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8 Limits of Functions

Definition 8.1. Let D C R, xg be a limit point of D and f : D — R. The
limit of f(x) at x¢ is L if for each € > 0 there is a 6 > 0 such that when z € D
with 0 < |z — x¢| < 0, then |f(z) — L| < e. When this is the case, we write
limg_,,, f(z) = L.

A useful way of rewording this is to say that lim,_.,, f(z) = L iff for every
€ > 0 there is a 6 > 0 such that z € (xg — d,20 + ) N D \ {zo} implies
f(x) e (L—¢,L+e).

Ezample 8.1. If f(z) = c is a constant function and zy € R, then for any
positive numbers € and 9,

x € (xo—0,20+0)ND\{zo} = |f(x)—c|=|c—c|=0<e.
This shows the limit of every constant function exists at every point, and the

limit is just the value of the function.
Ezample 8.2. Let f(z) =z, 290 € R, and € = § > 0. Then

x € (xg— 0,20+ 0)ND\{zo} = |f(x) — f(zo)| = |z — 20| < I =€.

This shows that the identity function has a limit at every point and its limit is
just the value of the function at that point.

Ezample 8.3. Let f(x) = 252—728. In this case, the implied domain of f is D =

R\ {2}. We claim that limg_.» f(z) =8.
To see this, let ¢ > 0 and choose § € (0,e/2). If 0 < |x — 2| < 4, then

) -8 = |28

_8‘:|2(x+2)—8|=2|x—2|<5.

Ezample 8.4. Let f(x) = v/x+1. Then the implied domain of f is D =
[-1,00). We claim that lim,_,_; f(x) = 0.

To see this, let € > 0 and choose § € (0,¢?). f0 <2 —(=1) =2 +1< 4,
then

|f($)—0|:\/:v+1<\/5<\/6_2:5.

There is an obvous similarity between the definition of limit of a sequence
and limit of a function. The following theorem makes this similarity explicit,
and gives another way to prove facts about limits of functions.

Theorem 8.1. Let f: D — R and xg be a limit point of D. lim,_.,, f(z) =L
iff whenever x,, is a sequence from D\{xo} such that x, — xg, then f(x,) — L.

Proof. (=) Suppose lim,_,,, f(x) = L and z,, is a sequence from D\ {zo} such
that z, — zo. Let ¢ > 0. There exists a § > 0 such that |f(x) — L| < ¢
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Figure 4: The function from Example 8.4. Note that the graph is a line with
one “hole” in it.
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Figure 5: This is the function from Example 8.5. The graph shown here is on
the interval [0.05,1]. There are an infinite number of oscillations from —1 to 1
on any open interval containing the origin.

whenever x € (x — 6,2+ 6) N D\ {xo}. Since x,, — xg, there is an N € N such
that n > N implies 0 < |z, — x| < J. In this case, |f(z,) — L| < €. This shows
f(xn) — 0.

(<) Suppose that whenever z,, is a sequence from D\ {2} such that x,, —
xo, then f(x,) — L, but lim,_,,, f(z) # L. Then there exists an € > 0 such that
for all § > 0 there is an x € (g —0,z9+09)ND\ {zo} such that |f(z)—L| > . In
particular, for each n € N, there must exist x,, € (zo —1/n,zo+1/n)ND\{z0}
such that |f(z,) — L| > €. Since x,, — o, this is a contradiction. Therefore,
lim, ., f(z) = L. d
Ezample 8.5. Let f(z) = sin(1/z), a, = = and b, = m Then a, | 0,
bn 1 0, f(an) =0 and f(b,) =1 for all n € N. An application of Theorem 8.1
shows lim, o f(z) does not exist.
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Figure 6: This is the function from Example 8.6. The graph shown here is on
the interval [0.01,0.5]. There are an infinite number of oscillations from —z to
2 on any open interval containing the origin.

Theorem 8.2 (Squeeze Theorem). Suppose f, g and h are all functions de-
fined on D C R with f(x) < g(x) < h(z) for all z € D. If zy is a limit point of
D and limy_.,, f(x) = limy_,,, h(x) = L, then lim,_,,, g(z) = L.

Proof. Let x,, be any sequence from D \ {z¢} such that z,, — z¢. According to
Theorem 8.1, both f(x,) — L and h(z,) — L. Since f(z,) < g(x,) < h(z,),
an application of the sandwich theorem for sequences shows g(z,) — L. Now,
another use of Theorem 8.1 shows lim,_,,, g(z) = L. O

Ezample 8.6. Let f(x) = xsin(1/z). Since —1 < sin(1/z) < 1 when z # 0,
we see that —z < sin(1/z) < x for  # 0. Since lim,_ox = lim, o —z = 0,
Theorem 8.2 implies lim,_,o xsin(1/z) = 0. See Figure 6

Theorem 8.3. Suppose f: D — R and g : D — R and x¢ is a limit point of
D. Iflimg_.,, f(x) =L and lim,_,,, g(z) = M, then

(a) limg—zy (f + g)(x) = L+ M,

(b) limg 4, (af)(z) = aL, Yz € R,

(¢) limg—.qe (fg)(x) = LM, and

(d) limy_.,,(1/f)(x) = 1/L, as long as L # 0.

Proof. Suppose a,, is a sequence from D \ {z¢} converging to xog. Then The-
orem 8.1 implies f(a,) — L and g(a,) — M. (a)-(d) follow at once from the
corresponding properties for sequences. O
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Ezample 8.7. Let f(x) =3z + 2. If g1(z) = 3, g2(x) = = and g3(z) = 2, then
f(x) = g1(x)g2(x) + g3(x). Examples 8.1 and 8.2 along with parts (a) and (c)
of Theorem 8.3 immediately show that for every xR, lim, ., f(z) = f(x0).

In the same manner as Example 8.7, it can be shown for every rational
function f(z), that lim,_,., f(z) = f(zo) whenever f(z) exists.

Extra Credit 7. If Q = {g, : n € N} is an enumeration of the rational num-
bers and

o) = {(1)/” o

then lim,_,, f(z) = 0, for all a € Q°.



