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Preface

In this book I present an analysis course which I have taught to first-
year graduate students at {he Universily of Wisconsio since 1962.

The course was developed for two reasons. The first was a belief that
one could present the basic techniques and theorems of analysis in one
year, with enough applications to make the subjeet interesting, in such
a way that students eould then specialize in any direction they choose.

The serond and perhaps even more important ane was the desire to do
away with the outmoded and misleading idea that analysis congista of
two distinct halves, '‘real variables” and “complex variables.” Tradi-
tionally (with some oversimplification) the Grst of these deals with
Lebesgue integration, with vanous types of convergenece, snd with the
puthologies exhibited by very discontinuous functions; whereas the second
one voncerns ilself only with those funetions that are as smooth ss can
be, namely, the holomorphic ones. That these two areas interaet most
intimately has of eourse baen well known for at least 60 years and is evi-
dent to anyone who is acquainted with current research. Nevertheless,
the standard enrrviculum in most American universities still containg a
yea¥ course in complex variables, followed by a year eourse in real varia-
bles, and usually neither of these courses acknowledges the existence of
the subject matter of the other,

I have made an effort to dempnstrate (he interplay among the various
parts of analysis, including some of the bagic idess from functional
anelysis. Here are a few examples, The Riesz representation theorem
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formula. 'They team up in the proof of Bunge’s theorem, from which
the homoldgy version of Cauchy’s theorem follows eagily. They com-
bine with Blaschke’s theorem on the zeros of bounded holomorphic fune-
tions to give a proof of the Miintz-Szasz theorem, which concerns approxi-
mation on an intexrval, 'The fact that L2 is a Hilbert space is used in the
proof of the Radon-Nikedym theorem, which leads to the theorem about
differentistion of Indefinily integrals (incidenially, differentiation seems
ta be unduly slighted in most modern texis), which in turn yields the
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ri Preface

existence of radial limits of bounded harmonic funetions. The theorems
of Plancherel and Canchy combined give & theorem of Paley and Wiener
which, in turn, i3 used in the Denjoy-Carleman theorem about infinitely
differentiable funetions on the real line. The maximum modulus theorem
gives information about linear transiormations on LP-gpaces.

Since most of the results presented here are quite classical (the navelty
lies in the arrangement, and some of the proofs are new), I have not
sttempted to document the source of every item. References are
gathered ai the end, in Notes and Comuments. They are not always lo
the original sources, but more often to more recent works where further
references can be foumd. In no case does the absence of a reference imply
any claim to originality on my part.

The prerequisite for this book is a good course in advanced calculus
(sot-theoretic manipulations, mefri¢c spsces, uniform continuity, and
iniform convergence). The first seven chapters of my estlier book
*Prineiples of Mathematical Analysis” furnish sufficient preparation.

Chapters 1 to 8 and 10 to 15 should be taken up in the order in which
they are presented. Chapter 9 ig nof referred 10 again until Chapler 19.
The last five ehapters are quite independent of each other, and probably
not &ll of them should be taken up in any ane year, There are over 350
prablems, some guite easy, s0me more challenging About half of these

hatta haan cgeimrad +n mtr flocaos at warine +1maa
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The students’ response to this course has been most gratifying, end I
have profited much from some of their comments. Notes taken by
Aaron Strauss and Stephen Fisher helped me grestly in the writing of the
finel manuseript. The text contains s number of improvements which
were suggested by lloward Conner, Bimon Ilellerstein, Marvin Knopp,
and K. 1. Stout. It is a pleasure to express my eincere thanks to them
for their generous asswiance,

Waller Rudin
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Prologue

The Exponential

Funetion

This is undoubtedly the most important function in mathematics, It
is defined, for every complex number #, by the formula

The seriesg {1} converges absolutely for every 2z and converges uniformly

on every bounded subset of the eomplex plane. Thus exp is & continuoeus
function. The absolute convergence of (1) shows that the computation

2 Z " Zm Z k:(n—k)v""‘b“"*" y etor

n={

ig correet. Il gives the important addition formata

(2) exp {a) exp (b) = exp (a -+ b),

valid for all complex numbers a and b,

We define the number ¢ to be exp (1), and shall uzually replace exp {(2)
by the customary shorter expression ¢°. Note that ¢ = exp (0) = 1,
by (1.

Theorem

(@) For every complex z we have ¢¢ &= 0,

(b} oxp 19 iz own derivativer exp’ (2) = cup (2).

(¢} The resiriciion of exp lo the real nzis iz @ monotonically increasing
postitve funciion, and

e — 0 g3 ®, = lasxr— —w,
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() There exisiy a povitive number v such thetl ev? = ¢ and such {hat
et = 1 4f and only if 2/ (2x3) 12 an integer.

(&} exp 18 a periodie function, with period 2xi.

{f) The mapping | — ¢* maps the real axis onio the unit circle,

(@) If w is a complex number and w 7 0, then w = ¢ for some 2,

FROOF By (2),¢*-¢* = ¢ = ¢ = 1. This implies (a). Next,

exp’(e) = Eﬂﬂp (2 - hi — exp (z) _ exp (2) E% ExXp {I;} -1

= exp ().
The first of the above equaliiies iz & matier of definition, the second
follows from (2}, and the third from (1), and (b) is proved.
That exp iz monotonically inereasing on the positive real axis, and
that e — @ agz— «, iz clear from (1). The nther assertions of {¢}
are congequencea of et -e™* = ],

For any real number £, (1) shows that ¢ is the complex conjugate
of e, Thus

[eit]? = gif - gl = gl . ot = pit—ii = g0 = 1,
or

(3) et = 1 (¢ real),

In other words, if { is real, ¢* lies on the umit circle, We define cos ¢,
sin ¢ to be the real and imaginary parts of e:

(4) cost = Re [e¥], 3in { = Im [¢%) (f real).

Ii we differentiate both sides of Euler's identity

{0} e = cosfl -+ ¢mni,

which s equivalent to (4), and if we apply (b), we obtain

cos’' { + 4sin' { = de* = — gint 4 d oo,
ao that

(6) e’ = — ain, gin' = coa.
The power series (1) yields the representation

7 ) S AT

@) cost=1-F b L.

Take { = 2, The terms of the series (7} then decrease in absolute
value (except for the first one) and their signs alternate. Henee
coe 2 is lesg than the sum of the firet three terms of (7), with { = 2;
thus coe 2 < ~}. Since cos ) = 1 and ens is & eontinuons real func-
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tion on the real axis, we conclude that there is & smallest positive
number g for which cos f; = 0. We define

{3} r = 2,
H follows from (3) and (5) that sin fp = +1. Sinee
gin’ () = cost > 0

on the segment (0,1} and since sin 0 = 0, we have gin £ > 0, hence
sinfy = 1, and therefore

(9) gritt = 4,

[t follows thatew = ¢* = —1,¢™ = (—1)* = 1, and then e =1
for every integer n. Also, (¢) follows immediately;

(103 grtivi = grgtrl w g

If 2 =2+ 4y, » and y real, then e = ¢, hence |ef| = &= If
¢ = 1, we therefore must have e = 1, so that 2 = 0; 10 prove that
#/2x must be an integer, it is enough to show that ev =1 if
0 <y < 2w, by (10).

Suppose 0 < ¢ < 2x, and

{11} et =y + (% and # real),
Since 0 < y/4 < x/2, we have « > Gand v > (. Also
(12) e% = (y + o)} = ub — Guly? 4 o4 4 ddwp(u® — »2),

The right side of (12) iv real only if u? = »%; since u? + »* = 1, this
happens only when #? = ¢* = 4, and then (12) shows that

LI B

This completes the proof nf (d).

We already know that { — e mape the real axig info the unit circle.
To prove {f), fix @ 50 that |w] = 1 we shall ghow that w = ¢ for
some real {. Write w = u 4+ dvr, u and v real, and suppose frst that
y2>0and e > 0. Since w < 1, the definition of » shows that there
exists a i, 0 < ¢ < x/2, such that cost = u;thensin®i = 1 — 42 = 2,
and since sin g > 0if0 <! < #/2, wehavesin! = v. Thusw = ¢®,

If w < 0 and ¢ 2 0, the preceding conditions are =atisfied by —dw.
Henece —iw = £ for some real {, and & = 4% TFinally, if v < 0,
the preceding two cases show that —w = e* for some real {, hence
w = ¢'™=_ This rompletes the proof of {f).

If w0, put @« = w/|wl. Then w = 'w|a. By (¢), there is &
real x such that [w] = e*. Since |a| = 1, {f) shows that a = e* for
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eome real y. Henee w = e¢*t%, This proves (g) and completes the
theorem.

We shell encounter the integral of (1 4 ! over the real line. To
evaluate it, put ¢{f} = sin t/cost in (—r/2x/2). By (6), ¢ = 1 4 2
Henee ¢ is a monotonically increasing mapping of {(—»/2,x/2) onto
{— = ,m), and we obtain

= dx _ 2 DAl e .
f—- 14z f-«m + &0 f o B = 7.

-
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Abstraet Integration

Toward the end of the nireteenth cemtury it became clear t0 many
mathematicians that the Riemann integral {absut which one learns in
caleulus courses) should be replaced by some other type of integral, more
general and more flexible, better suited for dealing with limit processes.
Among the attempts made in this dirsction, the most notable ones were
dug to Jordan, Borel, W. H. Young, and Lehesgne. Tt was Lebesgne’s
construction which turned out to be the most successful.

In brief outline, here is the main idea: The Itiemann integral of a func-

M wm wmomm p—— — 4

drmmn I oA L T L1 o L. M 1 1 [ - . I
v § OVET AL INWWIVE |,.0] Cal e BPProXingi-ga Dy SUins oI e 1orin
..
T fEmE)
F=1

where E,, . . . , E, are digjoint intervals whose union is [ab], m{E)
denntes the length of B, end e Ecforn = 1, . . ., , n. Lebesgue dis-
covered that a completely satisfactory theory of integration results if the
sets B, in the above sum are allowed o belong to a larger elass of subsets
of the line, the so-called “measurable =ets,” and if the class of functions
undet consideration is enlarged to what he called “measurable functions.”
'The crucial set-thearetic properlies involved are the following; The union
and the intersection of any countable family of measurable sets are
measurable; g0 is the complement of every measurable set; and, most
important, the notion of “length” (now called “measure’) can be extended
to them in such & way that

m(BiuE;uEyu ¢ r ) = m(By) + m{E:) + m(E) + « + -

for every countable collection | F;) of pairwise disjoint measureble sets.
This property of m is called countalie addsfivity.
The passage from Riemann’s theory of integration to that of Lebesgue

is a procens of completion (in o sense which will appear more precisely
3
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later). It is of the same fundamentsa] importance in anslysis as Is the
gonsiruetion of the real number system from the rationals,

The shove-mentioned messure m i3 of course inlimately related to the
geometry of the real ine. In this chupter we shall present an abstraet
(axiomatie) version of the Lebesgue integral, relative to any countably
additive measure on eny set. {The precise definitions follow.}) This
abstract theory is not in any way morc difficult than the special case of
the real line; it shows that & large part of integration theory is independ-
ent of any geometry (or topology) of the underlying space; and, of course,
it gives us a tool of much wider applicahility. The existence of & large
class of mneasures, among them that of Lebesgue, will be establizhed in
Chap. 2.

Set-theoretie Notations and Terminology

L1 Some sets can be deseribed by listing their members. 'Fhus
1Z1, + + . ,Zx} i8 the aet whose members gre 1, . . . , &5; 80d |2} 18 the
sot whose only member is &, More often, sets are deseribed by proper-
tice. We write

le: P}

B rer H Mo cnwss a4
Lne [IToperLy 4. E NG By LN s

for the set of all elements & whieh hav
denotes the empty set., The words collection, family, and cless will be
used synonymously with sef,

We write z ¢ .4 if z i3 a mewmber of the set 4; otherwise x¢4. 1f B
it o subset of 4, ie, fxeBimplies red, wewnite BC 4. IiBC A
and 4 C B, thend =B, I{f B Aand 4 # B, B is a proper subsei of
A. Note that @& C A for every =et A,

AuB and A n B are the union and intersection of 4 and B, reapec-
tively. If {A.} is a coilection of sets, whete « rung through some index
et [, we write

U A. anid N Ag
2 atf

for the union and intersection of {4.}:

U A, = [r: e A, for at least onc e € I}
ozf

N A, = {z:2e A, for every e e l}.

atd

If I is the set of ail positive integers, the customary notatinne are

Ij Ay and N A,
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If no two members of §4,} have an element in common, then {4,] is s
digjoint eoffection oi reta.

Wewrite A — B = [z:224, ¢ B], and denote the complement nf A
by A° whenever it ig clear from the context with respect to which larger
get the complement is taken.

The eartesian product 4, X -+ - X A of thesets 4,, . . . , 4,is the
set of all ordered n-tuples (o, . . . ,a,) whereq; e Ayforl =1, . . . ,n.

The real ltine (or real number sysiem) iz &', and

Re=R'X --- X B (k faetors).

The exterided real number sysfem 13 B with two symbols, =« and — =,
adjoined, and with the obvious ordering. If —w <o < b < =, the
nterval |@,b) and the segmeni (a,b) are defined to be

[ab] = {x:a <2 < b)), {ab) = fx:g < 5 < b},
We also write
[2,6) = fzr1e <2 < 0], a0l = 1o < < bl

IfEC|{—w,on] and E # ¢, the leagt upper bound (supremum} and
greatest lower bound (infimum) of E exiet in [— % ,] and are dennted
by sup E and inf K.

Sometimes (but only when sup E £ E) we write max ¥ for sup .

The symbol

XY

means that f is a funclion (or mapping or {ransformution) of the set X into
theset ¥;Le., fassignz toeach z2 X an element f{zie V. T A C X and
B C Y, the fmuge of A and the inverse mage (or pre-image) of B are
FA) = fy:y = flz) forsome z e A},
J-U(B) = {z:f(z) e B}.

Note that f~'(B) may be empty although B = 2

The domain of fizs X. The range of fis f(X).

If f(X) = ¥, f is said to map X onfo Y,

We write f~!(y), mstead of f1{{y}), for evervyye ¥. 1If () consisi=
of at most one point, for each y £ ¥, f 18 said {o be one-fo-ome.  If J 13 one-

to-one, then =1 is g function with domain (X} and range X.
Iifi X —[—=,=])and B C X, it is customary to write sup f{x) rather
xR

than sup f{E).
If f:X— ¥ and g: ¥— Z, the composite funetion g 1 X — Z iz
defined by the formula

gofie) = g(fx)) (xzX).
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The Concept of Measurability

The class of messurable functions plays a fundamental role in integra-
tion theory. Ii has some basic properties in common with another most
important class of functions, namely, the continuous ones. It is helpful
to keep these similarities in mind. Our presentation is therefore organ-
ized in puch a way that the analogies between the concepts fepological
apace, open sel, and confinuous funeiion, on the one hand, and mensurable
epace, measurable sel, and measurable fupction, on the oiher, are strongly
emphasgized. It seeme that the relations hetween these concepts emerge
most, clearly when the setting is quite abstract, and this (rather than a
desire for mere generality) motivates our approach to the subject.

1.2 Dehinition

{a) A collection r of subsets of a set X is spid to be atopology in X if
has the following three properties: -

(1) @erand X e+,
(i ff Vyerdors=1, ... ,n,then Fan¥Fen - - - n¥aer
{iii) If | ¥} is an arbitrary collection of members of r {finite,
countable, or uncountable), then ) V. &7,

(5) If r 18 & topology in X, then X s called a fopological space, and
the mambers of r are called the open sels in X,

{¢) If X and Y arc topological spaces and if f is a mapping of X
into ¥, then f is aaid to be conifrnuous provided that f~1(F) is an
open set m X for every open a2t V in ¥,

L3 Definition

(@) A collection 9% of subscts of & set X iz said to be & s-alpebra in X
if o1t has the following three properties:

(1} X emi.
(i) If 4 & 91T, then A‘e M, where A°is the complement of A
relative to X.
(i) If 4 = Gl.—s;,, and if Ay for n=1, 2, 3, ...,
then A e 9.

(b) If 9% is g o-algebrs in X, then X ig called 8 measurable spoce, and
the members of 9 are called the messurable sofs in X.

(¢) If X is a measurable epace, ¥ is & topological spaee, and fis a
mapping of X into ¥, then f is sald to be measurable provided
that /~1(¥) iz a measurable zet in X for every open zet ¥ in ¥,
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It would perhaps be more satisfactory to apply the term '‘measurable
space’’ to the ordered pair {X,M), rather than to X. After all, X is a
set, and X has not been changed in any way by the [act that we now also
have a s-algebra of its subsetz in mind. Similarly, a topological space is
an ordered pair (X,r). But if this sort of thing were gystematically done
in all mathematies, the terminnlogy would become awfully cumbersome.
We shall discuss thiz again at somewhat greater [ength in Sec, 1.21.

1.4 Comments on Definition 1.2 The most familiar topological spaces
are the meiric apaces. Weshall assume some familiarity with metric apaces
but shall give the basie definitions, for the sake of completeness.

A metric space 13 2 set X in which a disience function (or meilric) p is
defined, with the following properties:

(e} 0 < plz,y) < o« forallz and ye X.

(3 plzy) =0Oif and only if z = y.

(e} plz,y) = plyx) forall z and ye X,

(4} plz,y) < p(z2) + plzy) for all z, y, and 22 X.

Property (d) is called the lriangle inequaldly.

IH xe X and r > 0, the open bail with center at r and radins r is the set
{ye X:play) < rf.

If X iz s metric gpace and if 7 is the collection of alk sets E X which
are arbitrary unions of open balls, thep = is a topology in X. This is not
hard to verify; the intersection property depends on the fact that if
z ¢ Byn B., where B, and B; are open balls, then z i3 the center of an open
ball B C Bin B.. W leave this as an exercise.

For instance, in the real line B! a aet iz open if and only if it iz 8 union
of open segments (a,0). In the plane R® the open sets are those which
are nnions of open circubar dises.

Another topological space, which we shall encounter frequently, 18 the
extended real line [— o, = ]; its topology is defined by declaring the follow-
ing sets to be apen: (g,b), [— =,4), (g, =], and any union of segments of
this type.

The defirition of continuity given in See, 1.2{¢} is a global one. Fre-
quently it is desirable to define continiity locally: A mapping f of X into
Y i aaid to be continuous af the point £y & X if to every neighborhood V of
f(zo) thers corresponds a neighborhood W of 4 such that f{W} C V.

(A netghborhood of a point x is, by defirition, an open set which contains

For metric spacves, this Iocal definilion is of eourse the same as the
usual epsilon-delta definition.

The following easy propogition relates the two definitions of continuity
in the expected manner:
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1.5 Proposition Let X and Y be lopological apaces. A moapping f of X
tale Y i3 conitnuous of and only & f is conlinuons al evéry point of X.

PRoOF If f1s continuous and zye X, then J-Y V) is a neighborhood
of z., for every neighborhood V of fizg). Binece f(f~ (V) C V, it
follows that f is continuous at @y

If f iz continuous atl every point of X and if ¥ is open in ¥, every
point zef-NT) has a neighborhood W, such that f(W.) C V.
Hence W, C f'(¥}. 1t follows that =1V} is the union of the open
gets W, so f~'(17) iz itself open. Thus f 1s continuous.

1.6 Comments on Definition 1.3 Let 9 be a s-algebra in a szet X.
Referring to Preperties (1) to (i1} of Definition 1.3{¢), we immediately
derive the following:

{n) Since & = X=, (i) and (ii) imply that & 2 M.

{6) Taking Aoy1 = Ange = - - - = & in {iii), weseethat A;v A,
rr sy AyeMif Ace M fori=1, . .., n.
{¢) Since
) A4, = (U A.2)°,
n=1 n=1

M iz closed under the {ormation of countable {and also finite)
1nlersections.

(dy Binced — B=B*nA,wehave A — BedlLif A e 91 and B ¢ 91,

The prefix o refers 10 the fact that (iii) is required to hold for all count-
able unions of members of 9. If (iii) is required for finite unions only,
then M1 is ealled an efyebru of sets.

1.7 Theorem ULel ¥ and Z be lopological spaces, and lef ¢: Y — 7 be
CORLIRUOUS,

(@) If X i3 a topological space, if f: X — ¥V {s continuous, and if
h o= gof then k: X — 7 i35 conlinuous.

(b) If X 4 a measurable space, if /1 X — ¥ 1s measurable, and if
k= gof, then h: X — Z is measurable.

Stated informally, conlinuous functions of continuous functions are
continuoug; continuous funetions of measurable funetions are measurable.

prROOF If V is open in Z, then g% V) is open in Y, and
EYV) =Y (V).

If f is eontinuous, it follows that A 317 is open, proving (a).
If § iz measurahle, it follows that A1) iz measurable, proving (k).
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1.8 Theorem Lef w and v be real meagurable funclions on a measurabie
spoce X, lef ® be a continuoue mepping of the plane inio a fopological space
Y, and define

hz) = ¥ (u{z)w(z))

Jorze X, Then h: X — Y 5 ineasurable.

rrOOF Put f{z) = (ufx),e(x)). Then f maps X into the plaue,
Since A = & o f, Theorem 1.7 shows that it iz enough to prove the
messursbility of J.

If R is any open rectangle in the plane, with sides porsllel to the
axes, then R ie the cartesian product of two segments I, and [, and

f_l(R) - M_I{I1} n i-l'_lﬂrn),

which is measurable, by cur assumption on w and v. Every open set *
¥ in the plane s a eountable union of such rectangles R., and since

7V = 54U R = U SR,

.-

F~YV} i measurable,

1.4 Let X be a meazurable space. The following propositions are
corollaries of Theorems 1.7 and 1.8:

(a) If f =~ u + 40, where u and v are real meazurable funclions on X,
then F iz @ complex meagurable function on X,
This follows from Theorem 1.8, with ®{z) = z.
(L) Iff = v + i 22 o complex measurable funchion on X, then u, v, and
|| are real measurable functions on X.
This follows from Theorem 1.7, with g(z) = Re {#), Im (2),
and |2
(¢} If f and g are complez measyrable functions on X, then so are f + ¢
and fg.
For real f and ¢ this follows from Theorem 1.8, with
‘I'{S:'E) =z+!
and ®igt) = si. The complex case then follows from {a) and ().
(d) If E is a meazurable asl in X and 4f
1 TreE
0 ifzg &

then X is 6 measuroble function.

Thiz is obvious. We call ¥z the characleristic funciion of the
set E. The letter ¥ will be reserved for characteristic functions
throughout this book,

xs(x) =
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(&) If f 1o ¢ complez measurable function on X, there in o complex
megsurable function o on X such that |of = 1 and f = aff].

PROOF Let E = {z: f(x) = Of, let ¥ be the complex plane with the
origin removed, define p(z) = z/)z| for z¢ ¥, and put

alz) = o(f{z) + xz(z)) (ze X).

HzeR alz)=1;fz¢E, alz) = fiz)/|f()|. Bince ¢ is continuous
on Y and since X is measurable (why?), the measurability of « follows
from (¢), (d), and Theorem 1.7.

We now show that v-algebras exist m great profusion.

110 Theorem If F ¢ any colleelion of subsels of X, there exisls g smallest
a-algebra " in X such that F C OR™.

This ¥ i3 spometimes called the r-glgebra generated by &,

PROOF Let @ be the family of all s-algebras 9% in X which contain
F. Since the collection of all enbseta of X is such a o-plgebra, & is
not empty. Let 9* be the intersection of all M e . Tt is clear
that & C M* and that 9M* lies in every s-algebra in X which contains
§. To complete the proof, we have to show that S* is itself a

munloahra

A e A

A, emM*forn=1,23,...,sndif Me, then A, 2 T, so
UA. £ o7, since 9% is a g-algebra. Since UA. g 3 for every M 214,
we conclude that UA, £ 3t*. The other two defining propertics of a
r-alzebra are verified in the same manner.

1.11 Borel Seta Let X he a topological space. By Theorem 1.10, there
exists a emallest o-algebra @ in X such that every open set in X belonga
to & The members of ® are called the Borel sels of X,

In particular, closed sels are Borel sets (being, by definition, the
complements of open sets), and s0 are all countable unjons of cloged gets
and all countable intersections of open sets. These Iast two are called
F,'s and G,'s, respectively, and play s considerable rcle. The notation
ia due to Hausdorff, The lettera F and G were used for closed and open
sets, respectively, and o refers to wnion (Summe}, & to intersection
{(Durchachnitt). For example, every hali-open interval [a,b) is o &y and
an F,in R

Since ® i8 a c-algebra, we may now regard X as a measurable space,
with the Borel sets playing the role of the measurable sets; more con-
vizely, we consider the measurable space (X,®). If f: X — Y is a con-
{inuous mapping of X, where ¥ is any topological space, then il is evident
from the definitions that f1(V) e ® for every open set ¥V in ¥. In other
words, every continuous mapping of X iz Borel measurahle.
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If Y is the real line or the complex plane, the Boral measurable mappings
will be called Borel funclions.

1.12 Theorem Supposs N s a o-clgebra in X and ¥ is a topological space.
Let fmop X inlo V.

(@) If Q is the collection of oll sets B C Y such thal f-1(E) e 3, then
Q) ia 2 o-algebrain Y.

(b)) If f is measurable and K is a Borel set in Y, then f3(E) e 91

(&) If ¥ = [— o, ] ond f-((a, =) ¢ N for every real o, then [ ia
measurable,

+

proor (a) follows from the relations
=X Y -4)=X-'4),
and Fidyvdzu - )= f~1{AJufAgu - -

To prove {(5), let @ be ag in (a); the measurability of f implies thab
{l contains all open sels in ¥, and since §l is a o-algebra, & contans all
Borel sets in ¥,

To prove (c), let & be the collection of all B C [— =, =] such that
FUE)e . Since § is & g-algebra n [— «,] and since {a, =]z 0
for all zeal &, the same i3 true of the sets

[— s ,) ‘h@l[““sﬂ“f—t] = £1(a_?11’ w]c

and (d;ﬂ} = ['- mjlﬂ] n (aj 0:'],

Since every open set in [— %, o] is & eountable union of segments of
the above types, Q contains every open set, so f is measurable.

1.13 Definition Let {a.} be a sequence in [— =, =], and put

(1) by = Sup [Gatn,ranis, . - ) (k=128 ...
and
(2) 8 = inf {bybo,bs, . . 1.
We call § the upper limit of {e,|, and write
(3} # = lim sup e,
The following properties are easily verified: First, b > bs 2 ba 2 - - -,

g0 that §; — 8 as k — = pecondly, there is a subsequence [a,,} of {a.!
such that 4, — 837 — «, and gis the largest rumber with this property.
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The lower limit is defmed analogously: simply interchange sup and inf
in (1) and (2). Note that

(4) lim inf g, = — lim sup (—a.).

Ii {@,) converges, then evidently

(5) lim sup o, = lim inf g, = lim ay.

ot i e H—r -

Buppose {f.] is a sequence of extended-real functions on a set X,
Then sup j, and lim sup f, are the funciions defined on X by
” ey

® (sup fu)(z)} = sup (fulo)),
(7 (lim sup Xz} = lni sup (fa(z))
If

Q f@) = im £,(2),

the imit being assumed to exist at every x & X, then we call f the poini-
wise l{mit of the sequence {f.}.

1.14 Theorem If fi: X — [— o, ]} ismeasurable, forn = 1,2, 5, . ..,
and

g=supf, h=limsupf,
Hkl Ty O

then g and k are measurable.

PROOY g (e, w]) = ljl Fa~'({m,*]). Henee Theorem 1.12(c) im-

plies that g is measurable, The same result holds of course with inf
1 place of aup, and rince

h = inf {sup fil,
21 ik
it followe that £ ie measurable,

Corollarien

(@) The itmit of every pointwise convergent sequence of comiplex measur-
able functions i3 measurabls.

(0) If f and g are measurable (with range in [— =, =]), then so are
max {fg} andrmin §{f,5]. In particular, thia is irus of the funclions

Fr=max {0} end f = —min {{0}.
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1.13 The above functions f+ and f~ are called the positive and negative
partsof f. Wehave|f] = f* + f-and f = f+ — f~, a standard representa-
Lion of f as s difference of two nonnegative functions, with a certain
minimum property.

Proposition [ff=g—h g20,and i =0, then f+ < gand f- < k.
PROOF f = g and 0 < g clearly implies max {£,0] < p.

Simple Functions

1.16 Definition A function g on a measurable space X whose range con-
sistz of only finitely many points in {0, «) will be called a siwiple function.

(Sometines il i3 convenleut io call any funetion with finite range
simple. The above sitnation is, however, the one we shall be mainly

interested in. Note that we explicitly exclude « from the values of a
simple function.)

If a;, . . . , oy are the distinet values of a simple function s, and if
A = {x: s(z) = o}, then clearly
L]
§ == E aiXa,,
faml

p—— - "

— =g L I Y P N Ru I A 1. co 1 = 1 L s L}
WIS X4 15 LIC CHArHcLe LIG JUIICLIDM] D1 214, 38 RIINE I 0Sl, L.OE).

It is also clear that s is measurable if and only if each of the setz A; is
measurable.

1,17 Theorem Lei f: X — [0, ] be megsurable. There exist simple meas-
wrahle functions s, on X such that

@O0 e1<s<- - <Ff
(b) sulz) — flz) as n— =, for erery v ¢ X.

pRooF Fora =123 ... ,8ndforl < ¢ < 42", define

(1) E,;=f" ([*—;1 1 2‘)) and  F, = i, ®])

and put

(2 8z = E'E‘Tl_ Xx,, + nkr,.

=1
Theorem 1.12(h) shows that E.. and F, are measurable setz. 1t is
easily seen that the functions (2) satisfy (@). If 2 is such that
f(z) < oo, then s,(z) = fiz) — 2" as soon as n is large enough; if
f(z} = o=, then s,{z) = a; this proves {b).
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It should be observed that the preceding construction yields a uniformly
convergent sequence .} if fis bounded.

Elementary Properties of Measures
1.13 Definition

(g) A positive mensire is a function p, defined on a s-algebra 3, whose
range i in [0, =] and which is countably additive. Thig means
that if {A.} iz a dizjoint countable cellection of members of 41,
then

(1) F{‘Ul A;) = 42"1 p(4d3.
To avoid trivialities, we shall alao assume that p{4d) < = for at
least one A £ M0

(b) A measure space is a measurable space which has a positive meas-
ure defined on the o-algebra’of its measurable sets.

(¢} A compler measure is 8 complex-valued eountably additive func-
tion definad on & s-algebra,

Note: What we have ealled a positive measure is frequently just called
a meagure; we add the word “positive” for emphasis. If (&) = O for
every K £ 91, then g is a positive measure, by our definjtion. The value
o i admissible for a positive measure; but when we talk of a complex
measnre 4, it is understood that x(F) is a complex number, for every
E e M. The real measures form a subelass of the complex ones, of couree.

1.19 Theorem Let p be a postlive measure on a o-algebra M. Then

(@) u() = 0.

B wldiv - - 0d) = p(d) 4+ - +ald) F Ay ..., A
are patrunse dizjoinl members of 9.

(¢) A C B tmplies p(A) < u(B) if A e 9, B e 9N.

(@) n(dn) = x(d) s n— © if 4 = Gla., A, & 9, and
A, C A CAyC 0 -,

() WA) — a(A) asn— o ¥ A = N 4, A, 9T,

nwml

A DA D AD - - -,
and p(A,) 18 finile,
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As the proof will show, these properties, with the exception of (¢), also
hold for eomplex measures; (b) is called finite additivity; (¢) is called
monolonicily.

FPROOF

{g) Take A ¢ so that u(d) << =, and take 4, = 4 and
As = Az = - = & in L.18(1).

(&) Toke dnp1 = Apyyg = - -+ = Fin L1S{L).

(¢) Since B=AuiB—A) and An(B — A) = o7, (B) gived
w(B) = uw(d) 4 p(B — A) 2 p(d).

() Put By = A; B, = A, — A, 1 forn=2,3,4,.... Then

. ey o o~ D P O s o A I¥ . L. @R R |
Do, O4nd;m & 1 3723, Ay,= 010 - - - UB,;,, am
]
A= U B;. Hence
=1

]

Md) = T aB)  and  wd) = 3 uB.

i=1 =

Now (d) follows, by the definition of the sum of an infinite
geries,
I:ﬁ] PIItGH=A1“Au. TthUICCECgIC"':

p(Cr) = p{da) — p(4,),
A4, - A = U, and so (d) shows that
pld:) — p(d) = u(dr ~ 4) = LI'E a{Cs) = p(d) — ELD:‘ Ao}

This implies (¢).

1.20 Examples The construction of interesting mweasure spaces requires
some labor, a3 we ghall see,. However, a few simple-minded examples can
he given immediately:

(@) Forany F C X, where X is any set, define p(E) = « if Figan
infinite set, and let u{F) be the number of points in E if ¥ is
finite. This y is called the counting measyre on X.

(b) Fix z,2 X, define p(E) = 1 if 2,2 K and u(E) = 0 if 2, £ E, for
any E C X. This x may be called the unii mass concentrated
ot Lo

{¢) Let x be the counting measure on the set {1,2,3, ...}, let
Adg=In,n+1,n+4+2 ...}, ThenNA4, = @butu(d,) = «
forn =1,2,3 .... This shows that the hypothesis

“M(Al} .:: m!‘]
18 not superfluous in Theorem 1.19{e}.
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1.21 A Comment on Terminology Ome frequently sees measure spaces
referred to as "'ordered triples” (X,9M,u) where X ig a set, 91 is a e-algebra
in X, and g is a measure defined oo M. Similarly, measurable spaces
are “ordered pairg’’ (X,9). This iz logically all right, and often con-
vement, though somewhat redundant. For instance, iIn {X,™) the set
X is merely the largest member of M, =0 if we know 9 we aleo know X,
Similarly, every measure has n e-algebru for its domain, by definition, so
if we know a measure x we aleo know the o-algebra 91 on which 4 is defined
and we know the set X in which 9 is o ¢-algebra.

It ia therefore perfectly legitimate to use expressions like “Let g he a
measure’” or, if we wish to emphasize the nr—algebra ar the set in queation,

oy EET o ot e T o I
l-.U ik ¥ U'E'-' I l-ﬂ' & Thesslire O l.JIE- Ll J_.Il."'l..l i3 ur.- A MEadure On ﬂ

What is logically rather meaningless but customary (and we shall often
follow mathematical custom rather than logic) iz to say “Let X be a
measire space’; the emphasts should not be on the set, but on the meas-
ute. Of course, when this wording is used, it 18 tacitly understood that
there is a measnre defined on some o-algebra in X and that it iz this
measure which is really under diseussion.

Similarly, a topological space is an ordered pair (X,r), where r is a
topology in the set X, and the signifieant data are contained inr, not in X,
it “the topologieal space X iz what one talks abont.

This sort of tacit convention 1s used fhrnllnrhnllf mathemsatirs. Most,

mathematica! systems are seta with some c]as'?. of distinguished subsets
or gome binary operalions or some relations {which are required to have
certain properties), and one can list these and then deseribe the svstem
as an ordered pair, triple, etc., depending on what is needed, For
instance, the real line may be described aa a gquadruple (B4 .-, <),
where +, -, and < satisfy the axioms of a complete arehimedean ordered
field. But it is a safe bet that very few mathematicians i}hmk of the real
field as an ordersd quadruple.

Arithmetie in [0, ]

1,22 Throughout integration theory, one inevitably encounters «, One
reason is that one wants to be able to integrate over sets of infinite
meunsure; after all, the real line has infinite length. Anocther reason is
that even if one i= primarily interested in real-valued functions, the
Iim sup of & sequence of positive real functions or the sum of a saguence
of positive real functions may well be = at some points, and mueh of the
eleganee of theorema like 1.26 and 1.27 would be lost if onc had to make
gome special provisions whenever this occurs.
Let ugdefinea+ © = » +a = = if0 < e £ », and

o f0<a<<
0 ifg = 0;

sums and products of real mumbers are of course defined in the nsnal way.

G'WEm*GEI
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Tt may seem strange 10 dofine 0- = = 0, However, onc verifies with-
out difficulty that with this definition the conunutative, associative, and
distributive laws hold in [0, =] withaut any restriction,

The vunecllation laws have to he treated with someeare:a + b =2 + ¢
implieg & = ¢ only when g < =, und ab = we huplies & = ¢ only when
0 <a< >

Observe that the following useful proposition holds;

ffﬂﬂﬂ-].ﬂﬂ-zﬂ " ‘,Dgt']ﬂbﬂ{_: T, 8 — 8, and bﬂ_bb!
then aabn — ab.

If we combine this with Theorems 1.17 and 1.14, we zee that sums and
mroduets of measurable funcfons infe [}, x| are measurable.

Integration of Positive Functions

In this section, M wilt be a g-algebra in a set X and g will be a positive
measure on M.

1.23 Definition If s is & meusurable simple function on X, of the form
(1) s= 3 wta,
i— 1

where ey, . . . , a, are the distinet values of s (compare Definition 1.1G),
and if £ & M, we defiie

Fr

(2) fEs du — E agu (A0 E).

=1
The convention 0+ = = 0 is used here; it may happen that o; = 0 for
some ¢ and that g(d. n E) = =.
Tf f2 X [0, %] iz measurable, and F e 9, we define

(3) L:fdp ~ sup j;:sdp,

the supremum being taken over all simiple measurable funclions s such
that P < & < f.

"The left member of {3) 15 called 1he Febesyue inlegrat of f over F, with
respect to the messare u. Il i3 a number in [0, = |.

Observe ihat we apparently have two definitions for [z [du if [ is
simple, namely, (2) and (3}, However, these asgign the sume value to
the integral, since f is, in this ease, the largest of the funetions s which
oceur on the right of (3).

1.24 The fn_llnwing pronoritions are immedinte eonsequences of the defi-

nitiong, The functions and scts occurring in them are sssumed to be
measirable:



o Real and somplex analysis

(@) If0O<f<g then [pfdu < [rgda
) IfAC Bandf =0, then [afdu < [z fda
(c) If f = 0 and c is a constant, 0 < ¢ < =, then

chdu = ¢_Lfdn.

(@ Iffix) =0forollz e K, then [efdu = 0, even ¢f u(E) = .
(&) If o{EY =0, then [£fdu =0, even if f(z) = = for every ze E.
() Iff20,then [gfdp = [z Xaf dp.

This last result shows that we could have restricted our definition of
integration to integrals over all of X, without losing any generality. If
we wanted to integrate over subseta, we could then use (f) as the defini-
tion. It is purely a matter of taste which definition is preferred.

One may also remark here that every measurahle subset Z of & measure
gpace X is again a measure space, in a perfectly natural way: The new
measurable sets are simply those measurable subsets of X which lie in E,
and the messure is unchangad, except that its domain is restricted. This
showe again that as sgon as we have integration defined over evory
meagure space, we automatically have it defined over every measurable
aubset of every measure space.

- e T a_ T ; i I N N 2T L T n ud Tr ol
1.£3 IropOosiItion L6 8§ OFd [ D FeEuraoee SErihe JTURCGHWS O A, TI'OY

E e 9, define

(1) ¢ (F) = /Esdp.
Then w t& a measure on M. Also
@ foe+0du= fadut [ tan

S
(Thiz proposition contains provisional formes of Theoremns 1.27 and 1.29.)

rRooF If & is as in Definition 1,23, and if E,, &, . . . are digjoint
members of 3 whose union iz E, the countable additivity of x shows
that

e(F) = E‘ mpu(Ain B) = i ot E w{d;n E}

i=l im] rml
- = o

=¥ Y aw{dinE) = Y olB,).
rm] im r=1

Also, p(F) = 0, 8o that p is not identically =.
Next, let # be a3 before, let 81, . . . , Gm be the distinet values of
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Luud lel B, = o) = 8,8, If E, = A;n B, then
fo, 6+ O die = (o + Bu(E)

aud j By sdp + fEr,— tdp = cp(Ey) + Biw(H).

Thuga (2) holds with E; in place of X, Binee X I8 the digjolnt union
of the acte By (1 <1 < n, 1 <7 < m), the firgt half of our proposi-
tion implies that (2) holds,

We now come to the interesting part of the theory, One of its most
remarkshle featyures is the ease with which it bandles limit operations,

1.26 Lebrsgue’s Monotone Convergence Thearem  Fef { ] be @ sequence
of measurable funcfiions on X and suppose thai

(@) 0 < fila) <folr) & - - - & = foraeyze X,
B} fale) = flz)y asn — =, for everyx e X.

Then f 1z metsurable, and

fornan— [ 7an asn— .

proor Bince [f, < [, there exists an a & [0, @] such that

(1) jxf,_ du — o« aga— =,

iy Theorem 1.14, iz meusurable. Since fi < f, we bave [f, < [f
for every n, so (1) uplies

(2) x < fx fdu.

Let & be any simple measurahle function such that 0 < 8 <7, let
¢ be a constant, ¢ < ¢ < 1, and define
(3) E. = {z:fu(2) 2 calz)] =123 .. ..

Bach E, iz measurable, By CE, CF:C -, and X = E,.
Yor if f{z) = 0, then x e Ey; and if f{x) » 0, then gs(z} < f{x), since
¢ < 1; hence z ¢ E, for some #n. Also

@ fhdez [ fdnzef ede =123 ..

Let v — =, applying Proposilion 1.25 and Theorem 1.19{d) to the
last integral in (4}, The result is

() azc [, 1do
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Since (5} holds for every ¢ < 1, we have

(6) @2 [ oda
for every simple measurable g satisfying 0 < 3 < f, so that
(7 a > fx.f dy.
The theorem follows from (1), {2), aud (7).
1.27 Theorem Iff,: X — [0, & | {s measurable, forn = 1,2, 3, . . . , and
q M@= 3 6@ @eX),
thon n=1

(2} [xfd# = E fxfnd#-
1

=

PROOF  Firsi, there are sequences {3/}, [¢] of simple mensurable
funetions such thai #-- f; and 8’ —f; ag in Theorem L.17. If
& = 8, + g, theu 8~ f, + fi, and the monotone convergencs the-
orcm, combined with Proposition 1,25, shows that

@® fth+tdds = [ fidat [ fada
Next, put gv = fi+ - - © + fv. The zeguence [gy} converges
monotonically to f, and if we apply induction to (3) we gee that
N
@ foovde=3 [fdn
nel

Applying the monotone convergence theorem once more, we obtain
(2), and the proof is complete,

If we let u be the counting measure on & countahle set, Theorem 1,27
i a statement about double series of nonnegative-real numbers (which
can of course be proved by elementary means):

Covollary Ifa; > Q0foriandy=1,23, ..., then
o) i - =
Qi = g
21 =1 jzlt‘gl
1.28 Fatou’s Lemma Jf f,- X — [0, 0] iz measuralle, Jor each positive

integer n, then

(1) [, tim inf ) du < Hminf [, f, du.
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Strict inequality ean oceur in {1); see Exercise 2.

ProOF Put

(2) gifz) = 'igfﬁ{:n} (k=1,2,3, ... ;ze %)

Then g¢ = fi, 8o that

(3) fxgkd# < -[xf;dp =123 ...).

Also, 0 € g1 < g2 % -+ -, and g» 15 measurable, by Theorem 1.14,

and ge(z} ~ lim inf f,(x) as k -+ =, by Definition 1.13. The mono-
tone convergence theorem therefore shows that the left side of (3}
tends to the left side of (1), as & — =, Hence (1) follows from (3}.

1.29 Theorem Suppose f: X > [0, =] {2 measurable, and

(1)

o(E) = L,fdu (E ¢ 9.

Then ¢ iz a measure on M, and

(2)

}_;ﬂdw = j:tﬂfdﬂ

Jor every measurable g on X with renge ¢n [0, =]

PROOF Let By, E; E ... be disjoint members of M whose
unicn 8 F, Ohserve thal

) Xsf = ) xnf
i=1
and that
@ o(E) = [ xafdu,  »(B) = [ xafdn

It now follows from Theorem 1.27 that
) o(F) = Y olE).
i=1
Sinre {2 = 0, (5) proves that ¢ 18 a meagure,
Next, (1) shows that {2) holds whenever § = xz for some £ ¢ N
Hence (2) holds for every simple measurable funetion g, and the
general case follows ftom the monotone convergence theorem.

Remark The secontl assertion of Theorem 1.29 is sometimes written o
the form

(6}

de = fdp.
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We assign no independent mesning to the symbols dp and du; (6) merely
means that (2) holds for every messurable g 2> 0.

Theorem 1,29 has & very important converse, the Radon-Nikodym
theorem, which will he proved in Chap. 6.

Integration of Complex Functions

As before, u will in this seciion be a posilive measure on an arbitrary
measurable space X.

1.30 Definition We define L'{(u} to be the collection of all complex

meaanrable neti

R e R e Wl B A MR

he f on X for which
ng fon A lor which

o lftdn < w.

Note that the meagurability of fimplies that of |f|, 44 Wwe saw In Propo-
gition 1.9(h); hence the above integral is defined.

The members of Li(u) are called Lebesgue sniegrable functions {with
regpect to p) or summable functions. The mgnilicance of the exponent 1
will become clear in Chap. 3.

L3I Definitivn If f = « 4+ 7, where « and » are real measurable func-

iz LF __ A TISON R _
tlons o A, and i J & Lo(g), wWe deline

W - J Jowrduti forda~i [ do

for every measurable set K,

Here %+ and 4 are the positive and negative parts of v, as defined in
Sec, 1.15; vt and e~ are eimilarly obtained from v, These four fupetions
arc measurable, real, and nonuegative; hence the four integrals on the
right of (1} exist, by Definition 1.23.  Furthermore, we have ut < 'y| <
17], etc., a0 that each of these four integrals is finite.  Thus (1} defines the
integral on the left as a complex number.

Oeccagionally it is desirable to define the integral of a measurable func-
tion f wilh range in [— @, ] to be
£ r o S r o oF . 1" of— T,

L) jgd G = fR 7T G — ) G
provided that at least one of the integrals on the night of (2) 18 finite.
'The left side of {2) is then 8 namber in [ — =, <=<].

1.32 Theorem Suppose f and g2 L) end @ and 8 are compler numbers,
Then af + Sg & LM(x), and

) fertopdu=cfrac+8 fgdu
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prooF The measurability of of 4+ 8p follows from Proposition
1.9(c). By SBce. 1.24 and Theorem 1.27,

[ 1o + ggldn < f, e I11 + 18] lo]) du

= lal f1f1ds+ 18] [ tgldu < .
Thue af 4 g & LY{u).
To prove (1), it is clearly sufficicnt to prove

@ fo+ode= frau+ [od
and
3) fe@hde=o [ rau

and the general oaze of (2) will follow if we prove {2) for real §f and
g in LHu).
Assuming this, and setting k = f + g, we have

Rl L Y

or

€Y R f~+ g =+ gt + b

By Theorem 1.27,

(5) Jor+ [+ fo = [+ fgr + [h,

and since each of these integrals is finite, we may transpose and
oblain (2).

That {3) holds il ¢ > Diollows from Proposition 1.24{c). Tt iseasy
to verify that (3) holdz if @ = — 1, using relations like {—#)t = u~.
The case & = ¢ iz alsp ensy: If f = u 1 4, then

fah = fau—0) = (-0 +ifu=—fo+ifu=i(fu+ifs) =ifr
Combining these cuges with (2}, we obiain (3) [or uny complex e,

1.33 Theorem ff fe L'(p), then

| [ordu| < [ 1514

proor Put 2z = [xfde. Sinccz is & complex humber, there is a
complex number o, with o] = 1, such that a2 = |z. Lot « be the
real part of af. Then u £ |af] = |f| Hence

‘j;zfdﬂ‘ =a‘£gflﬂfﬂ= Lafdp: fru.dﬂg _[:E’Lﬂd#
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The third of the above equalities holds since the preceding ones show
that [af dp ie real.

We conclude this sectiou with another important convergence theorem.

1.34 Lebesgue’s Dominated Convergence Theorem Supposs [fa) i3 6
sequence of complezx measurable funciions on X such that

Y flz) = lim fu(z)

exisls for epery z 2 X, If there €3 a function g & L1(p) such that
(2) @ <gx) (®=123 ... ;2eX),
then f & L'(g},

3) lim [V —flde =0,

and .

@ lim [ fade= [ fdu

PROOF Bince |f| < g and f i2 measurable, f& Li{x). Since |f, — f]
= 2y, Fatov’s lemma applies to the functions 2y — |f, — fl and

[ 200 < tmint [ (2 — |fu — 11) du
= fe2du+tminr{— [ f. = fldx)

= [c29dx — Yim sup [, |5 — fl dn.
Hinee [2g dp is finite, we may subtract it and obtain
(5) lim sup _[K fa = flda < 0.

If a sequence of uonnegative real numbers faila to converge to 0,
then its upper limit 1s positive, Thus (5) implies (3). By Theorem

1.33, applied to f, — f, (3) imphies (4).

The Role Played by Sets of Measure Zero

1.35 Definition Let P be a property which a point 2 may or may not
have. For instance, P might be the property “f(z) > 0" if f is n given
funetion, or it might be “{fa(z)} converges” if {f,} ix a given sequence
of funetiona.
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If 4 is & measure on & c-algebra 9 and if e M, the statement P
holds almost everywhere on E” (abbreviated to “P holds a.e. on E*)
means that there exists an N £ 9% such that w(N) =0, N C E, and P
holde at cvery point of £ — . 'This concept of a.e. depends of course
very strongly on the given measure, and we shall write “a.e. [g]” when-
ever clarity reguires that the measure be indieated.

For example, if §f and ¢ are measurable functions and if

(1} k(iz: flx) » g(z)}) = 0,

we say that f = g a.e. [x] on X, and we may write f ~ 4. This iz easily
seen 1o be an equivalence relation. The transitivity (f ~ g and g ~ A
implies f ~ k) is a econsequence of the fact that the union of two sets of
measure (} hag measure 0,

Note that if f ~ g, then, for every ¥ £ 9K,

(2) ffin= [ gdu

T see this, let N be the set which appears in (1);-then E is the union of
the digjoint sets E — Nand EnN;on E — N, f = g, and p(EnN) = Q.

Thyva mamnvnllo armanl-ing onta of oot 0 ors ool imi s 191 Int om0
A LLU, SGLIV LG Y RO DLl sy EEUQ Ui LA Rt AL S WF LR l.l‘-'EllEl hfdir 01 BRRWR-JCR “UI‘J [ I 19

It ought io be true that every subset of a nogligible 2et is negligible. Bt
it may happen that some set N £ 0 with p{¥) = 0 has a subset E which
1g not & member of M. Of course we can define p{E) = 0 in this case.
But will this extension of x still be a measure, 1.e., will it still he defined on
a o-algebra? It is a pleasant fact that the angwer s afirmative:

L.36 Theorem Let (X,TM,e) be a mieasure space, let ML* he the colleclion
of all B C X for which there exist sels A and Be M such that A CEC B
and p{B ~ A} = 0, and define p(l) = pn{A) in thiy situction, Then
M* iz ¢ e~algebra, and g 18 q measure on I,

This extended measure p 1y called complete sinee all subsets of sels of
measure [ are now meagurable; the s~algebra IN* is called the x-complstion
of 9. The thcorem says that cvery measurc enn be completed, so,
whenever it is econvenient, we may assume that auy given mcasure is
complete; thia juat gives us more measurable sets, hence more measurable
functions. Most measures that one meets in the ordinary ecourse of
evenis are already complete, but there are exceptions; one of these will
occur in the proof of Fubsni’s theorem in Chap. 7.

PrOOF We verify the three defining properties of a e-algebrs.
(i} Xed, hence XeMm*, (i) T A CFE C B, then B C E* A,
and 4 — Bc = B =4, (iii) HA; CE:CB;, A=UA,E = K,
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and B = UB, then A C X C B and
B— 4 CU®B— 4),

ao that w(B — A} = 0 if p(B;, — A) =0fori= 1,28, . ...
Next, we cherk that 13 well defined on M*.  Suppose A C E C R,
AV C ECB;, and uy(B— A) = p(By — A} = 0. Then

ﬂ—é‘lc.ﬂl'—dh

o u{d — 4,) = 0. Bimilarly, g{4d; — A) = 0. Hence
n d'ﬁ. — M

Yoo A
{ainAa} ,....\uj

gf Ay =
Bty B

The countable additivity of u on IE* is obvious.

1.37 The fact that functions which are equsl] a.c. arc indistinguishable
as far as integration is coneerned suggests that our definition of messura-
ble function might profitably be enlarged. Let us call s function f
defined on a set E £ M measurable on X if p(B) = O and if f1{V)n X is
measurable for every open set V. If we define f(xr) = 0 for z 2 E°, we
obtain a measyrable funetion on X, in the old sense. If our measure
happens o be complele, we can define f on E? in a perfeclly arbitrary

mennar anrd wa atil! oot 0 masanmahla fimetion Tha 1n+nﬂm] nf 1‘" ATrOe
J—‘U‘-J PRLRRE Y RS JUANE h\f” LY PN L R RSATF LRl LIER R ik RA L l'«‘-\"\ﬂb Rl AR WO R

any sct A € 91 i8 Independent of the definition of f on B thcrcfure this
definition need not cven be specified at all.

There are many situations where thiz accors naturally. For instance,
a function f on the real ine may he differentiable only almost everywhere
{with respect to Lebesgne measure), but under certain conditions it is
gtill true thal fis the integral of its derivative; this will be diacussed in
Chap. B. Or a sequence | f.} of measurable functions on X may eonverge
only almost everywhere; with our new definition of messurability, the
limit is still a measurable function on X, and we do not have to cut down
to the set on which convergence actually occurs,

To illuatrate, lot ns state o eoroilary of Lehesguce’a dominated eonver-
gence theorem in a form in which exceptional geta of measure zero are
admitted:

1.38 Theorem Suppose {f.] s ¢ sequence of complex measurable furctiona
defined a.e. on X such that

(1) Z foirddn < o,

Then the gerien "

(2) = ) fal2)
(@) ,El e

T g x“—%\__ .-
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convergss for almogt all z, f & L\(x), and

@ fordu = 2 fotdu

=l

ProOOF Let S, be the set on which f, is defined, so that x(S,9) = 0.
Put ¢(z} = Z|f.x)|, for ze 8 = NS,. Then p(8) =0. By (1)
and Theorem 1.27,

(4) Lpdu{w.

IfE = {ze8: «(X) < ], it follows from (4) that (F) = 0. The
series (2) converges absolutely for every 2 K, and if () is defined
hy (2} for ¢ ¢ B, then |f(x)| £ @(z) on E, so that f& Li{x) on K, by
4y, Tf go=f1+ - - - -+ fa, then lg,| < ¢, galx) — flz) for all
z ¢ E, and Theorem 1.34 gives (3} with Einplaceof X. Thisiseqguiv-
alent lo (3), since p{E) = 0.

Note that even if the f, were defined at every point of X, (1) would only
mmply bhat (2} converges almos! everywhere. Here are sume other situa-
tions in which we ean draw conclusions only almost everywhere:

1.59 Theorem

(¢} Suppose f: X —: [0, %] 42 mecsurable, Ee M, and [xfde = 0.
Then f = 0 ae on E.

(b) Suppose fe Li{(u) and [gfdu = 0 Jor every Fe 9. Then f =0
ae. on X,

(c) Suppose fe L'(n) and

| fofou| = finde

Then there iz a consfant a suck that of = |f| 6.e. on X,

Note that (¢) doseribes the condition under whieh equality holds in
Theorem 1.33.

PROOF
() If Ay = |zeB: f(z) > L/n},n=1,2,3 ..., then
Swd) < [ Fdu < [ rau=0,

0 that u(d,) = 0. Since {[zeE: fiz) > 0} = U4, (e)
follows.
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(B) Put f=wu- 4, let E = {z: u(z) > 0}. The real part of
I=f du is then [sut dy. Hence [sutdu = 0, and (8) implies
that ut = D a.e. We conclude zimilarly that

u-=pt=v =0ace

(¢} Examine the proof of Theorem 1.83. Our present assumption
implies that the last inequality in the proof of Theorem 1.33
must actuzlly be an equality. Heoce [(If] — u)du = (.
Since |f|] — « > 0, (@) shows that |f] = u a.e. This sayr that
the real part of «f is equal to |of| a.e., hence af = |of| = |} a-e.,
which 18 the desired conclumon.

1.40 Theorem Suppose u(X) <« oo, fe LW(u), § 42 o clozed set in the com-
plex plane, and the qernges

Axi) = o [ 5

lie in 8 for every E ¢ M with u(E) > 0. Then fiz) e S for almestall x ¢ X.

PROOF Let A be a cloged eircular dise (with eenter at « and radius
r > (), gay) in the cnmplement of 8. Since 8] pL the union of rount-
ably many such discs, 1t is enough to prove that (&) = 0, where
K = f-i{4).

If we had pu(E) > 0, then

1 1
|4 e(f) = a =m[LU‘—ﬂ)dﬂlﬂm[EU—ﬂdpﬂr,
which is impossible, since A g(f) € S. Hence p(&) = Q.

1.41 Theorem ILet |E.} be 5 sequence of measurable sets in X, such that

(1) Y, ul(E < .

=1
Then almost ail x 2 X le in at most finitely many of the sels E\.
—_— ™ 4 = .1 T 7 -1 1" L o DL | ™ _
PROGF if A & the set of all £ whien lle m finitely many Ey, we have

to prove that u(4) = 0. Put

@ 0@ = ¥ xmls)  (@eX)
k=1l

For each x, each term in this series iv either 0 or 1. Hence ze 4 if
and only if g(z) = . By Theorem 1.27, the integral of g over X
15 equal to the sum in (1). Thus g € L*() and so g{z) < = a.e.
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Exercines

1 Let ig.} and {b.} be sequences in [— =, =], and prove the follow-
g aguertions:

() lim sup (—aa) = — lim inf e,.

-y e -y =

{#  Hmsup (a. + &) < lim n sup a + lim i 8up b,

e
provided none of the sums is of the form = — =,
() If au < ba for all 5, then

lim iaf g, < llm mf D.-

I

Show by an example that strict inequality can hold in {(b).
2Put fo=xpilnisodd, fr =1 — xzif n s even. What i5 the
relevance of this example to Fatou's lemma?
3 Suppase f.: X — [0,«] is measurable for n =1, 2, 3, . . .,
fHiagfoxrfiz - 20 falz)— flx)asan— «, foreveryze X,
and f; ¢ L(p). Prove that then

hm [ Jodp = -Lfdu

and show that thiz coanclusion does not follow if the condition
“fie LY py"' 18 omitted,

4 Prove that if f is a real Tunetion on a mewsurable space X such
that {x: f{z) > r] is messurable for every rational r, then f is
measurable.

5 Prove that the sct of points at which 8 sequence of measurabla
resl funections canverges 12 a measurable set.

6 Let X be an uneountable get, let 9 he the collection of all gets
E C X guch that either X or E¢ is at most countable, and define
p{E} = [ in the first ease, p(K) = 1 in the second. Prove that
9% is 8 e-algebra 1o A and that u is 3 measure on M,

T Does there exist an infinite ¢-algebra which has only countably
many Inembers?

8 Prave an analogue of Theorem 1.8 for » functions,

9 Prove the conclusion of Theorem 1.7(}} under the weaker hypothe-
sis that g is Borel measurable; i.e., prove that Borel measurable
functions of measurable functions are measurable.

10 Buppose (X} < «, {f.] i8 a sequence of hounded complex meas-
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urable functions on X, and 7, — f uniformly on X. Prove that
lm f fady = _Lfd.u.

end show that the hypothesis “u(X) < =’ cannot be omitted.
11 Show that

A = n U E;
rml kmn
in Theorem 1.41, and henve prove the theorem without any
reference to integration.
12 Suppose fe L(x). Prove that to each ¢ > O there exiate 2 3 > 0
such thet Jgfi du < ¢ whenever p{(E) < 4.
13 Show that proposition 1.24(c) is also true fore = <,
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Positive Borel

Measures

Yector Spaces

2.1 Delinition A complex vecior space (or a vector space over the com-
plex ficld) is a st V, whose elements are called veciors and in which two
aperatinns, called nddition and scolar multiplication, are defined, with the
following famihar algebraic properties:

To every pair of vectors z and y there corresponds a vector x + g, in
guch a way that x +y=y 4z and 2+ g+ 2 =(xz+ gy +z; V
containg a unique vector 0 (the zere vecier or origin of 1) such that
z 40 =zlorevery e V; and to each z € ¥ there corresponds a umgue
vector —z such that x + (—2) = 0.

To each pair (a,z), where 2z e ¥V and « i8 a scalar (in this context, the
word scaler means compler number), there is associated a vector ex e V,

in auch a way that 1z = 5, e(fz) = («f)x, and such that the two dis-
tributive laws

(1) a{z + y) = ax 4 ay, (@ 4+ B = az | 82

hold.

A linear transformation of 4 vector space ¥ into a vectar space V,ig a
mapping A of V into V', such that

(2) Alar + BY) = ahz + iy

for adl z and y ¢ V and for ali scalars o and ., In the gpecial case in which
V. is the field of scalars (this iz the simplest sexample of a vector space,
except for the trivial one vonsisting of 0 alone), A is called & Linear func-
tional. A linear fuhotional is thus a complex funetion on V which
satiafies (2).
Note that ane often writes Az, rather than A(z), if A is Hnear,
33
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The preceding definitions can of course be made equally well with any
field whatsoever in place of the complex field. Tinless the contrary is
explicitly stated, however, all vector spaces occurring in this book will
be complex, with onenotable exception: the euclidean spaces B* are vector
gpaces over the real field.

2.2 Integration as a Linear Functional Analymia is full of vector spaces
and linear transformations, and there i3 an especially close relationship
betwesn integration on the one hand and linear funetionals oa the other.

For instance, Theorem 1.32 shows that Li{u) is a vector space, for any
positive measure p, and that the mapping

W 7= fpfdn

is & linear funetional on L'{g). Similarly, if g is any bouaded measurable
function, the mapping

@ = [ o du

is a linear functional on Iy} we shall s2e in Chap. 6 that the functionals
(2} are, in & nense, the only interesting ones on L{u}.

For another example, let ' he the set of all eontinuous eomplex func-
tinos on the unit interval 7 = Eﬂr!]- Tha sum of two contimuous funhes

tlonz is continuous, and 50 is any scalar mulfiple of a continuous funetion.
Hence € iz a vector space, and if

3) N= [ f@de (0,

the integral being the ordinary Riemann integral, then A is clearly a linear
functional on €'; A has an additional interesting praperty: it is a positive
linear functional. 'This means that Af > 0 whenever f > 0.

One of the tasgks which iz still shesd of us i8 the construction of the
Lebesgue measure. The construetion ean be based on the linear fune-
tional (3), by the following observation: Consider a segment (a,b) C I
and consider the class of all f ¢ C such that 0 < 7 £ 1 on { and f(x) = 0
for all x not in (a,h). We have Af <¢ b ~ a for all such f, but we can
choose f 80 that Af is as close to b — g as desired. Thus the length (or
measure) of (5,b) is intimately related to the values of the functional A.

The preceding observation, when locked at from a more general point
of view, leads to 5 remarkabla and exiremely important theorem of
F. Riesz:

To every positive lenear funclional A on C there corvesponds a finile posi-
tive Borel measure u on I such tha!

(4) Af = [dep (f £ C).

e
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[The converse is obvious: if g i8 & finite positive Borel meagure on I and
if A iz defined by (4), then A is & pasitive linear functienal on €]

It is clearly of intcrest to replace the bounded interval I by B! We
ean do this by restricting attention to those continuous functions on Rl
which wvanish outgide some bounded interval. (Thege functiong are
Riemann integrable, for instance,) Next, funetions of several variables
oceur frequently in analysis, Thus we ought to move from B! to B",
it turns out that the proof of the Riesz theorem still goes through, with
hardly aoy changes, Moreover, it turns gut that the euclidean properties
of B» (poordinates, orthogenality, ete,) play no role in the proof; in fact,
if ome thinks of them too much they just get in the way., Essential to
the proof are certain lopologieal properties of B (Naturally. We are
now dealing with sentinuous funetions.) The crueial property is that of
local compaciness: each point of £* has a neighborhood whose closure is
compadct.

We shall therefore establish the Riesz theorem in a very general zetting
(Theorem 2.14}. The existence of Lebesgue measure then follows as a
special case. Those who wish to concentrate on & more concrete situation
may skip lightly over the following section on topological preliminaries
(Urysohn's lemma is the item of greatest interest there; see Exercise 14)
and may replace X by B!in the remainder of this chapter, at least for &
first reading.

Topological Preliminaries

-

2.3 Definitions Let X be a topological space, as defined in Seo. 1.2,

(a) A set ¥ (C X is closed if its complement & is open. (Hence @
and X are closed, finite unions of closed sets are closed, and arhi-
trary intersections of closed sets are closed.}

{6} The closure E of n set B C X is the smallest closed set in X which
contsins E. (The following argument proves the existence of B:
The eollection @ of all closed subsets of X which contain F is not
empty, since X & 2:let B be the interscetion of 6ll members of 8.}

{¢) A set K C X ia compact if every apen cover of K contains a finite
subcover, More explicitly, the requirement is that if {V,} ie a
callection of open sets whose union contains K, then the union of
some finite subcollection of {¥,} also econtains K.

In particular, if X is itsellf compact, then X iz called a compact
space,

{(d} A neighborkood of a point p £ X is any open subset of X which
containg p. (The use of this term is not guite standardized;
some use “neighborhood of p’’ for any set which eontains an
apen set enntaining p.)
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(e} X is a Hausdorff space if the following is irue; If pe X, ge X,
and p = g, then p has a neighborhood U end g has a neighborhoad
Veuch that Un V = &,

(F} X is locally compaci if every point of X haz a neighborhood whose
closure is compact.

Obviously, every tampact space is locally comprct.

We recall the Heine-Borel theorem: The compact subsels of o euclidean
apace K* are precisely those that are closed and bounded (126],1 Theorem
2.41). From this it follows eazily that E* is a locally compact Hausdorff
gpace. Also, every metric space is & Hausdorff space.

2,4 Thecrem Suppose K is compact and F is closed, in o topological space
X. IfF C K, then F 45 compoci.

proo®r If {V.} is an open cover of F and W = 7, then Wu UV,
covera X ; hence there iz a finite collection {V,.} such that )
KCWuVau- vl
Then # C ¥Fau ' - -0V,
Corollary Jf A C B and i B has compact clozure, so does A.

2.5 Theorem Suppose X is o Hausdorff spoce, K C X, K 1s compoci, and
pe K. Then there are open sets U and W such that pe U, K C W, and

UnW = &,

rroor If ge K, the Hausdorff separation axiom implies the cxist-
ence of disjont open zets U, and Vg, such that pe Uy and ge V.
Bince K iz compact, there are pointa gy, . . . , ga € K such that

KECV,u:--ul,.
Qur requirements arc then satisfied by the scts
U=Ugat ~-nl, and W="Tau-+-uV,.
Corollaries

(2) Compoct subsete of Hauadorff spoces are closed.
() If F is closed and K is compact in o Hawsdor{f space, then Fn K
18 compaci.

Corollary (b) follows from (g) and Theorem 2.4,
t Numhera in bracketa refer to the Bibliography.
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2.6 Theorem If [K.} 42 a collectivn of compact subsetz of @ Hausdorff
apace and if NK, = ¢, then some finile subcollection of 1 Ka) also has

emply ntersection.

proor Put ¥V, = K.° Fix a member X, of {K,}. Since no point
of K: belangs to cvery K., [V.! ia an apen cover of K. Hence
K, C Vau v v uV,, for some fimte collection {V,.}. ‘This implies
that

KiaK,n:--nK, = .

2.7 Theorem Suppese U iz open 1n a locally compact Hausdorff space X,
K U, and K 2 compact, Then there is an open sel V with compact
closure auch that

KCVCVPCU

PROOF Bince avery point of X heas s neighborhood with compact
closure, and since X is covered by the union of finitely many of these
neighborhoods, K lies in an open set & with compact elgsure. If
V=X, take ¥ = G.

Otherwise, let € be the complement of 7. Theorem 2.5 shows
that to each p e there corresponds an open set W, such that
KC Wyand p¢ W, Henee [C n@nW,}, where p ranges over C,
ig & collection of compact sels wiith emply intersection. By Theorem
2.6 there are points py, . . . , pa £ € such that

CnGaWan- - nW, = ¢
The set
V=GnW,n- - nW,

then has the required properties, sinee
VCGnW,n:  nW,.

2.8 Definition Let f be a real {or extended-real) function on & topological
space. If

{z: f(z) > al
is open for every real o, f is said to be lower semiconitnuous. If
{z: flz) < a)

ia open for every real a, fis said ta be upper semiconfinuous,
The following properties of semicontinuous functions ere almost Iinme-
diate consequences of thig definition:

(g} A real function t¢ continvous if and only #f it {3 boik upper semi-
condinuous and lower semicontinuous.
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(b) Charecleristic functions of open sels are liper semiconiinupus,
characieristic funciions of closed sefs are upper semitonfinuous.

{¢) The supremum of any collection of lnper semiconlinuous functions
i3 lower semiconttnucus, The infimum of anv collection of vupper
gemtconlintons funclions 18 upper seniconitnuous.

2.9 Definition The gupper! of & eomplex function f on a topological
space X iz the closure of the st

fx: flz) = 01,

The collection of all continuous complex functions on X whaove support
is sompact is denoted by C.(X).
Ohzerve that € (X) iz a veclor space. This is duse t0 two {nets:

{a) The support of £ + g lies in the uninn of the suppart of f and the
support of g, and any finite umon of compact sets is compact.

{5} The sum of two continuous complex functions 13 continuous a3
are scalar multiples of continuous funciions.

{(Statement and proof of Theorem 1.8 hold verbatim if “measurable fune-
tion™ is replaced by “continuous funetion,” “measurable space” by “topoe-
logical space’’; take ®{s,i) = 8 + ¢, or B(8,f) = si, to prove that sums and
producta of continuous functions are continuocus.)

2.10 Theotem Let X and Y be lopological spaces, and let f: X — ¥ be
continuous. If K 45 @ compact subset of X, then f{K) is compact.

rrRoaoF If {V,} is un open cover of f{K), then {f-(V,.)} is an open
cover of K, hence K C FYV.)u « - - ufV,,) for pomea,, . - .
a., henee fFIK) C Vou - - 2 0 Ve,

»

Corollary The range of any fe C.(X) is a compact subsel of the complex
plane.

In fact, if K is the support of fe C.(X), then f(X) C fiK)u {0}. I
X is not compaet, then O g f{X), but 0 need nat Lie in f{K), a8 ia seen by
easy examples.

2.11 Notation In this chapter the following conventions will be used.
The notatian

(1) K<f

will mean that K is a compact subsst of X, that fe C(X), that 0 <
flz) < 1forall ze X, and that f{z) = [ far all 2z K. The notation

() f<V
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will mean that V iz open, that f2 C(X), @ < F < 1, and that the support
of fLies in ¥. The notation

(3) K<f<V
will be used to indicate that both (1) and (2) hoid.

2,12 Uryschn’s Lemma Suppose X 48 a locolly compact Havedorff space,
Vicopenin X, K C V, ond K 43 compact. Then there exists an f 2 C(X),
such: that

) K<f<V.

In terms of charaeteristic funetions, the conclusion asserts the existence
of a continvous funciion f which astiefies the inequalities xx < F < xy.
Note that it iz easy to find semicentinueus funetions which do this; exam-
ples are xx and Xy,

Proor Putry = 0,ry = 1, and let rs, 74, 75, . . . be a0 enumeration
of the rationals in (0,1). By Theorem 2.7, we can find opern sets ¥V,
and then ¥, such that V; is compaet and

(2) KCWMCV,CVoCVaCV.

Supposen = 2ead V., . . . , ¥, have been chosen in such a man-
ner that r; < v, implies ¥, (C ¥,. Then one of the numbers
T1, » + » 5 Fay 88y r;, will be the largest one which is smaller than
ra+1, Bhd another, say r;, will be the smallest one lavger than r,, .
Using Theorem 2.7 again, we c¢an find V., so that

-p-'l'j C Fr-.+1 C anﬂ C Vﬂ‘.'

Continming, we obtain a collection {V,} of open sets, one for every
rational 7 € [0,1], with the following properties: X C V,, Vo C ¥V,
 eack T, {8 compact, and

(3) s> r  dmplies v, C V.
Define

r  ifreV, 1 if=zeV,
1) filz) = {0 otherwise, 922} = [a otherwise,
and
{5) f= spf, ¢= inf g..

The remarks following Definition 2.8 show that f is lower semi-
continuous and thet ¢ i& upper zemicontinuous, It iz clear that
0 < f<1, that f(z} = 1 if z & K, and that { has itz support in V..
The proof will be completed by showing that f = g.
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The inequality 7,(z} > g¢.(x) is possible only if r > &, £ ¥,, and
zg V. Butr > g implies ¥, C ¥,. Hence f, < g, for all r and a,
80 f < g

Buppose f(x) < g{z) for some #. Then there are rationals » and #
such that flz} <r < 8 < g{x). 8Binee f(r) < 7, we have x¢ V,;
sinoe ¢(z) > s, we have z & V.. By (3), this is a contradiction,
Hence f = g.

2.13 Theorem Suppose Vi, . . ., ¥y ore open subsels of a lecally com-
pact Hausdorff space X, K 15 compadt, and

KCVivo:-uV,

Then there extst funclions h; < Vi =1, . . . , n) such that
(1) i)+ -~ +hiz) =1 (z & K).

Because of (1), the colleetion {Ay, . . . ,A.} 15 called a perfition of
wnity on K, subordinate to the cover {Vy, . . . ,V.}.

PrR0OOF By Theorem 2.7, each 2 £ K bas a peighborhood W, with
compact closure W, C V; for some ¢ {depending on ). There are
points 1, . . . ,Zmsuch that Wou - -0 W, DK, Ifi<i<gn,
let H; be the union of those W, which lic in V,. By Urysohn’s
lemma, there are funetions g; such that H; < g < Vi, Decfine

hi = fh
(2) he = (1 = g1)g:

ha=(1—gd(1 —god - (1 — gui)gn
Then ki < V.. It is casily verified, by induction, that
(3 hhths+t Fhe=1—-Q=g{0 =gz 1—gd
Bince K C Hyju - + - v H,, st lesst oneg:(x) = 1 at eachpoint x ¢ K;
hence (3} shows that (1) holds.

The Riesz Hepresentation Theorem

2.14 Theorem Lel X be a locally compact Hausdor[f spare, and let A be a
posiiive linear functional on C.(X). Then tiere exisls a o-algebra M in X
which contuins all Borel sels in X, and there exisis o unigue postiive meas-
ure w on 9 which represents A n the senss thal

@ Af = f,fau
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for every J & C,( X} and which has the following additional properties:

@) p(&) < < for every compact sef K C X,
{¢) For every F &€ WM, we have

w(E) = inf {x{V): E C V, ¥ open].
{d) The relation
w(F) = aup [p(K): K C E, K compact}

kalds far every open set B, and for every B & T with u(B) < =,
(&) If Bemi, A C E, and w{E} = 0, then 4 & 9.

Property (a) is of course the one of greatest interest. After we define
M and g, () to (d) will be established in the eourse of proving that 3 is
a o-algebra and that g is countably additive, We shall see later (The-
orem 2.18) that in “reasonable” spaces X ewery Borel measure which
satishies (b) also zatisfes (¢) and {d) and that (d) actually holds for every
E ¢, in those cases, Property (¢) merely saye that (X,91,4) 13 8 com-
plete measure gspace, in the sense of Theorem 1.36.

Throughout the proof of this theorem, the letter X will stund for a
compact subsct of X, and 7 will denote an open set in X,

Let us begin by proving the uniqueness of g. If p satisfies (&) and {d),
1t is clear that g 18 determined on 51 by ks values on compact sets.
Henee it suffices to prove that uy{K) = k(K) for all X, whenever u;
and u. are measures for which the theorem holds, Seo, fix K and ¢ > 0.
By (3) and (¢), there exists & ¥ 7 K with ue{V) < ue(K) + ¢; by Ury-
sohn’s lemina, there exists an fso that K < £ < ¥; hence

w(B) = [oxedus < [ Fdu = = [ fdus

= fxl.'v Bur = p2(F) < plK) + e

Thus pi(K) < ue{K). If weinterchange the roles of x; and ug, the oppo-
site inequality 15 obtained, and the uniqueness of u 1% proved.
Incidentally, the sbove computation shows that (a) forces (b).

Construciton of p and 9
For every open set V in X, define
(1) a(V) = sup {Af: f < V).
If ¥y C Vy, it is clear that (1) implies u(Vy)} < u(V:). Hence
(2) wlE) = inf {u(F): E CV, V open}
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if & is an open set, and it is consistent with (1) to define u{£) by (2), for
erery B C X,
Note that although we have defined u(E) for every £ X, the count-
able additivity of u will be proved only on a certain s-algebra 97 in X.
Let 9y be the class of nll B C X which satisfy two conditions:
p(E) < = . and

(3} uw{E) = sup {u(K): K C E, K compact}.

Finally, let ot be the class of all E ( X such that- £ n K ¢ 9 for every
compact K,

Proof that x and I have the reguired properiics

I is evident thal u iz moneiene, ie., thal w{d) < p(B)if A C B and
that x(E) = 0 implies E& N> and B e 9. Thus (g} holds, and 50 does
(), by definition.

Since the proof of the other assertions is rather long, it will be conven-
ient to divide it into several ateps.

Observe that the positivity of A implies thet A is moncione: f < ¢
implies Af < Ag. This is clear, since Ag = Af + A{g — Handpg — F = 0.
This monotonicity will be used in Steps II and X,

RTEF 1 If Ey, Es By, . . . ore arbiirary subsets of X, then
(4) #(il_-'l E) < E p(ED.

1) |
ProoF We first show that
(5) w(Viu V) < p(V) + u(Vy)

tff ¥y and V3 are open. Choose g < V,u¥; By Theorem 2.13
there are functions A; and A, such that b; < V; and Ady(z) + kalz) = 1
for all 2;in the support of g. Hence by < Vi, ¢ = kg -+ hog, and so

(6) Ag = Alhag) + Alhag) < (Vi) + p(V2).

Binee (8) holde for every g < Viu V3, £5) follows.

If u(E;} = = for some %, then {4) is trivially true. Suppose there-
fore that p(Ey) < = for every £. Chooge ¢ > 0. By (2) there are
open sefs V; O E; such that

(7} ul Vo) < plEq) + 2% =123 ...}

Put ¥V = l:.IV,-, and choose f < V. Bince f has compact support,
f< ¥iu -+ -uV¥,forsomen. Applying induction to (5), we there-
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fore obtein

AFSuViv: - oV suV) + - - +pP) <Y #B) +e

=1

Since this heolds for every f < V, and sinee UE; C V, it follows that
(8) (U B S (V) £ 3, B+
= i=1

which. proves (4), since e was arbitrary.
S8TEP 11 Iy contatins every campaet set.
This implies assertion (b} of the theorem.
rroor I K < filet¥V = {x;f(z) > 4}. Then KX C ¥, and g < 2f
whenever g < V. Henee
p{K) < (V) = sup {Agig < V} < A2} < =,
Since K evidently satisfies (3), K & 91ip.

RTEP 111 Erery open sel suirgfies (3). Hence My confaing every open sel
V with u(V) < =,

ProoF Let o be a real number suell that o < p(V)., There exists
an f < V with o < Af. If W is ary open set which eontaing the
support K of f, then f < W, hence Af < p(W). Thus Af < u(X).
This exhibits a compact X C ¥V with a < p(K), g0 that (3) holds
for V.

8TEr IV Suppose F = ﬁ B, where B\, E,, B, . . . ars pairwiss digjoint
F=1
members of Mp. Then

9) WB) = 3 B,

im]
If, in addition, u(E) < o, then also £ £ Ms.

—r wm LT Rk aloa i
v H s 1] U

|
E‘I"

{(10) (K u Ky) o= p(Ky) + p(Ky)

if X, and K. arc disjoint compact seta. Choose ¢ > 0. By Theorem
2.7 {with K, in place of K and K," in place of {7) there arc disjoint
open sets V1 and Vysuch that K, C V.. By Step II, therc is an open
set W DO K,u K; such that (W) < p(K,uwK:) + ¢ and there are
functions f; < W n V; such that Afi > a(WnV¥V,) — ¢ for i =1, 2.
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Bince K; C WoViand fy + 2 < W (it 1z here that Vo Va= & is
used!}, we obtain

WK + oK) S pWa V) + p(WaVy) <Afy+ Afs 4 2e
< p(W) + 2 < w(Ey v Ko} -+ 3e

Since ¢ wag arbitrary, (10) follows from Step I,

If u{E} = e, (9 follows from Btep 1. Assume therefore that
p(E) < e, and choonse ¢ > 0. Since K& M, there are compact
sets H; C B, with

(11) plH) > pl(E) — 2% =123 ...
Putting K, = Hyuv - - + v H, and using induetion on (10}, we obtain

L]

A2 B 2 WK = F W) > T B ~

Hince (12) holds for every # and every ¢ > 0, the left side of (9} 1= not
smaller than the right side, and so (9) follows from Step L
But f ¢(£Y < = and ¢ > 0, {9) shows that

¥
(13) 2(B) < Y a(B)+ e

i=1

for some N. By (12}, it follows that p{F) < u{Kx} 1+ 2¢ and this
shows that E eatisfies (3); hence £ e 9.

aTEP ¥ If B e My and e > 0, there 13 ¢ compact K and an open V such
that K C EC Vand p(V — K) < e

PROOF COur definitions show that there exist, K and ¥V =o that
sV — % < p(f) < u(K) + %
Bince ¥ — K is open, V — K £ 9y, by Step III. Hence Btep IV

impliea that

,(K) + u(V — K} = p(V) < p(K) + e

STRE vI If AeWiprand Be My, then A — B, Au B, and A n B belong to
iy

PROOF If ¢ > 0, Step V shows that there are sets K, and V;such that
K'lCA. C V;, K:CBC Vz, and i.ll:V;'—K{) < £ for ¢ = 1, 2.
Bince

A—Bcpl—-K:C{Vl—KﬂU{KI_‘VEJU{VE_KE):
Step I shows that
(14) pld — B) < ¢+ p(K; — Vi) + &
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Sinee K, — ¥:is a compact subset of 4 — B, (14) shows that 4 — B
satisfies (3}, so that 4 — Bz Htp.

Bince AuUB = {A — BYu B, it follows (by Step IV) that A v B & 9ls.
Bince AnB=A — (4 — B), we also have A n Be .

STEF viI 9 15 ¢ o-algebra in X which conlains all Borel seis.

pROOF Lot K be an arbitrary compact set in X.

If Aean, then A*nK = K — (A n K), so that A°n K is a differ-
ence of twn members of Mz, Hence A7 n K £ 97, and we conclude:
A e R implies A& 9N,

Next, suppose A = l:]zeli, where cach A;e M. Put B, = 4,nkK,
and
(15} Ba= (A,0K) — (Bju " - - uB,,) n=2234...).
Then {##,} i1s & digjoint sequence of members of Mp, by Btep VI, and
AnK = l;j By It follows [rom Siep IV that A n K e My, Hence

A e 0.

Finally, if ¢ is closed, then €' n K 18 compact, hence € n K e Mr,
sn C e, In particulsr, X & 9.

We have thus praved that 3 is & o-algebra in X which containg all
closed subsets of X. Hence 9 containg all Borel sets in X,

STEPYIO Nir coneists of precisely those seig i £ OW for which () < =
This implies assertion (d) of the theorem.

prooF If ¥ 2 9, Steps II and VI imply that £ n X £ 91, for every
compact K, hence & ¢ 3.

Conversely, suppose Fe M and u(&} < =, and choose « > Q.
There 18 an open et ¥ O F with u(V) < e« ; by IIIl and V, thereis a
compact K C V with u(V — K) < e, Bince En K £ My, therois a
compact H < K n K with

wlEnK) < u{H) + e

Bince B C (B n K) u (V — K}, it follows that
plE) < plEn Ky + p(V — K} < u{fl) 4 2,
which implies that K & 91 p.

SEEP IX u z& & medasuve on M,

PROOF The countable additivity of g on M follows immediately
from Bfeps I'V and VI,
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s1EF X For every fe CAX), Af = [x]fda.
This proves (4}, and completes the theorem.

pROOF Cleatly, it 13 enough to prove this for real f Also, it is
enough to prove the inequalify

(18) AF £ [ fdu

for every real f& C.(X). For once (16) in established, the linearity
of A shows that

—Af=AM—f) & fx (=N du= — fxfd#-

which, together with {16), shows that equality heolds in (18).

Let K be the support of a real fe C.(X), let [a,6] be an intervael
which contains the range of f (note the Corollary to Theorem 2.10),
choose ¢ > 0, and choosey,, fori = 10,1, . . . ,n,sothaty — i1 < e

and

{17) o< B << Xy =0

Put

(18) E:=frip, <f@<wink (=1,...,n).

Bince f is continuous, f is Borel measurable, and the sets E; are there-
fore disjoint Borel sets whose union 18 K. There are npen sets
V: _ E; such that

(19) pVI<uBI+>  G=1,...,n)

and such that J(z) < y + ¢ for asllze Vs, By Theorem 2.13, there
are functions & < V: such that Zh =1 on K. Henee f= Ihf.
Bince kT < (i + ki, and since % — ¢ < f(z) on Ei, we have

#

Af = Zl ARS) < i (e + AR < i (: + eu(V)

1=1 i=1

= i (o + Oull) + i (e -+ :J;':

=] im]

< El (3 — (B + 2es(K) + (b + e)e
§- .

< Ei Jo f du + €2u(K) + b+
™

= [ fde+ d2u(K) + b+ ol
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Bince ¢ was arbitrary, {16} is established, and the proof of the theorem
18 complete.

Regularity Properties of Borel Measures

2,15 Definition A measure g defined on the o-algebra of all Borel setsin a
locally eompact Hausdorff space X is called a Borel measure on X. H p
is positive, a8 Borel set & (C X is outer regular or inner regular, respectively,
if K hes property (c) or {d) of Theorem 2.14. If every Borel set in X is
both puter and inner regulaz, g is called regular.

In our proof of the Riezz theorem, outer regularity of every set £ was
buili into the construction, but inner regularity was proved only for the
open sets and for those £ ¢ M for which p(F) < «=_. It turns out that
this flaw i8 in the nature of things. Omne cannot prove regularity of
under the hypothesis of Theorem 2.14; sn examyple is deseribed in Exer-
cige 16,

However, a alight, strengthening of the hypotheszes does give us a rogular
measure, Theorem 2.17 shows thie. And if we specialize a little more,
Thearem 2.18 shows that all regularity prohlems neatly disappesar.

2.16 Definition A set F in a topological space is called e-compact if E i a

.
armntehla 1mian of pomnant eate
countnoie Unlen of Compalft Bais.

A set B in & moasure space (with measure p) is said to have o-fintie
measure if £ is a countable union of sets E; with p(E) < =,

For example, in the situation described in Theorem 2.14, every s~com-
pact set hag o-finite mensure. Also, it ie easy to see that if £'¢ 9% and ¥
has o-finite meagure, then & is inner regular.

2.17 Theorem Suppose X 13 o locally compact, o-compact Hauysdor [ space.
If ot and p are as described ¥n the slatement of Theoremn 2,14, then O and a4
huve the following properiies:

(@) IT E e and ¢ > 0, there 15 a closed sel F and an open sei V such
that F CEC Vand u(V — F) < «.

(b} u 18 @ regular Borel measure on X.

(e) If E e 91, there are sets A and B such that A 1s an F,, B iz a Gy,
ACECRE, and p(B— A) = 0.

As a corollary of {¢) we see thut every E £ 90 is the union of an F, and
& set of measure QL

Peo0F let X = KyuK;uKyu - - -, where each K, is compact.
Ii Eeon and ¢ > 0, then p{(K,n E} < «, and there are open scts
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V. D K. n E such that
(1)  pVe— (E.0E) < E—*ﬁ =123 ...
ItV = UV, then V — B C U(Va — (K, n BD), so that
w(V —E) < ;—,~
Apply this to E7in place of F: Thereis an open set W _3 B¢ such that
piW — E) <2, IfF =W thenF _E,andk — F =W — E,
Now (&) follows.
w1

TE B oo Al nd il men — L 7
Al £ e LdseEld, LOCL e — iy

p((Eyu - - WEL)nF) — plF)

JE r.) N FO P L
1 ), BACH fy OF

as n— o, Hence (b) lollows [rom (u).

If we apply (@) withe =1/ (= 1,2,8, . . .}, we obtain closed
sets F;and opensets ¥ stch that ¥, C E C Vyand w(V; — Fy) < 1/5
Pat A = UF;and B=MNV, Then A CEC B, AsanF, Bisa
7y, and uy(B — A) = 0sinee B — A C V; — Fiforj=1,23,....
This proves {c).

2,18 Theorem Lot X be a [oeally compact HousdorfT space in which every
onen fet 18 o-compact. Lel h be any poaitive Borel measure on X such thai
AK) < = for every compact sef K. Then A 43 regular.

Note that every euclidean space R* satisfiea the present hypothesis,
gince every open zet in B* is a countable union of closed balls.

PROOF Put Af = [x7dr, for fe (X)), Bince M&) < « for every
compact K, A ig a positive linear [unctional on C(X), and thereis &
meusure g, satislying the conclusions of Theorem 2.17, such that

(1) Ixfril-: fxfri,u (F e CoLXD).

ILet V be open in X. Then ¥ = U, where II; 15 compact for
t+=1,23 ..., Choosefsothat H, < f1 < V. Having chosen
Fuu .+« fa, with supports X,, . . ., K., choose f., 8o that
(2) Hyv- uvH,uKiu - K, < fau<V.

The sequence {/,} iIncresses monotonically to xv at every point of X.
Hence (1) implies

(3) MVP) = Em x,f..dh = lim I_fn du = u(l).

Let B he a Borel set in X, and choose « > ). Since p satisfies
Theorem 2.17, there ie a closed set F and an open set ¥ such that
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FCECVand oV —F)y<e Buat V—Fis opcn. Hence (3)
shows that MV — F) < ¢, and this proves the regularity of A, rs in
Theorem 2.17,

Nuoie; It nlso followe earily that A(E) = k(&) for every Borel get Fin X.

In Exercise 17 a compact Hausdorff space is described which contains

an open set which is not e—compact and in which the preceding theorem
fails,

Lebesgne Measure

2.19 Euclidean Spaces Fuclidean k-dimensional space E* is
all pu:uw £ = !,Ln, " - ,ck; whose coordinates & o Aré teal Dim

the following slgebraic and topological structure:

Hz= (£, -...,&),y= (3, --. ,m) and aisa real number, z 4 ¥
and ax are defined by

M) z4+y=C(+n,...,58k+xn, o = {aby, . . . ki),

This makes B* into a real vector space, Ifx -y = D and |z| = (z - z),
the Schwarz inequality |z - y[ < || Jy] leads to the triangle inequality

=
=
[=
'&.
o

B
i
[
==
-

@) o— gl €l — 2+ |2 — 3l;
hene wea ohiain 2 metrie 'I otiine pfz ) = Iz — 4l. We assyme thet
OTNUS WO LDOAIR & INRLI setiing p(z,¥) i~ i SRR

these facta are familiar to t]:.e resder, and shall prove them in greater
generality in Chayp, 4.
If E C Rt and z 2 R*, the translate of £ by r is the set

(3) E4+z={y+=z:peEl
A met of the form
(4) W= {zioy < BB 1 Si< ki,

or any set obtained by replacing any or all of the < signs in (4) by <, is
called a k-celi; its volume is defined to be

k
(5) vol (W) = [] 8~

If ae B* and & > 0, we shall call the set

(8) Qod) = oy S <oy + 85,1575k}
the &-box with corner ci 0. Herea = (ay, . . . ;|\
Forn=1,2,3,...,wslst P, be the aet of all x £ B whose coordi-

nates are integral multiples of 2=, and we let Q. be the collection of all
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27"-boxes with corners at points of .. We shall need the following four
properties of 0,1,  The first three are abvious by inspection,

(a} If n is fized, cach = € B* Ligs in one and only one member of Q..

(B} IfQ e, Q" e, andy < n,thenetther @ C Q7 or @ n Q" = &,

(e) If Qe 8, then vol ()} = 2%, and if n > r, the sel P, hos exactly
2k paints in .

() Fpery nomemply open set in RE it a countable union of disjoint bozes
belonging fo hutlyulyu - - -

PROOF OF {d) I V iz open, every z £ ¥ lies in an apen bull which
Les in V; henee 22} C V lor some () belonging to some 0, In
other words, V i3 the union of all boxes whieh lie in ¥ and which
belong o some 2,. From this cellection of boxes, select those which
belong to 9, and remove those in %, 2, . . . which iie in any of the
selected boxes. From the remaining collection, seleet thoze hoxes of
Iz whirit lie in V, and remove those In £, %, . . . which lie in any
of the selected boxes. 1f we proceed in this way, {a) and &) show
that (4} holds.

2.20 Theorem There exisis a posiltive compleie measure m defined on a
o-algebra O in B with the following properties:

{a) m(W) = vol (W) far every k-cel{ V.

(&) O conlains all Borel sels in B¥; more precisely, E & 90 i and only if
therearesels A and B C R such ot A C K C B, Adsen P, B
gl and miB — A) = 0, Alsa, 1m 15 regulor,

() m is translation ineariand, t.e.,

m(E + ) = m(E)

Jor every E ¢ M and every x £ BE,

(d) If u 48 any posilive translalion jwedariant Borel weasure on B* vuch
that u(K) < = for every compact set K, then thers i& o constant ¢
stuch that u(EY = em(E) for ail Borel sets E C R,

The members of 90 are the Lebesgue measiurable sets in B%; m 13 the
Tebesgue measwre on B When clarity requires it, we shall write m, in
place of m. For a description of other measures on £% see Theorem 814,

eroOF If fis any complex function on ¥, wilh compact support,
define

(1) Af = 2‘“‘2 Jzy  (n=1,23 ..,

where P, 18 as in Sec. 2.19.
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Now suppoze fe C.LE5), Fis real, W is an open E-cell which con-
taing the support of f, and ¢ > 0. The uniform continuity of f {[26],
Theorem 4.19) shows that there i3 an integer N and thaet there are
functions g and A with support in W, such that (i) g and & are constant
on each box belonging to R, (i) g S F <A and (i) t — ¢ < e
Ii n > N, Property 2.19(c) shows that

{2) Awg = Aug & A S Ak = ANR

Thus the upper and lower imits of {A,[) differ by at most « vol (),
and since e was arbitrary, we have proved the existence of

(3 Af = Lnl A {(feCARM.

It is immediate that A is & positive linear funetional on C.(R*).
{In fact, Af is precisely the Riemann integral of f over 5. We went
through the preceding conslruction in erder nol to have to rdy on
any theorems sboul Riemann inlegrals in several variables,) We
define m and O to be the measure and o-algebro assoctated with this A
as tn Theorem 2.14.

Binee Theorem 214 gives ug & complete moessure and since B* is
r-compact, Theorem 2,17 implies assertion (3} of Theorem 2.20,

To ptove {a), let W be the open cell 2.19(4), let &, be the union of
those boxes helonging to O, whose closure lies in W, and choose f so

that £, < §f < W, Our consiruction of Af Lhen shows that
%

(4) AFz [l 8 — s — 27

i~1
Let r — o, and recall that
(3) m({W) — sup 14F: f < W},

by the consiruetion in Theorem 2.14, Thus m(W} = val (W) for
every vpen cell W, and since every ecll is the intersection of & decreas-
ing sequence of open cells, we obtain (a).

Sil_me vol (W + ) = vol (W), it follows that

(6 m{F + ) = m{E)  (zeR®

holds for every cell F; in particular, (6} holds for every box X;
Property 2.19(d) therefore implies that (8) holds for eveTy upwen set
E; and now (6) follows for every F & 9%, siuce

m(E} = inf {m{V): E C ¥, ¥ open}.

This proves (e).
Finally, supposc u is a translation invariant Borel measure on B
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Put ¢ = a(Qq), where € i8 & 1-box. Bince Qg iz the union of 2%
digioint 2-"-boxes, since these are translates of each other, and gince
m{@Ps) = 1, we have

(@) 2% () = p(Qs) = em(Qs} = 2™ em(Q)

forevery 2-=-box ¢¢. Property 2.19{d) now implies that p{FE) = em(E)
for every open set E, and the regularity of m and g {(Theorem 2.18)
shows thal this last equalion holds for every Borel set E.

This completes the proof.

221 Remarks If m is the Lebesgue measure on RF, it is customary to
write LY K*) in place of L'(m}. 1f ¥ iz a2 Lebesgue measurable subset, of
R¥, and if m is restricted to the measuzable subsets of ¥, a new measure
space 15 obtained m an obvious fashion. The phrase “fe L’ on &£ or
“Fe LYWEY ig uzed to indicute that § s inbegrable on this messure space.

IfE = 1,1 T is any of the sets (a,b), {(o,b], [a,b), [a,b], and if f & L), il
is customary to write

J: i fix) dz in place of f;f dm.

Since the Lebesgue measure of any single point iz 0, it makes no difference
over which of thesc four 2¢ts the integral iz extended.

If f 48 a continuous complex function on [a,b], then the Riemann integral
of f and the Lebesgue integral of f over [a,b] coincide, This is obvious from
our construction if f{a) = F{b} = 0 and if /(=) is defined to beQforz < «
and for x > & The gencral case follows without difficully.  Actually
the same thing is true for every Riemann integrable f on [a,4]. Since we
shall have no occasion to discuss Riemann integrable funetions in the
sequel, we omit the proof and refer to Theorom 10,33 of [26].

A natural question, which may have acenrred to some readers, is
whether every subaet. of R* is Lebesgue measurable, It is s consequence
of the axiom of choice that the answar is negative, even for k = 1,

2.22 Kxample TFor real numbers « und ¥y, write z ~ y if and only if
r — yis rational. Il is clear that z ~ z, that z ~ y implies y ~ &, and
that = ~ y, y ~z implies 7 ~~2. Thus ~ is an equivalence relation.
(In algebraie terminology, Jetting @ be the sdditive group of the rational
numbers, each cquivalence class is a coset of @ in BL) Let F be a set in
{0,1) which eontains cxactly one point in every equivalence class, (The
aggertion that there is such s set ¥ is a direct application of the axiom of
choice.} We claim that E i3 nol Lebesgue mensurable.

Asin Bec, 214, let ¥ +r = [z + r:ze B}, We need two properties
of E:
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(w) If x £ (0,1), then x 2 E + r for some rational r £ {—1,1).
{5) If r and & are distingl rationals, then (F + r)n(E 4+ 8) = &,

To prove (a), note that to every z ¢ (0,1) there corresponds a i 2 E such
thatz~y Ifre=zg -y thenz =y +rek 4 r

To prove (b), supposcze (E+»)n{E + 2. Thenz=y+r=z-4+28
foreome ye B, ze K. Bincey —z=8—r #0, we have y ~ 2, and E
contains two equivalent points, in coniradiction Lo our choice of £,

Now sassume that &£ 13 Lebesgue messurable, amwd putl a = m(X).
Define S = /(E 4+ r}, the union being extended over ail rational re (—1,1).
By (&), the sets £ 4 r are pairwise disjoint; since m is translation invar-
iant, Mm(E + r) = « for every 7; since S C(—1,2), m(8) < 3. The

countable additivity of m now forces &« = 0, and hence m(8} = 0, Put
(a) implies that {0,1) C &, hente 1 < m(8), and we have a contradiction.

Continuity Properties of Mcasurable Funetions

Since the cantinuous functions played such & prominent role in our
eanstruction of Borel messures, and of Lebesgue measure 1n particular, it
seems reasonable to expect that fhere are some intrresting relationg

hetween continuous functiona and measurable functions.  In this section
we shall give two theorems of this kind.

We shall assume, 10 both of them, thaf x 7s @ measure on o locally compart
Hausdorff space X which hows the properties siated in Theorem 214, In

particular, x could be Lebesgue measure on some B

2.23 Luosin’s Theorem Suppose f is a complez measurable function on X,
p{AY < o, fz) =0 z¢ A, and ¢ > 0. Then there exisie a g & CAX)
such that

(1) pliz: flz) = ¢l2)]) < e

Furthermore, we may mrrange i so that
§ < .
@) sup [g(@)| < sup [1(2)]

rrooF  Assume fest that 0 € F < 1 and that A is compuet,  Attach
& gequence §{y,} to f, a2 in the proof of Theorem 1.17, snd put § = s
and &n = &n — gn_forn = 2,3,4, . . . . Then 2%, is the character-
istic function of a set T C 4, and

® @)= Y ue) (e,

n=l

Fix an open set ¥ such that 4 < ¥V and ¥V is compact. There are
compact acta K, and open sete Vesuch that K. C Ta C Vo C Vand
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u(Va — Ka) < 2" By Uryschu's lemma, there are functions A,
such that K. < R, < V.. Define

o

(4 g(z) = ¥ 27ho{2)  (ze X).

n=l

This serics converges uniformly on X, so g is conlinuous. Also, the
support of g liex in V. Since 2™,(z) = tu(z) except n V, — K,
we have g(z) = f{2) except in U{V, — K.}, and thig latter set has
measure less than e Thus (1) holds if 4 is eompact and 0 £ f < 1,

It follows Lhal (1} holds if A is compact and iz a bounded meas-
urable funeclion. The compaeciness of A is easily removed, for if
u(d) < o then 4 vontaing a compact sel K with p{(d — K) smaller
than any preasdgned positive nunber. Next, if f 13 a complex
measurable function and if B, = {a:|fiz)| > ni, then NB, = @&, %0
u{B.} — 0, by Thearem 1.10{2), Rince f coincides with the bounded
function {1 — ¥z }- f except on Ba, (1) follows in the general case.

Finally, let & = sup {|f{z)|:z 2 X1, and put ¢(2) = 2 if |¢| < B,
o(z) = Rz/|z| if |z| > E. Then g is a continuous mapping of the
complex plaue onto the dise of radius B. Ii g satisfies (1) and
g1 = ¢ oy, then g, satishes (1} and (2).

Corollary Assume thai the hypotheses of Lusin’s theorem are satisfied and

that |f] € 1. Then theve is o sequence {g.] such that g. € C (X}, |g.f < 1,
aid

(5} flz) = :‘_u}l galz)  ne

proOOF The theorem implies that to each n there corresponds g
gs 2 C.{X), with |g,| < 1, such that p(i,) < 2-* where £, is the
set of all ¥ at which f(2) & g.(z). For almost every « il is then Lrue
thal x lics in at most finitely many of the sets E, (Theorem 1.41),

For any such z, it follows that f{r} = gn{x) for all large cnough =».
This gives {5).

2,34 The Viali-Carathéodory Theovems Suppoge e L¥u), f ¢ real-
valued, and € > 0. Then there exisl funclions u and v on X such thof

W = = 0, w5 upper semfcontfnuous and bounded above, v ¥¢ lower semi-
continuous and bounded below, and

(1) fx (v — w)du <&
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pRoGF Assume first that f > 0 and that f is not idenlically O.
Since f is the poiniwise limit of an increasing sequence of simple
functions s., f is the sum of the sinple functions &, = & — 8.1
{(taking s; = 0), and since {. is a linear combination of characteristic
functions, we see that there are measurable sets E; {not necessarily
disjoint) and constants ¢ > 0 such that

@ o) = 3wl weX)
Sinee
3) fordu— Y cn@),

the series in (3) converges. There are compact sets K, and apen sets
I7; auch that K, C E, C V:and

{4:' 'Ci.i-'-(t’ri - K!} <2 ('! = 1! 2! 3‘: - - -)*
Put

] R
{5} v = Z CiXv, ¥ = E CiXx,,

il i—1

where N 1z chosen so that

(&) Y aulE) < %

N41

Then ¢ is lower semicontinuous, % is upper scmicontinlous, u = f < v,
and

¢ — =
1

-]
ci{Xv, — Xn:,-] + E Xy,
Nl

A=

< E ei{Xy, — Xx,) + E EX 5,
i=1 N¥1
so that {4) and {6} imply {1).

In the general case, write f = f* — -, attach w and 01 to f,
attach u, and v to =, as above, and put u = y; — w3, v = 0y — un.
Bince —pg is upper semicontinuous and since the sum of two upper
semicontinyous functions is upper semicontinuous (similarly for
lower semivontinuous; we leave the proof of this as aun exercize), u
and » have the desired properties.
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Excreises

In Exercises 1 to 5, m stands for Lebesgue measyre on £

1 Given £ > 0, construci an apen sel, ¥ C |0,1] which is dense in

' [0,11, such that m{K) = e. (Tu say that A is dense in B means
that the closure of 4 contsains B.)

2 Construct s totally disconnected compact set K C B! such that
m(K) > 0. (K is to have no connected subset consisting of more
than one point.)

If # 13 lower semicontinuous end ¢ < xg, show that actually
v £ 0. Hence xx cannot be approximated from below by lower
semicontinuous functions, in the sense of the Vikali-Carathéodory
theorem.

3 Coustruct a Borel set F  &! such thal

0 < m{Enl) <m(l)

for every nonempty gegnoent 7. I3 it possible to have m(E) < o
far sueh a sct?

4 Show that there are wneountable gets £ ¢ B! with m(E} = 0.

5 If fis a Lebesgue measurable complex funetion on £, prove that
there is a Borel function g on £2! such that f = g a.e. ).

6 Construct a sequence of continuous functions f. on [0,1] such that
0 < f. <1, sueh that

lim [ fulz) dz = 0,
e AU

but such that the sequence [fu(x}} converges for no x e [0,1].

7 If {fs} is a sequence of coniinuous functions on [0,1] such that
0 < fu < 1and such ¢hal fi(z} — 0 as n— «, fur every z £ [0,1],
iLhen

im [ fe) dx = 0.
w—n JO

Try to prove this without using any measure theory or any the-
orems about Lebesgue integration. ({This is to impress you with
the power of the Lebesgue integral. A nice proof was given by
W. F. Eherlein in Communications on Pure and Applied Mathe-
matics, val. X, pp. 357-360, 1957.)

8 If p is an arhilrary positive measure and if f & L'{g), prove that
{z: f(z) # 0} has o-finite measure.

9 Tet f be an arbitrary complex function on R, and define

w(r,8) = sup {[f{e} — f(l).: 8, te (z — & z + B,
#(2) = inf {¢(2,8):§ > 0}

[t L S

L ——
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10

11

12

13

14

Prove thet ¢ is upper semieontinuoug, that f ig continuous at a
point x if and only if #(z} = 0, and hence that the sef of points of
eontinuity of an arbitrary complex function ig & G,
Formulate and prove an anelogous statement for gencral
topoloagical spaces in place of 8.
Let [fa} be a sequence of real nonnegative functions on B, and
congider the following four statements:
ia) If f1 and f; are upper semicontinuous, then f; + fi is upper
SQIMICONETIUGUS,
(b} If fi and f; are Juvwer semicontinuous, then f; + f: 35 lower
SOINLCGILLILTIGS,

fal T anabh £ g v ) 3
i) 11 Eadn J’n J.D I.I_I:J_IJ S

continuous.
wr
{d) If each j,. is lower semicontinious, then Z f, is lower semi-
1

continuats.

Show that three of these ure true and that one is false, What
happens if the word “nonnegative’ 13 omitted? Is the truth of
the statements affecied i B! is replaced by a general topologioal
space?

Let g be & regular Borel measurs on & compact Hausdorff space X
assume u{X) = 1. Pravethat thereis g compactset K C X ﬂ'hP
carrier or suppor? of ) such that u{K) = L but p{Il < 1 for every
proper compact subset H of K. Hinl: Let K be the intersection
of all compact K, with u(K,} = 1; show that every upen set V
which vontains K also contains some X, Regularty of a 1s
needed; compare Exercise 17. Show that &° is the largest open
set in X whose measure is 0.

Show that cvery compact subset of B' ia the support of a Borel
MEASUre.

Is it true that every compact subset of £ is the support of a con-
tinuous funetion? If net, ean you describe the elass of all cora-
pact sets in &' which are supports of continuous functions? Is
your description vulid in olher Lopological spaces?

Let X be a metrc spa.ce, with metric p. For any nonempty
E C X, define

pelz) = inf {p{z )y e K.
Show that pz is & vniformly continuous function on X. If 4 and

B are digjoint nonempty closed subsets of X, examine the relevance
of the funetion

_ pafx)
D= o+ @

to Urysohn’s lemma,
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15 Examine the proof of the Riesz theorem and prove the following

16

| ¥4

lwo slatements:

(¢ If E.C V¥, and E. C Vs, where ¥V, and V. are disjoint open
sots, then u(E,u E.) = u(E) + p(Es}, even if E, and F, are
not in L

{P) If E £ Iip, then ¥ = NuK,vKqu . . . , where {K;] igadis-
icint countable eollection of compact seta and p{(N) = (.

Let X be the plane, with the following topology: A set is open if

and only if its infersection with every vertical line is an open sub-

set of that line, with respeel to the usual topology of B, Show

that this X iz a locally compsacl Hausdorff space. If fe C(X),

aw he thnes valiiea af » far whinh e u) == far ut
g LNOsE Valles of I 1Gr Waen JLiey) & W IGr Al

12v Ty, v 2 ., &g D

lenst one y (therc are only finitely many such z1), and define

n
A = El [ 2 Fmy) dy.

Lot w be the measure associgted with this A by Theotem 2.14.
If E is the z-axiz, show that x{E) = = although u{K) = 0 for
evety compact K C E,

Thiz exercise requires more set-theoratic gkill than the preceding
ones. Lel X be s well-ordered uncountable set which has a lagf
element, w,, Buch that every predecessor of w, has at most countably
many predecegsors. (“Constryction”: tuke any well-ordered set
whith has elements with uncountably many predecessors, and let
w, be the first of these; @, is ealled the first uncountable ordinal.)
For a2 X, let P,[S.] be the set of all predecessors (suecessors) of
e, and call a subset of X openifitisa Paoran Ssora PanSzora
union of such sets. Prove that X is then & compact Hausdorff
space. (Flint: No well-ardered set containg an infinite decreasing
sequence.)

Prove that the eomplement of the point w; 18 an open set which
[$ nuL e-coIOpact,,

Prove that to every f& C(X) there corresponds Bn o # wy such
that f is constant on S..

Prave that the intersection of cvery countable collection (K.}
of uncountnble eampact subsets of X is wncountable. (Hént:
Consider limits of increasing countable sequences in X which
intersect each K, in ifinitely many points.)

Let 9 be the collection of all £ C X such that cither Bu {w:}
or £ {w] conlaius an uncountable compact sct; in the first case,
define A{E} = 1;in Lhe second case, define A(£)} =.0. Prove that
91 15 & a-algebra which contsains all Borel sets in X, {hat A Is &
mensure on 3 which is nat regular {every neighborhood of w, has
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measure 1), and that

flw) = [, 1

for every fe C'(X). Describe the regular ¢ which Theorem 2.14
associatea with this linear functional.

18 Does there cxist a sequence of eontinucus real functions f, on B!
such that f{z}— = if and only if x is rational? What if
“rational” is replaced by "‘irrational”?

19 It is casy to guess the limits of

f"(l - E‘\‘e’”d.r and [“(1 —I_—ET e~ gy,
AN L JON ny

as n — w, Prove that your goesses are catrect.
20 If m is Lebeague measure on K* prove that m(—E) = m(F},
whore —F = [—z:z e B}, and hence that

fuf@ydz = [, {—2)de
fur all f = LR

91 There is an error in the finsl computation on p. 46, Find it.
Show that u{K)} < A(ZR) by a variation of the argument used in
Step 11 (replace 4 by & < 1, let & — 1} and check that the follow-
ing computation ig correct:

A= 3 Ak € E (s + Ak

= .21 (lal + w + )bk — la zl-ﬂh

< il (o] + % + MCED + ¢/n] = loluCBD

= 21 (5 — Ou(E) + 2au(K) + :;21 fal +w+ @
£‘j’;ftiu+-i“ni"} + lof +5 +d.
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L’=-spaces

Convex Functions and Inequalities

Many of the most commen Inequalitics in analysis have their origin
in the notion of convexity.

3.1 Definition A teal function ¢ defined on a segment (a,b), where
—w X g < b < w is called conver if the inequality

(1) (1 — A -+ Ay) < (0 ~ Nelz) + re(y)

helds whenevera <z < ba < v < b and 0 < < 1.

Graphically, the condition is that if z < ¢ < y, then the peint {¢,¢{)}
ghould lie below or on the line conneeting the pointe (x,{z)) and (y,+(2))
in the plane. Also, {1) is equivalent to the requirement that

elt) — wla) . elu) — olf)
(2) =ur i Svge

whenever a < § <2 { <l u < b.

The mean value theorem for differentiation, combined with (2), shows
immediately that s real differentiable function ¢ is convex in {a,b) if and
only if £ < 8 < £ < bimplies &'(8) < (D), i.e., i and only if the deriva-
tive ¢ i & monotonically increasing functinn

For example, the exponential function is convex on {— «, 0},

3.2 Theorem If ¢ 48 convex on (a,b), then o 48 condinuous on {a,b).

PrRooF The idea of the proof is most eagily conveyed in geometric
langnage. These who may worry that this is not “rigorous’ are
invited to transcribe it in terms of ep=ilons and deltas.

SBuppose 6 < ¢ < ¥ < y < ¢ < b Write 8 [or Lhe poinl (8,¢(5}}
in Lhe plane, and desl samilarly with &, %, and { Then X 19 on or
helow the line 8Y, henee ¥ is on or ahove the line through & amd X

also, ¥ is on or below XT. Az y— z, it follows that ¥V — X, ie.,
650
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¢(y) = ¢(x). Left-hand limits are handled in the same manner, and
the continuity of ¢ follows.

Note that this theovem depends on the fact that we are working on an
open gegment, For instance, if ¢(z) = 0 on [0,1) and (1} = 1, then ¢
gatisfies 3.1(1) on [0,1] without being continuous.

3.3 Theorem (Jemsen’s [nequality) ZLet x be a positive measure on a
o-olgebra I 4n a sef 1, g0 that x(82) = 1. If F is a real funetion in LYu), if
a < f(x) << b for all x e D, and if ¢ 12 convex on (ab), then

() e([1du) < [ oopdn
Noie: The cases a = — e and # = = are not excluded.

ProoF Puti = [gfdu. Thena < ¢t < b If #isthe supremum of
the quotients on the left of 3.1(2}, wherea < s < ¢, then 8 is no larger
than any of the quotients on the right of 3.1(2), for any u £ (4,d). It
follows that

(2) w@) 2 e} +F8—8 {a<s<h)
Henee
(3) w(f@)) — ¢lt) — p(fiz) — D > 0

for every e . Since ¢ I8 continuous, ¢ o f is maasurable. If we
integrate both sides of ¢(3) with respect to g, (1) follows from our
chnice of ¢ and the assumption u(Q) = 1.

ITCI give sn example, take ¢{x) = ¢*. Then (1) becomes
@) op {[fau} < [ & dn

If {15 a finite set, consisting of points gy, . . . , Ps, 88Y, and if

© be w(ipd) = Y, [f(p) = =
COIDER

® “"P{%{*l+"*+xn}}5£(f1+--*+e-},

for real x;. Putting g = &%, we obtain the familiar inequality befween
the arithmetic and geomettic means of n positive numbers:

) s+ + + gatin 5§(yl+y:+ e )

Gomg back from this to (4), it should become elear why the left and right
gides of

(7) Hp{Llogﬂdn}E Lgdu
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are often called the geometric and arithmetic means, respectively, of the
positive function g.
If we take u{{p:}) = o4 > 0, where Zo; = 1, then we obtain

(8) 1™ - ™ S an e+ -0+ any

in place of {8). These are just a few samnples of what is contained in
Theorem 3.3.
For a eonverse, sep Exercise 20,

3.4 Definition If pand g are positive real numbers such that p 4 ¢ = pg,
or equivalently

W +1
g

| et

then we call p and g a pair of conjugale exponents. It is clear that (1)
implies 1 < p < = and 1 < g < «w. An important special case is
p=g=2

Asp— 1, (1) forces g — =, Consequently 1 and = are ulso regarded
g3 a pair of conjugale exponents.

3.5 Theorem Lel p and g be congugale exponents, 1 < p < «. Let X be
o measure gpace, with measure u.  Lel f and g be measurable funciions on X,
with range in [0,=]. Then

(1) fxfg dp < {jxﬁ’ dﬂ}”ﬂ '{fx g d.u}m
and

@ {fe+ora” < {Lra” + [ oo™

The inequglity (1) is Hélder’s, {2} is Minkowski’s, If p = ¢ = 2, (1)
18 konown as Lhe Schwarz noquslity.

PrROOF Let A and B be the two faclorson the mght of (1). If A4 = {,
then f = 0 s.e. (by Theoretn 1.39); hence fz = 0 ae., so (1) holds.
If A > 0and B = =, (1) is agein trivial. So we need consider only
thecase 0 < A < oo, D < B < o, Put

-1 _ 8.
3) F=p G=%
This gives
(4) fx F»dy = j;{ Gedy = 1,

If x ¢ X is such that 0 < #'(z) < = and {} < G(z) < <, there are
real numbers 5 and ¢ such that F(x) = e/?, G(z) = &2 Since
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1/p + 1/g = 1, the convexity of the exponenliel function tmplies
that

(5) gt riie < plet + gt

It follows that

(6) F()G{z) < p7"F(z)* + 97'G(x)°
for every 22 X. Integration of (8) yields

) S FOdu<pt gt =1,

by (4); ingerting (3) into (7}, we obiain (1).
To prove (2), we write

(8) f+ar=F U+~ +g {4+ g7
Halder's inequality gives

@ G < {f S+ gyenete

Lel (9°) he the inequakity (9) with f and g interchanged. BSince
{p — 1)¢ = p, addition of (9} and (9") gives

10 fF+or <{fG+} " [{] P} + {foe}"]

Clearly, it is enough to prove (2} 1n the case that the left side ia
greater than 0§ and the right side is less than ©, The eouvexity of
the function tP for 0 < ¢ < = shows that

(j‘_-[z-g)r < %U" + ¢*).

Hence the left side of (2) is leas than =, and (2) follows from (10) if
we divide by the first factor on the right of {10), bearing in mind that
1 —1/¢ = 1/p. This compietes the proof.

It is sometimes useful to know the conditions under which equality
can hold in an inequality. In meany cascs this information may be
obtained by examining the proof of the inequality.

For mstance, equality holds in (7) if and only if equality holds in {6)
for almost every x. In (5), equality holds if and only if § = & Henece
“Fr = (F#ae” is o necessary and sufficient condition for equality in (7},
if (4) is assumed. In terms of the original functions f and g, the following
resuli 1s then obiained:

Agsumang A < = and B < e, equality kolds in (1) if and only if there
are conslants o and 8, not both 0, such that of? = g7 B,

We leave the snalogous discussion of equality in (2) as an exercise.
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The L?-gpaces

In this section, X will be an arbitrary measure space with a positive
measure p.

3.6 Definition If0 < p < e gndif fis 4 complex measurable function
on A, define

1) 71 = { [ 1P duf ™
und let L¥(u) consist of all f for which
(2) [fls < .

We call [ f|i, the Le-norm of f.

If 15 Lebesgue measure on B¥ we wrile L#(E%) inslead of L#{y), as in
Seq. 2.21. If p is the counting measure on a set A, it ig eustomary to
denote the corresponding Le-space hy £P{A), or simply by {r, if 4 i
countable. An clement of £# may be regarded s a complex seguence
r = {4, and

lells = { 3, 1eal}

3.7 Definition Suppose g: X — [0, «] is measurable. Let 8 be the set
of all real « such that

(1} ulg™ (e, = ])) = 0.
IFS=@, putf= o, If 8§ 4 putp =inf 8. Since

@ i = U oi{(e+ 1= )
and sinee the union of a countable eollection of sels of measure 0 has meas-
urc {, we see that &5, We call 4 the essential eypremum of g,

If f is a complex measurable function on X, we define ||| to be the
casential supremum of  f], and we let L={x) consist of all f for which
Bflle < =. The members of L=(x) are sometimes called the essentially
bounded measurable functions on X.

It follows frem this defintiion thal the inequelity |f{x)| £ A holds for
almest all x if and ondy if x 2 ||f] =

As in Definition 3.6, L=(F*) denoles the class of all essentially bounded
(with respect to Lebesgue messure) functions on K*, and £2(A) is the
ciass of &ll bounded funetions on A. (Here bounded meaws Lhe same as
essentially bounded, since every nouempty set hag positive measurel)
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3.8 Theorem [f p and g are conjugale expenents, 1 < p < =, and if
f e Lr{u) and g € Lo(y), iher fg & L' (u), and

(1) I'fglly < Il llglla.

pROOF For 1 < p < =, (1) is simply Hokler's inequality, applied
to .f| and [g|. If p = =, note thet

(2) f(2)g()| < 11 1] =lg()]

for almost all z; integrating (2), we obtain (1). If p = 1, then
g = =, and the same argument applies.

3.0 Theorem Suppose 1 <p < =, ond felLe{u), ge L*(u). Then
f+ ge LP(u), and

(1) IF + glla < [lfll> + llal's-

rrooF For 1 < p < =, this follows from Minkowski’s inequality,
ginee

[l gl aan < fo (] + lob de

Farp = 1 or p = o, (1) is & trivial consequence of the inequality
f+gl <11+ gl

310 Remarks Tix p, 1 <p < «. If f2lo(y) and o is a complex
number, it s elear thal ef ¢ LP(g), In lacl,

(1 lafis = led il fls-

In conjunction with Theorem 3.9, this shows that L#*(p) is a camplex vector
FPOLE.

Suppose f, g, and h arein L*(x). Replacingfbyf —gandghyg— &
in Theorem 3.9, we abfain

(2) (f =l <1 —g'ls = ['g = Al

This suggesis that a metric may be introduced i Lr{(u) by defining the
distance between f and ¢ to be |f — ¢gl|z. Call thiz distanve d{f,g} for
the moment. Then 0 < d(f,g} < o, 4(ff) =0, d{fg} = d{gJf}, and
(2} shows that the triangle incquality df f,h) < d(f.g) + d(g,h) is satisfied,
The anly other property which & should have to define a meiric space 1
that d(f,g) = 0 should imply that f = g. In our prosent situation ths
need not be so; we have d(f,g) = 0 precisely when f(x) = g(z) for almost
all x.

Let us write f ~ g if and only if d{f,9) = 0. It is clear that this is an
equivalenee relation in Lf(u) which partitions fL#(u) into eguivalence
classes; each class consisis of all funetions which are equivalent to a given
one. If F and & are two equivelence classes, choose f& F and g £ 7, and



66 Real! and complex analysis
defme d{F,F) = d{f,¢); note that f ~ f, and g ~ g; implies

ti(f,ﬂ') = d(fl:@l):

so that d(F, ) is well defined.

With this definition, the set of equivalence classes is now a metric
space. Note that it iz also a vector space, ainee f ~ f; and g ~ g, implies
F+gr~h + g and of ~ af).

When £7{(x) is regarded 85 a metric space, then the space which is
really under consideration 13 therefore not e space whose elements are fune-
fions, but a space whose elemenis are equivalence classes of funciions, For
the sake of simplicity of language, it is, however, customary to relegate
this distinction to the status of a tacit understanding and to continue to
apeak of L#{u) as a space of functions. We shall iollow this custom.

If ffy} i & sequence in L2(p), if f e Lo(u), and if lim. ||fu — fll, = 0, we

A—+an

any that {f.) ronverges fo f in T*(x) (or that {f.} converges to f in the
mean of order g, or that 1f,] is L7-convergent to f}. If to every e 3= 0
there corresponds an integer ¥ such that ||fs — folls < c2ssoonasn > N
and m > N, we call | f.} a Cauchy sequence in L#(u). These definitions
are exactly gs in gny metric space.

It 18 & very important fact that Lr(u) is a complefe metrc space, ie.,
that every Cauchy sequence in L¥(p) eonverges to an clement of L7 (p):

3.11 Theorem L?(p) it a complete meiric space, for 1 < p < » and for
every posiiive measure u.

PROOF Assume first that 1 < p < =, Let {f.} be & Csuchy

sequence in L*(y). There is a subsequence {fa.}, ma <ne < -+« ,
such theat

(1} ”tf"'i+l. = .fﬂp” < 2—1 i’i = 11 2: 3; LI .}.
Put

k -
EE] e = 2 !f"-n-l - -f*h!? g= E |fﬂi+1 - -f“i1‘
=1 i=1
Since (1) holds, the Minkowski inequality shows that [igel, < 1
for k=1, 2,8, .... Hence an application of Fatou's lemma to
1ge°] gives g, < 1. In particular, g(xr} < o a.e., so that the series

3) fol@ + 3 e — fusl@))
<1

converges absolutely for almost every x 2 X. Denote the sum of (3)
by f(x)}, for those 2 at which (3) eonverges; put f(z) = 0 onthe remain-
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ing set of measure zero,  Since

i—1
(4 fu + _21 (funs — Frd = Tous
we see that
(8) fla} = lim fo(2) e,

Having found a function § which ig the pointwise limit a.e. of
[ fac}, we now have to prove that this f is the Le-limit of {f.}. Choose
e > ). There exists an ¥ such that | f, — fullp < eif 2 > N and
wm > N. For every m > N, Fatou's lemma therefore shows that

® [yl = Sl Sliminf [ |5 - Spdu < o

We conclude from (B) that f— f. & L*(x), hence that fe Lo{(u)
{since f = (f — fu) 4 ful, and finally that ||f — full, > 083 m— o,
Thig completes the proof for the case 1 < p < =,

In L=(y) the proof is much easier. Suppose [f.} iz a Cauchy
sequence in L={u), let A; and B... be the sets where |fi{z)] > | fi'=
gnd |fal(2) = fu(2}| > ||f5 — fm |m and let E be the union of these
gets, fork, m,n =1,2,3, . ... Then k(&) =0, and on the com-
plement of E thesequence | f,} converges uniformiy to a bounded fune-
tion f. Define f{z) = 0 forz ¢ E. Then fe L=(y), and | fo — fla —
Dagn— <.

The preceding proof contains a result which is interesting enough to be
stated separately:

3.12 Theorem Ifl < p £ = and if {f.} i3 a Cauchy sequence in Lr{u),
with mit f, then {f.) has o subsequence which converges pointuise almost
averywhere o f{z).

The simple functions play an interesting role in L=(u):

3.13 Theorem Let & be the clase of all camplex, measurable, simple func-
tions on X such that

(13 ullz: a(z) = 0}) < oo,
1 £ p < o©, then 8 is dense in Lr{u).

rroo? First, it is clear that 8§ C L#(u}). Buppose f > 0, fe Lr(p),
and let &} be s in Theorem 1.17. Sinee 0 < 5, << f, we have
s, e L#{u), hence s, &8 Bince |f — &|° < f» the dominated econ-
vergence theorem shows that |f — &/l,— 0 &3 5 — . Thus f is

in the Lv-closure of §. The general case (f complex) follows from
this.
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Approximation hy Continuouns Functions

8o far we have considered L»{ux) on any measure space. Now let X
be & loeally compaet Hausdorff space, and let u be a measure on & o-algebra,
o in X, with the properties stated in Theorem 2,14, For cxample, X
might he £%, and x might be: Lebesgie measure on R~

Under these circumstances, we hayve the following analogue of Theorem
3.13:

3.14 Theorem Forl < p < ca, (L(X) i3 dense in LP(u).

rROOF Define § as in Theorem 3.13. If s¢ 8 and ¢ > 0, Lhere
exisls a g g C,(X) such thal g(z} = s{x) except on a set of measure
< ¢, and |g| < 8i,» (Lusin's theorerm). Hence

(L) g — &, < 2645
Since & is dense in L7(x), thia completes the proof.

3.15 Remarka Let us discuss the relations between the spaces Le{RF}
(the Le-spaces in which the underlying measure is Lebesgue mcasure on
E*y and the space C.(R*) in some detail, We consider a fixed dimension &.

For every pg[1, =] we have & metric on C.{R*); the dislance between
fand gis |f — g, Note thet this is a genuine metrie and that we do
not have to pass to equivalence elasses, The point is that if two con-
tinaous funetions on B* are hot identical, then they differ on some non-
empty open set 17, and m{F) > 0, since V¥ containg a k-cell.  Thus if two
members of C(FY) are equal a.e., they are equal. Tt s alwo of interest
to note that in €,(E*¥) the essential supremmum is the same as the actual
supremuumnt: for f & C. (K%}

(1) : Tl = sup | fl).

If1 £ p < w, Theorem 3.14 says that (.(F*} is dense in LP{H*}, and
Theorcin 3,11 shows that L#(E¥) 1z complete. Thus LP(R*} is the com-
pietion of the meiric space which & obtarned by endowing Co(R*} with the
Lr-metric,

The cases p = 1 and p = 2 arc the oncy of greatest interest,  Let us
state once more, in different words, what the preeceding result says if
p=1and %k = L; the statement shows that the Lebesgue integral is
indeed the “right” generalizaiton of the Ricmann integral:

If the disfanee between two continuous funclions f and g, with compart
supporis tn B, 13 defined to be

(2) Jo 15— gl
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the completion of the resulling metric space romsiels precisely of the Lebesgue
integrable funclions on &, provided we tdenttfy any fwo that are equal almost
eterywhere.

Of course, every metric space 8 has g completion §* whose elements
may be viewed abstractly as equivalence elasses of Cauchy sequences in
S (sce [26], p. 71}. The important point in the present situation is that
the various Lr-completions of € (%*) again turn out to be spaces of fune-
tions on RE.

The case p = oo differs fromn the eases p < w.  The Le-completion af
C.(BY) i3 not Lo(R¥), but i3 C(R¥), the apace of all continuous functions en
R which “vanish aof tnfinity,” a convepl which will be defined in See. 3.16.
Bince (1} shows Lhal the L®-norin coineides with the sypremum norm on
C.(R*), the above assertion about € {#%) is & specia] case of Theorem 3.17.

3.16 Definition A complez funetion f on & locally eompact Hausdorff
space & is said to vanizh af infinify if 10 every ¢ > 0 there cxists a comparct
get K (C X such that |f(x)] < ¢ for all 2 not in K.

The clazs of all continuous f on X which vanizsh at infinity is called
o X).

1t is clear that O X} C C{ X}, and Lhat the two classes coincide if X
is compect. Jn that case we write O(X) for either of them.

3.17 Theorem If X 48 a locally compact Hausderff space, then Co(X) i3 the
completion of C.(X), relative to the meiric defined by the supremum notm

™ I = sup 17,

PROOF  An elementary verification shows that Cp(X) satisfies the
exiome of a metric space if the distance between f rnd g is taken to
be ||f — ¢g/. We have to show that {a) C.(X) is denee in {f(X) and
(b} Cof X) is 8 complete metric space,

Given fg Co(X) and e > 0, there iz a compact set K po that
[#(z)| < e outside K. Urysohn’s lemma gives us & function g & C.{X)
such that 0 £ g <1 bnd g(z) =1 om K. Put 2 =jf3 Then
he C.(X)and ||f — || < « This proves (a).

To prove (b), lel {f.} be 8 Cauchy sequonce in C( X), 1.8, agsume
that {f.} converges uniformly, Then ils pointwise Hmit function f
ie eontinuous, Given ¢ > 0, there exists annso that | f, — f]] < /2
and there is a compact set K so that |f=(z)| < ¢/2 outside K. Hence
If(2)] < e outside K, and we have proved that f vanishes at infinity.
Thus Co(X) is complete,
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Exercises

1 Prove that the supremum of any colleetion of convex functions
on {a,5) i convex on (g,k)} and that pointwise limits of sequences
of convex functions are convex. What can you say about upper
and lower hmits of sequences of convex functions?

2 Il @ is convex on {a,d} and if ¢ is convex and nondecreasing on
1he ranye of ¢, prove thal ¥ o ¢ is convex on (w ). For ¢ > 0,
show Lhal the convexily of log ¢ implies the couvexity of @, bul
not vice versa,

3 Assumc that ¢ is & continuous real function on {e,b) such ihat

o(15Y) < o) + 5 o)

for all r and y £ {a,d). Prove that ¢ is convex. (The conclusion
does not follow if continuity is omitted from the hypotheses.)

4 Suppose fis 8 complex measurable funetion on X, a4 itz a positive
measure on X, and

@) = [clfledn — M3 © <p < =)

Let E = [p:o(p) < =}, Assume jjfil. > 0.

@) fr<p<srek, andseE, prove that pe K.

(&} I’'rave that log ¢ is convex in the wnterior of E and that o is
continaous on K,

{e} By (a}, E s connected, Is F necessarily open? Closed?
Can E consist of a single poini? Can E be any connected
subget of (0, =)?

(d) If r < p <5 prove that lf]l, < max ({f].|f]l). Hence
Lr{p) nLr(u) C LP(y).

{e) Assume that |jf]|, < = for some r < « and prove that

(Ala—fle  BEp— o=,

{a) Prove that ||l = [[F]l. f0 <r < s < o,

{4} Under what conditions does 1t happen that 0 < r < 5 < «
and |fllr= bffl. < =7 '

{c} Prove thal Lr(g) D L*{w) if 0 < ¢ < 8. Under what eondi-
tions du these two spaces contgin the same funetions?



Lraspaces TL
(d) Asswme that ||f], < = for somer > 0, and prove that

i [fl = exp { [, log |/l du}

if exp | — =} is defined to be 0.
6 Let m be Lebesgue measure on [0,1], and define {| /], with respect
to m. Find all functions & on [, =) such that the relstion

. 1
o(lim |7l = [} (@ dm

holds for every bounded, measurable, positive f.  Show first that

bl 4 1 — 31y = B fe=00< < 1)
WG T A Rl T * ; R | L = e

Compare with Exercise 5{d).

T For some measures, the relation » < s implies Lr(p) < L*{u); for
others, the inclusion is reversed; and therc sre somc for whieh
Ir{y) does not contain Le(x) if » # 5. (ive examples of these
situations, and find conditions on u under which these situations
will ocenr.

8 If g is a positive funetion on (0,1) such that g{z) — « as x — 0,
then ihere 12 a convex function k on {0,1) sueh that & < g and
A{z) = = as & — 0. True or false® Iz the problem changed if
{0,1) ig replaced by {0, ) and 2 — 0 is repluced by £ — =7

9 Snppose 1 18 Lebesgue measurable on (0.1), and not essentially
bounded. By Exercise 4(¢), | fllp— = 88 p— =. Can |f|,
tend to <« arbitrarily slowly? More preciscly, is 1t true that to
every positive function ® on {0, = } such that ®(p) -+ = aap — <0
one can find an f such that {[f]l, —» = asp— «, hut [[fj|; £ ®{p)
for all sufficiently large p”

10 Suppose f, e f*(u), forn = 1,23, . . . and |f. — fll,—0and
fo—gae,asn— ®. Whal relation exists between f and g?

11 Buppose w{®) = 1, and suppose f and g are positive measureble
fupctions on £ such that fg = 1. Prove that

ffder fadu>1.

12 Buppose (i) = 1 and A: & — [0, o] ig measurable, If

4‘1 = J.ﬂh dﬂ-,
prove that

v1+a=5Lv1+h*mﬂl+A.

If g is Lebesgue measure on [0,1] and if & is continuous, & = [/,
the above inegualilies have a simple geometrie interpretation.
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From this, eonjecture {for general ) under what conditions on A
equality can hold in either of the above inequalities, and prove
your conjecture.

Under what conditions on § and g does equality hold in the con-
clusions of Theorems 3.8 and 3.5? You may have to ireat the
cases p = | and p = = separately.

Buppose 1 < p < =, fzi? = L#7((0,=)), relative to Lebesue
mesasure, and

1 te
Flz) = Eﬁ: idt {0 <z < o).
{n) Prove Hardy’s inequality
17l < - il

which shows thal the mapping f— F carries L* into L?,
(b} Prove that equality holds only if f = 0 a.e.
(¢) Prove that the constant p/(p — 1) cannol be replaced by &
smaller one,
() If f > Oand fe i’ prove that F¢ Lt
Suggestions: (&) Assume first that 7 > 0 and fe C{{0, =)).
Integration by parta gives

L@ de = —p [T Fei@ei () de.
Note that 2f¥ = f — F, and apply Holder's inequelity to
JFr=Yf,  Thenderive (he general case. {¢} Take fla) = a~1F
on [1,4), fiz) = 0 elsewhere, for large A.
Suppose |a.} 18 & sequence of positive numbers. Prove thal
] 1 Ih:. :p o
2 (I‘TT Z ﬂ“) (p —1 2
N=1 p=1 -
f1<p< o Hint: 1 a2 41, the result can be made to
icllow from Exercizse 14, This special rase implies the general one.
Prove Egoroff’s theorem: If w{X) < e, if {f.} iz a sequence of
complex measarable funcetions which converges pointwise at every
point of X, and if ¢ > 0, there is & messurable set B C X, with
(X — E) < g such that {f.} converges uniformly on E.
{The couclusion is that by redefining the f» on & sot of arbi-
brarily smail measure we can eonvert a pointwise convergent

sequence to a uniformby convergent one; note the similarity with
Lusin’s theotem.)
Hint: Put

Stk = N {*: @) = f2)l < 1‘15}
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and show that there is a suitably incressing sequence {n.] such
that B = MNS(n;,k) hes the desired property.

Boes the result extend to o—finife spaces?

17T Buppose u iz & positive measure on X, 1 < p < =, f£ L7(u),
Fo & LP(R), fu(2) — f(2) 8.e., 81d [full, > il a3 5 — «<. Prove
lbat then ||f — £, = 085 n— .

Hint: Assame |foll, = |fi, =1 for al . Put X = 4 u B,
whete [4|f|* < e Apply Fatou's lemmas to {x|fu}* and conciude
that the upper limit of [4]f.]” s at most & Show that matters
can be so arranged (by Egoroff's theorem) that [f.} converges to
j uniformly on B,

Show that the conclusion is
is omitted, even if w(X) < =,

18 Let 4 be a positive measure cn X. A sequence {f.} of complex
measurable functions on X 15 said tu converge in meusure Lo the
measurable funcilon fif Lo every ¢ > 0 there corresponds an N

guch that
sz [fale) — f(z}| > €}) < e

for all n > N. (This notion is of importance in probability
theory.)  Asswoe g(X} < = and prove the following siatements:
(@) If fu{z) — fix} a.e., then f, — j in meazure.
(B) I f,ei®(u) and {jn — fliy— 0, then f. — j in measure;
herel < p < =
{e} If j. — {iv mesasure, then §f.] has a subsequence which con-
verges to fa.c,
Investigate the eonverses of {2) and (8). What happens to
{a), {b), and (c) if w(X) = oo, for matance, if x iz Lebesgue
measure on f'7?
19 Deline the essential runge of & funetion fe L=(p) to be the set fi;

congisting of a1l complex numbers w such that

el 1fiz) — 0] < e}y >0

for every ¢ > 0. Prove thal &, is compact. What relation
exists between the set B, and the number || f|[.?
Let A; be the act of all averages

1
Ty Jud

where K2 91 and g(F} > 0. 'What rclations cxist between A,
and R,7 Is A, always closed? Arc there measurcs ¢ such that
Ay iz convex for every fz FL=(p)? Are there measures x such
that A, fails to be convex for some f & L={u)7

How are these results affected if L=(u) i1s replaced by £{u], for
instance?
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20 Suppose ¢ 18 a real function on B! such that
o(f 1 de) < [ oinas

for every veal bounded measurable f. Prove that p is then
cOnvex,

21 Call a metric space ¥ a completion of a metrie space X if X is
dense in ¥ and ¥ 1s complete, In Sec. 3.15 reference waa made
to “the” completion of a metric space. State and provea unique-
ness theorem which justifies this terminology.
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Elementary Hilbert
Space Theory

Inner Products and Linear Functionals

4.1 Definition A complex vector space H is called an inner product
space (or undlary space) if to each ordered pair of veetors 2 and ye H
there is gssociated a complex number (z,y), the so—called “inncr product’”
(or “zealar product') of x and y, such that the following rules hold:

{a) {y,7) = (xr,0. {The bar denotes complex conjugation.)
{b) (x+y,2) = (z,2) + (y2)1f 2, y,and z¢ H.

(&) {zz,y) = alz,y) if 2z and v H and « is a sealar.

{d) (x,x) = 0 forall xe H,

(&) (x,x) = Qonlyifz = 0.

Let ug list some immediate econsequences of these axioms:

{c) implies that (0,y) = O forall y & H.

(b) and {¢) may be combined into the statement: For every y ¢ H, the
mepping r— (1Y) 18 o linear functional on I,

{(e) and (¢) chow that (r,my} = B{r,y)-

() and {}} imply ihe second distribulive law:

{:z_, r+y = {313) + {z,y}.
By (d}, we may define ||z||, the norm of the veclor z& H, lo be
the nonnegative square root of {z,2). Thus

N l=flz = (x,%).
4,2 The Schwarz Inequality The propertize 1.1(a) to (d) imply tha!
[{z,uM < Q]| Myll

jorafl x and y & I
T4
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rrOOF Put A = |[z|% B = [(zy)|, and ¢ = |y|2. There iy a com-
plex number & such thel {e] = 1 and a(y,z) = B. For any real r,
we then have

1) (& — ray, 2 —~ ray) = (2,3) — rafy2) — ra(z,y) + 0.
The expression on the left is real and not negative. Hence
(2) A—9Br+0r>0

for every real ». If € = 0, we must have B = (), otherwige (2) is
false for large positive r. If C' > 0, take r = B/C n (2), and obtain
B < AC.

4.3 The Triangle Inequality For r and y e H, we have

= + wlf < [[=Il + [l
FROOF By the Schwarz inequality,

la+ylP=CG+yz+9) =G+ @) + @2 + Gy
< 2l + 2] Tyl + twlle = =l + Ngie

4.4 Definition Ii follows from ithe triangle inequality that

(1) fe—zl <|z—gll+ v —2l (=9 22 H.
If we define the distance between £ and y to be |z — y[, all the axioms for
a metric space are satisfied; here, for the first time, we use part (e) of
Defipition 4.1.
Thus H is now a metric space. If lhis metric space is complele, i.e.,
if every Canchy sequence converges in &, Lhen H ig called a Hifber! space.
Throughout the rest of thig chapter, the letter & will denote a Hilbert
space.

4.5 Examples

{e) For any fixed », the set O~ of all n-tuples

T = (EI: £ .- ﬂ)!
where £, . . ., &, are complex numbets, is a Hilhert space if
addition and sc&lar multiplication are defined eomponentwise, as

usual, and if

(@) = im; W= (my oo ).

1=1

{#) If g is any positive measure, L3(u) iz a Hilbert space, with inner
product

) = [, f2u



Elemmentary Hiibert space theory 77

(e)

The integrand on the right is in Li(g), by Theorem 3.8, so that
(f,g) is well defined. Note that

bl = P = { [ 117} = N5}

The completeness of L*(p) {Theorem 3.11) shows that L2(u) is
indeed a Hilberl space. [We recall that L*(x) should be regarded
as a space of equivelence classes of functions; compare the dis-
eussiou in See. 3.10,]

For H = L*u}, the inequalities 4.2 and 4.3 turn out to be
special eages of the inequalities of Holder and Minkoweki.

Note that Example (g) is a special case of (b). What is the
measure in {a)?
The vector space of all continuoue complex functions on [0,1] s
an inner product space if

L
(1.9) = |, £e3gT0 at
but is not a llilbert space.

4,6 Theorem For any fired y e H, the mappings

z—={xy), oy, @ |7

are continyous funclions on i,

PRoOF The Schwars inequality implies that

Hzy) — (e = (w0 — 22, )| £ 20 — 24| 3],

which praves that £ — (z,y) I8, in facl, uniformly continuous, and
the same is true for r — (y,2). The triangle inequality |z <
fl@r — za| + |[z4]| yields

lxdll = llxall < [le = =all,

and if we interchangs #, and z. we sce that

Maal: = [zallf £ s = ]

for all £, and z. & . Thus z — |7|| is also uniformly continuous,

4.7 Subspaces A subset M of a vector space IV is called a subspace of V'
if Af is itself & vector space, relative to the addition sud secalar multiphca-
tion which are defined in ¥, A neceseary and suffieient condition for a
set M C V to be a subspaee iz that 2 + ye M and cxe M whenever
zand y & M and « i3 a scalar,

In the vector space eontext, the word “‘subspaee™ will always have this

mcaning. Sometimes, for emphasis, we may use the term “linear sub-
spare” n place of subapace.
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Far example, if ¥V is the vector space of all complex functions on a set S,
the set of all bounded complex functions on 8 iz & subspace of V, but the
set of all fe V with |f(z)| < 1for all xe& S 13 not. The real veetor space
R? hag the following subspaces, and no others: {@y R?, {b) all planes
through the origin 0, {c) all straight lines through 0, and (d) {0}.

A closed subspace M of H is a subspace which is a closed set relative to
the topology induced by the metrie of K.

4.8 Convex Sets A set B in a vector space VV iz said to be conver if it has
the following geometric property: Wheneverxe B, ye E, and 0 < ¢ < 1,
the point

2= {1 — i L fy
1 / L

alro lies in £, As{runs from 0 10 1, one may visualize z; as Jeseribing a
straight line segment in V¥, from # to y. Convexity requires thal £ con-
tain the segments between any two of ite points,

It 1s clear that every subspace of V 13 conves.

Also, if F is convex, 3o is gach of its translates

E+zxz=|y+z:yeElL

4.9 Orthogonelity M (1) = 0 for some x and ye I, we say that ris
orthogonal t0 y, and somelimes write x L 3y Sinece {z,3) = 0 implies
{g,x) = 0, the relalion L ix symrmciric.

Let 2* denote the set of all ¥ ¢ H which are orthogonal to x; aud if M
iz a subspace of A, let M* be the set of all y & & which ure orthogonal to
every rg W.

Note that z+ i3 a subspace of H, since # L y and = L %' implies
g L (y+y) and 2 1. ay. Also, ¢ is preciscly the set of points where
the continuous function ¥y — (r,)) s 0. Hence 2! iz & elosed subspace of
H. Binee

Mt= 0 zi
i

ML is an intersection of closed subspaces, and it follows that M* 45 @
closed subspace of H,

In other words, there is one and only one .2 E sueh that iz < ||zl
for every z ¢ E.

PROOF An easy computation, using only the properties listed in
Definition 4.1, establishes the identity

) L4y + lz—ylr =2z +2(3* (randyeH)
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This is known as the parallelogram law: If we interpret ||z|] to be the
length of the vector z, {1) says that the sum of the squares of the
disgonals of a parallelogram is equsl to the sum of the squares of its
sides, a familiar proposition in plane geometry.

Let 8 = inf {|z]: ze E}. For any z aud ye E, we apply (1) to
§z and 3y and obtain

(2) Ha — y2 = 3zlz + F|yl* —

I

Binee F iz convex, (z + y}/2e £. Hence
3 [ —yl* <2xif + 2/yl* — 48 (zand y2 E).

If also ||lz)| = [l#l| = &, then (3) implies 2 = y, and we have proved
the unigueness assertion of the theorem.

The definition of § shows that there is a sequence {ya} in E so that
lgnll — 8 a3 n — . Replace x and y in (3) by ¥, and y.. Then,
a3 n— @ gnd m — «, the right side of (3) will tend to 0, This
shows that {y.} is a Cauchy sequence. Sinee H iz complete, there
existz an xoe H so that y, — o, Le., ||ya — || — 0, 22 n— =,
Since ¥y, ¢ £ and F is closed, 2y 2 £, Since the norm iz a eontinuous
function on ¥ (Theorem 4.8), it follows that

.. — 1+ _ !I. | =
[ ol AT ([ Ha | = G
R

4,11 Theorem Lei W be q closed subspace of H. There exists a ynigue
puir of mupprngs P und @ such thet P maps H inio M, Q mups H inio M+,

urnef

(1)

=Pz 4+ Oz

Jor all xe H, Theee mappings have the following further properties:

2
{3
(4)
(5]

TfzeM, then Pr =2, Qr =0;{fze M2 then Fz = 0}, {r = x.
|z — Pxl = inf [Lz — y)l:ye M} ifzeH.
hel® = Pell* + U @]

I* and @ are hinear mappings.

Corollery Tf M = H, have exisis a ye H, y # 0, such that y 1 M.

£ and ¢ are called the orthogonal projecitons of H onto M and M.

rROOF For any xz I, the set z 4+ M = {x 4+ 7 ye M} 13 closad
and convex. Define §x to be the unique element of smallest norm in
z + M ; this exists, by Theoram 4.10. Dehne Pr = 2 — Q. Then
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(1) bolds, 8ince Qrer -+ M, itisclear that Pre M. Thus P maps
H into M.

We next have to show that (@) = 0 for all ye M, Assume
lgll = 1, without loss of generality, and put 2 = @2, The minimal
property of Qz showy that

(2,2} = '2l* < llz ~ oyl = (¢ ~ ay, ¢ — ay)

for every scalar &, Thiz simplifies to

0 € —afyz) — &{zy} + |af®

With a = {z,3}, this gives 0 < —|(2,1)'%, so that {z,3) = 0. Thusg
¢ maps H inta ML,
Now if 2 = x0 + x1, with 2y M, x, € M+, then

g — Pxr = Qr — »,.

Since g — PreM, ¢z — xae MY and M n M+ = {0] [an immediate
consequence of the fact that {x,z) = 00 implies z = 0], we have
xg = Pz, £, = (Jz, which proves the uniqueness assertion.

The Linearity of # and @ is proved similarly: applying (1) to z,
to y, and to ox 4 By, we obtain

Plaz + ay) — aPr — B8Py = ofdz + 3Qy — Q{az + 51).

The lcft side is in M, the right side in Af+; henece both are 0, se P
and {) are linear.

Property (2) follows from (1}; (3) was ‘used o define £; and (4)
follows from (1), since (¥x,Qx) = 0. To prove the corollary, take
reH, ¢ M, and puty = Qr;since x # Pz, y »= 0.

We have alresdy observed that z — (x,) is, for each y £ H, a continu-
ous linear functional on H. 1t is a very important faci that ol continuous
lineur funclionals on H are of this type.

4.12 Theorem IJ L is a continuous inear funciional on H, then thereiz a
untque ¢ & H such that

(1)

Ly = (zy) (xeH)
PROOF If Lx = O for all x, take y = 0. Otherwise, drfine
(2) M = |z: Ly = 0}.

The linearity of L shows that M is a subspace. The continuity of
L shows that M is closed. Sinece Lz # 0 for some x ¢ H, Theorem
4.11 shows thut M+ does not consist of 0 alone.
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It is clear that we must look for our desired 4 in M4, and thut we
must have Ly = (y,3).

Choose zg M+, z > 0. Then 2§ M, henee Lz = 0. Put ¥ = az,

where & = (Lz}/(z,2}. Then ye M+, Ly = (y¥), and y = 0. For
any <« & H, put

La y and 2" = Lz Y
&) ™

Then Lz’ = 0, hence 2" ¢ M, henee (z',%) = 0, henee

(3} =z —

(4) (24 = {(&",y) = Lz,

which gives the desired representation of L.

The uniqueness of y is easily proved, for if (2.y) = (£,4") for all
zeH, 86t g =y —y'; then (z,2) = 0 for all re H; in particular,
(#,4) = 0, hemee z = 0,

Orthonormal Sets

4,13 Definitions I1f ¥ iz & vector space, if =, . .., 22V, and if
€y - - - . Ceare sealars, then esen + -+ 4+ e is called & finear combe-
nation of 21, . . . , x5 Theset [z, . . ., 2} is called independent if
et + - 0 ¢ A ceze = Oimpliesthatey = - - - = =0 Asat SCV

is independent if every finitc subset of & is independent. The set [8] of
all linear combinations of all finite subsets of 8 (also ealled the set of all
findle linear combinations of membera of 8} is clearly a veetor space; [S]
14 the smallest subspace of ¥ which contsins S;[5] is called the span of §,
or the spsce spanned by 5.

A set of vectors w, in & Hilbert space H, where « Tuns through some
index set A, 18 called orthonormal if it satisfies the arthogonality relations
(gtts) = 0 forall a # 3, e d,and e A, and if il is nermalized so that

liag| = 1 for each ae A. Tn other words, {u,} is orthonormal provided
that

J1 if & = 8,
{1} I:umﬂ-p:l - Iu #H oo £ 3.

If {ua: e A} is orthonormul, we ussociste with each z ¢ H & complex
functon £ on the index set 4, defined by

@ o) = (zus)  (aed).

Cne sometimes calls the numbers £(«) the Fourier coefficients of x, relative
to the set [u,].
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k
4.14 Theorem If %y, . . . , U 18 an orfhonermael sef, end if T = E [ T
1

then

(1) & = (T,us), forl €£n <k,
E

) 2|2 = ;ms*.

PROOF Apply the relutions 4.13(1).
Corollary FErery orthonormal sel is independent.

PROOF This follows from (2}).

4.15 An Approzimation Preblem Let #;, ..., #; be a set of inde-
pendent vectors in H, amd suppese ze H. The problem 15 to find o
method of computing the mintmuwm value of

5
(1) le = % e,
im

where £y, . . ., cx range wver oll scalurs, and (v find the corresponding calues
of €1, . . . , Cr

Let M bhe the spanof vy, . . . , #5 If we knew that M is closed, we
gould apply Theorem 4.11 and deduee the existence of & unique mini-
mizing element xy:= Px, where

F
@) To = E G
i=1

which also has the property that £ — =, M+, These faets eould then
be used te abtain information about the coefficients &, . . . , & in {2).

Bince M is ihe span of a finite set of vectors, it may scem obhvious that M
is closed.  One may prove it by induetion, observing that {0} is certainly
clozed and proceeding with the awd of the following lemma:

IV is aclosed subspace of H,tfy e H,y £ V, and V™ 32 the space spanned
by V und g, then T™* i cloged.
To ; i

& = Hm ::-t'n + hny}r

where . e V, and A, ure scalsrs.  Sinee convergent sequences In metrie
spaces are bounded, there exisls an 9 < = such that [z, + A.pl| < 9 for
n=1,2,3,.... Ifit were true that [»,| — =, we should have

-1 . i—h
[Xa—22n + yi| < ™ b
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zo that —3 & V, since Visclosed. Buty # ¥. Hence [A.} has a Cauchy
subsequence {A..} converging to some A, and so {x.}, bemg & difference
of two Cauchy sequences, is itsell u Cauchy sequence in A and converges
tosomeze V. Thenz =z 4 Ay. This proves thal ¥V* conteins all its
limit points,

We now return to our problem. Put

{3} By = {”.?':7’:'1'}1 b: = I:I’:ri}-
Then if xq, given by (2), is the minimizing element, we must have
(¥ — oy 04} = 0

for 1+ =1, ..., k wheh leads 40 8 2et of & livesr vquutions ln the
UDKBOWIS €3y « 4+, &2

b
@) Yy =b {(1Si<h.
j=1
We know from Theorem 4.11 that zo eXists and i@ unigue. Henee the
determinant of the a; is not 0, and the ¢ can be computed from (4},

Next, let 8 be the minimum value of (1}). Binee (x — xo, 2} = 0, we
have (x — x4, xo) = 0; hence

&
B2 =g — e, 2 —a0) = (£, 2 — x0) = (x, r— E cﬂ.—a.'j),
J—1

50 that
&
(5} 6 = |z||* — Z £
i=t
This solves our problem, in terms of the quantities (3).
L&t us now turn to & speeial case: Replace £y, . . . , # by an ortho-
normal set ), . . ., Thenag = 17 = F @5 = 0if ¢ # 7, hence (1)

gives ¢; = by, and (5} becomes

)
=]

T

&
1oz
-, 0%
=1
We may summarize as follows:

4.6 Theorem Lef wy, . . ., 1 be an orthonormal set in H, ond lot
ze H. Then

& &
W o = 3 i < 2 = 3]



84 Real and eomplex analysis

for all scalars Ny, . . ., M. Equality holdsan (1) if and ondy if N = (32,4)
Jor 1 < § S k. The veclnr
k
2) 2, (eaudw
i=1

is the nrthogonal projection of & into the subspace [y, . . . , W), and if &
1# the disfance from x to this subspace, then

k

(3) Dzt = Jzl|* — 2t

j=3

a1 _ 1Y I . T | TN SN | ) FLr (o0 &2 o ;m A1 o AL R | Ry [ R
LOMJIIATY LDEsECL 5 IIIBL]LI.II.III}'} Ivf *t!-l'.u. EE L Lo tRFEE O RILLARONTIILOLE NEL &Y

H, Ef IE H,. and Tfﬁ(a] = {x,ua}: then

) 3, [Blea]? < [ziin
ok

This corollary eulls [or some explungtion snd eomment. The set A
iz any index set, possibly even uncountable, and not ordered in sny way.
Under those conditions, what does the sum on the left side of (4) signify?
We define it as follows: If 0 < ¢(z) = = for cach a€ 4, the gymbol
) Y olad
Ll ) :.l Taer
denotes the supremum of the sei of all finitc sums @(e) + efo) + - - -
+ o), where o, . . . , a, are distinet members of A.  With this agree-
ment, it is clear that () follows from (3).

A moment’s consideration will show that the sum (5) is precisely the
Lebesgue integral of ¢ relative to the counting measuré vn A.  Let £2(A4) be
the L-space relstive to this counting measure, Then (4) asserts that
#& £(A) and that |[&]. < f|a]).

One immediate consequence of (4} should be mentioned explicitly:

For any x ¢ H and any orthonormal sel {u.} in H, the zel of all o such thal
(o} # O £z at most countable.

Let F be the mapping which asssipns to cach z £ H the function £ on A,
For each ae A, 2 — (z,u.) i3 a lincar functional. Hence F is a linear

transformation of H into £2(A) (scc Definition 2.1}. Also, F does not
incresse distances, since |[£ — #): < |z — y|. In particular, F i
continuous,

We shall now see that the completeness of IT implies that F maps H
onto £*{A) and that under certain conditions on {u.}, F i3 actually an
sometry, i.e., that [£]: = |jz|j for all ze H. Then, of course, F will be
one-to-one,
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4.17 The Riesz-Fiseher Theorem FLei (1. ae A} be an orthonormal sct
in H. Bupposze & £#{(A}. Then ¢ = £ for some re H.

prRooF Forn = 1,2, 3, ... ,let Ax = {a: [p(e} > 1/n}. Each
A, iz & finile get. {In fact, one checks easmly that A, has at moest
1]} elements.)  Pui

{1} Ep = 2; Plea (n=1,2,3 ...0.

Then #£. = ¢ - X4, 50 that £.(a) — ¢{o) for every oed, and
le — £,)2 < [¢)%. Hence, by an eltmentary case of the dominated
convergence theorem, ¢ — £l — 0. Tt follows that {£.} i= a
Canchy seqguence in £2{4), Since the zets A, are finite, Theorem
4.14 shows that ||. — Za] = [#s — Zxfje. Thus [z.} is & Cauchy
sequence in 5, and sinee H 1= complete, therc exists an r = lim z in

i— =

H. Yor any ae 4 we then have

o) = (z,u,) = lim (ze,1a) = lim £.0a0) = pla),

H—r

which eompletes the proof.

4,18 Theorem Let {u,: a2 A) be an orthonormal sel in H,  FEach of the
following four conditions on {ua.} tmplics the other three:

(a} [u.} iz @ marimal orthonormal set én I1.

(b} The sel 8 uf all finile linear combinations uf wmembers of {ug] 43
denge 0 H,

{e} For every z¢ H, we have ||z||* = Ea |£¢e) 2.

(D) Jf ¢ H gnd y& H, then (z,) = Eu_ﬂa)m

This lagt formula is known as Parseval's identity. Observe that
#e Ay and ¢ & £2(A), hence £4 e £1{A), so that the summation in (d) s
well defined. Of eourse, {¢) i the special case ¥ = y of (d). DMaXimal

arthonormal sets are frequently ealled complete orthonormal sets or ortho-
normal bazes.

ProOF To say that {ui.} i maximal means simply that no vector of
H can be adjoined to {u.| in such a way that the resulting set is still
orthonormal. This happens precisely when there i no z 0 in A
which is orthogonal to every t.

We shall prove that (a@) — (b) — (&) — (@) — {a)-

Let M Ve the closureof §. Since 8 is a subspace, so is M {x. — =
and ¢, — yimphes z. + ¥u — = -+ ¥, Az, — Ax); and if 8 i3 not dense
in H, then M = H, =0 that M* eonlains 2 nongerc vector, by Theorem
4.11, 'Thus {u.} s not maximal if S is not dense, und (a) imphes (B).
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Suppose (b) holdz. Fix zeH, ¢ > 0. Since § is dense, there is a
finite set 4., . . . , ¥q, such that some linear combination of these
vectors has distance less than ¢ from ». By Theorem 4.16, this

approximation can only be improved if we take £(eo,) for the coeffi-
cient of te;. Thus if

(1} z = £lo e, + - 0 0+ Bleniug,,

we have & — 2| < ¢ hence |||l < {2l] 4 ¢ and Theorem 4.14 gives

@ (el —9* < [2[f* = #{eal® + -+ - 4 [#lan)]® £ E | £},
ot

Sinec e wad arbitrary, (¢) follows from (2) apd the Beasel inequality,

ME o nrisamdiime: do Pl momr = lie bom emrmcdbnd awn &bk - [
LIl CUllgsaOfl 1 WGy CRIL 8150 Ne WTILWLENH N whe |1

() (22} = (£,5),

the wner prodoct on the right beiryr the one in the Hilbert space
£ A), as in Example 4.5{0). FixzeH,ve H. 1 (¢) holds, then

(4) (e 2y, o+ ay) =@ -5, 24 A
for every sealar A; hence
{5) Mayy) + My,e) = XME§) -+ 2,8,

Take A = 1 and A = £. Then (5} shows that (x,5) and (£ have
the same real and imaginury parls, hewee are equal, Thos ()
implies (d}.

Finally, if {(a) is false, there exists a # 7 0 in H so that (u,u.) = 0
for sll @eA. Ii # =y = u, then (2y) = ||ul? £ 0, but £{c} = 0
for all o ¢ 4, hence {d) frils. Thus {d} implie= (&), ahd the proof is
eomplete.

4.19 Isomorphlsms BSpeaking informally, two algebraic syslems of ihe
seme nature are said Lo be isomorphic if there = u one-to-cne mapping of
one onto the other which preserves all relevant propertics. For instance,
we may ask whether two groups arc isomorphie or whether two fields are
womotphic. Two veetor spaces are isomorphic if there is & one-to-onc
linegr mapping of one onto the ather. The linear mappings are the ones
which preserve the relevant coneepts in a vector space, namely, addition
and scalar multiplication,

In the same way, two Hilbert spaces H, and Ify are izomorphic if there
18 & one-to-one linear mapping A of ' onlo H; which also preserves inner
produels: (Ax, Ay} = (z,y) for all z and y £ H,. Such a A is an isomorph-
ism {or, more specifivally, a Hilbert space {somorphizm) of H, onlo He,
Using this terminclogy, Theorems 4.17 and 4.18 yield the following
statement:
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I lue: o e A 7¢ a morbnal orthorormal sel tn o Hilbert spuce H, and &f
#la) = (x,u), then the mapping & — # ¢z a Hilbert space isomorphism of
H ontp £2(A4}.

(One can prove (we shall omit this) that €2{A) and {*(B)} are isomerphin
if and only if the sets A and B have the same eardinal number. But we
shall prove that every nontrivial Hilhert space (thie means that the
spare does not consist of 0 alone) is isomorphic to some £2{A), by proving
that every such space contains a maximal orthonormal set (Thecrem
4,22y, The proof will depend on a property of partially ordered sets
which s equivalent to the axiom of choice.

4 Ml T st TE_ dw W L=~ [ A S LU R I TS LY § S D, B T
.o} CATLIAINY UTOered Jels 5 2L WY i85 BRil W0 De GUriie by ofdersd DY &
binary relation < if

(@} @ << band b < ¢implies ¢ < c.
(b a =X a for every a e .
() a < band b < gimplicsg = b,

A subset € of a partially ordered set @ is said to be totally ordered (or
ltncarly ordered} if every pair a, be @ satisfies either g < hor b < @

l'or example, every collection of subsets of a given set is partially
ordered by the jnelusion relation C.

A PEAL.AtAch 2 4 ALY

To give a more specihic example, lel @ be the colleclion of ull open sub-
sets of the plane, partially ordered by set inclusion, and let § be the collec-
tion of ell open ecireular dises with center at the origin. Then § C @, @
is tolally ordered by (C, and € is a maximal lotally ordered subsei of @.
Thiz means that if any member of @ not in & is adjoined to €, the resulting
collection of seta iz no longer totally ordered hy C.

4.2]1 The Hausdorff Maximality Theorem FEvery nonemply partially
ordered sel contains a mazimal lotally ordered subsel.

This iz a consequence of the axiom of choice and is, in faet, equivalent
lo it; snother (very similar) form of it is known as Zorn’s lemma. We
give the proof in the Appendix.

If now If is & nontrivial Hilbert space, then there exists a we H with
jiull = 1, z0 that thereis & nonempty orthonormal setin H. The existence

of & maximal orthonormal sct is thercefore a conscquence of the following
theorem:

4.22 Theorem Frery orthonormal set B in a Hibert space H 13 coniained
tn 6 maximael orthonormal set in H.

FROOF Let @ be the class of all orthonermal sets in H which contain
the given act B. Partially order @ by set inclusion. Since Be ®,



g Real and complex analyeis

& # . Hence ® contains 2 maximal totally ordered class @, Let
S be the union of all members of . It is clear that B C 8. We
¢laim that S Is & maximal orthonormal set:

If w, and wz eS8, then v, & A and w2 Ax for some Ay and Az e Q.
Since 2 is toially ordered, 4, C A {or Ay C A1), =0 thaty, & 4, and
#y € Aq  Bince A, Is orthonormal, (ug,us) = 0 i w) # us, (1a,ue) = 1
i 4y = 2. Thus 8§ is an orthonormal set.

Buppose 8 is not maximal. Then 8 iz g proper subset of &0 ortho-
normal set 8% Clearly, 8* £ 4, and 5* contains every member of f.
Hence we may adjoin &* to Q and siill have a total order. This
eontradicts the maximality of @,

Trigonometric Series

4.23 Definitions Let T be the unit eirele in the complex plane, ie, the
set of all complex numbers of absolute value 1. If F is any function on
T and i f is defined on B! by

n () = F(e),
then f is & periodic function of pericd 27. This means that f{t + 2x = F{{)
for all real &. Conversely, if f i3 a function onn B!, with period 2z, then
there ia a funetion F on T such thet (1) helds. Thuy we may identify
functions on T with 2»-periodie functions on R!; and, for simplicity of
notation, we shall sometimes write f{f) rather than f{e®), even if we think
of f a= being defired on T

With these conventions in mind, we define I2(T), for 1 <'p < =, to
be the class of all complex, Lebesgue measurable, 2x-periodic funetions
on J! for which the norm

- 1p
@ I, = o [ 1ok
is finite.

In other words, we are looking at L#(x}, where p i3 Lebesgue measure
on [0,2r) for on T), divided by 2=  L=(T) will be the class of all 2x-
periodic members of L2(B"), with the essential suptemum norm, and C(T)
congists of all continuous complex functions on T' {or, equivalently, of all
eontinuous, eomplex, Zr-petiodic funciions on £}, with notm

) [l = sUp (0.

The factor 1/(2x) in (2) simplifies the formsalism we are aboul to
develop, Yor instanee, the L¥-norm of the constant function 1 12 1.
A irigonomelric polynomial 15 a finite sum of the form
N

(4) 5 = a0+ Y (GeCosnt + basin ni) (te BY

=]
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where a,, ay, - - ., a8y and By, . . ., hy are complex numbers, (On
accourtt of the Euler identities, (4} ean also be written in the form
N
(5 J@y = 3 et
o — N

which is mere eonvenient for most purpeses. It is clear that every
trigonometric polynomial has perod 2a.

We shall dencte the set of all integers (positive, zero, and negative) by
&, and put

(6) Up(f) = g (neZ).
I we define {he inner product in L3T) by
1 ¢+ _ —
0 () = 5 [ F070 a
[mote that this is in agreement with (2)], an easy computation shows that
1 = 1 ifrn=m

_— '[ }-f —= 3

®) (6} Do f-—r et dr { 0 ifr#m

Thus { ez n g &) 18 an orthonormal set in LT, usuully called the frigono-
melrie system.  We shall now prove that thisz eystem is maximal, and shall
then derive concrete vergions of the abstraes theorems previcusly obtained
in the Hilbert space context.

4.24 The Completeness of the Trigomometric System Theorem 4.18
shows that the maximality (or completeness) of the trigonometric system
will be proved as soon as we can show that the set of all trigonometric
polynomials iz dense in LHT). Sinee C(7) iz dense in L*(T), by Theorem
8.14 (note that T is compaect), it auffices Lo show fhat Lo every f& C(T)
and to every e > 0 there is a trigonometric polynomial P such that
If —Plle < e Since lgll: < |lgh. for every ge{T), the estimate
I — Pl < & will follow from || — P|l. < e, and it is this estimate which
we shall prove,

Puppose we had trigonometric polynomials Qy, Q. &y, . . . , wiih the
following properties:

{&) Gelt) = 0 for te RL
® [ Q=1
() If 2:(8) = sup {u(H): 8 £ lf] < 7}, then
Lim {8 =0
=

Jor every & > 0.
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Another way of stating (¢) 15 to say that Q) — 0 umformly on
|—m,~— 8| u[dx] for every & > O.
To each f & C{T) we associate the function: P; defined by

(1) Pit) = E:; f_" Fit — 8YQ.(s) ds k=123 ...

If we replace s by —s and then by s — i, the periodicity of f and §e shows
that the valuc of the hrteyral is nol affected. Henec

@ Pl =g [ fOQE—Dd  F=1,2,3 .. )

Sinee each ) 18 o trigonometrie polynomial, §,. is of the form

Ny
3) Q® = 3 e,

n=—XNa

and if we replace L by ¢ — 5 in (3) and substitute the result in (2}, we see
that each F, is & trigonometric polynomial.

Let € > 0 be given. Since § is uniformly continuous on 7', there cxists
a § > 0 such that |f{f) — f(s)| < ¢ whenever |t — »| < 3. By (b), we
have

P = () = o [T 1t = 5 = SO1Quts) ds
-

and (a) unples, for all #, that

1 f»
P ~ L < e [T 150 — ) — fDIQuls) ds = ds -+ Ay,
where A, is the integral over [—§,8] and A: & the integral over
[—w,—5]u [3,x].

In A,, the integrand is less than eQx(s), 30 4, < ¢, by (h). In A, wohave
€5 (s) < 9:{8), hence

() Az £ 2 flle - ml8) <«

for sufficiently large &, by {e). Since these cstimates are independent of
i, we have proved that

(3) lira {If — Pelo = 0.

It remaing 1o construet the @ This can be done in many ways.
Here iz 8 simple one. Put

(8) Qull) = e (_l_jl—zuus_f)-"]
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whete ¢; is chosen so that (d) holds. Since (a) is clear, we only need to
show (c}. Binee ¢ is even, (d) shows thsl

_ T = 1+H}Stk G Jr 1+mﬁﬁk1- _ 26*
1—;L(—2 )a‘s‘t};u(——g )blnidt—ﬂ_—(k+1)+

Since @ is decreasing on [0,x], it follpws that

M Q) < Quis) < TV (1 t cos 5)““ O<s<il <.

2 2

This implies (£), since 1 + ecoad <210 < 3§ S m
We have proved the following important result:

4,25 Theorem I f € C(T) and « > 0, there 48 a irigenomeiric polynomial
F such thal

l78) — P(®) <
Jor every veal t.

A more precise result was proved by Fejér (1904): The arithmetic means
of the partial sums of the Fourier series of any f £ C(T) converge uniformly
to f. Tor a prooi (gquite similar to the sbove) see Theorem B.15 of [26].

4,26 Fourier Series For any fe LY(T), we define the Fowurier cogfficients
of f by the formula

M foy =5 [Tt mem,

where, we recall, Z i3 the set of all integers. We thus associste with each
f& L{T) & function f on Z. The Fourier series of f is

2) 3 toem,

and 1ts partiel sums are
hr

@) anlf) = } fme (N =0,1,2,..).
—N

Bince LT Z LM T), (L) canbe applied to every f e LH{T). Comparing
the definilions mude in SBees. 4.23 and 4.13, we ean now restate Thevrems
4.17 and 4.18 in concreie terms:

Thie Riess-Fischer theorem nsscris that if {c.} is a sequenec of eomplex
numbers such that

) Sl < =,
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then therc exists an f e L2(T) such that

®) =g [T fOemE o).

The Parseval theorcm nsserts that

Q S foim = o [T r0e a

whenever f e L2(T) and g & L3(T); the series on the loft of {6} converges
absolutely; and if sy is as in (3), then
7) lim ||f = sxle = 0,

¥ PR T 3
Neasw

sinece & special case of (6} yields
(8) - exli= 3 Iftm%

RS

Note that (7) says that every f & LYT) is the L2-limit of the partial
sums of its Fourier series; 1.e., the Fourier series of § converges to f, in the
L2-senge. Polntwise convergence presents a more delicale problem, as
we shall see 1n Chap. 3.

The Riesz-Fiseher theorem and the Parseval theorsm may be sum-
mariged by saying that the mapping 7 — fis a Hilbert space isomorphism |
of LT onto $1{Z).

The theory of Fourier series in other function spaees, for mstance in
E(T}, 18 mueh more difficult than in L}(T), and we shall touch only a few
aspects of it.

Observe that the crucial ingrediant 1n the proof of the Liesz-Fischer
theorem is the fuct that L? is complete, This is s0 well recognized that
the namme “Riesz-TFischer theorem’ is sometimes given to the theoremn
which asseris the completeness of L2, or even of any Lr.

In this set of excreises, H always denotes a Hilbert space.

1 If M is & closed subspace of H, prove that M = (4L, Is there
a similer true statement for subspaces Af which are not necessarily
closed?

2 Fora=1,23, ... ,let {2.} be an independent set of vectors
in H. Develop a constructive process which generates an ortho-
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normal set {ua}, such that u, is a linear combination of #,, . . . ,
#.. Note that this leads to a proof of the existence of a maximal
orthonormal sct in separable ITilbert spaces which makes no appeal
to the Hauzdorff maximality prineiple. (A spaec is separadle if it
contains a countable dense subset.)

3 Bhow that L¥(T) iaseparable if | £ p < , but that £=(T) is not
separable.

4 Show that H is separable if and only if H contains 3 maximal
orthonormal system which iz al mwost countuble.

5 If M = {x: Lz = 0}, where L is g continuous linear functionsl on
H, prove that M 18 s vecior space of dimension 1 {unless M = H).

h

Toat $ar b fa — 1 & 2 " hea an arthoamarraal cok 1m0 H Shnot
v AUL Jlgy AT Ay g By vow oo OO I GIVOACNGTIAL BO% 111 2. ALY

that this gives an example of a closed and hounded set whieh is not
compagt. Let § be the sat of all £ H oi the form

T = 2 Cally, where c,| £ 3—1-
)

Prove that @ is compact. (Q iz called the Hilbert cubwe,)
More generally, let {8} be a sequence of positive numbers, and
let & be the set of all £ & H of the form

z = E tnthny Where || < 8y,
1

Prove that § is compaet if and only if ;. 8,0 < w,
1

Prove that H is not loeally compaet.

7 Buppose {a.} i9ssequence of pozitive numberssiich that Ta,b, < »
whenever b, == 0 and E5,2 < w. Prove that Za,? < »,

& If H, and Hy are two Hilbert spaces, prove that one of them is
isomorphic to a subspace of the other. {Note Lhat every closed
subspace of a Hilbert spuce is a Iilbert space.)

9 I A C[0h2r] and A is measurable, prove that

™ I‘. a1ry M plew e [}
i SAkh TRl Ll i

19 Let ny < ng << my < - -+ be positive integers, and let E be the
set of all ze[0,2r] at which {sinm.w] comverges. Prove that
m(E) = 0. Hing: 2 sin*a = 1 — e0s 2¢, s0 sinngz — 1/4/2
a.e. on &, by Exercise 9.

11 Prove that the identity

) = lz + g2 = Jiz — 2l + iz + a3l — sz ~ @]
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18 valid in every Inner product space, aud show that it proves the
implication (¢} — (d) of Theorem 4.18,

12 The constante ¢, in Sec. 4.24 were shown to be such that 1 is
bounded, Estimate the relevant integral more precisely and show
that

0 < limn ;"ﬁ_!l.‘!h < o0,
o)

13 Suppose f is 8 continuous function on B, with period 1. Prove
that

lim

Jim & i flnay = [ 100 1

nw=l
for every irralional real number o, Hiné: o it first for
) = exp (2miki),

k=0,+1,+2,....
14 Compute
: L oe o 0 b atle
Tr;? ful 2w @ — br — ex?? dx
and find

max f_ll % (z) dx,

where g is subjecl 1o the resiriclions

[_11 #z) dz = [_11 zg(x) dz = f_ll 2(z) dx = 0; f_‘l (@ dr = 1.

15 Compute
min fﬂ |#* — a — bx — ex?|%e* de.
ade SO
Stute and solve the corresponding maximum problem, as in Exer-
cise 14,
16 If zne H and M is a closed lincar subspace of H, prove that

min {jjz — wy:ze M| = max {|{zoy}]: ye ML Uy] = 13.

17 Show that there is a continuous one-to-one mapping v of (3,1} into
H such that 4{d) — y{a) is orthogona! to y(d) — ¥(e) whenewver
0<€alb<e<d <]l (v muy be culled o “eurve with
orthogonal incremenis."y Hini: Take H = L*, and consider
chaructenstic funetions of eertain subscts of [(,1).

18 {ive o direct proof of Theorew 416, i, one which does not
depend on the more general considerations of Sec. 4.15,
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Space Techniques

Banach Spaces

51 In the preeeding chapter we sew how certain analytic facts sbout
trigonometric serles can be made to emerge {rom essentially geometrio
considerstions about genernl Hilbert spaces, involving the notions of eon-
vexity, subspaces, orthogonality, and completencss. There are many
problems in analysis which can be attacked with greater easc whoen they
are placed within a suitably chasen abstract framework. The theory of
Hilhert spaces 15 not always suitable since orthogonality is something
rather special. The class of all Banach spaces affords greater varety.
In this chapter we shall develop some of the basie properties of Banach
spuces and illustrate thum by applications io concrele problems.

5.2 Definition A complex vector spaec X 15 said to be & norined i{fnear
space i 1o each 1 & X there is associnted a nonnegative reul number ||z,
called Lhe rorm of 7, vuch that

(@) |z + %' < |z] + |lg| for alt =z and y& X,
(b |az| = lef ||lz) if xe X and « is o sealar,
(& |=l| = 0 implies 2 = 0.

By {a), the triangle inequality

le — gl =z —zl + e —pl (o pz2X)
holds. Combined with (U) (lake & = 0, & = —1) and {(¢) this shows thai
every normed linear spacé may be regarded as a metric space, the distance
between & and g being ||z — yll.
A Bangch apace is a normed linear space which is complete in the metrie
defined by its norm.
95



4 Real and complex analysis

For instance, every Hilbert space is a Banach space, o is every L*(g)
normed by 7], (provided we ideniify functions which are equal a.e.) if
1< p & w,and so i3 Cu(X) with the supremum norm. The simplest
Banuch spuce is of coursé the complex field itself, normed by |z]| = |z|.

One ean equally well discuss real Banach spaces; the definition s
exactly the same, except that all scalars are assumed to be real.

5.3 Definition Consider a linear transformalion A from a normed linear
space X into & normed linear space ¥, and define its norm by

{1) kil = sup Luf;jr'rl zeX, z # 0}-

B |A] < o, then A is called a bounded tinear transformation.

Iz (1), ||zl is the norm of x in X, |[Az| is the norm of Az in T; it will
frequently happen that several norms oecur together, and the context will
make it clear which is which.

Ohserve that we could restriet ourselves to undt veefors 10 (1), Le., to
z with ||z|| = 1, without changing the supremum, since

LY

(2 A ()] = [lepz) = faf [ Az].
Observe also that ||A!| iz the smallest number such that the inequality
(3) LAzl < [[A]l [l=0

holds for every e X.
The following geometric picture is helpful: A maps the elosed unit ball
in X, i.e., the sat

) fre X: Jaf <14,

into the elosed bail in ¥ with center at (¢ and radius |A].
An importunt specinl ease is obtuined by taking Lthe eomplex hield for
Y; in that case we talk about bounded lincar functionals.

5.4 Theorem For g linear lransformaiion A of a normed bnear spoce X
tnls g normed linear space Y, cach of the following three condilions implies
the other two!

(@} A {e bounded.
(d) A s condinuous.
() A is continuous al one point of X,

PRoOF  Singe TA(z — z2)| £ A loa — =dl], it is clear that (&)
implies {b), and (b) implies {¢) trivially, Buppose 4 is continuous at
Zo To each e > 0 one cun then Gnd 5 5 3 0 so that lo¢ — 2| < &
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mplies A — Aze| < & In other words, ||x|| < 3 implies
lafzy 4 2} — Axyl| < e

But then the linearity of A shows that ||Az| < e Henece ||A]] < ¢/3,
and {¢) implies (@),

Consequences of Baire’s Theorem

5.5 The manner in which the completeness of a Banaeh space 15 fre-
quently exploited depends on the following theorem about complete metrie
spaces, which also bas many applieations in otber parts of mathematios,
It implies two of the three mosl important theorems which make Banach
gpaces useiul toals 1o analysis, the Bosech-Steinhaus thevrem and Lhe open
mapping theorem. The third is the Hahn-Banach exiension theorem, In
which comupleteness plays oo role.

5.6 Baire's Theorem If X 15 a complete melric space, the wnlersection of
every couniable collection of dense open subsets of X 45 dense in X,

In particular (except in the trivial case X = &), the intarsection is not
empty. This is often the prineipal significance of the theorem,

PROOF Supposc Vi, Vo, Vi . ., arc donsge and open in X, Let W
ke any open set in X We have to show that 117, has a point in W
if W .

Let p be the metrie of X; let us write

(1) Sleyr) = {ye X:pley < v}

and let S{z,# be the closure of S{z,7). [Note: There exist situations
in which 8(z,r) does nof contain all ¥ with p(z,3) < r1]

Since Vy is dense, W n ¥ is a nonempty open set, and we can there-
fore find z: and r; such that

(2) Rayr) C Wn vy and 0 <y <1

Ifn > 2 and x._: and r._, are chosen, the denseness of V. shows that
Va1 8{za_1,ra_1) is not empty. and we ean therefore find x. and ra
such that

4

@) S(Ears) C VanSEeoyrect) and 0 <7 < ;’;

By induction, this process produces a sequence {z,} in X. Tf
i > #n and j > n, the construetion shows that & and r; hoth lie in
S{zn,ra), s0 thai plz;c) < 2r, < 2/n, and hence }i,} 15 a Cauchy
sequence. Siner X is complele, there is a point r & X such that
r = lim 2.

-
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Sinee z; lies in the closed set Stz if 7> n, it follows that z
lies in each S{z.,r.), and (3) shows that x lies in each V.. By (2),
z= W. This compleies the proof,

Corollary In o complete metric spoce, the infersection of any ecunigble
collection of dense Gy's is again a dense (fy.

This follows from the theorem, since every ¢y is the interseclion of &
countable collection of open sets, and since the union of countably many
couniuble sets s countuble.

5.7 Baire's theorem iz sometimes called the category theorem, for the
following reuson.

Call & get F C X nowhere dense if iis elosure E contains no nonempty
open subset of X, Any countable union of nowhere dense sets is ealled
a set of the first calegory; all other subsets of X are of the sccond category
{Baire’s terminclogy). Theorem 5.6 18 equivalent to the atatement that
na complete melric space 158 of the firel categary. To see this, just take
canmiplements in the staterment of Theorem 3.6.

58 The Banach-Steinhaus Theorem Stuppose X iz ¢ Banach space, Y iza
narmed linear space, and {A,] is a collection of bounded linear transforma-
fions of X i Y, where ¢ ranges ower some index set A.  Then etther there

exisfs an M < w guch thaf
1) Haql < M
Jor avery w€ A, or

(2) sup ALzl = e
P A

for all = belonging to some dense (33 in X,

In geometric terminology, the alternatives are as follows: Eifher there
i a ball B in ¥ (with radius M and center at 0) such that every A, maps
the unil ball of X into B, or there exist x & X (in facl, a whole dense &
of them) such thal no ball in ¥ eonlains A x for all «

The theorem i3 sometimez referred to as the uniform boundedness

principle,

PROOF Put

(3) o) = 3up |A2]  {zzX)

and let

(4) Ve = |2: olz) > nl m=1,23, ...

Bince each 4. 13 eontinueuws and sinee the norm of ¥ is a continuous

e A iy " e~
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function on ¥ {an immediate consequcnee of the trianglc inequality,
rs in the proof of Theorem 4.6), cach function z — {|A.zl is continu-
ous on X. Henee ¢ 13 lower semicontinuous, and each V, is open.

If one of these sets, say Va, falls to be dense in X, then there exist
an 2. £ X and an r > 0 such that |jz| < r implies x4 + 2 § Vy; this
means that ofzy +2) < N, or

) Aalzo + ) < N

for all ae A and all z with |2l < r. Binee 2z = (zo + 2) — 2, we
then have

() lAaz]| < [|Aalee + )| + [Aaxoll £ 2N,

and 1t follows that (1) holds with Af = 2N /r.

The other possibility iz that every V,is dengein X, In that ease,
NV, is a dense @ in X, by Baire’s theorem; and since ¢(z) = « for
every = £ [1¥,., the proof is complete,

5.9 The Open Mapping Theorem Let L/ and V be the open uni balls
of the Bonoch spaces X and Y. o every bounded linegr fransformoaiion
Aof X onto ¥ there corresponds a 5 > 0 so that

1) AT) O BV 4

Note the word “onto’ in the hypothesis. The symbol 3V stands for
the set {$y: ye ¥}, le, theset of all y& ¥ with [y < &

It follows from (1) and the linearity of A that the image of every open
ball in X, with cenler at p, say, conlain: an open ball in ¥V wilh cenler
al Arg. Hebnee the image of every open sct is open.  This explains the
nume of the theorem.

Here is another way of stating {1): To every y with iyl < § there corre-
sponds an & with x| < L se that Az = 7.

proor Given ye Y, there exists an ze X sueh that Ar = y; i
|z|| < &, it follows that y e A{t{"). Henee Y is the union of the scte
ARDD, for B =1, 2, 3, . ... Sinee Y iz complete, the Baire
theorem implies that there 15 2 nonempty open set. W in the elnsure
of some A(ETT}.  This means that every point of W is the limit of a
sequence [Ax.! where r; £ £{7; from now on, k and W are fixed.

Choose oe W, and choose n > 0 so that yo + we W if |y < »
For any such y there are sequences {z;), {2} in &£ such that

(2) Ari— e, A o yot ¥y {{— o).

Betting =; = z!’ — z}, we have ||zl < 2k and Az, — . Since this
holds for every y willh |ly|| < #, the linearity of A shows that the
following is true, il § = /2%
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To each ye Y and to each ¢ > O there corresponds an x & X suck thal

3 e < &Myl and |y — Az] <«

This is almost the desired conclusion, as stated just before the start
of the proof, except that there we had ¢ = 0.

Fix &8V, and fix e > 0. By (3) there exists an x; with [jz]] < 1
ard

(4) l — Azl < ée
BUppose Ty, . . . , Tx Are chosen so thot
(5) ly = Az — + » > — Al < 277 Be,

Use (3), with g replaeed by the veetor on the left side of (5), to obtain
AN Zny1 80 that (§) holds with # 4 1 in place of », and

(6] ”‘rﬂ+1” < 2% (ﬂ‘ =123, .. }

If wesel s, = 21+ - -+ + x,, (6) shows thai {s,] iz & Cauchy
seguence In X. Hince X is compleie, there existz an z &£ X sp that
&, — z. The inequality |lz,]j < 1, together with (8), shows that
'zl <1 4+ e Bince A i= continuous, As. — Ax. By {5}, Az, — .
Hence Ax = y.

‘We have now proved that

(7) A((l + gI7) D &V,
ar
(8) AU) DA+ g71iY,

for every € > (. The union of the sets on the right of (B), taken over
all € > 0,18 8V. This proves (1),

5.10 Theorem If X and ¥ are Banach spaces and 4f A is o bounded lineor
lransgformation of X onlo ¥ which s also one-lo-one, then there 15 a § > (1
such that

(1)

Azl = 8lefi (e X)),

In ather words, A1 is ¢ hounded Wnear transformation of ¥ anto X.

PRoOOF If & is chosen as in the stafement of Theorem 5.9, the con-
clusion of that theorem, combined with the faet that A is now one-
to-one, shows thut [Az < § implies |zl < 1. Henee [ > 1
implieg ||Az] > § and (1) is proved.

The transformation A~? iz defined on ¥ by the requirement (hut
Ay =2 if ¥y = Az, A trivial verification shows that A is linear,
and (1) implies that |A=Y| < 1/
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Fourier Series of Continuons Functions

511 A Convergence Problemn  Is it true for every f & C(T) that the Fourier
series of f converges o f(x) ot erery poind x?
Let us rceall that the nth pardial sum of the Fourier series of § at, the
point x is given by
RN I _ _
M ) =5 [ HODe -t @=10.1,2 .. ),

where

ikt

b-1s

b)) FiR
e

(h =
v

b=

This follows dircetly from formulas 4.26(1) and 4.26(3).
The problem is to determine whether

(3) Im s, (i) = f(z)

for every fe C{T) and for every real 2. We observed in 8ce. 4.26 that
the partial sums do converge ta f in the L>-norm, and therefore Theorem
3.12 implies that each f 2 L*{T) [henee also pach f & €(T)] ia the pointwise
limit a.e, of some subsequence of the full sequence of the partial sums,
But this does not answer the present question.

We shall see that the Banuch-Steinhaus theorem answers the question

negatively. Put
@ #*(7) = sup [l

To begmm with, take z = 0, and define
5) Af = (D) (Fe€(T;n=1,2,3,...).

We know that €{7) iz a Banach space, relative to the supremumn norm
N#l'w. It follows from (1) that each A, is o bounded linear funectional on
(T), of norm

®) Iaal < 5 f7 IDaldt = 1D
We claim that
(7) | Anl| — AS N — @,

Thiz will be proved by showing that equality holds in (6) and that

{8) [ Dully — == AS 7 — =,
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Multiply (2) by ¢ and by e—%? and subiract one of the resulting two
equations from ihe other, to obtuin

_ sin {n 4+ P

Since |sin x| < |2] for all real z, (9) shows thai

2 x| . I\ it 2 jintb=r i
I = | il I D | =
||Dm]1}1r[}|sln(n+2)ﬂit Tﬁ] 5_mt|t

2w 1 fEe PR
};hzlﬁﬁb—l]r ls]nﬂdt—‘;‘éhzl}; - <

which proves (8).

Next, (x n, and put g(f) =1 if D,{f) > 0, g{f) = =1 if D,{&} < 0.
There exist f; e C(7) such that —1 < f; <1 and f;(8) — ¢(f) for every i,
a8 f — =. By the dominated convergenee theorem,

lim A{f) = lim % [ 5=t Datg) at - E':fr [T o=0 D)

F=m J=+m
= il Dl
Thus equality holds in (), and we have proved (7).
Hince (7) holds, the Banach-Sfeinhaus theorem now sasserts that
g*(f:0) = o for every f in some dense Gpset in C(M.
We chose z = 0 just for convenience. It is clear that the same resuli
holds for every other z:

To cach real number & there corresponds a sef E. (C C{T) which 45 a
dense €y in C(T), such that §*(f;2) = «» for every f e E..

In particular, the Fourier series of each fz E, diverges at z, and we
have a negative answer to anr queation,

It is interesting fa ohserve that the above result can he strengthened
by another application of Baire’s theorem. Let us take countably many
pointg x;, and let F be the intersection of the corresponding sets

E. C C(.
.. Trem- ) b .. [ V| B [ ) — LT iy P 7L
L@ire’ s tneoretn, & 15 4 dense (rpan (7). Hvery j € £ nas
s*(fix) = @

at every point z;.

For each f, s*{f;x) 1 a lower sexmeontinugns function of &, since {4)
exhibits it as the supremum of a collection of continuous funciions.
Hence {x:s*(fiz) = @] isa Gsin R, for eachf. If the above points z;
are faken so that their union is dense in {—x,x), we obtain the following
result:
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512 Theorem There 1is a set E  C(T) which i a denee G in C{T") and
which has the follwwing proverty: For each f ¢ E, the sel

Qr = {1 8" (f53) = =]
tz & dense Gy in B

This gains in interest if we realize that E, as well as each @y, iz an
uneouniable set:

5.13 Theorem In g complete metric space X which has no tsolated pornts,
na countable dense gel 18 a (.

rroo¥ Let z, be the points of & countable dense set Fin X,  Assume
a4 T i. o= 47 M B 317 Eoun cnnk TF Ja Adocims o] s
LI 4% IS A L. L1ICIE 2y — 11 F gy WEHEID CREIH F g 13 WERLIPE 1L JU =l B2
Let

an V-u_ lj imk}.
k=]

Then each W, ia still & dense open set, but (1, = &, in coniradic-
tion to Baire’s theorem., '

Note: A slight change in the proof of Baire’s theorem actually shows that
every dense Gy contains a perfect set if X 13 as above.

Fourier Coefficients of I.i-functions

514 Asin Sec. 4.26, we associate to every fe LA(T) a function f on Z
defined by

W Jw =g [ e (wed),

It is sagy to prove that f(n) — 0 as jn| — <, for every fe L, For we
know that C(7T) is dense in LY{T) (Theorem 3.14) and that the trigono-
metric polynomials are dense in C(T) (Theorem 4.25). If ¢ > 0 and
Fe LA(T), this says that there i a ge C(T) and a trigonometrie poly-
nomial P such that |f — gll; < enand [§ — Plls <« Sinece

lg = Plx = [lg — Plle

it follows that [|f — Pl < 2¢; and if |n]| is large encugh (depending
on P), then

@ el = | [T 0 = POleds| < |If — Pl < 2

" Thus f{n) — 0 a8 m — + w. This is known as the Riemann-Lebeaguc
e, -
The question we wish to raise is whether the converse is true. That



104 Real and complex analysis

iz to say, if {a.} is & sequence of complex numbers such that g, — 0 as
n— + &, does i follow that there is an fe LUT) such that f(n) = a.
for all neZ! In other words, iz something hke the Hiesz-Fischer
thecrem true in this situstion?

Thiy cun eusly be ungwered (negatively) with the aid of the open
mapping theorem,

Let ¢, be the space of all complex funetions ¢ on Z sueh that ¢(a) — 0
a8 ¢ — + =, with the supremuim norm

3) ke = sup {lo(n)|:ne Z}.

Then ep 19 eagily seen to be 2 Banach space.  In faet, if we declare every
gabet of Z to be opens, then Z 15 a loecally compact Hausdorfl space, and
¢o s nothing but {2},

The following theorem containg the answer to our question:

5.15 Theotem The mapping f — f is 8 one-to-one bounded linear trans-
Jormation of L(T) inlo (but nol ondo) oy

PHOOF Define A by Af = f I is clear that A is linear. We have
just proved that A maps L1(T) inio ¢, and formula 5.14(1) shows that.
If)] < |Ifil, so that [iall < 1. (Aciually, [|Ajj = 1; to see this,
take f = 1.} Lei us now prove that A iIs one-to-one. Suppose
Ffe LMT) and f(n) = 0 for every ne Z. Then

(1) [ g e =0

if g iz any trigonometric polynomial. By Theorem 4.25 and the
dominated convergence theorem, (1) holds for every ge O(7).  Apply
the dominated eonvergence theoremn once more, 1 conjunetion with
the Corollary to Lusin’s theoremn, to conclude thai (1) Lolds if g 1s
the characteristic funetion of any measurable set in T. Now Theorem
1.39( 1) shows that ¥ = 0 a.e.

If the range of A were all of 2o, Theorem 5.10 would imply the
cxigtence of a § > 0 such that

(2) e 2 alflh

for every fe LY(T). But if D) & defized a8 in Sec 5.11, then
Dae LT, 1Dy =11Hor n=1,2 8, ..., and [Di— = as
7 — =, Henoe there is no & > 0 such that the inequalities

(3) I,Ijﬂﬂ”u 2 a”]Dﬂ-]lll

hold for every n.
This completes the proof.
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The Hahn-Banach Theorem

516 Theorem If M iz a subspace of a normed linear space X and if f is
& bounded linear functional on M, then §f can be exfended o a bownded linear
functional F on X so that ||F|| = |l

Nole that M need not be closed.

Befure we turn to the prool, some comments seem called for.  First, to
gay (in the most general situation) that o function F is an satension of [
means that the domain of F ineludes that of f and that F{zx) = f(z) for
all z in the domain of .  Sceondly, the norms |'F| and | f| are eomputed
relative to the domainz of F and f; explicitly,

R |7 . IF=) |
ifll = sup [ Iz] .zaMl; |F]} = sup Tl Tt X}

The third comment concerns the field of sealars. So far everything
has been stated for complex scalars, but the complex field could have
beenr replaced by the real field without any changes 1n statements or
proofs, The Hahn-Banach theorem 13 alvo irue in both cases; neverthe-
less, i appears Lo be essentially a '‘real” theorem. The faci that the
complex case waa not yel proved when Banach wrote his classiesl book
“Opérations lindaires” must be the rcason that real scalars are the only
ones considered in his work.

It will he helpful to iniroduce some temporary terminology. Recall
that V iz a complex (real) veetor space if x + y¢ V for z and y& V, and
if ez e V for all complex (real) numbers e It follows trivially that every
complex vector space 15 also e real veclor space. A complex funetion ¢
ont a complex vector space ¥ is u comples-linear functional il

(1) plz + ) = olz) + oy and  glex) = apl(x)

for all x and ye V and all complez «. A real-valued funetion ¢ on a
complex {or real) vectcr space V' is a reallincar functional if (1) holds for
all real a.

1f  is the real part of a complex-linear functional f, i.e., if x«{z) is the
real part of the complex number f{x) for all x£ V", it ia easily seen that
t is a real-tinear functional. The {ollowing relations hold between f and «:

317 Propasition Let V be a complex vector space,

{a) If u is the real pari of & compler-linear funclionul f on V, then
(1) flx) = ulz) — fuliz) (xe V).

(B) If u iz a real-linear funelional on V and if f is defined by (1), then
f & a complex-linear functional on V.
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(e} If V iz a normed Hnear space and [ and u are relaled as i (1),
then |Iff} = llwid.

PROOF If @ and 3 are resl numbers and z = @ + 28, the real part
of 72 18 —3. This gives ihe identiiy

{2) 2 = Rez - 7 Re (iz)

for all ecomplex numbers 2. Sinece
(3) Re (if{x)) = Re fliz) = u(dx),

(1) follows from {2) with z = f(z).
Under the hypothesas (b, it is elear that f{z + &) = f(z) + f(¥)
and that f{ax) = af{z) for all real @ But we also have

{4) flr) = uliz) — dul—x) = uwlix) + uiz) = if(z),

which proves that {15 ecomplex-linear.
Since |u(z)| < |/(z)], we have |4, < [If]. On the other hand, to
every z & ¥ there corresponds a complex number a, ja] = 1, so that

of () = |f{z)l. Then
5) @ = flax) = ulax) < luf ezl = llul - ilel,

which nrove:
which Droves

5.18 Proof of Theorem 5.16 We first assume that X i5 a real normed .
linear ¢pace and, consequently, that f is a real-linear bounded funectional
on M. TIf !f] =0, the desired extension is F = 0, Omitting this case,
there is no loss of generality in assuming that |jf]| = 1.

Choose xce X, z1 # M, und let M be vhe veclor spuce spanned by M
and zy. Then M, conziets of all vectors of the form & + hxq, wherez £ M
and A 1z a real sealar.  If we define filz + dzd) = f{z) + Ae, whoere o 18
any fixed real number, it is trivial to verify that an cxtension of f to &
linear functional on M, is ohtained. The problem is to choose o so that
the extended functional still has norm 1. This will be the case provided
that
(1) ! :ﬁ} + ?h'x! - Hﬂ: + ]h-'l'gu {ﬂ‘SE M? . I‘Ed_!]:L

- 4 [

Replace » by —7z and divide hoth aides of {1) by [A|. The requirement
is then that

(2) f@) — o < |z~ (e M),
Le., that A, € a < B, for ell z£ M, where
B d.=f&)— |z =2 and  B:=f{z) + llz — i,
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There exists such an « if and only if all the intervala [4,,8.] have a com-
mon point, i.e., if and only if

(4) A. € B,
for all z and ye M. But

(5) fl&) —f) =flz — ) <lz — g <Mz — 2 + [ly — =,

and so {4) follows from (3).

We have now proved that thete exists a norm-preserving extension f;
of f on M.

Let @ be the collection of all ordered pairs (M ), where M is a sub-
apace of X which containg M and where [’ is a real-linear extension of f
to MY, with {| /)| = 1. TPartially order @ hy declaring (M’ /) < (M'" f")
to mean that M’ C MW" and f“{(z) = f'{z) for all x&¢ M’. The axioms
of a partial order are clearly satisfied, ® 1 not empty since 1t contains
{M.0), and so the Hausdorfi mauximality thegrem asserts the existence
of » maximal totully ordered subcollection 2 of @,

Let & be the collection of all M such that (M, e .  Then bistotally
ordered, by sct inclusion, and therefore the union M of all members of &
is a subspace of X, (Note that in general the union of two subspaces
18 not a subspace. An example 18 two planes through the origin in £2)
If ze M, then z & M’ for some M’ £ ®; define F(z) = f(z), where f is
the function which oceurs in the pair (M’ f) e  Our definition of the
partial order in @ shows that it is immaterial which M’ ¢ @ we choose
to define F(x), us loug as M’ couiains .

It is now easy to check that F is a linear funetional on 3, with [|F!| = 1.
If # were a proper subspace of X, the first part of the proof would give
us 8 further extension of F, and this would contradiet the maximality
of @. Thus M = X, and the proof is complete for the case of real sealars.

If now f is a complex-linear functional on the subspace M of the com-
plex normed linear space X, let w he the real part of f, use the real Hahn-
Banach theorem to extend u to a real-hnear funcrional U7 on X, with
it = lu|, and define

() Fiz) = Ulx) = tU{Fx) (xe X).
By Propesition 5.17, F is a complex-linear extension of f, and
L& =101 = L] = [ifi.
This completes the proof.

Let us meniion lwo importuni consequences of the Hahn-Banach
thegrem:
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519 Theorem Let M be a linear subspuce of a normed linear space X,
and let xoe X. Thenr 1o is in the closwre M of M if and only #f there i3 no
bounded linear funciional f on X such thai fizx) = 0 for i xe M bui
Flzo) &= O.

pRooF If zoe M, fis a bounded linear functional on X, and (2} = 0
for all g e M, the continuity of f shows that we also have f(xe) = 0.

Clanversely, suppose ©o £ . Then there exists a § > {1 such that
Lz — 2ol > & for all ze M. Let M’ be the subspuce generaied by
M and zo, and define f{z + dxy) = A ze M and X i3 ascalar. 3ince

3 < Al flze + 22| = (Ao +

we sec that £ is a linear functional on M’ whese norm is at most &
Also f{z) = 0 on M, f(ze) = 1. The Hahn-Banach theorem allows
us to extend this F from M’ to X.

5.20 Theorem If X is a normed linear space and if zo® X, xo 7 0, thers
19 @ bounded linear functional f on X, of norm 1, so that f{ze) = [jzd.

rroor Let M = {Az,}, and define f(hzxe) = Allzyl. Then f is a
linear funetional of norm 1 on M, snd the Hahn-Banach theorem
can again be applicd.

5.21 Remarks If X i5 a normed lineur spuce, let X* be the collection of all
bounded linewr lunctional: on X. I addition und seular muliiplieation
of linear funetionals are defined in the ohvious manner, it is easy to see
that X* i3 pgain a normed lincar space. In fact, X* iz o Bannch space;
thiz follows from the fact that the ficld of sealars iz a complete metrie
space. We leave the verifieation of these properties of X™* a3 an exereise.

One of the consequences of Theorem 5.20 i3 that X* is not the trivial
vector space (i.e., X™ consizts of more than 0) if X is not trivial. In fact,
X* separates poinds on X, This means that if x; # x. in X there exists
ai f g X* such that f{z,) # f(x:). To prove this, merely take

Tp = s —
in Theorem 5 2.
Another consequenee is that, forz e X,

llll = sup {[f@):fe X*, || = 1].

Heunee, for fixed £ X, the mapping f — f{z) is a bounded linear func-
tional on X*, of norm |z||.

This interplay between X and X* (ithe so-called “dual space” of X)
forms the 