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5 Cauchy Sequences

Often the biggest problem with showing that a sequence converges using the
techniques we have seen so far is that we must know ahead of time to what
it converges. This is often a chicken and egg type problem because to prove a
sequence converges, we must seemingly already know it converges. An escape
from this dilemma is provided by Cauchy sequences.

Definition 5.1. A sequence an is a Cauchy sequence if for all ε > 0 there is an
N ∈ N such that n,m ≥ N implies |an − am| < ε.

Theorem 5.1. A sequence converges iff it is a Cauchy sequence.

Proof. (⇒) Suppose an → L and ε > 0. There is an N ∈ N such that g ≥ N
implies |an − L| < ε/2. If m,n ≥ N , then

|am − an| = |am − L+ L− an| ≤ |am − L|+ |L− am| < ε/e+ ε/2 = ε.

This shows an is a Cauchy sequence.
(⇐) Let an be a Cauchy sequence. First, we claim that an is bounded. To

see this, let ε = 1 and choose N ∈ N such that n,m ≥ N implies |an− am| < 1.
In this case, aN − 1 < an < aN + 1 for all n ≥ N , so {an : n ≥ N} is a bounded
set. The set {an : n < N}, being finite, is also bounded. Since {an : n ∈ N} is
the union of these two bounded sets, it too must be bounded.

Because an is a bounded sequence, Corollary 4.6 implies it has a convergent
subsequence bn → L. Let ε > 0 and choose N ∈ N so that n,m ≥ N implies
|an − am| < ε/2. There is a bk = amk such that mk ≥ N and |bmk − L| < ε/2.
If n ≥ N , then

|an − L| = |an − bk + bk − L| ≤ |an − bk|+ |bk − L|
< |an − amk |+ ε/2 < ε/2 + ε/2 = ε.

Therefore, an → L.

According to this theorem, we can prove that a sequence converges without
ever knowing precisely to what it converges. An example of the usefulness of
this idea is contained in the following definition and theorem.

Definition 5.2. A sequence an is contractive if there is a c ∈ (0, 1) such that
|xk+1 − xk| ≤ c|xk − xk−1| for all k > 1.

Theorem 5.2. If a sequence is contractive, then it converges.

Proof. Let xk be a contractive sequence with contraction constant c ∈ (0, 1).
We first claim that if n ∈ N, then

|xn − xn+1| ≤ cn−1|x1 − x2|. (2)

This is proved by induction. When n = 1, the statement is |x1 − x2| ≤ c0|x1 −
x2| = |x1−x2|, which is trivially true. Suppose that |xn−xn+1| ≤ cn−1|x1−x2|
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for some n ∈ N. Then, from the definition of a contractive sequence and the
inductive hypothesis,

|xn+1 − xn+2| ≤ c|xn − xn+1| ≤ c(cn−1|x1 − x2|) = cn|x1 − x2|.

This shows the claim is true in the case n + 1. Therefore, by induction, the
claim is true for all n ∈ N.

To show xn is a Cauchy sequence, let ε > 0. Since cn → 0, we can choose
N ∈ N so that

cN+1

(1− c) <
ε

|x1 − x2|
. (3)

Let n > m ≥ N . Then

|xn − xm| = |xn − xn−1 + xn−1 − xn−2 + xn−2 − · · · − xm+1 + xm+1 − xm|
≤ |xn − xn−1|+ |xn−1 − xn−2|+ · · ·+ |xm+1 − xm|

Now, use (2) on each of these terms.

≤ cn−2|x1 − x2|+ cn−3|x1 − x2|+ · · ·+ cm−1|x1 − x2|
= |x1 − x2|(cn−2 + cn−3 + · · ·+ cm−1)

Apply the formula for a geometric sum.

= |x1 − x2|cm−1 1− cn−m
1− c

< |x1 − x2|
cm−1

1− c

Use (3) to estimate the following.

≤ |x1 − x2|
cN−1

1− c
< |x1 − x2|

ε

|x1 − x2|
= ε

This shows xn is a Cauchy sequence.

Example 5.1. Let −1 < r < 1 and define the sequence sn =
∑n
k=0 r

k. If r = 0,
the convergent os sn is trivial. So, suppose r 6= 0. In this case

|sn+1 − sn|
|sn − sn−1|

=
∣∣∣∣rn+1

rn

∣∣∣∣ = |r| < 1.

This shows sn is contractive, and Theorem 5.2 implies it converges.

Problem 17. If xn is a sequence and there is a c ≥ 1 such that |xk+1 − xk| >
c|xk − xk−1| for all k > 1, then can xn converge?


