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16 Applications of the Mean Value Theorem

For the following sections, we require the standard idea of higher order deriva-
tives. If n ∈ N, then the n’th order derivative of f at x0 is written f (n)(x0). We
also use the convention that f (0) = f .

16.1 Taylor’s Theorem

The motivation behind Taylor’s theorem is the attempt to approximate a func-
tion f near a number a by a polynomial. The polynomial of degree 0 which
does the best job is clearly p0(x) = f(a). The best polynomial of degree 1 is the
tangent line to the graph of the function p1(x) = f(a)+f ′(a)(x−a). Continuing
in this way, we approximate f near a by the polynomial pn of degree n such
that f (k)(a) = p

(k)
n (a) for k = 0, 1, . . . , n. A simple induction argument shows

that

pn(x) =
n∑
k=0

f (k)(a)
k!

(x− a)k. (9)

This is the well-known Taylor polynomial of f at a.
The fact which makes the Taylor polynomial important is that in many cases

it is possible to determine how large n must be to achieve a desired accuracy in
the approximation of f by pn. This is accomplished by using Taylor’s Theorem,
which is also known as the Extended Mean Value Theorem.

Theorem 16.1 (Taylor’s Theorem). If f is a function such that f, f ′, . . . , f (n)

are continuous on [a, b] and f (n+1) exists on (a, b), then there is a c ∈ (a, b) such
that

f(b) =
n∑
k=0

f (k)(a)
k!

(b− a)k +
f (n+1)(c)
(n+ 1)!

(b− a)n+1.

Proof. Let the constant α be defined by

f(b) =
n∑
k=0

f (k)(a)
k!

(b− a)k +
α

(n+ 1)!
(b− a)n+1 (10)

and define

F (x) = f(b)−
(

n∑
k=0

f (k)(x)
k!

(b− x)k +
α

(n+ 1)!
(b− x)n+1

)
.

From (10) we see that F (a) = 0. Direct substitution in the definition of F shows
that F (b) = 0. From the assumptions in the statement of the theorem, it is easy
to see that F is continuous on [a, b] and differentiable on (a, b). An application
of Rolle’s Theorem yields a c ∈ (a, b) such that

0 = F ′(c) = −
(
f (n+1)(c)

n!
(b− c)n − α

n!
(b− c)n

)
=⇒ α = f (n+1)(c),
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Figure 11: Here are several of the Taylor polynomials for the function f(x) =
cos(x) graphed along with f .

as desired.

Now, suppose f is defined on an open interval I with a, x ∈ I. If f is n+ 1
times differentiable on I, then Theorem 16.1 implies there is a c between a and
x such that

f(x) = pn(x) +Rf (n, x, a),

where Rn(c, x, a) = f(n+1)(c)
(n+1)! (x− a)n+1 is the error in the approximation.

Example 16.1. Let f(x) = cos(x). Suppose we want to approximate f(2) to 5
decimal places of accuracy. Since it’s an easy point to work with, we’ll choose
a = 0. Then, for some c ∈ (0, 2),

|Rf (n, 2, 0)| = |f
(n+1)(c)|

(n+ 1)!
2n+1 ≤ 2n+1

(n+ 1)!
. (11)

A bit of experimentation with a calculator shows that n = 12 is the smallest n
such that the right-hand side of (11) is less than 5 × 10−6. After doing some
arithmetic, it follows that

p12(2) = 1− 22

2!
+

24

4!
− 26

6!
+

28

8!
− 210

10!
+

212

12!
= −27809

66825
≈ −0.41614.

is a 5 decimal place approximation to cos(2).
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16.2 L’Hôspital’s Rules and Indeterminate Forms

According to Theorem 8.3,

lim
x→a

f(x)
g(x)

=
limx→a f(x)
limx→a g(x)

whenever limx→a f(x) and limx→a g(x) both exist and limx→a g(x) 6= 0. But, it
is easy to find examples where both limx→a f(x) = 0 and limx→a g(x) = 0 and
limx→a f(x)/g(x) exists, as well as similar examples where limx→a f(x)/g(x)
fails to exist. Because of this, such a limit problem is said to be in the inde-
terminate form 0/0. The following theorem allows us to determine many such
limits.

Theorem 16.2 (Easy L’Hôspital’s Rule). Suppose f and g are each contin-
uous on [a, b], differentiable on (a, b) and f(b) = g(b) = 0. If g′(x) 6= 0 on (a, b)
and limx↑b f ′(x)/g′(x) = L, where L could be infinite, then limx↑b f(x)/g(x) =
L.

Proof. Let x ∈ [a, b), so f and g are continuous on [x, b] and differentiable
on (x, b). Cauchy’s Mean Value Theorem, Theorem 15.2, implies there is a
c(x) ∈ (x, b) such

f ′(c(x))g(x) = g′(c(x))f(x) =⇒ f(x)
g(x)

=
f ′(c(x))
g′(c(x))

.

Since x < c(x) < b, it follows that limx↑b c(x) = c. This shows that

L = lim
x↑b

f ′(x)
g′(x)

= lim
x↑b

f ′(c(x))
g′(c(x))

= lim
x↑b

f(x)
g(x)

.

Several things should be noted about this proof. First, there is nothing spe-
cial about the left-hand limit used in the statement of the theorem. It could just
as easily be written in terms of the right-hand limit. Second, if limx→a f(x)/g(x)
is not of the indeterminate form 0/0, then applying L’Hôspital’s rule will give
a wrong answer. To see this, consider

lim
x→0

x

x+ 1
= 0 6= 1 = lim

x→0

1
1
.

Corollary 16.3. Suppose f and g are differentiable on (a,∞) and limx→∞ f(x) =
limx→∞ g(x) = 0. If g′(x) 6= 0 on (a,∞) and limx→∞ f ′(x)/g′(x) = L, where L
could be infinite, then limx→∞ f(x)/g(x) = L.

Proof. There is no generality lost by assuming a > 0. Let

F (x) =

{
f(1/x), x ∈ [a,∞)
0, x = 0

and G(x) =

{
g(1/x), x ∈ [a,∞)
0, x = 0

.
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Then

lim
x↓0

F (x) = lim
x→∞

f(x) = 0 = lim
x→∞

g(x) lim
x↓0

G(x),

so both F and G are continuous at 0. It follows that both F and G are con-
tinuous on [0, 1/a] and differentiable on (0, 1/a) with G′(x) = −g′(x)/x2 6= 0
on (0, 1/a) and limx↓0 F ′(x)/G′(x) = limx→∞ f ′(x)/g′(x) = L. The rest follows
from Theorem 16.2.

The other standard indeterminate form is when limx→∞ f(x) =∞ = limx→∞ g(x).
This is called an ∞/∞ indeterminate form. This is handled by the following
theorem.

Theorem 16.4 (Hard L’Hôspital’s Rule). Suppose that f and g are differ-
entiable on (a,∞) and g′(x) 6= 0 on (a,∞). If

lim
x→∞

f(x) = lim
x→∞

g(x) =∞ and lim
x→∞

f(x)
g(x)

= L ∈ R ∪ {−∞,∞},

then

lim
x→∞

f(x)
g(x)

= L.

Proof. First, suppose L ∈ R and let ε > 0. Choose a1 > a large enough so that∣∣∣∣f ′(x)
g′(x)

− L
∣∣∣∣ < ε, ∀x > a1. (12)

Since limx→∞ f(x) = ∞ = limx→∞ g(x), we can assume there is an a2 > a1

such that both f(x) > 0 and g(x) > 0 when x > a2. Finally, choose a3 > a2

such that whenever x > a3, then f(x) > f(a2) and g(x) > g(a2).
Let x > a3 and apply Cauchy’s Mean Value Theorem, Theorem 15.2, to f

and g on [a2, x] to find a c(x) ∈ (a2, x) such that

f ′(c(x))
g′(c(x))

=
f(x)− f(a2)
g(x)− g(a2)

=
f(x)

(
1− f(a2)

f(x)

)
g(x)

(
1− g(a2)

g(x)

) . (13)

If

h(x) =
1− g(a2)

g(x)

1− f(a2)
f(x)

,

then (13) implies

f(x)
g(x)

=
f ′(c(x))
g′(c(x))

h(x).



Section 15: Differentiable Functions 60

Since limx→∞ h(x) = 1, there is an a4 > a3 such that whenever x > a4, then
|h(x)− 1| < ε. If x > a4, then∣∣∣∣f(x)

g(x)
− L

∣∣∣∣ =
∣∣∣∣f ′(c(x))
g′(c(x))

h(x)− L
∣∣∣∣

=
∣∣∣∣f ′(c(x))
g′(c(x))

h(x)− Lh(x) + Lh(x)− L
∣∣∣∣

≤
∣∣∣∣f ′(c(x))
g′(c(x))

− L
∣∣∣∣ |h(x)|+ |L||h(x)− 1|

< ε(1 + ε) + |L|ε = (1 + |L|+ ε)ε.

Therefore limx→∞ f(x)/g(x) = L.
The case when L = ∞ is done similarly by first choosing a B > 0 and

adjusting (13) so that f ′(x)/g′(x) > B when x > a1. A similar adjustment is
necessary when L = −∞.

There is a companion corollary to Theorem 16.4 which is proved in the same
way as Corollary 16.3.

Corollary 16.5. Suppose that f and g are continuous on [a, b] and differen-
tiable on (a, b) with g′(x) 6= 0 on (a, b). If

lim
x↓a

f(x) = lim
x↓a

g(x) =∞ and lim
x↓a

f(x)
g(x)

= L ∈ R ∪ {−∞,∞},

then

lim
x↓a

f(x)
g(x)

= L.


