4 The Topology of R

Definition 4.1. A set $G \subset \mathbb{R}$ is *open* if for every $x \in G$ there is an $\varepsilon > 0$ such that $(x - \varepsilon, x + \varepsilon) \subset G$. A set $F \subset \mathbb{R}$ is *closed* if F^c is open.

Example 4.1. Any open interval (a, b) is open. To see this, let $x \in (a, b)$ and $\varepsilon = \min\{x - a, b - x\}.$ Then $(x - \varepsilon, x + \varepsilon) \subset (a, b).$

Open half-lines are also open sets. For example, let $x \in (a, \infty)$ and $\varepsilon = x - a$. Then $(x - \varepsilon, x + \varepsilon) \subset (a, \infty)$.

A singleton set $\{a\}$ is closed. To see this, suppose $x \neq a$ and $\varepsilon = |x - a|$. Then $a \notin (x - \varepsilon, x + \varepsilon)$, and $\{a\}^c$ must be open. The definition of a closed set then implies $\{a\}$ is closed.

There are sets which are neither open nor closed. For example, consider the half-open interval [0,1]. To see it isn't open or closed, let $\varepsilon > 0$. Then $(0 - \varepsilon, 0 + \varepsilon) \not\subset [0, 1)$ shows it cannot be open. Since $(1 - \varepsilon, 1 + \varepsilon) \not\subset [0, 1)^c$, we see $[0,1)^c$ is not open, so $[0,1)$ cannot be closed.

- **Theorem 4.1.** (a) If $\{G_{\lambda} : \lambda \in \Lambda\}$ is a collection of open sets, then $\bigcup_{\lambda \in \Lambda} G_{\lambda}$ is open.
	- (b) If ${G_k : 1 \le k \le n}$ is a finite collection of open sets, then $\bigcap_{k=1}^n G_k$ is open.
	- (c) Both \emptyset and $\mathbb R$ are open.
- *Proof.* (a) If $x \in \bigcup_{\lambda \in \Lambda} G_{\lambda}$, then there is a $\lambda_x \in \Lambda$ such that $x \in G_{\lambda_x}$. Since *G*_{λ_x} is open, there is an $\varepsilon > 0$ such that $x \in (x - \varepsilon, x + \varepsilon) \subset G_{\lambda_x}$ $\bigcup_{\lambda \in \Lambda} G_{\lambda}$. This shows $\bigcup_{\lambda \in \Lambda} G_{\lambda}$ is open.
- (b) If $x \in \bigcap_{k=1}^n G_k$, then $x \in G_k$ for $1 \leq k \leq n$. For each G_k there is an ε_k such that $(x - \varepsilon_k, x + \varepsilon_k) \subset G_k$. Let $\varepsilon = \min\{\varepsilon_k : 1 \leq k \leq n\}$. Then $(x - \varepsilon, x + \varepsilon) \subset G_k$ for $1 \leq k \leq n$, so $(x - \varepsilon, x + \varepsilon) \subset \bigcap_{k=1}^n G_k$. Therefore $\bigcap_{k=1}^n G_k$ is open.
- (c) \emptyset is open vacuously. $\mathbb R$ is obviously open.

Applying DeMorgan's laws to the parts of Theorem 4.1 immediately yields the following.

- **Corollary 4.2.** (a) If $\{F_{\lambda} : \lambda \in \Lambda\}$ is a collection of closed sets, then $\bigcap_{\lambda \in \Lambda} G_{\lambda}$ is closed.
	- (b) If ${F_k : 1 \le k \le n}$ is a finite collection of closed sets, then $\bigcup_{k=1}^{n} G_k$ is closed.
- (c) Both \emptyset and $\mathbb R$ are closed.

Notice that \emptyset and $\mathbb R$ are both open and closed. They are the only subsets of R with this dual personality.

 \Box

Section 4: The Topology of $\mathbb R$ 27

Definition 4.2. x_0 is a limit point of $S \subset \mathbb{R}$ if for every $\varepsilon > 0$, $(x_0 - \varepsilon, x_0 +$ ε) \cap *S* \ {*x*₀} \neq \emptyset . The *derived set* of *S* is

$$
S' = \{x : x \text{ is a limit point of } S\}.
$$

A point $x_0 \in S \setminus S'$ is an *isolated point* of *S*.

Notice that limit points of *S* need not be elements of *S*, but isolated points of *S* must be elements of *S*. In a sense, limit points and isolated points are at opposite extremes. The definitions can be restated as follows:

*x*₀ is a limit point of *S* iff $\forall \varepsilon > 0$, $S \cap (x_0 - \varepsilon, x_0 + \varepsilon) \setminus \{x_0\} \neq \emptyset$ $x_0 \in S$ is an isolated point of *S* iff $\exists \varepsilon > 0, S \cap (x_0 - \varepsilon, x_0 + \varepsilon) \setminus \{x_0\} = \emptyset$

Example 4.2. If $S = (0, 1]$, then $S' = [0, 1]$ and *S* has no isolated points.

Example 4.3. If $T = \{1/n : n \in \mathbb{Z} \setminus \{0\}\}\)$, then $T' = \{0\}$ and all points of *T* are isolated points of *T*.

Theorem 4.3. *x*⁰ *is a limit point of S iff there is a sequence* $x_n \in S \setminus \{x_0\}$ such that $x_n \to x_0$.

Proof. (\Rightarrow) For each $n \in \mathbb{N}$ choose $x_n \in S \cap (x_0 - 1/n, x_0 + 1/n) \setminus \{x_0\}$. Then $|x_n - x_0| < 1/n$ for all $n \in \mathbb{N}$, so $x_n \to x_0$.

(←) Suppose x_n is a sequence from $x_n \text{ ∈ } S \setminus \{x_0\}$ converging to x_0 . If $\varepsilon > 0$, the definition of convergence for a sequence yields an $N \in \mathbb{N}$ such that whenever $n \geq N$, then $x_n \in S \cap (x_0 - \varepsilon, x_0 + \varepsilon) \setminus \{x_0\}$. This shows $S \cap (x_0 - \varepsilon, x_0 + \varepsilon) \setminus \{x_0\} \neq \emptyset$, and x_0 must be a limit point of *S*. \Box

Theorem 4.4. A set $S \subset \mathbb{R}$ is closed iff it contains all its limit points.

Proof. (\Rightarrow) Suppose *S* is closed and *x*₀ is a limit point of *S*. If *x*₀ \notin *S*, then *S*^{*c*} open implies the existence of $\varepsilon > 0$ such that $(x_0 - \varepsilon, x_0 + \varepsilon) \cap S = \emptyset$. This contradicts the fact that x_0 is a limit point of *S*. Therefore, $x_0 \in S$, and *S* contains all its limit points.

 (\Leftarrow) Since *S* contains all its limit points, if $x_0 \notin S$, there must exist an $\varepsilon > 0$ such that $(x_0 - \varepsilon, x_0 + \varepsilon) \cap S \neq \emptyset$. It follows from this that S^c is open. Therefore *S* is closed. □

Definition 4.3. The *closure* of a set *S* is the set $S = S \cup S'$.

For the set *S* of Example 4.2, $\overline{S} = [0,1]$. In Example 4.3, $\overline{T} = \{1/n : n \in$ $\mathbb{Z}\setminus\{0\}\cup\{0\}$. According to Theorem 4.4, the closure of any set is a closed set.

Problem 16. If $S \subset \mathbb{R}$, then \overline{S} is the smallest closed set containing *S*. (In this case "smallest" means that if *T* is any closed set with $S \subset T$, then $\overline{S} \subset T$.)

Theorem 4.5 (Bolzano-Weierstrass Theorem). A set which is both bounded and infinite has a limit point.

Proof. For the purposes of this proof, if $I = [a, b]$ is a closed interval, let $I^L =$ $[a, (a + b)/2]$ be the closed left half of *I* and $I^R = [(a + b)/2, b]$ be the closed right half of *I*.

Suppose *S* is a bounded and infinite set. The assumption that *S* is bounded implies the existence of an interval $I_1 = [-B, B]$ containing *S*. Since *S* is infinite, at least one of the two sets $I_1^L \cap S$ or $I_1^R \cap S$ is infinite. Let I_2 be either I_1^L or I_1^R such that $I_2 \cap S$ is infinite.

If I_n is such that $I_n \cap S$ is infinite, let I_{n+1} be either I_n^L or I_n^R , where $I_{n+1} \cap S$ is infinite.

In this way, a nested sequence of intervals, I_n for $n \in \mathbb{N}$, is defined such that *I*^{*n*} ∩ *S* is infinite for all *n* ∈ N and the length of *I*^{*n*} is $B/2^{n-2} \rightarrow 0$. According to the Nested Interval Theorem, there is an $x_0 \in \mathbb{R}$ such that $\bigcap_{n \in \mathbb{N}} I_n = \{x_0\}.$

To see that x_0 is a limit point of *S*, let $\varepsilon > 0$ and choose $n \in \mathbb{N}$ so that $B/2^{n-2} < \varepsilon$. Then $x_0 \in I_n \subset (x_0 - \varepsilon, x_0 + \varepsilon)$. Since $I_n \cap S$ is infinite, we see $S \cap (x_0 - \varepsilon, x_0 + \varepsilon) \setminus \{x_0\} \neq \emptyset$. Therefore, x_0 is a limit point of *S*. 口

Using pretty much the same idea, the following can be proved.

Corollary 4.6. Every bounded sequence has a convergent subsequence.

Proof. For the purposes of this proof, if $I = [a, b]$ is a closed interval, let $I^L =$ $[a,(a + b)/2]$ be the closed left half of *I* and $I^R = [(a + b)/2, b]$ be the closed right half of *I*.

Let a_n be a bounded sequence and choose $B > 0$ such that $\{a_n : n \in \mathbb{N}\}\subset$ *I*¹ = [−*B*, *B*]. At least one of the two sets $\{n : a_n \in I_1^L\}$ or $\{n : a_n \in I_1^L\}$ must be infinite. If $\{n : a_n \in I_1^L\}$ is infinite, let $I_2 = I_1^L$. Otherwise, $I_2 = I_1^R$.

Assume that I_m has been chosen for some $n \in \mathbb{N}$ such that $\{n : a_n \in I_m\}$ is infinite. At least one of the two sets $\{n : a_n \in I_m^L\}$ or $\{n : a_n \in I_m^L\}$ must be infinite. If $\{n : a_n \in I_m^L\}$ is infinite, let $I_{m+1} = I_m^L$. Otherwise, $I_{m+1} = I_m^R$.

In this way, a nested sequence of closed intervals, I_n , has been inductively defined, where the length of I_n is $B/2^{n-2} \to 0$. An application of the Nested Interval Theorem yields $\{x\} = \bigcap_{n \in \mathbb{N}} I_n$. It suffices to find a subsequence of a_n converging to *x*.

To do this, let $b_1 = a_{m_1}$, where m_1 is an arbitrary positive integer. Assuming $b_n = a_{m_n}$ has been chosen, pick $b_{n+1} = a_{m_{n+1}}$ from I_{n+1} so that $m_{n+1} > m_n$. It is possible to do this because $\{n : a_n \in I_{n+1}\}$ is infinite. In this way, a subsequence b_n of a_n has been inductive defined. Since $|b_n - x| \leq B/2^{n-2} \to 0$, it's clear $b_n \to x$. \Box

Corollary 4.7. If ${F_n : n \in \mathbb{N}}$ is a nested collection of nonempty closed and *bounded sets, then* $\bigcap_{n\in\mathbb{N}} F_n \neq \emptyset$.

Proof. Form a sequence x_n by choosing $x_n \in F_n$ for each $n \in \mathbb{N}$. Since the *F_n* are nested, $\{x_n : n \in \mathbb{N}\}\subset F_1$, and the boundedness of F_1 implies x_n is a bounded sequence. An application of Corollary 4.6 yields a subsequence *yⁿ* of *x*_{*n*} such that *y*_{*n*} \rightarrow *y*. It suffices to prove *y* \in *F*_{*n*} for all *n* \in N.

To do this, fix $n_0 \in \mathbb{N}$. Because y_n is a subsequence of x_n and $x_{n_0} \in F_{n_0}$, it is easy to see $y_n \in F_{n_0}$ for all $n \geq n_0$. Using the fact that $y_n \to y$, we see $y \in F'_{n_0}$. Since F_{n_0} is closed, Theorem 4.4 shows $y \in F_{n_0}$.

 $\textbf{Extract}\ \textbf{6.}$ An uncountable subset of $\mathbb R$ must have a limit point.