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8 Limits of Functions

Definition 8.1. Let D ⊂ R, x0 be a limit point of D and f : D → R. The
limit of f(x) at x0 is L if for each ε > 0 there is a δ > 0 such that when x ∈ D
with 0 < |x − x0| < δ, then |f(x) − L| < ε. When this is the case, we write
limx→x0 f(x) = L.

A useful way of rewording this is to say that limx→x0 f(x) = L iff for every
ε > 0 there is a δ > 0 such that x ∈ (x0 − δ, x0 + δ) ∩ D \ {x0} implies
f(x) ∈ (L− ε, L+ ε).

Example 8.1. If f(x) = c is a constant function and x0 ∈ R, then for any
positive numbers ε and δ,

x ∈ (x0 − δ, x0 + δ) ∩D \ {x0} ⇒ |f(x)− c| = |c− c| = 0 < ε.

This shows the limit of every constant function exists at every point, and the
limit is just the value of the function.

Example 8.2. Let f(x) = x, x0 ∈ R, and ε = δ > 0. Then

x ∈ (x0 − δ, x0 + δ) ∩D \ {x0} ⇒ |f(x)− f(x0)| = |x− x0| < δ = ε.

This shows that the identity function has a limit at every point and its limit is
just the value of the function at that point.

Example 8.3. Let f(x) = 2x2−8
x−2 . In this case, the implied domain of f is D =

R \ {2}. We claim that limx→2 f(x) = 8.
To see this, let ε > 0 and choose δ ∈ (0, ε/2). If 0 < |x− 2| < δ, then

|f(x)− 8| =
∣∣∣∣2x2 − 8
x− 2

− 8
∣∣∣∣ = |2(x+ 2)− 8| = 2|x− 2| < ε.

Example 8.4. Let f(x) =
√
x+ 1. Then the implied domain of f is D =

[−1,∞). We claim that limx→−1 f(x) = 0.
To see this, let ε > 0 and choose δ ∈ (0, ε2). If 0 < x − (−1) = x + 1 < δ,

then

|f(x)− 0| =
√
x+ 1 <

√
δ <
√
ε2 = ε.

There is an obvous similarity between the definition of limit of a sequence
and limit of a function. The following theorem makes this similarity explicit,
and gives another way to prove facts about limits of functions.

Theorem 8.1. Let f : D → R and x0 be a limit point of D. limx→x0 f(x) = L
iff whenever xn is a sequence from D\{x0} such that xn → x0, then f(xn)→ L.

Proof. (⇒) Suppose limx→x0 f(x) = L and xn is a sequence from D \ {x0} such
that xn → x0. Let ε > 0. There exists a δ > 0 such that |f(x) − L| < ε
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Figure 4: The function from Example 8.4. Note that the graph is a line with
one “hole” in it.
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Figure 5: This is the function from Example 8.5. The graph shown here is on
the interval [0.05, 1]. There are an infinite number of oscillations from −1 to 1
on any open interval containing the origin.

whenever x ∈ (x− δ, x+ δ) ∩D \ {x0}. Since xn → x0, there is an N ∈ N such
that n ≥ N implies 0 < |xn−x0| < δ. In this case, |f(xn)−L| < ε. This shows
f(xn)→ x0.

(⇐) Suppose that whenever xn is a sequence from D \ {x0} such that xn →
x0, then f(xn)→ L, but limx→x0 f(x) 6= L. Then there exists an ε > 0 such that
for all δ > 0 there is an x ∈ (x0−δ, x0+δ)∩D\{x0} such that |f(x)−L| ≥ ε. In
particular, for each n ∈ N, there must exist xn ∈ (x0−1/n, x0 +1/n)∩D \{x0}
such that |f(xn) − L| ≥ ε. Since xn → x0, this is a contradiction. Therefore,
limx→x0 f(x) = L.

Example 8.5. Let f(x) = sin(1/x), an = 1
nπ and bn = 1

(2n−1)π . Then an ↓ 0,
bn ↓ 0, f(an) = 0 and f(bn) = 1 for all n ∈ N. An application of Theorem 8.1
shows limx→0 f(x) does not exist.
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Figure 6: This is the function from Example 8.6. The graph shown here is on
the interval [0.01, 0.5]. There are an infinite number of oscillations from −x to
x on any open interval containing the origin.

Theorem 8.2 (Squeeze Theorem). Suppose f , g and h are all functions de-
fined on D ⊂ R with f(x) ≤ g(x) ≤ h(x) for all x ∈ D. If x0 is a limit point of
D and limx→x0 f(x) = limx→x0 h(x) = L, then limx→x0 g(x) = L.

Proof. Let xn be any sequence from D \ {x0} such that xn → x0. According to
Theorem 8.1, both f(xn) → L and h(xn) → L. Since f(xn) ≤ g(xn) ≤ h(xn),
an application of the sandwich theorem for sequences shows g(xn) → L. Now,
another use of Theorem 8.1 shows limx→x0 g(x) = L.

Example 8.6. Let f(x) = x sin(1/x). Since −1 ≤ sin(1/x) ≤ 1 when x 6= 0,
we see that −x ≤ sin(1/x) ≤ x for x 6= 0. Since limx→0 x = limx→0−x = 0,
Theorem 8.2 implies limx→0 x sin(1/x) = 0. See Figure 6

Theorem 8.3. Suppose f : D → R and g : D → R and x0 is a limit point of
D. If limx→x0 f(x) = L and limx→x0 g(x) = M , then

(a) limx→x0(f + g)(x) = L+M ,

(b) limx→x0(af)(x) = aL, ∀x ∈ R,

(c) limx→x0(fg)(x) = LM , and

(d) limx→x0(1/f)(x) = 1/L, as long as L 6= 0.

Proof. Suppose an is a sequence from D \ {x0} converging to x0. Then The-
orem 8.1 implies f(an) → L and g(an) → M . (a)-(d) follow at once from the
corresponding properties for sequences.
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Example 8.7. Let f(x) = 3x + 2. If g1(x) = 3, g2(x) = x and g3(x) = 2, then
f(x) = g1(x)g2(x) + g3(x). Examples 8.1 and 8.2 along with parts (a) and (c)
of Theorem 8.3 immediately show that for every x∈R, limx→x0 f(x) = f(x0).

In the same manner as Example 8.7, it can be shown for every rational
function f(x), that limx→x0 f(x) = f(x0) whenever f(x0) exists.

Extra Credit 7. If Q = {qn : n ∈ N} is an enumeration of the rational num-
bers and

f(x) =

{
1/n, x = qn

0, x ∈ Qc

then limx→a f(x) = 0, for all a ∈ Qc.


