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16 Applications of the Mean Value Theorem

For the following sections, we require the standard idea of higher order deriva-
tives. If n € N, then the n’th order derivative of f at zq is written f(™)(z). We
also use the convention that f(©) = f.

16.1 Taylor’s Theorem

The motivation behind Taylor’s theorem is the attempt to approximate a func-
tion f near a number a by a polynomial. The polynomial of degree 0 which
does the best job is clearly po(x) = f(a). The best polynomial of degree 1 is the
tangent line to the graph of the function p1(z) = f(a)+ f'(a)(z—a). Continuing
in this way, we approximate f near a by the polynomial p, of degree n such
that f*)(a) = psl )( ) for k =0,1,...,n. A simple induction argument shows
that
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This is the well-known Taylor polynomial of f at a.

The fact which makes the Taylor polynomial important is that in many cases
it is possible to determine how large n must be to achieve a desired accuracy in
the approximation of f by p,. This is accomplished by using Taylor’s Theorem,
which is also known as the Extended Mean Value Theorem.

Theorem 16.1 (Taylor’s Theorem). If f is a function such that f, f', ..., f™
are continuous on [a,b] and 1) exists on (a,b), then there is a c € (a,b) such
that
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Proof. Let the constant o be defined by
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k=0
and define

"R (g a
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From (10) we see that F'(a) = 0. Direct substitution in the definition of F' shows
that F(b) = 0. From the assumptions in the statement of the theorem, it is easy
to see that F is continuous on [a, b] and differentiable on (a, ). An application
of Rolle’s Theorem yields a ¢ € (a,b) such that
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Figure 11: Here are several of the Taylor polynomials for the function f(z) =
cos(z) graphed along with f.

as desired. 0

Now, suppose f is defined on an open interval I with a,z € I. If fisn+1
times differentiable on I, then Theorem 16.1 implies there is a ¢ between a and
x such that

f(.l?) = pn(x) + Rf(n’x’a)v

where Ry (c,z,a) = %
Ezample 16.1. Let f(x) = cos(z). Suppose we want to approximate f(2) to 5
decimal places of accuracy. Since it’s an easy point to work with, we’ll choose
a = 0. Then, for some c € (0,2),

_ ),

(x — a)"*1! is the error in the approximation.

2n+1

(11)

A bit of experimentation with a calculator shows that n = 12 is the smallest n
such that the right-hand side of (11) is less than 5 x 107%. After doing some
arithmetic, it follows that
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is a 5 decimal place approximation to cos(2).
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16.2 L’Hospital’s Rules and Indeterminate Forms

According to Theorem 8.3,
f@) _ limg_a f(x)

lim = —
s g(2)  Tima—a g(@)

whenever lim,_,, f(z) and lim,_,, g(x) both exist and lim,_,, g(x) # 0. But, it
is easy to find examples where both lim,_., f(z) = 0 and lim,_., g(z) = 0 and
lim,_, f(z)/g(x) exists, as well as similar examples where lim,_,, f(z)/g(x)
fails to exist. Because of this, such a limit problem is said to be in the inde-
terminate form 0/0. The following theorem allows us to determine many such
limits.

Theorem 16.2 (Easy L’Héspital’s Rule). Suppose f and g are each contin-
uous on [a,bl], differentiable on (a,b) and f(b) = g(b) =0. If ¢'(x) # 0 on (a,b)
and limgp f'(2)/g'(x) = L, where L could be infinite, then limgyy, f(x)/g(x) =
L.

Proof. Let x € [a,b), so f and g are continuous on [z,b] and differentiable
on (z,b). Cauchy’s Mean Value Theorem, Theorem 15.2, implies there is a
c(x) € (x,b) such

: el ) s L@ Ple@)
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Since z < ¢(z) < b, it follows that lim,p ¢(x) = ¢. This shows that
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Several things should be noted about this proof. First, there is nothing spe-
cial about the left-hand limit used in the statement of the theorem. It could just
as easily be written in terms of the right-hand limit. Second, if lim,_,, f(z)/g(x)
is not of the indeterminate form 0/0, then applying L'Hospital’s rule will give
a wrong answer. To see this, consider

xT
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Corollary 16.3. Suppose f and g are differentiable on (a,00) andlim, . f(z) =
limg; oo g(x) =0. If ¢'(x) # 0 on (a,00) and lim,_. f'(x)/g'(x) = L, where L
could be infinite, then lim, . f(x)/g(x) = L.

Proof. There is no generality lost by assuming a > 0. Let

F(z):{gu/x), P00 g G - {gum, relooo),



Section 15: Differentiable Functions 59

Then

11{101 F(z)= lim f(z)=0= lim g(z) hfl& G(x),
so both F' and G are continuous at 0. It follows that both F and G are con-
tinuous on [0, 1/a] and differentiable on (0,1/a) with G'(z) = —¢'(z)/2% # 0
on (0,1/a) and lim, o F'(x)/G'(z) = lim,—o f'(x)/¢'(x) = L. The rest follows
from Theorem 16.2. O

The other standard indeterminate form is when lim, - f(x) = co = lim,—,+ g(x).
This is called an co/oco indeterminate form. This is handled by the following
theorem.

Theorem 16.4 (Hard L’Hospital’s Rule). Suppose that f and g are differ-
entiable on (a,00) and g'(x) # 0 on (a,0). If

zh_)rgo flx) = xll)n;og(x) =00 and xh_)Irolo % =L eRU{—o0,0},
then
. fx)
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Proof. First, suppose L € R and let € > 0. Choose a; > a large enough so that

f'(x)
g'(x)

L’ <e, Vr>a. (12)

Since lim, o f(z) = 0o = lim,_ g(x), we can assume there is an as > a
such that both f(z) > 0 and g(z) > 0 when = > ao. Finally, choose as > a
such that whenever z > ag, then f(x) > f(a2) and g(x) > g(asz).

Let z > a3 and apply Cauchy’s Mean Value Theorem, Theorem 15.2, to f
and g on [ag, z] to find a ¢(x) € (a2, ) such that

- - (13)
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then (13) implies
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Since lim, o h(z) = 1, there is an ay > a3 such that whenever & > ay4, then
|h(z) — 1] <e. If > a4, then

%) ) L’ VO . L‘

—L

< ()| + |L[[A(x) =1

<e(l+e)+|Lle=1Q+|L|+¢)e.

Therefore lim,_, f(x)/g(z) = L.

The case when L = oo is done similarly by first choosing a B > 0 and
adjusting (13) so that f'(z)/¢’(x) > B when x > ay. A similar adjustment is
necessary when L = —oo. O

There is a companion corollary to Theorem 16.4 which is proved in the same
way as Corollary 16.3.

Corollary 16.5. Suppose that f and g are continuous on [a,b] and differen-
tiable on (a,b) with ¢’'(x) #0 on (a,b). If

f(z)

li =i = d lim—+=LeceRU{—0c0, ,
i f(z) = limg(z) =00 and Tim L2 {~oc, 00}
then
lim _f(x) =
zla g(x)



