14 Differentiation

Definition 14.1. Let f be a function on a neighborhood of x_0 . f is differentiable at x_0 with value $f'(x)$ if

$$
f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.
$$

Define $D(f) = \{x : f'(x) \text{ exists}\}.$

The standard notations for the derivative will be used; e.g., $f'(x)$, $\frac{df(x)}{dx}$, $Df(x)$, etc.

Another way of stating this definition is to note that if $x_0 \in D(f)$, then

$$
f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.
$$

This can be interpreted in the standard way as the limiting slope of the secant line as the points of intersection approach each other.

Example 14.1. If $f(x) = c$ for some $c \in \mathbb{R}$, then

$$
\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0.
$$

So, $f'(x) = 0$ everywhere.

Example 14.2. If $f(x) = x$, then

$$
\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{x_0 + h - x_0}{h} = \lim_{h \to 0} \frac{h}{h} = 1.
$$

So, $f'(x) = 1$ everywhere.

Theorem 14.1. For any function f , $D(f) \subset C(f)$.

Proof. Suppose $x_0 \in D(f)$. Then

$$
\lim_{x \to x_0} |f(x) - f(x_0)| = \lim_{x \to x_0} \left| \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \right|
$$

= $f'(x_0) \quad 0 = 0.$

This shows $\lim_{x\to x_0} f(x) = f(x_0)$, and $x_0 \in C(f)$.

Example 14.3. The function $f(x) = |x|$ is continuous on R, but

$$
\lim_{h \downarrow 0} \frac{f(0+h) - f(0)}{h} = 1 = -\lim_{h \uparrow 0} \frac{f(0+h) - f(0)}{h},
$$

so $f'(0)$ fails to exist.

 \Box

Theorem 14.1 and Example 14.3 show that differentiability is a strictly stronger condition than continuity. For a long time most mathematicians thought that every continuous function must certainly be differentiable at some point. In 1887, Weierstrass constructed a function continuous on $\mathbb R$ which is differentiable nowhere. It has since been proved that the "typical" continuous function is nowhere differentiable.

Theorem 14.2. Suppose *f* and *g* are functions such that $x_0 \in D(f) \cap D(g)$.

- (a) $x_0 \in D(f+g)$ and $(f+g)'(x_0) = f'(x_0) + g'(x_0)$.
- (b) If $a \in \mathbb{R}$, then $x_0 \in D(af)$ and $(af)'(x_0) = af'(x_0)$.
- (c) $x_0 \in D(fg)$ and $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$.
- (d) If $g(x_0) \neq 0$, then $x_0 \in D(f/q)$ and

$$
\left(\frac{f}{g}\right)(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}.
$$

Proof. (a)

$$
\lim_{h \to 0} \frac{(f+g)(x_0+h) - (f+g)(x_0)}{h}
$$
\n
$$
= \lim_{h \to 0} \frac{f(x_0+h) + g(x_0+h) - f(x_0) - g(x_0)}{h}
$$
\n
$$
= \lim_{h \to 0} \left(\frac{f(x_0+h) - f(x_0)}{h} + \frac{g(x_0+h) - g(x_0)}{h} \right) = f'(x_0) + g'(x_0)
$$

(b)

$$
\lim_{h \to 0} \frac{(af)(x_0 + h) - (af)(x_0)}{h} = a \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = af'(x_0)
$$

$$
\left(\mathrm{c}\right)
$$

$$
\lim_{h \to 0} \frac{(fg)(x_0 + h) - (fg)(x_0)}{h} = \lim_{h \to 0} \frac{f(x_0 + h)g(x_0 + h) - f(x_0)g(x_0)}{h}
$$

Now, "slip a 0" into the numerator and factor the fraction.

$$
= \lim_{h \to 0} \frac{f(x_0 + h)g(x_0 + h) - f(x_0)g(x_0 + h) + f(x_0)g(x_0 + h) - f(x_0)g(x_0)}{h}
$$

$$
= \lim_{h \to 0} \left(\frac{f(x_0 + h) - f(x_0)}{h} g(x_0 + h) + f(x_0) \frac{g(x_0 + h) - g(x_0)}{h} \right)
$$

Finally, use the definition of the derivative and the continuity of *f* and *g* at *x*0.

$$
= f'(x_0)g(x_0) + f(x_0)g'(x_0)
$$

(d) It will be proved that if $g(x_0) \neq 0$, then $(1/g)'(x_0) = -g'(x_0)/(g(x_0))^2$. This statement, combined with (c), yields (d).

$$
\lim_{h \to 0} \frac{(1/g)(x_0 + h) - (1/g)(x_0)}{h} = \lim_{h \to 0} \frac{\frac{1}{g(x_0 + h)} - \frac{1}{g(x_0)}}{h}
$$

$$
= \lim_{h \to 0} \frac{g(x_0) - g(x_0 + h)}{h} \frac{1}{g(x_0 + h)g(x_0)}
$$

$$
= -\frac{g'(x_0)}{(g(x_0)^2)}
$$

Plug this into (c) to see

$$
\left(\frac{f}{g}\right)'(x_0) = \left(f\frac{1}{g}\right)'(x_0)
$$

= $f'(x_0)\frac{1}{g(x_0)} + f(x_0)\frac{-g'(x_0)}{(g(x_0))^2}$
= $\frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$.

 \Box

Combining Examples 14.1 and 14.2 with Theorem 14.2, the following theorem is immediate.

Theorem 14.3. A rational function is differentiable at every point of its domain.

Theorem 14.4 (Chain Rule). If *f* and *g* are functions such that $x_0 \in D(f)$ and $f(x_0) \in D(g)$, then $x_0 \in D(g \circ f)$ and $(g \circ f)'(x_0) = g' \circ f(x_0)f'(x_0)$.

Proof. Let $y_0 = f(x_0)$. By assumption, there is an open interval *J* containing $f(x_0)$ such that *g* is defined on *J*. Since *J* is open and $x_0 \in C(f)$, there is an open interval *I* containing x_0 such that $f(I) \subset J$.

Define $h: J \to \mathbb{R}$ by

$$
h(y) = \begin{cases} \frac{g(y) - g(y_0)}{y - y_0} - g'(y_0), & y \neq y_0 \\ 0, & y = y_0 \end{cases}
$$

Since $y_0 \in D(f)$, we see

$$
\lim_{y \to y_0} h(y) = \lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} - g'(y_0) = g'(y_0) - g'(y_0) = 0 = h(0),
$$

so $y_0 \in C(h)$. Now, $x_0 \in C(f)$ and $f(x_0) = y_0 \in C(h)$, so Theorem 10.6 implies $x_0 \in C(h \circ f)$. In particular

$$
\lim_{x \to x_0} h \circ f(x) = 0. \tag{5}
$$

.

Section 14: Differentiation 52

From the definition of $h \circ f$ for $x \in I$ with $f(x) \neq f(x_0)$, we can solve for

$$
g \circ f(x) - g \circ f(x_0) = (h \circ f(x) + g' \circ f(x_0))(f(x) - f(x_0)).
$$
 (6)

Notice that (6) is also true when $f(x) = f(x_0)$. Divide both sides of (6) by $x - x_0$, and use (5) to obtain

$$
\lim_{x \to x_0} \frac{g \circ f(x) - g \circ f(x_0)}{x - x_0} = \lim_{x \to x_0} (h \circ f(x) + g' \circ f(x_0)) \frac{f(x) - f(x_0)}{x - x_0}
$$

$$
= (0 + g' \circ f(x_0)) f'(x_0)
$$

$$
= g' \circ f(x_0) f'(x_0).
$$

Theorem 14.5. Suppose $f : [a, b] \to \mathbb{R}$ is continuous and invertible. If $x_0 \in$ $D(f)$ and $f'(x_0) \neq 0$ for some $x_0 \in (a, b)$, then $f(x_0) \in D(f^{-1})$ and $(f^{-1})'(f(x_0)) =$ $1/f'(x_0)$.

Proof. Let $y_0 = f(x_0)$ and suppose y_n is any sequence in $f([a, b]) \setminus \{y_0\}$ converging to y_0 and $x_n = f^{-1}(y_n)$. By Theorem 12.5, f^{-1} is continuous, so

$$
x_0 = f^{-1}(y_0) = \lim_{n \to \infty} f^{-1}(y_n) = \lim_{n \to \infty} x_n.
$$

Therefore,

$$
\lim_{n \to \infty} \frac{f^{-1}(y_n) - f^{-1}(y_0)}{y_n - y} = \lim_{n \to \infty} \frac{x_n - x_0}{f(x_n) - f(x_0)} = \frac{1}{f'(x_0)}.
$$

Example 14.4. It follows easily from Theorem 14.2 that $f(x) = x^3$ is differentriable everywhere with $f'(x) = 3x^2$. Define $g(x) = \sqrt[3]{x}$. Then $g(x) = f^{-1}(x)$. Suppose $g(y_0) = x_0$ for some $y_0 \in \mathbb{R}$. According to Theorem 14.5,

$$
g'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{3x_0^2} = \frac{1}{3(g(y_0))^2} = \frac{1}{3(\sqrt[3]{y_0})^2} = \frac{1}{3y_0^{2/3}}.
$$

In the same manner as Example 14.4, the following corollary can be proved.

Corollary 14.6. Suppose $q \in \mathbb{Q}$, $f(x) = x^q$ and *D* is the domain of *f*. Then $f'(x) = qx^{q-1}$ on the set

$$
\begin{cases} D, & when \ q \ge 1 \\ D \setminus \{0\}, & when \ q < 1 \end{cases}.
$$

As is learned in calculus, the derivative is a powerful tool for determining the behavior of functions. The following theorems form the basis for much of differential calculus. First, we state a few familiar definitions.

 \Box

Definition 14.2. Suppose $f: D \to \mathbb{R}$ and $x_0 \in D$. *f* is said to have a *relative maximum at* x_0 *if there is a* $\delta > 0$ such that $f(x) \leq f(x_0)$ for all $x \in (x_0 \delta, x_0 + \delta$) ∩ *D*. *f* has a *relative minimum at* x_0 if $-f$ has a relative maximum at x_0 . If f has either a relative maximum or a relative minimum at x_0 , then it is said that *f* has a relative extreme value at *x*0.

The absolute maximum of *f* occurs at x_0 if $f(x_0) \ge f(x)$ for all $x \in D$. The definitions of absolute minimum and absolute extreme are analogous.

Examples like $f(x) = x$ on $(0, 1)$ show that even the nicest functions need not have relative extrema. Corollary 12.4 shows that if *D* is compact, then any continuous function defined on *D* assumes both an absolute maximum and an absolute minimum on *D*.

Theorem 14.7. Suppose $f : (a, b) \rightarrow \mathbb{R}$ is differentiable. If *f* has a relative extreme value at x_0 , then $f'(x_0)=0$.

Proof. Suppose $f(x_0)$ is a relative maximum value of f. Then there must be a $\delta > 0$ such that $f(x) \leq f(x_0)$ whenever $x \in (x_0 - \delta, x_0 + \delta)$. Since $f'(x_0)$ exists,

$$
x \in (x_0 - \delta, x_0) \implies \frac{f(x) - f(x_0)}{x - x_0} \le 0 \implies f'(x_0) = \lim_{x \uparrow x_0} \frac{f(x) - f(x_0)}{x - x_0} \le 0 \tag{7}
$$

and

$$
x \in (x_0, x_0 + \delta) \implies \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \implies f'(x_0) = \lim_{x \downarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.
$$
\n(8)

Combining (7) and (8) shows $f'(x_0) = 0$.

If $f(x_0)$ is a relative minimum value of f, apply the previous argument to −*f*. П

Theorem 14.7 is, of course, the basis for much of a beginning calculus course. If $f : [a, b] \to \mathbb{R}$, then the extreme values of f occur at points of the set

$$
C = \{x \in (a, b) : f'(x) = 0\} \cup \{x \in [a, b] : f'(x) \text{ does not exist}\}.
$$

The elements of *C* are often called the critical points of *f* on [*a, b*]. To find the maximum and minimum values of f on $[a, b]$, it suffices to find its maximum and minimum on the smaller set *C*.

Problem 26. If f is defined on an open set containing x_0 , the symmetric derivative of f at x_0 is defined as

$$
f^{s}(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}.
$$

Prove that if $f'(x)$ exists, then so does $f^{s}(x)$. Is the converse true?