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6 Covering Properties and Compactness on R
Definition 6.1. Let S ⊂ R. A collection of open sets, O = {Gλ : λ ∈ Λ}, is an
open cover of S if S ⊂

⋃
G∈OG. If O′ ⊂ O is also an open cover of S, then O′ is

an open subcover of S from O.

Example 6.1. Let S = (0, 1) and O = {(1/n, 1) : n ∈ N}. It is easy to see that
O is an open cover of S. To prove this, let x ∈ (0, 1). Choose n0 ∈ N such that
1/n0 < x. Then

x ∈ (1/n0, 1) ⊂
⋃
n∈N

(1/n, 1) =
⋃
G∈O

G.

Since x is an arbitrary element of (0, 1), it follows that (0, 1) =
⋃
G∈OG.

Suppose O′ is any infinite subset of O and x ∈ (0, 1). Since O′ is infinite,
there exists an n ∈ N such that x ∈ (1/n, 1) ∈ O′. The rest of the proof proceeds
as above.

On the other hand, if O′ is a finite subset of O, then let M = max{n :
(1/n, 1) ∈ O′}. If 0 < x < 1/M , it is clear that x /∈

⋃
G∈O′ G, so O′ is not an

open cover of (0, 1).

Example 6.2. Let T = [0, 1) and 0 < ε < 1. If O = {(1/n, 1) : n ∈ N} ∪ (−ε, ε).
It is easy to see that O is an open cover of T .

It is evident that any open subcover of T from O must contain (−ε, ε),
because that is the only element of O which contains 0. Choose n ∈ N such that
1/n < ε. Then O′ = {(−ε, ε), (1/n, 1)} is an open subcover of T from O which
contains only two elements.

Theorem 6.1 (Lindelöf Property). If S ⊂ R and O is any open cover of S,
then O contains a subcover with a countable number of elements.

Proof. Let O = {Gλ : λ ∈ Λ} be an open cover of S ⊂ R. Since O is an open
cover of S, for each x ∈ S there is a λx ∈ Λ and numbers px, qx ∈ Q satisfying
x ∈ (px, qx) ⊂ Gλx ∈ O. The collection T = {(px, qx) : x ∈ S} is an open cover
of S.

Thinking of the collection {(px, qx) : x ∈ S} as a set of ordered pairs of
rational numbers, it is seen that card (T) ≤ card (Q×Q) = ℵ0, so T is countable.

For each interval I ∈ T, choose a λI ∈ Λ such that I ⊂ GλI . Then

S ⊂
⋃
I∈T

I ⊂
⋃
I∈T

GλI

shows O′ = {GλI : I ∈ T} ⊂ O is an open subcover of S from O. Also,
card (O′) ≤ card (T) ≤ ℵ0, so O′ is a countable open subcover of S from O.

Corollary 6.2. Any open subset of R can be written as a countable union of
pairwise disjoint open intervals.
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Proof. Let G be open in R. For x ∈ G let αx = glb {y : (y, x] ⊂ G} and βx =
lub {y : ([x, y) ⊂ G}. The fact that G is open easily implies αx < x < βx. Define
Ix = (αx, βx).

Then Ix ⊂ G. To see this, suppose x < w < βx. Choose y ∈ (w, βx). The
definition of βx guarantees w ∈ (x, y) ⊂ G. Similarly, if αx < w < x, it follows
that w ∈ G.

This shows O = {Ix : x ∈ G} has the property that G =
⋃
x∈G Ix.

Suppose x, y ∈ G and Ix ∩ Iy 6= ∅. There is no generality lost in assuming
x < y. In this case, there must be a w ∈ (x, y) such that w ∈ Ix ∩ Iy. We know
from above that both [x,w] ⊂ G and [w, y] ⊂ G, so [x, y] ⊂ G. It follows easily
from this that αx = αy < x < y < βx = βy and Ix = Iy.

From this we conclude O consists of pairwise disjoint open intervals.
To finish, apply Theorem 6.1 to extract a countable subcover from O.

Corollary 6.2 can also be proved by a different strategy. Instead of using
Theorem 6.1 to extract a countable subcover, we could just choose one rational
number from each interval in the cover. The pairwise disjointness of the intervals
in the cover guarantee that this will give a bijection between O and a subset of
Q. This method has the advantage of showing that O itself is countable from
the start.

Definition 6.2. An open cover O of a set S is a finite cover, if O has only a
finite number of elements. The definition of a finite subcover is analogous.

Definition 6.3. A set K ⊂ R is compact, if every open cover of K contains a
finite subcover.

Theorem 6.3 (Heine-Borel). A set K ⊂ R is compact iff it is closed and
bounded.

Proof. (⇒) Suppose K is unbounded. The collection O = {(−n, n) : n ∈ N} is
an open cover of K. If O′ is any finite subset of O, then

⋃
G∈O′ G is a bounded

set and cannot cover the unbounded set K. This shows K cannot be compact,
and every compact set must be bounded.

Suppose K is not closed. Then there is a limit point x of K such that x /∈ K.
Define O = {[x−1/n, x+1/n]c : n ∈ N}. Then O is a collection of open sets and
K ⊂

⋃
G∈OG = R\{x}. Let O′ = {[x−1/ni, x+ 1/ni]c : 1 ≤ i ≤ N} be a finite

subset of O and M = max{ni : 1 ≤ i ≤ N}. Since x is a limit point of K, there
is a y ∈ K ∩ (x− 1/M, x+ 1/M). Clearly, y /∈

⋃
G∈O′ G = [x− 1/M, x+ 1/M ]c,

so O′ cannot cover K. This shows every compact set must be closed.
(⇐) Let K be closed and bounded and let O be an open cover of K. Applying

Theorem 6.1, if necessary, we can assume O is countable. Thus, O = {Gn : n ∈
N}.

For each n ∈ N, define

Fn = K \
n⋃
i=1

Gi = K ∩
n⋂
i=1

Gci .



Section 6: Covering Properties and Compactness on R 34

Then Fn is a sequence of nested, bounded and closed subsets of K. Since O

covers K, it follows that ⋂
n∈N

Fn ⊂ K \
⋃
n∈N

Gn = ∅.

According to the Cauchy criterion, the only way this can happen is if Fn = ∅
for some n ∈ N. Then K ⊂

⋃n
i=1Gi, and O′ = {Gi : 1 ≤ i ≤ n} is a finite

subcover of K from O.

Compactness shows up in several different, but equivalent ways on R. We’ve
already seen most of them, but their equivalence is not obvious. The following
theorem shows a few of the most common manifestations of compactness.

Theorem 6.4. Let K ⊂ R. The following statements are equivalent to each
other.

(a) K is compact.

(b) K is closed and bounded.

(c) Every infinite subset of K has a limit point.

(d) Every sequence {an : n ∈ N} ⊂ K has a convergent subsequence.

(e) If Fn is a nested sequence of nonempty relatively closed subsets of K, then⋂
n∈N Fn 6= ∅.

Proof. (a)⇐⇒ (b) is the Heine-Borel Theorem.
That (b)⇒(c) is the Bolzano-Weierstrass Theorem.
(c)⇒(d) is contained in the sequence version of the Bolzano-Weierstrass

theorem.
(d)⇒(e) is done the same as the proof of the Cauchy criterion.
To complete the proof, it suffices to show (e)⇒(b). So, suppose K is such

that (e) is true.
Let Fn = K ∩ ((−∞,−n] ∪ [n,∞)). Then Fn is a sequence of sets which

are relatively closed in K such that
⋂
n∈N Fn = ∅. If K is unbounded, then

Fn 6= ∅, ∀n ∈ N, and a contradiction of (e) is evident. Therefore, K must be
bounded.

If K is not closed, then there must be a limit point x of K such that x /∈ K.
Define a sequence of relatively closed and nested subsets of K by Fn = [x −
1/n, x + 1/n] ∩ K for n ∈ N. Then

⋂
n∈N Fn = ∅, because x /∈ K. This

contradiction of (e) shows that K must be closed.

These various ways of looking at compactness have been given different
names by topologists. Property (c) is called limit point compactness and (d)
is called sequential compactness.

Problem 18. A closed subset of a compact set is compact.


