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6 Covering Properties and Compactness on R

Definition 6.1. Let S C R. A collection of open sets, O = {G : A € A}, is an
open cover of S'if S C Jge G- If O' C O is also an open cover of S, then 0 is
an open subcover of S from O.

Ezample 6.1. Let S = (0,1) and O = {(1/n,1) : n € N}. It is easy to see that
O is an open cover of S. To prove this, let € (0,1). Choose ng € N such that
1/ng < . Then

ze(1/no,1)c /1) =] G
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Since x is an arbitrary element of (0,1), it follows that (0,1) = Ugeo G-
Suppose O’ is any infinite subset of O and = € (0,1). Since O’ is infinite,
there exists an n € N such that € (1/n,1) € O’. The rest of the proof proceeds
as above.
On the other hand, if O’ is a finite subset of O, then let M = max{n :
(1/n,1) € O'}. If 0 <z < 1/M, it is clear that x ¢ |J;co G, so O is not an
open cover of (0,1).

Ezample 6.2. Let T =[0,1) and 0 <e < 1. If O = {(1/n,1) : n € N} U (—¢,¢).
It is easy to see that O is an open cover of T

It is evident that any open subcover of T' from O must contain (—¢,¢),
because that is the only element of O which contains 0. Choose n € N such that
1/n < e. Then 0’ = {(—¢,¢),(1/n,1)} is an open subcover of T from O which
contains only two elements.

Theorem 6.1 (Lindel6f Property). If S C R and O is any open cover of S,
then O contains a subcover with a countable number of elements.

Proof. Let O = {G : A € A} be an open cover of S C R. Since O is an open
cover of S, for each x € S there is a A\, € A and numbers p;, ¢, € Q satisfying
z € Pz, qs) C G, € O. The collection T = {(ps, ¢s) : © € S} is an open cover
of S.
Thinking of the collection {(p,,q.) : © € S} as a set of ordered pairs of
rational numbers, it is seen that card (T) < card (Q x Q) = Vg, so T is countable.
For each interval I € T, choose a A\; € A such that I C G,. Then

sclJrclyan,
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shows O = {Gy, : I € T} C O is an open subcover of S from 0. Also,
card (0') < card (T) < Vg, so O’ is a countable open subcover of S from 0. O

Corollary 6.2. Any open subset of R can be written as a countable union of
pairwise disjoint open intervals.
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Proof. Let G be open in R. For « € G let o, = glb{y: (y,2] C G} and 3, =
lub{y : ([z,y) C G}. The fact that G is open easily implies a,; < & < ;. Define
I, = (ag, By).

Then I, C G. To see this, suppose z < w < B;. Choose y € (w, ;). The
definition of 3, guarantees w € (z,y) C G. Similarly, if o, < w < z, it follows
that w € G.

This shows O = {I, : € G} has the property that G = |, Lo

Suppose z,y € G and I, N I, # (. There is no generality lost in assuming
x < y. In this case, there must be a w € (x,y) such that w € I, N I,,. We know
from above that both [z,w] C G and [w,y] C G, so [z,y] C G. It follows easily
from this that o, = oy <z <y < By = By and I, = I,,.

From this we conclude O consists of pairwise disjoint open intervals.

To finish, apply Theorem 6.1 to extract a countable subcover from O. O

Corollary 6.2 can also be proved by a different strategy. Instead of using
Theorem 6.1 to extract a countable subcover, we could just choose one rational
number from each interval in the cover. The pairwise disjointness of the intervals
in the cover guarantee that this will give a bijection between O and a subset of
Q. This method has the advantage of showing that O itself is countable from
the start.

Definition 6.2. An open cover O of a set S is a finite cover, if O has only a
finite number of elements. The definition of a finite subcover is analogous.

Definition 6.3. A set K C R is compact, if every open cover of K contains a
finite subcover.

Theorem 6.3 (Heine-Borel). A set K C R is compact iff it is closed and
bounded.

Proof. (=) Suppose K is unbounded. The collection O = {(—n,n) : n € N} is
an open cover of K. If O’ is any finite subset of O, then (J,co: G is a bounded
set and cannot cover the unbounded set K. This shows K cannot be compact,
and every compact set must be bounded.

Suppose K is not closed. Then there is a limit point x of K such that x ¢ K.
Define O = {[x—1/n,x+1/n]: n € N}. Then O is a collection of open sets and
K CUgeo G =R\ {z}. Let O’ = {[z —1/n;,x4+1/n;]° : 1 <i < N} be a finite
subset of O and M = max{n; : 1 <i < N}. Since z is a limit point of K, there
isayec KN(x—1/M,z+1/M). Clearly, y ¢ Ugco G =[x —1/M,z+1/M]°,
so O’ cannot cover K. This shows every compact set must be closed.

(<) Let K be closed and bounded and let O be an open cover of K. Applying
Theorem 6.1, if necessary, we can assume O is countable. Thus, O = {G,, : n €
N}.

For each n € N, define

Fn:K\CJGi:KOﬁGf.

i=1 i=1
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Then F,, is a sequence of nested, bounded and closed subsets of K. Since O
covers K, it follows that

(N FncE\|JGn=0.
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According to the Cauchy criterion, the only way this can happen is if F,, = )
for some n € N. Then K C |J; G;, and O’ = {G; : 1 < i < n} is a finite
subcover of K from O. O

Compactness shows up in several different, but equivalent ways on R. We’ve
already seen most of them, but their equivalence is not obvious. The following
theorem shows a few of the most common manifestations of compactness.

Theorem 6.4. Let K C R. The following statements are equivalent to each
other.

(a) K is compact.

(b) K is closed and bounded.

(c) Every infinite subset of K has a limit point.

(d) Every sequence {a, : n € N} C K has a convergent subsequence.

(e) If F, is a nested sequence of nonempty relatively closed subsets of K, then

nnGNFn # (Z)

Proof. (a) <= (b) is the Heine-Borel Theorem.

That (b)=-(c) is the Bolzano-Weierstrass Theorem.

(¢c)=>(d) is contained in the sequence version of the Bolzano-Weierstrass
theorem.

(d)=(e) is done the same as the proof of the Cauchy criterion.

To complete the proof, it suffices to show (e)=>(b). So, suppose K is such
that (e) is true.

Let F,, = K N ((—o0,—n| U [n,00)). Then F, is a sequence of sets which
are relatively closed in K such that (), .y F, = 0. If K is unbounded, then
F, # 0, Vn € N, and a contradiction of (e) is evident. Therefore, K must be
bounded.

If K is not closed, then there must be a limit point « of K such that « ¢ K.

Define a sequence of relatively closed and nested subsets of K by F,, = [z —
1/n,z 4+ 1/n] VK for n € N. Then (. Fn = 0, because = ¢ K. This
contradiction of (e) shows that K must be closed. O

These various ways of looking at compactness have been given different
names by topologists. Property (c) is called limit point compactness and (d)
is called sequential compactness.

Problem 18. A closed subset of a compact set is compact.



