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1 Sets and Functions

1.1 Basic Ideas

Set theory is a large and complicated subject in its own right. There is no time
in this course to touch any but the simplest parts of it. Instead, we’ll just look
at a few topics from what is often called “naive set theory.”

We begin with a few definitions.
A set is a collection of objects called elements. Usually, sets are denoted by

the capital letters A,B, . . . , Z. A set can consist of any type of elements. Even
other sets can be elements of a set. The sets we typically deal with here have
real numbers as their elements.

If a is an element of the set A, we write a ∈ A. If a is not an element of the
set A, we write a /∈ A.

If all the elements of A are also elements of B, then A is a subset of B. In
this case, we write A ⊂ B or B ⊃ A.

Two sets A and B are equal, if they have the same elements. In this case we
write A = B. It is easy to see that A = B iff A ⊂ B and B ⊂ A. Establishing
that both of these containments are true is a standard way to show that two
sets are equal.

There are several ways to describe a set.
A set can be described in words such as “P is the set of all presidents of the

United States.” This is cumbersome for complicated sets.
All the elements of the set could be listed in curly braces as S = {2, 0, a}. If

the set is large, this is impractical, or impossible.
More common in mathematics is set builder notation. Some examples are

P = {p : p is a president of the United states}
= {Washington, Adams, Jefferson,. . . , Clinton}

and

S = {n : n is a prime number} = {2, 3, 5, 7, 11, . . . }.

In general, the set builder notation defines a set in the form

{formula for a typical element : object to plug into the formula}.

A more complicated example is the set of perfect squares:

S = {n2 : n is an integer} = {0, 1, 4, 9, . . . }.

The existence of several sets will be assumed. The simplest of these is the
empty set, which is the set with no elements. It is denoted as ∅. The natural
numbers is the set N = {1, 2, 3, . . . } consisting of the positive integers. The set
Z = {. . . ,−2,−1, 0, 1, 2, . . . } is the set of all integers. Clearly, ∅ ⊂ A, for any
set A and

∅ ⊂ N ⊂ Z.
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Figure 1: These are Venn diagrams showing the four standard binary operations
on sets. In this figure, the set which results from the operation is shaded.

Definition 1.1. Given any set A, the power set of A, written P(A), is the set
consisting of all subsets of A; i. e.,

P(A) = {B : B ⊂ A}.

Problem 1. If a set S has n elements for n ∈ Z and n ≥ 0, how many elements
are in P(S)?

1.2 Algebra of Sets

Let A and B be sets. There are four common binary operations used on sets.1

The union of A and B is the set

A ∪B = {x : x ∈ A ∨ x ∈ B}.

The intersection of A and B is the set

A ∩B = {x : x ∈ A ∧ x ∈ B}.

The difference of A and B is the set

A \B = {x : x ∈ A ∧ x /∈ B}.

The symmetric difference of A and B is the set

A∆B = (A ∪B) \ (A ∩B).
1In the following, some standard logical notation is used. The symbol ∨ is the logical

nonexclusive “or.” The symbol ∧ is the logical “and.” Their truth tables are as follows:

∧ T F
T T F
F F F

∨ T F
T T T
F T F
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Another common set operation is complementation. The complement of a
set A is usually thought of as the set consisting of all elements which are not
in A. But, a short reflection will convince the reader that this is not a well-
stated definition because the collection of elements not in A is not a precisely
understood collection. To make sense of the complement of a set, there must
be a well-defined universal set U which contains all the sets in question. Then
the complement of a set A ⊂ U is Ac = U \A.

Theorem 1.1. Let A, B and C be sets.
(a) A \ (B ∪ C) = (A \B) ∩ (A \ C)
(b) A \ (B ∩ C) = (A \B) ∪ (A \ C)

Proof. (a) This is proved as a sequence of equivalences.

x ∈ A \ (B ∪ C) ⇐⇒ x ∈ A ∧ x /∈ (B ∪ C)
⇐⇒ x ∈ A ∧ x /∈ B ∧ x /∈ C
⇐⇒ (x ∈ A ∧ x /∈ B) ∧ (x ∈ A ∧ x /∈ C)
⇐⇒ x ∈ (A \B) ∩ (A \ C)

(b) This is also proved as a sequence of equivalences.

x ∈ A \ (B ∩ C) ⇐⇒ x ∈ A ∧ x /∈ (B ∩ C)
⇐⇒ x ∈ A ∧ (x /∈ B ∨ x /∈ C)
⇐⇒ (x ∈ A ∧ x /∈ B) ∨ (x ∈ A ∧ x /∈ C)
⇐⇒ x ∈ (A \B) ∪ (A \ C)

Theorem 1.1 is a version of a group of set equations which are often called
DeMorgan’s Laws. The more usual statement of DeMorgan’s Laws are in Corol-
lary 1.2. Corollary 1.2 is an obvious consequence of Theorem 1.1 when there is
a universal set to make the complementation well-defined.

Corollary 1.2 (DeMorgan’s Laws). Let A and B be sets.

(a) (A ∪B)c = Ac ∪Bc

(b) (A ∩B)c = Ac ∪Bc

Problem 2. Prove that for any sets A and B,

(a) A = (A ∩B) ∪ (A \B)

(b) A ∪B = (A \B) ∪ (B \A) ∪ (A ∩B) and that the sets A \B, B \A and
A ∩B are pairwise disjoint.

We often have occasion to work with large collections of sets. For example,
we could have a sequence of sets A1, A2, A3, . . . , where there is a set An asso-
ciated with each n ∈ N. In general, let Λ be a set and suppose for each λ ∈ Λ
there is a set Aλ. The collection {Aλ : λ ∈ Λ} is called a collection of sets
indexed by Λ. In this case, Λ is called the indexing set for the collection.
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Example 1.1. For each n ∈ N, let An = {k ∈ Z : k2 ≤ n}. Then

A1 = A2 =A3 = {−1, 0, 1}, A4 = {−2,−1, 0, 1, 2}, . . . ,
A50 = {−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}, . . .

is a collection of sets indexed by N.

Several of the binary operations can be extended to work with indexed collec-
tions. In particular, using the indexed collection from the previous paragraph,
we define ⋃

λ∈Λ

Aλ = {x : x ∈ Aλ for some λ ∈ Λ}

and ⋂
λ∈Λ

Aλ = {x : x ∈ Aλ for all λ ∈ Λ}.

DeMorgan’s Laws can be generalized to indexed collections.

Theorem 1.3. If {Bλ : λ ∈ Λ} is an indexed collection of sets and A is a set,
then

A \
⋃
λ∈Λ

Bλ =
⋂
λ∈Λ

(A \Bλ)

and

A \
⋂
λ∈Λ

Bλ =
⋃
λ∈Λ

(A \Bλ).

Problem 3. Prove Theorem 1.3.

1.3 Functions and Relations

When listing the elements of a set, the order in which they are listed is unimpor-
tant; e. g., {a, b} = {b, a}. If the order in which n items are listed is important,
the list is called an n-tuple. (Strictly speaking, an n-tuple is not a set.) We
denote an n-tuple by enclosing the ordered list in parentheses. For example, if
x1, x2, x3, x4 are 4 items, the 4-tuple (x1, x2, x3, x4) is different from the n-tuple
(x2, x1, x3, x4).

Because they are used so often, a 2-tuple is called an ordered pair and a
3-tuple is called an ordered triple.

Definition 1.2. The Cartesian product of A and B is the set of all ordered
pairs

A×B = {(a, b) : a ∈ A ∧ b ∈ B}.
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Example 1.2. If A = {a, b, c} and B = {1, 2}, then

A×B = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}.

A useful way to visualize the Cartesian product of two sets is as a table. The
Cartesian product from Example 1.2 is contained in the entries of the following
table.

1 2
a (a, 1) (a, 2)
b (b, 1) (b, 2)
c (c, 1) (c, 2)

Of course, the common Cartesian plane from analytic geometry is nothing
more than a variation of this idea of listing the elements of a Cartesian product
as a table.

By induction, the definition of Cartesian product can be extended to the
case of more than two sets. If {A1, A2, . . . , An} are sets, then

A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) : ak ∈ Ak for 1 ≤ k ≤ n}

is a set of n-tuples.

Definition 1.3. If A and B are sets, then any R ⊂ A×B is a relation from A
to B. If (a, b) ∈ R, we write aRb.

In this case,

dom (R) = {a : (a, b) ∈ R}

is the domain of R and

ran (R) = {b : (a, b) ∈ R}

is the range of R.

Suppose R ⊂ A×A.
The relation R is symmetric, if aRb ⇐⇒ bRa.
The relation R is reflexive, if aRa whenever a ∈ A.
The relation R is transitive, if aRb ∧ bRc =⇒ aRc.
The relation R is an equivalence relation on A, if it is symmetric, reflexive

and transitive.

Example 1.3. Let R be the relation on Z×Z defined by aRb ⇐⇒ a ≤ b. Then
R is reflexive and transitive, but not symmetric.

Example 1.4. Let R be the relation on Z × Z defined by aRb ⇐⇒ a2 = b2.
In this case, R is an equivalence relation. It is evident that aRb iff b = a or
b = −a.

Problem 4. Suppose R is an equivalence relation on A. For each x ∈ A define
Cx = {y ∈ A : xRy}. Prove that if x, y ∈ A, then either Cx = Cy or Cx∩Cy = ∅.
(The collection {Cx : x ∈ A} is the set of equivalence classes induced by R.)



Section 1: Sets and Functions 7

Definition 1.4. A relation R ⊂ A×B is a function if aRb1∧aRb2 =⇒ b1 = b2.

If f ⊂ A×B is a function and dom (f) = A, then we usually write f : A→ B
and f(a) = b instead of afb.

If f : A→ B is a function, then the usual intuitive interpretation is to regard
f as a rule that assigns each element of A to a unique element of B. It’s not
necessarily the case that each element of B is assigned something from A.

Example 1.5. Define f : N → Z by f(n) = n2 and g : Z → Z by g(n) = n2. In
this case ran (f) = {n2 : n ∈ N} and ran (g) = ran (f) ∪ {0}.

Definition 1.5. If f : A → B and g : B → C, then the composition of g with
f is the function g ◦ f : A→ C defined by g ◦ f(a) = g(f(a)).

In Example 1.5, g ◦ f(n) = g(f(n)) = g(n2) = (n2)2 = n4 makes sense for
all n ∈ N, but f ◦ g is undefined at n = 0.

There are several important types of functions.

Definition 1.6. A function f : A → B is a constant function, if ran (f) has a
single element; i. e., there is a b ∈ B such that f(a) = b for all a ∈ A.

Definition 1.7. A function f : A→ B is surjective (or onto B), if ran (f) = B.

In a sense, constant and surjective functions are the opposite extremes. A
constant function has the smallest possible range and a surjective function has
the largest possible range. Of course, a function f : A→ B can be both constant
and surjective, if B has only one element.

Definition 1.8. A function f : A → B is injective (or one-to-one), if f(a) =
f(b) implies a = b.

The terminology “one-to-one” is very descriptive in this case. An illustration
of this definition is in Figure 2. In Example 1.5, f is injective while g is not.

Definition 1.9. A function f : A → B is bijective, if it is both surjective and
injective.

A bijective function can be visualized as pairing up all the elements of A
and B. In a sense, A and B must have the same number of elements for this to
happen. This idea will be explored further in the next section.

Definition 1.10. If f : A→ B, C ⊂ A and D ⊂ B, then the image of C is the
set f(C) = {f(a) : a ∈ C}. The inverse image of D is the set f−1(D) = {a :
f(a) ∈ D}.

Definitions 1.9 and 1.10 work together in the following way. Suppose f :
A → B is bijective and b ∈ B. The fact that f is surjective guarantees that
f−1(b) 6= ∅. Since f is injective, f−1(b) contains exactly one element, say a,
where f(a) = b. In this way, it is seen that f−1 is a rule that assigns each
element of B to exactly one element of A; i. e., f−1 is a function with domain
B and range A.
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Figure 2: These diagrams show two functions, f : A→ B and g : A→ B. The
function g is injective and f is not because f(a) = f(c).

Definition 1.11. If f : A → B is bijective, we define the inverse of f to be a
function f−1B → A with the property that f−1 ◦ f(a) = a for all a ∈ A and
f ◦ f−1(b) = b for all b ∈ B.

Example 1.6. Let A = N and B be the even natural numbers. If f : A → B
is f(n) = 2n and g : B → A is g(n) = n/2, it is clear f is bijective. Since
f ◦ g(n) = f(n/2) = 2n/2 = n and g ◦ f(n) = g(2n) = 2n/2 = n, we see
g = f−1.

A B

f

f —1

f —1

f

Figure 3: This is one way to visualize a general invertible function. First f does
something to a and then f−1 undoes it.
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Example 1.7. Let f : N→ Z be defined by

f(n) =

{
(n− 1)/2, n odd,
−n/2, n even

It’s quite easy to see that f is bijective and

f−1(n) =

{
2n+ 1, n ≥ 0,
−2n, n < 0

The following theorem will be used in Section 1.4.

Theorem 1.4 (Schröder-Bernstein). Let A and B be sets. If there are in-
jective functions f : A → B and g : B → A, then there is a bijective function
h : A→ B.

Proof. Let B1 = B \ f(A). If Bk ⊂ B is defined for some k ∈ N, let Ak = g(Bk)
and Bk+1 = f(Ak). This inductively defines Ak and Bk for all k ∈ N. Use these
sets to define Ã =

⋃
k∈NAk and h : A→ B as

h(x) =

{
g−1(x), x ∈ Ã
f(x), x ∈ A \ Ã

.

It must be shown that h is well-defined, injective and surjective.
To show h is well-defined, let x ∈ A. If x ∈ A\Ã, then it is clear h(x) = f(x)

is defined. On the other hand, if x ∈ Ã, then x ∈ Ak for some k. Since
x ∈ Ak = g(Bk), we see h(x) = g−1(x) is defined. Therefore, h is well-defined.

To show h is injective, let x, y ∈ A with x 6= y. If both x, y ∈ Ã or x, y ∈ A\Ã,
then the assumptions that g and f are injective, respectively, imply h(x) 6= h(y).
The remaining case is when x ∈ Ã and y ∈ A \ Ã. Suppose x ∈ Ak and
h(x) = h(y). Then there is an x1 ∈ B1 such that

x = g ◦ f ◦ g ◦ f ◦ · · · ◦ f ◦ g︸ ︷︷ ︸
k − 1 f ’s and k g’s

(x1).

This implies

h(x) = g−1(x) = f ◦ g ◦ f ◦ · · · ◦ f ◦ g︸ ︷︷ ︸
k − 1 f ’s and k − 1 g’s

(x1) = f(y)

so that

y = g ◦ f ◦ g ◦ f ◦ · · · ◦ f ◦ g︸ ︷︷ ︸
k − 2 f ’s and k − 1 g’s

(x1) ∈ Ak−1 ⊂ Ã.

This contradiction shows that h(x) 6= h(y). We conclude h is injective.
To show h is surjective, let y ∈ B. If y ∈ Bk for some k, then h(Ak) =

g−1(Ak) = Bk shows y ∈ h(A). If y /∈ Bk for any k, y ∈ f(A) because
B1 = B \ f(A), and g(y) /∈ Ã, so y = h(x) = f(x) for some x ∈ A. This shows
h is surjective.

Problem 5. If f : A→ B is bijective, then f−1 is unique.
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1.4 Cardinality

There is a way to use sets to formalize and generalize how we count. For
example, suppose we want to count how many elements are in the set {a, b, c}.
The natural way to do this would be to point at each element in succession and
say “one, two, three.” What is really happening is that we’re defining a bijective
function between {a, b, c} and the set {1, 2, 3}. This idea can be generalized.

Definition 1.12. Given n ∈ N, an initial segment of N is the set n = {1, 2, . . . , n}.
The trivial initial segment is 0 = ∅. A set S has cardinality n, if there is a bi-
jective function f : S → n. In this case, we write card (S) = n.

The cardinalities defined in Definition 1.12 are called the finite cardinal
numbers. They correspond to the everyday counting numbers we usually use.
The idea can be generalized still further.

Definition 1.13. Let A and B be two sets. If there is an injective function
f : A→ B, we say card (A) ≤ card (B).

According to Theorem 1.4, the Schröder-Bernstein Theorem, if card (A) ≤
card (B) and card (B) ≤ card (A), then there is a bijective function f : A→ B.
As expected, in this case we write card (A) = card (B). When card (A) ≤
card (B), but no such bijection exists, we write card (A) < card (B).

In particular, a set A is countably infinite, if card (A) = card (N). In this
case, it is common to write card (N) = ℵ0.2

This leaves open the question whether all sets either have finite cardinality,
or are countably infinite. This is answered by letting S = N in the following
theorem.

Theorem 1.5. If S is a set, card (S) < card (P(S)).

Proof. It is easy to see card (S) ≤ card (P(S)), so it suffices to prove there is no
surjective function f : S → P(S).

To see this, assume there is such a function f and let T = {x ∈ S : x /∈ f(x)}.
Since f is surjective, there is a t ∈ T such that f(t) = T . Either t ∈ T or t /∈ T .

If t ∈ T = f(T ), then the definition of T implies t /∈ T , a contradiction. On
the other hand, if t /∈ T = f(T ), then the definition of T implies t ∈ T . These
contradictions lead to the conclusion that no such function f can exist.

A set S is said to be uncountably infinite, or just uncountable, if ℵ0 <
card (S). Theorem 1.5 implies ℵ0 < card (P(N)), so P(N) is uncountable. In
fact, the same argument implies

ℵ0 = card (N) < card (P(N)) < card (P(P(N))) < . . .

So, there are an infinite number of distinct infinite cardinalities.
2The symbol ℵ is the Hebrew letter “aleph” and ℵ0 is usually pronounced “aleph nought.”



Section 1: Sets and Functions 11

Extra Credit 1. Prove that if a set S is countably or uncountably infinite,
then there is a proper subset T ( S and a bijection f : S → T . This property
is often used as the definition of when a set is infinite.

Notice that Theorem 1.5 does not imply there are no sets B such that ℵ0 <
card (B) < card (P(N)). In fact, for many years the question of whether such
sets exist was one of the most important open questions in mathematics. The
assumption that no such sets exist is called the continuum hypothesis.

The continuum hypothesis was first stated as a conjecture by Georg Cantor
in 1878. Kurt Gödel proved in 1938 that the continuum hypothesis does not
contradict anything in normal set theory, but he did not prove it was true. In
1963 it was proved by Paul Cohen that the continuum hypothesis is actually
unprovable as a theorem in standard set theory.

So, the continuum hypothesis is a statement which is neither true nor false
within the framework of ordinary set theory. This means that in an axiomatic
development of set theory, the continuum hypothesis, or a suitable negation of
it, can be taken as an axiom.

The proofs of these theorems are quite complicated. A well-written intro-
duction to to many of these ideas is contained in the book by Ciesielski [1].

Problem 6. Suppose that Ak is a set for each positive integer k.

(a) Show that x ∈
⋂∞
n=1 (

⋃∞
k=nAk) iff x ∈ Ak for infinitely many sets Ak.

(b) Show that x ∈
⋃∞
n=1 (

⋂∞
k=nAk) iff x ∈ Ak for all but finitely many of the

sets Ak.

The set x ∈
⋂∞
n=1 (

⋃∞
k=nAk) from (a) is often called the superior limit of the

sets Ak and x ∈
⋃∞
n=1 (

⋂∞
k=nAk) is often called the inferior limit of the sets

Ak.

Problem 7. Given two sets A and B, it is common to let AB be the set of all
functions f : B → A. Prove that for any set A, card

(
2A
)

= card (P(A)).


