12 Continuous Functions

Definition 12.1. Let $f: D \to \mathbb{R}$ and $A \subset D$. We say f is continuous on A if $A \subset C(f)$. If D = C(f), then f is continuous.

Theorem 12.1. $f : D \to \mathbb{R}$ is continuous iff whenever G is open in \mathbb{R} , then $f^{-1}(G)$ is relatively open in D.

Proof. (\Rightarrow) Assume f is continuous on D and let G be open in \mathbb{R} . Let $x \in f^{-1}(G)$ and choose $\varepsilon > 0$ such that $(f(x) - \varepsilon, f(x) + \varepsilon) \subset G$. Using the continuity of f at x, we can find a $\delta > 0$ such that $f((x - \delta, x + \delta) \cap D) \subset G$. This implies at once that $(x - \delta, x + \delta) \cap D \subset f^{-1}(G)$. Because x was an arbitrary element of $f^{-1}(G)$, it follows that $f^{-1}(G)$ is open.

(⇐) Choose $x \in D$ and let $\varepsilon > 0$. By assumption, the set $f^{-1}((f(x) - \varepsilon, f(x) + \varepsilon))$ is relatively open in D. This implies the existence of a $\delta > 0$ such that $(x - \delta, x + \delta) \cap D \subset f^{-1}((f(x) - \varepsilon, f(x) + \varepsilon))$. It follows at once from this that $f((x - \delta, x + \delta) \cap D) \subset (f(x) - \varepsilon, f(x) + \varepsilon)$, and $x \in C(f)$.

Theorem 12.2. If f is continuous on a compact set K, then f(K) is compact.

Proof. Let 0 be an open cover of f(K) and $\mathcal{I} = \{f^{-1}(G) : G \in 0\}$. By Theorem 12.1, \mathcal{I} is a collection of sets which are relatively open in K. Since \mathcal{I} covers f(K), its easy to see, \mathcal{I} is an open cover of K. Using the fact that K is compact, we can choose a finite subcover of K from \mathcal{I} , say $\{G_1, G_2, \ldots, G_n\}$. There are $\{H_1, H_2, \ldots, H_n\} \subset 0$ such that $f^{-1}(H_k) = G_k$ for $1 \leq k \leq n$. Then

$$f(K) \subset f\left(\bigcup_{1 \le k \le n} G_k\right) = \bigcup_{1 \le k \le n} H_k$$

Thus, $\{H_1, H_2, \ldots, H_3\}$ is a subcover of f(K) from O.

Corollary 12.3. If $f : K \to \mathbb{R}$ is continuous and K is compact, then f is bounded.

Proof. By Theorem 12.2, f(K) is compact. Now, use the Bolzano-Weierstrass theorem to conclude f is bounded.

Corollary 12.4. If $f : K \to \mathbb{R}$ is continuous and K is compact, then there are $m, M \in K$ such that $f(m) \leq f(x) \leq f(M)$ for all $x \in K$.

Proof. According to Theorem 12.2 and the Bolzano-Weierstrass theorem, f(K) is closed and bounded. Because of this, $\operatorname{glb} f(K) \in f(K)$ and $\operatorname{lub} f(K) \in f(K)$. It suffices to choose $m \in f^{-1}(\operatorname{glb} f(K))$ and $M \in f^{-1}(\operatorname{lub} f(K))$.

Theorem 12.5. If $f: K \to \mathbb{R}$ is continuous and invertible and K is compact, then $f^{-1}: f(K) \to K$ is continuous.

Proof. Let G be open in K. According to Theorem 12.1, it suffices to show f(G) is open in f(K).

To do this, note that $K \setminus G$ is compact, so by Theorem 12.2, $f(K \setminus G)$ is compact, and therefore closed. Because f is injective, $f(G) = f(K) \setminus f(K \setminus G)$. This shows f(G) is open in f(K).

Theorem 12.6. If f is continuous on a connected set K, then f(K) is connected.

Proof. If f(K) is not connected, there must exist two disjoint open sets, U and V, such that $f(K) \subset U \cup V$ and $f(K) \cap U \neq \emptyset \neq f(K) \cap V$. In this case, Theorem 12.1 implies $f^{-1}(U)$ and $f^{-1}(V)$ are both open. They are clearly disjoint and $f^{-1}(U) \cap K \neq \emptyset \neq f^{-1}(V) \cap K$. But, this implies $f^{-1}(U)$ and $f^{-1}(V)$ disconnect K, which is a contradiction. Therefore, f(K) is connected.

Corollary 12.7. If $f : [a, b] \to \mathbb{R}$ is continuous and α is between f(a) and f(b), then there is $a \in [a, b]$ such that $f(c) = \alpha$.

Proof. This is an easy consequence of Theorem 12.6 and Theorem 7.1. \Box

Definition 12.2. A function $f: D \to \mathbb{R}$ has the *Darboux property* if whenever $a, b \in D$ and γ is between f(a) and f(b), then there is a c between a and b such that $f(c) = \gamma$.

The Darboux property is also often called the *intermediate value property*. Corollary 12.7 shows that a function continuous on an interval has the Darboux property. The next example shows continuity is not necessary for the Darboux property to hold.

Example 12.1. The function

$$f(x) = \begin{cases} \sin 1/x, & x \neq 0\\ 0, & x = 0 \end{cases}$$

is not continuous, but does have the Darboux property. (See Figure 5.) It can be seen from Example 8.5 that $0 \notin C(f)$.

To see f has the Darboux property, choose two numbers a < b.

If a > 0 or b < 0, then f is continuous on [a, b] and Corollary 12.7 suffices to finish the proof.

On the other hand, if $0 \in [a, b]$, then there must exist an $n \in \mathbb{Z}$ such that both $\frac{4}{(4n+1)\pi}, \frac{4}{(4n+3)\pi} \in [a, b]$. Since $f(\frac{4}{(4n+1)\pi}) = 1$, $f(\frac{4}{(4n+3)\pi}) = -1$ and f is continuous on the interval between them, we see f([a, b]) = [-1, 1], which is the entire range of f. The claim now follows easily.

Problem 22. Let f and g be two functions which are continuous on a set $D \subset \mathbb{R}$. Prove or give a counter example: $\{x \in D : f(x) > g(x)\}$ is open.

Problem 23. If $f : [a, b] \to \mathbb{R}$ is continuous, not constant,

$$m = \text{glb}\left\{f(x) : a \le x \le b\right\} \text{ and } M = \text{lub}\left\{f(x) : a \le x \le b\right\},\$$

then f([a, b]) = [m, M].

Extra Credit 8. If $F \subset \mathbb{R}$ is closed, then there is an $f : \mathbb{R} \to \mathbb{R}$ such that $F = C(f)^c$.