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4 The Topology of R
Definition 4.1. A set G ⊂ R is open if for every x ∈ G there is an ε > 0 such
that (x− ε, x+ ε) ⊂ G. A set F ⊂ R is closed if F c is open.

Example 4.1. Any open interval (a, b) is open. To see this, let x ∈ (a, b) and
ε = min{x− a, b− x}. Then (x− ε, x+ ε) ⊂ (a, b).

Open half-lines are also open sets. For example, let x ∈ (a,∞) and ε = x−a.
Then (x− ε, x+ ε) ⊂ (a,∞).

A singleton set {a} is closed. To see this, suppose x 6= a and ε = |x − a|.
Then a /∈ (x− ε, x+ ε), and {a}c must be open. The definition of a closed set
then implies {a} is closed.

There are sets which are neither open nor closed. For example, consider
the half-open interval [0, 1). To see it isn’t open or closed, let ε > 0. Then
(0− ε, 0 + ε) 6⊂ [0, 1) shows it cannot be open. Since (1− ε, 1 + ε) 6⊂ [0, 1)c, we
see [0, 1)c is not open, so [0, 1) cannot be closed.

Theorem 4.1. (a) If {Gλ : λ ∈ Λ} is a collection of open sets, then
⋃
λ∈ΛGλ

is open.

(b) If {Gk : 1 ≤ k ≤ n} is a finite collection of open sets, then
⋂n
k=1Gk is

open.

(c) Both ∅ and R are open.

Proof. (a) If x ∈
⋃
λ∈ΛGλ, then there is a λx ∈ Λ such that x ∈ Gλx . Since

Gλx is open, there is an ε > 0 such that x ∈ (x − ε, x + ε) ⊂ Gλx ⊂⋃
λ∈ΛGλ. This shows

⋃
λ∈ΛGλ is open.

(b) If x ∈
⋂n
k=1Gk, then x ∈ Gk for 1 ≤ k ≤ n. For each Gk there is an εk

such that (x − εk, x + εk) ⊂ Gk. Let ε = min{εk : 1 ≤ k ≤ n}. Then
(x− ε, x+ ε) ⊂ Gk for 1 ≤ k ≤ n, so (x− ε, x+ ε) ⊂

⋂n
k=1Gk. Therefore⋂n

k=1Gk is open.

(c) ∅ is open vacuously. R is obviously open.

Applying DeMorgan’s laws to the parts of Theorem 4.1 immediately yields
the following.

Corollary 4.2. (a) If {Fλ : λ ∈ Λ} is a collection of closed sets, then
⋂
λ∈ΛGλ

is closed.

(b) If {Fk : 1 ≤ k ≤ n} is a finite collection of closed sets, then
⋃n
k=1Gk is

closed.

(c) Both ∅ and R are closed.

Notice that ∅ and R are both open and closed. They are the only subsets of
R with this dual personality.
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Definition 4.2. x0 is a limit point of S ⊂ R if for every ε > 0, (x0 − ε, x0 +
ε) ∩ S \ {x0} 6= ∅. The derived set of S is

S′ = {x : x is a limit point of S}.

A point x0 ∈ S \ S′ is an isolated point of S.

Notice that limit points of S need not be elements of S, but isolated points
of S must be elements of S. In a sense, limit points and isolated points are at
opposite extremes. The definitions can be restated as follows:

x0 is a limit point of S iff ∀ε > 0, S ∩ (x0 − ε, x0 + ε) \ {x0} 6= ∅
x0 ∈ S is an isolated point of S iff ∃ε > 0, S ∩ (x0 − ε, x0 + ε) \ {x0} = ∅

Example 4.2. If S = (0, 1], then S′ = [0, 1] and S has no isolated points.

Example 4.3. If T = {1/n : n ∈ Z \ {0}}, then T ′ = {0} and all points of T are
isolated points of T .

Theorem 4.3. x0 is a limit point of S iff there is a sequence xn ∈ S \ {x0}
such that xn → x0.

Proof. (⇒) For each n ∈ N choose xn ∈ S ∩ (x0 − 1/n, x0 + 1/n) \ {x0}. Then
|xn − x0| < 1/n for all n ∈ N, so xn → x0.

(⇐) Suppose xn is a sequence from xn ∈ S \ {x0} converging to x0. If
ε > 0, the definition of convergence for a sequence yields an N ∈ N such
that whenever n ≥ N , then xn ∈ S ∩ (x0 − ε, x0 + ε) \ {x0}. This shows
S ∩ (x0 − ε, x0 + ε) \ {x0} 6= ∅, and x0 must be a limit point of S.

Theorem 4.4. A set S ⊂ R is closed iff it contains all its limit points.

Proof. (⇒) Suppose S is closed and x0 is a limit point of S. If x0 /∈ S, then
Sc open implies the existence of ε > 0 such that (x0 − ε, x0 + ε) ∩ S = ∅. This
contradicts the fact that x0 is a limit point of S. Therefore, x0 ∈ S, and S
contains all its limit points.

(⇐) Since S contains all its limit points, if x0 /∈ S, there must exist an ε > 0
such that (x0−ε, x0 +ε)∩S 6= ∅. It follows from this that Sc is open. Therefore
S is closed.

Definition 4.3. The closure of a set S is the set S = S ∪ S′.

For the set S of Example 4.2, S = [0, 1]. In Example 4.3, T = {1/n : n ∈
Z \ {0}}∪ {0}. According to Theorem 4.4, the closure of any set is a closed set.

Problem 16. If S ⊂ R, then S is the smallest closed set containing S. (In this
case “smallest” means that if T is any closed set with S ⊂ T , then S ⊂ T .)

Theorem 4.5 (Bolzano-Weierstrass Theorem). A set which is both bounded
and infinite has a limit point.
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Proof. For the purposes of this proof, if I = [a, b] is a closed interval, let IL =
[a, (a + b)/2] be the closed left half of I and IR = [(a + b)/2, b] be the closed
right half of I.

Suppose S is a bounded and infinite set. The assumption that S is bounded
implies the existence of an interval I1 = [−B,B] containing S. Since S is
infinite, at least one of the two sets IL1 ∩S or IR1 ∩S is infinite. Let I2 be either
IL1 or IR1 such that I2 ∩ S is infinite.

If In is such that In∩S is infinite, let In+1 be either ILn or IRn , where In+1∩S
is infinite.

In this way, a nested sequence of intervals, In for n ∈ N, is defined such that
In ∩ S is infinite for all n ∈ N and the length of In is B/2n−2 → 0. According
to the Nested Interval Theorem, there is an x0 ∈ R such that

⋂
n∈N In = {x0}.

To see that x0 is a limit point of S, let ε > 0 and choose n ∈ N so that
B/2n−2 < ε. Then x0 ∈ In ⊂ (x0 − ε, x0 + ε). Since In ∩ S is infinite, we see
S ∩ (x0 − ε, x0 + ε) \ {x0} 6= ∅. Therefore, x0 is a limit point of S.

Using pretty much the same idea, the following can be proved.

Corollary 4.6. Every bounded sequence has a convergent subsequence.

Proof. For the purposes of this proof, if I = [a, b] is a closed interval, let IL =
[a, (a + b)/2] be the closed left half of I and IR = [(a + b)/2, b] be the closed
right half of I.

Let an be a bounded sequence and choose B > 0 such that {an : n ∈ N} ⊂
I1 = [−B,B]. At least one of the two sets {n : an ∈ IL1 } or {n : an ∈ IL1 } must
be infinite. If {n : an ∈ IL1 } is infinite, let I2 = IL1 . Otherwise, I2 = IR1 .

Assume that Im has been chosen for some n ∈ N such that {n : an ∈ Im} is
infinite. At least one of the two sets {n : an ∈ ILm} or {n : an ∈ ILm} must be
infinite. If {n : an ∈ ILm} is infinite, let Im+1 = ILm. Otherwise, Im+1 = IRm.

In this way, a nested sequence of closed intervals, In, has been inductively
defined, where the length of In is B/2n−2 → 0. An application of the Nested
Interval Theorem yields {x} =

⋂
n∈N In. It suffices to find a subsequence of an

converging to x.
To do this, let b1 = am1 , where m1 is an arbitrary positive integer. Assuming

bn = amn has been chosen, pick bn+1 = amn+1 from In+1 so that mn+1 > mn.
It is possible to do this because {n : an ∈ In+1} is infinite. In this way, a
subsequence bn of an has been inductive defined. Since |bn− x| ≤ B/2n−2 → 0,
it’s clear bn → x.

Corollary 4.7. If {Fn : n ∈ N} is a nested collection of nonempty closed and
bounded sets, then

⋂
n∈N Fn 6= ∅.

Proof. Form a sequence xn by choosing xn ∈ Fn for each n ∈ N. Since the
Fn are nested, {xn : n ∈ N} ⊂ F1, and the boundedness of F1 implies xn is a
bounded sequence. An application of Corollary 4.6 yields a subsequence yn of
xn such that yn → y. It suffices to prove y ∈ Fn for all n ∈ N.
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To do this, fix n0 ∈ N. Because yn is a subsequence of xn and xn0 ∈ Fn0 ,
it is easy to see yn ∈ Fn0 for all n ≥ n0. Using the fact that yn → y, we see
y ∈ F ′n0

. Since Fn0 is closed, Theorem 4.4 shows y ∈ Fn0 .

Extra Credit 6. An uncountable subset of R must have a limit point.


