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3 Sequences

3.1 Basic Properties

Definition 3.1. A sequence is a function a : N→ R.

Instead of using the standard function notation of a(n) for sequences, it is
usually more convenient to write the argument of the function as a subscript,
an.

Example 3.1. Let the sequence an = 1 − 1/n. Then an easy calculation shows
a1 = 0, a2 = 1/2, a3 = 2/3, etc.

Example 3.2. Let the sequence bn = 2n. It’s easy to see b1 = 2, b2 = 4, b3 = 8,
etc.

Definition 3.2. A sequence an is bounded if {an : n ∈ N} is a bounded set.
This definition is extended in the obvious way to bounded above and bounded
below.

The sequence of Example 3.1 is bounded, but the sequence of Example 3.2
is not.

Definition 3.3. A sequence an converges to L ∈ R if for all ε > 0 there exists
an N ∈ N such that whenever n ≥ N , then |an−L| < ε. If a sequence does not
converge, then it is said to diverge.

When an converges to L, we write limn→∞ an = L, or often, more simply,
an → L.

Example 3.3. Let an be as in Example 3.1. We claim an → 1. To see this, let
ε > 0 and choose N ∈ N such that 1/N < ε. Then, if n ≥ N

|an − 1| = |(1− 1/n)− 1| = 1/n ≤ 1/N < ε,

so an → 1.
The sequence bn of Example 3.2 diverges. To see this, suppose not. Then

there is an L ∈ R such that bn → L. If ε = 1, there must be an N ∈ N such that
|bn −L| < ε whenever n ≥ N . Choose n ≥ N . |L− 2n| < 1 implies L < 2n + 1.
But, then

bn+1 − L = 2n+1 − L > 2n+1 − (2n + 1) = 2n − 1 ≥ 1 = ε.

This violates the condition on N . We conclude that for every L ∈ R there
exists an ε > 0 such that for no N ∈ N is it true that whenever n ≥ N , then
|bn − L| < ε. Therefore, bn diverges.

Definition 3.4. A sequence an diverges to ∞ if for every B > 0 there is an
N ∈ N such that n ≥ N implies an > B. The sequence an is said to diverge to
−∞ if −an diverges to ∞.

When an diverges to ∞, we write limn→∞ an = ∞, or often, more simply,
an →∞.



Section 3: Sequences 21

Example 3.4. It is easy to prove that the sequence of Example 3.2 diverges to
∞.

Theorem 3.1. If an → L, then L is unique.

Proof. Suppose an → L1 and an → L2. Let ε > 0. According to Definition 3.2,
there exist N1, N2 ∈ N such that n ≥ N1 implies |an − L1| < ε/2 and n ≥ N2

implies |an − L2| < ε/2. Set N = max{N1, N2}. If n ≥ N , then

|L1 − L2| = |L1 − an + an − L2| ≤ |L1 − an|+ |an − L2| < ε/2 + ε/2 = ε.

Since ε is an arbitrary positive number, this implies L1 = L2.

Theorem 3.2. an → L iff for all ε > 0, the set {n : an /∈ (L − ε, L + ε)} is
finite.

Proof. (⇒) Let ε > 0. According to Definition 3.2, there is an N ∈ N such that
{an : n ≥ N} ⊂ (L−ε, L+ε). Then {n : an /∈ (L−ε, L+ε)} ⊂ {1, 2, . . . , N−1}.

(⇐) Let ε > 0. By assumption {n : an /∈ (L − ε, L + ε)} is finite, so let
N = max{n : an /∈ (L− ε, L+ ε)}+ 1. If n ≥ N , then an ∈ (L− ε, L+ ε), so,
by Definition 3.2, an → L.

Corollary 3.3. If an converges, then an is bounded.

Proof. Suppose an → L. According to Theorem 3.2 there are a finite number
of terms of the sequence lying outside (L − 1, L + 1). Since any finite set is
bounded, the conclusion is obvious.

Theorem 3.4. Let an and bn be sequences such that an → A and bn → B.
Then

(a) an + bn → A+B,

(b) can → cA, for all c ∈ R,

(c) anbn → AB, and

(d) an/bn → A/B as long as bn 6= 0 for all n ∈ N and B 6= 0.

Proof. (a) Let ε > 0. There are N1, N2 ∈ N such that n ≥ N1 implies |an −
A| < ε/2 and n ≥ N2 implies |bn − B| < ε/2. Define N = max{N1, N2}.
If n ≥ N , then

|(an + bn)− (A+B)| ≤ |an −A|+ |bn −B| < ε/2 + ε/2 = ε.

Therefore an + bn → A+B.

(b) If c = 0, the statement is obvious. So, assume c 6= 0 and let ε > 0. Choose
N ∈ N so that whenever n ≥ N , then |an −A| < ε/|c|. If n ≥ N, then

|can − cA| = |c||an −A| < |c|ε/c = ε.

Therefore, can → cA.
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(c) Let ε > 0 and α > 0 be an upper bound for |an|. Choose N1, N2 ∈ N such
that n ≥ N1 =⇒ |an − A| < ε/2(|B| + 1) and n ≥ N2 =⇒ |bn − B| <
ε/2α. If n ≥ N = max{N1, N2}, then

|anbn −AB| = |anbn − anB + anB −AB|
≤ |anbn − anB|+ |anB −AB|
= |an||bn −B|+ ||B||an −A|
< α

ε

2α
+ |B| ε

2(|B|+ 1)
< ε/2 + ε/2 = ε.

(d) First, notice that it suffices to show that 1/bn → B, because part (c) of
this theorem can be used to achieve the full result.

Let ε > 0. Choose N ∈ N so that n ≥ N =⇒ |bn| > B/2 and |bn −B| <
B2ε/2. Then, when n ≥ N ,∣∣∣∣ 1

bn
− 1
B

∣∣∣∣ = ∣∣∣∣B − bnbnB

∣∣∣∣ < ∣∣∣∣ B2ε/2
(B/2)B

∣∣∣∣ = ε.

Therefore 1/bn → 1/B.

Theorem 3.5 (Sandwich Theorem). Suppose an, bn and cn are sequences
such that an ≤ bn ≤ cn for all n ∈ N.

(a) If an → L and cn → L, then bn → L.

(b) If bn →∞, then cn →∞.

(c) If cn → −∞, then bn → −∞.

Proof. (a) Let ε > 0. There is an N ∈ N large enough so that when n ≥ N ,
then L − ε < an and cn < L + ε. These inequalities imply L − ε < an ≤
bn ≤ cn < L+ ε. Therefore, cn → L.

(b) Let B > 0 and choose N ∈ N so that n ≥ N =⇒ bn > B. Then
cn ≥ bn > B whenever n ≥ N . This shows cn →∞.

(c) This is essentially the same as part (b).

Problem 12. Show that the sequence an =
3n+ 1
2n+ 3

converges.

Extra Credit 3. If an → L, then what can you say about

σn =
a1 + a2 + · · ·+ an

n
?

Is there a divergent sequence an such that σn converges?

Problem 13. A sequence an converges to 0 iff |an| converges to 0.
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3.2 Monotone Sequences

Definition 3.5. A sequence an is increasing, if an+1 ≥ an for all n ∈ N. It is
strictly increasing if an+1 > an for all n ∈ N.

A sequence an is decreasing, if an+1 ≤ an for all n ∈ N. It is strictly
decreasing if an+1 < an for all n ∈ N.

If an is any of the four types listed above, then it is said to be a monotone
sequence.

Theorem 3.6. A bounded monotone sequence converges.

Proof. Suppose an is a bounded increasing sequence, L = lub {an : n ∈ N} and
ε > 0. Clearly, an ≤ L for all n ∈ N. According to Theorem 2.10, there exists
an N ∈ N such that aN > L − ε. Then L ≥ an ≥ aN > L − ε for all n ≥ N .
This shows an → L.

If an is decreasing, let bn = −an and apply the preceding argument.

Theorem 3.7. An unbounded monotone sequence diverges to ∞ or −∞, de-
pending on whether it is increasing or decreasing, respectively.

Proof. Suppose an is increasing and unbounded. If B > 0, the fact that an
is unbounded yields an N ∈ N such that aN > B. Since an is increasing,
an ≥ aN > B for all n ≥ N . This shows an →∞.

The proof when the sequence decreases is similar.

3.3 The Nested Interval Theorem

Definition 3.6. A collection of sets {Sn : n ∈ N} is said to be nested, if
Sn+1 ⊂ Sn for all n ∈ N.

Theorem 3.8 (Nested Interval Theorem). If In = [an, bn] is a nested col-
lection of closed intervals such that limn→∞ bn− an = 0, then there is an x ∈ R
such that

⋂
n∈N In = {x}.

Proof. Since the intervals are nested, it’s clear that an is an increasing sequence
bounded above by b1 and bn is a decreasing sequence bounded below by a1.
Applying Theorem 3.6 twice, we find there are α, β ∈ R such that an → α and
bn → β.

We claim α = β. To see this, let ε > 0 and use the “shrinking” condition
on the intervals to pick N ∈ N so that bN − aN < ε. The nestedness of the
intervals implies aN ≤ an < bn ≤ bN for all n ≥ N . Therefore

aN ≤ lub {an : n ≥ N} = α ≤ bN and aN ≤ glb {bn : n ≥ N} = β ≤ bN .

This shows |α − β| ≤ |bN − aN | < ε. Since ε > 0 was chosen arbitrarily, we
conclude α = β.

Let x = α = β. It remains to show that
⋂
n∈N In = {x}.

First, we shaw that x ∈
⋂
n∈N In. To do this, fix N ∈ N. Since an increases

to x, it’s clear that x ≥ aN . Similarly, x ≤ bN . Therefore x ∈ [aN , bN ]. Because
N was chosen arbitrarily, it follows that x ∈

⋂
n∈N In.
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Next, suppose there are x, y ∈
⋂
n∈N In and let ε > 0. Choose N ∈ N such

that bN − aN < ε. Then {x, y} ⊂
⋂
n∈N In ⊂ [aN , bN ] implies |x− y| < ε. Since

ε was chosen arbitrarily, we see x = y. Therefore
⋂
n∈N In = {x}.

Example 3.5. If In = (0, 1/n] for all n ∈ N, then the collection {In : n ∈ N}
is nested, but

⋂
n∈N In = ∅. This shows the assumption that the intervals be

closed in the Nested Interval Theorem is necessary.

Example 3.6. If In = [n,∞) then the collection {In : n ∈ N} is nested, but⋂
n∈N In = ∅. This shows that the assumption that the lengths of the intervals

be bounded is necessary.

Extra Credit 4. If an is a sequence such that an−1
an+1 → 0, then does limn→∞ an

exist?

Extra Credit 5. Suppose a sequence is defined by a1 = 0, a1 = 1 and an+1 =
1
2 (an + an−1) for n ≥ 2. Prove an converges, and determine its limit.

Problem 14. Prove that the sequence an = n3/n! converges.

3.4 Subsequences

Definition 3.7. Let an be a sequence and σ : N → N be a strictly increasing
function. Then bn = aσ(n) is a subsequence of an.

The idea here is that the subsequence bn is a new sequence formed from an
old sequence an by possibly leaving terms out of an. In other words, we see that
all the terms of bn must also appear in an, and they must appear in the same
order.

Example 3.7. If an = sin(nπ/2), then some possible subsequences are

bn = a2n−1 =⇒ bn = (−1)n+1,

cn = a2n =⇒ cn = 0,

and

dn = an2 =⇒ dn = (1 + (−1)n+1)/2.

Theorem 3.9. an → L iff every subsequence of an converges to L.

Proof. (⇒) Suppose σ : N → N is strictly increasing, as in the preceding
definition. Clearly, σ(1) ≥ 1. Suppose σ(n) ≥ n for some n ∈ N. Then
σ(n+ 1) > σ(n) ≥ n⇒ σ(n+ 1) ≥ n+ 1. This simple induction argument has
established σ(n) ≥ n for all n ∈ N.

Now, suppose an → L and bn = aσ(n) is a subsequence of an. If ε > 0, there
is an N ∈ N such that n ≥ N implies an ∈ (L− ε, L+ ε). From the preceding
paragraph, it follows that when n ≥ N , then bn = aσ(n) = am for some m ≥ n.
So, bn ∈ (L− ε, L+ ε) and bn → L.

(⇐) Since an is a subsequence of itself, it is obvious that an → L.
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Any sequence has an uncountable number of subsequences. Even if the orig-
inal sequence diverges, it is possible there are convergent subsequences. For
example, consider the divergent sequence an = (−1)n. In this case, an diverges,
but the two subsequences a2n and a2n+1 are constant sequences, so they con-
verge.

Problem 15. If an is a sequence such that every subsequence of an has a
further subsequence converging to 0, then an → 0.


