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14 Differentiation

Definition 14.1. Let f be a function on a neighborhood of xq. f is differen-
tiable at xo with value f'(x) if

iy g flxo+h) — f(xo)
fi(z) = limy h ‘

Define D(f) = {z : f'(x) exists}.
The standard notations for the derivative will be used; e. g., f'(x), d{g) , Df(x),
etc.

Another way of stating this definition is to note that if zo € D(f), then

) — f(x
T—To T — X
This can be interpreted in the standard way as the limiting slope of the
secant line as the points of intersection approach each other.

Ezample 14.1. If f(x) = c for some ¢ € R, then

fim J@ R =S @0) _ oy ez
h—0 h h—0 h
So, f'(x) = 0 everywhere.
Ezample 14.2. If f(x) = x, then
lim Jwo £ h) = flao) = lim m = lim ﬁ =1
h—0 h h—0 h h—0 h
So, f'(z) = 1 everywhere.
Theorem 14.1. For any function f, D(f) C C(f).
Proof. Suppose zg € D(f). Then
. . z) — f(z
tim |f(@) — f(zo)| = tim |HDZIE0) )
Tr—X0 T—x0 r — X9
= f/(l‘o) 0=0.
This shows lim,_.,, f(x) = f(x0), and z¢ € C(f). O

Ezample 14.3. The function f(z) = |z| is continuous on R, but

. f(0+h) - f(0)
E%f o  h

so f'(0) fails to exist.
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Theorem 14.1 and Example 14.3 show that differentiability is a strictly
stronger condition than continuity. For a long time most mathematicians thought
that every continuous function must certainly be differentiable at some point.
In 1887, Weierstrass constructed a function continuous on R which is differen-
tiable nowhere. It has since been proved that the “typical” continuous function
is nowhere differentiable.

Theorem 14.2. Suppose f and g are functions such that zo € D(f) N D(g).
(a) xo € D(f +g) and (f + g)'(x0) = f'(z0) + g'(20).
(b) Ifa € R, then o € D(af) and (af) (z0) = af (o).
(¢) xo € D(fg) and (fg)'(x0) = f'(20)g(x0) + f(x0)g (x0)-
(d) If g(x0) £ 0, then z0 € D(f/g) and
(g) (o) = f'(x0)g9(z0) — f(20)g'(x0)

(9(w0))?
Proof. (a)
iy S+ 9)@o + 1) = (f + g)(z0)
h—0 h
~ lim f(wo +h)+ g(wo + h) — f(xo) — g(x0)
h—0 h
= lim (f(xo * h})b — f(z0) + 9(xo + h})l - g(:vo)) = f'(x0) + ¢'(z0)
(b)
. (af)(mo +h) — (af)(z0) . flxo+h) — fzo) /
fim © = alim TR = af(a)
(c)
i S @0+ 1) = (f9)(xo) _ . f(zo+ h)g(wo +h) — f(xo)g(wo)
h—0 h h—0 h

Now, “slip a 0” into the numerator and factor the fraction.

i Lo+ Bl + 1) = F(o)glwo + h) + f(zo)g(wo + ) — f(wo)g(o)
h—0 h

- lim (f(T/o +h) — f(xo)

g(xo + h) + f(x0)

h

g(xo +h) — 9(%))
h—0 h

Finally, use the definition of the derivative and the continuity of f and g at zg.

= f'(w0)g(xo) + f(0)g' (x0)
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(d) Tt will be proved that if g(xq) # 0, then (1/g)'(z0) = —¢'(z0)/(g9(x0))?. This
statement, combined with (c), yields (d).

1 1
et h) — (fa)w) gl h)  gla)
h—0 h h—0 h
— lim g(zo) — g(xo + h) 1
h—0 h g(xo + h)g(xo)
A
(9(20)?
Plug this into (c¢) to see
/ 1 li
() 0= (1) =
L —0(0)
=70 Gy T o2
_ J'(wo)g(xo) — f(x0)g' (20)
(9(20))?

O

Combining Examples 14.1 and 14.2 with Theorem 14.2, the following theo-
rem is immediate.

Theorem 14.3. A rational function is differentiable at every point of its do-
main.

Theorem 14.4 (Chain Rule). If f and g are functions such that xg € D(f)
and f(xo) € D(g), then xg € D(go f) and (go f) (z0) = g' o f(z0)f (x0).

Proof. Let yo = f(x0). By assumption, there is an open interval J containing
f(zo) such that g is defined on J. Since J is open and zo € C(f), there is an
open interval I containing xg such that f(I) C J.

Define h : J — R by

h(y) = W —9'(W): y# o
0, Y=Y
Since yo € D(f), we see
9(y) — 9(vo)

lim h(y) = lim — ' (v0) = ¢'(v0) — ¢'(v0) = 0 = R(0),

Y=o Y=y Y — Yo
so yo € C(h). Now, xg € C(f) and f(zg) = yo € C(h), so Theorem 10.6 implies
29 € C(ho f). In particular

lim ho f(xz)=0. (5)

T—T0
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From the definition of ho f for x € I with f(z) # f(zo), we can solve for

go f(x)—go f(xo) = (ho f(z) +g" o f(w0))(f(x) — f(z0))- (6)

Notice that (6) is also true when f(x) = f(xz). Divide both sides of (6) by
x — xg, and use (5) to obtain

Jim L= _ gy (6 0) + ' o)) LD L0
= (04 o J(w)f (w0)
=g' o f(zo)f (o).

O

Theorem 14.5. Suppose f : [a,b] — R is continuous and invertible. If ¢ €
D(f) and f'(x0) # 0 for some xq € (a,b), then f(z0) € D(f~1) and (f~1)" (f(x0)) =
1/ f'(xo).

Proof. Let yo = f(x¢) and suppose y, is any sequence in f([a,b]) \ {yo} con-
verging to yo and z, = f~1(y,). By Theorem 12.5, f~! is continuous, so

20 = [~ (yo) = lim £ (yn) = lim @,
Therefore,

lim fﬁl(yn) B fﬁl(yO) — lim Tpn — Xo _ 1

n—oo Yn — Y n—oo f(xn) — f(zo)  f(0)

O

Example 14.4. Tt follows easily from Theorem 14.2 that f(x) = 2? is differen-
tiable everywhere with f’(z) = 322. Define g(z) = ¢/z. Then g(z) = f~!(z).
Suppose g(yo) = xo for some yo € R. According to Theorem 14.5,

= - L L L
T = Pl 32 T 3w’ 3P

In the same manner as Example 14.4, the following corollary can be proved.

Corollary 14.6. Suppose ¢ € Q, f(x) = 27 and D is the domain of f. Then
f'(x) = qz?=! on the set
D, when ¢ > 1
D\ {0}, wheng<1’
As is learned in calculus, the derivative is a powerful tool for determining

the behavior of functions. The following theorems form the basis for much of
differential calculus. First, we state a few familiar definitions.
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Definition 14.2. Suppose f: D — R and g € D. f is said to have a relative
mazimum at xo if there is a 6 > 0 such that f(x) < f(xo) for all x € (zg —
0,z0 +0) N D. f has a relative minimum at zo if —f has a relative maximum
at xg. If f has either a relative maximum or a relative minimum at zq, then it
is said that f has a relative extreme value at xg.

The absolute mazimum of f occurs at xo if f(xo) > f(z) for all x € D. The
definitions of absolute minimum and absolute extreme are analogous.

Examples like f(z) = z on (0,1) show that even the nicest functions need
not have relative extrema. Corollary 12.4 shows that if D is compact, then any
continuous function defined on D assumes both an absolute maximum and an
absolute minimum on D.

Theorem 14.7. Suppose [ : (a,b) — R is differentiable. If f has a relative
extreme value at xg, then f'(xo) = 0.

Proof. Suppose f(z¢) is a relative maximum value of f. Then there must be a
4 > 0 such that f(z) < f(xo) whenever z € (xg— d,29+9). Since f'(zo) exists,

z € (xg—0,x0) = MSO = f'(z0) = limMSO
= %o alzo T — To
(7)
and
x € (xp,z9 +0) = M >0 = f'(z0) = lim f(z) = f(wo) > 0.
T — o zlzg X — T

Combining (7) and (8) shows f/(zg) = 0.
If f(zo) is a relative minimum value of f, apply the previous argument to
—f. |

Theorem 14.7 is, of course, the basis for much of a beginning calculus course.
If f:[a,b] — R, then the extreme values of f occur at points of the set

C={z€(a,b): f'(z) =0} U{z € [a,b] : f'(z) does not exist}.

The elements of C' are often called the critical points of f on [a,b]. To find the
maximum and minimum values of f on [a,b], it suffices to find its maximum
and minimum on the smaller set C.

Problem 26. If f is defined on an open set containing xg, the symmetric
derivative of f at xzq is defined as

h) — —h
£*(a0) = lim f(xo + )2hf($0 ).

Prove that if f'(x) exists, then so does f*(x). Is the converse true?



