
Section 10: Continuity 41

10 Continuity

Definition 10.1. Let f : D → R and x0 ∈ D. f is continuous at x0 if for
every ε > 0 there exists a δ > 0 such that when x ∈ D with |x− x0| < δ, then
|f(x) − f(x0)| < ε. The set of all points at which f is continuous is denoted
C(f).

Several useful ways of rephrasing this are contained in the following theorem,
the proof of which is left to the reader.

Theorem 10.1. Let f : D → R and x0 ∈ D. The following statements are
equivalent.

(a) x0 ∈ C(f),

(b) For all ε > 0 there is a δ > 0 such that x ∈ (x0 − δ, x0 + δ) ∩D ⇒ f(x) ∈
(f(x0)− ε, f(x0) + ε), and

(c) For all ε > 0 there is a δ > 0 such that f((x0 − δ, x0 + δ)) ⊂ (f(x0) −
ε, f(x0) + ε).

Example 10.1. Define

f(x) =

{
2x2−8
x−2 , x 6= 2

8, x = 2
.

It follows easily from Example 8.3 that 2 ∈ C(f).

There is a subtle difference between the treatment of the domain of the
function between the definitions of limit and continuity. In the definition of
limit, the “target point,” x0 is required to be a limit point of the domain. There
is no such stipulation in the definition of continuity. To see a consequence of
this difference, consider the following example.

Example 10.2. If f : Z → R is an arbitrary function, then C(f) = Z. To see
this, let n0 ∈ Z, ε > 0 and δ = 1. If x ∈ Z with |x− n0| < δ, then x = n0. It’s
now obvious that |f(x)− f(n0)| = 0 < ε, so f is continuous at n0.

This leads to the following theorem.

Theorem 10.2. Let f : D → R and x0 ∈ D. If x0 is an isolated point of D,
then x0 ∈ C(f). If x0 is a limit point of D, then x0 ∈ C(f) iff limx→x0 f(x) =
f(x0).

Proof. If x0 is isolated in D, then there is an δ > 0 such that (x0−δ, x0+δ)∩D =
{x0}. For any ε > 0, the definition of continuity is satisfied with this δ.

Next, suppose x0 is a limit point of D.
The definition of continuity says that f is continuous at x0 iff for all ε > 0

there is a δ > 0 such that when x ∈ (x0 − δ, x0 + δ) ∩D, then f(x) ∈ (f(x0)−
ε, f(x0) + ε).
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The definition of limit says that limx→x0 f(x) = f(x0) iff for all ε > 0
there is a δ > 0 such that when x ∈ (x0 − δ, x0 + δ) ∩ D \ {x0}, then f(x) ∈
(f(x0)− ε, f(x0) + ε).

Comparing these two definitions, it is clear that x0 ∈ C(f) implies

lim
x→x0

f(x) = f(x0).

On the other hand, suppose limx→x0 f(x) = f(x0) and ε > 0. Choose δ
according to the definition of limit. When x ∈ (x0 − δ, x0 + δ) ∩D \ {x0}, then
f(x) ∈ (f(x0)− ε, f(x0) + ε). It is easy to see from this that when x = x0, then
f(x)−f(x0) = f(x0)−f(x0) = 0 < ε. Therefore, when x ∈ (x0− δ, x0 + δ)∩D,
then f(x) ∈ (f(x0)− ε, f(x0) + ε), and x0 ∈ C(f), as desired.

Example 10.3. If f(x) = c, for some c ∈ R, then Example 8.1 and Theorem 10.2
show that f is continuous at every point.

Example 10.4. If f(x) = x, then Example 8.2 and Theorem 10.2 show that f is
continuous at every point.

Corollary 10.3. Let f : D → R and x0 ∈ D. x0 ∈ C(f) iff whenever xn is a
sequence from D with xn → x0, then f(xn)→ f(x0).

Proof. Combining Theorem 10.2 with Theorem 8.1 shows this to be true.

Example 10.5. Suppose

f(x) =

{
1, x ∈ Q
0, x /∈ Q

.

For each x ∈ Q, there is a sequence of irrational numbers converging to x,
and for each y ∈ Qc there is a sequence of rational numbers converging to y.
Corollary 10.3 shows C(f) = ∅.
Example 10.6 (Salt and Pepper Function). Since Q is a countable set, it can be
written as a sequence, Q = {qn : n ∈ N}. Define

f(x) =

{
1/n, x = qn,

0, x ∈ Qc.

If x ∈ Q, then x = qn, for some n and f(x) = 1/n > 0. There is a sequence
xn from Qc such that xn → x and f(xn) = 0 6→ f(x) = 1/n. Therefore
C(f) ∩Q = ∅.

On the other hand, let x ∈ Qc and ε > 0. Choose N ∈ N large enough so
that 1/N < ε and let δ = min{|x − qn| : 1 ≤ n ≤ N}. If |x − y| < δ, there
are two cases to consider. If y ∈ Qc, then |f(y) − f(x)| = |0 − 0| = 0 < ε. If
y ∈ Q, then the choice of δ guarantees y = qn for some n > N . In this case,
|f(y)− f(x)| = f(y) = f(qn) = 1/n < 1/N < ε. Therefore, x ∈ C(f).

This shows that C(f) = Qc.
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It is a consequence of an advanced result known as the Baire category the-
orem that there is no function f such that C(f) = Q.

The following theorem is an almost immediate consequence of Theorem 8.3.

Theorem 10.4. Let f : Df → R and g : Dg → R. If x0 ∈ C(f) ∩ C(G), then

(a) x0 ∈ C(f + g),

(b) x0 ∈ C(αf), ∀α ∈ R,

(c) x0 ∈ C(fg), and

(d) x0 ∈ C(f/g) when g(x0) 6= 0.

Corollary 10.5. If f is a rational function, then f is continuous at each point
of its domain.

Proof. This is a consequence of Examples 10.3 and 10.4 used with Theorem
10.4.

Theorem 10.6. Suppose f : Df → R and g : Dg → R such that f(Df ) ⊂ Dg.
If there is an x0 ∈ C(f) such that f(x0) ∈ C(g), then x0 ∈ C(g ◦ f).

Proof. Let ε > 0 and choose δ1 > 0 such that g((f(x0)− δ1, f(x0) + δ1)∩Dg) ⊂
(g◦f(x0)−ε, g◦f(x0)+ε). Choose δ2 > 0 such that f((x0−δ2, x0 +δ2)∩Df ) ⊂
(f(x0)− δ1, f(x0) + δ1). Then

g ◦ f((x0 − δ2, x0 + δ2) ∩Df ) ⊂ g((f(x0)− δ1, f(x0) + δ1) ∩Dg)
⊂ (g ◦ f(x0)− δ2, g ◦ f(x0) + δ2) ∩Df ).

Since this shows Theorem 10.1(c) is satisfied at x0 with the function g ◦ f , it
follows that x0 ∈ C(g ◦ f).

Problem 20. Prove that f(x) =
√
x is continuous on [0,∞).

Example 10.7. If f is as in Problem 20, then Theorem 10.6 shows f ◦ f = 4
√
x

is continuous on [0,∞).
In the same way, it can be shown by induction that f(x) = xm/2

n

is contin-
uous on [0,∞) for all m,n ∈ Z.


