function
    cmath module  
    math module  
acosh function
    cmath module  
    math module  
acquire method
    Condition class  
    lock object  
    Semaphore object  
Active Server Pages (ASP)  
ActivePython  
ActiveScripting extension  
ActiveState
    Python Cookbook  
    Python IDEs offered by  
actual method (Font object)  
add method
    Menu object  
    operator module  
    Stats object  
__add__ special method  2nd  
add_cascade method (Menu object)  
add_checkbutton method (Menu object)  
add_command method (Menu object)  
add_data method (Request object)  
add_header method
    Message object  
    Request object  
add_password method (HTTPPasswordMgrWithDefaultRealm object)  
add_payload method (Message object)  
add_radiobutton method (Menu object)  
add_separator method (Menu object)  
addstr method (Window object)  
after method (Widget object)  
after_cancel method (Widget object)  
after_idle method (Widget object)  
alias command (pdb module)  
allclose function (Numeric module)  
Alternative Readline for Windows  
Amiga, installing Python  
ampersand (&), bitwise AND  
anchor_bgn method (HTMLParser object)  
anchor_end method (HTMLParser object)  
anchorlist attribute (HTMLParser object)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


__and__ special method  
and_ method (operator module)  
angle brackets (<>)
    event names  
    HTML comments  
anydbm module  
anygui toolkit  
Apache servers
    FastCGI for  
    installing Python CGI scripts  
    PyApache/mod_python for  
    Webware/mod_webkit for  
append method (list object)  
appendChild method (Node object)  
Apple Macintosh  [See Macintosh]
applets, Jython  2nd  
apply function (built-in)  
April attribute (mx.DateTime module)  
arange function (Numeric module)  
Archaeopterix, Python IDE offered by  
archive files, packages distributed as  
argmax function (Numeric module)  
argmin function (Numeric module)  
args attribute (exception object)  
args command (pdb module)  
argsort function (Numeric module)  
arguments  
    calling functions  
argv attribute (sys module)  
arithmetic progression
    retrieving list of integers in  
    returning sequence with items in  
ArithmeticError exception  
ARPA module  
array function
    array module  
    jarray module  
    Numeric module  
array module  
    array function  
    Numeric module and  
    type codes for  
array object (Numeric module)  
    astype method  
    broadcasting  
    byteswap method  
    byteswapped method  
    comparing  
    copy method  
    flat method  
    fromfile method  
    fromlist method  
    fromstring method  
    imag method  
    imaginary method  
    indexing  
    iscontiguous method  
    itemsize method  
    masked  
    operations on  
    real method  
    savespace method  
    shape attribute  
    shape method  
    slicing  
    spacesaver method  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    storing  
    tofile method  
    tolist method  2nd  
    tostring method  2nd  
    type codes  
    typecode method  
array type (array module)  
array2string function (Numeric module)  
arrayrange function (Numeric module)  
arrays  
article method (NNTP object)  
as_string method (Message object)  
ASCII/ISO integer code  
ascii_letters attribute (string module)  
ascii_lowercase attribute (string module)  
ascii_uppercase attribute (string module)  
asctime function (time module)  
asin function
    cmath module  
    math module  
asinh function
    cmath module  
    math module  
ASP (Active Server Pages)  
assert statement  
assert_ method (TestCase object)  
assertEqual method (TestCase object)  
AssertionError class (built-in)
    assert statement  
AssertionError exception  
assertNotEqual method (TestCase object)  
assertRaises method (TestCase object)  
assignment statements  2nd  3rd  
    to array slices  
    augmented  
    plain  
asterisk (*)  
    double asterisk (**)
        raising to a power  
    from statement  
    multiplication  
    regular expressions  
    string formatting  
asterisk-question mark (*?), regular expressions  
astype method (array object)  
async_chat class (asynchat module)  
    collect_incoming_data method  
    found_terminator method  
    push method  
    set_terminator method  
asynchat module  
    performance characteristics  
asynchronous programming  [See sockets, event-driven programs]
asyncore module  
    dispatcher class  
    loop function  
    performance characteristics  
at sign (@), struct format strings  
atan/atan2 functions
    cmath module  
    math module  
atanh function
    cmath module  
    math module  
atexit module  
    register function  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


atof function (locale module)  
atoi function (locale module)  
Attr class (minidom module)  
    ownerElement attribute  
    specified attribute  
AttributeError exception  2nd  
    array object  
AttributeList class (minidom module)  
attributes  2nd  
    binding  
        class attributes  
        instance attributes  
    of class objects  
    DBAPI-compliant modules  
    deleting  
        ÒdeletingÓ class attributes  
    documentation strings  
    of file object  
    of module object  
    overriding  
    path-string (os module)  
    references  2nd  
    Tkinter module  
    ufunc object  
    unbinding
        class attributes  
        instance attributes  
attributes attribute (Node object)  
Attributes object (xml.sax package)
    getNameByQName method  
    getQNameByName method  
    getQNames method  
    getValueByQName method  
augmented assignment statements  
August attribute (mx.DateTime module)  
authentication
    SMTP servers  
    URL access to network protocols  
author argument (distutils setup function)  
author_email argument (distutils setup function)  
average function (Numeric module)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

backslash (\)
    directory paths  
        Windows  
    line continuation  
    regular expressions  
    string literals  
backtick (`), string conversion  
backward compatibility  
    exception objects, strings as  
base64 module  
    decode function  
    decodestring function  
    encode function  
    encodestring function  
BaseHandler class  
BaseHTTPRequestHandler class  
BaseHTTPServer module  2nd  
    web server implementation  
basename function (os.path module)  
BaseRequestHandler class (SocketServer module)  
    client_address method  
    handle method  
    request method  
    server method  
Bastion class (Bastion module)  
Bastion module  
    Bastion class  
bbox method (Canvas object)  
benchmarking  2nd  
Berkeley Database library  [See BSD DB]
binaries
    downloading  
    installing from  
    third-party installers for various platforms  
Binary class (xmlrpclib module)  
binary data, encoding as text  
    base64 module  
    quopri module  
    uu module  
binary file mode  
binary function (xmlrpclib module)  
bind method
    socket object  
    Widget object  
bind_all method (Widget object)  
binding, references  
bisect function (bisect module)  
bisect module
    bisect function  
    insort function  
BitmapImage class  
BlackAdder IDE  
blank lines  
blitz function (Numeric module)  
Boa Constructor IDE  
body method (NNTP object)  
bool function (built-in)  2nd  
Boolean class (xmlrpclib module)  
Boolean context  
boolean function (xmlrpclib module)  
Boolean values  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Boost Python Library  
bound methods  2nd  [See also methods][See also methods]
braces  [See curly braces]
brackets  [See square brackets]
break command (pdb module)  
break statement  
browsers  
BSD DB (Berkeley Database library)  2nd  
bsddb module  
    btopen function  
    close method  
    first function  
    has_key function  
    hasopen function  
    keys function  
    last method  
    next method  
    previous function  
    rnopen function  
    set_location function  
btopen function (bsddb module)  
buffer function (built-in)  
buffering
    cmd.py and  
    writing buffer out to OS  
build_opener function (urllib2 module)  
built-in exception classes
    ArithmeticError  
    AssertionError  
    AttributeError  
    EnvironmentError  
    Exception  
    FloatingPointError  
    ImportError  
    IndentationError  
    IndexError  
    IOError  
    KeyboardInterrupt  
    KeyError  
    LookupError  
    MemoryError  
    NameError  
    NotImplementedError  
    OSError  
    OverflowError  
    StandardError  
    SyntaxError  
    SystemError  
    TypeError  
    UnboundLocalError  
    UnicodeError  
    ValueError  
    WindowsError  
    ZeroDivisionError  
built-in functions  
    abs  
    apply  
    bool  2nd  
    buffer  
    callable  
    chr  
    cmp  2nd  
    coerce  
    compile  
        exec statement and  
    delattr  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    dir  
    divmod  2nd  
    encode  
    eval  2nd  
    execfile  
    filter  
    getattr  
    globals  
    hasattr  
    hash  2nd  
    hex  
    id  
    __import__  2nd  
    input  2nd  
        safer variant of  
    isinstance  2nd  3rd  
    issubclass  2nd  
    iter  2nd  
    len  2nd  3rd  
    locals  
    map  
    max  2nd  
    min  2nd  
    oct  
    open
        creating file object  
        restricted execution  
    ord  
    pow  2nd  
    range  2nd  
    raw_input  2nd  
    reduce  
    reload  2nd  
    repr  
    round  
    setattr  
    slice  
    unichr  
    vars  
    xrange  2nd  
    zip  
built-in modules  
    __import__ function  
    loading  
built-in types  
    classmethod  2nd  
    complex  2nd  
    dict  2nd  
    file (open)  2nd  
    float  2nd  
    int  2nd  
    list  2nd  
    long  2nd  
    object  2nd  
    property  2nd  
    staticmethod  2nd  3rd  
    str  2nd  3rd  
        date/time string conversions  
    super  2nd  
    tuple  2nd  
    type  2nd  3rd  
    unicode  2nd  3rd  4th  
built-in variables
    __debug__  
__builtin__ class  
__builtin__ module  2nd  [See also built-in functions][See also built-in functions]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    __builtins__ attribute  
__builtins__ attribute (built-in module)  
Button class (Tkinter module)  
    flash method  
    invoke method  
byteswap method (array object)  
byteswapped method (array object)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

C compiler, ISO-compliant, installing Python and  
C library  
    time module and  
C programming language, CPython and  
C++ programming language, extending Python with  
calcsize function (struct module)  
calculator  
calendar function (calendar module)  
calendar module  
    calendar function  
    firstweekday function  
    isleap function  
    leapdays function  
    month function  
    monthcalendar function  
    monthrange function  
    prcal function  
    prmonth function  
    setfirstweekday function  
    timegm function  
    weekday function  
calibrate method (Profile object)  
__call__ method
    PyObject object  
    special method  
call stack
    _getframe function  
    retrieving limit on depth of  
    setting limit on depth of  
    unwinding on exceptions  
callable function (built-in)  
callable types  
callLater method (reactor object)  
cancel method (scheduler object)  
cancelCallLater method (reactor object)  
Canvas class (Tkinter module)  
    bbox method  
    coords method  
    create_line method  
    create_polygon method  
    create_rectangle method  
    create_text method  
    delete method  
    gettags method  
    itemcget method  
    itemconfig method  
    tag_bind method  
    tag_unbind method  
canvas widget  
    lines  
    polygons  
    rectangles  
    text  
capitalize method (string object)  
caret (^)
    bitwise XOR  
    MULTILINE attribute  
    regular expressions  2nd  
case sensitivity  
    filesystems  
    regular expressions  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    strings  2nd  
    Windows os.environ keys  
ceil function
    cmath module  
    math module  
center method (string object)  
.cfg extension, customizing package installation  
cget method
    Font object  
    Widget object  
CGI (Common Gateway Interface)  
    xxx  [See also CGI scripting][See also CGI scripting]
cgi module  
    escape function  
    FieldStorage class  
CGI scripting  2nd  
    Content-Type header  
    cookies  
    error messages  
        cgitb module  
    HTML forms submission  
    output  
    scripts
        performance characteristics  
        Python, installing  
CGIHTTPServer module  2nd  
cgitb module  
    enable function  
    handle function  
char attribute (Event object)  
characters method (ContentHandler object)  
chdir function (os module)  
checkbox widgets  
Checkbutton class (Tkinter module)  
    deselect method  
    flash method  
    invoke method  
    select method  
    toggle method  
checkcache function (linecache module)  
Cheetah package  
    templating language  
Cheetah.Template module  
    Template class  
child widgets  
childNodes attribute (Node object)  
chmod function (os module)  
choice method (Random object)  
choose function (Numeric module)  
chr function (built-in)  
circular imports  
class body  
    attributes  
    class-private variables  
    docstrings  
    function definitions in  
class methods  
class object
    __bases__ attribute  
    __dict__ attribute  
    __doc__ attribute  
    __name__ attribute  
class statement  
class-level methods  
    class  
    static  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


class-private variables  
classes  
    how metaclasses create  
    metaclasses of, how Python determines  
classes, classic  
    attribute references  
    bound methods  
    class body  
    class statement  
    inheritance  
    instances of  
    unbound methods  
classes, new-style  
    built-in object type  
    class-level methods  
    inheritance  
        cooperative superclass method calling  
        method resolution order  
    instances of  
        per-instance methods  
classic classes  [See classes, classic]
Classic Python  [See CPython]
classmethod type (built-in)  2nd  
clauses  2nd  
clear command (pdb module)  
clear method
    dictionary object  
    Event object  
clearcache function (linecache module)  
client_address method (BaseRequestHandler object)  
clients  
clip function (Numeric module)  
clock function (time module)  
close function (os module)  
close method
    bsddb module  
    Connection object  
    Cursor object  
    file object  
    fileinput module  
    HTMLParser object  
    HTTPConnection object  
    mmap object  
    sgmllib module  
    socket object  
    Telnet object  
    URL file-like object  
    XMLReader object  
    zipfile module  
closed attribute (file object)  
clrtobot method (Window object)  
clrtoeot method (Window object)  
cmath module  
    acos function  
    acosh function  
    asin function  
    asinh function  
    atan/atan2 functions  
    atanh function  
    ceil function  
    cos function  
    cosh function  
    exp function  
    fabs function  
    floor function  
    fmod function  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    frexp function  
    hypot function  
    ldexp function  
    log function  
    log10 function  
    modf function  
    pow function  
    sin function  
    sinh function  
    sqrt function  
    tan function  
Cmd class (cmd module)  
cmd module  
    attributes  
    Cmd class  
    cmdloop function  
    default function  
    do_help function  
    emptyline function  
    identchars attribute  
    intro attribute  
    lastcmd attribute  
    methods  
    onecmd function  
    postcmd function  
    postloop function  
    precmd function  
    preloop function  
    prompt attribute  
    use_rawinput attribute  
cmdloop function (cmd module)  
cmp function
    built-in  2nd  
    filecmp module  
    mx.DateTime module  
__cmp__ special method  
cmpfiles function (filecmp module)  
co_argcount attribute (code object)  
co_varnames attribute (code object)  
code object
    co_argcount attribute  
    co_varnames attribute  
    exec statement and  
codecs  
codecs module  
    EncodedFile function  
    open function  
coded_value attribute (Morsel object)  
coders-decoders (codecs)  
CodeWarrier Pro 7 C compiler  
coerce function (built-in)  
__coerce__ special method  
collect function (gc module)  
collect_incoming_data method (async_chat object)  
colon (:)
    compound statements  
    dictionaries  
    Unix directory paths  
COM  
    date epoch  
    extending Python with  
COMDate method (DateTime class)  
comma (,)
    dictionaries  
    functions  
    lists  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    plain assignment statements  
    tuples  
command attribute (HTTPServer object)  
command-line options, parsing  
comment attribute (zipfile module)  
comments  2nd  
commit method (Connection object)  
Common Gateway Interface (CGI)  
commonprefix function (os.path module)  
compare method (Text object)  
comparing
    arrays of numbers  
    directory paths  
    files  
    numbers  2nd  
compile function
    built-in  
        exec statement and  
    re module  2nd  
        flags argument  
__complex__ special method  
complex type (built-in)  2nd  
compound statements  
compress function
    Numeric module  
    zlib module  
compress_size attribute (zipfile module)  
compress_type attribute (zipfile module)  
compression  
    gzip module  
    zipfile module  
    zlib module  
concat method (operator module)  
concatenate function (Numeric module)  
concatenating
    sequences  
    strings  
Condition class (threading module)  2nd  3rd  
    acquire method  
    notify method  
    notifyAll method  
    release method  
    wait method  
condition command (pdb module)  
config method
    Font object  
    Widget object  
connect function (DBAPI-compliant modules)  
connect method
    FTP object  
    SMTP object  
    socket object  2nd  
Connection object (DBAPI-compliant modules)
    close method  
    commit method  
    cursor method  
    rollback method  
connectionLost method (Protocol object)  
connectionMade method (Protocol object)  
console I/O  
    Console module  
    curses package  
    msvcrt module  
    WConio module  
Console module  
constructor  [See __init__ special method]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


constructor function (copy_reg module)  
contact argument (distutils setup function)  
contact_email argument (distutils setup function)  
container methods
    __contains__  
    __delitem__  
    __getitem__  
    __iter__  
    __len__  
    __setitem__  
container widgets  
    frames  
    top-level windows  
containers  
    returning number of items in  
    slicing  
    special methods for  
contains method (operator module)  
__contains__ special method  
ContentHandler class (xml.sax package)  
    characters method  
    endDocument method  
    endElement method  
    endElementNS method  
    startDocument method  
    startElement method  
    startElementNS method  
continuation lines  
continue command (pdb module)  
continue statement  
control flow statements  
    break statement  
    continue statement  
    for statement  
        iterators  
        list comprehensions  
        range/xrange functions  
    if statements  
    pass statement  
    try statement  
    while statements  
converting
    integers to hexadecimal strings  
    numbers  
        to floating-point  
        to integers  
    numeric operators  
    strings  2nd  
        date/time types  
        to floating-point  
        to Unicode  
    time values  
convolve function (Numeric module)  
Cookie module  
    Morsel class  
    SimpleCookie class  
    SmartCookie class  
cookies  
Cooledit program  
Coordinated Universal Time (UTC)  
coords method (Canvas object)  
copy function
    copy module  
    shutil module  
copy method
    array object  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    dictionary object  
    Font object  
copy module
    copy function  
    deepcopy function  
copy_reg module
    constructor function  
    pickle function  
    pickling customization with  
copy2 function (shutil module)  
copyfile function (shutil module)  
copyfileobj function (shutil module)  
copying
    deep copying  
    file permission bits  
    files  
    types  
copymode function (shutil module)  
copystat function (shutil module)  
copytree function (shutil module)  
cos function
    cmath module  
    math module  
cosh function
    cmath module  
    math module  
count method
    list object  
    string object  
countOf method (operator module)  
cPickle module  
    dump/dumps functions  
    load/loads functions  
    Pickler function  
    pickling customization with copy_reg module  
    Unpickler function  
.cpp files  
CPython (Classic Python)  2nd  
    C-coded Python extensions
        abstract layer functions  
        arguments  
        building/installing  
        concrete layer functions  
        creating Python values  
        defining types  
        exceptions  
        functions  
        module initialization  
        overview  
        reference counting  
    CNRI Open Source GPL-Compatible License  
    embedding  
        installing extension modules  
        Python initialization/finalization  
        running Python code  
        setting arguments  
    extending
        in other languages  
        with Python C API  
    installing  
    reference counts  
CRC checksums (cyclic-redundancy check checksums)  
create_line method (Canvas object)  
create_polygon method (Canvas object)  
create_rectangle method (Canvas object)  
create_socket method (dispatcher object)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


create_text method (Canvas object)  
createComment method (Document object)  
createElement method (Document object)  
createTextNode method (Document object)  
creating
    dictionaries  
    directory paths  
    file object  
        designating buffering  
        sequential/nonsequential access  
        specifying file mode  
    iterators  
    lists  
    pipes  
    prebuilt distributions with distutils  
    tuples  
cross-platform portability  [See portability]
cross-platform programs, rich-text I/O functionality  
cross_correlate function (Numeric module)  
cStringIO function (cStringIO module)  
cStringIO module  2nd  
ctime function (time module)  
curdir attribute (os module)  
curly braces ({})
    dictionaries  
    dictionary creation  
    line continuation  
    python command-line syntax  
currentframe function (inspect module)  
currentThread function (threading module)  
curselection method (Listbox object)  
curses package  
curses programming  
cursor method (Connection object)  
Cursor object
    close method  
    DBAPI  
    description attribute  
    execute method  
    executemany method  
    fetchall method  
    fetchmany method  
    fetchone method  
    rowcount attribute  
customization  
cwd method (FTP object)  
CXX library  
cyclic garbage loops  
cyclic-redundancy check checksums (CRC checksums)  
Cygwin, building Python for  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

data attribute
    UserDict module  
    UserList module  
    UserString module  
data types  
    Boolean values  
    C-coded  
    callable  
    dictionaries  
    None  
    numbers  
    Python versions  
    sequences  
        lists  
        strings  
        tuples  
    user-definable  
data_files argument (distutils setup function)  
Database API  [See DBAPI 2.0]
dataReceived method (Protocol object)  
date attribute (DateTime class)  
Date function
    DBAPI-compliant modules  
    mx.DateTime module  
date/time values  [See also calendar module; time operations]
    compressed files  
    computing moveable feast days  
    converting  
    current CPU time, retrieving  
    directory paths  
    internationalization and  
    in ISO 8601 formats  
    time-tuple  
date_time attribute (zipfile module)  
DateFromTicks function
    DBAPI-compliant modules  
    mx.DateTime module  
DateTime class (mx.DateTime module)  
    absdate attribute  
    absdays attribute  
    abstime attribute  
    absvalues method  
    COMDate method  
    date attribute  
    day attribute  
    day_of_week attribute  
    day_of_year attribute  
    dst attribute  
    gmticks method  
    gmtime method  
    gmtoffset method  
    hour attribute  
    iso_week attribute  
    localtime method  
    minute attribute  
    month attribute  
    second attribute  
    strftime method  
    ticks method  
    tuple method  
    year attribute  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


DateTime class (xmlrpclib module)  
DateTime function (mx.DateTime module)  
DateTimeDelta class (mx.DateTime module)  
    absvalues method  
    attributes  
    DateTimeDelta function  
    DateTimeDeltaFrom function  
    DateTimeDeltaFromSeconds function  
    day attribute  
    days attribute  
    hour attribute  
    hours attribute  
    methods  
    minute attributes  
    minutes attribute  
    second attribute  
    seconds attribute  
    strftime method  
    TimeDelta function  
    TimeDeltaFrom function  
    TimeFromTicks function  
    tuple method  
DateTimeDelta function (DateTimeDelta class)  
DateTimeDeltaFrom function (DateTimeDelta class)  
DateTimeDeltaFromSeconds function (DateTimeDelta class)  
DateTimeFrom function (mx.DateTime module)  
DateTimeFromAbsDays function (mx.DateTime module)  
DateTimeFromCOMDays function (mx.DateTime module)  
day attribute
    DateTime class  
    DateTimeDelta class  
day_of_week attribute (DateTime class)  
day_of_year attribute (DateTime class)  
Daylight Saving Time (DST)  
days attribute (DateTimeDelta class)  
DB2 module  
DBAPI 2.0 (Database API 2.0)  2nd  [See also bsddb module][See also bsddb module]3rd  
    -compliant modules  2nd  
    connect function  
    connection object  
    Cursor object  
    Gadfly  
    type-description attributes  
DBAPI 3.0  
dbhash module  
    open function  
dbm library  
dbm module  2nd  
DBM modules  
    anydbm module  
    bsddb module  
    dbm/gdbm/dbhash modules  
    dumbdbm module  
    whichdb module  
DCOracle2 module  
Debian GNU/Linux, installing Python  
__debug__ variable (built-in)  
debugging  2nd  3rd  
    CGI scripts  2nd  
    HTML  
    in IDLE  
    inspect module  
    pdb module  
    print statement and  
    race conditions  
    traceback module  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    warnings module  
December attribute (mx.DateTime module)  
decimal literals  2nd  
decode function
    base64 module  
    quopri module  
    Utils module  
    uu module  
decodestring function
    base64 module  
    quopri module  
decompress function (zlib module)  
deepcopy function (copy module)  
def statement  2nd  3rd  
default function (cmd module)  
default search path, designating  
define_macros argument (distutils Extension class)  
defining
    functions in class body  
    metaclasses  
defpath attribute (os module)  
deiconify method (Toplevel object)  
__del__ special method  
del statements  2nd  
    dictionaries  
delattr function (built-in)  
__delattr__ special method  2nd  
delch method (Window object)  
dele method (POP3 object)  
delete method
    Canvas object  
    Entry object  
    FTP object  
    Listbox object  
    Menu object  
    Text object  
deleteln method (Window object)  
deleting attributes  
delimiters, list of  
delitem method (operator module)  
__delitem__ special method  
delslice method (operator module)  
denial-of-service attacks  [See security, denial-of-service attacks]
DeprecationWarning class  
descendants  
description argument (distutils setup function)  
description attribute (Cursor object)  
deselect method
    Checkbutton object  
    Radiobutton object  
destructor  [See __del__ special method]
development environments  
    text editors with Python support  
diagonal function (Numeric module)  
__dict__ attribute
    module object  
    class object  
dict type (built-in)  2nd  
dictionaries  
    dictionary items  
    dictionary keys  
    exec statement and  
    indexing  
    listing loaded module names  
    methods  
    operations on  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    optimizing operations on  
    representing current local namespace  
dictionary object (dict type)
    clear method  
    copy method  
    get method  
    has_key method  
    items method  
    iteritems method  
    iterkeys method  
    itervalues method  
    keys method  
    popitem method  
    setdefault method  
    update method  
    values method  
DictionaryType attribute (types module)  
DictType attribute (types module)  
digits attribute (string module)  
dir function (built-in)  
dircmp function (filecmp module)  
directory paths
    absolute, retrieving name of  
    base name of, retrieving  
    comparing  
    creating  
    current working directory
        returning path of  
        setting  
    distribution utilities  
    information about, retrieving  
    mount points  
    normalized names, retrieving  
    parent directory  
    removing  2nd  
    renaming  
    separator between lists of  
    setting time on  
    specifying when module loading  
    symbolic links to  
dirname function (os.path module)  
disable command (pdb module)  
disable function (gc module)  2nd  
dispatcher class (asyncore module)  
    create_socket method  
    handle_accept method  
    handle_close method  
    handle_connect method  
    handle_read method  
    handle_write method  
displayhook function (sys module)  
disposition attribute (FieldStorage object)  
disposition_options attribute (FieldStorage object)  
distributed computing  
distribution root directory  
    setup.py script  
distribution utilities  [See distutils]
distributions  
    root directory of  
distutils (distribution utilities)  2nd  
    creating prebuilt distributions  
    distribution contents  
    distribution root directory  
    distutils module, Extensions class  
    distutils module, setup function  
    distutils package  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    MANIFEST files  
    providing metadata about distribution  
    setup.cfg file  
    setup.py script  
div method (operator module)  
__div__ special method  
division  
divmod function (built-in)  2nd  
__divmod__ special method  
.dll files  
DLLs (dynamic load libraries)  
    interoperability of Python release and debugging builds  
DNS (Domain Name System)  
do_help function (cmd module)  
do_tag method
    HTMLParser object  
    sgmllib module  
__doc__ attribute
    class object  
    module object  
docstrings  2nd  3rd  
doctest module  
doctype attribute (Document object)  
Document class (minidom module)  2nd  
    createComment method  
    createElement method  
    createTextNode method  
    doctype attribute  
    DocumentElement attribute  
    getElementById method  
    getElementsByTagName method  
    getElementsByTagNameNS method  
    methods  
Document Object Model  [See DOM, parsing XML]
Document Type Definition (DTD)  
documentation  
    embedding/extending Python  
documentation strings  [See docstrings]2nd  [See docstrings]
documentElement attribute (Document object)  
dollar sign ($)
    MULTILINE attribute  
    regular expressions  
DOM (Document Object Model), parsing XML  2nd  [See also minidom module]
    minidom module  
    pulldom module  
    xml.dom package  
Domain Name System (DNS)  
DOMEventStream class (pulldom module)  
DOMException class (xml.dom package)  
DOTALL attribute (re module)  
double quote ("), string literals  
down command (pdb module)  
DST (Daylight Saving Time)  
dst attribute (DateTime class)  
DTD (Document Type Definition)  
dumbdbm module  
    open function  
DumbWriter class (formatter module)  
dump/dumps functions
    marshal module  
    pickle/cPickle modules  
dump_address_pair function (Utils module)  
dup/dup2 functions (os module)  
dynamic execution  
dynamic load libraries  [See DLLs]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

EAFP (easier to ask forgiveness than permission)  
    Queue module and  
easier to ask forgiveness than permission  [See EAFP]
echo servers
    TCP  
    UDP  
edit function, textpad module  
EditPythonPrefs icon (Macintosh)  
eGenix GmbH  
Element class (minidom module)  2nd  
    getAttribute method  
    getAttributeNode method  
    getAttributeNodeNS method  
    getAttributeNS method  
    getElementsByTagName method  
    getElementsByTagNameNS method  
    hasAttribute method  
    hasAttributeNS method  
    methods of  
    removeAttribute method  
    setAttribute method  
elif clause  
else clause  2nd  
emacs program  
email  [See email package]
email package  
    Encoders module  
    functions  
    Generator module  
    Message module  
    Utils module  
email protocols  
    poplib module  
    smtplib module  
embedding/extending
    CPython  
    Jython  
Empty class (Queue module)  
empty method
    Queue object  
    scheduler object  
emptyline function (cmd module)  
enable command (pdb module)  
enable function
    cgitb module  
    gc module  
encode function
    base64 module  
    built-in  
    quopri module  
    Utils module  
    uu module  
encode method, string object  
encode_7or8bit function (Encoders module)  
encode_base64 function (Encoders module)  
encode_noop function (Encoders module)  
encode_quopri function (Encoders module)  
EncodedFile function (codecs module)  
Encoders module  
    encode_7or8bit function  
    encode_base64 function  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    encode_noop function  
    encode_quopri function  
encodestring function
    base64 module  
    quopri module  
encoding binary data as text  
    base64 module  
    quopri module  
    uu module  
encodings
    codecs  
    Latin-1  
    network  
encodings package  
end method (match object)  
end_headers method (HTTPServer object)  
end_tag method
    HTMLParser object  
    sgmllib module  
endDocument method (ContentHandler object)  
endElement method (ContentHandler object)  
endElementNS method (ContentHandler object)  
endpos attribute (match object)  
endswith method (string object)  
enter method (scheduler object)  
enterabs method (scheduler object)  
entity references, HTML  
entitydefs attribute (htmlentitydefs module)  
Entry class (Tkinter module)  
    delete method  
    get method  
    insert method  
entryconfigure method (Menu object)  
environ attribute (os module)  
environment variables
    name of, retrieving  
    process environment  
    Python interpreter and  
EnvironmentError exception  
epilogue attribute (Message object)  
epoch  
__eq__ special method  
equal sign (=)
    comparisons  
    struct format strings  
erase method (Window object)  
errno attribute (os module)  
errno module  
error handling  
    assert statement  
    __debug__ variable  
    error-checking strategies  
    errors vs. special cases  
    in large programs  
    logging errors  
error messages  [See also warnings module][See also warnings module]
    CGI scripting  
    code numbers  
    file printed to  
    internationalization and  
    stderr attribute (sys module)  
    traceback messages  
escape function
    cgi module  
    re module  
    saxutils module  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


eval function (built-in)  2nd  
eval method (PythonInterpreter object)  
Event class
    threading module  2nd  
    Tkinter module  
Event object (threading module)  
    clear method  
    isSet method  
    set method  
    wait method  
Event object (Tkinter module)
    attributes  
    char attribute  
    keysym attribute  
    num attribute  
    widget attribute  
    x_root attribute  
    y_root attribute  
event scheduler  
event-driven applications
    GUI applications  
    network programs  
events  [See also sockets, event-driven programs][See also sockets, event-driven programs]
    binding callbacks to  
    keyboard  
    mouse  
exc_info function, sys module  2nd  
excepthook function (sys module)  2nd  
Exception class (built-in)  
exception classes
    custom  
    DBAPI  
    standard  
exception handling  
    exception propagation  
    sys.excepthook  
    try statement  
        try/except  
        try/finally  
exceptions  
    C-coded Python extensions  
    exception objects  
        custom exception classes  
        standard exception classes  
    IOError exceptions  
    pending, gathering information about  
    raise statement  
    standard, hierarchy of  
exclamation point (!)
    comparisons  
    pdb command  
    struct format strings  
exec method (PythonInterpreter object)  
exec statement  
    limiting use of  2nd  
execfile function (built-in)  
execfile method (PythonInterpreter object)  
execl function (os module)  
execle function (os module)  
execlp function (os module)  
executables, self-installing, packages distributed as  
execute method (Cursor object)  
executemany method (Cursor object)  
execution
    dynamic  
    restricted  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        exec statement and  
        rexec module  
        sandbox environment  
execv function (os module)  
execve function (os module)  
execvp function (os module)  
execvpe function (os module)  
exists function (os.path module)  
exit function (sys module)  2nd  
exp function
    cmath module  
    math module  
expand method (match object)  
expandNode method (DomEventStream object)  
expandtabs method (string object)  
expandvars function (os.path module)  
expect method (Telnet object)  
expression statements  
expressions  
    Boolean context  
    exec statement and  
    named/positional arguments  
    operator precedence in  
    returning results of  
ext_modules argument (distutils setup function)  
extend method (list object)  
eXtensible Markup Language  [See XML]
Extension class (distutils module)  
extension modules  2nd  
    C-coded  
    errors in  
    portability and  
    Python implementations and  
    resources for further information  
    writing in lower-level languages  
extra_compile_args argument (distutils Extension class)  
extra_link_args argument (distutils Extension class)  
extra_objects argument (distutils Extension class)  
extsep attribute (os module)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

F2PY library  
fabs function
    cmath module  
    math module  
factory functions  
fail method (TestCase object)  
failIf method (TestCase object)  
failIfEqual method (TestCase object)  
failUnless method (TestCase object)  
failUnlessEqual method (TestCase object)  
failUnlessRaises method (TestCase object)  
FancyURLopener class  
    prompt_user_passwd method  
    version method  
Fast Fourier Transforms (FFTs)  
FastCGI  
fdopen function (os module)  
Feasts module  
February attribute (mx.DateTime module)  
feed method
    HTMLParser object  
    sgmllib module  
    XMLReader object  
fetchall method (Cursor object)  
fetchmany method (Cursor object)  
fetchone method (Cursor object)  
FFT module  
FFTPACK/fftpack libraries  
FFTs (Fast Fourier Transforms)  
FieldStorage class (cgi module)  
    disposition attribute  
    disposition_options attribute  
    file attribute  
    filename attribute  
    getfirst method  
    getlist method  
    getvalue method  
    headers attribute  
    name attribute  
    type attribute  
    type_option attribute  
    value attribute  
file attribute (FieldStorage object)  
file descriptors
    duplicating  
    operations on  
    OS-level  
file extensions, order of, when searching filesystem for modules  
file object (file type)  2nd  3rd  
    attributes  
    close method  
    closed attribute  
    creating  
        designating buffering  
        sequential/nonsequential access  
        specifying file mode  
    fileno method  
    flush method  
    isatty method  
    iteration on  
    memory-mapped  [See mmap object]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    methods  
    mode attribute  
    mode of  
    name attribute  
    open, alternate way to create  
    polymorphism and  
    read method  
    readline method  
    readlines method  
    seek method  
    softspace attribute  
    tell method  
    truncate method  
    write method  
    writelines method  
    xreadlines method  
file_size attribute (zipfile module)  
filecmp module  
    cmp function  
    cmpfiles function  
    dircmp function  
FileInput function (fileinput module)  
fileinput module  
    close method  
    FileInput function  
    filelineno function  
    filename function  
    input function  
    isfirstline function  
    isstdin function  
    lineno function  
    nextfile function  
filelineno function (fileinput module)  
filename attribute
    FieldStorage object  
    os module  
    zipfile module  
filename function (fileinput module)  
fileno method (file object)  
files  2nd  [See also file object][See also file object]3rd  
    buffering  
    comparing  
    compressed  
        gzip module  
        tar archive  
        zipfile module  
        zlib module  
    copying  
    creating/opening  
    .dll  
    HTML, getting information from  
    information about, retrieving  
    __init__.py  
    .jar, Jython and  
    jython.jar  
    MANIFEST  
    msvcrt.dll  
    .pythonrc.py  
    removing  
    renaming  
    setting time on  
    site.py  
    .so  
    as symbolic links  
    text  
    truncating  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


filesystems  
    case-sensitive  
    operations of  
        permissions  
    searching for modules  
filter function (built-in)  
filterwarnings function (warnings module)  
find method
    mmap object  
    string object  
findall method (regular expression object)  
first function (bsddb module)  
firstChild attribute (Node object)  
firstweekday function (calendar module)  
flag values, anydbm.open  
flags argument (compile function)  
flags attribute (regular expression object)  
flash method
    Button object  
    Checkbutton object  
    Radiobutton object  
flat method (array object)  
__float__ special method  
float type (built-in)  2nd  
floating-point numbers
    generating pseudo-random  
    literals  
    mathematical functions on  
    rounding off  
    in string formats  
FloatingPointError exception  
floor function
    cmath module  
    math module  
__floordiv__ special method  
flush method
    file object  
    mmap object  
fmod function
    cmath module  
    math module  
focus_set method (Widget object)  
Font class (tkFont module)  
    actual method  
    cget method  
    config method  
    copy method  
for statement  
    else clause  
    iterators  2nd  
    list comprehensions  
    range/xrange functions  
formal parameters  
format function (locale module)  
formatargspec function (inspect module)  
formatargvalues function (inspect module)  
formatdate function (Utils module)  
formatter attribute (HTMLParser object)  
formatter module  
    AbstractFormatter class  
    AbstractWriter class  
    DumbWriter class  
    NullFormatter class  
    NullWriter class  
formatting strings  
    common idioms  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    conversion characters  
    specifier syntax  
formatwarning function (warnings module)  
Fortran
    -coded libraries  
    extending Python  
forward slash (/)
    directory paths  2nd  
        Unix/Windows  
    division  
    division operator  
        determining behavior of  
    double forward slash (//)
        truncating division  
found_terminator method (async_chat object)  
4Suite  
Frame class (Tkinter module)  
frame type  
frexp function
    cmath module  
    math module  
Friday attribute (mx.DateTime module)  
from statement
    avoiding from...import  
    importing modules from packages  
    module object  
fromfile method (array object)  
fromlist method (array object)  
fromstring function (Numeric module)  
fromstring method (array object)  
fstat function (os module)  
FTE editor  
FTP class (ftplib module)  
    connect method  
    cwd method  
    delete method  
    login method  
    mkd method  
    pwd method  
    quit method  
    rename method  
    retrbinary method  
    retrlines method  
    rmd method  
    sendcmd method  
    set_pasv method  
    size method  
    storbinary method  
    storlines method  
FTP protocol  2nd  
    ftplib module  
    twisted.protocols package  
FTP servers  
ftplib module  2nd  
Full class (Queue module)  
full method (Queue object)  
fullname argument (distutils setup function)  
func_code attribute (method object)  
function object
    func_code attribute  
functions  
    attributes of  
    built-in  
    C-coded Python extension modules  
    defining  
        in a class body  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    function calls  2nd  
        arguments  2nd  
    generators  
    lambda expressions  
    local variables  
    namespaces  
        global statement  
        nested functions/scopes  
    parameters  
    recursion  
    return statement  
    termination  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Gadfly  
gadfly function (gadfly module)  
gadfly module  
    gadfly function  
    gfclient function  
garbage attribute (gc module)  
garbage collection  2nd  
    cyclic garbage  
    del statements and  
    disabling  2nd  
    finalizing classes  
    gc module  
    Jython  
    reference counts  
    weakref module  
gc module  2nd  
    collect function  
    disable function  2nd  
    enable function  
    garbage attribute  
    get_debug function  
    get_objects function  
    get_referrers function  
    get_threshold function  
    isenable function  
    set_debug function  
    set_threshold function  
gdbm library  
gdbm module  
    open function  
__ge__ special method  
Generator class (Generator module)  
Generator module  
generators  
geometry method (Toplevel object)  
get method
    dictionary object  
    Entry object  
    Listbox object  
    PythonInterpreter object  
    Queue object  
    Scale object  
    Text object  
get_all method (Message object)  
get_boundary method (Message object)  
get_charsets method (Message object)  
get_data method (Request object)  
get_debug function (gc module)  
get_filename method (Message object)  
get_full_url method (Request object)  
get_history_length function (readline module)  
get_host method (Request object)  
get_maintype method (Message object)  
get_nowait method (Queue object)  
get_objects function (gc module)  
get_payload method (Message object)  
get_referrers function (gc module)  
get_selector method (Request object)  
get_subtype method (Message object)  
get_threshold function (gc module)  
get_timeout method (TimeoutSocket object)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


get_type method
    Message object  
    Request object  
get_unixfrom method (Message object)  
getaddresses function (Utils module)  
getargspec function (inspect module)  
getargvalues function (inspect module)  
getatime function (os.path module)  
getattr function (built-in)  
__getattr__ special method  
getAttribute method (Element object)  
__getattribute__ special method  2nd  3rd  
getAttributeNode method (Element object)  
getAttributeNodeNS method (Element object)  
getAttributeNS method (Element object)  
getch function (msvcrt module)  
getch method (Window object)  
getche function (msvcrt module)  
getcwd function (os module)  
getdefaultencoding function (sys module)  
getdefaultlocale function (locale module)  
getDefaultSocketTimeout function (timeoutsocket module)  
getdoc function (inspect module)  
getElementById method (Document object)  
getElementsByTagName method
    Document object  
    Element object  
getElementsByTagNameNS method
    Document object  
    Element object  
getfile function (inspect module)  
getfirst method (FieldStorage object)  
getfqdn function (socket module)  
_getframe function (sys module)  2nd  
getheader method (HTTPResponse object)  
getHost method (transports object)  
gethostbyaddr function (socket module)  
gethostbyname_ex function (socket module)  
getinfo function
    ZipFile class  
__getinitargs__ special method  
getitem method (operator module)  
__getitem__ special method  
getline function (linecache module)  
getlist method (FieldStorage object)  
getlocale function (locale module)  
getmaintype method (Message object)  
getmembers function (inspect module)  
getmodule function (inspect module)  
getmro function (inspect module)  
getmtime function (os.path module)  
getName method (Thread object)  
getNameByQName method (Attributes object)  
getopt function (getopt module)  
GetoptError exception  
getparam method (Message object)  
getparams method (Message object)  
getpass function (getpass module)  
getpass module  
    getpass function  
    getuser function  
getPeer method (transports object)  
getpeername method (socket object)  
getQNameByName method (Attributes object)  
getQNames method (Attributes object)  
getrecursionlimit function (sys module)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


getrefcount function (sys module)  2nd  
getresponse method (HTTPConnection object)  
getsize function (os.path module)  
getslice method (operator module)  
getsource function (inspect module)  
getsourcefile function (inspect module)  
getsourcelines function (inspect module)  
getstate method (Random object)  
getsubtype method (Message object)  
gettags method (Canvas object)  
gettext module  
    install function  
    translation function  
gettype method (Message object)  
geturl method (URL file-like object)  
getuser function (getpass module)  
getvalue method  
    FieldStorage object  
    file object  
getValueByQName method (Attributes object)  
getweakrefcount function (weakref module)  
getweakrefs function (weakref module)  
getyz method (Window object)  
gfclient function (gadfly module)  
GIF (Graphical Interchange Format)  
Glimmer program  
global statement  
global variables  2nd  
    thread synchronization and  
globals function (built-in)  
GMT (Greenwich Mean Time)  
    retrieving current  
gmt function (mx.DateTime module)  
gmticks method (DateTime class)  
gmtime function
    mx.DateTime module  
    time module  
gmtime method (DateTime class)  
gmtoffset method (DateTime class)  
GNU Public License (GPL)  
GNU Readline Library  
gopher  
GPL (GNU Public License)  
grab_release method (Widget object)  
grab_set method (Widget object)  
Graphical Interchange Format (GIF)  
graphical user interfaces  [See GUIs]
greater than sign (>)
    comparisons  
    double greater than (>>)
        right shift  
    struct format strings  
Greenwich Mean Time  [See GMT]
Gregorian calendar  
grid method (Widget object)  
grid_forget method (Widget object)  
grid_info method (Widget object)  
group method
    match object  
    NNTP object  
groupdict method (match object)  
groupindex attribute (regular expression object)  
groups method (match object)  
__gt__ special method  
GUIs (graphical user interfaces)  
    scripts, running standalone  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Tkinter  
    toolkits  
gunzip program  2nd  
gzip module  
    GzipFile class  
    open function  
gzip program  
GzipFile class (gzip module)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

handle function, cgitb module  
handle method
    BaseRequestHandler object  
    HTTPServer object  
handle_accept method (dispatcher object)  
handle_charref method
    HTMLParser object  
    sgmllib module  
handle_close method (dispatcher object)  
handle_comment method
    HTMLParser object  
    sgmllib module  
handle_connect method, dispatcher object  
handle_data method
    HTMLParser object  
    sgmllib module  
handle_endtag method
    HTMLParser object  
    sgmllib module  
handle_entityref method
    HTMLParser object  
    sgmllib module  
handle_image method (HTMLParser object)  
handle_read method (dispatcher object)  
handle_starttag method
    HTMLParser object  
    sgmllib module  
handle_write method (dispatcher object)  
has_data method (Request object)  
has_key function (bsddb module)  
has_key method (dictionary object)  
hasattr function (built-in)  
hasAttribute method (Element object)  
hasAttributeNS method (Element object)  
hasChildNodes method (Node object)  
hash function (built-in)  2nd  
__hash__ special method  2nd  
hashopen function (bsddb module)  
head method (NNTP object)  
header lines  
headers  
headers attribute (FieldStorage object)  
hex function (built-in)  
__hex__ special method  
hexadecimal literals  
hexdigits attribute (string module)  
hierarchy of stardard exceptions  
hour attribute
    DateTime class  
    DateTimeDelta class  
hours attribute (DateTimeDelta class)  
HPUX, Python IDEs  
HTML (HyperText Markup Language)  
    debugging  
    documents
        outputting  
        parsing  
    entity references  
    files, getting information from  
    formatter module  
    generating  2nd  [See also Cheetah package]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        embedding Python code  
        by templating  
    htmlentitydefs module  
    htmllib module  
        parsing HTML  
    HTMLParser module  
    sgmllib module  
    tags  
HTML forms, CGI scripting  
HTML Version 2.0, tags defined in  
htmlentitydefs module  
htmllib module  
HTMLParser class
    anchor_bgn method  
    anchor_end method  
    anchorlist attribute  
    close method  
    do_tag method  
    end_tag method  
    feed method  
    formatter attribute  
    handle_charref method  
    handle_comment method  
    handle_data method  
    handle_endtag method  
    handle_entityref method  
    handle_image method  
    handle_starttag method  
    htmllib module  
    HTMLParser module  
    nofill attribute  
    save_bgn method  
    save_end method  
    start_tag method  
HTMLParser module  
    HTMLParser class  
htonl/htons functions (socket module)  2nd  
HTTP protocol  [See also urllib module urllib2 module][See also urllib module urllib2 module]2nd  3rd  
    cookies and  
    httplib module  
    twisted.protocols package  
HTTP servers  
    methods/attributes  
    sockets and  
        BaseHTTPServer module  
        CGIHTTPServer module  
        SimpleHTTPServer module  
        SimpleXMLRPCServer module  
HTTPBasicAuthHandler class  
HTTPConnection class  
    close method  
    getresponse method  
    request method  
HTTPDigestAuthHandler class  
httplib module  2nd  
HTTPPasswordMgrWithDefaultRealm class  
HTTPResponse object
    getheader method  
    msg method  
    read method  
    reason method  
    status method  
    version method  
https protocol  2nd  
    twisted.protocols package  
HTTPSConnection class  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HTTPServer class  
    command attribute  
    end_headers method  
    handle method  
    path method  
    rfile method  
    send_error method  
    send_header method  
    send_response method  
    wfile method  
HyperText Markup Language  [See HTML]
hyphen (-)
    regular expressions  
    string formatting  
    subtraction  
    unary minus  
hypot function
    cmath module  
    math module  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

I/O operations
    auxiliary modules for  
        fileinput  
        linecache  
        struct  
        xreadlines  
    error streams  
    failure of  
    optimizing  
    richer-text Input/output  
        console I/O  
        readline module  
    StringIO/cStringIO modules  
    text Input/output  
        getpass module  
        print statement  
        standard input  
        standard output/standard error  
__iadd__ special method  
__iand__ special method  
IBM AS/400, installing Python  
IBM DB/2  
iconify method (Toplevel object)  
id function (built-in)  
identchars attribute (cmd module)  
identifiers  2nd  
    characters not allowed in  
identity function (Numeric module)  
IDEs (Integrated Development Environments)  
__idiv__ special method  
IDLE (Interactive DeveLopment Environment)  
    debugging in  
if statements  
    continue statements in place of  
__ifloordiv__ special method  
ignore command (pdb module)  
IGNORECASE attribute (re module)  
__ilshift__ special method  
imag method (array object)  
image_create method (Text object)  
images, supported by Tkinter module  
imaginary method (array object)  
IMAP4 (Internet Message Access Protocol Version 4)  
immutable objects  
__imod__ special method  
implementations of Python  
__import__ function (built-in)  2nd  3rd  
import statement  
ImportError exception  
__imul__ special method  
include_dirs argument (distutils Extension class)  
IndentationError exception  
index method
    list object  
    string object  
    Text object  
Indexed-Sequential Access Method (ISAM)  
IndexError exception  
indexing
    dictionaries  
    sequences  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    targets  
indexOf method (operator module)  
indices function (Numeric module)  
industry-specific markup languages  
inet_aton function (socket module)  
inet_ntoa function (socket module)  
info method (URL file-like object)  
infolist function (ZipFile class)  
InfoZip zlib compression library  
inheritance
    classic classes  2nd  
        delegating to superclass methods  
        ÒdeletingÓ class attributes  
        overriding attributes  
    new-style object model  
        cooperative superclass method calling  
        method resolution order  
__init__ special method  2nd  3rd  
__init__.py file  
innerproduct function (Numeric module)  
input function
    built-in  2nd  
        safer variant of  
    fileinput module  
insert method
    Entry object  
    list object  
    Listbox object  
    Menu object  
    Text object  
insert_cascade method (Menu object)  
insert_checkbutton method (Menu object)  
insert_command method (Menu object)  
insert_radiobutton method (Menu object)  
insert_separator method (Menu object)  
insertBefore method (Node object)  
insort function (bisect module)  
inspect module  2nd  
    currentframe function  
    formatargspec function  
    formatargvalues function  
    getargspec function  2nd  
    getdoc function  
    getfile function  
    getmembers function  
    getmodule function  
    getmro function  
    getsource function  
    getsourcefile function  
    getsourcelines function  
    isbuiltin function  
    isclass function  
    iscode function  
    isframe function  
    isfunction function  
    ismethod function  
    ismodule function  
    isroutine function  
    stack function  
insstr method (Window object)  
install function (gettext module)  
install_opener function (urllib2 module)  
Installer tool  
installing  
    C-coded Python extensions  
    CPython  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Jython  2nd  
    platform-specific installers, packages distributed as  
    Python from binaries  
    Python from source code  
        Macintosh  
        Unix  
        Windows  
    resident extension modules  
instances
    of classic classes  
        attributes  
        factory functions  
    of new-style classes  
        per-instance methods  
__int__ special method  
int type (built-in)  2nd  
integers
    bitwise operations on, numeric operations and  
    converting numbers to  
    converting to hexadecimal strings  
    converting to octal strings  
    largest in this version of Python, retrieving  
    literals  
    retrieving list of in arithmetic progression  
Integrated Development Environments (IDEs)  
inter-process communication  [See IPC]
interact method (Telnet object)  
Interactive DeveLopment Environment  [See IDLE]
interactive sessions  2nd  
    isatty function (file object)  
    Python interpreter  
    readline module  
    sys.displayhook  
internal types  
internationalization  
    codecs module  
    currency formatting  
    gettext module  
    locale module  
    localization  
Internet Message Access Protocol Version 4 (IMAP4)  
Internet Protocol (IP)  
Internet servers  
interoperability, Python release and debugging builds  
intro attribute (cmd module)  
invert method (operator module)  
__invert__ special method  
invoke method
    Button object  
    Checkbutton object  
    Menu object  
    Radiobutton object  
IOError exceptions  2nd  
__ior__ special method  
IP (Internet Protocol)  
IPC (inter-process communication)  
    cross-platform mechanism  [See mmap module]
    mmap object, using for  
__ipow__ special method  
__irshift__ special method  
is_multipart method (Message object)  
is_output method
    Morsel object  
    SimpleCookie object  
    SmartCookie object  
is_zipfile function (zipfile module)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


isabs function (os.path module)  
isAlive method (Thread object)  
isalnum method (string object)  
isalpha method (string object)  
ISAM (Indexed-Sequential Access Method)  
ISAPI  
isatty method (file object)  
isbuiltin function (inspect module)  
isclass function (inspect module)  
iscode function (inspect module)  
iscontiguous method (array object)  
isDaemon method (Thread object)  
isdigit method (string object)  
isdir function (os.path module)  
isenabled function (gc module)  
isfile function (os.path module)  
isfirstline function (fileinput module)  
isframe function (inspect module)  
isfunction function (inspect module)  
isinstance function (built-in)  2nd  3rd  
isleap function (calendar module)  
islink function (os.path module)  
islower method (string object)  
ismethod function (inspect module)  
ismodule function (inspect module)  
ismount function (os.path module)  
ISO 8601 formats, time/date values in  
ISO module  
ISO-compliant C compiler, installing Python and  
iso_week attribute (DateTime class)  
isroutine function (inspect module)  
isSameNode method (Node object)  
isSet method (Event object)  
isspace method (string object)  
isstdin function (fileinput module)  
issubclass function (built-in)  2nd  
istitle method (string object)  
__isub__ special method  
isupper method (string object)  
itemcget method (Canvas object)  
itemconfig method (Canvas object)  
items  
    returning largest/smallest  
items method (dictionary object)  
itemsize method (array object)  
iter function (built-in)  2nd  
__iter__ special method  
iteration
    file object  
    iterators  
        creating  
    Python versions  
iteritems method (dictionary object)  
iterkeys method (dictionary object)  
itervalues method (dictionary object)  
__itruediv__ special method  
__ixor__ special method  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

January attribute (mx.DateTime module)  
.jar files, Jython and  
jarray module  
    array function  
    zeros function  
Java
    classes, subclassing  
    compiling Python into  
        adding Java-visible methods  
        jythonc command  
        Python applets/servlets  
    embedding Jython  
        Py class  
        PyObject class  
        PythonInterpreter class  
Java Development Kit (JDK)  
Java Native Interface (JNI)  
Java packages, importing in Jython  
    accessibility  
    JavaBeans  
    Jython registry  
    subclassing Java classes  
    type conversions  
Java Virtual Machines  [See JVMs]
java.util collection classes  
JavaBeans  
JDK (Java Development Kit)  
JNI (Java Native Interface)  
join function (os.path module)  
join method
    string object  
    Thread object  
July attribute (mx.DateTime module)  
jumpahead method (Random object)  
June attribute (mx.DateTime module)  
JVMs (Java Virtual Machines)  
    Jython installation and  
Jython  
    documentation  
    embedding in Java  
        Py class  
        PyObject class  
        PythonInterpreter class  
    garbage collection  
    importing Java packages  
        accessibility  
        JavaBeans  
        Jython registry  
        subclassing Java classes  
        type conversions  
    installing  2nd  
Jython API
    Py class  
    PyObject class  
    PythonInterpreter class  
jython interpreter  
jython.jar file  
jythonc command  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

kbhit function (msvcrt module)  
key attribute (Morsel object)  
keyboard events  
KeyboardInterrupt exception  
keyed access  
KeyError exception  
keys function (bsddb module)  
keys method (dictionary object)  
keysym attribute (Event object)  
keywords argument (distutils setup function)  
keywords, list of  
Komodo  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Label class (Tkinter module)  
lambda expressions  
LAPACKlapack_lite libraries  
last method
    bsddb module  
    NNTP object  
lastChild attribute (Node object)  
lastcmd attribute (cmd module)  
lastgroup attribute (match object)  
lastindex attribute (match object)  
layout manager  
LBYL (look before you leap)  
LC_COLLATE attribute (locale module)  
LC_CTYPE attribute (locale module)  
LC_MESSAGES attribute (locale module)  
LC_MONETARY attribute (locale module)  
LC_NUMERIC attribute (locale module)  
LC_TIME attribute (locale module)  
ldexp function
    cmath module  
    math module  
__le__ special method  
leapdays function (calendar module)  
len function (built-in)  2nd  3rd  
__len__ special method  2nd  
less than sign (<)
    comparisons  
    double less than (<<)
        left shift  
    struct format string  
Lesser GPL (LGPL)  
letters attribute (string module)  
LGPL (Lesser GPL)  
libraries argument (distutils Extension class)  
library_dirs argument (distutils Extension class)  
license argument (distutils setup function)  
line-completion functionality  
LinearAlgebra module  
linecache module  
    checkcache function  
    clearcache function  
    getline function  
lineno function (fileinput module)  
linesep attribute (os module)  
Linux
    installing Python from binaries  
    Python IDEs  
    Red Hat Linux releases 6.x/7.x
        Python v1.5.2 and  
    support for cryptographic-quality pseudo-random numbers  
list command (pdb module)  
list comprehensions  
list method
    NNTP object  
    POP3 object  
list object (list type)  2nd  
    append method  
    count method  
    extend method  
    index method  
    insert method  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    pop method  
    remove method  
    reverse method  
    sort method  
Listbox class (Tkinter module)  
    curselection method  
    delete method  
    get method  
    insert method  
    select_clear method  
    select_set method  
listbox widgets  
listdir function (os module)  
listen method (socket object)  
listenTCP method (reactor object)  
listMethods method (ServerProxy object)  
lists  
    maintaining order of  
    methods  
    modifying  
    optimizing operations on  
    sequence operations on  
literals  2nd  
ljust method (string object)  
load method
    SimpleCookie object  
    SmartCookie object  
load/loads functions
    marshal module  
    pickle/cPickle modules  
loading modules  2nd  
    built-in  
    circular imports  
    custom importers  
    dictionary listing names  
    __import__ function  
    main program and  
    reload function  
    searching filesystem  
    specifying directory paths  
    sys.modules entries  
local variables  2nd  
LOCALE attribute (re module)  
locale module  
    atof function  
    atoi function  
    attributes  
    format function  
    getdefaultlocale function  
    getlocale function  
    localeconv function  
    normalize function  
    resetlocale function  
    setlocale function  
    str function  
    strcoll function  
    strxfrm function  
locale sensitivity, string module  [See locale module]
localeconv function (locale module)  
localName attribute (Node object)  
locals function (built-in)  
localtime function
    mx.DateTime module  
    time module  
localtime method (DateTime class)  
lock object  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    acquire method  
    locked method  
    release method  
locked method (lock object)  
log function
    cmath module  
    math module  
log10 function
    cmath module  
    math module  
logging errors
    by rebinding excepthook attribute  2nd  
login method
    FTP object  
    SMTP object  
long integers  
__long__ special method  
long type (built-in)  2nd  
Long-Running Web Processes (LRWP)  
look before you leap (LBYL)  
LookupError exception  
loop function (asyncore module)  
loops, optimizing  
loseConnection method (transports object)  
lower method (string object)  
lowercase attribute (string module)  
LRWP (Long-Running Web Processes)  
lseek function (os module)  
lshift method (operator module)  
__lshift__ special method  
lstrip method (string object)  
__lt__ special method  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

MA module  
Macintosh
    installing Python  
    internationalization  
    Mac OS 9/Mac OS X  
    Python IDE  
    Python interpreter on  
MacPython, IDE included with  
mail protocol  
mailing lists  
main program, module loading and  
mainloop method (Widget object)  
maintainer argument (distutils setup function)  
maintainer_email argument (distutils setup function)  
make utility, installing Python and  
make_parser function (xml.sax package)  
makedirs function (os module)  
makefile method (socket object)  
maketrans function (string module)  
mandatory parameters  
Mandrake Linux, installing Python  
MANIFEST files  
map function (built-in)  
mappings  
    indexing, error  
    mutable  
    special methods for  
March attribute (mx.DateTime module)  
mark_gravity method (Text object)  
mark_set method (Text object)  
mark_unset method (Text object)  
markup  
marshal module  
    dump/dumps functions  
    load/loads functions  
    polymorphism and  
marshaling  
match method (regular expression object)  2nd  
match object  
    attributes  
    end method  
    expand method  
    group method  
    groupdict method  
    groups method  
    span method  
    start method  
math module  
    acos function  
    acosh function  
    asin function  
    asinh function  
    atan/atan2 functions  
    atanh function  
    ceil function  
    cos function  
    cosh function  
    exp function  
    fabs function  
    floor function  
    fmod function  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    frexp function  
    hypot function  
    ldexp function  
    log function  
    log10 function  
    modf function  
    pow function  
    sin function  
    sinh function  
    sqrt function  
    tan function  
matrixmultiply function (Numeric module)  
max function (built-in)  2nd  
maxint attribute (sys module)  
maxsize method (Toplevel object)  
May attribute (mx.DateTime module)  
mbcs codec (Windows)  
memory
    array type and  
    leaks, exposing  
    running out of  
    saving, __slots__ attribute  
    storing array object  
MemoryError exception  
Menu class (Tkinter module)  
    add method  
    add_cascade method  
    add_checkbutton method  
    add_command method  
    add_radiobutton method  
    add_separator method  
    delete method  
    entryconfigure method  
    insert method  
    insert_cascade method  
    insert_checkbutton method  
    insert_command method  
    insert_radiobutton method  
    insert_separator method  
    invoke method  
    post method  
    unpost method  
menu widgets  
    entry options  
Message class
    add_header method  
    add_payload method  
    as_string method  
    epilogue attribute  
    get_all method  
    get_boundary method  
    get_charsets method  
    get_filename method  
    get_maintype method  
    get_params method  
    get_payload method  
    get_subtype method  
    get_type method  
    get_unixfrom method  
    getmaintype method  
    getparam method  
    getsubtype method  
    gettype method  
    is_multipart method  
    Message module  
    mimetools module  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    preamble attribute  
    rfc822 module  
    set_boundary method  
    set_payload method  
    set_unixfrom method  
    walk method  
Message module  
    Message class  
message_from_file function (Parser module)  
message_from_string function (Parser module)  
metaclasses  
    custom example  
    defining  
    how Python determines  
method object, func_code attribute  
methodHelp method (ServerProxy object)  
methods  2nd  
    bound  
    callable attributes as  
    class-level  
        class  
        static  
    cooperative superclass  
    dictionary  
    Java-visible, adding  
    lists  
    per-instance  
    resolution order in new-style object model  
    special  2nd  
        for containers  
        general purpose  
        for numeric objects  
    superclass, delegating to  
    unbound  
methodSignature method (ServerProxy object)  
Microsoft .NET  
Microsoft Installer (MSI)  
Microsoft Intermediate Language (MSIL)  
Microsoft Jet  
Microsoft SQL Server  
Microsoft web servers, installing Python CGI scripts on  
MIME (Multipurpose Internet Mail Extensions)  2nd  
MIMEAudio class (MIMEAudio module)  
MIMEBase class (MIMEBase module)  
MIMEImage class (MIMEImage module)  
MIMEMessage class (MIMEMessage module)  
MIMEText class (MIMEText module)  
mimetools module, Message class  
min function (built-in)  2nd  
minidom module  
    Attr class  
    AttributeList class  
    Document class  2nd  
    Document object  
    Element class  2nd  
    Node class  2nd  
    parse function  
    parseString function  
    parsing XHTML  
    XHTML, changing/outputting  
minsize method (Toplevel object)  
minute attribute
    DateTime class  
    DateTimeDelta class  
minutes attribute (DateTimeDelta class)  
mkd method (FTP object)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


mkdir function (os module)  
mktime function
    mx.DateTime module  
    time module  
mktime_tz function (Utils module)  
MLab module  
mmap function (mmap module)  
mmap module  
mmap object  
    close method  
    find method  
    flush method  
    move method  
    read method  
    read_byte method  
    readline method  
    resize method  
    seek method  
    size method  
    tell method  
    using for IPC  
    write method  
    write_byte method  
mod method (operator module)  
__mod__ special method  
mod_python  
mode attribute (file object)  
modf function
    cmath module  
    math module  
modifying lists  
module object
    __all__ attribute  
    __dict__ attribute  
    __doc__ attribute  
    __name__ attribute  
modules  [See also built-in modules extension modules][See also built-in modules extension modules]2nd  3rd  
    DBAPI-compliant  
    loading  2nd  
        circular imports  
        custom importers  
        dictionary listing names  
        __import__ function  
        main program and  
        reload function  
        searching filesystem  
        specifying directory paths  
        sys.modules entries  
    module initialization, Python C API extensions  
    module object  
        attributes  
        built-in  
        docstrings  
        from statement  
        import statement  
        module-private variables  
    nesting  
    packages and  
    resident extension, installing  
    returning dictionary of  
modules attribute (sys module)  2nd  
modules function (sys module)
    __import__ function and  
Monday attribute (mx.DateTime module)  
month attribute (DateTime class)  
Month attribute (mx.DateTime module)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


month function (calendar module)  
monthcalendar function (calendar module)  
monthrange function (calendar module)  
Morsel class (Cookie module)  
    coded_value attribute  
    is_output method  
    key attribute  
    output method  
    OutputString method  
    set method  
    value attribute  
mouse events  
move method
    mmap object  
    Window object  
msg method (HTTPResponse object)  
MSI (Microsoft Installer)  
MSIL (Microsoft Intermediate Language)  
mssqldb module  
msvcrt module  
    getch function  
    getche function  
    kbhit function  
    ungetch function  
msvcrt.dll file  
mul method (operator module)  
__mul__ special method  
MULTILINE attribute (re module)  
Multipurpose Internet Mail Extensions  [See MIME]
mutable objects  
    shelve module and  
mx package  
mx.DateTime module  
    April attribute  
    attributes  2nd  
    August attribute  
    cmp function  
    Date function  
    DateFromTicks function  
    DateTime class  
    DateTime function  
    DateTimeDelta class  
    DateTimeFrom function  
    DateTimeFromAbsDays function  
    DateTimeFromCOMDays function  
    December attribute  
    February attribute  
    Friday attribute  
    gmt function  
    gmtime function  
    January attribute  
    July attribute  
    June attribute  
    localtime function  
    March attribute  
    May attribute  
    methods  
    mktime function  
    Monday attribute  
    Month attribute  
    November attribute  
    now function  
    October attribute  
    oneDay attribute  
    oneHour attribute  
    oneMinute attribute  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    oneSecond attribute  
    oneWeek attribute  
    RelativeDateTime type  
    Saturday attribute  
    September attribute  
    Sunday attribute  
    Thursday attribute  
    Timestamp function  
    TimestampFrom function  
    TimestampFromTicks function  
    today function  
    Tuesday attribute  
    utctime function  
    Wednesday attribute  
    Weekday attribute  
mxODBC module  
MySQL  
MySQLdb module  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

name argument (distutils setup function)  
__name__ attribute
    class object  
    module object  
name attribute
    FieldStorage object  
    file object  
__name__ attribute
    function object  
name attribute
    os module  
named arguments  
NameError exception  
namelist function (ZipFile class)  
namespaces  
Namespaces  
namespaces
    current local  
    global statement  
    nested functions/scopes  
namespaceURI attribute (Node object)  
__ne__ special method  
neg method (operator module)  
__neg__ special method  
nested functions  
nested scopes  
network encodings  
network news  
    nntplib module  
        methods  
        response strings  
Network News Transport Protocol  [See NNTP]
network protocol modules
    client-side  
        distributed computing  
        email protocols  
        FTP protocol  
        HTTP protocol  
        https protocol  
        network news  
        telnet protocol  
        URL access  
    server-side  
        Internet  
__new__ special method  2nd  3rd  
new-style classes  [See classes, new-style]
newgroups method (NNTP object)  
newline (\n), string literals  
newnews method (NNTP object)  
newsgroups  
next command (pdb module)  
next method
    bsddb module  
    NNTP object  
nextfile function (fileinput module)  
nextSibling attribute (Node object)  
NIST module  
NNTP (Network News Transport Protocol)  2nd  
NNTP class  
    article method  
    body method  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    group method  
    head method  
    last method  
    list method  
    newgroups method  
    newnews method  
    next method  
    post method  
    quit method  
    stat method  
nntplib module  2nd  
    methods  
    response strings  
Node class (minidom module)  2nd  
    appendChild method  
    attributes attribute  
    childNodes attribute  
    firstChild attribute  
    hasChildNodes method  
    insertBefore method  
    isSameNode method  
    lastChild attribute  
    localName attribute  
    methods of  
    namespaceURI attribute  
    nextSibling attribute  
    nodeName attribute  
    nodeType attribute  
    nodeValue attribute  
    normalize method  
    ownerDocument method  
    parentNode method  
    prefix method  
    previousSibling method  
    removeChild method  
    replaceChild method  
    toprettyxml method  
    toxml method  
    writexml method  
nodelay method (Window object)  
nodeName attribute (Node object)  
nodeType attribute (Node object)  
nodeValue attribute (Node object)  
nofill attribute (HTMLParser object)  
nok_builtin_names attributes (RExec object)  
None type  
nonpure distributions  
nonzero function (Numeric module)  
__nonzero__ special method  
normalDate.py  
normalize function (locale module)  
normalize method (Node object)  
normcase function (os.path module)  
normpath function (os.path module)  
not_ method (operator module)  
notify method (Condition class)  
notifyAll method (Condition class)  
NotImplementedError exception  
November attribute (mx.DateTime module)  
now function (mx.DateTime module)  
NullFormatter class (formatter module)  
NullWriter class (formatter module)  
num attribute (Event object)  
numarray module  
numbers  
    converting  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    dividing  
    floating-point
        converting to  
        generating pseudo-random  
        math functions on  
        rounding off  
    integer literals  
    pseudo-random  
    returning absolute value of  
Numeric module  2nd  3rd  
    allclose function  
    arange function  
    argmax function  
    argmin function  
    argsort function  
    array function  
    array module and  
    array object  
        indexing  
        shape attribute  
        slicing  
        type codes  
    array object (Numeric module)
        storing  
    array2string function  
    arrayrange function  
    attributes  
    average function  
    blitz function  
    choose function  
    clip function  
    compress function  
    concetenate function  
    convolve function  
    cross_correlate function  
    diagonal function  
    extending CPython with Fortran  
    fromstring function  
    identity function  
    indices function  
    innerproduct function  
    matrixmultiply function  
    methods  
    nonzero function  
    numeric objects, special methods for  
    ones function  
    optional modules supplied by  
    put function  
    putmask function  
    rank function  
    ravel function  
    repeat function  
    reshape function  
    resize function  
    searchsorted function  
    shape attribute  
    shape function  
    size function  
    sort function  
    swapaxes function  
    take function  
    trace function  
    transpose function  
    ufunc object supplied by  
    ufuncs  
    where function  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    zeros function  
numeric operations  
    arithmetic operations  
    bitwise operations on integers  
    coercion/conversions  
    comparing  
numeric processing  2nd  [See also operators; built-in functions]
    array module  
    math/cmath modules  
    Numeric module  [See Numeric module]
    operations on arrays  
        broadcasting  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

O_APPEND attribute (os module)  
O_BINARY attribute (os module)  
O_CREAT attribute (os module)  
O_DSYNC attribute (os module)  
O_EXCL attribute (os module)  
O_NDELAY attribute (os module)  
O_NOCTTY attribute (os module)  
O_NONBLOCK attribute (os module)  
O_RDONLY attribute (os module)  
O_RDWR attribute (os module)  
O_RSYNC attribute (os module)  
O_SYNC attribute (os module)  
O_TRUNC attribute (os module)  
O_WRONLY attribute (os module)  
object models  
    classic  
        inheritance in  
    new-style  
        inheritance in  
object type (built-in)  2nd  
    __repr__ method  
object-oriented Python  
objects
    assigning  [See assignment statements]
    first-class, classes as  
    mutable/immutable  
        shelve module and  
    serializing/deserializing  
oct function (built-in)  
__oct__ special method  
octal literals  
octal strings, converting integers to  
octdigits attribute (string module)  
October attribute (mx.DateTime module)  
ODBC (Open DataBase Connectivity)  
odbc module  
ok_builtin_modules attributes (RExec object)  
ok_path attributes (RExec object)  
ok_posix_names attributes (RExec object)  
ok_sys_names attributes (RExec object)  
onecmd function (cmd module)  
oneDay attribute (mx.DateTime module)  
oneHour attribute (mx.DateTime module)  
oneMinute attribute (mx.DateTime module)  
ones function (Numeric module)  
oneSecond attribute (mx.DateTime module)  
oneWeek attribute (mx.DateTime module)  
Open DataBase Connectivity (ODBC)  
open function  [See also open function (built-in)][See also open function (built-in)]
    anydbm module  
    codecs module  
    dbhash module  
    dbm module  
    dumbdbm module  
    gdbm module  
    gzip module  
    os module  
    shelve module  
open function (built-in)
    creating file object  
        designating buffering  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        sequential/nonsequential access  
        specifying file mode  
    restricted execution  
open method (Telnet object)  
OpenDirector class  
OpenerDirector class, handler classes  
operations
    arithmetic  
    dictionary  
    in-place  
    numeric  
        bitwise operations on integers  
        coercion/conversions  
        comparing  
    sequence  
        coercion/conversions  
        concatenation  
        indexing  
        lists  
        slicing  
        strings  
        tuples  
operator module
    abs method  
    add method  
    and_ method  
    concat method  
    contains method  
    countOf method  
    delitem method  
    delslice method  
    div method  
    getitem method  
    getslice method  
    indexOf method  
    invert method  
    lshift method  
    mod method  
    mul method  
    neg method  
    not_ method  
    or_ method  
    pos method  
    repeat method  
    rshift method  
    setitem method  
    setslice method  
    sub method  
    truth method  
    xor_ method  
operators
    list of  
    precedence in expressions  
optimization  2nd  
    benchmarking  
    developing Python applications  
    large-scale  
        dictionary operations  
        list operations  
        string operations  
    profiling  
        pstats module  
    small-scale  
        avoiding exec/from...import statements  
        building strings from pieces  
        optimizing I/O  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        optimizing loops  
        searching/sorting  
optimize flag  
optional parameters  
options, command-line
    parsing  
    Python interpreter  
__or__ special method  
or_ method (operator module)  
Oracle RDBMS  
ord function (built-in)  
org.python.core package  
os module  
    access function  
    chdir function  
    chmod function  
    close function  
    curdir attribute  
    defpath attribute  
    dup/dup2 functions  
    environ attribute  
    errno attribute  
    execl function  
    execle function  
    execlp function  
    execlv function  
    execve function  
    execvp function  
    execvpe function  
    extsep attribute  
    fdopen function  
    file descriptor operations  
    file/directory functions  
    filename attribute  
    filesystem operations  
    fstat function  
    getcwd function  
    linesep attribute  
    listdir function  
    lseek function  
    makedirs function  
    mkdir function  
    name attribute  
    O_APPEND attribute  
    O_BINARY attribute  
    O_CREAT attribute  
    O_DSYNC attribute  
    O_EXCL attribute  
    O_NDELAY attribute  
    O_NOCTTY attribute  
    O_NONBLOCK attribute  
    O_RDONLY attribute  
    O_RDWR attribute  
    O_RSYNC attribute  
    O_SYNC attribute  
    O_TRUNC attribute  
    O_WRONLY attribute  
    open function  
    OSError exceptions  
    P_NOWAIT attribute  
    P_WAIT attribute  
    pardir attribute  
    path-string attributes of  
    pathsep attribute  
    pipe function  
    popen function  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    popen2 function  
    popen3 function  
    popen4 function  
    read function  
    remove function  
    removedirs function  
    rename/renames functions  
    rmdir function  
    running other programs  
    sep attribute  
    spawnv/spawnve functions  
    stat function  
    strerror attribute  
    system function  
        running other programs  
    tempnam function  
    tmpnam function  
    unlink function  
    utime function  
    write function  
os.path module
    abspath function  
    basename function  
    commonprefix function  
    dirname function  
    exists function  
    expandvars function  
    getatime function  
    getmtime function  
    getsize function  
    isabs function  
    isdir function  
    isfile function  
    islink function  
    ismount function  
    join function  
    normcase function  
    normpath function  
    split function  
    splitdrive function  
    splitext function  
    walk function  
OS/2, installing Python  
OSError exceptions  2nd  
    os module  
outer attribute (ufunc object)  
output method
    Morsel object  
    SimpleCookie object  
    SmartCookie object  
OutputString method (Morsel object)  
OverflowError exception  
overrideredirect method (Toplevel object)  
ownerDocument method (Node object)  
ownerElement attribute (Attr object)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

p command (pdb module)  
P_NOWAIT attribute (os module)  
P_WAIT attribute (os module)  
pack function (struct module)  
pack method (Widget object)  
pack_forget method (Widget object)  
pack_info method (Widget object)  
packages  
packages argument (distutils setup function)  
parameters  
paramstyle attribute (DBAPI-compliant modules)  
pardir attribute (os module)  
parent widgets  2nd  
parentheses ()
    class statements  
    def statement  
    function calls  
    line continuation  
    plain assignment statements  
    regular expressions  
    string formatting  
    tuple creation  
parentNode method (Node object)  
parse function
    minidom module  
    pulldom module  
parse_and_bind function (readline module)  
parseaddr function (Utils module)  
parsedate function (Utils module)  
parsedate_tz function (Utils module)  
parser function (xml.sax package)  
Parser module
    message_from_file function  
    message_from_string function  
parseString function
    minidom module  
    pulldom module  
    xml.sax package  
pass statement  
pass_ method (POP3 object)  
path attribute (sys module)  2nd  
path method (HTTPServer object)  
path module  
PATH variable
    lack of  
    python interpreter and  
path-string attributes (os module)  
pathsep attribute (os module)  
pattern attribute (regular expression object)  
PBF (Python Business Forum)  
pdb module  
    alias command  
    args command  
    break command  
    clear command  
    condition command  
    continue command  
    disable command  
    down command  
    enable command  
    ignore command  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    list command  
    next command  
    p command  
    quit command  
    return command  
    step command  
    tbreak command  
    unalias command  
    up command  
    where command  
PEPs (Python Enhancement Proposals)  
per-instance methods  
percent sign (%)
    HTML templates  
    remainder  
    string formatting  
performance  [See also optimization][See also optimization]
    arrays and  
    asyncore/asynchat modules  
    CGI scripts  
    DBM modules  
    extension modules, special-purpose  
    fileinput module  
    pickle/cPickle modules  
    slicing array object  
    supporting many Python versions and  
    threads  
        synchronizing  
    Twisted package  
period (.)
    attributes  
        attribute reference  
        instance objects  
    current directory designation  
    DOTALL attribute  
    regular expressions  
    string formatting  
permissions  
Personal Web Server (PWS)  
pformat function (pprint module)  
PhotoImage class  
pickle function (copy_reg module)  
pickle module  
    dump/dumps functions  
    load/loads functions  
    Pickler function  
    pickling customization with copy_reg module  
    Unpickler function  
Pickler function (pickle/cPickle modules)  
PIL (Python Imaging Library)  
pipe function (os module)  
pkzip/pkunzip programs  
place method (Widget object)  
place_forget method (Widget object)  
place_info method (Widget object)  
plain assignment statements  
platform attribute (sys module)  
platforms argument (distutils setup function)  
platforms, specifying  2nd  
plus sign (+)
    addition  
    DateTime instances  
    DateTimeDelta instances  
    regular expressions  
    sequence concatenation  
    string formatting  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    unary plus  2nd  
plus sign-question mark (+?), regular expressions  
polymorphism
    file-like object and  
    type checking and  
POP mailboxes, accessing  
pop method (list object)  
POP3 (Post Office Protocol Version 3)  
    twisted.protocols package  
POP3 class (poplib module)  
    dele method  
    list method  
    pass_ method  
    quit method  
    retr method  
    set_debuglevel method  
    stat method  
    top method  
    user method  
popen function (os module)  
popen2 function (os module)  
popen3 function (os module)  
popen4 function (os module)  
popitem method (dictionary object)  
poplib module  2nd  
    POP3 class  
portability
    DBM modules  
    distributing Python modules  
    error code numbers  
    extension modules and  
    os module and  
    platform-dependent errors  
Portable PixMap (PPM)  
pos attribute (match object)  
pos method (operator module)  
__pos__ special method  
positional arguments  
post method
    Menu object  
    NNTP object  
Post Office Protocol Version 3  [See POP3]
postcmd function (cmd module)  
PostgreSQL  
postloop function (cmd module)  
pound sign (#)
    comments  
    regular expressions  
    string formatting  
pow function
    built-in  
    cmath module  
    math module  
pow function (built-in)  
__pow__ special method  
PowerArchiver, uncompressing/unpacking  
PPM (Portable PixMap)  
pprint function (pprint module)  
pprint module  
    pformat function  
    pprint function  
prcal function (calendar module)  
preamble attribute (Message object)  
precmd function (cmd module)  
prefix method (Node object)  
preloop function (cmd module)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PrettyPrinter class  
previous function (bsddb module)  
previousSibling method (Node object)  
print statement  
print_callees method (Stats object)  
print_callers method (Stats object)  
print_exc function (traceback module)  
print_stats method (Stats object)  
printable attribute (string module)  
printdir function (ZipFile class)  
printing, complicated data in readable format  
prmonth function (calendar module)  
process environment  
processes  
Profile class  
profile module, run function  
profiling  2nd  
program termination  
programming paradigms, ability to mix and match in Python  
programs, running other  
prompt attribute (cmd module)  
prompt string, Python interactive sessions  
prompt_user_passwd method (FancyURLopener object)  
property type (built-in)  2nd  
Protocol class  
    connectionLost method  
    connectionMade method  
    dataReceived method  
protocol method (Toplevel object)  
protocol module
    protocol handlers  
    reactors object  
    transports object  
proxy function (weakref module)  
ProxyBasicAuthHandler class  
ProxyDigestAuthHandler class  
ps1, ps2 attribute (sys module)  
pseudo-random numbers  
PSF (Python Software Foundation)  
PSP (Python Server Pages)  
    embedding Python code in HTML  
pstats module  
psycopg module  
.pth files, module loading and  
PTL (Python Template Language)  
pulldom module  
    DOMEventStream class  
    parse function  
    parseString function  
    parsing XHTML  
punctuation
    in regular expressions  
    in URLs  
punctuation attribute (string module)  
pure distributions  
push method (async_chat object)  
pushbutton widgets  
put function (Numeric module)  
put method (Queue object)  
put_nowait method (Queue object)  
putmask function (Numeric module)  
pwd method (FTP object)  
PWS (Personal Web Server)  
Py class (Jython API)  
.py files  
Py_BuildValue function (Python C API)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Py_CompileString function (Python C API)  
Py_Finalize function (Python C API)  
Py_InitModule3 function (Python C API)  
py_modules argument (distutils setup function)  
Py_SetProgramName function (Python C API)  
py2exe tool  
PyApache  
PyArg_ParseTuple function (Python C API)  
PyArg_ParseTupleAndKeywords function (Python C API)  
.pyc files  
PyCallable_Check function (Python C API)  
PyDict_GetItem function (Python C API)  
PyDict_GetItemString function (Python C API)  
PyDict_Merge function (Python C API)  
PyDict_MergeFromSeq2 function (Python C API)  
PyDict_Next function (Python C API)  
PyErr_Clear function (Python C API)  
PyErr_ExceptionMatches function (Python C API)  
PyErr_Format function (Python C API)  
PyErr_NewException function (Python C API)  
PyErr_NoMemory function (Python C API)  
PyErr_Occurred function (Python C API)  
PyErr_Print function (Python C API)  
PyErr_SetFromErrno function (Python C API)  
PyErr_SetFromErrnoWithFilename function (Python C API)  
PyErr_SetObject function (Python C API)  
PyEval_CallObject function (Python C API)  
PyEval_CallObjectWithKeywords function (Python C API)  
PyEval_EvalCode function (Python C API)  
PyException exception  
PyFloat_AS_DOUBLE function (Python C API)  
Pyfort library  
PyImport_AppendInittab function (Python C API)  
PyImport_Import function (Python C API)  
PyIter_Check function (Python C API)  
PyIter_Next function (Python C API)  
PyList_GET_ITEM function (Python C API)  
PyList_New function (Python C API)  
PyList_SET_ITEM function (Python C API)  
PyModule_AddIntConstant function (Python C API)  
PyModule_AddObject function (Python C API)  
PyModule_AddStringConstant function (Python C API)  
PyModule_GetDict function (Python C API)  
PyModule_New function (Python C API)  
PyNumber_Absolute function (Python C API)  
PyNumber_Add function (Python C API)  
PyNumber_And function (Python C API)  
PyNumber_Check function (Python C API)  
PyNumber_Divide function (Python C API)  
PyNumber_Divmod function (Python C API)  
PyNumber_Float function (Python C API)  
PyNumber_FloorDivide function (Python C API)  
PyNumber_Int function (Python C API)  
PyNumber_Invert function (Python C API)  
PyNumber_Long function (Python C API)  
PyNumber_Lshift function (Python C API)  
PyNumber_Multiply function (Python C API)  
PyNumber_Negative function (Python C API)  
PyNumber_Or function (Python C API)  
PyNumber_Positive function (Python C API)  
PyNumber_Power function (Python C API)  
PyNumber_Remainder function (Python C API)  
PyNumber_Rshift function (Python C API)  
PyNumber_Subtract function (Python C API)  
PyNumber_TrueDivide function (Python C API)  
PyNumber_Xor function (Python C API)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


.pyo files  
PyObject class (Jython API)  
PyObject object
    __call__ method  
    __tojava__ method  
PyObject_CallFunction function (Python C API)  
PyObject_CallMethod function (Python C API)  
PyObject_Cmp function (Python C API)  
PyObject_DelAttrString function (Python C API)  
PyObject_DelItem function (Python C API)  
PyObject_DelItemString function (Python C API)  
PyObject_GetAttrString function (Python C API)  
PyObject_GetItem function (Python C API)  
PyObject_GetItemString function (Python C API)  
PyObject_GetIter function (Python C API)  
PyObject_HasAttrString function (Python C API)  
PyObject_IsTrue function (Python C API)  
PyObject_Length function (Python C API)  
PyObject_Repr function (Python C API)  
PyObject_RichCompare function (Python C API)  
PyObject_RichCompareBool function (Python C API)  
PyObject_SetAttrString function (Python C API)  
PyObject_SetItem function (Python C API)  
PyObject_SetItemString function (Python C API)  
PyObject_Str function (Python C API)  
PyObject_Type function (Python C API)  
PyObject_Unicode function (Python C API)  
pyrepl package for Unix  
Pyrex  
PyRun_File function (Python C API)  
PyRun_String function (Python C API)  
pyRXP  
PySequence_Contains function (Python C API)  
PySequence_DelSlice function (Python C API)  
PySequence_Fast function (Python C API)  
PySequence_Fast_GET_ITEM function (Python C API)  
PySequence_Fast_GET_SIZE function (Python C API)  
PySequence_GetSlice function (Python C API)  
PySequence_List function (Python C API)  
PySequence_SetSlice function (Python C API)  
PySequence_Tuple function (Python C API)  
PyString_AS_STRING function (Python C API)  
PyString_AsStringAndSize function (Python C API)  
PyString_FromFormat function (Python C API)  
PyString_FromStringAndSize function (Python C API)  
PySys_SetArgv function (Python C API)  
Python  2nd  [See also CPython Jython][See also CPython Jython]
    compiling into Java  
        adding Java-visible methods  
        jythonc command  
        Python applets/servlets  
    development  
    development environments  [See development environments]
    documentation  
    embedding in HTML  
    embedding/extending  [See CPython, extending]
    extension modules  [See extension modules see also CPython]
    extensions  [See CPython, extending]
    implementations  
    installing  [See installing]
    interpreter  
        command-line options  
        command-line syntax  
        environment variables  
        interactive sessions  
        prompt strings, specifying  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    language  2nd  
        indentation  2nd  
        lexical structure  
    library  
    modules  [See modules]
    newsgroups/mailing lists  
    object models  
        classic  
        new-style  
    object-orientation  [See also Python, object models]2nd  
    programming paradigms  
    programs
        documenting  
        running  
    resources  
        business uses of Python  
        extension modules  
        print  
        Python Journal  
        recipes  
        source  
    running other programs  
    SIGs  
    upgrades, overwriting customizations  
    versions  2nd  
        datetime module  
        Forum releases  
        logging  
        Python-in-a-tie releases  
        SimpleXMLRPCServer module, defect in  
        sockets with timeout behavior  
        supporting many different  
        time module  2nd  
        type objects  
Python .NET  
Python Business Forum (PBF)  
Python C API, extending CPython with  
    building/installing C-coded Python extensions  
Python Database API 2.0 standard (DBAPI 2.0)  
Python Enhancement Proposals (PEPs)  
Python Imaging Library (PIL)  
Python Labs, Zope Corporation  
Python Server Pages (PSP)  
Python Software Foundation (PSF)  
Python Template Language (PTL)  
Python-in-a-tie releases  
python.path option  
PYTHONHOME variable  
PythonInterpreter class (Jython API)  
    eval method  
    exec method  
    execfile method  
    get method  
    set method  
PythonInterpreter icon (Macintosh)  
PYTHONPATH variable  
    module loading  
.pythonrc.py file  
PYTHONSTARTUP variable  
    user customization and  
pythonw interpreter  
PythonWin  
PythonWorks  
PyTuple_GET_ITEM function (Python C API)  
PyTuple_New function (Python C API)  
PyTuple_SET_ITEM function (Python C API)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


.pyw files  
PyXML  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

QNX, installing Python  
QP encoding (Quoted Printable encoding)  
qsize method (Queue object)  
question mark (?), regular expressions  
Queue class (Queue module)  
    empty method  
    full method  
    get method  
    get_nowait method  
    put method  
    put_nowait method  
    qsize method  
    in threaded program architecture  
Queue module  
    Empty class  
    Full class  
    Queue class  
--quiet option, package installation  
quit command (pdb module)  
quit method
    FTP object  
    NNTP object  
    POP3 object  
    SMTP object  
    Widget object  
Quixote  
quopri module  
    decode function  
    decodestring function  
    encode function  
    encodestring function  
quote function
    urllib module  
    Utils module  
quote_plus function (urllib module)  
quoteattr function (saxutils module)  
Quoted Printable encoding (QP encoding)  
quoted strings  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

r_add_module method (RExec object)  
r_eval method (RExec object)  
r_exec method (RExec object)  
r_execfile method (RExec object)  
r_import method (RExec object)  
r_open method (RExec object)  
r_reload method (RExec object)  
r_unload method (RExec object)  
__radd__ special method  
Radiobutton class (Tkinter module)  
    deselect method  
    flash method  
    invoke method  
    select method  
raise statement  
__rand__ special method  
Random class  
    choice method  
    getstate method  
    jumpahead method  
    random method  
    randrange method  
    seed method  
    setstate method  
    shuffle method  
    uniform method  
random method (Random object)  
random module  2nd  
RandomArray module  
randrange method (Random object)  
range function (built-in)  2nd  
rank function (Numeric module)  
ravel function (Numeric module)  
raw strings  
raw_input function (built-in)  2nd  
RDBMS (relational database management system)  
RDF (Resource Description Framework)  
__rdiv__ special method  
__rdivmod__ special method  
re attribute (match object)  
re module  2nd  
    compile function  2nd  
        flags argument  
    DOTALL attribute  
    escape function  
    IGNORECASE attribute  
    LOCALE attribute  
    MULTILINE attribute  
    UNICODE attribute  
    VERBOSE attribute  
reactor object
    callLater method  
    cancelCallLater method  
    listenTCP method  
    run method  
    stop method  
read function
    os module  
    ZipFile class  
read method
    file object  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    HTTPResponse object  
    mmap object  
    URL file-like object  
read-only file mode  
read_all method (Telnet object)  
read_byte method (mmap object)  
read_eager method (Telnet object)  
read_history_file function (readline module)  
read_init_file function (readline module)  
read_some method (Telnet object)  
read_until method (Telnet object)  
readline method
    file object  
    mmap object  
    URL file-like object  
readline module  
    get_history_length function  
    parse_and_bind function  
    read_history_file function  
    read_init_file function  
    set_completer function  
    set_history_length function  
    write_history_file function  
ReadLine package for Windows  
readlines method
    file object  
    URL file-like object  
real method (array object)  
reason method (HTTPResponse object)  
rebinding, references  
recursion  
RecursionLimitExceeded exception  
recv method (socket object)  
recvfrom method (socket object)  
RedHat Package Manager (RPM)  
reduce attribute (ufunc object)  
reduce function (built-in)  
reduceat attribute (ufunc object)  
ref function (weakref module)  
references  2nd  [See also attributes variables][See also attributes variables]
    accessing nonexistent  
    assignment statements  
    binding  2nd  
    failure of  
    rebinding  2nd  
    reference counting, C-coded extension modules  
    reference loops  
    unbinding  2nd  
    weak  
refresh method (Window object)  
register function (atexit module)  
register_function method
    SimpleXMLRPCServer object  
register_instance method
    SimpleXMLRPCServer object  
regular expression object  
    attributes  
    findall method  
    match method  2nd  
    search method  2nd  
    split method  
    sub method  
    subn method  
regular expressions  
    alternatives  
    anchoring at string start/end  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    common idioms  
    groups  
    match object  
    matching vs. searching  
    optional flags  
    pattern-string syntax  
    re module  
    sets of characters  
    whitespace  
relational database management system (RDBMS)  
RelativeDateTime type  
release method
    Condition class  
    lock object  
    Semaphore object  
reload function (built-in)  2nd  
Remote Procedure Call (RPCs)  
remove function (os module)  
remove method (list object)  
removeAttribute method (Element object)  
removeChild method (Node object)  
removedirs function (os module)  
rename method (FTP object)  
rename/renames functions (os module)  
repeat function (Numeric module)  
repeat method (operator module)  
replace method (string object)  
replaceChild method (Node object)  
report_unbalanced method (sgmllib module)  
Repr class (repr module)  
repr function
    built-in  
        alternative to  
    repr module  
__repr__ method (object type)  
repr module  
    Repr class  
    repr function  
__repr__ special method  
Request class  
    add_data method  
    add_header method  
    get_data method  
    get_full_url method  
    get_host method  
    get_selector method  
    get_type method  
    has_data method  
    set_proxy method  
request method
    BaseRequestHandler object  
    HTTPConnection object  
reset method (XMLReader object)  
resetlocale function (locale module)  
resetwarnings function (warnings module)  
reshape function (Numeric module)  
resizable method (Toplevel object)  
resize function (Numeric module)  
resize method (mmap object)  
Resource Description Framework (RDF)  
resources  
    extension modules  
    PBF  
    print  
    Python Cookbook  
    Python Journal  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Python on Windows  
    Python source code  
restricted execution  
    exec statement and  
    rexec module  
    sandbox environment  
retr method (POP3 object)  
retrbinary method (FTP object)  
retrlines method (FTP object)  
return command (pdb module)  
return statement  
reverse method (list object)  
RExec class  
    nok_builtin_names attributes  
    ok_builtin_modules attributes  
    ok_path attributes  
    ok_posix attributes  
    ok_sys_names attributes  
    r_add_module method  
    r_eval method  
    r_exec method  
    r_execfile method  
    r_import method  
    r_open method  
    r_reload method  
    r_unload method  
    s_eval method  
    s_exec method  
    s_execfile method  
    s_import method  
    s_reload method  
    s_unload method  
rexec module  
rfc822 module, Message class  
rfile method (HTTPServer object)  
rfind method (string object)  
richer-text input/output  
    console I/O  
        Console module  
        curses package  
        msvcrt module  
        WConio module  
    readline module  
rindex method (string object)  
RISC OS, installing Python  
rjust method (string object)  
rlcompleter module  
RLock class (threading module)  2nd  
__rlshift__ special method  
rmd method (FTP object)  
rmdir function (os module)  
__rmod__ special method  
rmtree function (shutil module)  
__rmul__ special method  
rnopen function (bsddb module)  
rollback method (Connection object)  
__ror__ special method  
round function (built-in)  
rowcount attribute (Cursor object)  
RPCs (Remote Procedure Calls)  
RPM (RedHat Package Manager)  
    installing Python from binaries  
__rpow__ special method  
__rrshift__ special method  
rshift method (operator module)  
__rshift__ special method  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


rstrip method (string object)  
__rsub__ special method  
run function, profile module  
run method
    reactor object  
    scheduler object  
    Thread object  
runtime_library_dirs argument (distutils Extension class)  
RuntimeWarning class  
__rxor__ special method  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

s_eval method (RExec object)  
s_exec method (RExec object)  
s_execfile method (RExec object)  
S_IFMT function (stat module)  
S_IMODE function (stat module)  
s_import method (RExec object)  
S_ISBLK function (stat module)  
S_ISCHR function (stat module)  
S_ISDIR function (stat module)  
S_ISFIFO function (stat module)  
S_ISLNK function (stat module)  
S_ISREG function (stat module)  
S_ISSOCK function (stat module)  
s_reload method (RExec object)  
s_unload method (RExec object)  
sandbox environment, restricted execution  
SAP DB  
sapdbapi module  
Saturday attribute (mx.DateTime module)  
save_bgn method (HTMLParser object)  
save_end method (HTMLParser object)  
savespace method (array object)  
SAX (Simple API for XML)
    parsing XHTML  
    parsing XML  2nd  [See also xml.sax package]
SAXException class (xml.sax package)  
saxutils module  
    escape function  
    quoteattr function  
    XMLGenerator class  
Scale class (Tkinter module)  
    get method  
    set method  
sched module  
    event scheduler function  
scheduler class  
    cancel method  
    empty method  
    enter method  
    enterabs method  
    run method  
scheduler function (sched module)  
SciTE program  
scripts  2nd  [See also server-side scripting][See also server-side scripting]
    CGI  
        debugging  
        performance characteristics  
        Python, installing  
    GUI, running standalone  
    setup.py  
scripts argument (distutils setup function)  
Scrollbar class (Tkinter module)  
SCXX library  
search method
    regular expression object  2nd  
    Text object  
searchsorted function (Numeric module)  
second attribute
    DateTime class  
    DateTimeDelta class  
seconds attribute (DateTimeDelta class)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Secret Labs, Python IDE offered by  
security
    cookies and  
    cryptographic-quality pseudo-random numbers  
    denial-of-service attacks  
    eval function  
    isolating untrusted code  
    passwords  
    pickle/cPickle modules  
see method (Text object)  
seed method (Random object)  
seek method
    file object  
    mmap object  
select function (select module)  
select method
    Checkbutton object  
    Radiobutton object  
select module  
    select function  
select_clear method (Listbox object)  
select_set method (Listbox object)  
self parameter  2nd  
Semaphore class (threading module)  2nd  3rd  
    acquire method  
    release method  
semicolon (;)
    statement separators  
    Windows directory paths  
send method (socket object)  
send_error method (HTTPServer object)  
send_header method (HTTPServer object)  
send_response method (HTTPServer object)  
sendall method (socket object)  
sendcmd method (FTP object)  
sendmail method (SMTP object)  
sendto method (socket object)  
sep attribute (os module)  
September attribute (mx.DateTime module)  
sequence repetition  
sequences  
    comprehensions  
    immutable, strings as  
    indexing, error  
    inserting items  
    items in arithmetic progression  
    iterators  
    lists  
        methods  
        operations on  
    mutable  
        arrays  
    operations on  
        coercion/conversions  
        concatenation  
        indexing  
        slicing  
    reducing to single value  
    special methods for  
    strings  
        methods  
        operations on  
        raw strings  
        Unicode strings  
    tuples  
        operations on  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


serialization  2nd  
    marshal module  
    pickle/cPickle modules  
        customization with copy_reg module  
    shelve module  
serve_forever method (server object)  
server method (BaseRequestHandler object)  
server object, serve_forever method  
server-side scripting  
    ASP  
    custom Python servers  
    FastCGI  
    LRWP  
    PyApache/mod_python  
    Quixote  
    Webware  
ServerProxy class  
    listMethods method  
    methodHelp method  
    methodSignature method  
    xmlrpclib module  
servers  
    Apache
        FastCGI for  
        installing Python CGI scripts  
        PyApache/mod_python for  
    custom Python  
    FTP  
    HTTP  
        methods/attributes  
        sockets and  
    Internet  
    Microsoft web, installing Python CGI scripts on  
    SMTP  
    TCP echo  
    Telnet  
    UDP echo  
    web, subclassing BaseHTTPServer  
    Xitami
        installing Python CGI scripts on  
        LRWP for  
    XML-RPC  
servlets, Jython  
set method
    Event object  
    Morsel object  
    PythonInterpreter object  
    Scale object  
set_boundary method (Message object)  
set_completer function (readline module)  
set_debug function (gc module)  
set_debuglevel method (POP3 object)  
set_history_length function (readline module)  
set_location function (bsddb module)  
set_pasv method (FTP object)  
set_payload method (Message object)  
set_proxy method (Request object)  
set_terminator method (async_chat object)  
set_threshold function (gc module)  
set_timeout method (TimeoutSocket object)  
set_unixfrom method (Message object)  
setattr function (built-in)  
__setattr__ special method  2nd  
setAttribute method (Element object)  
setDaemon method (Thread object)  
setdefault method (dictionary object)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


setdefaultencoding function (sys module)  
setDefaultSocketTimeout function (timeoutsocket module)  
setfirstweekday function (calendar module)  
setitem method (operator module)  
__setitem__ special method  
setlocale function (locale module)  
setName method (Thread object)  
setprofile function (sys module)  
setrecursionlimit function (sys module)  2nd  
sets, special methods for  
setslice method (operator module)  
setstate method (Random object)  
settrace function (sys module)  
setup function (distutils module)  
setUp method (TestCase object)  
setup.cfg file  
setup.py script  
SGML (Standard General Markup Language)  
sgmllib module  
    close method  
    do_tag method  
    end_tag method  
    feed method  
    handle_charref method  
    handle_comment method  
    handle_data method  
    handle_endtag method  
    handle_entityref method  
    handle_starttag method  
    report_unbalanced method  
    SGMLParser class  
    start_tag method  
    unknown_charref method  
    unknown_endtag method  
    unknown_entityref method  
    unknown_starttag method  
SGMLParser class
    HTMLParser class, compared to  
    sgmllib module  
shape attribute (Numeric module)  
shape function (Numeric module)  
shape method (array object)  
Sharp Zaurus, installing Python  
shelve module  
showwarning function (warnings module)  
shuffle method (Random object)  
shutil module  
    copy function  
    copy2 function  
    copyfile function  
    copyfileobj function  
    copymode function  
    copystat function  
    copytree function  
    rmtree function  
SIGs (Special Interest Groups)  
Simple API for XML  [See SAX]
Simple Mail Transport Protocol  [See SMTP]
simple statements  
SimpleCookie class (Cookie module)  
    is_output method  
    load method  
    output method  
SimpleHTTPServer module  2nd  
SimpleXMLRPCServer class  
    register_function method  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    register_instance method  
SimpleXMLRPCServer module  2nd  
Simplified Wrapper and Interface Generator (SWIG)  
sin function
    cmath module  
    math module  
single quote (')  
sinh function
    cmath module  
    math module  
site customization  
site module  
site.py file  
sitecustomize module  2nd  
size function (Numeric module)  
size method
    FTP object  
    mmap object  
sleep function (time module)  
slice function (built-in)  
slice object  
slicing
    array object  
    sequences  
    targets  
__slots__ attribute  
SmartCookie class (Cookie module)  
    is_output method  
    load method  
    output method  
SMTP (Simple Mail Transport Protocol)  
    servers  
    twisted.protocols package  
SMTP class  
    connect method  
    login method  
    quit method  
    sendmail method  
smtplib module  2nd  
.so files  
socket class  
    accept method  
    bind method  
    close method  
    connect method  2nd  
    getpeername method  
    listen method  
    makefile method  
    recv method  
    recvfrom method  
    send method  
    sendall method  
    sendto method  
socket function (socket module)  
socket module  
    getfqdn function  
    gethostbyaddr function  
    gethostbyname_ex function  
    htonl/htons functions  2nd  
    inet_aton function  
    inet_ntoa function  
    socket class  
    socket function  
sockets  2nd  [See also socket module][See also socket module]
    event-driven programs  
        asynchat module  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        asyncore module  
        select module  
        Twisted package  
    HTTP servers  
        BaseHTTPServer module  
        GCIHTTPServer module  
        SimpleHTTPServer module  
        SimpleXMLRPCServer module  
    TCP echo servers  
    timeoutsocket module  
    UDP echo servers  
SocketServer module  
    BaseRequestHandler class  
softspace attribute (file object)  
Solaris, Python IDEs  
Sony PlayStation 2, installing Python  
sort function (Numeric module)  
sort method (list object)  
sort_stats method (Stats object)  
source code
    building with Visual C++  
        for debugging  
    installing from  
        on Macintosh  
        on Unix  
        on Windows  
    latest version  
    resources for further information  
    uncompressing/unpacking  
source files  [See also modules][See also modules]2nd  
    as modules  
    Python modules in distribution utilities  
Source Navigator (Red Hat)  
spacesaver method (array object)  
span method (match object)  
spawnv/spawnve functions (os module)  
Special Interest Groups (SIGs)  
special methods  
    __abs__  
    __dd__  
    __and__  
    __call__  
    __cmp__  
    __coerce__  
    __complex__  
    for containers  
    __del__  
    __delattr__  2nd  
    __div__  
    __divmod__  
    __eq__  
    __float__  
    __floordiv__  
    __ge__  
    general purpose  
    __getattr__  
    __getattribute__  2nd  3rd  
    __getinitargs__  
    __gt__  
    __hash__  2nd  
    __hex__  
    __iadd__  
    __iand__  
    __idiv__  
    __ifloordiv__  
    __ilshift__  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    __imod__  
    __imul__  
    __init__  2nd  3rd  
    __int__  
    __invert__  
    __ior__  
    __ipow__  
    __irshift__  
    __isub__  
    __itruediv__  
    __ixor__  
    __le__  
    __long__  
    __lshift__  
    __lt__  
    __mod__  
    __mul__  
    __ne__  
    __neg__  
    __new__  2nd  3rd  
    __nonzero__  
    for numeric objects  
    __oct__  
    __or__  
    __pos__  
    __pow__  
    __radd__  
    __rand__  
    __rdiv__  
    __rdivmod__  
    __repr__  
    __rlshift__  
    __rmod__  
    __rmul__  
    __ror__  
    __rpow__  
    __rrshift__  
    __rshift__  
    __rsub__  
    __rxor__  
    __setattr__  2nd  
    __str__  2nd  
    __sub__  
    __unicode__  
    __xor__  
specified attribute (Attr object)  
split function (os.path module)  
split method
    regular expression object  
    string object  
splitdrive function (os.path module)  
splitext function (os.path module)  
splitlines method (string object)  
Spyce  
    Cheetah and  
SQL (Structured Query Language)  
    executing SQL statements  
sqrt function
    cmath module  
    math module  
square brackets ([])
    indexing  
    item indexes  
    line continuation  
    list creation  
    lists  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    plain assignment statements  
    python command-line syntax  
    regular expressions  2nd  
    slicing  
ST_ATIME attribute (stat module)  
ST_CTIME attribute (stat module)  
ST_DEV attribute (stat module)  
ST_GID attribute (stat module)  
ST_INO attribute (stat module)  
ST_MODE attribute (stat module)  
ST_MTIME attribute (stat module)  
ST_NLINK attribute (stat module)  
ST_SIZE attribute (stat module)  
ST_UID attribute (stat module)  
stack function (inspect module)  
standard error  
Standard General Markup Language (SGML)  
standard input  
standard output  
    writing prompt to  
StandardError exception  
start method
    match object  
    Thread object  
start_tag method
    HTMLParser object  
    sgmllib module  
startDocument method, ContentHandler object  
startElement method, ContentHandler object  
startElementNS method, ContentHandler object  
startswith method (string object)  
stat function (os module)  
stat method
    NNTP object  
    POP3 object  
stat module
    attributes  
    functions  
state method (Toplevel object)  
statements
    assigning values to variables  [See assignment statements]
    compound  
    simple  
    SQL, executing  
static methods  
staticmethod type (built-in)  2nd  3rd  
Stats class  
    add method  
    print_callees method  
    print_callers method  
    print_stats method  
    sort_stats method  
    strip_dirs method  
status method (HTTPResponse object)  
stderr attribute (sys module)  2nd  
stdin attribute (sys module)  2nd  
stdout attribute (sys module)  
step command (pdb module)  
stop method (reactor object)  
StopIteration exception  
storbinary method (FTP object)  
storlines method (FTP object)  
__str__ special method  2nd  
str type (built-in)  2nd  3rd  
    date/time string conversions  
    locale module  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


strcoll function (locale module)  
streams  
strerror attribute (os module)  
strftime function (time module)  
    fine-grained string formatting  
strftime method
    DateTime class  
    DateTimeDelta class  
string attribute (match object)  
string module  
    ascii_letters attribute  
    ascii_lowercase attribute  
    ascii_uppercase attribute  
    digits attribute  
    hexdigits attribute  
    letters attribute  
    locale sensitivity  [See locale module]
    lowercase attribute  
    maketrans function  
    octdigits attribute  
    printable attribute  
    punctuation attribute  
    uppercase attribute  
    whitespace attribute  
string object
    capitalize method  
    center method  
    count method  
    encode method  
    endswith method  
    expandtabs method  
    find method  
    index method  
    isalnum method  
    isalpha method  
    isdigit method  
    islower method  
    isspace method  
    istitle method  
    isupper method  
    join method  
    ljust method  
    lower method  
    lstrip method  
    methods of  
    replace method  
    rfind method  
    rindex method  
    rjust method  
    rstrip method  
    split method  
    splitlines method  
    startswith method  
    strip method  
    swapcase method  
    title method  
    translate method  
    upper method  
StringIO module  
strings  
    case sensitivity  
    concatenating  
    converting  
        date/time types  
        to floating-point numbers  
        to Unicode  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    denoting current directory  
    escape sequences, table of  
    formatting  
        common idioms  
        conversion characters  
        format specifier syntax  
    hexadecimal, converting integers  
    as immutable sequences  
    interned  
    line termination  
    methods  
    mmap object and  
    mutable  
    occurrences of, returning  
    octal, converting integers to  
    optimizing operations on  
    raw strings  
    searching  
    sequence operations on  
    sorting, internationalization and  
    Unicode strings  
    Unicode, Tkinter and  
    whitespace in  
strip method (string object)  
strip_dirs method (Stats object)  
strptime function (time module)  
struct module  
    calcsize function  2nd  
    format characters  
    pack function  
Structured Query Language  [See SQL]
strxfrm function (locale module)  
sub method
    operator module  
    regular expression object  
__sub__ special method  
subclass relationships  
subn method (regular expression object)  
Sunday attribute (mx.DateTime module)  
super type (built-in)  2nd  
superclass methods, delegating to  
SUSE, installing Python  
swapaxes function (Numeric module)  
swapcase method (string object)  
SWIG (Simplified Wrapper and Interface Generator)  
SynEdit program  
SyntaxError exception  
SyntaxWarning exception  
sys module
    _getframe function  
    argv attribute  
    attributes  
    displayhook function  
    exc_info function  2nd  
    excepthook function  2nd  
    exit function  2nd  
    getdefaultencoding function  
    _getframe function  
    getrecursionlimit function  
    getrefcount function  2nd  
    maxint attribute  
    module loading  
    modules attribute  2nd  
        __import__ function and  
    path attribute  2nd  
    platform attribute  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    ps1, ps2 attribute  
    setdefaultencoding function  
    setprofile function  
    setrecursionlimit function  2nd  
    settrace function  
    stderr attribute  2nd  
    stdin attribute  2nd  
    stdout attribute  
    tracebacklimit attribute  
    version attribute  
sys.excepthook file  
sys.stderr file  
system function (os module)  
    running other programs  
system testing  
SystemError exception  
SystemExit exception  2nd  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

tabs, converting to spaces  
tag_add method (Text object)  
tag_bind method
    Canvas object  
    Text object  
tag_cget method (Text object)  
tag_config method (Text object)  
tag_delete method (Text object)  
tag_lower method (Text object)  
tag_names method (Text object)  
tag_raise method (Text object)  
tag_ranges method (Text object)  
tag_remove method (Text object)  
tag_unbind method
    Canvas object  
    Text object  
tags
    HTML  
    HTML v2.0  
take function (Numeric module)  
tan function
    cmath module  
    math module  
tar program  
targets of assignments  2nd  
tbreak command (pdb module)  
TCP echo servers  
TCPServer class  
tearDown method (TestCase object)  
tell method
    file object  
    mmap object  
Telnet class  
    close method  
    expect method  
    interact method  
    open method  
    read_all method  
    read_eager method  
    read_some method  
    read_until method  
    write method  
telnet protocol  2nd  
    twisted.protcols package  
Telnet servers  
telnetlib module  2nd  3rd  
Template class (Cheetah.Template module)  
Template module (Cheetah package)  
tempnam function (os module)  
termination functions  
test-first coding  
TestCase class
    assert_ method  
    assertEqual method  
    assertNotEqual method  
    assertRaises method  
    fail method  
    failIf method  
    failIfEqual method  
    failUnless method  
    failUnlessEqual method  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    failUnlessRaises method  
    setUp method  
    tearDown method  
    unittest module  
testing  2nd  
    doctest module  
    system testing  
    unit testing  
        large amounts of data  
    unittest module  
testzip function (ZipFile class)  
Text class (Tkinter module)  
    compare method  
    delete method  
    get method  
    image_create method  
    index method  
    insert method  
    mark_gravity method  
    mark_set method  
    mark_unset method  
    search method  
    see method  
    tag_add method  
    tag_bind method  
    tag_cget method  
    tag_config method  
    tag_delete method  
    tag_lower method  
    tag_names method  
    tag_raise method  
    tag_ranges method  
    tag_remove method  
    tag_unbind method  
    window_create method  
    xview method  
    yview method  
text editors with Python support  
text files  
    text file mode  
text input/output  
    getpass module  
    input (built-in function)  2nd  
    print statement  
    raw-input (built-in function)  2nd  
    standard input  
    standard output/standard error  
text widgets  
    coupling with scrollbars  
    fonts  
    indices  
    marks on  
    tags on  
Textpad class (textpad module)  
textpad module
    edit function  
    Textpad class  
.tgz file extension  
theKompany, Python IDE offered by  
Thread class (threading module)  
    getName method  
    isAlive method  
    isDaemon method  
    join method  
    run method  
    setDaemon method  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    setName method  
    start method  
thread module  
threaded program architecture  
    polling  
    thread pool  
threading module  
    Condition class  2nd  
    currentThread function  
    Event class  2nd  
    RLock class  
    Semaphore class  2nd  
    Thread class  
    Thread object  
    thread synchronization  
        Condition class  
        Event object  
        Lock/RLock objects  
        Semaphore object  
ThreadingTCPServer class  
ThreadingUDPServer class  
threads  2nd  [See also threaded program architecture threading module][See also threaded program
architecture threading module]
    locks  
    multithreaded access  
    Queue module  
    suspending  
    synchronizing  
        Condition class  
        Event object  
        Lock/RLock objects  
        Semaphore object  
    thread safety, DBAPI  
Thursday attribute (mx.DateTime module)  
ticks method (DateTime class)  
tilde (~), bitwise NOT  
Time function (DBAPI-compliant modules)  
time function (time module)  
time module  
    asctime function  
    clock function  
    ctime function  
    functions
        Python v2.2 and  
    gmtime function  
    localtime function  
    mktime function  
    sleep function  
    strftime function  
        fine-grained string formatting  
    strptime function  
    time function  
    timezone attribute  
    tzname attribute  
time operations  [See also time module time/date values][See also time module time/date values]2nd  
    local time zone, retrieving  
    time-tuple  
time-tuple  
time/date values
    compressed files  
    computing moveable feast days  
    converting  
    current CPU time, retrieving  
    directory paths  
    internationalization and  
    in ISO 8601  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    time-tuple  
TimeDelta function (DateTimeDelta class)  
TimeDeltaFrom function (DateTimeDelta class)  
TimeFromTicks function (DateTimeDelta class)  
TimeFromTicks function (DBAPI-compliant modules)  
timegm function (calendar module)  
timeoutsocket module  
    getDefaultSocketTimeout function  
    setDefaultSocketTimeout function  
TimeoutSocket object
    get_timeout method  
    set_timeout method  
Timestamp function
    DBAPI-compliant modules  
    mx.DateTime module  
TimestampFrom function (mx.DateTime module)  
TimestampFromTicks function
    DBAPI-compliant modules  
    mx.DateTime module  
timezone attribute (time module)  
title method
    string object  
    Toplevel object  
tkFont module  
Tkinter events  
    binding callbacks to events  
    Event object  
    keyboard  
    methods related to  
    mouse  
Tkinter GUIs  
Tkinter module  
    attributes  
    Button class  
    Canvas class  
    Checkbutton class  
    Entry class  
    Event class  
    events  [See Tkinter events]
    Frame class  
    geometry management  
        the Gridder  
        the Packer  
        the Placer  
    images  
    Label class  
    Listbox class  
    Menu class  
    Radiobutton class  
    Scale class  
    Scrollbar class  
    Text class  
    Toplevel class  
    variable object  
    widgets supplied by  
        options  
tmpnam function (os module)  
today function (mx.DateTime module)  
tofile method (array object)  
toggle method (Checkbutton object)  
__tojava__ method (PyObject object)  
tokens  
    delimiters  
    identifiers  
    keywords  
    literals  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    operators  
tolist method, array object  2nd  
toolkits  
top method (POP3 object)  
Toplevel class (Tkinter module)  
    deiconify method  
    geometry method  
    iconify method  
    maxsize method  
    minsize method  
    overrideredirect method  
    protocol method  
    resizable method  
    state method  
    title method  
    withdraw method  
toprettyxml method (Node object)  
tostring method (array object)  2nd  
toxml method (Node object)  
trace function (Numeric module)  
traceback messages  
traceback module  
    print_exc function  
tracebacklimit attribute (sys module)  
translate method (string object)  
translation function (gettext module)  
translation tables, building  
transports object
    getHost method  
    getPeer method  
    loseConnection method  
    write method  
transpose function (Numeric module)  
troubleshooting
    error-specific information  
    memory leaks  
truncate method (file object)  
truncating division, performing true division on integers  
truth method (operator module)  
try statement  
    exception handling  
        try/except form  2nd  
        try/finally form  
    try/except form, running restricted code in  
Tuesday attribute (mx.DateTime module)  
tuple method
    DateTime class  
    DateTimeDelta class  
tuple type (built-in)  2nd  
tuples  
    returning list of  
    sequence operations on  
    in string formats  
Twisted package  2nd  
    performance characteristics  
    twisted.internet/twisted.protocols packages  
twisted.internet package  
twisted.protocols package  
type attribute (FieldStorage object)  
type checking  
type codes
    array module  
    Numeric arrays  
type type (built-in)  2nd  3rd  
type_option attribute (FieldStorage object)  
typecode method (array object)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


TypeError exception  2nd  
types
    built-in  
    defining new with C-coded Python extensions  
    internal  
        type object  
types module  
    DictionaryType attribute  
    DictType attribute  
tzname attribute (time module)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

UDP echo servers  
UDPServer class  
ufunc object
    accumulate attribute  
    attributes  
    outer attribute  
    reduce attribute  
    reduceat attribute  
ufuncs (universal functions), Numeric module  
unalias command (pdb module)  
unbind method (Widget object)  
unbind_all method (Widget object)  
unbinding  [See references, unbinding]
unbound methods  2nd  [See also methods][See also methods]
UnboundLocalError exception  
undef_macros argument (distutils Extension class)  
underscore (_)
    class-private variables  
    gettext module  
    identifiers  2nd  
    interactive sessions  
    module-private variables  
    special methods  
ungetch function (msvcrt module)  
unichr function (built-in)  
Unicode
    alphanumeric designation  
    converting strings to  
UNICODE attribute (re module)  
Unicode Character Database  
__unicode__ special method  
Unicode strings  2nd  
    codecs module  
    encoding/decoding  
    as immutable sequences  
    Tkinter and  
unicode type (built-in)  2nd  3rd  4th  
unicodedata module  
UnicodeError exception  
uniform method (Random object)  
Uniform Resource Locators  [See URLs]
unit testing  
    large amounts of data  
unittest module  
    TestCase class  
universal newlines  
Unix
    binary/text file modes  
    dbm module  
    installing Python from source  
    mmap function  
    permission bits  
        copying  
    Python IDEs  
    running Python scripts  
    text editors with Python support  
Unix-to-Unix (UU) encoding  
unknown_charref method (sgmllib module)  
unknown_endtag method (sgmllib module)  
unknown_entityref method (sgmllib module)  
unknown_starttag method (sgmllib module)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


unlink function (os module)  
unpack function (struct module)  
Unpickler function (pickle/cPickle modules)  
unpost method (Menu object)  
unquote function
    urllib module  
    Utils module  
unquote_plus function (urllib module)  
unzip program  
up command (pdb module)  
update method
    dictionary object  
    Widget object  
update_idletasks method (Widget object)  
upper method (string object)  
uppercase attribute (string module)  
URL access  
    authentication  
    urllib module  
        FancyURLopener class (urllib module)  
    urllib2 module  
        OpenDirector class  
        Request class  
    urlparse module  
url argument (distutils setup function)  
URL file-like object
    close method  
    geturl method  
    info method  
    read method  
    readline method  
    readlines method  
urlcleanup function (urllib module)  
urlencode function (urllib module)  
urljoin function (urlparse module)  
urllib module  2nd  
    FancyURLopener class  
    quote function  
    quote_plus function  
    unquote function  
    unquote_plus function  
    urlcleanup function  
    urlencode function  
    urlopen function  
    urlretrieve function  
urllib2 module  2nd  
    build_opener function  
    install_opener function  
    OpenDirector class  
    OpenerDirector class, handler classes  
    Request class  
    urlopener function  
urlopen function
    urllib module  
    urllib2 module  
urlparse module  2nd  
    urljoin function  
    urlsplit function  
    urlunsplit function  
urlretrieve function (urllib module)  
URLs (Uniform Resource Locators)  2nd  
    access to network protocols  [See URL access]
    analyzing/synthesizing  
    outgoing  
    reading data from  
urlsplit function (urlparse module)  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


urlunsplit function (urlparse module)  
use_rawinput attribute (cmd module)  
Usenet News  [See network news]
user customization  
user input, errors depending on  
user method (POP3 object)  
user module  
UserDict class (UserDict module)  
UserDict module
    data attribute  
    UserDict class  
UserList class (UserList module)  
UserList module
    data attribute  
    UserList class  
UserString class (UserString module)  
UserString module
    data attribute  
    UserString class  
UserWarning class  
UTC (Coordinated Universal Time)  
utc function (mx.DateTime module)  
utctime function (mx.DateTime module)  
Utils module (email package)  
    decode function  
    dump_address_pair function  
    encode function  
    formatdate function  
    getaddresses function  
    mktime_tz function  
    parseaddr function  
    parsedate function  
    parsedate_tz function  
    quote function  
    unquote function  
utime function (os module)  
UU (Unix-to-Unix) encoding  
uu module  
    decode function  
    encode function  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

value attribute
    FieldStorage object  
    Morsel object  
ValueError exception  2nd  3rd  4th  
values method (dictionary object)  
variables  
    assignment statements  
    binding  
    built-in  
    class-private  
    global, thread synchronization and  
    module-private  
    rebinding  
    referencing, error  
    sorted list of  
    unbinding  
vars function (built-in)  
VERBOSE attribute (re module)  
version argument (distutils setup function)  
version attribute (sys module)  
version method
    FancyURLopener object  
    HTTPResponse object  
versions of Python  
    Forum releases  
    Python-in-a-tie releases  
    v2.2
        SimpleXMLRPCServer module, defect in  
        time module, functions  
        time module, strptime function  
        type objects  
    v2.3
        datetime module  
        logging  
        sockets with timeout behavior  
vertical bar (|)
    bitwise OR  
    regular expressions  2nd  
vim program  
Visual C++
    building Python source  
        for debugging  
    interoperability of Python release and debugging builds  
    runtime library, accessing extras supplied by  
Visual Python  
Visual Studio .NET IDE  
VxWorks, installing Python  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

W3C (World Wide Web Consortium)  
wait method
    Condition class  
    Event object  
wait_variable method (Widget object)  
wait_visibility method (Widget object)  
wait_window method (Widget object)  
walk function (os.path module)  
walk method (Message object)  
warn function (warnings module)  
warnings module  
    filterwarnings function  
    formatwarning function  
    resetwarnings function  
    showwarning function  
    warn function  
WConio module  
weak references  
WeakKeyDictionary class (weakref module)  
weakref module  2nd  
    getweakrefcount function  
    getweakrefs function  
    proxy function  
    ref function  
    WeakKeyDictionary class  
    WeakValueDictionary class  
WeakValueDictionary class (weakref module)  
weave package  
web servers, subclassing BaseHTTPServer  
Webware  2nd  
    Cheetah and  
Wednesday attribute (mx.DateTime module)  
Weekday attribute (mx.DateTime module)  
weekday function (calendar module)  
wfile method (HTTPServer object)  
where command (pdb module)  
where function (Numeric module)  
whichdb function (whichdb module)  
whichdb module  
    whichdb function  
while statements  
    else clause  
whitespace
    line indents in Python programs  
    regular expressions  
    separating tokens  
    strings of  
whitespace attribute (string module)  
widget attribute (Event object)  
Widget class (Tkinter module)  
    after method  
    after_cancel method  
    after_idle method  
    bind method  
    bind_all method  
    cget method  
    config method  
    focus_set method  
    grab_release method  
    grab_set method  
    grid method  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    grid_forget method  
    grid_info method  
    mainloop method  
    pack method  
    pack_forget method  
    pack_info method  
    place method  
    place_forget method  
    place_info method  
    quit method  
    unbind method  
    unbind_all method  
    update method  
    update_idletasks method  
    wait_variable method  
    wait_visibility method  
    wait_window method  
    winfo_height method  
    winfo_width method  
widgets  2nd  
    canvas  
        lines  
        polygons  
        rectangles  
        text  
    checkboxes  
    child/parent  
    color options  
    container  
        frames  
        top-level windows  
    length options  
    listboxes  
    menus  
        entry options  
    pushbuttons  
    radiobuttons  
    scrollbars  
    text  
        coupling with scrollbars  
        fonts  
        indices  
        marks on  
        tags on  
    text entry fields  
    Tkinter module  
win32all extensions  
win32all package  
Window class (curses module)
    addstr method  
    clrtobot method  
    clrtoeot method  
    delch method  
    deleteln method  
    erase method  
    getch method  
    getyz method  
    insstr method  
    move method  
    nodelay method  
    refresh method  
window_create method (Text object)  
Windows
    applications, embedding/extending Python with COM  
    CGI scripting on  
    file ownership  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    installing Python from binaries  
        binary package for 32-bit version of  
    installing Python from source  
        building for debugging  
        building source with Visual C++  
        uncompressing/unpacking source code  
    internationalization  
    keys into os.environ  
    mbcs codec  
    mmap function  
    py2exe tool  
    Python IDEs  
    Python scripts  
    resource for further information  
    text editors with Python support  
WindowsError exception  
winfo_height method (Widget object)  
winfo_width method (Widget object)  
Wing IDE  
winutils.zip utilities  
WinZip program  
    uncompressing/unpacking tar archive files  
withdraw method (Toplevel object)  
World Wide Web Consortium (W3C)  
wrapper function (wrapper module)  
wrapper module, wrapper function  
write function
    os module  
    ZipFile class  
write method
    file object  
    mmap object  
    transports object  
write-only file mode  
write_byte method (mmap object)  
write_history_file function (readline module)  
writelines method (file object)  
writeread_all method (Telnet object)  
writestr function (ZipFile class)  
writexml method (Node object)  
wxWindows toolkit  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

x_root attribute (Event object)  
XHTML  
    changing/outputting with minidom  
    parsing  
        with minidom module  
        with pulldom module  
        with xml.sax  
Xitami servers
    installing Python CGI scripts on  
    LRWP for  
XLink  
XML (eXtensible Markup Language)  
    generating  
    parsing  
        with DOM  
        with SAX  
    Python support for  
xml package  
XML-RPC  2nd  
    xmlrpclib module  
XML-RPC servers  2nd  
xml.dom package  
    DOMException class  
xml.sax package  
    attributes  
    ContentHandler class  
    incremental parsing  
    make_parser function  
    parser function  
    parseString function  
    SAXException class  
    saxutils module  
XMLGenerator class (saxutils module)  
XMLReader object
    close method  
    feed method  
    reset method  
xmlrpclib module  
    Binary class  
    binary function  
    Boolean class  
    boolean function  
    DateTime class  
    ServerProxy class  
xmlrpclib protocol  
__xor__ special method  
xor_ method (operator module)  
XPath  
XPointer  
xrange function (built-in)  2nd  
xreadlines function (xreadlines module)  
xreadlines method (file object)  
xreadlines module  
    xreadlines function  
XSLT  
xview method (Text object)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

y_root attribute (Event object)  
year attribute (DateTime class)  
yield keyword  
yview method (Text object)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

ZeroDivisionError exception  
zeros function
    jarray module  
    Numeric module  
ZIP files  
zip function (built-in)  
zip program  
ZipFile class (zipfile module)  
    close method  
    getinfo function  
    infolist function  
    namelist function  
    printdir function  
    read function  
    testzip function  
    write function  
    writestr function  
zipfile module  
    is_zipfile function  
    ZipFile class  
    ZipInfo class  
ZipInfo class (zipfile module)  
    attributes  
zlib module  
    compress function  
    decompress function  
Zope  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Brought to You by

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

