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4 The Topology of R

Definition 4.1. A set G C R is open if for every x € G there is an € > 0 such
that (x —e,24+¢) CG. Aset F C R is closed if F¢ is open.

Ezample 4.1. Any open interval (a,b) is open. To see this, let € (a,b) and
e =min{z —a,b— x}. Then (z — e,z +¢) C (a,b).

Open half-lines are also open sets. For example, let ¢ € (a,00) and e = z—a.
Then (z — e,z +¢) C (a,00).

A singleton set {a} is closed. To see this, suppose = # a and ¢ = |z — al.
Then a ¢ (x — e,z + ¢), and {a}° must be open. The definition of a closed set
then implies {a} is closed.

There are sets which are neither open nor closed. For example, consider
the half-open interval [0,1). To see it isn’t open or closed, let ¢ > 0. Then
(0—¢,0+¢) ¢ [0,1) shows it cannot be open. Since (1 —&,1+¢) ¢ [0,1)°, we
see [0,1) is not open, so [0,1) cannot be closed.

Theorem 4.1. (a) If{G\ : A € A} is a collection of open sets, then | Jycp G
1S open.

(b) If {Gi, : 1 < k < n} is a finite collection of open sets, then (\,_, Gk is
open.

(c) Both § and R are open.

Proof.  (a) If x € |Jycp G, then there is a A\, € A such that » € G,. Since
G, is open, there is an € > 0 such that z € (zx —e,x +¢) C Gy, C
Uxea G- This shows [y, G is open.

(b) If z € mZ=1 Gy, then x € G for 1 < k < n. For each Gj, there is an ¢
such that (z — ep,z + ¢;) C G. Let ¢ = min{ey : 1 < k < n}. Then
(x—e,x+e) CGyfor 1 <k<n,so(x—e,x+e) C(y_; Gi. Therefore
Ny—, G is open.

(c) 0 is open vacuously. R is obviously open.
O

Applying DeMorgan’s laws to the parts of Theorem 4.1 immediately yields
the following.

Corollary 4.2. (a) If{Fx: X € A} is a collection of closed sets, then (1o, G
is closed.

(b) If {Fr : 1 < k <n} is a finite collection of closed sets, then J,_, G is
closed.

(c) Both ) and R are closed.

Notice that () and R are both open and closed. They are the only subsets of
R with this dual personality.
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Definition 4.2. z( is a limit point of S C R if for every € > 0, (xg — &, 20 +
)N S\ {xo} # 0. The derived set of S is

S" = {x : x is a limit point of S}.
A point z¢ € S\ S’ is an isolated point of S.

Notice that limit points of S need not be elements of S, but isolated points
of S must be elements of S. In a sense, limit points and isolated points are at
opposite extremes. The definitions can be restated as follows:

T is a limit point of S iff Ve > 0,5 N (g — &, 20 +¢) \ {xo} # 0
xo € S is an isolated point of S iff Je > 0,5 N (g — &, 20 +¢€) \ {zo} =0

Ezample 4.2. If S = (0, 1], then S’ = [0, 1] and S has no isolated points.

Ezample 4.3. T = {1/n:n € Z\ {0}}, then T" = {0} and all points of T are
isolated points of T.

Theorem 4.3. zy is a limit point of S iff there is a sequence z, € S\ {zo}
such that x,, — xo.

Proof. (=) For each n € N choose z,, € SN (xg — 1/n,z0 + 1/n) \ {xo}. Then
|xn — 20| < 1/n for all n € N, so z,, — xo.

(<) Suppose x, is a sequence from x, € S\ {xo} converging to xy. If
e > 0, the definition of convergence for a sequence yields an N € N such
that whenever n > N, then z, € SN (zg —¢,z0 +¢) \ {zo}. This shows
SN(xg—e,x0+¢)\ {xo} #0, and o must be a limit point of S. d

Theorem 4.4. A set S C R is closed iff it contains all its limit points.

Proof. (=) Suppose S is closed and z( is a limit point of S. If 29 ¢ S, then
5S¢ open implies the existence of € > 0 such that (o — e, 29 +¢) NS = 0. This
contradicts the fact that zy is a limit point of S. Therefore, g € S, and S
contains all its limit points.

(<) Since S contains all its limit points, if 2y ¢ S, there must exist an € > 0
such that (zg —e,z9+¢)NS # (. It follows from this that S€ is open. Therefore
S is closed. |

Definition 4.3. The closure of a set S is the set S = SUS’.

For the set S of Example 4.2, S = [0,1]. In Example 4.3, T = {1/n: n €
7\ {0}} U{0}. According to Theorem 4.4, the closure of any set is a closed set.

Problem 16. If S C R, then S is the smallest closed set containing S. (In this
case “smallest” means that if T is any closed set with S C T, then S C T.)

Theorem 4.5 (Bolzano-Weierstrass Theorem). A set which is both bounded
and infinite has a limit point.
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Proof. For the purposes of this proof, if I = [a,b] is a closed interval, let IY =
[a, (a + b)/2] be the closed left half of I and I* = [(a + b)/2,b] be the closed
right half of 1.

Suppose S is a bounded and infinite set. The assumption that S is bounded
implies the existence of an interval Iy = [—B, B] containing S. Since S is
infinite, at least one of the two sets I NS or I NS is infinite. Let I5 be either
IF or I such that I, N S is infinite.

If I,, is such that I,,NS is infinite, let I,, 1 be either I” or I where I,,;1NS
is infinite.

In this way, a nested sequence of intervals, I,, for n € N, is defined such that
I,, N S is infinite for all n € N and the length of I,, is B/2"~2 — 0. According
to the Nested Interval Theorem, there is an ¢ € R such that (), cy In = {20}

To see that zq is a limit point of S, let € > 0 and choose n € N so that
B/2"72 < e. Then x¢ € I, C (zg — €,20 +€). Since I,, N S is infinite, we see
SN(zg—e,m0+¢)\ {wo} # 0. Therefore, z¢ is a limit point of S. O

Using pretty much the same idea, the following can be proved.
Corollary 4.6. Every bounded sequence has a convergent subsequence.

Proof. For the purposes of this proof, if I = [a,b] is a closed interval, let I =
[a, (a + b)/2] be the closed left half of I and I* = [(a + b)/2,b] be the closed
right half of 1.

Let a,, be a bounded sequence and choose B > 0 such that {a, : n € N} C
I, = [-B, B]. At least one of the two sets {n : a, € I¥} or {n:a, € If} must
be infinite. If {n : a,, € I¥} is infinite, let I, = IF. Otherwise, Iy = I{.

Assume that I, has been chosen for some n € N such that {n : a, € I,,} is
infinite. At least one of the two sets {n : a, € IL} or {n : a, € I%} must be
infinite. If {n : a,, € IL} is infinite, let I,,,41 = I%. Otherwise, I,,+1 = 2.

In this way, a nested sequence of closed intervals, I,,, has been inductively
defined, where the length of I,, is B/2"~2 — 0. An application of the Nested
Interval Theorem yields {x} = [, cy In- It suffices to find a subsequence of a,
converging to x.

To do this, let b1 = ay,,, where m; is an arbitrary positive integer. Assuming
bp, = G, has been chosen, pick b,y1 = am,,, from I, so that myi1 > my,.
It is possible to do this because {n : a, € I,41} is infinite. In this way, a
subsequence b, of a,, has been inductive defined. Since |b, — x| < B/2""2 — 0,
it’s clear b,, — x. O

Corollary 4.7. If {F,, : n € N} is a nested collection of nonempty closed and
bounded sets, then (,cy Fn # 0.

Proof. Form a sequence x,, by choosing x, € F,, for each n € N. Since the
F,, are nested, {z, : n € N} C F}, and the boundedness of F| implies z,, is a
bounded sequence. An application of Corollary 4.6 yields a subsequence y,, of
Ty, such that y,, — y. It suffices to prove y € F,, for all n € N.
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To do this, fix ng € N. Because y, is a subsequence of z,, and z,, € Fy,,
it is easy to see y, € Fy, for all n > ng. Using the fact that y, — y, we see
y € Fy, . Since I, is closed, Theorem 4.4 shows y € F,,. O

Extra Credit 6. An uncountable subset of R must have a limit point.



