16 Applications of the Mean Value Theorem

For the following sections, we require the standard idea of higher order derivatives. If $n \in \mathbb{N}$, then the *n*'th order derivative of f at x_0 is written $f^{(n)}(x_0)$. We also use the convention that $f^{(0)} = f$.

16.1 Taylor's Theorem

The motivation behind Taylor's theorem is the attempt to approximate a function *f* near a number *a* by a polynomial. The polynomial of degree 0 which does the best job is clearly $p_0(x) = f(a)$. The best polynomial of degree 1 is the tangent line to the graph of the function $p_1(x) = f(a) + f'(a)(x-a)$. Continuing in this way, we approximate f near a by the polynomial p_n of degree n such that $f^{(k)}(a) = p_n^{(k)}(a)$ for $k = 0, 1, \ldots, n$. A simple induction argument shows that

$$
p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k.
$$
 (9)

This is the well-known Taylor polynomial of *f* at *a*.

The fact which makes the Taylor polynomial important is that in many cases it is possible to determine how large *n* must be to achieve a desired accuracy in the approximation of f by p_n . This is accomplished by using Taylor's Theorem, which is also known as the Extended Mean Value Theorem.

Theorem 16.1 (Taylor's Theorem). If *f* is a function such that $f, f',..., f^{(n)}$ are continuous on [a, b] and $f^{(n+1)}$ exists on (a, b) , then there is $a c \in (a, b)$ such that

$$
f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}.
$$

Proof. Let the constant α be defined by

$$
f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \frac{\alpha}{(n+1)!} (b-a)^{n+1}
$$
 (10)

and define

$$
F(x) = f(b) - \left(\sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (b-x)^k + \frac{\alpha}{(n+1)!} (b-x)^{n+1}\right).
$$

From (10) we see that $F(a) = 0$. Direct substitution in the definition of *F* shows that $F(b) = 0$. From the assumptions in the statement of the theorem, it is easy to see that *F* is continuous on $[a, b]$ and differentiable on (a, b) . An application of Rolle's Theorem yields a $c \in (a, b)$ such that

$$
0 = F'(c) = -\left(\frac{f^{(n+1)}(c)}{n!}(b-c)^n - \frac{\alpha}{n!}(b-c)^n\right) \implies \alpha = f^{(n+1)}(c),
$$

Figure 11: Here are several of the Taylor polynomials for the function $f(x) =$ $cos(x)$ graphed along with f .

as desired.

Now, suppose *f* is defined on an open interval *I* with $a, x \in I$. If *f* is $n + 1$ times differentiable on *I*, then Theorem 16.1 implies there is a *c* between *a* and *x* such that

$$
f(x) = p_n(x) + R_f(n, x, a),
$$

where $R_n(c, x, a) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - a)^{n+1}$ is the error in the approximation.

Example 16.1. Let $f(x) = \cos(x)$. Suppose we want to approximate $f(2)$ to 5 decimal places of accuracy. Since it's an easy point to work with, we'll choose $a = 0$. Then, for some $c \in (0, 2)$,

$$
|R_f(n,2,0)| = \frac{|f^{(n+1)}(c)|}{(n+1)!} 2^{n+1} \le \frac{2^{n+1}}{(n+1)!}.
$$
 (11)

A bit of experimentation with a calculator shows that $n = 12$ is the smallest n such that the right-hand side of (11) is less than 5×10^{-6} . After doing some arithmetic, it follows that

$$
p_{12}(2) = 1 - \frac{2^2}{2!} + \frac{2^4}{4!} - \frac{2^6}{6!} + \frac{2^8}{8!} - \frac{2^{10}}{10!} + \frac{2^{12}}{12!} = -\frac{27809}{66825} \approx -0.41614.
$$

is a 5 decimal place approximation to cos(2).

 \Box

16.2 L'Hˆospital's Rules and Indeterminate Forms

According to Theorem 8.3,

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}
$$

whenever $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist and $\lim_{x\to a} g(x) \neq 0$. But, it is easy to find examples where both $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = 0$ and $\lim_{x\to a} f(x)/g(x)$ exists, as well as similar examples where $\lim_{x\to a} f(x)/g(x)$ fails to exist. Because of this, such a limit problem is said to be in the indeterminate form 0*/*0. The following theorem allows us to determine many such limits.

Theorem 16.2 (Easy L'Hôspital's Rule). Suppose *f* and *g* are each continuous on [a, b], differentiable on (a, b) and $f(b) = g(b) = 0$. If $g'(x) \neq 0$ on (a, b) and $\lim_{x \uparrow b} f'(x)/g'(x) = L$, where *L* could be infinite, then $\lim_{x \uparrow b} f(x)/g(x) =$ *L*.

Proof. Let $x \in [a, b)$, so f and g are continuous on $[x, b]$ and differentiable on (x, b) . Cauchy's Mean Value Theorem, Theorem 15.2, implies there is a $c(x) \in (x, b)$ such

$$
f'(c(x))g(x) = g'(c(x))f(x) \implies \frac{f(x)}{g(x)} = \frac{f'(c(x))}{g'(c(x))}.
$$

Since $x < c(x) < b$, it follows that $\lim_{x \uparrow b} c(x) = c$. This shows that

$$
L = \lim_{x \uparrow b} \frac{f'(x)}{g'(x)} = \lim_{x \uparrow b} \frac{f'(c(x))}{g'(c(x))} = \lim_{x \uparrow b} \frac{f(x)}{g(x)}.
$$

Several things should be noted about this proof. First, there is nothing special about the left-hand limit used in the statement of the theorem. It could just as easily be written in terms of the right-hand limit. Second, if $\lim_{x\to a} f(x)/g(x)$ is not of the indeterminate form $0/0$, then applying L'Hôspital's rule will give a wrong answer. To see this, consider

$$
\lim_{x \to 0} \frac{x}{x+1} = 0 \neq 1 = \lim_{x \to 0} \frac{1}{1}.
$$

Corollary 16.3. Suppose *f* and *g* are differentiable on (a, ∞) and $\lim_{x\to\infty} f(x) =$ $\lim_{x\to\infty} g(x) = 0$. If $g'(x) \neq 0$ on (a,∞) and $\lim_{x\to\infty} f'(x)/g'(x) = L$, where L could be infinite, then $\lim_{x\to\infty} f(x)/g(x) = L$.

Proof. There is no generality lost by assuming $a > 0$. Let

$$
F(x) = \begin{cases} f(1/x), & x \in [a, \infty) \\ 0, & x = 0 \end{cases} \text{ and } G(x) = \begin{cases} g(1/x), & x \in [a, \infty) \\ 0, & x = 0 \end{cases}.
$$

Then

$$
\lim_{x \downarrow 0} F(x) = \lim_{x \to \infty} f(x) = 0 = \lim_{x \to \infty} g(x) \lim_{x \downarrow 0} G(x),
$$

so both *F* and *G* are continuous at 0. It follows that both *F* and *G* are continuous on $[0, 1/a]$ and differentiable on $(0, 1/a)$ with $G'(x) = -g'(x)/x^2 \neq 0$ on $(0, 1/a)$ and $\lim_{x \downarrow 0} F'(x)/G'(x) = \lim_{x \to \infty} f'(x)/g'(x) = L$. The rest follows from Theorem 16.2. \Box

The other standard indeterminate form is when $\lim_{x\to\infty} f(x) = \infty = \lim_{x\to\infty} g(x)$. This is called an ∞/∞ indeterminate form. This is handled by the following theorem.

Theorem 16.4 (Hard L'Hˆospital's Rule). Suppose that *f* and *g* are differentiable on (a, ∞) and $g'(x) \neq 0$ on (a, ∞) . If

$$
\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty \quad and \quad \lim_{x \to \infty} \frac{f(x)}{g(x)} = L \in \mathbb{R} \cup \{-\infty, \infty\},
$$

then

$$
\lim_{x \to \infty} \frac{f(x)}{g(x)} = L.
$$

Proof. First, suppose $L \in \mathbb{R}$ and let $\varepsilon > 0$. Choose $a_1 > a$ large enough so that

$$
\left|\frac{f'(x)}{g'(x)} - L\right| < \varepsilon, \ \forall x > a_1. \tag{12}
$$

Since $\lim_{x\to\infty} f(x) = \infty = \lim_{x\to\infty} g(x)$, we can assume there is an $a_2 > a_1$ such that both $f(x) > 0$ and $g(x) > 0$ when $x > a_2$. Finally, choose $a_3 > a_2$ such that whenever $x > a_3$, then $f(x) > f(a_2)$ and $g(x) > g(a_2)$.

Let $x > a_3$ and apply Cauchy's Mean Value Theorem, Theorem 15.2, to f and *g* on $[a_2, x]$ to find a $c(x) \in (a_2, x)$ such that

$$
\frac{f'(c(x))}{g'(c(x))} = \frac{f(x) - f(a_2)}{g(x) - g(a_2)} = \frac{f(x) \left(1 - \frac{f(a_2)}{f(x)}\right)}{g(x) \left(1 - \frac{g(a_2)}{g(x)}\right)}.
$$
\n(13)

 λ

If

$$
h(x) = \frac{1 - \frac{g(a_2)}{g(x)}}{1 - \frac{f(a_2)}{f(x)}},
$$

then (13) implies

$$
\frac{f(x)}{g(x)} = \frac{f'(c(x))}{g'(c(x))}h(x).
$$

Since $\lim_{x\to\infty} h(x) = 1$, there is an $a_4 > a_3$ such that whenever $x > a_4$, then $|h(x) - 1| < \varepsilon$. If $x > a_4$, then

$$
\left| \frac{f(x)}{g(x)} - L \right| = \left| \frac{f'(c(x))}{g'(c(x))} h(x) - L \right|
$$

\n
$$
= \left| \frac{f'(c(x))}{g'(c(x))} h(x) - Lh(x) + Lh(x) - L \right|
$$

\n
$$
\leq \left| \frac{f'(c(x))}{g'(c(x))} - L \right| |h(x)| + |L||h(x) - 1|
$$

\n
$$
< \varepsilon (1 + \varepsilon) + |L|\varepsilon = (1 + |L| + \varepsilon)\varepsilon.
$$

Therefore $\lim_{x\to\infty} f(x)/g(x) = L$.

The case when $L = \infty$ is done similarly by first choosing a $B > 0$ and adjusting (13) so that $f'(x)/g'(x) > B$ when $x > a_1$. A similar adjustment is necessary when $L = -\infty$. \Box

There is a companion corollary to Theorem 16.4 which is proved in the same way as Corollary 16.3.

Corollary 16.5. Suppose that *f* and *g* are continuous on [*a, b*] and differentiable on (a, b) with $g'(x) \neq 0$ on (a, b) . If

$$
\lim_{x \downarrow a} f(x) = \lim_{x \downarrow a} g(x) = \infty \quad and \quad \lim_{x \downarrow a} \frac{f(x)}{g(x)} = L \in \mathbb{R} \cup \{-\infty, \infty\},
$$

then

$$
\lim_{x \downarrow a} \frac{f(x)}{g(x)} = L.
$$