15 Differentiable Functions

Definition 15.1. The function f is differentiable on an open interval I if $I \subset D(f)$. If f is differentiable on its domain, then it is said to be differentiable. In this case, the function f' is called the *derivative* of f.

Lemma 15.1 (Rolle's Theorem). If $f : [a,b] \to \mathbb{R}$ is continuous on [a,b], differentiable on (a,b) and f(a) = 0 = f(b), then there is a $c \in (a,b)$ such that f'(c) = 0.

Proof. Since [a, b] is compact, Corollary 12.4 implies the existence of $x_m, x_M \in [a, b]$ such that $f(x_m) \leq f(x) \leq f(x_M)$ for all $x \in [a, b]$. If $f(x_m) = f(x_M)$, then f is constant on [a, b] and any $c \in (a, b)$ satisfies the lemma. Otherwise, either $f(x_m) < 0$ or $f(x_M) > 0$. If $f(x_m) < 0$, then $x_m \in (a, b)$ and Theorem 14.7 implies $f'(x_m) = 0$. If $f(x_M) > 0$, then $x_M \in (a, b)$ and Theorem 14.7 implies $f'(x_M) = 0$.

Theorem 15.2 (Cauchy Mean Value Theorem). ⁴ If $f : [a,b] \to \mathbb{R}$ and $g : [a,b] \to \mathbb{R}$ are such that f and g are continuous on [a,b] and differentiable on (a,b), then there is a $c \in (a,b)$ such that

$$g'(c)(f(b) - f(a)) = f'(c)(g(b) - g(a)).$$

Proof. Let

$$h(x) = (g(b) - g(a))(f(a) - f(x)) + (g(x) - g(a))(f(b) - f(a)).$$

Then h is continuous on [a, b] and differentiable on (a, b) with h(a) = h(b) = 0. Theorem 15.1 yields a $c \in (a, b)$ such that h'(c) = 0. Then

$$0 = h'(c) = -(g(b) - g(a))f'(c) + g'(c)(f(b) - f(a))$$

$$\implies g'(c)(f(b) - f(a)) = f'(c)(g(b) - g(a)).$$

Corollary 15.3 (Mean Value Theorem). If $f : [a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b), then there is $a \in (a,b)$ such that f(b)-f(a) = f'(c)(b-a).

Proof. Let g(x) = x in Theorem 15.2.

Theorem 15.4. Suppose $f : (a,b) \to \mathbb{R}$ is a differentiable function. f is increasing on (a,b) iff $f'(x) \ge 0$ for all $x \in (a,b)$.

Proof. Choose $\alpha, \beta \in (a, b)$ with $\alpha < \beta$. According to Corollary 15.3, there is a $c \in (\alpha, \beta)$ such that

$$f(\beta) - f(\alpha) = f'(c)(\beta - \alpha) \ge 0.$$

⁴Theorem 15.2 is also often called the "Generalized Mean Value Theorem."

Figure 9: This is a "picture proof" of Corollary 15.3.

Corollary 15.5. Let $f : (a,b) \to \mathbb{R}$ be a differentiable function. f is constant iff f'(x) = 0 for all $x \in (a,b)$.

Theorem 15.6 (Darboux's Theorem). If f is differentiable on an open set containing [a, b] and γ is between f'(a) and f'(b), then there is a $c \in [a, b]$ such that $f'(c) = \gamma$.

Proof. If f'(a) = f'(b), then c = a satisfies the theorem. So, we may as well assume $f'(a) \neq f'(b)$. There is no generality lost in assuming f'(a) < f'(b), for, otherwise, we just replace f with g = -f.

Figure 10: This could be the function h of Theorem 15.6.

Let $h(x) = f(x) - \gamma(x - \alpha)$ so that D(f) = D(h) and $h'(x) = f'(x) - \gamma$. In particular, this implies h'(a) < 0 < h'(b). Because of this, there must be an h > 0 small enough so that

$$\frac{f(a+h) - f(a)}{h} < 0 \implies f(a+h) < f(a)$$

and

$$\frac{f(b) - f(b-h)}{h} > 0 \implies f(b-h) < f(b)$$

(See Figure 10.) In light of these two inequalities and Theorem 12.4, there must be a $c \in (a, b)$ such that $f(c) = \text{glb} \{f(x) : x \in [a, b]\}$. Now Theorem 14.7 gives $0 = h'(c) = f'(c) - \gamma$, and the theorem follows.