12 Continuous Functions

Definition 12.1. Let $f: D \to \mathbb{R}$ and $A \subset D$. We say f is continuous on A if $A \subset C(f)$. If $D = C(f)$, then *f* is *continuous*.

Theorem 12.1. $f: D \to \mathbb{R}$ is continuous iff whenever *G* is open in \mathbb{R} , then $f^{-1}(G)$ is relatively open in *D*.

Proof. (\Rightarrow) Assume *f* is continuous on *D* and let *G* be open in R. Let $x \in$ $f^{-1}(G)$ and choose $\varepsilon > 0$ such that $(f(x)-\varepsilon, f(x)+\varepsilon) \subset G$. Using the continuity of *f* at *x*, we can find a $\delta > 0$ such that $f((x - \delta, x + \delta) \cap D) \subset G$. This implies at once that $(x - \delta, x + \delta) \cap D \subset f^{-1}(G)$. Because *x* was an arbitrary element of $f^{-1}(G)$, it follows that $f^{-1}(G)$ is open.

(←) Choose $x \in D$ and let $\varepsilon > 0$. By assumption, the set $f^{-1}((f(x) \varepsilon$, $f(x) + \varepsilon$ is relatively open in *D*. This implies the existence of a $\delta > 0$ such that $(x - \delta, x + \delta) \cap D \subset f^{-1}((f(x) - \varepsilon, f(x) + \varepsilon)$. It follows at once from this that $f((x - \delta, x + \delta) \cap D) \subset (f(x) - \varepsilon, f(x) + \varepsilon)$, and $x \in C(f)$. \Box

Theorem 12.2. If f is continuous on a compact set K , then $f(K)$ is compact.

Proof. Let 0 be an open cover of $f(K)$ and $\mathcal{I} = \{f^{-1}(G) : G \in \mathcal{O}\}\$. By Theorem 12.1, J is a collection of sets which are relatively open in K . Since J covers $f(K)$, its easy to see, $\mathfrak I$ is an open cover of K . Using the fact that K is compact, we can choose a finite subcover of *K* from *J*, say $\{G_1, G_2, \ldots, G_n\}$. There are ${H_1, H_2, \ldots, H_n} \subset \mathbb{O}$ such that $f^{-1}(H_k) = G_k$ for $1 \leq k \leq n$. Then

$$
f(K) \subset f\left(\bigcup_{1 \leq k \leq n} G_k\right) = \bigcup_{1 \leq k \leq n} H_k.
$$

Thus, $\{H_1, H_2, \ldots, H_3\}$ is a subcover of $f(K)$ from 0.

 \Box

Corollary 12.3. If $f: K \to \mathbb{R}$ is continuous and *K* is compact, then *f* is bounded.

Proof. By Theorem 12.2, $f(K)$ is compact. Now, use the Bolzano-Weierstrass theorem to conclude *f* is bounded. \Box

Corollary 12.4. If $f: K \to \mathbb{R}$ is continuous and K is compact, then there are $m, M \in K$ such that $f(m) \le f(x) \le f(M)$ for all $x \in K$.

Proof. According to Theorem 12.2 and the Bolzano-Weierstrass theorem, $f(K)$ is closed and bounded. Because of this, glb $f(K) \in f(K)$ and lub $f(K) \in f(K)$. It suffices to choose *m* ∈ *f*−¹(glb *f*(*K*)) and *M* ∈ *f* [−]¹(lub *f*(*K*)). \Box

Theorem 12.5. If $f: K \to \mathbb{R}$ is continuous and invertible and K is compact, then $f^{-1}: f(K) \to K$ is continuous.

Proof. Let *G* be open in *K*. According to Theorem 12.1, it suffices to show $f(G)$ is open in $f(K)$.

To do this, note that $K \setminus G$ is compact, so by Theorem 12.2, $f(K \setminus G)$ is compact, and therefore closed. Because *f* is injective, $f(G) = f(K) \setminus f(K \setminus G)$. This shows $f(G)$ is open in $f(K)$. \Box

Theorem 12.6. If *f* is continuous on a connected set K , then $f(K)$ is connected.

Proof. If *f*(*K*) is not connected, there must exist two disjoint open sets, *U* and *V*, such that $f(K) \subset U \cup V$ and $f(K) \cap U \neq \emptyset \neq f(K) \cap V$. In this case, Theorem 12.1 implies $f^{-1}(U)$ and $f^{-1}(V)$ are both open. They are clearly disjoint and *f*⁻¹(*U*)∩*K* $\neq \emptyset \neq f^{-1}(V)$ ∩*K*. But, this implies $f^{-1}(U)$ and $f^{-1}(V)$ disconnect *K*, which is a contradiction. Therefore, $f(K)$ is connected. \Box

Corollary 12.7. If $f : [a, b] \to \mathbb{R}$ is continuous and α is between $f(a)$ and $f(b)$, then there is $a \ c \in [a, b]$ such that $f(c) = \alpha$.

Proof. This is an easy consequence of Theorem 12.6 and Theorem 7.1. \Box

Definition 12.2. A function $f: D \to \mathbb{R}$ has the *Darboux property* if whenever $a, b \in D$ and γ is between $f(a)$ and $f(b)$, then there is a *c* between *a* and *b* such that $f(c) = \gamma$.

The Darboux property is also often called the intermediate value property. Corollary 12.7 shows that a function continuous on an interval has the Darboux property. The next example shows continuity is not necessary for the Darboux property to hold.

Example 12.1. The function

$$
f(x) = \begin{cases} \sin 1/x, & x \neq 0 \\ 0, & x = 0 \end{cases}
$$

is not continuous, but does have the Darboux property. (See Figure 5.) It can be seen from Example 8.5 that $0 \notin C(f)$.

To see f has the Darboux property, choose two numbers $a < b$.

If $a > 0$ or $b < 0$, then f is continuous on [a, b] and Corollary 12.7 suffices to finish the proof.

On the other hand, if $0 \in [a, b]$, then there must exist an $n \in \mathbb{Z}$ such that both $\frac{4}{(4n+1)\pi}$, $\frac{4}{(4n+3)\pi} \in [a, b]$. Since $f(\frac{4}{(4n+1)\pi}) = 1$, $f(\frac{4}{(4n+3)\pi}) = -1$ and *f* is continuous on the interval between them, we see $f([a, b]) = [-1, 1]$, which is the entire range of *f*. The claim now follows easily.

Problem 22. Let f and g be two functions which are continuous on a set *D* ⊂ ℝ. Prove or give a counter example: $\{x \in D : f(x) > g(x)\}\$ is open.

Problem 23. If $f : [a, b] \to \mathbb{R}$ is continuous, not constant,

$$
m = \text{glb} \{ f(x) : a \le x \le b \}
$$
 and $M = \text{lub} \{ f(x) : a \le x \le b \}$,

then $f([a, b]) = [m, M]$.

Extra Credit 8. If $F \subset \mathbb{R}$ is closed, then there is an $f : \mathbb{R} \to \mathbb{R}$ such that $F = C(f)^c$.