

Figure 7: The function $f(x) = |x|/x$ from Example 9.1.

9 Unilateral Limits

Definition 9.1. Let $f: D \to \mathbb{R}$ and x_0 be a limit point of $D \cap (-\infty, x_0)$. f has *L* as its *left-hand limit* at x_0 if for all $\varepsilon > 0$ there is a $\delta > 0$ such that $f((x_0 - \delta, x_0) \cap D) \subset (L - \varepsilon, L + \varepsilon)$. In this case, we write $\lim_{x \uparrow x_0} f(x) = L$.

Let $f: D \to \mathbb{R}$ and x_0 be a limit point of $D \cap (x_0, \infty)$. *f* has *L* as its *right*hand limit at x_0 if for all $\varepsilon > 0$ there is a $\delta > 0$ such that $f((x_0, x_0 + \delta) \cap D) \subset$ $(L - \varepsilon, L + \varepsilon)$. In this case, we write $\lim_{x \downarrow x_0} f(x) = L$.

Another standard notation for the unilateral limits is

$$
\lim_{x \uparrow x_0} f(x) = \lim_{x \to x_0-} f(x)
$$
 and
$$
\lim_{x \downarrow x_0} f(x) = \lim_{x \to x_0+} f(x).
$$

Example 9.1. Let $f(x) = |x|/x$. Then $\lim_{x \downarrow 0} f(x) = 1$ and $\lim_{x \uparrow 0} f(x) = -1$. (See Figure 7.)

Theorem 9.1. Let $f: D \to \mathbb{R}$ and x_0 be a limit point of *D*.

$$
\lim_{x \to x_0} f(x) = L \quad \iff \quad \lim_{x \uparrow x_0} f(x) = L = \lim_{x \downarrow x_0} f(x)
$$

Proof. This proof is left as an exercise.

Theorem 9.2. If $f : (a, b) \to \mathbb{R}$ is monotone, then both unilateral limits of f exist at every point of (*a, b*).

Proof. To be specific, suppose f is increasing and $x_0 \in (a, b)$. Let $\varepsilon > 0$ and $L = \text{lub}\left\{f(x): a < x < x_0\right\}$. According to Corollary 11, there must exist an $x \in (a, x_0)$ such that $L - \varepsilon < f(x) \leq L$. Define $\delta = x_0 - x$. If $y \in (x_0 - \delta, x_0)$, then $L - \varepsilon = f(x) < f(y) \leq L$. This shows $\lim_{x \uparrow x_0} f(x) = L$.

The proof that $\lim_{x \downarrow x_0} f(x)$ exists is similar.

To handle the case when *f* is decreasing, consider −*f* instead of *f*. \Box

 \Box