6 Covering Properties and Compactness on R

Definition 6.1. Let $S \subset \mathbb{R}$. A collection of open sets, $\mathcal{O} = \{G_{\lambda} : \lambda \in \Lambda\}$, is an *open cover* of *S* if $S \subset \bigcup_{G \in \mathcal{O}} G$. If $\mathcal{O}' \subset \mathcal{O}$ is also an open cover of *S*, then \mathcal{O}' is an open subcover of *S* from O.

Example 6.1. Let $S = (0, 1)$ and $\mathcal{O} = \{(1/n, 1) : n \in \mathbb{N}\}\$. It is easy to see that O is an open cover of *S*. To prove this, let $x \in (0,1)$. Choose $n_0 \in \mathbb{N}$ such that $1/n_0 < x$. Then

$$
x \in (1/n_0, 1) \subset \bigcup_{n \in \mathbb{N}} (1/n, 1) = \bigcup_{G \in \mathcal{O}} G.
$$

Since *x* is an arbitrary element of $(0, 1)$, it follows that $(0, 1) = \bigcup_{G \in \mathcal{O}} G$.

Suppose \mathcal{O}' is any infinite subset of \mathcal{O} and $x \in (0,1)$. Since \mathcal{O}' is infinite, there exists an $n \in \mathbb{N}$ such that $x \in (1/n, 1) \in \mathcal{O}'$. The rest of the proof proceeds as above.

On the other hand, if \mathcal{O}' is a finite subset of \mathcal{O} , then let $M = \max\{n :$ $(1/n, 1) \in \mathcal{O}'$. If $0 < x < 1/M$, it is clear that $x \notin \bigcup_{G \in \mathcal{O}'} G$, so \mathcal{O}' is not an open cover of (0*,* 1).

Example 6.2. Let $T = [0, 1)$ and $0 < \varepsilon < 1$. If $\mathcal{O} = \{(1/n, 1) : n \in \mathbb{N}\} \cup (-\varepsilon, \varepsilon)$. It is easy to see that O is an open cover of *T*.

It is evident that any open subcover of *T* from 0 must contain $(-\varepsilon, \varepsilon)$, because that is the only element of Θ which contains 0. Choose $n \in \mathbb{N}$ such that $1/n < \varepsilon$. Then $\mathcal{O}' = \{(-\varepsilon, \varepsilon), (1/n, 1)\}\$ is an open subcover of *T* from 0 which contains only two elements.

Theorem 6.1 (Lindelöf Property). If $S \subset \mathbb{R}$ and 0 is any open cover of *S*, then O contains a subcover with a countable number of elements.

Proof. Let $\mathcal{O} = \{G_\lambda : \lambda \in \Lambda\}$ be an open cover of $S \subset \mathbb{R}$. Since \mathcal{O} is an open cover of *S*, for each $x \in S$ there is a $\lambda_x \in \Lambda$ and numbers $p_x, q_x \in \mathbb{Q}$ satisfying $x \in (p_x, q_x) \subset G_{\lambda_x} \in \mathcal{O}$. The collection $\mathcal{T} = \{(p_x, q_x) : x \in S\}$ is an open cover of *S*.

Thinking of the collection $\{(p_x, q_x) : x \in S\}$ as a set of ordered pairs of rational numbers, it is seen that card $(\mathcal{T}) \leq$ card $(\mathbb{Q} \times \mathbb{Q}) = \aleph_0$, so \mathcal{T} is countable.

For each interval $I \in \mathcal{T}$, choose a $\lambda_I \in \Lambda$ such that $I \subset G_{\lambda_I}$. Then

$$
S \subset \bigcup_{I \in \mathfrak{T}} I \subset \bigcup_{I \in \mathfrak{T}} G_{\lambda_I}
$$

shows $\mathcal{O}' = \{G_{\lambda_I} : I \in \mathcal{T}\} \subset \mathcal{O}$ is an open subcover of *S* from \mathcal{O} . Also, card $(0') \leq$ card $(\mathcal{T}) \leq \aleph_0$, so $0'$ is a countable open subcover of *S* from 0.

Corollary 6.2. Any open subset of R can be written as a countable union of pairwise disjoint open intervals.

Proof. Let *G* be open in R. For $x \in G$ let $\alpha_x = \text{glb} \{y : (y, x] \subset G\}$ and $\beta_x =$ lub $\{y : ([x, y) \subset G\}$. The fact that *G* is open easily implies $\alpha_x < x < \beta_x$. Define $I_x = (\alpha_x, \beta_x).$

Then $I_x \subset G$. To see this, suppose $x < w < \beta_x$. Choose $y \in (w, \beta_x)$. The definition of β_x guarantees $w \in (x, y) \subset G$. Similarly, if $\alpha_x < w < x$, it follows that $w \in G$.

This shows $0 = \{I_x : x \in G\}$ has the property that $G = \bigcup_{x \in G} I_x$.

Suppose $x, y \in G$ and $I_x \cap I_y \neq \emptyset$. There is no generality lost in assuming *x* < *y*. In this case, there must be a *w* ∈ (*x, y*) such that *w* ∈ *I_{<i>x*}</sub> ∩ *I_{<i>y*}. We know from above that both $[x, w] \subset G$ and $[w, y] \subset G$, so $[x, y] \subset G$. It follows easily from this that $\alpha_x = \alpha_y < x < y < \beta_x = \beta_y$ and $I_x = I_y$.

From this we conclude θ consists of pairwise disjoint open intervals.

To finish, apply Theorem 6.1 to extract a countable subcover from O. \Box

Corollary 6.2 can also be proved by a different strategy. Instead of using Theorem 6.1 to extract a countable subcover, we could just choose one rational number from each interval in the cover. The pairwise disjointness of the intervals in the cover guarantee that this will give a bijection between O and a subset of Q. This method has the advantage of showing that O itself is countable from the start.

Definition 6.2. An open cover θ of a set *S* is a *finite cover*, if θ has only a finite number of elements. The definition of a *finite subcover* is analogous.

Definition 6.3. A set *K* ⊂ ℝ is *compact*, if every open cover of *K* contains a finite subcover.

Theorem 6.3 (Heine-Borel). A set $K \subset \mathbb{R}$ is compact iff it is closed and bounded.

Proof. (\Rightarrow) Suppose *K* is unbounded. The collection $\mathcal{O} = \{(-n, n) : n \in \mathbb{N}\}\$ is an open cover of *K*. If \mathcal{O}' is any finite subset of \mathcal{O} , then $\bigcup_{G \in \mathcal{O}'} G$ is a bounded set and cannot cover the unbounded set *K*. This shows *K* cannot be compact, and every compact set must be bounded.

Suppose *K* is not closed. Then there is a limit point *x* of *K* such that $x \notin K$. Define $0 = \{ [x-1/n, x+1/n]^c : n \in \mathbb{N} \}$. Then 0 is a collection of open sets and *K* ⊂ $\bigcup_{G \in \mathcal{O}} G = \mathbb{R} \setminus \{x\}$. Let $\mathcal{O}' = \{[x - 1/n_i, x + 1/n_i]^c : 1 \le i \le N\}$ be a finite subset of \emptyset and $M = \max\{n_i : 1 \leq i \leq N\}$. Since *x* is a limit point of *K*, there is a $y \in K \cap (x - 1/M, x + 1/M)$. Clearly, $y \notin \bigcup_{G \in \mathcal{O}'} G = [x - 1/M, x + 1/M]^c$, so \mathcal{O}' cannot cover *K*. This shows every compact set must be closed.

 (\Leftarrow) Let *K* be closed and bounded and let 0 be an open cover of *K*. Applying Theorem 6.1, if necessary, we can assume \emptyset is countable. Thus, $\emptyset = \{G_n : n \in \mathbb{R}^n\}$ $\mathbb{N}\}.$

For each $n \in \mathbb{N}$, define

$$
F_n = K \setminus \bigcup_{i=1}^n G_i = K \cap \bigcap_{i=1}^n G_i^c.
$$

Then F_n is a sequence of nested, bounded and closed subsets of K . Since $\mathcal O$ covers *K*, it follows that

$$
\bigcap_{n\in\mathbb{N}}F_n\subset K\setminus\bigcup_{n\in\mathbb{N}}G_n=\emptyset.
$$

According to the Cauchy criterion, the only way this can happen is if $F_n = \emptyset$ for some $n \in \mathbb{N}$. Then $K \subset \bigcup_{i=1}^{n} G_i$, and $\mathcal{O}' = \{G_i : 1 \leq i \leq n\}$ is a finite subcover of *K* from O.

Compactness shows up in several different, but equivalent ways on R. We've already seen most of them, but their equivalence is not obvious. The following theorem shows a few of the most common manifestations of compactness.

Theorem 6.4. Let $K \subset \mathbb{R}$. The following statements are equivalent to each other.

- (a) *K* is compact.
- (b) *K* is closed and bounded.
- (c) Every infinite subset of *K* has a limit point.
- (d) Every sequence $\{a_n : n \in \mathbb{N}\}\subset K$ has a convergent subsequence.
- (e) If F_n is a nested sequence of nonempty relatively closed subsets of K , then $\bigcap_{n\in\mathbb{N}} F_n \neq \emptyset$.

Proof. (a) \Longleftrightarrow (b) is the Heine-Borel Theorem.

That $(b) \Rightarrow (c)$ is the Bolzano-Weierstrass Theorem.

 $(c) \Rightarrow (d)$ is contained in the sequence version of the Bolzano-Weierstrass theorem.

 $(d) \Rightarrow (e)$ is done the same as the proof of the Cauchy criterion.

To complete the proof, it suffices to show $(e) \Rightarrow (b)$. So, suppose *K* is such that (e) is true.

Let $F_n = K \cap ((-\infty, -n] \cup [n, \infty))$. Then F_n is a sequence of sets which are relatively closed in *K* such that $\bigcap_{n\in\mathbb{N}} F_n = \emptyset$. If *K* is unbounded, then $F_n \neq \emptyset$, $\forall n \in \mathbb{N}$, and a contradiction of (e) is evident. Therefore, *K* must be bounded.

If *K* is not closed, then there must be a limit point *x* of *K* such that $x \notin K$. Define a sequence of relatively closed and nested subsets of *K* by $F_n = [x 1/n, x + 1/n$ ∩ *K* for $n \in \mathbb{N}$. Then $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$, because $x \notin K$. This contradiction of (e) shows that *K* must be closed.

These various ways of looking at compactness have been given different names by topologists. Property (c) is called *limit point compactness* and (d) is called sequential compactness.

Problem 18. A closed subset of a compact set is compact.