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12 Continuous Functions

Definition 12.1. Let f : D → R and A ⊂ D. We say f is continuous on A if
A ⊂ C(f). If D = C(f), then f is continuous.

Theorem 12.1. f : D → R is continuous iff whenever G is open in R, then
f−1(G) is relatively open in D.

Proof. (⇒) Assume f is continuous on D and let G be open in R. Let x ∈
f−1(G) and choose ε > 0 such that (f(x)−ε, f(x)+ε) ⊂ G. Using the continuity
of f at x, we can find a δ > 0 such that f((x− δ, x+ δ)∩D) ⊂ G. This implies
at once that (x− δ, x+ δ) ∩D ⊂ f−1(G). Because x was an arbitrary element
of f−1(G), it follows that f−1(G) is open.

(⇐) Choose x ∈ D and let ε > 0. By assumption, the set f−1((f(x) −
ε, f(x) + ε) is relatively open in D. This implies the existence of a δ > 0 such
that (x− δ, x+ δ) ∩D ⊂ f−1((f(x)− ε, f(x) + ε). It follows at once from this
that f((x− δ, x+ δ) ∩D) ⊂ (f(x)− ε, f(x) + ε), and x ∈ C(f).

Theorem 12.2. If f is continuous on a compact set K, then f(K) is compact.

Proof. Let O be an open cover of f(K) and I = {f−1(G) : G ∈ O}. By Theorem
12.1, I is a collection of sets which are relatively open in K. Since I covers f(K),
its easy to see, I is an open cover of K. Using the fact that K is compact, we
can choose a finite subcover of K from I, say {G1, G2, . . . , Gn}. There are
{H1, H2, . . . , Hn} ⊂ O such that f−1(Hk) = Gk for 1 ≤ k ≤ n. Then

f(K) ⊂ f

 ⋃
1≤k≤n

Gk

 =
⋃

1≤k≤n
Hk.

Thus, {H1, H2, . . . , H3} is a subcover of f(K) from O.

Corollary 12.3. If f : K → R is continuous and K is compact, then f is
bounded.

Proof. By Theorem 12.2, f(K) is compact. Now, use the Bolzano-Weierstrass
theorem to conclude f is bounded.

Corollary 12.4. If f : K → R is continuous and K is compact, then there are
m,M ∈ K such that f(m) ≤ f(x) ≤ f(M) for all x ∈ K.

Proof. According to Theorem 12.2 and the Bolzano-Weierstrass theorem, f(K)
is closed and bounded. Because of this, glb f(K) ∈ f(K) and lub f(K) ∈ f(K).
It suffices to choose m ∈ f−1(glb f(K)) and M ∈ f−1(lub f(K)).

Theorem 12.5. If f : K → R is continuous and invertible and K is compact,
then f−1 : f(K)→ K is continuous.
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Proof. Let G be open in K. According to Theorem 12.1, it suffices to show
f(G) is open in f(K).

To do this, note that K \ G is compact, so by Theorem 12.2, f(K \ G) is
compact, and therefore closed. Because f is injective, f(G) = f(K) \ f(K \G).
This shows f(G) is open in f(K).

Theorem 12.6. If f is continuous on a connected set K, then f(K) is con-
nected.

Proof. If f(K) is not connected, there must exist two disjoint open sets, U and
V , such that f(K) ⊂ U∪V and f(K)∩U 6= ∅ 6= f(K)∩V . In this case, Theorem
12.1 implies f−1(U) and f−1(V ) are both open. They are clearly disjoint and
f−1(U)∩K 6= ∅ 6= f−1(V )∩K. But, this implies f−1(U) and f−1(V ) disconnect
K, which is a contradiction. Therefore, f(K) is connected.

Corollary 12.7. If f : [a, b]→ R is continuous and α is between f(a) and f(b),
then there is a c ∈ [a, b] such that f(c) = α.

Proof. This is an easy consequence of Theorem 12.6 and Theorem 7.1.

Definition 12.2. A function f : D → R has the Darboux property if whenever
a, b ∈ D and γ is between f(a) and f(b), then there is a c between a and b such
that f(c) = γ.

The Darboux property is also often called the intermediate value property.
Corollary 12.7 shows that a function continuous on an interval has the Darboux
property. The next example shows continuity is not necessary for the Darboux
property to hold.

Example 12.1. The function

f(x) =

{
sin 1/x, x 6= 0
0, x = 0

is not continuous, but does have the Darboux property. (See Figure 5.) It can
be seen from Example 8.5 that 0 /∈ C(f).

To see f has the Darboux property, choose two numbers a < b.
If a > 0 or b < 0, then f is continuous on [a, b] and Corollary 12.7 suffices

to finish the proof.
On the other hand, if 0 ∈ [a, b], then there must exist an n ∈ Z such that

both 4
(4n+1)π ,

4
(4n+3)π ∈ [a, b]. Since f( 4

(4n+1)π ) = 1, f( 4
(4n+3)π ) = −1 and f is

continuous on the interval between them, we see f([a, b]) = [−1, 1], which is the
entire range of f . The claim now follows easily.

Problem 22. Let f and g be two functions which are continuous on a set
D ⊂ R. Prove or give a counter example: {x ∈ D : f(x) > g(x)} is open.
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Problem 23. If f : [a, b]→ R is continuous, not constant,

m = glb {f(x) : a ≤ x ≤ b} and M = lub {f(x) : a ≤ x ≤ b},

then f([a, b]) = [m,M ].

Extra Credit 8. If F ⊂ R is closed, then there is an f : R → R such that
F = C(f)c.


