

SQL DEMYSTIFIED

http://dx.doi.org/10.1036/0072262249

This page intentionally left blank

SQL DEMYSTIFIED

ANDY OPPEL

McGraw-Hill/Osborne

New York Chicago San Francisco Lisbon London
 Madrid Mexico City Milan New Delhi San Juan

 Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0072262249

Copyright © 2005 by The McGraw-Hill Companies. All rights reserved. Manufactured in the United States of America. Except
as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-148672-0

The material in this eBook also appears in the print version of this title: 0-07-226224-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the
content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for
any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work,
even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072262249

http://dx.doi.org/10.1036/0072262249

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0072262249

To the memory of my uncle, Robert E. Lee Smith,
who taught me so many things about life, including
never taking things too ser iously. Nothing describes
Robert’s sense of humor better than the nickname he
gave me—Darwin Data.

ABOUT THE AUTHOR

Andrew J. (Andy) Oppel is a proud graduate of The Boys’ Latin School of Maryland
and of Transylvania University (Lexington, KY) where he earned a BA in computer
science in 1974. Since then he has been continuously employed in a wide variety of
information technology positions, including programmer, programmer/analyst,
systems architect, project manager, senior database administrator, database group
manager, consultant, database designer, and data architect. In addition, he has been
a part-time instructor with the University of California (Berkeley) Extension for
over 20 years, and received the Honored Instructor Award for the year 2000. His
teaching work included developing two courses for UC Extension, “Concepts of
Database Management Systems” and “Introduction to Relational Database
Management Systems.” He also earned his Oracle 9i Database Associate certifi cation
in 2003. He is currently employed as the principal data architect for Ceridian, a
leading provider of human resource solutions. Aside from computer systems, Andy
enjoys music (guitar and vocals), amateur radio (Pacifi c Division Vice Director,
American Radio Relay League) and soccer (Referee Instructor, U.S. Soccer).
 Andy has designed and implemented hundreds of databases for a wide range of
applications, including medical research, banking, insurance, apparel manufacturing,
telecommunications, wireless communications, and human resources. He is the
author of Databases Demystifi ed (McGraw-Hill/Osborne, 2004). His database
product experience includes IMS, DB2, Sybase, Microsoft SQL Server, Microsoft
Access, MySQL, and Oracle (versions 7, 8, 8i and 9i).

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

vii

CONTENTS AT A GLANCE

CHAPTER 1 Relational Database Concepts 1

CHAPTER 2 SQL Concepts 37

CHAPTER 3 Defi ning Database Objects Using SQL 53

CHAPTER 4 Retrieving Data Using Data
Query Language (DQL) 87

CHAPTER 5 Combining Data from Multiple Tables 125

CHAPTER 6 Advanced Query Writing 149

CHAPTER 7 Maintaining Data Using DML 173

CHAPTER 8 Applying Security Controls Using DCL 185

CHAPTER 9 Preserving Database Integrity
Using Transactions 205

CHAPTER 10 Integrating SQL into Applications 221

CHAPTER 11 SQL Performance and Tuning Considerations 239

 Final Exam 261

 Answers to Quizzes and Final Exam 281

 Index 303

This page intentionally left blank

ix

CONTENTS

Acknowledgments xv
Introduction xvii

CHAPTER 1 Relational Database Concepts 1
What Is a Database? 2
What Is a Database Management System (DBMS)? 2
What Is a Relational Database? 3

Relational Database Components 3
How Relational Databases Are Designed 9

The Need for Normalization 10
Applying the Normalization Process 11

Overview of the Video Store Sample Database 21
Downloading the SQL for

the Sample Database 29
Quiz 31

CHAPTER 2 SQL Concepts 37
What Is SQL? 38
Connecting to the Database 38
A Brief History of SQL 42
SQL Syntax Conventions 44
SQL Statement Categories 47

Data Defi nition Language (DDL) 47
Data Query Language (DQL) 47
Data Manipulation Language (DML) 47

For more information about this title, click here

http://dx.doi.org/10.1036/0072262249

 x SQL Demystifi ed

Data Control Language (DCL) 48
Transaction Control Commands 48

Quiz 48

CHAPTER 3 Defi ning Database Objects Using SQL 53
Syntax Conventions Used in This Chapter 54
Data Types 54

SQL:2003 Standard Data Types 55
Vendor Data Type Extensions and Differences 60

NULL Values and Three-Valued Logic 69
Data Defi nition Language (DDL) Statements 70

The CREATE DATABASE Statement 70
The CREATE TABLE Statement 70
The CREATE INDEX Statement 76
The CREATE VIEW Statement 77
The ALTER TABLE Statement 78
The DROP Statement 80

Quiz 81

CHAPTER 4 Retrieving Data Using Data Query
Language (DQL) 87

The Basic SELECT Statement 88
Column Name Aliases 90

Sorting Results 90
Using the WHERE Clause to Filter Rows 94

Comparison Operators 94
Conjunctive Operators 97
Logical Operators 100

Arithmetic Operators 108
Basic SQL Functions 110

Character Functions 110
Mathematical Functions 115
Conversion Functions 116

Aggregate Functions and Grouping Rows 117
GROUP BY Clause 119

CONTENTS xi

Compound Query Operators 120
UNION 120
UNION ALL 120
INTERSECT 121
EXCEPT 121

Quiz 121

CHAPTER 5 Combining Data from Multiple Tables 125
Joins 127

Equijoins 129
Natural Joins 132
Outer Joins 134
Self Joins 138
Other Joins 140
Cross Joins 140

Subselects 141
Noncorrelated Subselects 141
Correlated Subselects 143

Inline Views 144
Quiz 144

CHAPTER 6 Advanced Query Writing 149
Advanced SQL Functions 150

Character Functions 150
Mathematical Functions 154
Date and Time Functions 156

Taking Advantage of Views 161
Using SQL to Generate SQL 164

Generating SQL in Oracle 165
Generating SQL in Microsoft SQL Server 165

The CASE Expression 166
Simple CASE Expression 166
Searched CASE Expression 168

Quiz 169

 xii SQL Demystifi ed

CHAPTER 7 Maintaining Data Using DML 173
The INSERT Statement 175

Single Row Inserts Using the VALUES Clause 176
Bulk Inserts Using a Nested SELECT 177

The UPDATE Statement 179
The DELETE Statement 180
Quiz 181

CHAPTER 8 Applying Security Controls Using DCL 185
Why Is Security Necessary? 186
Database Security Architectures 187

Database Security in Microsoft SQL Server
and Sybase Adaptive Server 188

Database Security in Oracle 190
Implementing Database Access Security 192

Database Privileges 192
SQL Statements Used for

Security Administration 194
Schema Owner Accounts 196

Simplifying Administration Using Roles 197
Administering Roles in Microsoft SQL

Server and Sybase Adaptive Server 198
Administering Roles in Oracle 199

Using Views to Implement Column
and Row Level Security 200

Quiz 201

CHAPTER 9 Preserving Database Integrity
Using Transactions 205

What Is a Database Transaction? 206
Transaction Support in Relational DBMSs 206

Transaction Support in Microsoft
SQL Server 207

Transaction Support in Sybase
Adaptive Server 208

CONTENTS xiii

Transaction Support in Oracle 209
Transaction Support in MySQL 209
Transaction Support in DB2 UDB 210

Locking and Transaction Deadlock 211
The Concurrent Update Problem 211
Locking Mechanisms 212
Deadlocks 214

Quiz 215

CHAPTER 10 Integrating SQL into Applications 221
Cursor Processing 222

The DECLARE CURSOR Statement 222
The OPEN CURSOR Statement 223
The FETCH Statement 224
Cursor UPDATE and DELETE Statements 225
The CLOSE Statement 225

Embedding SQL in Application Programs 226
ODBC Connections 226
Connecting Databases to Java Applications 227
The .NET Framework 228

Computationally Complete SQL 229
Transact-SQL (Microsoft SQL Server

and Sybase Adaptive Server) 230
Oracle PL⁄SQL 232

Quiz 234

CHAPTER 11 SQL Performance and Tuning Considerations 239
General RDBMS Tuning Considerations 240

Minimize Disk Reads and Writes 240
Tune the Computer System and

Environment 241
Design the Tables Effi ciently 241

Tuning SQL Queries 242
General RDBMS Considerations 243
MySQL Considerations 248

Oracle Considerations 248
Microsoft SQL Server Considerations 252
DB2 UDB Considerations 254

Tuning DML Statements 254
Quiz 255

 Final Exam 261

 Answers to Quizzes and Final Exam 281
Chapter 1 282
Chapter 2 282
Chapter 3 283
Chapter 4 284
Chapter 5 286
Chapter 6 289
Chapter 7 292
Chapter 8 293
Chapter 9 294
Chapter 10 295
Chapter 11 295
Final Exam Answers 296

 Index 303

 xiv SQL Demystifi ed

xvxv

ACKNOWLEDGMENTS

I owe much to my parents for providing me with an excellent education and a love of
both learning and teaching. I credit The Boys’ Latin School of Maryland and the late
Jack H. Williams, headmaster, with teaching me to write effectively. And I credit
Transylvania University and Dr. James E. Miller for introducing me to the fascinating
world of information systems and providing me the tools for continuous learning. I’d
like to thank the wonderful people at McGraw-Hill/Osborne for the opportunity to
write my fi rst book and for their excellent support during the writing process. Finally,
my thanks to my wife Laurie and our sons Keith and Luke for their support, patience,
and understanding during the long hours it took to produce this book.

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

xvii

INTRODUCTION

It is often said that mathematics is the language of science. In just the same way,
SQL is the language of databases. My fi rst book, Databases Demystifi ed, introduces
SQL, but focuses on database design. A number of readers asked for more detail
about SQL because they found writing and running database queries to be so
enjoyable. So, here is SQL Demystifi ed, devoted entirely to the SQL language.

I’ve drawn on my extensive experience as a database designer, administrator, and
instructor to provide you with this self-help guide to the language that unlocks the
fascinating world of database technology. This book covers standard SQL as well as the
differences you will encounter when you use database management systems such as
Microsoft SQL Server, Oracle, DB2, and MySQL. There are loads of examples and
they all use one consistent, easy to understand database that I specifi cally designed for
this book. And the database design and sample data that I used are included so you can
try all the examples for yourself. You can test your leaning with the review quiz that is
provided at the end of each chapter and the comprehensive exam at the end of the book.
I hope you have a lot of fun learning SQL.

If you have any comments, I’d like to hear from you.

andy@andyoppel.com
Honored instructor, University of California Berkeley Extension

Principal data architect, Ceridian
Certifi ed Oracle 9i Database Associate

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

This page intentionally left blank

1

1

Relational
Database
Concepts

SQL is the fundamental language used to communicate with relational databases.
Therefore, it is essential to understand the basic concepts of relational databases
before you embark on learning the SQL language. This chapter presents an overview
of relational database concepts. If you fi nd this material interesting, I recommend
you take a look at my other book, Databases Demystifi ed (McGraw-Hill/Osborne,
2004), which focuses entirely on the design, use, and management of relational
databases.

CHAPTER

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 2 SQL Demystifi ed

What Is a Database?
A database is a collection of interrelated data items that are managed as a single
unit. This defi nition is deliberately broad because there is so much variety across
the various software vendors that provide database systems. For example, Oracle
Corporation defi nes its database as a collection of physical fi les that are managed
by a single instance (copy) of the database software, while Microsoft defi nes an
SQL Server database as a collection of tables with data and other objects. A data-
base object is a named data structure that is stored in the database, such as a table,
view, or index. You will fi nd more information about database objects in the “Rela-
tional Database Components” section later in this chapter.

There is a great deal of variation in implementation across database vendors. In
most database systems, the data is stored in multiple physical fi les, but in Microsoft
Access, all of the database objects and data belonging to a single database are stored
in one physical fi le. (A fi le is a collection of related records that are stored as a
single unit by a computer’s operating system.) Some other relational databases,
particularly older implementations, store each database object in a separate fi le.
However, one of the best benefi ts of relational databases is that the physical imple-
mentation details are separated from the logical defi nitions of the database objects
in such a way that most database users need not know where (or how) the database
objects are actually stored in the computer’s fi le system. In fact, as you learn SQL,
you’ll see that the only time a physical fi le is named in an SQL statement is in defi n-
ing or modifying the database objects themselves—you never need to specify a
physical fi le when adding, changing, deleting, or retrieving the data that is stored
within the database objects.

What Is a Database Management System
(DBMS)?

A database management system (DBMS) is software provided by the database ven-
dor. Software products such as Microsoft Access, Microsoft SQL Server, Oracle
Database, Sybase, DB2, INGRES, MySQL, and PostgreSQL are all DBMSs or,
more correctly, relational DBMSs (RDBMSs). Relational databases are defi ned and
discussed in the next section of this chapter.

CHAPTER 1 Relational Database Concepts 3

The DBMS provides all the basic services required to organize and maintain the
database, including the following:

• Moving data to and from the physical data fi les as needed.

• Managing concurrent data access by multiple users, including provisions to
prevent simultaneous updates from confl icting with one another.

• Managing transactions so that each transaction’s database changes are an
all-or-nothing unit of work. In other words, if the transaction succeeds, all
database changes made by it are recorded in the database; if the transaction
fails, none of the changes it made are recorded in the database. Note that
some relational DBMSs lack support for transactions.

• Support for a query language, which is the system of commands that
a database user employs to retrieve data from the database. SQL is the
primary query language used with relational DBMSs and the primary topic
of this book.

• Provisions for backing up the database and recovering the database from
failures.

• Security mechanisms to prevent unauthorized data access and modifi cation.

What Is a Relational Database?
A relational database is a database based on the relational model, which was
developed by Dr. E. F. Codd. The relational model presents data in familiar two-
dimensional tables, much like a spreadsheet does. Unlike a spreadsheet, the data is
not necessarily stored in tabular form, and the model also permits combining (joining,
in relational terminology) tables to form views, which are also presented as two-
dimensional tables. It is the ability to use tables independently or in combination
with others without any predefi ned hierarchy or sequence in which the data must be
accessed that makes relational databases highly fl exible.

Relational Database Components
Let’s have a look at the basic components of relational databases. It is these compo-
nents that you use to construct the database objects in our databases. The SQL statements
used to create these components in the database are presented in Chapter 3.

 4 SQL Demystifi ed

Tables
The primary unit of data storage in a relational database is the table, which is a two-
dimensional structure composed of rows and columns. Each table represents an
entity, which is a person, place, thing, or event that is to be represented in the data-
base, such as a customer, a bank account, or a banking transaction. Each row
represents one occurrence of the entity. Figure 1-1 shows the listing of part of a
table named MOVIE.

The MOVIE table is part of a video store sample database that is used throughout
this book. The remainder of the sample database is presented in the “Overview of
the Video Store Sample Database” section near the end of this chapter. The MOVIE
table contains data that describes the movies available in the video store. Each row
in the table represents one movie, and each column represents a unit fact that de-
scribes the movie, such as the movie title or MPAA rating code.

Figure 1-1 MOVIE table listing

MOVIE_ID

1 Drama R Mystic River 58.97 19.96 2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003
2002

2002

2004

2004

2004

1981

2003

2004

19.9615.95

14.95

14.95

50.99

12.98
49.99
6.93

9.95

6.93

24.99

9.99
11.69

14.94

24.99

29.99

29.99

29.99

29.99

29.99

29.99

28.95

29.98

19.94

19.94

29.98

39.99
14.98

14.99

14.97

19.94

19.97

19.99

12.98

17.99

11.95

24.99

24.99

The Last Samurai

The Italian Job

Kill Bill: Vol. 1

Big Fish

Man on Fire

Lost in Translation
Two Weeks Notice

50 First Dates

Matchstick Men

Cold Mountain

Road to Perdition
The School of Rock

13 Going on 30

Monster

The Day After
Tomorrow

Das Boot

Master and
Commander: The Far
Side of the World

Pirates of the
Caribbean: The Curse
of the Black Pearl

Something's Gotta
Give

R

R

R

R

R

R

R

R

PG-13

PG-13

PG-13

PG-13

PG-13

PG-13

PG-13

PG-13

PG-13

PG-13

PG-13

ActAd

ActAd

ActAd

ActAd

ActAd

ActAd

ActAd

Forgn

Drama

Drama

Drama

Drama

Drama

Rmce

Rmce

Comdy

Comdy

Comdy

Comdy

2

3

4

5

6

7

8

9
10
11

12

13

14

15
16

17

18

19

20

MOVIE_TITLE RETAIL_PRICE
_VHS

RETAIL_PRICE_DVD YEAR_
PRODUCED

MOVIE_
GENRE_

CODE

MPAA_
RATING_

CODE

CHAPTER 1 Relational Database Concepts 5

You have likely noticed the striking similarity between relational database tables
and spreadsheets. However, as you will see in the remainder of this chapter, relational
databases offer many more features and much greater fl exibility in organizing and
displaying information.

Relationships
Relationships are the associations among relational database tables. While each
relational table can stand alone, databases are all about storing related data. For
example, you can store information about categories used by the video store to
organize the inventory of movies in addition to the movies themselves. At the same
time, you can store information about the copies of each video you have in the
video store, including the date the copy was acquired and the format of the copy
(DVD or VHS). By using relationships, you can tie the related tables together in a
formal way that is easy to use when you want to combine data from multiple tables
in the same database query but with the fl exibility to include only the information
of interest. This ability to pick and choose the information you want from the data-
base allows you to tailor the information in the database to the specifi c needs of
each individual or application that accesses the database.

Figure 1-2 shows four tables from the video store database and the relationships
among them in a format known as an Entity Relationship Diagram (ERD). ERDs
provide an easy medium for showing the overall design of a relational database and
are easily understood by both technical and nontechnical database users. Each rect-
angle in the diagram represents a relational table, with the name of the table

Figure 1-2 Video store database ERD, partial view

MPAA_RATING

MPAA RATING CODE
MPAA_RATING_DESCRIPTION

<pk>

MOVIE_COPY

MOVIE ID
COPY NUMBER
DATE_ACQUIRED
DATE_SOLD
MEDIA_FORMAT

<pk,fk>
<pk>

MOVIE_GENRE

MOVIE GENRE CODE
MOVIE_GENRE_DESCRIPTION

<pk>

MOVIE

MOVIE ID
MOVIE_GENRE_CODE
MPAA_RATING_CODE
MOVIE_TITLE
RETAIL_PRICE_VHS
RETAIL_PRICE_DVD
YEAR_PRODUCED

<pk>
<fk1>
<fk2>

 6 SQL Demystifi ed

appearing above the horizontal line and the columns in the table listed vertically in
the main part of the rectangle. You may wish to compare the MOVIE table as shown
in Figure 1-2 with the listing of the same table shown in Figure 1-1 to help you
visualize the contents of the table.

Each relationship is shown on the ERD as a line connecting two tables. Each end
of a relationship line shows maximum cardinality of the relationship, which is the
maximum number of rows in one table that can be associated with a given row in
the table at the opposite end of the relationship line. The maximum cardinality may
be one (where the line has no special symbol on its end) or many (where the line has
a symbol called a crow’s foot on the end, which looks like the line end splitting into
three lines). Just short of the end of the line is another symbol that shows the mini-
mum cardinality, which is the minimum number of rows of one table that can be
associated with the table on the opposite side of the line. The minimum cardinality
may be zero, denoted with a circle drawn on the line, or one, denoted with a short
vertical line or tick mark drawn across the relationship line. For example, the rela-
tionship between the MPAA_RATING and MOVIE tables in Figure 1-2 is a
one-to-many relationship, which means that each row in the MPAA_RATING table
(the table on the “one” side, which is also called the parent table) can be associated
with many rows in the MOVIE table (the table on the “many” side, which is also
called the child table), but each row in the MOVIE table can be associated with only
one row in the MPAA_RATING table. This should make sense because each movie
released in the U.S. has only one rating, and each rating can be assigned to many
different movies. I recognize that sometimes movies are “recut” to achieve a differ-
ent rating, but this is easily handled by treating different versions as different
movies, much as we do when a movie is remade using a different cast and crew. It
is essential to consider such things because relational databases only support one-
to-many relationships.

The minimum cardinality indicates whether participation in a relationship is
mandatory or optional. All of the relationships in Figure 1-2 are mandatory on the
“one” side and optional on the “many” side, which is the most common form of
relationship. Looking back at the relationship between the MPAA_RATING and
MOVIE tables, this means that each row in the MOVIE table must have a matching
row in the MPAA_RATING table at all times, but that a given row in the MPAA_
RATING table does not necessarily have to have a matching row in the MOVIE
table at all times. If you wanted to allow movies to be in the video store inventory
that did not have an MPAA rating assigned, the tick mark near the MPAA_RATING
table end of the relationship line would show as a circle. While optional relation-
ships on the “one” side of a relationship are relatively common, it is most unusual
to have a mandatory relationship on the many side, which essentially means that the
parent table must have at least one child in the database at all times. Consider the

CHAPTER 1 Relational Database Concepts 7

consequences of making the MOVIE table a mandatory child of the MPAA_RATING
table. If the Motion Picture Association of America (MPAA) created a new rating
code, you would not be able to add it to the MPAA_RATING table until you had a
movie to add to the MOVIE table. Likewise, you would not be able to delete the last
row in the MOVIE table that matched any particular rating code without deleting
the corresponding MPAA_RATING table row. These awkward restrictions are like-
ly the reason that relational databases do not provide direct support for mandatory
children in one-to-many relationships.

Relationships are implemented using matching columns in the two participating
tables. On the ERD, the underlined column(s) in each table with the notation “<pk>”
to their right form the primary key, which is a column or a set of columns that
uniquely identifi es each row in a table. Each table may have only one primary key.
However, a primary key may be composed of multiple columns if that is what it
takes to form a unique key. Primary keys are very important because they are the
foundation for relationships. Whenever a primary key is used in another table to
establish a relationship, it is called a foreign key. In Figure 1-2, note the foreign key
columns in the MOVIE table that establish relationships with the MOVIE_GENRE
and MPAA_RATING tables, which are noted with “<fk1>” and “<fk2>” to the
right of the foreign key column names. The LANGUAGE_CODE column is also
noted as a foreign key (“<fk3>”) but the LANGUAGE table and its relationship
with the MOVIE table have been omitted from Figure 1-2. Also notice that the pri-
mary key of the MOVIE table appears in the child table MOVIE_COPY as a foreign
key to establish the relationship between those two tables.

Primary keys and foreign keys are the fundamental building blocks of the rela-
tional model because they establish relationships and provide the ability to link data
from multiple tables when required. You must understand this concept in order to
understand how relational databases work.

Constraints
A constraint is a rule placed on a database object (typically a table or column) that
restricts the allowable data values for that database object in some way. Once in
place, constraints are automatically enforced by the DBMS and cannot be circum-
vented unless an authorized person disables or deletes (drops) the constraint. Each
constraint is assigned a unique name to permit it to be referenced in error messages
and subsequent database commands. It is a good habit for database designers to
supply the constraint names because names generated automatically by the data-
base are not very descriptive. However, I did not supply constraint names in the
sample database included in this book because, unfortunately, not all RDBMS
products available today support named constraints.

 8 SQL Demystifi ed

There are several types of database constraints:

• NOT NULL constraint May be placed on a database column to prevent
the use of null values. A null value is a special way in which the RDBMS
handles a column value to indicate that the value for that column in that
row is unknown. A null is not the same as a blank, an empty string, or
a zero—it is indeed a special value that is not equal to anything else. Null
values are discussed in more detail in Chapter 3.

• Primary key constraint Defi ned on the primary key column(s) of a table
to guarantee that the primary key values are always unique within the table.
When defi ned on multiple columns of a table, it is the combination of all
column values that must be unique within the table—a column that is
only part of a primary key may have duplicate values in the table. Primary
key constraints are nearly always implemented by the RDBMS using an
index, which is a special type of database object that permits fast searches
of column values. As new rows are inserted into the table, the RDBMS
automatically searches the index to make sure the value for the primary key
of the new row is not already in use in the table, rejecting the insert request
if it is. Indexes can be searched much faster than tables; therefore, the index
on the primary key is essential in tables of any size so that the search for
duplicate keys on every insert doesn’t create a performance bottleneck. An
additional characteristic of primary key constraints is that they can only be
defi ned on columns that also have a NOT NULL constraint defi ned.

• Unique constraint Defi ned on a column or set of columns in a table that
must contain unique values within the table. As with a primary key constraint,
the RDBMS almost always uses an index as a vehicle to effi ciently enforce
the constraint. However, unlike primary key constraints, a table may have
multiple unique constraints defi ned on it, and columns that participate in
a unique constraint may (in most RDBMSs) contain null values.

• Referential constraint (sometimes called a referential integrity
constraint) A constraint that enforces a relationship between two tables in
a relational database. By “enforces” I mean that the RDBMS automatically
checks to ensure that each foreign key value always has a corresponding
primary key value in the parent table. In the MOVIE table (see Figure 1-1),
the RDBMS would prevent me from inserting a movie with an MPAA_
RATING_CODE of “M” because “M” is no longer a valid MPAA_RATING_
CODE and therefore does not appear as a primary key value in the MPAA_
RATING table. Conversely, the RDBMS would prevent me from deleting
the row in the MPAA_RATING table with the primary key value of “PG-13”
because that primary key value is in use as a foreign key value in at least one

CHAPTER 1 Relational Database Concepts 9

row in the MOVIE table. In short, the referential constraint guarantees that
the relationship between the two tables and its corresponding primary key
and foreign key values make logical sense at all times.

• CHECK constraint Uses a simple logic statement (written in SQL) to
validate a column value. The outcome of the statement must be a logical
true or false, with an outcome of “true” allowing the column value to be
placed in the table, and an outcome of “false” causing the column value to
be rejected with an appropriate error message.

Views
A view is a stored database query that provides a database user with a customized
subset of the data from one or more tables in the database. Said another way, a view
is a virtual table because it looks like a table and for the most part behaves like a
table, yet it stores no data (only the defi ning query, written in SQL, is stored).

Views serve a number of useful functions:

• Hiding columns that the user does not need to see (or should not be allowed
to see)

• Hiding rows from tables that a user does not need to see (or should not be
allowed to see)

• Hiding complex database operations such as table joins (that is, combining
columns from multiple tables in a single database query)

• Improving query performance (in some RDBMSs, such as Microsoft SQL
Server)

How Relational Databases Are Designed
This section presents a very brief overview of the database design process. When
you fi rst looked at Figure 1-2 earlier in this chapter, you may have wondered why
the columns were placed in multiple tables or why a particular column was placed
in one table versus another. This section is intended to help answer those questions
and to get you started should you decide to design your own database tables as you
practice the SQL you will be learning. However, there is a lot more to database
design, literally enough to fi ll an entire book. If you fi nd the topic interesting and
want to learn more, you’ll fi nd many web pages on the Internet as well as other
books devoted to the topic, including my fi rst book, Databases Demystifi ed.

 10 SQL Demystifi ed

In 1972, Dr. E. F. Codd, the father of the relational database, realized that relational
tables that meet certain criteria present fewer problems when data is inserted, updated,
or deleted. He developed a set of rules to be followed (organized into three “normal
forms”) and a process called normalization, which is a technique for producing a set
of relations (Dr. Codd’s term for tables) that possess the desired set of properties.

The Need for Normalization
Figure 1-3 shows the MOVIE table in unnormalized form, much the way it would
look if everything known about a movie were collected and put into a single table.
This example will be used to demonstrate the normalization process. Incidentally,
column names in relational tables generally use underscores to separate words.
I have removed them in the fi gures throughout the discussion of normalization in
order to make them more readable.

There are three problems that occur in unnormalized tables in relational data-
bases, and all three of them exist in the table shown in Figure 1-3. The purpose of
normalization is to remove these problems (anomalies) from the database design.

Figure 1-3 MOVIE table in unnormalized form

MOVIE
ID

1 Drama Drama R Mystic River 2003 1/1/2005 DVD 19.96

19.96

15.95

29.99

29.99

19.99

DVD

DVD

DVD

DVD

VHS

1/10/2005

1/10/2005

1/10/2005 1/30/2005

2/15/2005

2/15/2005

2003

2003

2003

2003

2003

The Last
Samurai

The Last
Samurai

Somethingís
Gotta Give

Something’s
Gotta Give

The Italian
Job

Under 17
requires
accompanying
parent or adult
guardian

Under 17
requires
accompanying
parent or adult
guardian

Under 17
requires
accompanying
parent or adult
guardian

Parents
strongly
cautioned

Parents
strongly
cautioned

Parents
strongly
cautioned

R

R

PG-13

PG-13

PG-13

en, fr

en, fr,
es

en, fr,
es

en, fr

en

en

Action and
Adventure

Action and
Adventure

Action and
Adventure

ActAd

ActAd

ActAd

Comdy Comedy

ComedyComdy

2

2

3

3

4

GENRE
CODE

GENRE
DESC.

LANG.
CODE

MPAA
RATING

CODE

MPAA
RATING
DESC.

MOVIE
TITLE

YEAR
PRODUCED

DATE
ACQUIRED

DATE
SOLD

MEDIA
FORMAT

RETAIL
PRICE

CHAPTER 1 Relational Database Concepts 11

Insert Anomaly
The insert anomaly refers to a situation wherein you cannot insert data into the data-
base because of an artifi cial dependency among columns in a table. Suppose the
video store wants to add a new movie genre (GENRE_CODE and GENRE_
DESCRIPTION columns) to be used to categorize their movies. The design shown
in Figure 1-3 will not permit that unless you have a movie to be placed in that cate-
gory, which you would have to add to the MOVIE table at the same time. The
MPAA_RATING_CODE and DESCRIPTION columns suffer from the same restric-
tion. It would be much better if new genres and ratings could be created before movies
arrived in the store.

Delete Anomaly
The delete anomaly is just the opposite of the insert anomaly. It refers to a situation
wherein the deletion of data causes unintended loss of other data. For example, if
the fi rst movie in Figure 1-3 (Mystic River) is the only row in the MOVIE table that
has a GENRE_CODE of “Drama” and it is deleted, the very fact that you ever had
a genre called “Drama” is lost. The same is true if you delete the last movie in the
MOVIE table that contains a particular MPAA_RATING_CODE.

Update Anomaly
An update anomaly refers to a situation wherein an update of a single data value
requires multiple rows to be updated. In the MOVIE table design shown in Figure 1-3,
if the description for the MPAA_RATING_CODE of “R” is to be changed, you must
change it for every movie in the table that has that rating code. Similar problems
exist for the GENRE_DESCRIPTION. Even the RETAIL_PRICE has this problem
because all copies of the same movie (same MOVIE_ID) and media format (DVD
or VHS) should have the same price. An additional hazard related to this anomaly is
that storing redundant data makes it possible to update one copy of the data item, but
not all of them, which then leads to inconsistent data in the database.

Applying the Normalization Process
Usually, normalization starts with any rendering of data that is (or will be) pre-
sented to a user, such as web pages, application screens, reports, and so forth.
Collectively, these are called user views. It may seem odd at fi rst, but it is common
practice in the design of computer systems to start with the output that the user will
see and work backward from there to fi gure how to produce the desired output.

 12 SQL Demystifi ed

During database design, the normalization process is applied to each user view, with
the outcome being a set of normalized relations that can be directly implemented as
relational database tables. The process itself is relatively straightforward, and the
rules are not very diffi cult. However, normalization takes time and repetition to
master, particularly because it challenges the designers into thinking conceptually
about the data and relationships they intend to use. As you normalize, consider each
user view as a relation. In other words, conceptualize each view as if it is already
implemented as a two-dimensional table, and it takes practice to do so.

It also takes time to become comfortable with the terminology used in the normal-
ization process. During normalization, most designers avoid the use of physical
terms such as table, column, and primary key. While the relation being normalized
is a proposed table, it does not yet physically exist as a table, so the physical terms
are not quite accurate. We use the term relation instead of table, attribute instead of
column, and unique identifi er instead of primary key. For newcomers to normaliza-
tion, it’s only natural to use the more familiar physical terms, but do be aware of the
preferred terminology if you seek out additional information or examples from other
sources. While object names in most DBMSs are not case sensitive, I have shown all
table and column names in uppercase for consistency. However, I have shown rela-
tion and attribute names in mixed case because that is the custom in the industry.

The normalization process is applied systematically to each user view. At least in
the beginning, it is easiest to represent each user view as a two-dimensional table
with representative data, as I have done in Figure 1-3. As you work through the nor-
malization process, you will be rewriting existing relations and creating new ones.
Rewriting user views into relations (tables) with representative data is a tedious and
time-consuming process. Care must be taken that any sample data used to make
decisions during normalization is truly representative of the kinds of data values that
will appear in real data. As you might expect, poorly constructed sample data often
yields a poorly designed database. The good news is that, with practice, you will be
able to visualize the sample data and avoid the tedium of recording all of it.

Keep in mind that normalization is intended to remove insert, update, and delete
anomalies. The process causes more relations to be created than you would have in an
unnormalized design. The additional relations are necessary to remove the anomalies,
but spreading the data out into more relations naturally makes retrieval of the stored
data a bit more diffi cult. In effect, you are sacrifi cing some retrieval performance and
ease-of-use in order to make inserts, updates, and deletes go more smoothly.

Choosing a Unique Identifi er
The fi rst step in normalization is to choose a unique identifi er, which is an attribute
(column) or set of attributes that uniquely identifi es each row of data in the relation.

CHAPTER 1 Relational Database Concepts 13

The unique identifi er will eventually become the primary key of the table created
from the normalized relation. Normalization absolutely requires that a unique iden-
tifi er be found for each relation. In many cases, a single attribute can be found that
uniquely identifi es the data in each row of the relation to be normalized. When no
single attribute can be found to use for a unique identifi er, you may be able to fi nd
several attributes that can be concatenated (put together) in order to form the unique
identifi er. When unique identifi ers are formed from multiple attributes, each attribute
still remains in its own column—you simply defi ne the unique identifi er as consist-
ing of more than one column. In a few cases, there is no reasonable set of attributes
in a relation that can be used as a unique identifi er. When this occurs, you must
invent a unique identifi er, often with data values assigned sequentially or randomly
as rows of data are added to the database table. This technique is the source of such
unique identifi ers as social security numbers, employee IDs, and vehicle identifi ca-
tion numbers.

The Movie relation in Figure 1-3 presents us with a bit of a poser in fi nding a
unique identifi er. At fi rst, it would seem that Movie ID would work just fi ne. How-
ever, notice that Movie ID values “2” and “3” appear twice each, so clearly it’s not
unique. The problem is that the Movie ID uniquely identifi es each movie title, but
the video store is keeping track of each copy of the movie they have in stock. This
is because they rent movies and they want to be sure the renter returns the exact
copy that they borrowed. After inspection of the sample data and some discussion
with the store’s manager, you conclude that there is no combination of attributes in
the Movie relation that will uniquely identify each movie copy, so you invent an
attribute called Copy Number that you can add to the relation. Whenever a unique
identifi er (or part of one) is invented, it is very important that everyone understands
the values the unique identifi er will assume. In this case, the store manager decided
she wanted the Copy Number to start over for each Movie ID, which means the
Copy Number is only unique when concatenated with Movie ID. The resulting
relation is shown in Figure 1-4.

First Normal Form: Eliminating Repeating Data
A relation is in fi rst normal form when it contains no multivalued attributes, which
are attributes that have multiple values in the same row of data. Every intersection
of a row and a column in a relation must contain at most one data value in order for
the relation to be in fi rst normal form. In Figure 1-4, the language (Lang. Code)
attribute contains multiple values for at least some movies, so you must consider it
a multivalued attribute. Attributes in this form are more diffi cult to maintain be-
cause the list of values must be picked apart so that individual values within the list
may be changed while leaving other values in the list intact.

 14 SQL Demystifi ed

Sometimes a multivalued attribute is disguised as multiple attributes. For exam-
ple, Figure 1-4 could be changed to have separate attributes (columns) for up to three
languages per movie, called Language 1, Language 2, and Language 3. However,
they would still be considered multivalued attributes but in a special form called a
repeating group, which is also forbidden in fi rst normal form. A repeating group is
logically no different than one multivalued attribute. In fact, repeating groups often
present more maintenance problems than multivalued attributes because a column
must be added whenever you want to add more values than the original designer
anticipated (such as a fourth language for a movie). Relational databases expect all
rows in a table to have the same number of columns, but you can have as many rows
as you wish in a table. Therefore, the trick is to take repeating columns and repeating
values within columns and turn them into repeating rows in another table, and this is
exactly what the fi rst normal form process instructs you to do.

To transform unnormalized relations into fi rst normal form, you must move mul-
tivalued attributes and repeating groups to new relations. Because a repeating group
is a set of attributes that repeat together, all attributes in a repeating group should
be moved to the same new relation. However, a multivalued attribute (individual
attributes that have multiple values) should be moved into its own new relation
rather than combined with other multivalued attributes in the new relation.

Figure 1-4 Movie relation with Copy Number added

Movie:

MOVIE
ID

1 1 Drama Drama en, fr R Mystic River 2003 1/1/2005 DVD 19.96

19.96

15.95

29.99

29.99

19.99

DVD

DVD

DVD

DVD

VHS

1/10/2005

1/10/2005

1/10/2005 1/30/2005

2/15/2005

2/15/2005

2003

2003

2003

2003

2003

The Last
Samurai

The Last
Samurai

Something’s
Gotta Give

Something’s
Gotta Give

The Italian
Job

Under 17
requires
accompanying
parent or adult
guardian

Under 17
requires
accompanying
parent or adult
guardian

Under 17
requires
accompanying
parent or adult
guardian

Parents
strongly
cautioned
Parents
strongly
cautioned
Parents
strongly
cautioned

R

R

PG-13

PG-13

PG-13

en, fr,
es

en, fr,
es

en, fr

en

en

Action and
Adventure

Action and
Adventure

Action and
Adventure

ActAd

ActAd

ActAd

Comdy Comedy

ComedyComdy

1

2

1

2

1

2

2

3

3

4

COPY
NUMBER

GENRE
CODE

GENRE
DESC.

LANG.
CODE

MPAA
RATING

CODE

MPAA
RATING
DESC.

MOVIE
TITLE

YEAR
PRODUCED

DATE
ACQUIRED

DATE
SOLD

MEDIA
FORMAT

RETAIL
PRICE

CHAPTER 1 Relational Database Concepts 15

The procedure for moving a multivalued attribute or repeating group to a new rela-
tion is as follows:

 1. Create a new relation with a meaningful name. Often it makes sense to
include all or part of the original relation’s name in the new relation’s name.

 2. Copy the unique identifi er from the original relation to the new one. The
data depended on this identifi er in the original relation, so it must depend
on the same key in the new relation. This copied identifi er will become
a foreign key in the new relation.

 3. Move the repeating group or multivalued attribute to the new relation.
(The word move is used because these attributes are removed from the
original relation.)

 4. Form a unique identifi er in the new relation by adding attributes to the
unique identifi er that was copied from the original relation. As always,
be certain that the newly formed unique identifi er has only the minimum
attributes needed to make it unique. If you move a multivalued attribute,
which is basically a repeating group of only one attribute, it is that attribute
that is added in forming the unique identifi er. This will seem odd at fi rst, but
the unique identifi er copied from the original relation is not only a foreign
key to the original relation, but also usually part of the unique identifi er
(primary key) in the new relation. This is quite normal. Also, it is perfectly
acceptable to have a relation where all the attributes are part of the unique
identifi er (that is, there are no “non-key” attributes).

 5. Optionally, you may choose to replace the primary key with a single
surrogate key attribute. If you do so, you must keep the attributes that
make up the natural primary key formed in steps 2 and 4.

Figure 1-5 shows the result of converting the relation shown in Figure 1-4 to fi rst
normal form. Note the following:

• I took a bit of shortcut with the unique identifi er in the new Movie Language
relation. The languages in which a movie is available apply to the movie in
general, not to individual copies. Notice that the list of languages does not
vary in the duplicate rows for the same movie in Figure 1-4. Therefore, the
Copy Number part of the unique identifi er in the Movie relation was not
copied to the new Movie Language relation. Had I done so, it would end up
presenting a second normal form problem in the new relation that I would
only have to fi x in the next normalization step. You’ll fi nd that experienced
database designers often synthesize the three normal forms simultaneously
and simply rewrite original relations in third normal form. With practice,
you’ll be able to do the same.

 16 SQL Demystifi ed

• The Movie ID was copied from Movie (the original relation) to Movie
Language (the new relation).

• The Lang. Code multivalued attribute was moved from the Movie relation to
the Movie Language relation as the Language Code attribute. (The abbreviated
attribute names in Figure 1-4 were for the purposes of illustration—it is
always best to abbreviate only when absolutely necessary.)

• The unique identifi er of the Movie Language relation is the combination of
Movie ID and Language Code, which amounts to all of the attributes in the
relation.

• Neither Movie nor Movie Language in Figure 1-5 has repeating groups or
multivalued attributes, so both relations are in fi rst normal form.

Figure 1-5 First normal form solution

Movie Language:

MOVIE
ID

LANGUAGE
CODE

en

en

en
en

fr

fr

fr

es

Movie:

MOVIE
ID

COPY
NUMBER

GENRE
CODE

GENRE
DESC.

MPAA
RATING

CODE

MPAA
RATING

DESC.

MOVIE
TITLE

YEAR
PRODUCED

DATE
ACQUIRED

DATE
SOLD

MEDIA
FORMAT

RETAIL
PRICE

1 1 Drama Drama R

Under 17
requires
accompanying
parent or adult
guardian

Under 17
requires
accompanying
parent or adult
guardian

Under 17
requires
accompanying
parent or adult
guardian

Mystic River 2003 1/1/2005 DVD

DVD

DVD

DVD

DVD

19.96

19.96

15.95

2

22

2

1

1

ActAd

ActAd

ActAd

Action and
Adventure

Action and
Adventure

Action and
Adventure

R

R

The Last
Samurai

The Last
Samurai

2003

2003

2003

2003

2003

1/10/2005

VHS

29.99

29.99

19.99

1/30/2005

2/15/2005

2/15/2005

1/10/2005

1/10/2005

The Italian
Job

Something’s
Gotta Give

Something’s
Gotta Give

Parents
strongly
cautioned

Parents
strongly
cautioned

Parents
strongly
cautionedPG-13

PG-13

PG-13

ComedyComdy

ComedyComdy

3

3

4 1

1
1
2
2
2
3
4
4

CHAPTER 1 Relational Database Concepts 17

Second Normal Form: Eliminating Partial Dependencies
Before you explore second normal form, you must understand the concept of func-
tional dependence. For this defi nition, I’ll use two arbitrary attributes, cleverly named
“A” and “B.” Attribute B is functionally dependent on attribute A if at any moment
in time there is no more than one value of attribute B associated with a given value
of attribute A. Lest you wonder what planet the author lived on before this one, let’s
try to make the defi nition more understandable. First, saying that attribute B is func-
tionally dependent on attribute A also means that attribute A determines attribute B,
or that A is a determinant (unique identifi er) of attribute B. Second, let’s have an-
other look at relations in Figure 1-5.

In the Movie relation, you can easily see that Movie Title is functionally depen-
dent on Movie ID because at any point in time, there can be only one value of
Movie Title for a given value of Movie ID. The very fact that the Movie ID uniquely
defi nes the Movie Title in the relation means that, in return, the Movie Title is func-
tionally dependent on the Movie ID.

A relation is said to be in second normal form if it meets the following criteria:

• The relation is in fi rst normal form.

• All non-key attributes are functionally dependent on the entire unique
identifi er (primary key).

In applying the criteria to the Movie relation as shown in Figure 1-5, it should be
clear that there are some problems. The entire unique identifi er is the combination
of Movie ID and Copy Number. However, only the Date Acquired, Date Sold, Me-
dia Format, and Retail Price attributes depend on the entire identifi er. This does
make logical sense. It doesn’t matter how many copies of a particular movie you
have—they all have the same genre, MPAA rating, title, and production year. How
did this happen? It should be clear that some of the attributes describe the movie
itself, while others describe copies of the movie that the video store has (or used to
have) available. Essentially, I’ve mixed attributes that describe two different (al-
though related) real-world things (entities) in the same relation. No wonder it is
such a mess. Second normal form will help us straighten it out.

It should be clear by now that second normal form only applies to relations that
have concatenated unique identifi ers (that is, those made up of multiple attributes).
In a relation with a single attribute as the unique identifi er, it’s impossible for any-
thing to depend on part of the unique identifi er because the unique identifi er, being
made of only one attribute, simply has no parts. It follows, then, that any fi rst normal
form relation that has only a single attribute for its primary key is automatically in
second normal form.

Once you fi nd a second normal form violation, the solution is to move the
attribute(s) that is (are) partially dependent to a new relation where it depends on

 18 SQL Demystifi ed

the entire primary key. Figure 1-6 shows the solution. All the attributes that depend
only on Movie ID are now in a relation (named Movie) with Movie ID as the unique
identifi er. Those that depend on the combination of Movie ID and Copy Number
are in a relation (named Movie Copy) with Movie ID and Copy Number as the
unique identifi ers. The Movie Language relation was already in second normal
form because it has no non-key attributes and thus remains unchanged.

Third Normal Form: Eliminating Transitive Dependencies
To understand third normal form, you must fi rst understand transitive dependency.
An attribute that depends on an attribute that is not the unique identifi er (primary
key) of the relation is said to be transitively dependent. Looking at the Movie rela-
tion in Figure 1-6, notice that Genre Description depends on Genre Code, and
MPAA Rating Description depends on MPAA Rating Code. The danger of leaving
these descriptions in the Movie relation is that you end up making Genre and MPAA
rating artifi cially dependent on Movie, which leads to all three of the data anoma-
lies introduced earlier in this chapter.

A relation is said to be in third normal form if it meets both the following criteria:

• The relation is in second normal form.

• There is no transitive dependence (that is, all the non-key attributes depend
only on the unique identifi er).

To transform a second normal form relation into third normal form, simply move
any transitively dependent attributes to relations where they depend only on the pri-
mary key. Be careful to leave the attribute on which they depend in the original
relation as the foreign key. You will need it to reconstruct the original user view via a
join. Incidentally, any attributes that are easily calculated are removed as third normal
form violations. For example, if on a sales transaction, Quantity Purchased times
Price Each yields Total Paid, it’s easy to see that Total Paid is dependent on Quantity
Purchased and Price Each. Assuming all three of those would be dependent on the
unique identifi er of the relation that contains them, it’s easy to see that Total Paid (the
calculated result) is, in fact, transitively dependent on the other two attributes.

Figure 1-7 contains the solution in third normal form. Note that you have created
new relations for MPAA Rating and Movie Genre, moved the descriptions to the
new relations, and left the code attributes (MPAA Rating Code and Movie Genre
Code) in the Movie relation as foreign keys. Many database designers call relations
like MPAA Rating and Movie Genre “lookup tables” or “code tables” because their
main usage is to look up descriptions for the codes that are stored in the primary key

CHAPTER 1 Relational Database Concepts 19

Figure 1-6 Second normal form solution

Movie Language:

MOVIE
ID

LANGUAGE
CODE

en

en

en
en

fr

fr

fr

es

1
1
2
2
2
3
4
4

MOVIE
ID

1
1

1

1

1

2

2

2
2

3
3
4

Movie:

MOVIE
ID

GENRE
CODE

GENRE
DESCRIPTION

MPAA
RATING

CODE

MPAA
RATING

DESCRIPTION

MOVIE
TITLE

YEAR
PRODUCED

1 DramaDrama

Under 17
requires
accompanying
parent or adult
guardian

Under 17
requires
accompanying
parent or adult
guardian

Mystic River 2003

2 ActAd

ActAd

Action and
Adventure

Action and
Adventure

R

R
The Last
Samurai 2003

2003

2003
The Italian
Job

Something’s
Gotta Give

Parents
strongly
cautioned

Parents
strongly
cautionedPG-13

PG-13

ComedyComdy3

4

COPY
NUMBER

DATE
SOLD

MEDIA
FORMAT

RETAIL
PRICE

1/1/2005 DVD
DVD

DVD

DVD
DVD

19.96
19.96
15.95

1/10/2005
VHS

29.99
29.99
19.99

1/30/2005

2/15/2005
2/15/2005
1/10/2005
1/10/2005

DATE
ACQUIRED

Movie Copy:

 20 SQL Demystifi ed

Figure 1-7 Third normal form relation

MPAA Rating:

MPAA RATING CODE

1

1

1

1

2

2

1

2

2

3

3

4

4

Movie:

MOVIE
ID

MOVIE
ID

MOVIE
GENRE
CODE

MOVIE GENRE DESCRIPTION

MPAA RATING DESCRIPTION

MOVIE GENRE CODE

Movie Genre:

MPAA
RATING

CODE

RETAIL
PRICE

VHS

RETAIL
PRICE
DVD

MOVIE
TITLE

YEAR
PRODUCED

1 Drama

Drama Drama

Under 17 requires accompanying
parent or adult guardian

Mystic River 2003

2

ActAd

ActAd

ActAd Action and Adventure

R

R

R

The Last
Samurai 2003

2003

2003
The Italian
Job

Something’s
Gotta Give

Parents strongly cautioned

PG-13

PG-13

PG-13

Comdy Comedy

Comdy3

DATE
SOLD

MEDIA
FORMAT

1/1/2005 DVD

DVD

DVD

DVD

DVD

19.96

19.96

58.97

1/10/2005

VHS

29.99

15.95

14.95

11.95 19.99

1/30/2005

2/15/2005

2/15/2005

1/10/2005

1/10/2005

DATE
ACQUIRED

Movie Copy:

COPY
NUMBER

CHAPTER 1 Relational Database Concepts 21

column of the relation. However, they serve other important purposes, such as con-
trolling the values of the codes themselves and providing a convenient source for a
list of valid code values that might be used in a pull-down list on a web page form.

One other design change made to achieve third normal form had to do with the
Retail Price in the Movie Copy relation as shown in Figure 1-6. After discussion
with the store manager, it was determined that the price depends on the combina-
tion of Movie ID and Media Format, with all copies having the same Movie ID and
Media Format getting the same price. This is clearly a transitive dependency and
therefore a violation of third normal form. The normal solution for such a problem
would be to create a relation named Movie Price with a unique identifi er of Movie
ID and Media Format, and then to move the Retail Price from Movie Copy to the
new relation. However, during the discussion with the store manager, she indicated
that they were in the process of discontinuing VHS format movies because very few
customers wanted them, and that within a few months, the store would handle only
DVDs. With that news in mind, I decided to move the price to two columns in the
Movie table, one for the DVD price, and the other for the VHS price. While it could
be argued that this is a fi rst normal form violation (and technically speaking, it is),
it seemed the best compromise. Database design isn’t always an exact science,
so there is often a bit of room for adjustments provided the designer always consid-
ers the potential consequences (measured in terms of data anomalies) of each
compromise.

Beyond Third Normal Form
Dr. E. F. Codd participated in the defi nition of a stronger version of third normal
form called Boyce-Codd normal form. Various other authors and researchers have
offered their extensions under the names fourth normal form, fi fth normal form, and
domain-key normal form, among others. In my experience, it takes a bit of practice
with normalization before these extensions make a whole lot of sense. Moreover,
third normal form covers just about every anomaly you will fi nd in everyday data-
base design work.

Overview of the Video Store Sample Database
All of the examples used in this book are based on a database for a fi ctitious video
store. The SQL statements required to create the database objects and populate
them with data can be downloaded as described later in this chapter. Figure 1-8

 22 SQL Demystifi ed

presents the entity relationship diagram (ERD) for the entire video store database.
A brief description of each table appears here so you may familiarize yourself with
the database design, which will help you understand the examples as you start
learning SQL in the next chapter.

The video store for which the sample database was designed is a small family-
owned and operated store that rents and sells videos in both VHS and DVD formats.
However, the VHS format is being discontinued. The store manager expects to
expand into other product lines, such as snack foods, but the plans to do so were not
fi rm enough to be included in the current database design.

Table 1-1 gives some information about each table included in the design.
Table 1-2 gives some information about the columns in the database tables.

Figure 1-8 Video store Entity Relationship Diagram (ERD)

MPAA_RATING

MPAA RATING CODE
MPAA_RATING_DESCRIPTION

<pk>
MOVIE_GENRE

MOVIE GENRE CODE

MOVIE_GENRE_DESCRIPTION

<pk>
<pk>

<fk2>
<fk1>

MOVIE

MOVIE_GENRE_CODE
MPAA_RATING_CODE
MOVIE_TITLE
RETAIL_PRICE_VHS
RETAIL_PRICE_DVD
YEAR_PRODUCED

MOVIE ID

<pk>
<pk,fk>MOVIE ID

MOVIE_COPY

DATE_ACQUIRED
DATE_SOLD
MEDIA_FORMAT

COPY NUMBER

<pk,fk2>
<pk,fk1>

MOVIE ID

MOVIE_LANGUAGE

LANGUAGE CODE

<pk>LANGUAGE CODE
LANGUAGE_NAME

LANGUAGE
<pk,fk2>
<pk,fk1>
<pk,fk1>

MOVIE_RENTAL
MOVIE ID
COPY NUMBER
TRANSACTION ID
DUE_DATE
RENTAL_FEE
LATE_OR_LOSS_FEE
RETURNED_DATE

<pk,fk2>
<pk,fk1>

CUSTOMER_ACCOUNT_PERSON

CUSTOMER ACCOUNT ID
PERSON ID

<pk>PERSON ID
PERSON_GIVEN_NAME
PERSON_MIDDLE_NAME
PERSON_FAMILY_NAME
PERSON_ADDRESS_1
PERSON_ADDRESS_2
PERSON_ADDRESS_CITY
PERSON_ADDRESS_STATE_PROV
PERSON_ADDRESS_POSTAL_CODE
PERSON_ADDRESS_COUNTRY
PERSON_PHONE
BIRTH_DATE
DEATH_DATE

PERSON

<pk>

CUSTOMER_ACCOUNT

CUSTOMER_HOLD_IND

CUSTOMER_DEPOSIT_AMOUNT

CUSTOMER ACCOUNT ID

DATE_TERMINATED
DATE_ENROLLED

CHILD_RENTAL_ALLOWED_INDIC
CREDIT_CARD_ON_FILE_INDIC

<pk>
<fk2>
<fk1>

CUSTOMER_TRANSACTION

TRANSACTION ID
CUSTOMER_ACCOUNT_ID
EMPLOYEE_PERSON_ID
TRANSACTION_DATE
SALES_TAX

<fk2>
<pk,fk1>PERSON ID

EMPLOYEE

EMPLOYEE_HOURLY_RATE
EMPLOYEE_JOB_CATEGORY
EMPLOYEE_TAX_ID

HIRE_DATE
TERMINATION_DATE

SUPERVISOR_PERSON_ID

CHAPTER 1 Relational Database Concepts 23

Table Name Description Primary Key Parent Table(s)

CUSTOMER_
ACCOUNT

Contains one row for each
customer account opened
with the video store.

CUSTOMER_
ACCOUNT_ID

None

CUSTOMER_
ACCOUNT_
PERSON

Intersection table that
shows which people are
associated with each
customer account.

CUSTOMER_
ACCOUNT_ID,
PERSON_ID

CUSTOMER_
ACCOUNT,
PERSON

CUSTOMER_
TRANSACTION

Contains one row for each
transaction initiated by a
customer. Each transaction
may contain one or more
movie rentals.

TRANSACTION_ID CUSTOMER_
ACCOUNT,
EMPLOYEE

EMPLOYEE Contains one row for
each employee of the
video store. This table
is a subclass of Person
(each Employee will have
a matching row with the
same primary key value in
the PERSON table).

PERSON_ID PERSON

LANGUAGE Lookup table of language
codes and names (used to
show language options for
movies).

LANGUAGE_
CODE

None

MOVIE Contains one row for each
movie title. Child table
MOVIE_COPY shows
copies of the movie owned
by the store.

MOVIE_ID MPAA_RATING,
MOVIE_GENRE

MOVIE_COPY Contains one row for each
movie copy available for
sale or rent.

MOVIE_ID,
COPY_NUMBER

MOVIE

MOVIE_GENRE Lookup table of genre
codes and descriptions
(used to categorize
movies).

MOVIE_GENRE_
CODE

None

MOVIE_
LANGUAGE

Intersection table that
shows languages available
for each movie.

MOVIE_ID,
LANGUAGE_
CODE

MOVIE,
LANGUAGE

Table 1-1 Video Store Database Tables

 24 SQL Demystifi ed

Table Name Description Primary Key Parent Table(s)

MOVIE_
RENTAL

Contains one row for
each time the movie was
rented.

MOVIE_ID,
COPY_NUMBER,
TRANSACTION_ID

MOVIE_COPY,
CUSTOMER_
TRANSACTION

MPAA_RATING Lookup table of MPAA
rating codes and
descriptions.

MPAA_RATING_
CODE

None

PERSON Contains one row for
each individual associated
with the video store.
Each person may be a
customer (associated with
a Customer Account) or
employee or both.

PERSON_ID None

Table 1-1 Video Store Database Tables (Continued)

Table Name Column Name Description

CUSTOMER_ACCOUNT CHILD_RENTAL_
ALLOWED_INDIC

Yes/No indicator as to
whether or not persons
under 18 are permitted
to check out movies
using this account

CUSTOMER_ACCOUNT CREDIT_CARD_ON_FILE_
INDIC

Yes/No indicator as to
whether customer left
a credit card imprint
on fi le to guarantee
payment of their
account

CUSTOMER_ACCOUNT CUSTOMER_ACCOUNT_ID Primary key—
sequential number
assigned to each
customer account

CUSTOMER_ACCOUNT CUSTOMER_DEPOSIT_
AMOUNT

For customers who did
not provide a credit
card, the amount of
cash deposit they
provided to the store

Table 1-2 Video Store Database Table Columns

CHAPTER 1 Relational Database Concepts 25

Table Name Column Name Description

CUSTOMER_ACCOUNT CUSTOMER_HOLD_IND Yes/No indicator as
to whether or not
customer account is
on hold; rentals are
not permitted against
accounts on hold

CUSTOMER_ACCOUNT DATE_ENROLLED The date the account
with the store was
opened

CUSTOMER_ACCOUNT DATE_TERMINATED If account was closed,
the date of closure (null
for active accounts)

CUSTOMER_ACCOUNT_
PERSON

CUSTOMER_ACCOUNT_ID Part of primary
key—foreign key
to CUSTOMER_
ACCOUNT table

CUSTOMER_TRANSACTION CUSTOMER_ACCOUNT_ID Foreign key to
CUSTOMER_
ACCOUNT table

CUSTOMER_TRANSACTION EMPLOYEE_PERSON_ID Foreign key
(PERSON_ID) to
EMPLOYEE table

CUSTOMER_TRANSACTION SALES_TAX Sales tax charged for
the transaction

CUSTOMER_TRANSACTION TRANSACTION_DATE Date of the transaction

CUSTOMER_TRANSACTION TRANSACTION_ID Primary key—
sequential number
assigned to each new
transaction

EMPLOYEE EMPLOYEE_HOURLY_RATE Pay rate per hour for
the employee

EMPLOYEE EMPLOYEE_JOB_
CATEGORY

Job category for the
employee (manager or
clerk)

EMPLOYEE EMPLOYEE_TAX_ID ID used for reporting
payroll taxes for the
employee (usually
a Social Security
Number)

Table 1-2 Video Store Database Table Columns (Continued)

 26 SQL Demystifi ed

Table Name Column Name Description

EMPLOYEE HIRE_DATE Date the employee was
hired by the store

EMPLOYEE PERSON_ID Primary key—foreign
key to the PERSON
table

EMPLOYEE SUPERVISOR_PERSON_ID Primary key—foreign
key to the EMPLOYEE
table (to show the
person to whom they
report)

EMPLOYEE TERMINATION_DATE For former employees,
the date their
employment was
terminated

LANGUAGE LANGUAGE_CODE Primary key—ISO
(International
Organization for
Standardization)
standard two-character
code for a language

LANGUAGE LANGUAGE_NAME Name (in English) for
the language

MOVIE MOVIE_GENRE_CODE Foreign key to
MOVIE_GENRE table

MOVIE MOVIE_ID Primary key—values
are assigned
sequentially as new
movies become
available

MOVIE MOVIE_TITLE Offi cial title of the
movie (movie titles are
not necessarily unique)

MOVIE MPAA_RATING_CODE Foreign key to MPAA_
RATING table

MOVIE RETAIL_PRICE_DVD Retail list price for
DVD copies of the
movie

MOVIE RETAIL_PRICE_VHS Retail list price for
VHS copies of the
movie

Table 1-2 Video Store Database Table Columns (Continued)

CHAPTER 1 Relational Database Concepts 27

Table Name Column Name Description

MOVIE YEAR_PRODUCED The year the movie
completed production;
year released by studio

MOVIE_COPY COPY_NUMBER Part of primary key—
sequential number
assigned to each copy
of a movie (number
unique only within a
given movie)

MOVIE_COPY DATE_ACQUIRED Date movie copy was
acquired by the video
store

MOVIE_COPY DATE_SOLD Date movie copy was
sold (null if movie has
not been sold)

MOVIE_COPY MEDIA_FORMAT Recording format of
the movie copy (DVD
or VHS)

MOVIE_COPY MOVIE_ID Part of primary key—
foreign key to MOVIE
table

MOVIE_GENRE MOVIE_GENRE_CODE Primary key—a code
used to place movies
into categories such
as Comedy, Drama,
Action-Adventure, and
so forth

MOVIE_GENRE MOVIE_GENRE_
DESCRIPTION

Text description of a
movie category (see
MOVIE_GENRE_
CODE)

MOVIE_LANGUAGE LANGUAGE_CODE Part of primary
key—foreign key to
LANGUAGE table

MOVIE_LANGUAGE MOVIE_ID Part of primary key—
foreign key to MOVIE
table

MOVIE_RENTAL COPY_NUMBER Part of primary key—
foreign key to MOVIE_
COPY table

Table 1-2 Video Store Database Table Columns (Continued)

 28 SQL Demystifi ed

Table Name Column Name Description

MOVIE_RENTAL DUE_DATE The date a rented
movie is due to be
returned to the store

MOVIE_RENTAL LATE_OR_LOSS_FEE Fee charged (if any)
because the movie copy
was returned late or
was permanently lost

MOVIE_RENTAL MOVIE_ID Part of primary key—
foreign key to MOVIE_
COPY table

MOVIE_RENTAL RENTAL_FEE Fee charged for the
rental (adjusted for any
coupons or discounts)

MOVIE_RENTAL RETURNED_DATE Date movie copy was
returned (null until
movie is checked in as
returned)

MOVIE_RENTAL TRANSACTION_ID Part of primary
key—foreign key
to CUSTOMER_
TRANSACTION table

MPAA_RATING MPAA_RATING_CODE Primary key—movie
rating code supplied
by Motion Picture
Association of America
(MPAA), including G,
PG, PG-13, R, NC-17,
and NR (not rated)

MPAA_RATING MPAA_RATING_
DESCRIPTION

Text description of
rating, as supplied by
the MPAA

PERSON BIRTH_DATE The person’s date of
birth

PERSON DEATH_DATE The person’s date
of death (if person
reported as deceased)

PERSON PERSON_ADDRESS_1 First line of the
person’s street address

Table 1-2 Video Store Database Table Columns (Continued)

CHAPTER 1 Relational Database Concepts 29

Downloading the SQL for the Sample Database
A script fi le containing the SQL standard CREATE statements to create all the
video store sample database tables and indexes used in the examples throughout
this book, along with the INSERT statements to populate the tables with the sample
data that was used in the examples, is available for download from the

Table Name Column Name Description

PERSON PERSON_ADDRESS_2 Optional second line
of the person’s street
address

PERSON PERSON_ADDRESS_CITY The municipality for
the person’s mailing
address

PERSON PERSON_ADDRESS_
COUNTRY

The ISO abbreviation
for the country for
the person’s mailing
address

PERSON PERSON_ADDRESS_
POSTAL_CODE

The postal code (ZIP
code in the U.S.) for
the person’s mailing
address

PERSON PERSON_ADDRESS_STATE_
PROV

The state or province
for the person’s mailing
address

PERSON PERSON_FAMILY_NAME The last name of the
person

PERSON PERSON_GIVEN_NAME The fi rst name of the
person

PERSON PERSON_ID Primary key—
sequential number
assigned to each person
who has an affi liation
with the video store

PERSON PERSON_MIDDLE_NAME The middle name
(or initial) of the person

PERSON PERSON_PHONE The person’s primary
phone number

Table 1-2 Video Store Database Table Columns (Continued)

 30 SQL Demystifi ed

www.osborne.com website. I strongly encourage you to create the sample database
and run the examples as you read this book. Just follow these simple steps:

 1. Use your web browser to go to www.osborne.com.

 2. Click the “free code” link near the upper left-hand corner of the page.

 3. Scroll down until you fi nd the link for “SQL Demystifi ed” and click it.

 4. The download should start automatically—your browser will ask you
where you wish to save the fi le.

In an ideal world, SQL that complies with the ISO/ANSI standard would run on
any database that supports SQL. While that is not quite the case, the good news is
that very few (if any) modifi cations have to be made for the most popular DBMSs
on the market today. For some DBMSs, such as MySQL, no modifi cations are nec-
essary. For Oracle and Microsoft SQL Server, the required modifi cations appear in
the topics that follow. For other DBMSs, consult the vendor’s documentation for
information on supported data types, particularly date and time data types.

Modifi cations Required for Oracle
The Oracle default date format is DD-MON-RR, which is a two-digit day, a three-
letter month, and a two-digit year with the century assumed based on a 50-year
window. For example, January 15, 2005 would display as 15-JAN-05 in the Oracle
default format. The SQL INSERT statements in the appendix and all the examples
in this book use MM/DD/YYYY as the date format, with January 15, 2005 written
as 01/15/2005. There are two ways to overcome this difference:

• Change the date format While possible to do, it is not wise to change
the default date format permanently for the database. However, it is very
simple to change the format for your session just after you connect to the
Oracle database. All you have to do is run this command in your Oracle
SQL client (SQL*Plus or iSQL*Plus) before you run any statements that
include dates:

ALTER SESSION SET NLS_DATE_FORMAT='MM/DD/YYYY';

• Alter all date strings This is a more tedious solution that involves
editing the SQL statements and changing all dates in MM/DD/YYYY
format to DD-MON-RR format.

www.osborne.com
www.osborne.com

CHAPTER 1 Relational Database Concepts 31

Modifi cations Required for Microsoft SQL Server
For Microsoft SQL Server, the following modifi cations are required:

• Change DATE to DATETIME Microsoft SQL Server does not
recognize DATE as a data type. Therefore, all references to DATE in the
CREATE TABLE statements must be changed to DATETIME.

• For iSQL, put statements in batches The iSQL client expects SQL
statements to be run in batches with the keyword go written on a line by itself
at the end of every batch. While most SQL clients run statements as soon as
they encounter the semicolon that marks the end of each statement, iSQL
waits for the keyword go. The number of statements in a batch is purely up
to you, but if you put too many in a batch, problems are more diffi cult to
resolve. Just add the keyword on a line by itself periodically throughout the
SQL statements, and make sure you also have one at the very end.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. SQL is

 a. A language invented by Dr. E. F. Codd

 b. A language used to communicate with relational databases

 c. A language used to defi ne Entity Relationship Diagrams

 d. Used to defi ne and modify database objects

 e. Used to defi ne web pages

 2. A database is

 a. A named data structure such as a table, view, or index

 b. Software provided by the database vendor

 c. A collection of interrelated data items that are managed as a single unit

 d. Defi ned in the same way by all software vendors

 e. Implemented differently by different vendors

 32 SQL Demystifi ed

 3. A database object is

 a. A named data structure such as a table, view, or index

 b. A structure such as a table, view, or index

 c. Software provided by the database vendor

 d. A collection of interrelated data items that are managed as a single unit

 e. A collection of related records that are stored as a single unit

 4. A database management system is

 a. A structure such as a table, view, or index

 b. A collection of interrelated data items that are managed as a single unit

 c. Software provided by the database vendor

 d. Often abbreviated as DBMS

 e. A named data structure such as a table, view, or index

 5. Examples of RDBMSs include

 a. INGRES

 b. MySQL

 c. PostgreSQL

 d. Oracle Database

 e. Microsoft SQL Server

 6. Basic services provided by the DBMS include

 a. Support of a query language

 b. Generation of Entity Relationship Diagrams

 c. Security mechanisms to prevent unauthorized data access and
modifi cation

 d. Moving data to and from the physical fi les as needed

 e. Storage of data in tabular form

 7. Components of a relational database include

 a. Relationships

 b. Tables

 c. User views

 d. ERDs

 e. Constraints

CHAPTER 1 Relational Database Concepts 33

 8. In an ERD, maximum cardinality is shown with

 a. A circle drawn on the relationship line

 b. A vertical line drawn across the relationship line

 c. A “crow’s foot” on an end of the relationship line

 d. No symbol on the end of the relationship line

 e. The notation “<pk>” above the relationship line

 9. Types of database constraints include

 a. NOT NULL

 b. Relationship

 c. Primary key

 d. CHECK

 e. Unique

 10. Functions of views include

 a. Documenting relationships between tables

 b. Improving query performance

 c. Hiding columns users need not see

 d. Hiding rows users need not see

 e. Exposing complex database operations

 11. Normalization is intended to solve the following problems:

 a. Insert anomaly

 b. Slow performance

 c. Creation anomaly

 d. Delete anomaly

 e. Update anomaly

 12. The normalization process

 a. Starts with tables to help designers discover the user views

 b. Was developed by Dr. E. F. Codd

 c. Was developed by Oracle

 d. Is systematically applied to each user view

 e. Is easily mastered

 34 SQL Demystifi ed

 13. A unique identifi er

 a. Must be identifi ed before a view can be normalized

 b. May be composed of only one attribute

 c. May be formed by inventing a new attribute

 d. May be composed of zero, one, or many attributes

 e. May be composed of concatenated attributes

 14. First normal form resolves anomalies caused by

 a. Partial dependency on the primary key

 b. Repeating groups

 c. Transitive dependency

 d. Multivalued attributes

 e. One-to-many relationships

 15. Second normal form resolves anomalies caused by

 a. Partial dependency on the primary key

 b. Repeating groups

 c. Transitive dependency

 d. Multivalued attributes

 e. One-to-many relationships

 16. Third normal form resolves anomalies caused by

 a. Partial dependency on the primary key

 b. Repeating groups

 c. Transitive dependency

 d. Multivalued attributes

 e. One-to-many relationships

 17. To be in third normal form, a relation

 a. Must be in fi rst normal form

 b. Must be in second normal form

 c. Must have a unique identifi er

 d. Must have no transitive dependencies

 e. Must have no repeating groups or multivalued attributes

CHAPTER 1 Relational Database Concepts 35

 18. When transforming an unnormalized relation to fi rst normal form

 a. Attributes depending on only part of the key are removed

 b. Multivalued attributes are moved to a new relation

 c. Attributes that are transitively dependent are removed

 d. Repeating groups are moved to other relations

 e. The unique identifi er of the original relation is copied to the new
relation

 19. Partial dependency issues

 a. Are resolved by second normal form

 b. Are resolved by third normal form

 c. Can only occur in relations with concatenated primary keys

 d. Occur when a non-key attribute depends on part of the primary key

 e. Occur when a non-key attribute depends on another non-key attribute

 20. Transitive dependency issues

 a. Are resolved by second normal form

 b. Are resolved by third normal form

 c. Can only occur in relations with concatenated primary keys

 d. Occur when a non-key attribute depends on part of the primary key

 e. Occur when a non-key attribute depends on another non-key attribute

This page intentionally left blank

37

2

SQL Concepts

This chapter introduces SQL, which will be expanded upon throughout the remain-
der of this book. SQL has become the universal language for relational databases
and nearly every DBMS in modern use supports it. There is little doubt that this
wide acceptance is the result of the time and effort that went into the development
of language features and standards, making SQL highly portable across different
RDBMS products.

Your learning experience with SQL will be greatly enhanced if you actively use
SQL and a relational database to try the examples in this book as you read. More-
over, you’ll learn even more if you experiment with your own variations of the
examples. The video store database used throughout this book can be implemented
on a relational database of your choice. Instructions for downloading the SQL state-
ments that defi ne the tables and load them with sample data appear toward the end
of Chapter 1.

CHAPTER

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 38 SQL Demystifi ed

What Is SQL?
SQL (Structured Query Language) is a standard language used to communicate
with a relational database. The name may be pronounced either as the letters S-Q-L
or as the word “sequel.” A query is simply a request that is sent to the database for
which the database sends some form of response back to the sender. SQL is the
most common language used to form database queries. SQL is considered a non-
procedural or declarative language, which means that you tell the computer the
results you want without telling it how to achieve them. For example, if you want
the average of a column of numbers, you simply use the AVG function to ask for it.
There is no need to count how many numbers are in the column and to divide by
that count—the SQL language processor in the DBMS handles all of that for you.
SQL functions are presented in detail in Chapter 4.

It is important to understand that SQL is not a procedural language like C, Pascal,
Basic, FORTRAN, COBOL, or Ada. A procedural language uses a series of state-
ments that are executed in sequence. Procedural languages also include statements
that can alter the execution sequence by branching to other parts of the procedure or
looping back through some set of statements in the procedure. Many RDBMS ven-
dors have procedural extensions to their basic SQL language, such as Oracle’s
PL/SQL (Procedural Language/SQL) or Microsoft’s Transact-SQL, but keep in
mind that these are extensions to SQL that form new languages—the SQL in them is
still nonprocedural. SQL should also not be confused with object-oriented program-
ming languages such as Java and C++. Simply stated, SQL is a language for
managing and maintaining relational databases, not a language suitable for general
programming of applications, such as order entry and payroll systems.

SQL is often used in conjunction with the procedural and object-oriented lan-
guages mentioned earlier to handle storing and retrieving data, with statements in
the more general programming language used for other programming tasks, such as
presenting data on a web page and responding to user input from the keyboard and
mouse. When an interaction with the database is required, procedural language
statements form the SQL statement, send it to the RDBMS for processing, and re-
ceive the results from the RDBMS and process them appropriately.

Connecting to the Database
When using SQL on a personal computer with a personal copy of a DBMS such as
Microsoft Access or Oracle Personal Edition, all of the database components are
running on one computer system. However, this arrangement isn’t adequate for

CHAPTER 2 SQL Concepts 39

databases that need to be shared by multiple users. Therefore, it is much more com-
mon for the database to be deployed in a client/server arrangement as shown in
Figure 2-1.

In a client/server arrangement:

• The DBMS software runs on a server, which is a shared computer system.
For the purposes of this defi nition, a mainframe computer system can be
considered a large server.

• The fi les that physically comprise the database are stored on disks that are
connected to the database server.

• Users accessing the database use workstations called clients to access the
database. The client must have a network connection to the database, which
can be a private network deployed in a home or offi ce or a public network
such as the Internet.

• Software provided by the DBMS vendor runs on the client workstation to
provide the user with the ability to enter SQL statements, submit them to
the DBMS for processing, and view the results returned by the DBMS. This
software is generically known as the SQL client.

It should be noted that nothing stops someone from installing the SQL client
software on the same computer system as the DBMS itself. In fact, application

Database Server Running DBMS Software

Database

Client Workstation Running SQL Client Software

Network
Connection

Figure 2-1 SQL client connection to the database

 40 SQL Demystifi ed

developers using DBMSs such as MySQL, Microsoft SQL Server, and Oracle com-
monly do this because it is so convenient to have the entire environment on a single
computer system, such as a laptop. However, the moment shared access by multiple
users is required, it is more convenient and effi cient to have a single copy of the
DBMS on a shared server and to have only the SQL client installed on each user’s
workstation.

SQL clients are categorized by the user interface on the client workstation, with
three basic types: command-line, graphical, and web-based. A command-line inter-
face is based solely on textual input and output, with commands entered from the
keyboard and responses to the commands displayed as text messages. The main
benefi t of command-line interfaces is that they can run on just about any operating
system. As an example of a command-line SQL client, Figure 2-2 shows Oracle
SQL*Plus (one of Oracle’s SQL clients) running in a Microsoft Windows com-
mand window. A graphical user interface (GUI) runs under some sort of windowing
system, such as the X Window System, Mac OS, or Microsoft Windows, and dis-
plays data and command options using graphical features such as icons, buttons,
and dialog boxes. Figure 2-3 shows Oracle SQL*Plus running as a GUI application
on Microsoft Windows. A web-based interface runs on the database server, using a
web browser on the client workstation to interact with the database user. Techni-
cally, a web-based SQL client isn’t a client application at all because there is no

Figure 2-2 Oracle SQL*Plus running in a Microsoft Windows command window.

CHAPTER 2 SQL Concepts 41

DBMS vendor–specifi c software running on the client workstation. However, there
are almost always DBMS vendor–supplied components that are silently download-
ed by the web browser to assist it in the graphical presentation of the web form used
for entering SQL statements and displaying results. Figure 2-4 shows the Oracle
iSQL*Plus client running in the Mozilla Firefox browser.

The following table lists SQL client software from various DBMS vendors.
There isn’t space in this book to cover all the details about every SQL client that
you might use, so please consult your DBMS vendor’s documentation for informa-
tion on installing and using the SQL client(s) available for your DBMS.

Vendor DBMS SQL Client Description

Microsoft Access None Microsoft Access is a personal use
database, so the SQL client is integrated
into the DBMS, all of which runs locally
on the user’s workstation.

Microsoft SQL Server iSQL SQL client that runs as a command-line
application in a Microsoft Windows
command shell.

Microsoft SQL Server Query Analyzer SQL client that runs as a Microsoft
Windows application.

Figure 2-3 Oracle SQL*Plus running as a Microsoft Windows application

 42 SQL Demystifi ed

Vendor DBMS SQL Client Description

MySQL MySQL MySQL SQL client that runs as a command-line
application on a variety of operating
systems, including Microsoft Windows,
Linux, Mac OS X, and various Unix
implementations.

Oracle Oracle iSQL*Plus Web-based SQL client—supported in
versions from Oracle 9i and up.

Oracle Oracle SQL*Plus SQL client that runs either as a Microsoft
Windows application or as a command-
line application on a variety of operating
systems, including Microsoft Windows,
Linux, Mac OS X, various Unix
implementations, and others.

Oracle Oracle SQL Worksheet SQL client written in Java—available
in Oracle 8i and 9i but replaced by
iSQL*Plus in Oracle 10g.

Sybase Sybase iSQL SQL client that runs as a command-line
application in a Microsoft Windows
command shell. The similarity to
Microsoft SQL Server is no accident—the
earliest versions of Microsoft SQL Server
were based on the Sybase DBMS.

A Brief History of SQL
In the later 1970s, a group of IBM researchers developed an experimental rela-
tional database called System/R, based on Dr. E. F. Codd’s work. A language called
SEQUEL (Structured English Query Language) was included in System/R to ma-
nipulate and retrieve data. The acronym “SEQUEL” was later condensed to the
abbreviation “SQL” when it was discovered that the word “SEQUEL” was a trade-
mark held by the Hawker-Siddeley Aircraft Company of the U.K.

Although IBM had the fi rst implementation of SQL, two other products, with
various names for their query languages, beat IBM to the marketplace with the fi rst
commercial relational database products: Relational Software’s Oracle and Rela-
tional Technology’s INGRES. IBM released SQL/DS in 1982, with the query
language now named SQL (Structured Query Language). Although structured pro-
gramming was the mantra of the day in the 1980s, the “structured” in the name SQL
has nothing to do with structured programming since SQL isn’t a procedural pro-
gramming language. However, it is entirely possible that the marketing spin on

CHAPTER 2 SQL Concepts 43

structured programming helped bolster the name “SQL” over the names coined by
other vendors of the day for their data query languages.

SQL standards committees were formed by ANSI (American National Standards
Institute) in 1986 and ISO (International Organization for Standardization) in 1987.
Fortunately, the committees from the two organizations worked together to develop
a common, worldwide SQL standard. Two years later, the fi rst standard specifi ca-
tion, known as SQL-89, was published. The standard was expanded three years
later into SQL-92, which weighed in at roughly 600 pages. The third generation
was called SQL-99, or SQL3. Most RDBMS products are built to the SQL-92 (now
called SQL2) standard. SQL3 includes many of the object features required for
SQL to operate on an object-relational database, as well as language extensions to
make SQL computationally complete (adding looping, branching, and case con-
structs). The most recent generation, known as SQL:2003, introduces XML-related
features and other enhancements. Only a few vendors have implemented signifi cant
components of the SQL3 and SQL:2003 standards. While DBMS vendors have
teams of people devoted to standards compliance, most people who write SQL are

Figure 2-4 Oracle iSQL*Plus running in the Mozilla Firefox browser

 44 SQL Demystifi ed

not well versed in them. This is largely because the standards are not freely avail-
able. The SQL:2003 standard may be purchased from ISO (www.iso.org) or ANSI
(webstore.ansi.org). For those on a budget, a late draft is available from Whitemarsh
Information Systems Corporation (www.wiscorp.com/SQLStandards.html).

Standards are important because they promote portability, which is the ease with
which software can be made to run (“ported”) to other platforms. In the case of
SQL, portability across RDBMS products from different vendors was poor until the
vendors started complying with published standards. Nevertheless, nearly every
vendor has added extensions to their “dialect” of SQL, partly because they wanted
to differentiate their products and partly because market demands pressed them into
implementing features before there were standards for them. One case in point is
support for the DATE and TIMESTAMP data types. Dates are highly important in
business data processing, but the developers of the original RDBMS products were
computer scientists and academics, not business computing specialists, so such a
need was unanticipated. As a result, the early SQL dialects did not have any special
support for dates. As commercial products emerged, vendors responded to pressure
from their biggest customers by hurriedly adding support for dates. Unfortunately,
this led to each doing so in their own way. Whenever you migrate SQL statements
from one vendor to another, beware of the SQL dialect differences. SQL is highly
compatible and portable across vendor products, but complete database systems
can seldom be moved without some adjustments.

SQL Syntax Conventions
This section presents the general syntax conventions used in forming SQL state-
ments. However, keep in mind that there are a lot of vendor extensions and
variations. For simplicity, the term implementation is used to refer to each version
of SQL from each vendor (that is, Oracle 9i, Oracle 10g, Microsoft SQL Server 7,
Microsoft SQL Server 2000, and Microsoft SQL Server 2005 all contain different
implementations of SQL).

SQL syntax conventions will be easier to understand using a simple example.
This statement lists the Movie ID and Movie Title for every movie in the video store
that has a rating of PG:

SELECT MOVIE_ID, MOVIE_TITLE
 FROM MOVIE
 WHERE MPAA_RATING_CODE = 'PG';

www.iso.org
www.wiscorp.com/SQLStandards.html

CHAPTER 2 SQL Concepts 45

The basic conventions are

• Each statement begins with a command, usually in the form of a single word,
which is almost always an action verb. In this example, the statement starts
with the SELECT command, which is described in detail in Chapter 4.

• Each statement ends with a delimiter, which is usually a semicolon (;).
Some implementations allow the delimiter to be changed to some other
character. Moreover, some implementations such as Oracle’s will not
execute an SQL statement that is missing the ending delimiter, while other
implementations consider the ending delimiter optional.

• Statements are formed in a similar manner to English sentences, with one
or more spaces used to separate language elements. A language element,
similar to a word in an English sentence, is any keyword (SELECT, FROM,
WHERE), database object name (MOVIE, MOVIE_ID, MOVIE_TITLE),
operator (=), or constant (‘PG’) that may appear in a statement.

• Statements are written in a free-form style, which means there are no strict
rules about the position of language elements on a line or where a statement
may be broken to a new line. However, it is generally not a good idea to
split any single language element across multiple lines. This statement is
logically identical to the one shown at the beginning of this topic, but isn’t
as easy to read and understand:

SELECT MOVIE_ID,MOVIE_NAME FROM MOVIE WHERE
MPAA_RATING_CODE='PG';

• Statements are organized into a series of clauses, and usually clauses must
appear in a particular sequence when they are present (many clauses are
optional). In our example, there are three clauses, each beginning with a
keyword (SELECT, FROM, WHERE).

• SQL language elements may be written in upper- or lowercase or mixed case.
However, in most implementations, and per the ANSI/ISO standards, all
lowercase characters are automatically shifted to uppercase for processing.
This is not to say that data can never be in lowercase but rather that commands
and database object names (tables, columns, etc.) must be in uppercase.
Notable exceptions are Microsoft SQL Server and Sybase, both of which
allow the database to operate in “case-sensitive mode” wherein object names
written in different cases are treated as different names. In MySQL, object
name case sensitivity is tied to whether or not the underlying operating
system has case-sensitive names or not.

 46 SQL Demystifi ed

• Commas are used to separate items in a list. In our example, two column
names were provided in a comma-separated list (MOVIE_ID, MOVIE_
TITLE). Spaces following each comma are completely optional—you can
include no spaces, or as many as you want.

• Character strings that appear in SQL statements must be enclosed in single
quotes (some SQL implementations also allow double quotes). Numeric
constants are never enclosed in quotes. If a quote needs to appear within
the character string, two single quotes next to each other take care of it. For
example, if you wanted to fi nd the movie Sophie’s Choice in the database,
you would write the WHERE clause like this:

WHERE MOVIE_NAME = 'Sophie''s Choice'

• Database object names are formed using only letters, numbers, and
the underscore character. Underscores are typically used as separators
between words to improve readability. As previously mentioned, some
implementations allow case-sensitive names such as PersonMiddleName,
a style often called “camelcase,” but this is not a good practice if the
SQL is to be portable to other implementations. After all, a name like
“PERSONMIDDLENAME” is not very easy to read.

• Each SQL implementation has a defi ned set of reserved words, which
are words that have specifi c meaning to the SQL query processor in the
DBMS and therefore may not be used in other contexts, such as for the
name of database objects. This restriction is to avoid misinterpretation of
SQL statements by the DBMS. As you might guess, the list of reserved
words varies signifi cantly from one SQL implementation to another, so it is
wise to consult the documentation for the implementation you are using to
become familiar with them.

• A single-line comment is started with two consecutive hyphens (--). The
two hyphens can be at the beginning of a line, in which case the entire line
becomes a comment, or elsewhere in the line, in which case the remainder
of the line is treated as a comment. For example:

-- This is a single line comment in SQL.

• A multiline comment begins with the combination of a slash and an asterisk
(/*), and continues until the reverse combination (*/) is encountered. Be
careful to end comments correctly, or many lines of SQL that you carefully
wrote will be treated as comments by the RDBMS. Here is an example of a
multiline comment:

/* This is a multi-line comment.
 It continues until the ending combination of
 characters appears. */

CHAPTER 2 SQL Concepts 47

SQL Statement Categories
SQL statements are divided into categories based on the function that they serve.
Some experts consider these categories to be either separate languages or sublan-
guages. However, in SQL they all have the same basic syntax and rules, so I
consider them to be categories of statements within a single language. The catego-
ries, each of which is described in a subsequent section, are

• Data Defi nition Language (DDL)

• Data Query Language (DQL)

• Data Manipulation Language (DML)

• Data Control Language (DCL)

• Transaction Control Commands

Data Defi nition Language (DDL)
Data Defi nition Language (DDL) includes SQL statements that allow the database
user to create and modify the structure of database objects, such as tables, views,
and indexes. SQL statements that use the commands CREATE, ALTER, and DROP
are considered part of DDL. It is important to understand that DDL statements af-
fect the containers that hold the data in the database rather than the data itself. So
there are DDL statements to create, drop, and alter tables, but none of these state-
ments provide the ability to create or modify rows of data in those tables. DDL
statements are presented in Chapter 3.

Data Query Language (DQL)
Data Query Language (DQL) includes SQL statements that retrieve data from the
database. Although it’s a very important part of SQL, DQL consists of statements
that use only one command: SELECT. DQL is presented in Chapters 4, 5, and 6.
Some vendors and authors lump DQL in with DML when they categorize SQL
statements.

Data Manipulation Language (DML)
Data Manipulation Language (DML) includes SQL statements that allow the data-
base user to add data to the database (in the form of rows in tables), remove data
from the database, and modify existing data in the database. SQL statements that

 48 SQL Demystifi ed

use the commands INSERT, UPDATE, and DELETE are considered part of DML.
DML is presented in Chapter 7.

Data Control Language (DCL)
Data Control Language (DCL) includes SQL statements that allow administrators
to control access to the data within the database and the use of various DBMS sys-
tem privileges, such as the ability to start up or shut down the database. SQL
statements that use the commands GRANT and ALTER are considered part of
DCL. DCL is presented in Chapter 8.

Transaction Control Commands
A database transaction is a set of commands that a database user wishes to treat as
an “all or nothing” unit of work, meaning the entire transaction must either succeed
or fail. The commands that control database transactions do not precisely conform
to the syntax of SQL statements, but they do have a profound effect on the behavior
of the SQL statements included in transactions. Transaction control commands are
presented in Chapter 9.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. SQL

 a. May be pronounced as the letters S-Q-L

 b. May be pronounced as the word “sequel”

 c. May be used to render web pages

 d. May be used to communicate with any database

 e. May be used to communicate with relational databases

 2. SQL is

 a. An object-oriented language

 b. A procedural language

 c. A nonprocedural language

CHAPTER 2 SQL Concepts 49

 d. A declarative language

 e. A standard language

 3. Procedural extensions to SQL include

 a. Java

 b. Oracle PL/SQL

 c. C++

 d. Microsoft Transact-SQL

 e. FORTRAN

 4. In a client/server arrangement

 a. The DBMS software runs on the server

 b. The DBMS software runs on the client

 c. The SQL client software runs on the client

 d. The SQL client software may run on the server

 e. The database resides on disks connected to the client

 5. A command-line SQL client

 a. Requires a windowing system

 b. Runs on a wide variety of clients

 c. Requires a web browser on the client

 d. Displays data and command options using graphical features

 e. Displays responses to commands as text messages

 6. A GUI SQL client

 a. Requires a windowing system

 b. Runs on a wide variety of clients

 c. Requires a web browser on the client

 d. Displays data and command options using graphical features

 e. Displays responses to commands as text messages

 7. A web-based SQL client

 a. Requires a windowing system

 b. Runs on a wide variety of clients

 c. Requires a web browser on the client

 d. Displays data and command options using graphical features

 e. Displays responses to commands as text messages

 50 SQL Demystifi ed

 8. SQL clients offered by Oracle are

 a. iSQL

 b. Query Analyzer

 c. iSQL*Plus

 d. SQL*Plus

 e. SQL Worksheet

 9. SQL clients offered by Microsoft are

 a. iSQL

 b. Query Analyzer

 c. iSQL*Plus

 d. SQL*Plus

 e. SQL Worksheet

 10. SQL was fi rst developed

 a. By IBM

 b. By ANSI

 c. In 1982

 d. In the 1970s

 e. Based on ANSI standards

 11. SQL standards include

 a. SQL-88

 b. SQL-89

 c. SQL-92

 d. SQL-99

 e. SQL:2003

 12. Vendor extensions to SQL

 a. Make SQL more portable

 b. Make SQL less portable

 c. Help differentiate vendor products

 d. Were based on market demands

 e. Are compatible across vendor implementations

CHAPTER 2 SQL Concepts 51

 13. SQL statements

 a. Begin with a command keyword

 b. End with a command keyword

 c. Begin with a delimiter such as a semicolon

 d. End with a delimiter such as a semicolon

 e. Begin with a left parenthesis

 14. SQL language elements include

 a. Keywords

 b. Database object names

 c. Operators

 d. Constraints

 e. Constants

 15. SQL language elements are separated with

 a. Commas

 b. Exactly one space

 c. One or more spaces

 d. New lines

 e. Underscores

 16. Database object names may include

 a. Parentheses

 b. Underscores

 c. Numbers

 d. Letters

 e. Commas

 17. SQL statements may be divided into the following categories:

 a. Data Defi nition Language (DDL)

 b. Data Selection Language (DSL)

 c. Data Replication Language (DRL)

 d. Data Control Language (DCL)

 e. Data Manipulation Language (DML)

 52 SQL Demystifi ed

 18. Data Defi nition Language (DDL) includes the following statements:

 a. SELECT

 b. INSERT

 c. CREATE

 d. ALTER

 e. DELETE

 19. Data Query Language (DQL) includes the following statements:

 a. SELECT

 b. INSERT

 c. CREATE

 d. ALTER

 e. DELETE

 20. Data Manipulation Language (DML) includes the following statements:

 a. SELECT

 b. INSERT

 c. CREATE

 d. ALTER

 e. DELETE

53

3

Defi ning
Database Objects

Using SQL

This chapter introduces the SQL statements that are used to defi ne and manage the
database objects in a relational database. As already mentioned, the CREATE,
ALTER, and DROP statements comprise a category of the SQL language called
Data Defi nition Language (DDL). DDL is presented fi rst because you have to create
the database objects before you can put any data into the database. However, if you
would rather learn another category of SQL such as DQL or DML fi rst, the chapters
are written so that you can skip ahead and come back to this chapter at a later time.

CHAPTER

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 54 SQL Demystifi ed

Syntax Conventions Used in This Chapter
SQL DDL statements have more options than other SQL statements. For this rea-
son, I have adopted the following conventions for presenting DDL statement syntax
in this chapter:

• SQL keywords and reserved words are shown in uppercase type, such as
CREATE TABLE.

• Information you are expected to supply when writing the statement is
shown in italics, such as column_name.

• Optional items are enclosed in square brackets, such as [WITH TIME
ZONE].

• Choices from a list of possible items are separated by a vertical bar (the
logical symbol for “or”), such as TABLE | VIEW | INDEX. You will
sometimes see a list of optional choices, such as [NULL | NOT NULL].

• Group items that are explained or broken down further (usually following
a description of a major statement type) are enclosed between a “less than”
symbol and a “greater than” symbol, such as <column_specifi cation>.

• An item that may be repeated is followed by an ellipse, such as [,<table_
constraint>...].

• All other symbols, particularly commas and parentheses, are part of the
required SQL syntax and therefore must be included as written.

Data Types
Before we explore the DDL statements themselves, you need to understand a bit
more about how data is stored in table columns. As you will recall, a column is the
smallest named unit of data that can be referenced in a relational database. Each
column must be assigned a unique name and a data type. A data type is a category
for the format of a particular column. Data types provide several valuable benefi ts:

• Restricting the data in the column to characters that make sense for the data
type (for example, all numeric digits, or only valid calendar dates).

• Providing a set of behaviors useful to the data user. For example, if you
subtract a number from another number, you get a number as a result; but
if you subtract a date from another date, you get the difference, in days,
between the two dates as a result.

CHAPTER 3 Defi ning Database Objects Using SQL 55

• Assisting the RDBMS in effi ciently storing the column data. For example,
numbers can often be stored in an internal numeric format that saves space,
compared with merely storing the numeric digits as a string of characters.

SQL supports three categories of data types: predefi ned types, constructed types,
and user-defi ned types. Predefi ned data types are those that are supplied as a native
part of the RDBMS by the vendor. Constructed data types, also known as collection
types, hold arrays or sets of predefi ned data types, usually for the purpose of repre-
senting object-oriented data constructs in the RDMS. User-defi ned data types, in
those RDBMSs that provide them, allow the database user to defi ne their own data
types, tailored to specifi c purposes.

In the remainder of this section, the SQL:2003 standard predefi ned data types are
presented, followed by discussions of variations among today’s most popular
RDBMS products. Constructed data types and the creation of user-defi ned data
types are a bit too advanced for an introductory book like this one.

SQL:2003 Standard Data Types
One of the biggest challenges to SQL portability across different vendor implemen-
tations is dealing with the enormous variation in supported data types. Many
vendors went off on their own, prior to the adoption of standards, in response to
customer demands. Most modern SQL implementations support all or most of the
SQL:2003 standard data types, as presented here.

Most people fi nd it convenient to group the SQL data types by the general class
of data that they support. As you might guess, these classifi cations can be subject to
debate, and in fact, the SQL:2003 standard defi nes some data types as belonging to
more than one group. To avoid unnecessary confusion, I have listed each data type
in only one group, with each group described in a separate topic. For each data type,
there is a description, followed by the SQL syntax for it, and an example or two.
Many of the data types are used in the video store sample database SQL if you want
to see more examples.

Character Data Types
Character data types hold strings of characters, where a character can be any letter,
number, or other symbol allowed by the computer system hosting the database. In
general, it is a good practice to use character data types for numeric strings that will
never be used in arithmetic operations or sorted in numeric order because they are
more fl exible than numeric data types. For example, it is usually best to store phone

 56 SQL Demystifi ed

numbers, ZIP codes, social security numbers, and the like as character data types.
The standard character data types are

• Fixed-length character A character string of fi nite length. A length is
always included to denote the size of the character string being stored.
Shorter strings are padded with spaces on the right-hand end so that all
strings in a column of this data type are exactly the same number of
characters in length. The SQL syntax is

CHARACTER(length) | CHAR(length)
Example: SOCIAL_SECURITY_NUMBER CHAR(9)

• National character A variation of CHARACTER that is stored in a
particular national character set. This data type is intended to handle
translations of character strings into various national languages. The SQL
syntax is

NATIONAL CHARACTER(length) | NCHAR(length)
Example: MOVIE_TITLE NCHAR(100)

• Variable character A character string of variable length. A length is
always included to denote the maximum size of the character string being
stored. This is a great space saver for strings that naturally vary in length,
such as names and addresses. However, there is some overhead because
the RDBMS must store the actual length of the string with the string itself
(usually adding 1 byte to the physical size of the string) and must do a little
extra work to calculate the length before storing the string. The SQL syntax is
CHARACTER VARYING(maximum_length) | VARCHAR(maximum_length)

Example: CUSTOMER_NAME VARCHAR(125)

• National variable character A variation of variable character that is
stored in a particular national character set. Like NCHAR, this data type
is intended to handle translations of character strings into various national
languages. The SQL syntax is

NATIONAL CHARACTER VARYING(maximum_length) | NVARCHAR(maximum_length)

Example: MOVIE_TITLE NVARCHAR(100)

Numeric Data Types
As the name suggests, numeric data types hold only numbers. They are most useful
for attributes that will be used in calculations. As a general rule, most database
designers use numeric types only when the attribute will be used in mathematical
calculations, such as prices, quantities, and tax rates. Character strings, while

CHAPTER 3 Defi ning Database Objects Using SQL 57

horribly ineffi cient for calculations, offer greater fl exibility in SQL queries, so char-
acter types are preferred for numeric strings that will never be used in calculations,
such as employee numbers, phone numbers, and product numbers. A common ex-
ception, however, is primary key columns where the values are automatically
generated by the DBMS—these must always be numeric data types because the
DBMS must increment the last value used for each new table row.

All numeric types have a precision (number of digits). Some numeric types also
have a scale (the number of digits to the right of the decimal point). Integers and
numeric types that include a scale are called exact numeric types, while real num-
bers that do not include a scale (basically fl oating point numbers) are called
approximate numeric types.

The standard numeric types are

• Numeric An exact numeric type that includes a precision and scale. The
SQL syntax is

NUMERIC(precision,scale)
Example: EMPLOYEE_HOURLY_RATE NUMERIC(5,2)

• Decimal An exact numeric type that includes a precision and scale.
However, the precision actually used by the DBMS will be equal to or
greater than the precision specifi ed. This is a subtle difference compared
with NUMERIC, intended to allow the DBMS type to be mapped to a
data type native to the platform on which the DBMS runs, which likely
has predefi ned precision and scale. (A platform is a combination of an
operating system and computer hardware, such as Windows XP on Intel,
Linux on Intel, or Solaris on Sun.) The SQL syntax is

DECIMAL(precision,scale)
Example: EMPLOYEE_HOURLY_RATE DECIMAL(5,2)

• Integer An exact numeric type that includes only a precision, written as
INTEGER or INT. Integers do not have decimal places, so a scale is not
necessary because it is understood to be zero. The standard does not specify
the smallest and largest data values allowed by the integer data type, so
you need to check the upper limit in your DBMS documentation. The SQL
syntax is

INTEGER(precision) | INT(precision)
Example: CUSTOMER_ACCOUNT_ID INTEGER

• Small integer A variation of the integer type, written as SMALLINT,
that holds smaller numbers and therefore takes less space. The standard
only specifi es that the precision of SMALLINT be less than or equal to

 58 SQL Demystifi ed

the precision of INT, so you need to check your DBMS documentation for
details. The SQL syntax is

SMALLINT(precision)
Example: CUSTOMER_ACCOUNT_ID SMALLINT

• Big integer A variation of the integer type, written as BIGINT, that holds
larger numbers and therefore takes more space. The standard only specifi es
that the precision of BIGINT be greater than or equal to the precision of
INT, so again you need to check your DBMS documentation for details.
The SQL syntax is

BIGINT(precision)
Example: CUSTOMER_ACCOUNT_ID BIGINT

• Float An approximate numeric type implemented with precision greater
than or equal to the specifi ed precision. The precision specifi cation is
optional. On supported platforms, FLOAT is usually implemented using
fl oating-point numbers. The SQL syntax is

FLOAT[(precision)]
Examples: INTEREST_RATE FLOAT(16)
 INTEREST_RATE FLOAT

• Real An approximate numeric type with an implementation-defi ned
precision. You need to check the DBMS documentation for details. The
SQL syntax is

REAL
Example: INTEREST_RATE REAL

• Double precision An approximate numeric type with an implementation-
defi ned precision that is greater than the implementation-defi ned precision
for REAL. Again, check the DBMS documentation for details. The SQL
syntax is

DOUBLE PRECISION | DOUBLE
Example: INTEREST_RATE DOUBLE PRECISION

Temporal Data Types
As the name suggests, temporal data types (also called datetime types) store data
that measures time in some way. As mentioned earlier, standards for these data
types lagged behind commercial databases, so most DBMSs do not completely
conform to the standard. I strongly recommend that you read up on these in your
DBMS documentation before attempting to use them.

CHAPTER 3 Defi ning Database Objects Using SQL 59

Temporal data types are composed of the following components, called fi elds in
the standard:

Field Name (SQL Keyword) Defi nition

YEAR Two-digit or four-digit calendar year

MONTH Month within the year

DAY Day within the month

HOUR Hour within the day

MINUTE Minute within the hour

SECOND Second within the minute

TIMEZONE_HOUR Hour value of time zone displacement. For example,
Pacifi c Standard Time has a displacement of +8 hours
from UTC (Coordinated Universal Time).

TIMEZONE_MINUTE Minute value of time zone displacement. While
usually zero, there are some odd time zones around
the world with half-hour offsets.

The TIMEZONE_HOUR and TIMEZONE_MINUTE fi elds are included in any
temporal data type where the optional WITH TIMEZONE keyword is specifi ed.
The temporal data types are

• Date A date containing the YEAR, MONTH, and DAY fi elds. The SQL
syntax is

DATE [WITH TIMEZONE]
Example: DATE_ENROLLED DATE

• Time A time containing the HOUR, MINUTE, and SECOND fi elds. The
SQL syntax is

TIME [WITH TIMEZONE]
Example: TIME_ENROLLED TIME

• Timestamp A combined date and time containing the YEAR, MONTH,
DAY, HOUR, MINUTE, and SECOND fi elds. The SQL syntax is

TIMESTAMP [WITH TIMEZONE]
Example: DATE_TIME_ENROLLED TIMESTAMP

• Interval An interval of time containing the fi elds specifi ed with an interval
qualifi er, which is essentially the precision of the interval. The SQL syntax is

INTERVAL start_field TO end_field | INTERVAL field
Examples: MEMBERSHIP_DURATION INTERVAL YEAR TO DAY
 TIME_WORKED INTERVAL HOUR TO MINUTE
 RENTAL_DAYS INTERVAL DAY

 60 SQL Demystifi ed

Large Object Types
Large objects allow for storage of data that is considerably larger than the data sup-
ported by the data types covered thus far, often several megabytes in size. The
handling of large objects is an advanced topic that is beyond the scope of this book,
so they are listed here without any syntax details. For now, you only need to know
that the DBMSs that support these types usually store the actual data separately
from the table that references it, and that data can be moved in and out of the large
object in pieces, such as a few kilobytes at a time. All large objects are variable in
length by defi nition. Consult your DBMS documentation for any special SQL syn-
tax associated with large object types.

• Character large object A character large object, written in SQL as CLOB.

• National character large object A character large object that is stored in
a particular national language, written in SQL as NCLOB.

• Binary large object A large object that holds binary data such as an
image or sound clip, written in SQL as BLOB.

Another Data Type
There is one standard data type that does not fall into any of the previous categories:

• Boolean Stores a logical true or false. SQL syntax is

BOOLEAN
Example: PREFERRED_CUSTOMER BOOLEAN

Vendor Data Type Extensions and Differences
Vendor variances from and extensions to published standards are an unfortunate
fact of life. This section highlights the main differences between popular vendor
SQL implementations and the SQL:2003 standard. You will see enormous differ-
ences in the way standard data types are implemented and in vendor extensions to
the standard. This section is not intended to be a comprehensive reference, so as
always, you should consult the documentation provided with your particular imple-
mentation.

Microsoft Access
Microsoft Access is the least standards-compliant of today’s popular databases. The
data types supported by Microsoft Access are

CHAPTER 3 Defi ning Database Objects Using SQL 61

• Text Equivalent to the VARCHAR standard data type, holding up to 255
characters.

• Memo Holds large character strings up to 65,535 characters, but defi ned
without a size.

• Number Equivalent to the NUMERIC standard data type, but the precision
and scale are set using a Field Size pull-down menu. Integers can be defi ned
by setting the Decimal Places parameter to zero (0).

• Date/Time Roughly equivalent to the TIMESTAMP standard and capable
of storing any valid date and time between the years 100 and 9999.

• Currency A numeric data type that is the equivalent of NUMERIC(19, 4),
which is a number with 15 digits to the left of the decimal point and up to 4
digits to the right of the decimal point.

• AutoNumber A 4-byte or 16-byte fi eld (depending on the Field Size
setting) that is automatically incremented by 1 whenever a new row is
inserted into the table.

• Yes/No Roughly equivalent to the BOOLEAN standard data type.
However, Microsoft Access permits this data type to be formatted as Yes/
No, On/Off, or True/False.

• OLE Object Similar to the BLOB standard data type, this type stores
a Microsoft OLE object that can be up to 1GB (gigabyte) in size.

• Hyperlink A specialized data type that can hold an Internet web address.

• Lookup wizard A specialized data type that creates a link from a column
in the current table to the contents of a column in another table. This data
type is intended for dynamically linking tables when creating forms in
Microsoft Access.

Microsoft SQL Server
Microsoft SQL Server’s Transact-SQL supports the following standard data types:

• BIGINT Whole numbers from −263 through 263 − 1.

• CHARACTER (CHAR) Fixed-length character up to 8000 characters.

• DECIMAL Fixed precision and scale from −1038 + 1 through 1038 − 1.

• FLOAT Floating-point numbers in the range −1.79 × 10308 through
−2.23 × 10−308, 0, or in the range 2.23 × 10−308 through 1.79 × 10308.

• INTEGER Whole numbers from −231 through 231 − 1.

 62 SQL Demystifi ed

• NCHAR Fixed-length Unicode data up to 4000 characters. Unicode is
a 16-bit character set standard for encoding data, designed and maintained
by the nonprofi t consortium Unicode, Inc.

• NUMERIC Implemented the same as DECIMAL.

• NVARCHAR Variable-length Unicode data up to 4000 characters.

• REAL Floating-point numbers in the range −3.40 × 1038 through
−1.18 × 10−38, 0, or in the range 1.18 × 10−38 through 3.40 × 1038.

• SMALLINT Whole numbers from −32,768 through 32,767.

• VARCHAR Variable-length character data up to 8000 characters.

Microsoft SQL Server offers the following extensions to the standard data types:

• BINARY Fixed-length binary data with a maximum length of 8000 bytes.

• BIT Integer data with a value of either 0 or 1.

• DATETIME Date and time from January 1, 1753, through December 31,
9999, with an accuracy of three-hundredths of a second (3.33 milliseconds).

• IMAGE Variable-length binary data with a maximum length of
231 − 1 bytes. Starting with SQL Server 2005, Microsoft recommends using
VARBINARY(MAX) instead of IMAGE.

• MONEY Monetary data values from −263 through 263 − 1 with accuracy
to a ten-thousandth of a monetary unit.

• NTEXT Variable-length Unicode data with a maximum length of
230 − 1. Starting with SQL Server 2005, Microsoft recommends using
NVARCHAR(MAX) instead of IMAGE.

• SMALLDATETIME Date and time from January 1, 1900 through June
6, 2079, with an accuracy of one minute.

• SMALLMONEY Monetary data values from −214,748.3648 through
214,748.3647 with accuracy to a ten-thousandth of a monetary unit.

• TEXT Variable-length character data with a maximum length of 231 − 1
characters. Starting with SQL Server 2005, Microsoft recommends using
VARCHAR(MAX) instead of TEXT.

• TIMESTAMP A database-wide unique number that is updated every
time a row is updated. Note that this is in direct confl ict with the standard
TIMESTAMP data type.

• TINYINT Whole numbers from 0 through 255.

CHAPTER 3 Defi ning Database Objects Using SQL 63

• UNIQUEIDENTIFIER A globally unique identifi er (GUID).

• VARBINARY Variable-length binary data with a maximum length of
8000 bytes.

Oracle
Oracle SQL supports the following standard data types:

• BLOB Binary large object up to a maximum size of (4GB − 1) ×
(database block size).

• CHAR Fixed-length character data up to a maximum size of 2000 bytes.

• CLOB A character large object up to a maximum size of (4GB − 1) ×
(database block size).

• DATE Functions like the standard DATE data type, but it is technically
more like the standard DATETIME data type because it can store both date
and time. Supported dates in the range from January 1, 4712 bc through
December 31, 9999 ad. An optional time in hours, minutes, and seconds
may also be included. When omitted, the time component is stored as
zeros, which is equivalent to midnight.

• DECIMAL Implemented as NUMBER(precision, scale).

• DOUBLE PRECISION Implemented as NUMBER.

• FLOAT Implemented as NUMBER.

• INTEGER Implemented as NUMBER(38).

• INTERVAL A time interval, but only INTERVAL YEAR TO MONTH
and INTERVAL DAY TO SECOND are supported.

• NCHAR Fixed-length character data in a national language up to
a maximum length of 2000 bytes.

• NCLOB Fixed-length character data in a national language up to
a maximum size of (4GB − 1) × (database block size).

• NUMERIC Implemented as NUMBER(precision, scale).

• NVARCHAR Variable character data in a national language up to
a maximum length of 4000 bytes.

• REAL Implemented as NUMBER.

• SMALLINT Implemented as NUMBER(38).

 64 SQL Demystifi ed

• TIMESTAMP Date and time in year, month, day, hour, minute, and
second, but unlike the SQL:2003 standard, the precision is specifi ed in
fractional seconds.

• VARCHAR Variable character data up to a maximum length of 4000
characters.

Oracle SQL offers the following extensions to the standard data types:

• BFILE A locator to a large binary fi le stored outside the database.

• LONG Variable-length character data up to 2GB in size. This data type is
no longer recommended by Oracle because CLOB replaces it.

• LONG RAW Binary data with a maximum size of 2GB. This data type is
no longer recommended by Oracle because BLOB replaces it.

• NUMBER Numeric data with a precision from 1 through 38 and
a precision from −84 through 127. Equivalent to the standard NUMERIC
type.

• NVARCHAR2 Identical to NVARCHAR in all Oracle releases through
10g but recommended by Oracle over NVARCHAR because Oracle may
someday change the implementation of NVARCHAR.

• RAW Binary data with a maximum size of 2000 bytes. This data type is
no longer recommended by Oracle because BLOB replaces it.

• ROWID Base 64 string representing the unique address of a row in its
table.

• UROWID Base 64 string representing the logical address of a row in an
index-organized table.

• VARCHAR2 Identical to VARCHAR in Oracle releases 7 through
10g but recommended by Oracle over VARCHAR because Oracle may
someday change the implementation of VARCHAR.

IBM DB2 Universal Database
The IBM DB2 Universal Database (UDB) supports the following standard data
types:

• BLOB A binary large object with a maximum length of 2,147,483,647
bytes.

• CHAR Fixed-length character data with a maximum length of 254
characters.

CHAPTER 3 Defi ning Database Objects Using SQL 65

• CLOB Character large object data with a maximum length of
2,147,483,647 bytes.

• DATE A date containing the YEAR, MONTH, and DAY fi elds. The
year may range from 0001 through 9999, and the day must be valid for the
particular year and month.

• DECIMAL A packed decimal or zoned decimal number with an implicit
decimal point. Values range from −1031 + 1 through 1031 − 1.

• DOUBLE PRECISION (DOUBLE) A double-precision fl oating-point
number (approximate data type) that can be zero or in the range −7.2 × 1075
through −5.4 × 10−79 or in the range +5.4 × 10−79 through +7.2 × 1075.

• INTEGER An integer number in the range −2,147,483,648 through
2,147,483,647.

• NUMERIC Implemented the same as DECIMAL.

• REAL A single-precision fl oating-point number (approximate data type)
that can be zero or in the range −3.4 × 1038 through −1.17 × 10−37 or in the
range +1.17 × 10−37 through +3.4 × 1038.

• SMALLINT An integer number in the range −32,768 through 32,767.

• TIME A time containing the HOUR, MINUTE, and SECOND fi elds
using a 24-hour clock.

• TIMESTAMP A combined date and time containing the YEAR,
MONTH, DAY, HOUR, MINUTE, and SECOND fi elds. The year may
range from 0001 through 9999, and the day must be valid for the particular
year and month. The time component uses a 24-hour clock.

• VARCHAR Variable-length character data with a maximum length of
32,672 characters.

The IBM DB2 Universal Database offers the following extensions to the stan-
dard data types:

• DBCLOB Similar to an NCLOB, a double-byte character large object
with a maximum length of 1,073,741,823 characters.

• GRAPHIC A fi xed-length double-byte character string with a maximum
length of 127 characters.

• VARGRAPHIC A variable-length double-byte character string with
a maximum length of 16,336 characters.

 66 SQL Demystifi ed

MySQL
MySQL supports the following standard data types:

• BOOLEAN Implemented as TINYINT(1).

• SMALLINT A small integer in the range −32768 through 32767 signed,
or 0 through 65,535 unsigned.

• INTEGER (INT) An integer in the range −2,147,483,648 through
2,147,483,647 signed, or 0 through 4,294,967,295 unsigned.

• BIGINT A large integer in the range −9,223,372,036,854,775,808
through 9,223,372,036,854,775,807 signed, or 0 through 18,446,744,073,
709,551,615 unsigned.

• FLOAT A fl oating-point number with a precision of 0 through 24.
Allowable values are −3.402823466 × 1038 through −1.175494351 × 10−38,
0, and 1.175494351 × 10−38 through 3.402823466×10+38.

• DOUBLE PRECISION (DOUBLE) A fl oating-point number with
a precision of 25 through 53. Allowable values are −1.7976931348623157 ×
10308 through −2.2250738585072014×10−308, 0, or 2.2250738585072014 ×
10−308 through 1.7976931348623157 × 10308.

• DECIMAL (DEC) A number, stored as a character string. The range of
values is the same as DOUBLE PRECISION.

• DATE A date, displayed in YYYY-MM-DD format, with the valid range
for the year being 1000 through 9999.

• TIMESTAMP A combination of date and time with the range of values
from 1970-01−01 00:00:00 through part of the year 2037. MySQL stores
this data type as the number of seconds since midnight on January 1, 1970,
which is the same way the so-called Unix epoch date is stored.

• TIME Time stored in an HH:MM:SS format. The valid range for hours is
−838 through +838.

• CHAR A fi xed-length character string with a maximum length of 255
characters.

• NATIONAL CHAR (NCHAR) A fi xed-length string in a national
language with a maximum length of 255 characters.

• VARCHAR A variable-length character string with a maximum length of
65,535 characters.

• NATIONAL VARCHAR (NVARCHAR) A variable-length character
string in a national language with a maximum length of 255 characters.

CHAPTER 3 Defi ning Database Objects Using SQL 67

MySQL offers the following extensions to the standard data types:

• TINYINT A small integer in the range −128 through +127 signed or 0 to
255 unsigned.

• MEDIUMINT A medium-size integer in the range −8,388,608 through
8,388,607 signed or 0 through 16,777,215 unsigned.

• BIT Implemented as TINYINT(1).

• DATETIME A combined date and time stored with a year in the range
1000 through 9999 and the time in 24-hour format.

• YEAR A year stored in a two-digit or four-digit format. In the two-digit
format, valid values are 70 through 69, representing 1970 through 2069. In
the four-digit format, valid values are 1901 through 2155 and 0000.

• CHAR BINARY (BINARY) A fi xed-length binary string with a
maximum length of 255 bytes.

• VARCHAR BINARY (VARBINARY) A variable-length binary string
with a maximum length of 65,535 bytes.

• TINYBLOB, TINYTEXT A binary or character string with a maximum
length of 255 bytes.

• BLOB, TEXT A binary or character string with a maximum length of
65,535 bytes.

• MEDIUMBLOB, MEDIUMTEXT A binary or character string with
a maximum length of 16,777,215 bytes.

• LONGBLOB, LONGTEXT A binary or character with a maximum
length of 4,294,967,295 bytes.

• ENUM An enumerated list, which is a string column that may contain
one of the values specifi ed in the list of values in the column defi nition.

• SET A set list, which is a string column that may contain any of a number
of values specifi ed in the list of values in the column defi nition.

PostgreSQL
PostgreSQL supports the following standard data types:

• SMALLINT A small integer in the range −32768 through +32767.

• INTEGER An integer in the range −2,147,483,648 through
+2,147,483,647.

 68 SQL Demystifi ed

• BIGINT A large integer in the range −9,223,372,036,854,775,808
through 9,223,372,036,854,775,807.

• DECIMAL An exact variable-length number with no size limits.

• NUMERIC An exact variable-length number with no size limits.

• REAL An approximate number with 6 decimal places of precision.

• DOUBLE PRECISION An approximate number with 15 decimal places
of precision.

• CHARACTER VARYING (VARCHAR) A variable-length character
string with a user-defi ned limit, and a maximum size of about 1GB.

• CHARACTER (CHAR) A fi xed-length character string with a
maximum size of about 1GB.

• TIMESTAMP A combined date and time with a date range of 4713 bc
through 32767 ad and time precision down to 1 microsecond. An optional
TIMEZONE may be included.

• INTERVAL A time interval in the range of −178,000,000 through
+178,000,000 years with time precision down to 1 microsecond.

• TIME A time of day with precision down to 1 microsecond. An optional
TIMEZONE may be included.

• BOOLEAN A logical true or false with various allowable values for both
the true and false states.

PostgreSQL offers the following extensions to the standard data types:

• SERIAL An automatically incremented integer in the range 1 through
2,147,483,647.

• BIGSERIAL An automatically incremented integer in the range
1 through 9,223,372,036,854,775,807.

• MONEY A currency amount in the range −21,474,836.48 through
+21,474,836.47.

• TEXT A variable-length character string of unlimited length but with
a maximum storage size of about 1GB.

• BYTEA A variable-length binary string.

• Geometric Types A set of data types that can be used to represent
two-dimensional objects, including POINT, LINE, LSEG, BOX, PATH,
POLYGON, and CIRCLE.

CHAPTER 3 Defi ning Database Objects Using SQL 69

• Network Address Types A set of data types that can be used to store
IPv4, IPv6, and MAC addresses.

• BIT A fi xed-length string of binary 1’s and 0’s.

• BIT VARYING A variable-length string of binary 1’s and 0’s.

• Arrays An array of any built-in or user-defi ned data type.

• Composite Types User-defi ned data types composed of other data types.

• Object Identifi er Types A series of data types used to identify objects
internally in the database.

NULL Values and Three-Valued Logic
In defi ning columns in database tables, you have the option of specifying whether
null values are permitted for the column. A null value in a relational database is a
special code that can be placed in a column that indicates that the value for that col-
umn in that row is unknown. A null value is not the same as a blank, an empty string,
or a zero—it is indeed a special code that has no other meaning in the database.

A uniform way to treat null values is an ANSI/ISO standard for relational data-
bases. However, there has been considerable debate over the usefulness of the option,
largely because the database cannot tell you why the value is unknown. For example,
if you leave the value for the MPAA Rating Code null for a movie in our video
store’s MOVIE table, you don’t know whether it is unknown because the movie
hasn’t been rated yet, the MPAA Rating system does not apply to the movie for some
reason, or the movie has been rated but you just don’t know what the rating is. The
other dilemma is that null values are not equal to anything, including other null val-
ues, which introduces three-valued logic into database searches. With nulls in use, a
search can return a condition true (the column value matches the search criteria),
false (the column value does not match the search criteria), or unknown (the column
value is null). The developers who write the application programs have to handle
null values as a special case.

In Microsoft Access, the NOT NULL constraint is controlled by the Required
option on the table design panel. In SQL DDL, you simply include the keyword
NULL or NOT NULL with the column defi nition (just to the right of the column’s
data type). Watch out for defaults! In Oracle, DB2, and most other relational data-
bases, if you skip the specifi cation, the default is NULL, which means that the
column may contain null values. However, in Microsoft SQL Server and Sybase
Adaptive Server, it is just the opposite: if you skip the specifi cation, the default is
NOT NULL, meaning the column may not contain null values.

 70 SQL Demystifi ed

Data Defi nition Language (DDL) Statements
Data Defi nition Language (DDL) statements defi ne the database objects but do not
insert or update any data stored within those objects (DML statements serve that
function). In SQL, there are three basic commands with DDL:

• CREATE Creates a new database object of the type named in the
statement. Because the syntax is so widely varied, CREATE DATABASE,
CREATE TABLE, CREATE INDEX, and CREATE VIEW are presented in
separate topics.

• ALTER Changes the defi nition of an existing database object of the
type named in the statement. ALTER TABLE is presented in this chapter
because it is so commonly used. Consult your DBMS documentation for
proprietary uses of the ALTER statement such as ALTER DATABASE,
ALTER SYSTEM, ALTER USER, ALTER SESSION, and so forth.

• DROP Drops (destroys) an existing database object of the type named in
the statement.

The CREATE DATABASE Statement
As mentioned in Chapter 1, the defi nition of a database varies quite a bit from one
vendor implementation to another. In general, however, most DBMSs require that
you create a database before you can create any other database objects. The general
syntax for the CREATE DATABASE statement is

CREATE DATABASE database_name [vendor_specific_options];

In the Oracle DBMS, the CREATE USER statement creates a schema within
the current database that is roughly equivalent to what most other DBMSs call a
database.

The SQL standard also provides for a CREATE SCHEMA statement that allows for
the creation of groupings of database objects for easier administration, but you will
fi nd considerable variation in implementation across vendors, mostly because differ-
ent vendors have physically implemented their databases in very different ways.

The CREATE TABLE Statement
The CREATE TABLE statement is one of the most fundamental in SQL. The rela-
tional paradigm requires all stored data to be anchored in a table, so the ability to

CHAPTER 3 Defi ning Database Objects Using SQL 71

store anything in the database always starts with the creation of a table. The basic
syntax for the CREATE TABLE statement is

CREATE TABLE table_name
 (<column_definition>
 [,<column_definition> ...]
 [,<table_constraint] ...);

This looks really simple, and except for some tedium involved in forming col-
umn defi nitions, the CREATE TABLE statement is really simple. Each statement
includes a table name and a comma-separated list of one or more column defi ni-
tions enclosed in a pair of parentheses. The table name must be unique within the
database and must adhere to SQL syntax conventions as described in Chapter 2.
A table must have at least one column, which makes logical sense when you think
about it. Some vendor implementations provide for physical storage attributes such
as space allocation in the CREATE TABLE statement, so do check your DBMS
documentation to learn more. Column defi nitions are discussed next, followed by a
discussion of table constraints.

Column Defi nition in SQL DDL
The basic syntax used to defi ne table columns is

<column_definition>:
 column_name data_type
 [DEFAULT expression]
 [NULL | NOT NULL]
 [<column_constraint>]

As an example, here is the DDL for creating the CUSTOMER_ACCOUNT table
for our sample video store database:

CREATE TABLE CUSTOMER_ACCOUNT (
CUSTOMER_ACCOUNT_ID INTEGER NOT NULL,
CUSTOMER_HOLD_INDIC CHAR(1) DEFAULT 'N' NOT NULL
 CHECK (CUSTOMER_HOLD_INDIC IN ('Y','N')),
DATE_ENROLLED DATE NOT NULL,
DATE_TERMINATED DATE NULL,
CUSTOMER_DEPOSIT_AMOUNT NUMERIC(5,2) NULL,
CREDIT_CARD_ON_FILE_INDIC CHAR(1) NOT NULL
 CHECK (CREDIT_CARD_ON_FILE_INDIC IN 'Y','N')),
CHILD_RENTAL_ALLOWED_INDIC CHAR(1) NOT NULL
 CHECK (CHILD_RENTAL_ALLOWED_INDIC IN ('Y','N')),
 PRIMARY KEY (CUSTOMER_ACCOUNT_ID));

 72 SQL Demystifi ed

Let’s have a look at the components of a column defi nition:

• Column Name The column name must be unique within the table and
must conform to SQL syntax conventions as described in Chapter 2.

• Data Type The data type must be a valid data type for the DBMS
implementation as described earlier in this chapter.

• Column Constraints This is discussed in the next topic.

Column Constraints
Column constraints restrict (constrain) the values allowed in the table column in
some way. (Constraints were introduced in Chapter 1.) Technically, the DEFAULT
and NULL | NOT NULL clauses are special forms of column constraints, but they
are not always implemented in the same way as other column constraints within the
DBMS. A column constraint may only reference one column of a table, but there is
an easy workaround because any column constraint may be rewritten as a table
constraint. (Table constraints are covered later in this chapter.) Column constraints
can take any of the following forms:

• DEFAULT clause An expression that is applied to a column value
when a new row is inserted into the table that does not provide a value
for the column. The expression can be any valid expression that SQL
can understand, such as a constant, an SQL function, or another syntax
that yields a proper data value for the column when evaluated by the
SQL engine in the DBMS. For example, notice the specifi cation of
DEFAULT ‘N’ on the CUSTOMER_HOLD_INDIC column shown
in the CUSTOMER_ACCOUNT table. This default will ensure that
a newly inserted Customer Account will always get a value of ‘N’
(not on hold) when the statement inserting the new row either provides
no value for the column or specifi es the keyword DEFAULT for the column
value. Another common use for the default clause is to set dates such as
transaction dates to the current date as new rows are inserted. However,
the syntax for assigning the current date varies so much across vendor
DBMS implementations that I have avoided using it in the sample video
store DDL. Here is the SQL syntax and an example of a column with a
DEFAULT clause:

DEFAULT (expression)
Example:
CUSTOMER_HOLD_INDIC CHAR(1) DEFAULT 'N' NOT NULL

CHAPTER 3 Defi ning Database Objects Using SQL 73

• NULL | NOT NULL constraint As discussed earlier in this chapter, a
specifi cation of NULL allows null values in a column, while a specifi cation
of NOT NULL prohibits null values in the column. Be careful of defaults.
If you omit this clause in a Microsoft SQL Server or Sybase database,
NOT NULL will be assumed by the DBMS, but if you omit the clause
in most other DBMSs, such as Oracle, DB2, MySQL, and PostgreSQL,
the behavior is just the opposite: NULL will be assumed. A NOT NULL
constraint can also be written as a CHECK constraint (as shown next) that
specifi es a condition of IS NOT NULL. Here is the SQL syntax and some
examples:

NULL | NOT NULL
Examples:
DATE_ENROLLED DATE NOT NULL
DATE_TERMINATED DATE NULL

• CHECK Constraint A check constraint can be used to enforce any
business rule that can be applied to a single column of a table. The
condition included in the constraint must always be true whenever the
column data in the table is changed or the DBMS rejects the change and
displays an error message. An important restriction is that the condition
in a column constraint cannot reference any other column. Note in the
CUSTOMER_ACCOUNT table example that there are three columns
(CUSTOMER_HOLD_INDIC, CREDIT_CARD_ON_FILE_INDIC, and
CHILD_RENTAL_ALLOWED_INDIC) that have a CHECK constraint
that allows only the values ‘Y’ and ‘N’ in the column data. Column
constraints may be given an optional name following the CONSTRAINT
keyword, which is a good practice because constraint names usually appear
in any error message displayed when the constraint is violated. Here is the
syntax of a CHECK constraint and an example:

[CONSTRAINT constraint_name] CHECK (condition)
Example:
CREDIT_CARD_ON_FILE_INDIC CHAR(1) NOT NULL
 CHECK (CREDIT_CARD_ON_FILE_INDIC IN 'Y','N'))

As already mentioned, a NOT NULL clause like the one on the CUSTOMER_
ACCOUNT_ID column can also be written as a CHECK constraint instead. Here is
the way the column defi nition would look with a check constraint that includes the
optional constraint name:

CUSTOMER_ACCOUNT_ID INTEGER
 CONSTRAINT CK_CUST_ACCT_ID CHECK (ACCOUNT_ID IS NOT NULL)

 74 SQL Demystifi ed

• UNIQUE constraint A unique constraint on a column guarantees unique
values for that column within the table, usually with the assistance of an
index that is automatically created by the DBMS. Here is the syntax and an
example for a column unique constraint:

[CONSTRAINT constraint_name] UNIQUE
Example:
CUSTOMER_ACCOUNT_ID INTEGER NOT NULL UNIQUE

• PRIMARY KEY constraint A primary key constraint on a column
declares the column as the primary key of the table, which requires that
the column data contain no null values and contain unique values within
the table. As with a unique constraint, most DBMSs automatically create
an index to assist in checking for unique column data values. Here is the
syntax and an example for a column primary key constraint:

[CONSTRAINT constraint_name] PRIMARY KEY
Example:
CUSTOMER_ACCOUNT_ID INTEGER NOT NULL PRIMARY KEY

• Referential (FOREIGN KEY) constraint A referential constraint on
a column (sometimes called a foreign key constraint) defi nes the relationship
between a foreign key and a primary key so that the DBMS may guarantee
that the foreign key value, when not null, always references an existing
primary key value. The syntax for a column referential constraint is

[CONSTRAINT constraint_name]
 REFERENCES table_name(column_name)
 [ON DELETE CASCADE | ON DELETE SET NULL]
Example:
MPAA_RATING_CODE CHAR(5) NOT NULL
 REFERENCES MPAA_RATING (MPAA_RATING_CODE)

The optional ON DELETE clause tells the DBMS what to do if the referenced
parent table row (the row that contains the primary key) is deleted, with the option
to either delete all the rows containing the foreign key value (CASCADE) or to set
all the foreign key values to null (SET NULL). Keep in mind that most but not all
DBMS implementations support the ON DELETE clause.

Table Constraints
As already mentioned, any column constraint can be written instead as a table con-
straint, meaning the clause that defi nes the constraint appears after all the column
defi nitions in the CREATE TABLE statement instead of in the midst of a column

CHAPTER 3 Defi ning Database Objects Using SQL 75

defi nition. The main advantage of table constraints over column constraints is that
table constraints can reference more than one column. The meaning of each type of
constraint has already been covered (in the column constraints topic), so only the
general syntax and an example are shown here. The examples all use the
CUSTOMER_ACCOUNT table, but some of them have been altered in order to
demonstrate key points.

• CHECK constraint
[CONSTRAINT constraint_name] CHECK (condition)
Example:
CONSTRAINT CK_CUSTOMER_DEPOSIT_AMOUNT
 CHECK (CUSTOMER_DEPOSIT_AMOUNT >= 0 OR
 CUSTOMER_DEPOSIT_AMOUNT IS NULL)

 This check constraint prevents a negative amount from being stored in
the CUSTOMER_DEPOSIT_AMOUNT column. Notice the OR in the
expression that also allows null values in the column. If this were not
included, any attempt to store a null value would fail because a null value
is not greater than or equal to zero.

• UNIQUE constraint
[CONSTRAINT constraint_name] UNIQUE (column_name [,column_name...])
Example:
CONSTRAINT UK_CUST_ACCT_DATE_ENROLLED

 UNIQUE (CUSTOMER_ACCOUNT_ID, DATE_ENROLLED)

 This constraint specifi es that the combination of CUSTOMER_ACCOUNT_
ID and DATE_ENROLLED be unique among all rows in the CUSTOMER_
ACCOUNT table. However, CUSTOMER_ACCOUNT_ID is already
unique all by itself, so adding this constraint doesn’t make much sense.
 I included it here only to illustrate a unique constraint that involves more
than one column.

• PRIMARY KEY constraint
[CONSTRAINT constraint_name]
 PRIMARY KEY (column_name [,column_name...])
Example:
CONSTRAINT PK_CUSTOMER_ACCOUNT
 PRIMARY KEY (CUSTOMER_ACCOUNT_ID)

 This is the same as the primary defi nition in the CUSTOMER_ACCOUNT
table example you have been using in this topic, except that I added
a constraint name to it.

 76 SQL Demystifi ed

• Referential (FOREIGN KEY) constraint
[CONSTRAINT constraint_name]
 FOREIGN KEY (column_name [,column_name...])
 REFERENCES table_name (column_name [,column_name...])
 [ON DELETE CASCADE | ON DELETE SET NULL]

 Notice that unlike the column constraint form of referential constraint,
this one can reference multiple columns. As designed, the CUSTOMER_
ACCOUNT table has no foreign key columns, but let’s consider an
alternate design. Some database designers frown upon the use of CHECK
constraints to control column values because the database design must
be changed in order to add or remove values. Suppose, for example,
an enhancement to the video store’s system requires a new value of ‘E’
(exempt) for the CREDIT_CARD_ON_FILE_INDIC column. You can
change the CHECK constraint to allow the new table, but if you had put all
the codes and descriptions in a table (often called a “code,” “reference,” or
“lookup” table), all you would have to do is insert a row into the table for
the new code value and you’d be ready to go. This fl exibility is exactly why
the video store database design contains tables for things like the MPAA_
RATING_CODE—when the MPAA changes their rating system, you can
simply adjust the data in the code table accordingly. Code tables are also
a nice source for populating the pull-down lists of values for application
components such as web forms.

Assuming that a table called CARD_ON_FILE_TYPE has been created with
a primary key of CARD_ON_FILE_CODE, here is the referential constraint that
defi nes CREDIT_CARD_ON_FILE_INDIC as a foreign key:

CONSTRAINT FK_CARD_ON_FILE_INDIC
 FOREIGN KEY (CREDIT_CARD_ON_FILE_INDIC)
 REFERENCES CARD_ON_FILE_TYPE (CARD_ON_FILE_CODE)

As you can see, there isn’t always one “correct” database design but several alter-
natives from which to choose. Said another way, database design is not an exact
science. It is generally considered a best practice to name a foreign key the same as
the corresponding primary key column, but as you can see from this example, SQL
will let you give them different names if you want or need to.

The CREATE INDEX Statement
The CREATE INDEX statement is a lot simpler than the CREATE TABLE state-
ment that we just explored. Here is the basic syntax:

CHAPTER 3 Defi ning Database Objects Using SQL 77

CREATE [UNIQUE] INDEX index_name ON table_name
 (column_name [ASC | DESC] [, column_name [ASC |DESC]...]);

• The optional UNIQUE keyword defi nes the index as unique, meaning
that no two rows in the table can have the exact same combination of
column values. You may be wondering why you would do this when
defi ning a unique constraint would do the same thing. The answer is that
it’s a matter of personal style and choice. Some designers don’t want the
DBMS automatically creating an index for them (as happens with unique
constraints), because creating the index themselves gives them more
control. Other designers would much rather have the DBMS do the work
for them, not only because it’s less work, but also because it leads to fewer
errors and greater consistency.

• The optional ASC keyword creates the index in ascending order on the
column, while DESC creates the index in descending order on the column.
When neither is specifi ed, the default is ascending order.

• An index must have at least one column, but there is no practical upper
limit on the number of columns.

Indexes are powerful tools because they allow the DBMS to fi nd data much more
quickly, much like using the index in the back of a book to quickly fi nd a topic of
interest. Moreover, indexes on foreign key columns can dramatically improve join
performance. However, indexes take storage space and they must be maintained—
every time a column value referenced by an index is changed, the index must also be
changed. The DBMS automatically maintains the index, but the maintenance activity
consumes resources on the computer system.

The CREATE VIEW Statement
As mentioned in Chapter 1, views offer some great benefi ts to database users by
tailoring data to suit individual requirements and hiding complexity. Views have
very little overhead when created correctly, and they store no data. In essence, a
view is a stored SQL query that can be referenced in SQL DML and DQL state-
ments as if it were a real table. Some like to think of views as “virtual tables”
because they behave like tables (with some restrictions) but don’t physically exist
as tables. The general syntax for the CREATE VIEW statement is

CREATE [OR REPLACE] VIEW view_name AS sql_query;

 78 SQL Demystifi ed

• The optional OR REPLACE keyword eliminates the need for you to drop
an existing view before re-creating it. When OR REPLACE is specifi ed, if
the view already exists, it is replaced, and if it does not already exist, the
new view is simply added to the database.

• The view name must conform to the same naming rules as tables and other
database objects. As you will learn in Chapter 4, SQL queries name the
objects from which they select data but not the object type. This means that
view names must be unique among all tables and views in the database.
Said another way, view names and table names must come from the same
namespace, meaning the same domain of names.

• The SQL query included in the view defi nition can be any valid SQL
SELECT statement. You will learn about this essential statement in
Chapter 4. Creating views is a natural progression—you work with the SQL
query, making changes and rerunning it until you get the results exactly the
way you want them. Then, you simply add the CREATE VIEW statement
in front of the query that you have worked out and run the statement to
permanently store the query in the database as a view. It’s a very productive
(and enjoyable) way to work with databases.

The ALTER TABLE Statement
Once a table has been created, just about anything that was specifi ed in the
CREATE TABLE statement can be changed using the ALTER TABLE statement.
In recent years, DBMS vendors have offered ever-increasing fl exibility in changing
the defi nition of tables in place (that is, without having to drop and recreate them).
Much of this is out of necessity because of 7 × 24 uptime requirements (databases
that can never be taken out of service) and rapid data growth rates, yielding tables
so large that it’s not practical to drop and re-create them.

Another area where personal style and preference come into play is the use of the
ALTER TABLE statement. Many database administrators prefer to keep their
CREATE TABLE statements neat and simple, and thus they refrain from defi ning
constraints in the CREATE TABLE statement. Instead, they add ALTER TABLE
statements after the CREATE TABLE statement to add all the constraints to the
table (primary key, foreign key, unique, check, and so forth). The downside of this
approach is that it requires a lot more typing. On the other hand, the CREATE
TABLE statement is a lot easier to understand without constraints, and writing con-
straints independently makes it a lot easier to reuse the statements should you need
to drop and re-create constraints.

NOTE:

CHAPTER 3 Defi ning Database Objects Using SQL 79

While there is a bit of variation across DBMS implementations, here is a list of
the types of changes usually supported by the ALTER TABLE statement, along
with the general syntax for each type:

• Adding a column to a table. The column defi nition is exactly the same
syntax as the one used in the CREATE TABLE statement.

ALTER TABLE table_name
 ADD (<column_definition>
 [,<column_definition> ...];
Example:
ALTER TABLE CUSTOMER_ACCOUNT
 ADD (CUSTOMER_HOLD_DATE DATE NULL,
 HOLD_PLACED_BY VARCHAR(50));

• Changing the defi nition of a column. Most DBMSs won’t let you decrease
column precision if there is data in the table, and very few will let you
change the data type of an existing column. However, the ability to increase
the precision of a column, add or change a column default, or change
between NULL and NOT NULL is typically supported. Changing unnamed
column constraints can be problematic, which is another good reason to
name all your constraints.

ALTER TABLE table_name
 MODIFY [COLUMN] (column_definition)
 [,<column_definition> ...];
Example:
ALTER TABLE CUSTOMER_ACCOUNT
 MODIFY (CUSTOMER_DEPOSIT_AMOUNT NUMERIC(7,2)
 DEFAULT 0 NOT NULL);

NOTE: NOTE: Microsoft SQL Server, DB2, and PostgreSQL use the keyword ALTER
COLUMN instead of MODIFY COLUMN. However, MySQL and Oracle use the
MODIFY keyword as shown. Also note that most DBMSs will not permit you to
change a column to NOT NULL if there are existing rows in the table that have
null values in that column—you have to change the null values to some other
value fi rst. The UPDATE statement required to modify column data values is
covered in Chapter 7.

• Adding a new constraint. The constraint defi nition is identical to a table
constraint defi nition that could appear in a CREATE TABLE statement.

ALTER TABLE table_name
ADD CONSTRAINT <constraint_definition>;

 80 SQL Demystifi ed

Example:
ALTER TABLE CUSTOMER_ACCOUNT
 ADD CONSTRAINT CK_CUSTOMER_DEPOSIT_AMOUNT
 CHECK (CUSTOMER_DEPOSIT_AMOUNT >= 0 OR
 CUSTOMER_DEPOSIT_AMOUNT IS NULL);

• Dropping the primary key of the table. If the primary key is referenced by
any referential constraints, those must be dropped fi rst.

ALTER TABLE table_name DROP PRIMARY KEY;

• Renaming a column. Of the databases surveyed, only Oracle (version 8.0
or higher) supports this syntax. However, Microsoft SQL Server has a
stored procedure called sp_rename that provides a way to rename database
columns, tables, and other database objects.

ALTER TABLE table_name
 RENAME old_column_name TO new_column_name;

The DROP Statement
The DROP statement is the simplest of the DDL statements. The basic syntax is

DROP <object_type> object_name [<drop_options>]

• The object type names the type of object to be dropped, such as INDEX,
TABLE, or VIEW.

• The drop options are DBMS-specifi c. In particular, if a table is referenced
by any referential constraints, the DBMS will generally prevent you from
dropping it. However, several DBMSs provide a “cascade” option that
tells the DBMS to drop any referential constraints that get in the way
of dropping the table. Unfortunately, the syntax is not consistent across
vendors—PostgreSQL and MySQL use the keyword CASCADE for this
purpose, but Oracle requires the keyword CASCADE CONSTRAINTS.

 Here are a few examples. Beware: once you drop something, it’s gone—
there is no “undo” command in relational databases, and SQL doesn’t ask
“Are you sure?”

DROP TABLE CUSTOMER_ACCOUNT;
DROP TABLE CUSTOMER_ACCOUNT CASCADE CONSTRAINTS; (Oracle)
DROP TABLE CUSTOMER_ACCOUNT CASCADE; (MySQL / PostgreSQL)

DROP INDEX IX_MOVIE_TITLE;

CHAPTER 3 Defi ning Database Objects Using SQL 81

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. The benefi ts of data types are

 a. They conform to published standards

 b. They provide a set of behaviors useful to database users

 c. They provide data independence

 d. They restrict column data to characters that make sense

 e. They assist the DBMS in effi ciently storing column data

 2. Character data types

 a. Are more fl exible than numeric data types

 b. Support both fi xed- and variable-length column data

 c. Always require specifi cation of the precision and scale

 d. Cause columns to be padded with length out to the maximum length

 e. Can store strings in national language formats

 3. Numeric data types

 a. Are more fl exible than character data types

 b. Restrict column values to numbers and related symbols such as commas
and dollar signs

 c. Always require specifi cation of precision and scale

 d. Store either exact or approximate values

 e. Are well suited to use in calculations

 4. Standard numeric types include

 a. INTEGER

 b. NUMBER

 c. FLOAT

 d. BOOLEAN

 e. INTERVAL

 82 SQL Demystifi ed

 5. Standard temporal data types include

 a. DATETIME

 b. DATE

 c. TIMESTAMP

 d. TIMEZONE

 e. TIME

 6. NULL values

 a. Can be used to represent missing or unknown data values

 b. Are the same as blanks (spaces)

 c. Are equal to other NULL values

 d. Are not equal to other NULL values

 e. Are always allowed by default

 7. DDL statements include

 a. CREATE

 b. ALTER

 c. DELETE

 d. INSERT

 e. UPDATE

 8. The CREATE DATABASE statement

 a. Works exactly the same way in all relational DBMSs

 b. Always specifi es the database name

 c. Always specifi es the database owner’s name

 d. May include vendor-specifi c parameters

 e. Works the same as the CREATE SCHEMA statement

 9. The column defi nition in the CREATE TABLE statement may include

 a. The table name

 b. The column name

 c. A table constraint

 d. A DEFAULT clause

 e. A NULL or NOT NULL clause

CHAPTER 3 Defi ning Database Objects Using SQL 83

 10. A table column name

 a. Must be specifi ed in the CREATE TABLE statement

 b. Must be unique within the database

 c. Must be unique within the table

 d. May only be named in one index

 e. Must be specifi ed in the ALTER TABLE statement

 11. A column constraint

 a. May reference one or more columns

 b. May be included in either a CREATE TABLE or ALTER TABLE
statement

 c. Uses syntax that is identical or nearly identical to a table constraint of
the same type

 d. Can be used anywhere a table constraint can be used

 e. Has syntax that varies little from one constraint type to another

 12. The correct syntax for a DEFAULT clause is

 a. DEFAULT (precision,scale)

 b. DEFAULT [NULL | NOT NULL]

 c. DEFAULT (expression)

 d. DEFAULT (column_name) REFERENCES table_name (column_name)

 e. DEFAULT [UNIQUE | PRIMARY KEY]

 13. The correct syntax for a NOT NULL constraint is

 a. column_name data_type IS NOT NULL

 b. column_name data_type NOT NULL

 c. DEFAULT [NULL | NOT NULL]

 d. CREATE NOT NULL INDEX ON column_name

 e. column_name REFERENCES NOT NULL

 14. The correct syntax for a UNIQUE CONSTRAINT is

 a. [CONSTRAINT constraint_name] UNIQUE (column_name)

 b. [CONSTRAINT constraint_name] UNIQUE (table_name)

 c. DEFAULT UNIQUE (column_name)

 d. column_name REFERENCES UNIQUE table_name

 e. DEFAULT [UNIQUE | PRIMARY KEY]

 84 SQL Demystifi ed

 15. The correct syntax for a REFERENTIAL CONSTRAINT is

 a. [CONSTRAINT constraint_name] REFERENCES index_name

 b. [CONSTRAINT constraint_name] REFERENCES table_name

 c. FOREIGN KEY column_name REFERENCES table_name (column_
name)

 d. REFERENCES table_name (column_name)

 e. column_name REFERENCES UNIQUE table_name

 16. The CREATE INDEX statement

 a. Is used to create unique and primary key constraints

 b. May include the keyword UNIQUE

 c. Must reference two or more column names

 d. May include the ASC or DSC keyword for any column

 e. May specify ascending or descending for one or more columns

 17. The CREATE VIEW statement

 a. Stores a query in the database

 b. May include an optional CASCADE keyword

 c. May include an optional OR REPLACE keyword

 d. Must contain a valid DML command

 e. Must contain a valid SELECT statement

 18. Valid uses of the ALTER TABLE statement include

 a. Adding columns

 b. Changing column precision or length

 c. Renaming a table

 d. Dropping a primary key constraint

 e. Adding a primary key constraint

 19. An ALTER TABLE statement cannot be used to

 a. Change a column’s data type to a numeric type if the column contains
non-numeric data

 b. Rename a column

 c. Change a NULL constraint to NOT NULL for a column that contains
NULL values

CHAPTER 3 Defi ning Database Objects Using SQL 85

 d. Drop a foreign key constraint when the constraint references a primary key

 e. Drop a primary key constraint if there are foreign keys referencing the
primary key

 20. The DROP statement can be used to drop a

 a. Referential constraint

 b. Index

 c. Table

 d. Table column

 e. View

This page intentionally left blank

87

4

Retrieving Data
Using Data

Query Language
(DQL)

The SQL Data Query Language (DQL) includes only one command, but it’s a very
important one: SELECT. The SELECT command is used to retrieve data from the
database (without modifying it) so that it can be processed by an application pro-
gram or simply displayed for an individual. It is undoubtedly the most commonly
used SQL command. Many database users use the term “SELECT statement” when
referring to SQL statements that use the SELECT command. The result of a
SELECT statement, which is called a result set, is always returned in the form of

CHAPTER

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 88 SQL Demystifi ed

a table (that is, in rows and columns). Keep in mind that SQL is a nonprocedural
language, so you specify the result that you want (that is, the way you want the
result set to be returned) rather than how to achieve it.

The Basic SELECT Statement
The most basic SELECT statement contains two clauses:

• SELECT [DISTINCT] Lists the columns that are to be returned in
the result set, separated by commas. The asterisk symbol (*) may be
used in place of a column list in order to select all columns in a table or
view. This is a useful feature for quickly listing data, but it should be
avoided in statements that will be reused because it compromises logical
data independence—any new column added to the table or view will be
automatically selected the next time the statement is run, and this may
not be a desirable result. The keyword DISTINCT may be added after the
SELECT keyword to eliminate any duplicate rows in the query results.

• FROM Lists the tables or views from which data is to be selected.
A synonym, which is an alias for a table or view that is defi ned in the
database, may be used in place of the real name for the table or view.

Actually, the FROM clause isn’t quite as straightforward as it sounds. Most rela-
tional DBMSs provide functions that return system level data that does not reside
in a table or view, such as the current date and time, which is provided in Oracle by
the CURRENT_DATE function, and in Microsoft SQL Server by the getdate()
function. Moreover, in Microsoft SQL Server, it is permissible to omit the FROM
clause in a SELECT statement if none of the data being retrieved comes from a
table or view. In most, if not all, other SQL implementations, the FROM clause is
mandatory. Oracle has an unusual feature—it provides a dummy table called DUAL
that can be used when none of the columns in the SELECT statement comes from
a real table or view.

The following example selects the MOVIE_GENRE, MPAA_RATING_CODE,
and MOVIE_TITLE columns from the MOVIE table. There are 20 movies in the
sample MOVIE table, but only the fi rst four are shown here.

SELECT MOVIE_GENRE_CODE, MPAA_RATING_CODE, MOVIE_TITLE
 FROM MOVIE;

CHAPTER 4 Retrieving Data Using Data Query Language 89

MOVIE_GENRE_CODE MPAA_RATING_CODE MOVIE_TITLE
---------------- ---------------- ----------------------
Drama R Mystic River
ActAd R The Last Samurai
Comdy PG-13 Something's Gotta Give
ActAd PG-13 The Italian Job
...
(20 row(s) affected)

Note the following:

• The result set shown was generated by Microsoft SQL Server. If you try it
with a different DBMS, the format might be a little different.

• The rows in the result set are in no particular order. You will learn how to
specify the order in which you want rows returned in the next section.

• All rows in the MOVIE table were returned because we did not tell the
DBMS to limit the rows. You’ll learn how to do this in an upcoming topic.

• The last line of the result set is a message telling you that the statement ran
successfully, which is sometimes called feedback. The message shown here
came from Microsoft SQL Server. Other DBMSs use different message
formats. For example, Oracle would have displayed “20 rows selected.”
instead.

• You may have noticed that the data in the MOVIE_GENRE column
isn’t always clear. It’s easy to see the meaning of “Drama” and “Comdy”
(Comedy), but “ActAd” (Action/Adventure) is mighty cryptic. These are
codes for movie categories, and the MOVIE_GENRE_CODE column in
the MOVIE table is a foreign key to the MOVIE_GENRE table. As an
alternative design, I could have simply numbered the categories, but when
there are a relatively small number of values, I prefer codes that are easier
for humans to remember, often called mnemonic values. In Chapter 5 you
will learn how to combine columns from multiple tables in a single SELECT
statement, called joining tables, which in this example would allow us to
replace the MOVIE_GENRE_CODE column with the MOVIE_GENRE_
DESCRIPTION from the MOVIE_GENRE table, yielding a much more
user-friendly result set.

• I have indented the line containing the FROM clause so it aligns nicely
with the line above it. This is not at all necessary, but formatting SQL in
this way is a nice practice because it makes your SQL easier to read.

 90 SQL Demystifi ed

Column Name Aliases
You may have noticed in the result set of the previous query that the column names
from the table automatically appear as the column headers in the result set. How-
ever, it doesn’t have to be this way because the SQL statement provides a convenient
way to give the columns aliases. The aliases then become the column names in the
result set. One word of caution, however—the aliases do not exist until after the
SQL statement has run, so they cannot be used in most other parts of the SQL state-
ment. A column alias is assigned by placing the keyword “AS” after the column
name in the SELECT list (with at least one space before and after it), followed by
the name you wish to assign to the column in the result set. Many DBMSs will
allow you to omit the “AS” keyword, simply leaving a space between the column
name and alias name—the SQL engine knows it’s an alias instead of the next col-
umn name because commas are used to separate column names in the SELECT list.
In essence, the alias renames the column but only in the result set. Here is the same
SQL statement I used before, with MOVIE_GENRE_CODE renamed to GENRE
and MPAA_RATING_CODE renamed to RATING. As before, only the fi rst four
rows are displayed here:

SELECT MOVIE_GENRE_CODE AS GENRE,
 MPAA_RATING_CODE AS RATING, MOVIE_TITLE
 FROM MOVIE;

GENRE RATING MOVIE_TITLE
----- ------ -------------------------
Drama R Mystic River
ActAd R The Last Samurai
Comdy PG-13 Something's Gotta Give
ActAd PG-13 The Italian Job

Sorting Results
Query results are often more useful if we specify a sequence for the returned rows
that makes sense to the person or application program that will be using the infor-
mation. There is no guarantee as to the sequence of the rows in the result set unless
the desired sequence is specifi ed in the query. In SQL, this is done by adding an
ORDER BY clause to the SELECT statement, with a list of one or more columns
that will be used to order the rows in ascending or descending sequence according
to the data values in the columns. Also note the following points:

CHAPTER 4 Retrieving Data Using Data Query Language 91

• Ascending sequence is the default for each column, but the keyword ASC
may be added after the column name for ascending sequence, and DESC
may be added for descending sequence.

• The column(s) named in the ORDER BY list do not have to be included in
the query result set (that is, the SELECT list). However, it is better human
engineering if you do.

• The SQL engine in the DBMS will fi gure out the best way to sequence
the columns. In general, sorting data is an expensive process in terms of
computer resources, so most DBMSs will use an index to access the rows
in the desired sequence, assuming one exists, and only do an actual sort as
a last resort.

• You can use column alias names in the ORDER BY clause, but when you
do so, you are forcing the SQL engine in the DBMS to sort the result set
after the query has been run. An index on the column(s) on which you are
sorting the data cannot be used because that index references the column
names and not the aliases. The point here is that the SQL engine has more
fl exibility in how it goes about putting the result set in the requested
sequence if you always use column names in the ORDER BY clause.

• Instead of column names, the relative position of the columns in the results
may be listed. For example, ORDER BY 1,2 would order the results in
ascending sequence by the fi rst two columns in the result set. The number
provided has no correlation with the column position in the source table
or view, however. This option is frowned upon in formal SQL because
someone changing the query at a later time might shuffl e columns around
in the SELECT list and not realize that, in doing so, they are changing the
columns used for sorting results.

In the case of the prior SELECT statement, let’s assume that presenting the rows
in ascending order by MPAA Rating and Movie Genre Code would be useful. From
a human engineering perspective, it’s best to place those columns fi rst in the query
results and in the same order as the ORDER BY column list (at least in languages
that are read left to right). This makes the row ordering readily apparent to the
reader. The revised SELECT statement and query results follow. All 20 rows in the
MOVIE table are listed so you can see the sequencing. However, some movie titles
were shortened so that each row fi ts on one line on the printed page. In typical SQL
clients, rows that are too long wrap to a new line for display, but I have avoided that
here because wrapped lines are so diffi cult to read.

SELECT MPAA_RATING_CODE AS RATING,
 MOVIE_GENRE_CODE AS GENRE, MOVIE_TITLE

 92 SQL Demystifi ed

 FROM MOVIE
 ORDER BY MPAA_RATING_CODE, MOVIE_GENRE_CODE;

RATING GENRE MOVIE_TITLE
------ ----- --
PG-13 ActAd The Italian Job
PG-13 ActAd Pirates of the Caribbean: The Curse of the
PG-13 ActAd Master and Commander: The Far Side of the
PG-13 ActAd The Day After Tomorrow
PG-13 Comdy 50 First Dates
PG-13 Comdy Matchstick Men
PG-13 Comdy The School of Rock
PG-13 Comdy Something's Gotta Give
PG-13 Drama Big Fish
PG-13 Rmce Two Weeks Notice
PG-13 Rmce 13 Going on 30
R ActAd Man on Fire
R ActAd Kill Bill: Vol. 1
R ActAd The Last Samurai
R Drama Mystic River
R Drama Lost in Translation
R Drama Road to Perdition
R Drama Cold Mountain
R Drama Monster
R Forgn Das Boot

(20 row(s) affected)

Note that in the result set, all rows for the same value of MPAA Rating Code
(RATING column) appear together, and within each MPAA Rating the rows are
ordered by the Movie Genre Code (GENRE column). Most IT (Information Tech-
nology) professionals would say that the result set is ordered by Genre within
Rating. Just for fun, let’s order the rows by Genre descending within Rating
ascending. Here is the revised SELECT statement and the corresponding result set
(from an Oracle database this time, using the SQL*Plus client, so you can see the
differences in the formatting of the result set):

SELECT MPAA_RATING_CODE AS RATING,
 MOVIE_GENRE_CODE AS GENRE, MOVIE_TITLE
 FROM MOVIE
 ORDER BY MPAA_RATING_CODE ASC, MOVIE_GENRE_CODE DESC

CHAPTER 4 Retrieving Data Using Data Query Language 93

RATIN GENRE MOVIE_TITLE
----- ----- --
PG-13 Rmce Two Weeks Notice
PG-13 Rmce 13 Going on 30
PG-13 Drama Big Fish
PG-13 Comdy Something's Gotta Give
PG-13 Comdy 50 First Dates
PG-13 Comdy The School of Rock
PG-13 Comdy Matchstick Men
PG-13 ActAd The Italian Job
PG-13 ActAd Master and Commander: The Far Side of the
PG-13 ActAd Pirates of the Caribbean: The Curse of the
PG-13 ActAd The Day After Tomorrow
R Forgn Das Boot
R Drama Mystic River
R Drama Cold Mountain
R Drama Road to Perdition
R Drama Lost in Translation
R Drama Monster
R ActAd The Last Samurai
R ActAd Man on Fire
R ActAd Kill Bill: Vol. 1

20 rows selected.

Did you notice the following differences?

• As specifi ed, Genre is sorted in descending order within Rating.

• Oracle displayed “RATIN” instead of “RATING” as the column header
in the result set. The column alias really is “RATING”, but Oracle’s
SQL*Plus automatically shortens column headers if they are longer than
the longest data value in the column’s data (a trait I have never particularly
liked). The good news is that this behavior can be changed with some
formatting commands that come with SQL*Plus, which we won’t go into
here. The better news is that Oracle’s latest SQL Client, iSQL*Plus, doesn’t
behave this way at all. However, the real lesson here is that there is a wide
variation in the behavior of the various databases and SQL clients, and you
have to be ready to deal with those differences.

• The completion message at the end of the result set is “20 rows selected.”
instead of “(20 row(s) affected)”.

 94 SQL Demystifi ed

Using the WHERE Clause to Filter Rows
SQL uses the WHERE clause for the selection of rows to display. As you have al-
ready seen, a query without a WHERE clause yields a result set that contains all the
rows in the table(s) or view(s) referenced in the FROM clause. When a WHERE
clause is included, the rules of Boolean algebra, named for logician George Boole,
are used to evaluate the WHERE clause for each row of data. Only rows for which
the WHERE clause evaluates as a logical “true” are displayed in the query results.

As you will see in the examples that follow, individual tests of conditions must
evaluate as “true,” “false,” or “unknown.” Actually, the “unknown” result is not part
of Boolean algebra at all—it comes from the use of null values in relational databases.
See “IS NULL” in the “Logical Operators” section a bit later in this chapter.

Comparison Operators
Comparison operators are used in the WHERE clause to compare two values, yield-
ing a logical “true” or “false” as a result. The two values being compared may be
constants supplied in the WHERE clause, column values from the database, or a com-
bination of the two. The comparison operators that can be used in WHERE clauses
are shown in the following table:

Operator Description

= Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

!= Not equal to

<> Not equal to (ANSI standard)

Here are some examples:

• List all movies with an MPAA Rating of PG-13.

SELECT MPAA_RATING_CODE AS RATING,
 MOVIE_TITLE
 FROM MOVIE
 WHERE MPAA_RATING_CODE = 'PG-13'
 ORDER BY MOVIE_TITLE;

CHAPTER 4 Retrieving Data Using Data Query Language 95

RATING MOVIE_TITLE
------ --
PG-13 13 Going on 30
PG-13 50 First Dates
PG-13 Big Fish
PG-13 Master and Commander: The Far Side of the World
PG-13 Matchstick Men
PG-13 Pirates of the Caribbean: The Curse of the Black
PG-13 Something's Gotta Give
PG-13 The Day After Tomorrow
PG-13 The Italian Job
PG-13 The School of Rock
PG-13 Two Weeks Notice

11 rows selected.

• List all movies with an MPAA Rating other than PG-13. Notice that there
are 20 rows in the MOVIE table, and the DBMS found 11 of them matching
on PG-13, so it seems logical that it would fi nd the other 9 that are not equal
to “PG-13.” However, if there were a null value in the column, that row
would not appear in the results of either of these queries. It will seem odd to
you at fi rst, but a null value isn’t equal to PG-13 and it isn’t “not equal” to
PG-13—it’s just null. You’ll see more on null values in an upcoming topic.

SELECT MPAA_RATING_CODE AS RATING,
 MOVIE_TITLE
 FROM MOVIE
 WHERE MPAA_RATING_CODE <> 'PG-13'
 ORDER BY MOVIE_TITLE;

RATING MOVIE_TITLE
------ --
R Cold Mountain
R Das Boot
R Kill Bill: Vol. 1
R Lost in Translation
R Man on Fire
R Monster
R Mystic River
R Road to Perdition
R The Last Samurai

9 rows selected.

 96 SQL Demystifi ed

• List all movies with a DVD Retail Price under 19.99, in descending order
by price.

SELECT RETAIL_PRICE_DVD, MOVIE_TITLE
 FROM MOVIE
 WHERE RETAIL_PRICE_DVD < 19.99
 ORDER BY RETAIL_PRICE_DVD DESC;

RETAIL_PRICE_DVD MOVIE_TITLE
---------------- ------------------------------------
 19.97 Matchstick Men
 19.96 Mystic River
 19.96 The Last Samurai
 19.94 Big Fish
 19.94 50 First Dates
 19.94 Das Boot
 14.99 Road to Perdition
 14.98 Lost in Translation
 14.97 Two Weeks Notice

9 rows selected.

• List all movies with a DVD Retail Price of 19.99 or less. Notice that one
title with a price of exactly 19.99 appears in the results of this query, but
it was not in the results of the previous example.

SELECT RETAIL_PRICE_DVD, MOVIE_TITLE
 FROM MOVIE
 WHERE RETAIL_PRICE_DVD <= 19.99
 ORDER BY RETAIL_PRICE_DVD DESC;

RETAIL_PRICE_DVD MOVIE_TITLE
---------------- --------------------------------------
 19.99 The Italian Job
 19.97 Matchstick Men
 19.96 Mystic River
 19.96 The Last Samurai
 19.94 Big Fish
 19.94 Das Boot
 19.94 50 First Dates
 14.99 Road to Perdition
 14.98 Lost in Translation
 14.97 Two Weeks Notice

10 rows selected.

CHAPTER 4 Retrieving Data Using Data Query Language 97

• List all movies with a DVD Retail Price of 25.00 or more, sorting in
ascending order by price.

SELECT RETAIL_PRICE_DVD, MOVIE_TITLE
 FROM MOVIE
 WHERE RETAIL_PRICE_DVD >= 25.00
 ORDER BY RETAIL_PRICE_DVD ASC;

RETAIL_PRICE_DVD MOVIE_TITLE
---------------- --------------------------------------
 28.95 13 Going on 30
 29.98 Man on Fire
 29.98 The Day After Tomorrow
 29.99 Something's Gotta Give
 29.99 Kill Bill: Vol. 1
 29.99 Cold Mountain
 29.99 Monster
 29.99 The School of Rock
 29.99 Pirates of the Caribbean: The Curse of
 39.99 Master and Commander: The Far Side of

10 rows selected.

Conjunctive Operators
Sometimes multiple conditions are necessary in order to narrow the query result
set. When multiple conditions are used, they must be logically combined in the
WHERE clause, and this is the job of conjunctive operators. These operators are

• AND The WHERE clause evaluates to “true” if all of the conditions
connected with the AND operator are true.

• OR The WHERE clause evaluates to “true” if any of the conditions
connected with the OR operator are true.

Things get complicated if AND and OR operators are mixed in the same WHERE
clause. The AND operator is a higher precedence and therefore is evaluated before
any OR operators. However, you can do yourself a big favor by always using paren-
theses to control the evaluation of a WHERE clause that mixes the two conjunctive
operators. Conditions inside parentheses are always evaluated fi rst, and making the
evaluation you intend explicitly clear in the statement not only helps you, but also
anyone else who might read your SQL statement at a later time.

 98 SQL Demystifi ed

Here are some examples using conjunctive operators:

• List all movies that are rated PG-13 and have a DVD retail price of 19.99
or less, in ascending sequence by price.

SELECT MPAA_RATING_CODE AS RATING,
 RETAIL_PRICE_DVD AS PRICE,
 MOVIE_TITLE
 FROM MOVIE
 WHERE MPAA_RATING_CODE = 'PG-13'
 AND RETAIL_PRICE_DVD <= 19.99
 ORDER BY RETAIL_PRICE_DVD;

RATING PRICE MOVIE_TITLE
------ ---------- --------------------------------------
PG-13 14.97 Two Weeks Notice
PG-13 19.94 Big Fish
PG-13 19.94 50 First Dates
PG-13 19.97 Matchstick Men
PG-13 19.99 The Italian Job

5 rows selected.

• List all movies that are rated PG-13 or have a DVD retail price of 19.99
or less, in ascending sequence by price. You should get more rows in this
result set because all PG-13 movies will be listed regardless of price, and
all movies with a price of 19.99 or less will be listed regardless of their
rating.

SELECT MPAA_RATING_CODE AS RATING,
 RETAIL_PRICE_DVD AS PRICE,
 MOVIE_TITLE
 FROM MOVIE
 WHERE MPAA_RATING_CODE = 'PG-13'
 OR RETAIL_PRICE_DVD <= 19.99
 ORDER BY MPAA_RATING_CODE, RETAIL_PRICE_DVD;

RATING PRICE MOVIE_TITLE
------ ---------- --------------------------------------
PG-13 14.97 Two Weeks Notice
R 14.98 Lost in Translation
R 14.99 Road to Perdition
PG-13 19.94 Big Fish
R 19.94 Das Boot
PG-13 19.94 50 First Dates

CHAPTER 4 Retrieving Data Using Data Query Language 99

R 19.96 Mystic River
R 19.96 The Last Samurai
PG-13 19.97 Matchstick Men
PG-13 19.99 The Italian Job
PG-13 28.95 13 Going on 30
PG-13 29.98 The Day After Tomorrow
PG-13 29.99 Something’s Gotta Give
PG-13 29.99 The School of Rock
PG-13 29.99 Pirates of the Caribbean: The Curse of
PG-13 39.99 Master and Commander: The Far Side of

16 rows selected.

• List all movies that are rated PG-13 and are either in the drama or action-
adventure genre. While the intent may seem clear in the previous sentence,
if the WHERE clause is written exactly as stated and without parentheses,
you get incorrect results. The problem is that AND is evaluated before OR,
which means that you will get all the movies with genre ActAd regardless
of their rating. Here is the statement written that way and the unintended
result set:

SELECT MOVIE_GENRE_CODE AS GENRE,
 MPAA_RATING_CODE AS RATING,
 MOVIE_TITLE
 FROM MOVIE
 WHERE MOVIE_GENRE_CODE = 'ActAd'
 OR MOVIE_GENRE_CODE = 'Drama'
 AND MPAA_RATING_CODE = 'PG-13'
 ORDER BY MOVIE_GENRE_CODE, MPAA_RATING_CODE;

GENRE RATING MOVIE_TITLE
----- ------ --------------------------------------
ActAd PG-13 The Italian Job
ActAd PG-13 Pirates of the Caribbean: The Curse of
ActAd PG-13 The Day After Tomorrow
ActAd PG-13 Master and Commander: The Far Side of
ActAd R The Last Samurai
ActAd R Man on Fire
ActAd R Kill Bill: Vol. 1
Drama PG-13 Big Fish

8 rows selected.

 100 SQL Demystifi ed

• Let’s add parentheses so all the movies are PG-13 and either Action-
Adventure or Drama. Here is the corrected statement and the results (which
are now as intended):

SELECT MOVIE_GENRE_CODE AS GENRE,
 MPAA_RATING_CODE AS RATING,
 MOVIE_TITLE
 FROM MOVIE
 WHERE (MOVIE_GENRE_CODE = 'ActAd'
 OR MOVIE_GENRE_CODE = 'Drama')
 AND MPAA_RATING_CODE = 'PG-13'
 ORDER BY MOVIE_GENRE_CODE, MPAA_RATING_CODE;
GENRE RATING MOVIE_TITLE
----- ------ --------------------------------------
ActAd PG-13 The Italian Job
ActAd PG-13 Pirates of the Caribbean: The Curse of
ActAd PG-13 Master and Commander: The Far Side of
ActAd PG-13 The Day After Tomorrow
Drama PG-13 Big Fish

5 rows selected.

Logical Operators
Logical operators use keywords instead of symbols when forming comparisons.
The logical operators available in most SQL implementations are presented in top-
ics that follow. The keyword NOT can be added to any of them to logically reverse
the comparison.

IS NULL
The IS NULL operator is used to determine if a value is null. It is important to
remember that null values in the database are not equal to anything else, including
another null value. This is why a condition such as “= NULL” is always
incorrect—nothing is ever equal to a null value. Here are some examples:

• Find all active customer accounts, which are those where the DATE_
TERMINATED column contains a null value:

SELECT CUSTOMER_ACCOUNT_ID
 FROM CUSTOMER_ACCOUNT
 WHERE DATE_TERMINATED IS NULL;

CHAPTER 4 Retrieving Data Using Data Query Language 101

CUSTOMER_ACCOUNT_ID

 1
 2
 3
 4
 5
 7
 8
 9

8 rows selected.

• Find all inactive customer accounts, which are those where the DATE_
TERMINATED column contains a value other than null:

SELECT CUSTOMER_ACCOUNT_ID
 FROM CUSTOMER_ACCOUNT
 WHERE DATE_TERMINATED IS NOT NULL;

CUSTOMER_ACCOUNT_ID

 6

1 row selected.

BETWEEN
The BETWEEN operator is used to determine if a value falls within a range. The
range is specifi ed using a minimum value and a maximum value, and the range is
inclusive, which means that the minimum and maximum values are included in the
range. This is a nice shorthand way of writing a range condition that is also easier
to read and understand. For instance, the condition “WHERE MOVIE_ID
BETWEEN 7 AND 9” is the same as the condition “WHERE MOVIE_ID >= 7
AND MOVIE_ID <= 9”. Here are some examples:

• Find all movies with a RETAIL_PRICE_DVD between 14.99 and 19.99.
Notice that movies with a price of exactly 14.99 or 19.99 are included in
the result set.

SELECT MOVIE_TITLE, RETAIL_PRICE_DVD
 FROM MOVIE
 WHERE RETAIL_PRICE_DVD BETWEEN 14.99 AND 19.99
 ORDER BY RETAIL_PRICE_DVD;

 102 SQL Demystifi ed

MOVIE_TITLE RETAIL_PRICE_DVD
-------------------- ----------------
Road to Perdition 14.99
Big Fish 19.94
Das Boot 19.94
50 First Dates 19.94
Mystic River 19.96
The Last Samurai 19.96
Matchstick Men 19.97
The Italian Job 19.99

8 rows selected.

• List all movies with a RETAIL_PRICE_DVD that is not between 14.99 and
19.99. Notice that movies with a price of exactly 14.99 and 19.99 are not
included, and only those with a price less than 14.99 or greater than 19.99
are selected.

SELECT MOVIE_TITLE, RETAIL_PRICE_DVD
 FROM MOVIE
 WHERE RETAIL_PRICE_DVD NOT BETWEEN 14.99 AND 19.99
 ORDER BY RETAIL_PRICE_DVD;

MOVIE_TITLE RETAIL_PRICE_DVD
-------------------- ----------------
Two Weeks Notice 14.97
Lost in Translation 14.98
13 Going on 30 28.95
Man on Fire 29.98
The Day After Tomorr 29.98
Something’s Gotta Gi 29.99
Cold Mountain 29.99
Monster 29.99
The School of Rock 29.99
Kill Bill: Vol. 1 29.99
Pirates of the Carib 29.99
Master and Commander 39.99

12 rows selected.

NOTE:

CHAPTER 4 Retrieving Data Using Data Query Language 103

• List customer accounts opened during January 2005. Note that logical
operators work on date columns just as well as they do on numeric and
character format columns:

SELECT CUSTOMER_ACCOUNT_ID, DATE_ENROLLED
 FROM CUSTOMER_ACCOUNT
 WHERE DATE_ENROLLED BETWEEN '2005/01/01'
 AND '2005/01/31';

CUSTOMER_ACCOUNT_ID DATE_ENROLLED
------------------- --------------
 1 2005-01-01
 2 2005-01-18

2 rows selected.

NOTE: NOTE: In Oracle, the default date format must be changed in order for this
example to work correctly. This statement will change the date format for the
current database session to the format used in the example:

ALTER SESSION SET NLS_DATE_FORMAT='YYYY/MM/DD'

LIKE
The LIKE operator is used to compare a character value to a pattern, returning a
logical “true” if the character value matches the pattern, and “false” if not. Two
wildcard characters may be used in the pattern:

• Underscore (_) The underscore character (_) may be used as a positional
wildcard, meaning it matches any character in that position of the character
string being evaluated.

• Percent (%) The percent sign (%) may be used as a nonpositional
wildcard, meaning it matches any number of characters for any length.

Note that Microsoft Access has a similar feature, but the question mark (?) is
used as the positional wildcard, and the asterisk (*) as the nonpositional wildcard
(these match the conventions used in DOS and Visual Basic).

 104 SQL Demystifi ed

Here are some sample patterns to help you visualize the use of patterns containing
wildcards:

Pattern Interpretation

%Now Matches any character string that ends with “Now”.

Now% Matches any character string that begins with “Now”.

%Now% Matches any character string that contains “Now” (whether
at the beginning, the end, or in the middle).

N_w Matches any character string containing exactly three
characters, where the fi rst character is “N” and the last
character is “w”.

%N_w% Matches any character string that contains the character “N”
followed by any character, followed by the character “w”,
whether at the beginning, end, or in the middle of the string.

Keep in mind that data in relational databases is always case sensitive. A lower-
case letter in the data will not match with an uppercase letter in a LIKE clause
pattern, and vice versa. However, the UPPER and LOWER functions introduced a
little later in this chapter can be used to shift the case of the data coming from the
database to make matching mixed case data a little easier.

Here is an example using the LIKE operator:

• List all movie titles that contain the character string “on”:

SELECT MOVIE_TITLE
 FROM MOVIE
 WHERE MOVIE_TITLE LIKE '%on%';

MOVIE_TITLE

13 Going on 30
Lost in Translation
Man on Fire
Monster
Road to Perdition

5 rows selected.

 Perhaps that isn’t quite what you wanted. If you had intended to fi nd titles
that contained only the word “on” instead of the letters “on” when they
appear as part of a word, you should have placed spaces in the pattern,
like this:

CHAPTER 4 Retrieving Data Using Data Query Language 105

SELECT MOVIE_TITLE
 FROM MOVIE
 WHERE MOVIE_TITLE LIKE '% on %';

MOVIE_TITLE

13 Going on 30
Man on Fire

2 rows selected.

IN
The IN operator is used to determine if a value falls within a list of values. The list
of values may be provided as literal values, using a comma-separated list that is
enclosed in parentheses, or may be selected from the database using a subselect,
which is a query within a query. Subselects are covered in detail in Chapter 5. Here
are some examples using the IN operator:

• List all movies that have a MOVIE_GENRE_CODE of Drama, Forgn or
Rmce. Obviously, this query could be written with three equal conditions
separated with the OR logical operator, but look how much easier it is to
write using the IN operator:

SELECT MOVIE_GENRE_CODE AS GENRE, MOVIE_TITLE
 FROM MOVIE
 WHERE MOVIE_GENRE_CODE IN ('Drama','Forgn','Rmce')
 ORDER BY MOVIE_GENRE_CODE, MOVIE_TITLE;

GENRE MOVIE_TITLE
----- ----------------------
Drama Big Fish
Drama Cold Mountain
Drama Lost in Translation
Drama Monster
Drama Mystic River
Drama Road to Perdition
Forgn Das Boot
Rmce 13 Going on 30
Rmce Two Weeks Notice

9 rows selected.

 106 SQL Demystifi ed

• List all movies where the description of the movie genre contains the word
“and”. This requires a subselect to fi nd the values of MOVIE_GENRE_
CODE that have the word “and” in their description. Then the IN operator
is used to fi nd movies that have one of the codes selected in the subselect.
Subselects are covered in more detail in Chapter 5. For now, just keep in
mind that the inner select (the one in parentheses) is executed fi rst and the
result set from the inner select is used as the list of values by the IN operator
in the outer select. Note that while several genres have descriptions that
contain the word “and”, only one of these categories (Action and Adventure,
or “ActAd”) currently has movies in the video store. Of course, this is not
a bad thing at all because this query can be run at a later time when the
inventory might contain those additional genres.

SELECT MOVIE_GENRE_CODE AS GENRE, MOVIE_TITLE
 FROM MOVIE
 WHERE MOVIE_GENRE_CODE IN
 (SELECT MOVIE_GENRE_CODE
 FROM MOVIE_GENRE
 WHERE MOVIE_GENRE_DESCRIPTION LIKE '% and %')
 ORDER BY MOVIE_GENRE_CODE, MOVIE_TITLE;

GENRE MOVIE_TITLE
----- --
ActAd Kill Bill: Vol. 1
ActAd Man on Fire
ActAd Master and Commander: The Far Side of the
ActAd Pirates of the Caribbean: The Curse of the
ActAd The Day After Tomorrow
ActAd The Italian Job
ActAd The Last Samurai

7 rows selected.

EXISTS
The EXISTS operator is used to determine if a subselect has any rows in it. If there
are no rows in the subselect’s result set, a logical “false” is set; if the result set has one
or more rows in it, a logical “true” is set. Again, subselects are covered in more detail
in Chapter 5, but here is an example using EXISTS so you can see how it works:

• The store manager has heard that the movie The Last Samurai rents
well in both DVD and VHS formats, and she wants to be sure there is a

CHAPTER 4 Retrieving Data Using Data Query Language 107

VHS copy in the store’s inventory. The MOVIE_COPY table has a row
for each copy of a movie in the inventory, so you can use a subselect to
fi nd out if there are VHS copies of the movie in inventory. The EXISTS
operator is most often used in conjunction with a more complicated form
of subquery call a correlated subquery, where a data value from the outer
select (the MOVIE_ID in this case) is matched against rows in the inner
query. If you fi nd the syntax in this example confusing, don’t be overly
concerned because we’ll revisit it in Chapter 5. For now, just know that
the subselect will return a row if the movie has a VHS copy in stock and
will return no rows if not. By the way, this same query could also be
written using the IN operator or using a join, which matches rows in the
two tables. Joins are also covered in Chapter 5.

SELECT MOVIE_ID, MOVIE_TITLE
 FROM MOVIE m
 WHERE MOVIE_TITLE = 'The Last Samurai'
 AND EXISTS
 (SELECT MOVIE_ID
 FROM MOVIE_COPY c
 WHERE m.MOVIE_ID = c.MOVIE_ID);

 MOVIE_ID MOVIE_TITLE
---------- ------------------
 2 The Last Samurai

1 row selected.

• If you reverse the logic using a NOT EXISTS, you can list the movie title
only if there is not a VHS copy in the inventory.

SELECT MOVIE_ID, MOVIE_TITLE
 FROM MOVIE m
 WHERE MOVIE_TITLE = 'The Last Samurai'
 AND NOT EXISTS
 (SELECT MOVIE_ID
 FROM MOVIE_COPY c
 WHERE m.MOVIE_ID = c.MOVIE_ID);

no rows selected

 108 SQL Demystifi ed

Arithmetic Operators
Arithmetic operators perform mathematical calculations in SQL—just as you would
in a spreadsheet formula or in a programming language such as Java or C. The four
arithmetic operators are as follows:

Operator Description

+ Addition

− Subtraction

* Multiplication

/ Division

As with the conjunctive operators, if you mix arithmetic operators in the same
SQL statement without using parentheses, there is a precedence that determines the
order in which the operators are evaluated. Thankfully, the precedence in SQL is
the same one we use in regular mathematics. In grade school, I learned the phrase
“Please My Dear Aunt Sally” to remind me that the order of precedence is parenthe-
ses, multiplication, division, addition, and subtraction. However, it’s always best to
use parentheses so that neither you nor anyone who reads your SQL statement has
to remember the order of precedence. Here are some examples using arithmetic
operators:

• How much would it cost to buy both the VHS and DVD copies of The
Last Samurai? Notice that I am using an alias name for the column in the
result set. If I didn’t do this, the SQL engine would be forced to generate
a name for the column since the column value in the result set comes from
a function instead of a column. Generated names are usually not easy to
read, so I recommend you always give an alias name to any calculated
column.

SELECT RETAIL_PRICE_VHS + RETAIL_PRICE_DVD AS COST
 FROM MOVIE
 WHERE MOVIE_TITLE = 'The Last Samurai';

 COST

 35.91

• How much would the same purchase cost if I had a coupon for $5 off?
Although not technically necessary, I added parentheses because they make
the statement more readable.

CHAPTER 4 Retrieving Data Using Data Query Language 109

SELECT (RETAIL_PRICE_VHS + RETAIL_PRICE_DVD) - 5 AS COST
 FROM MOVIE
 WHERE MOVIE_TITLE = 'The Last Samurai';

 COST

 30.91

• If the tax rate is 8.25 percent (0.0825), what would be the sales tax on the
purchase? Assume that tax is calculated on the entire sale price (that is,
before any coupons are subtracted). The parentheses in this statement are
essential to getting a correct result—you must make sure the addition is
done before the multiplication. You might also notice that I omitted the
spaces before and after the addition operator (+). While more diffi cult to
read this way, SQL does not require that arithmetic operators have spaces
around them.

SELECT (RETAIL_PRICE_VHS+RETAIL_PRICE_DVD) * 0.0825 AS TAX
 FROM MOVIE
 WHERE MOVIE_TITLE = 'The Last Samurai';

 TAX

 2.8728

You may have noticed that the result has more than two decimal places, which
doesn’t match the precision of U.S. currency (dollars and cents). However, you
have not learned how to round numbers yet. Rounding can be done using an SQL
function, which I discuss in the “Basic SQL Functions” section, so you’ll soon
know how to round.

• What is the average cost of a copy of The Last Samurai? You’ll determine
this by adding the DVD and VHS prices and dividing by 2. Again, the
parentheses are essential to achieving a correct result. You may notice that
this result could also benefi t from rounding.

SELECT (RETAIL_PRICE_VHS + RETAIL_PRICE_DVD) / 2 AS AVG_COST

 FROM MOVIE

 WHERE MOVIE_TITLE = 'The Last Samurai'

 AVG_COST

 17.955

 110 SQL Demystifi ed

Basic SQL Functions
A function is a special type of program that returns a single value each time it is
invoked. The term comes from the mathematical concept of a function. In SQL,
functions always require an expression, which often includes the name of a column.
Functions are most often used in the column list of the SELECT statement and are
invoked for each row processed by the query and therefore return a single value for
each row that appears in the result set. Sometimes the term column function is used
to remind you that the function is being applied to a table or view column. A num-
ber of functions are provided by the DBMS vendor, and in most SQL implementations,
you can write your own using a special language that comes with the DBMS, such
as PL/SQL for Oracle, or Transact SQL for Microsoft SQL Server and Sybase
Adaptive Server.

Functions can be categorized in many ways, but most people categorize them by
the type of work that they perform. The most common functions are described here,
but as always, check your DBMS documentation—it’s likely that it provides more
functions than the ones covered in this book. The categories used in this book are
character, mathematical, conversion, and aggregate, and each category has its own
sections.

Character Functions
Character functions are so named because they handle character data.

String Concatenation
The string concatenation function puts multiple character strings together to form
a single column value in the query results. The standard string concatenation func-
tion in SQL is invoked with two vertical bars (||), but there are exceptions, such as
Microsoft SQL Server, which uses the plus sign (+) to concatenate strings. Here are
some examples of string concatenation:

• The video store wishes to send a mailing to each customer that addresses
them as “Valuable Customer” plus their fi rst (given) and last (family)
names. The names are stored in the PERSON table. Note that you can mix
and match literal strings (including spaces) and column data any way you
wish. Here is the solution in Oracle:

SELECT 'Valuable Customer ' || PERSON_GIVEN_NAME ||
 ' ' || PERSON_FAMILY_NAME AS CUSTOMER_SALUTATION
 FROM PERSON;

CHAPTER 4 Retrieving Data Using Data Query Language 111

CUSTOMER_SALUTATION

Valuable Customer Austin Alexander
Valuable Customer Tin Chung
Valuable Customer Cassandra Alvarado
Valuable Customer Raul Alvarado
Valuable Customer Klaus Schmidt
Valuable Customer Katarina Schmidt
Valuable Customer Karl Schmidt
Valuable Customer Toshiro Yamada
Valuable Customer Beverly Baker
Valuable Customer Gerald Bernstein
Valuable Customer Rose Bernstein
Valuable Customer Steven Bernstein
Valuable Customer Linda Campos
Valuable Customer Jorge Jimenez
Valuable Customer Liyi Huang

15 rows selected.

• Here is the same solution, modifi ed to work in Microsoft SQL Server
(result set omitted since it is essentially the same as the previous):

SELECT 'Valuable Customer ' + PERSON_GIVEN_NAME +
 ' ' + PERSON_FAMILY_NAME AS CUSTOMER_SALUTATION
 FROM PERSON;

UPPER
The UPPER function shifts letters in a character string into uppercase letters. Num-
bers and special characters are left just as they were. Here are some examples:

• List the comedy movies (MOVIE_GENRE_CODE = ‘Comdy’) with the
titles in uppercase text. Note that a column alias is used to make sure the
column name MOVIE_TITLE appears in the result set.

SELECT UPPER(MOVIE_TITLE) AS MOVIE_TITLE
 FROM MOVIE
 WHERE MOVIE_GENRE_CODE = 'Comdy';

MOVIE_TITLE

SOMETHING'S GOTTA GIVE
50 FIRST DATES

 112 SQL Demystifi ed

MATCHSTICK MEN
THE SCHOOL OF ROCK

4 rows selected.

• The UPPER function is also often used in WHERE conditions. Suppose
you can’t remember whether the MOVIE_GENRE_CODE was stored in
upper- or lowercase or mixed case. If you shift it all to uppercase in the
WHERE condition, you can get a correct result anyway.

SELECT UPPER(MOVIE_TITLE) AS MOVIE_TITLE
 FROM MOVIE
 WHERE UPPER(MOVIE_GENRE_CODE) = 'COMDY';

MOVIE_TITLE

50 FIRST DATES
MATCHSTICK MEN
SOMETHING'S GOTTA GIVE
THE SCHOOL OF ROCK

4 rows selected.

Be cautious when using SQL functions in WHERE conditions. Under most cir-
cumstances, a column with a function applied to it cannot be matched by an index.
So, for large tables, using functions in WHERE conditions can lead to truly memo-
rable performance problems. Did you notice that the order of the rows in the result set
changed when the UPPER function was used in the WHERE clause? I used Oracle
for the preceding queries, so your results with another DBMS may vary. But why did
it happen? First, there was no ORDER BY clause, so the DBMS is not required to
return the rows in any particular order. Second, it used an index to fi nd the rows in the
fi rst example and simply scanned the table in the second example; obviously, the
index isn’t in the same order as the rows in the table. The lesson here is to always
specify an ORDER BY if the order of rows in the result set matters to you.

LOWER
The LOWER function does just the opposite of the UPPER function—it shifts any
letters in the character string to lowercase letters. Here are the same examples using
the LOWER function:

• List the comedy movies (MOVIE_GENRE_CODE = ‘Comdy’) with the
titles in lowercase text. Note that a column alias is used to make sure the
column name MOVIE_TITLE appears in the result set.

CHAPTER 4 Retrieving Data Using Data Query Language 113

SELECT LOWER(MOVIE_TITLE) AS MOVIE_TITLE
 FROM MOVIE
 WHERE MOVIE_GENRE_CODE = 'Comdy';

MOVIE_TITLE

something's gotta give
50 first dates
matchstick men
the school of rock

4 rows selected.

• As with the UPPER function, you can use the LOWER function in
a WHERE clause when you aren’t sure about the case of the text you are
trying to match. List movies that have the word “of ” in the title, regardless
of whether it is capitalized or not. Note the combined use of the LIKE
operator and LOWER function. Also note that you must handle special
cases where the word “of ” could be the fi rst word or last word in the title
(that is, where it might not have a space before it or after it). These cases
don’t actually exist in the sample database, but they could, and you cannot
simply use LIKE ‘%of%’ or you might select a title because it had a word
like ‘often’ in it. The lesson here is that you have to know something about
what might be in the data in order to write SQL that will always produce
the expected result.

SELECT MOVIE_TITLE
 FROM MOVIE
 WHERE LOWER(MOVIE_TITLE) LIKE '% of %'
 OR LOWER(MOVIE_TITLE) LIKE 'of%'
 OR LOWER(MOVIE_TITLE) LIKE '% of';

MOVIE_TITLE

Master and Commander: The Far Side of the World
Pirates of the Caribbean: The Curse of the Black Pearl
The School of Rock

3 rows selected.

 114 SQL Demystifi ed

SUBSTR
The SUBSTR function appears in most SQL implementations, but it sometimes has a
somewhat different name. For example, the function is named SUBSTRING in Mi-
crosoft SQL Server, Sybase Adaptive Server, and MySQL, while the name SUBSTR
is used in Oracle and DB2. It returns a portion of a string as determined by the param-
eters, which provide the name of the column, fi rst (starting) position of the column
data to be returned, and the number of characters (length) to be returned. And, while
it’s an unusual use of SUBSTR, a literal string can be provided instead of a column
name. The general form of the function is shown fi rst, followed by an example:

SUBSTR (COLUMN_NAME, starting_position, length)

• Some people have full middle names in the PERSON table, while others
have only a fi rst initial. List the full name of each person whose last name
begins with the letter “B” in the form of a single string that contains the
given (fi rst) name, middle initial, and family (last) name.

Here is the solution using Oracle:

SELECT PERSON_GIVEN_NAME || ' ' ||
 SUBSTR(PERSON_MIDDLE_NAME, 1, 1) || '. ' ||
 PERSON_FAMILY_NAME AS FULL_NAME
 FROM PERSON
 WHERE SUBSTR(PERSON_FAMILY_NAME, 1, 1) = 'B'

FULL_NAME

Beverly V. Baker
Gerald M. Bernstein
Rose B. Bernstein
Steven R. Bernstein

4 rows selected.

Note the use of SUBSTR in the WHERE clause to fi lter out people with a family
name that doesn’t begin with “B”. By now you should be able to think of other
ways to do this, including the LIKE operator.

Here is the Microsoft SQL Server version of the previous example:

SELECT PERSON_GIVEN_NAME + ' ' +
 SUBSTRING(PERSON_MIDDLE_NAME, 1, 1) + '. ' +
 PERSON_FAMILY_NAME AS FULL_NAME
 FROM PERSON
 WHERE SUBSTRING(PERSON_FAMILY_NAME, 1, 1) = 'B'

CHAPTER 4 Retrieving Data Using Data Query Language 115

FULL_NAME

Beverly V. Baker
Gerald M. Bernstein
Rose B. Bernstein
Steven R. Bernstein

(4 row(s) affected)

LENGTH
The LENGTH function returns the length of a character string. However, Microsoft
SQL Server and Sybase Adaptive Server use the name LEN for their version of the
function. Here are some examples:

• List the length of the movie title for the movie with a MOVIE_ID of 1.
Assume an Oracle, DB2, or MySQL database.

SELECT MOVIE_TITLE, LENGTH(MOVIE_TITLE) AS LENGTH
 FROM MOVIE
 WHERE MOVIE_ID = 1;

MOVIE_TITLE LENGTH
----------------- ----------
Mystic River 12

• List all movie titles that are shorter than 10 characters in length. Assume
a Microsoft SQL Server database.

SELECT MOVIE_TITLE, LEN(MOVIE_TITLE) AS LENGTH
 FROM MOVIE
 WHERE LEN(MOVIE_TITLE) < 10;

MOVIE_TITLE LENGTH
------------ ----------
Big Fish 8
Das Boot 8
Monster 7

Mathematical Functions
Mathematical functions manipulate numeric values according to mathematical
rules. The ROUND function is presented in detail, including an example, followed
by a table that lists other mathematical functions that are commonly found in

 116 SQL Demystifi ed

SQL implementations. As always, check your DBMS documentation for a specifi c
list of supported mathematical functions.

ROUND
The ROUND function rounds off a number to the specifi ed number of decimal
places. The number is provided as the fi rst expression and the number of decimal
places as the second. The general format of the ROUND function is shown next,
followed by an example adapted from earlier in the chapter.

ROUND (numeric_expression,number_of_decimal_places)

• What is the average cost of a copy of The Last Samurai, rounded to the
nearest penny?

SELECT ROUND((RETAIL_PRICE_VHS + RETAIL_PRICE_DVD) / 2, 2)
 AS AVG_COST
 FROM MOVIE
 WHERE MOVIE_TITLE = 'The Last Samurai';

 AVG_COST

 17.96

Other Mathematical Functions
The table that follows lists the most commonly found mathematical functions. The
general syntax for all of them is the same:

FUNCTION_NAME(expression)

Function Description

ABS Absolute value of the given number

COS Trigonometric cosine of the given angle (in radians)

EXP Exponential value of the given number

POWER Raise number to a power (both number and power are parameters)

SIN Trigonometric sine of the given angle (in radians)

TAN Trigonometric tangent of the given angle (in radians)

Conversion Functions
Conversion functions convert data from one data type to another.

CHAPTER 4 Retrieving Data Using Data Query Language 117

CAST
The CAST function converts data from one data type to another. Note, however,
that it is not yet supported by DB2. Here is the general syntax of the CAST func-
tion, followed by an example:

CAST (expression AS data_type)

• List the DVD price of The Last Samurai with a leading dollar sign. The
numeric value must be converted to (cast as) a character string so that
you can concatenate it with a literal containing a dollar sign. Note that for
Microsoft SQL Server, the concatenation operator in the statement has to be
changed from “||” to “+”.
SELECT '$' || CAST(RETAIL_PRICE_DVD AS VARCHAR(6)) AS PRICE
 FROM MOVIE
 WHERE MOVIE_TITLE = 'The Last Samurai';

PRICE

$19.96

CONVERT TO
Many DBMS implementations offer a CONVERT or CONVERT TO function.
However, the CAST function is generally recommended instead because it is im-
plemented in a more standard way across vendors.

Aggregate Functions and Grouping Rows
An aggregate function is a function that combines multiple rows of data together
into a single row. The following table shows aggregate functions that are supported
in most SQL implementations:

Function Name Description

AVG Calculates the average value for a column or expression.

COUNT Counts the number of values found in a column. The DISTINCT
keyword can be used to count the number of unique values instead
of the total number of values (rows) in a column.

MAX Finds the maximum value in a column.

MIN Finds the minimum value in a column.

SUM Sums (totals up) the values in a column.

 118 SQL Demystifi ed

Here are some examples:

• What is the average price of a DVD? Notice that the ROUND and AVG
functions are nested so you get the result in dollars and cents.

SELECT ROUND(AVG(RETAIL_PRICE_DVD),2) AS AVG_PRICE
 FROM MOVIE;

AVG_PRICE

 24.67

• How many movies are in the MOVIE table?
SELECT COUNT(*) AS NUM_MOVIES
 FROM MOVIE;

NUM_MOVIES

 20

• How many different movie genres are represented in the MOVIE table?
Notice the use of DISTINCT so the DBMS counts unique values of
MOVIE_GENRE_CODE.

SELECT COUNT(DISTINCT(MOVIE_GENRE_CODE)) AS NUM_GENRES
 FROM MOVIE

NUM_GENRES

 5

• What is the shortest and longest movie title? Notice the nesting of the
LENGTH function with the MIN and MAX functions. This version works
in Oracle, DB2, and MySQL (change LENGTH to LEN for Microsoft SQL
Server and Sybase).

SELECT MIN(LENGTH(MOVIE_TITLE)) AS MIN_LENGTH,
 MAX(LENGTH(MOVIE_TITLE)) AS MAX_LENGTH
 FROM MOVIE;

MIN_LENGTH MAX_LENGTH
---------- ----------
 7 54

CHAPTER 4 Retrieving Data Using Data Query Language 119

GROUP BY Clause
As you have seen, if you use an aggregate function by itself in a query, you get one
row back for the entire query. This makes sense because there is no way for the
RDBMS to know what other result you might want, unless you tell it, which is the
very purpose of the GROUP BY clause. It tells the DBMS to form the rows se-
lected by the query into groups based on the values of one or more columns and to
apply the aggregate function(s) to each group, returning one row for each group in
the result set. This is much like asking for subtotals by department instead of one
grand total for an entire company, but as you have seen, aggregate functions can do
much more than just add things up. By the way, the DBMS will sort the rows se-
lected by the query on the columns listed in the GROUP BY clause (so it can group
them easily), so the groups will be returned in ascending sequence unless you add
an ORDER BY that specifi es another sequence. Here is an example:

• List each movie genre code with the number of movies that are assigned to it.

SELECT MOVIE_GENRE_CODE AS GENRE, COUNT(*) AS COUNT
 FROM MOVIE
 GROUP BY MOVIE_GENRE_CODE;

GENRE COUNT
----- ----------
ActAd 7
Comdy 4
Drama 6
Forgn 1
Rmce 2

What happens if you leave the GROUP BY clause out of this query? The DBMS
returns an error message, and unfortunately, the error message is often quite cryp-
tic. Most newcomers to SQL have diffi culty understanding the problem, but without
the GROUP BY clause, the query is illogical. The COUNT(*) function is an ag-
gregate function, so without a GROUP BY, it returns a single row of data. However,
the MOVIE_GENRE_CODE is a column and without being named in a GROUP
BY, the query will return the value from every row in the table. Without the GROUP
BY to correlate the two, the DBMS does not know what to do. No wonder some
people call them “aggravating functions” instead of aggregate functions. But it re-
ally isn’t that diffi cult. Just remember one rule: Whenever a query includes an
aggregate function, then every column in the query results must either be formed
using an aggregate function or be named in the GROUP BY clause.

 120 SQL Demystifi ed

Compound Query Operators
Sometimes it is useful to run multiple queries and to combine the results into a
single result set.

UNION
The UNION operator appends all the rows in the result set of one query to that of
another, but it also eliminates any duplicate rows, much like the DISTINCT key-
word does. The operation is permitted only if the queries involved are union
compatible, which means they have the same number of columns and the data types
of the corresponding columns are compatible. Here is an example:

• List all the non-null values of rental fees or late-or-lost fees from the
MOVIE_RENTAL table in a single column.

SELECT RENTAL_FEE AS FEE
 FROM MOVIE_RENTAL
 WHERE RENTAL_FEE IS NOT NULL
UNION
SELECT LATE_OR_LOSS_FEE AS FEE
 FROM MOVIE_RENTAL
 WHERE LATE_OR_LOSS_FEE IS NOT NULL;

 FEE

 4
 6
 6.25
 29.98
 29.99

If you fi nd this one diffi cult to visualize, just run the two queries independently,
and then combine them to see the result. You’ll fi nd out that the second and third
rows are rental fees that are found by the fi rst query, while the fi rst, fourth, and fi fth
rows are late-or-loss fees from the second query.

UNION ALL
UNION ALL works like UNION except that duplicate rows are not eliminated
from the result set. If you repeat the previous example with UNION ALL, you will
get a result set of 24 rows instead of 5 rows.

CHAPTER 4 Retrieving Data Using Data Query Language 121

INTERSECT
The INTERSECT operator fi nds values selected by one query that also appear in the
other query. Essentially, it fi nds the intersection of the values in the two result sets.
However, only a few DBMS implementations (most notably Oracle and DB2) sup-
port it. You won’t fi nd it in Microsoft SQL Server or MySQL. Here is an example:

• Are any of the DVD prices the same as one of the VHS prices in the
MOVIE table? The result set contains no rows, so the answer is no.

SELECT RENTAL_FEE AS FEE
 FROM MOVIE_RENTAL
 WHERE RENTAL_FEE IS NOT NULL
INTERSECT
SELECT LATE_OR_LOSS_FEE AS FEE
 FROM MOVIE_RENTAL
 WHERE LATE_OR_LOSS_FEE IS NOT NULL

no rows selected

EXCEPT
EXCEPT is the ANSI/ISO standard operator that fi nds the difference between two
result sets, basically by returning values from the fi rst query that are not included in
the result set of the second query. Very few DBMS implementations have imple-
mented this operator. In some implementations such as Oracle, it is named MINUS
instead of EXCEPT.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. A SELECT without a WHERE clause

 a. Selects all columns in the table or view

 b. Results in an error message

 c. Selects all rows in the table or view

 d. Lists only the defi nition of the table or view

 e. Always outputs results to a log fi le

 122 SQL Demystifi ed

 2. In SQL, row order in the query results

 a. Is specifi ed by the SORTED BY clause

 b. May be either ascending or descending for any column

 c. Defaults to descending when sequence is not specifi ed

 d. Is unpredictable unless specifi ed in the query

 e. May only be specifi ed for columns in the query result set

 3. The BETWEEN operator

 a. Specifi es a range of values that includes the end points

 b. Can be rewritten using the <= and NOT <= operators

 c. Can be rewritten using the <= and >= operators

 d. Selects rows added to a table during a time interval

 e. Is not included in the ISO/ANSI standard

 4. The standard LIKE operator

 a. Uses question marks as nonpositional wildcards

 b. Uses underscores as positional wildcards

 c. Uses underscores as nonpositional wildcards

 d. Uses percent signs as positional wildcards

 e. Uses percent signs as nonpositional wildcards

 5. An SQL statement containing an aggregate function

 a. May also contain calculated columns

 b. May also contain ordinary columns

 c. Must include an ORDER BY clause

 d. Must contain a GROUP BY clause

 e. May not include both GROUP BY and ORDER BY clauses

 6. When AND and OR operators are mixed in the same WHERE clause

 a. The DBMS returns an error message

 b. The AND has a higher precedence than the OR

 c. The OR has a higher precedence than the AND

 d. Parentheses are mandatory

 e. Parentheses are optional

CHAPTER 4 Retrieving Data Using Data Query Language 123

 7. The proper syntax for eliminating null values in query results is

 a. = NULL

 b. NOT = NULL

 c. <> NULL

 d. IS NULL

 e. IS NOT NULL

 8. Standard SQL string functions include

 a. UPPER

 b. MIDDLE

 c. LOWER

 d. SUBSTR

 e. EXISTS

 9. Standard SQL mathematical functions include

 a. LENGTH

 b. ROUND

 c. CAST

 d. MIN

 e. ABS

 10. The UNION operator

 a. Eliminates duplicate rows in the result set

 b. Includes duplicate rows in the result set

 c. Combines two queries into a single joined query

 d. Combines the result sets of two queries into a single result set

 e. Is named JOIN in some SQL implementations

Write the SQL statement for each of these problems.

 11. Find all movies in the MOVIE table where the MPAA_RATING_CODE is
a value other than “R”.

 12. List the title and price of all movies that have a RETAIL_PRICE_DVD that
is at least 19.99 but no more than 29.99, sorted in ascending sequence by
price.

 124 SQL Demystifi ed

 13. List all movies that have a genre (MOVIE_GENRE_CODE) of Comdy and
a rating (MPAA_RATING_CODE) of PG-13, along with movies that have
a genre of Drama and a rating of R.

 14. How many rentals (MOVIE_RENTAL table) have no value for the LATE_
OR_LOSS_FEE column?

 15. How many people have a last name (PERSON_FAMILY_NAME) that
includes the letter “a”, in either uppercase or lowercase?

 16. List all movie titles that contain the word “the” anywhere in the title,
capitalized or not.

 17. Use the SUM function to fi nd the total of the RENTAL_FEE column in the
MOVIE_RENTAL table.

 18. List the fi rst fi ve characters of the last names (PERSON_FAMILY_NAME)
from the PERSON table, but eliminate all duplicate values in the query
results.

 19. From the MOVIE table, list each genre (MOVIE_GENRE_CODE) with
the average DVD price (RETAIL_PRICE_DVD) for that genre, rounded to
two decimal places.

 20. List each movie (MOVIE_ID) that has been rented (MOVIE_RENTAL
table) with the total amount of money collected in rental fees (RENTAL_
FEE) and late-or-loss fees (LATE_OR_LOSS_FEE) for that movie. Hint:
add RENTAL_FEE and LATE_OR_LOSS_FEE and then SUM that result
for each value of MOVIE_ID. Some of the values for LATE_OR_LOSS_
FEE are null, so unless you use a function that replaces null values with
another value (zero in this case), you will get null values in the result. In
Oracle the function is called NVL, in Microsoft SQL Server it is called
ISNULL, and in MySQL it is called IFNULL. (There doesn’t appear to be
an equivalent function in DB2.)

125

5

Combining Data
from Multiple

Tables

In Chapter 4, we looked at SQL statements that select data from a single table. How-
ever, it’s often very useful to combine data from multiple tables in a single query. For
example, in the listing of three columns from the MOVIE table shown in Figure 5-1,
notice the values displayed for the MOVIE_GENRE column. While some of the rows
contain values that you could easily guess, such as “Drama,” “Forgn,” and “SciFi,”
others are not so obvious, such as “ActAd,” “ChFam,” and “Indep.”

When I designed this database for the video store, I deliberately used codes in-
stead of full descriptions for the movie genres in the MOVIE table. This is not only
a good database design practice that follows the rules of normalization, but it also
reduces the size of each row in the MOVIE table by using a fi ve-character code in

CHAPTER

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 126 SQL Demystifi ed

place of a description that could be 100 characters long. Moreover, as you will recall
from the normalization discussion in Chapter 1, I have avoided the update anoma-
ly—should a movie genre description change, I don’t have to update that description
for every movie that is assigned to that genre in the MOVIE table. During normal-
ization, the genre description was moved to its own table, MOVIE_GENRE, with
the MOVIE_GENRE_CODE remaining as a foreign key in the MOVIE table, which
references the primary key column (same column name) in the MOVIE_GENRE
table. While some designers prefer primary key values that have no real-world mean-
ing because the values might have to change on occasion, I chose to use a
mnemonic code for the genre code because it allows those who are very familiar
with the data to understand the genre assigned to the movies without having to look
them up in the MOVIE_GENRE table. Obviously, you cannot display the MOVIE
table as shown in Figure 5-1 on the video store’s web page—you need to obtain the
full description of the movie genre from the MOVIE_GENRE table. That is the very
point of this chapter: combining data from multiple tables in a single query. Figure 5-2
shows a listing of the MOVIE_GENRE table.

Figure 5-1 MOVIE table listing (three columns)

CHAPTER 5 Combining Data from Multiple Tables 127

Joins

Figure 5-2 MOVIE_GENRE table listing

A join is a relational database operation that combines columns from two or more
tables into a single query result. A join occurs whenever the FROM clause in a
SELECT statement lists more than one table name. Here is an example, but as you
will see, it has a big problem:

SELECT MOVIE_ID, MOVIE_GENRE_DESCRIPTION AS GENRE, MOVIE_TITLE
 FROM MOVIE, MOVIE_GENRE
 ORDER BY MOVIE_ID;

 MOVIE_ID GENRE MOVIE_TITLE
---------- -------------------- ------------------
 1 Action and Adventure Mystic River
 1 Anime and Animation Mystic River
 1 Classics Mystic River
 1 Documentary Mystic River
 1 Foreign Mystic River
 1 Independent Mystic River
 1 Romance Mystic River
 1 Special Interest Mystic River
 1 Thrillers Mystic River

 128 SQL Demystifi ed

 1 Sports Mystic River
 1 Science Fiction and Mystic River
 1 Music and Musicals Mystic River
 1 Horror Mystic River
 1 Drama Mystic River
 1 Comedy Mystic River
 1 Children and Family Mystic River
 2 Action and Adventure The Last Samurai
 2 Thrillers The Last Samurai
 2 Sports The Last Samurai
 2 Special Interest The Last Samurai
 2 Science Fiction and The Last Samurai
 2 Romance The Last Samurai
 2 Music and Musicals The Last Samurai
 2 Independent The Last Samurai
 2 Horror The Last Samurai
 2 Anime and Animation The Last Samurai
 2 Children and Family The Last Samurai
 2 Documentary The Last Samurai
 2 Foreign The Last Samurai
 2 Drama The Last Samurai
 2 Comedy The Last Samurai
 2 Classics The Last Samurai

320 rows selected.

The result set from the query was truncated after the fi rst two movie titles
(32 rows). A total of 320 rows were selected. But since there are only 20 movies in
the MOVIE table, how is this possible? The problem is that I told the database to
join the two tables but I failed to tell it how to match rows between the two tables.
The result is known as a Cartesian product (named for French philosopher and
mathematician René Descartes), which in a relational database is a result set where
each row in one table is joined with every row in another. In this case, each row in
MOVIE has been joined with every row in MOVIE_GENRE to make it appear that
each movie belongs to every genre, which is, of course, incorrect. There are 320
rows because there are 16 genres and 20 movies (16 × 20 = 320). You can easily see
the pattern in the result set—the fi rst movie title is assigned to all 16 genres, then
the second, and so forth.

The solution is to specify how to join the tables, specifi cally, which columns
should be matched between the two tables to link them. Normally, this will be the
primary key of one table and the foreign key of the other, but there can be excep-
tions. You may be wondering why SQL even allows a Cartesian product, but believe

CHAPTER 5 Combining Data from Multiple Tables 129

it or not, there are rare circumstances when one is required. Be careful—a Cartesian
product of two 1000-row tables will return one million rows! The next topic shows
you how to do a standard relational join, also known as an equijoin.

Equijoins
An equijoin, or inner join, is one where one or more columns in one table (typi-
cally the foreign key) are matched with similar columns in another table (typically
the primary key) using the equal condition (that is, columns are considered to match
when their data values are equal). You’ll fi nd this to be the most common form of
join. However, the term equijoin is seldom used outside of academic circles, with
the term inner join or standard join being much more common.

There are two ways to specify the columns to be matched: using the WHERE
clause, or using the JOIN clause. The JOIN clause is a relatively new addition to
standard SQL, so most old timers are more used to the WHERE clause method.

Joins Using the WHERE Clause
Using the WHERE clause to join tables is very much like using it to eliminate
unwanted rows in the result set. However, there are some differences. First, you
are comparing a column to another column in the WHERE condition instead of
comparing a column value to a constant or expression. Second, when the columns
in the two tables have the same name (which is a best practice), you must qualify
the column names so the SQL engine can tell which of the two columns is being
referenced. While your intention may seem obvious to you, the SQL engine is go-
ing to insist that you make unambiguous references to every column you mention
in an SQL statement. By the way, this includes not only columns in the WHERE
clause, but also elsewhere in the statement, including in the SELECT list. The
simplest form of qualifi er is the table name itself, with a period (dot) used to
separate it from the column name. Following is an example of a join specifi ed in
the WHERE clause with table names used as qualifi ers. Notice how it selects
MOVIE_ID and MOVIE_TITLE from MOVIE and the corresponding genre
(GENRE_DESCRIPTION) from MOVIE_GENRE.

SELECT MOVIE_ID, MOVIE_GENRE_DESCRIPTION AS GENRE,
 MOVIE_TITLE
 FROM MOVIE, MOVIE_GENRE
 WHERE MOVIE.MOVIE_GENRE_CODE= MOVIE_GENRE.MOVIE_GENRE_CODE
 ORDER BY MOVIE_ID;

 130 SQL Demystifi ed

 MOVIE_ID GENRE MOVIE_TITLE
---------- --------------------- -------------------------
 1 Drama Mystic River
 2 Action and Adventure The Last Samurai
 3 Comedy Something's Gotta Give
 4 Action and Adventure The Italian Job
 5 Action and Adventure Kill Bill: Vol. 1
 6 Action and Adventure Pirates of the Caribbean:
 7 Drama Big Fish
 8 Action and Adventure Man on Fire
 9 Action and Adventure Master and Commander: The
 10 Drama Lost in Translation
 11 Romance Two Weeks Notice
 12 Comedy 50 First Dates
 13 Comedy Matchstick Men
 14 Drama Cold Mountain
 15 Drama Road to Perdition
 16 Comedy The School of Rock
 17 Romance 13 Going on 30
 18 Drama Monster
 19 Action and Adventure The Day After Tomorrow
 20 Foreign Das Boot

20 rows selected.

Using the full table name as a column qualifi er can be tedious and time con-
suming, especially when table names can be 30 or more characters long in modern
DBMSs. That’s why a provision for table name aliases was included in SQL.
They work much like the column name aliases available in the SELECT clause,
except that the keyword “AS” is not used (in most SQL implementations)—just
leave a space between the table name and its alias in the FROM list. While some
people use mnemonics for table name aliases, it’s more common to see sequential
capital letters use (that is, “A,” “B,” “C,” and so forth). Once you assign an alias
to a table name in the FROM clause, you must use the alias instead of the table
name throughout the SQL statement. Table name aliases in the SELECT clause
will seem odd at fi rst because you use the alias before you’ve actually defi ned it
(the SELECT clause precedes the FROM clause), and you may fi nd it easier to fi ll
in the FROM clause before you fi ll in the column list in the SELECT clause as
you write SQL statements.

The following example shows the statement we just looked at with aliases for
the table names added. Although not necessary, table name aliases were also added
to the column list in the SELECT and ORDER BY clauses so you can see how
that looks.

CHAPTER 5 Combining Data from Multiple Tables 131

SELECT A.MOVIE_ID, B.MOVIE_GENRE_DESCRIPTION AS GENRE,
 A.MOVIE_TITLE
 FROM MOVIE A, MOVIE_GENRE B
 WHERE A.MOVIE_GENRE_CODE = B.MOVIE_GENRE_CODE
 ORDER BY A.MOVIE_ID;

Joins Using the JOIN clause
As already mentioned, the JOIN clause is a newer addition to SQL, added in the
SQL-92 standard, so the implementation you are using may not support it as yet,
although most current SQL implementations do. The JOIN clause is written as a
table reference in the FROM clause and essentially combines the table list in the
FROM clause and the join conditions previously written in the WHERE clause into
a single clause. Here is the general syntax of the JOIN clause for an inner join, fol-
lowed by some examples.

table_name [INNER] JOIN table_name
 { ON condition | USING (column_name [,column_name]) }

Note the two options. The ON clause allows for specifi cation of a condition just
like the one in the WHERE clause in the prior example. The USING clause, on the
other hand, simply lists the column names to be used for matching rows. However,
the USING clause only works when the columns to be matched have identical
names in both tables. Here are some examples:

• JOIN with the ON condition:
SELECT MOVIE_ID, MOVIE_GENRE_DESCRIPTION AS GENRE,
 MOVIE_TITLE
 FROM MOVIE JOIN MOVIE_GENRE ON
 MOVIE.MOVIE_GENRE_CODE = MOVIE_GENRE.MOVIE_GENRE_CODE
 ORDER BY MOVIE_ID;

• JOIN with table aliases instead of table names:
SELECT MOVIE_ID, MOVIE_GENRE_DESCRIPTION AS GENRE,
 MOVIE_TITLE
 FROM MOVIE A JOIN MOVIE_GENRE B ON
 A.MOVIE_GENRE_CODE = B.MOVIE_GENRE_CODE

 ORDER BY MOVIE_ID;

• JOIN with the USING keyword (instead of the ON condition). This is a very
nice shorthand option when the columns in the two tables have the same
name. However, it is a very new standard, so as of this writing, only Oracle
and MySQL support this syntax (Microsoft SQL Server and DB2 do not).
SELECT MOVIE_ID, MOVIE_GENRE_DESCRIPTION AS GENRE,
 MOVIE_TITLE
 FROM MOVIE JOIN MOVIE_GENRE USING (MOVIE_GENRE_CODE)
 ORDER BY MOVIE_ID;

 132 SQL Demystifi ed

• JOIN with a multiple-column foreign key. This query lists movie copies
from the MOVIE_COPY table that have not been sold (DATE_SOLD IS
NULL) and which have been rented (join to the MOVIE_RENTAL table)
and not yet returned (RETURNED_DATE IS NULL). Since this table has
not been used in a previous example, you may want to refer to the overview
of the Video Sample database that appears at the end of Chapter 1 to see
how it fi ts into the database schema. Also, keep in mind that, as of this
writing, only Oracle and MySQL support this syntax.

SELECT MOVIE_ID, COPY_NUMBER, DUE_DATE
 FROM MOVIE_COPY JOIN MOVIE_RENTAL
 USING (MOVIE_ID, COPY_NUMBER)
 WHERE DATE_SOLD IS NULL
 AND RETURNED_DATE IS NULL;

MOVIE_ID COPY_NUMBER DUE_DATE
--------- ----------- ----------
 2 2 02/27/2005
 3 2 03/04/2005
 5 1 02/27/2005
 5 2 02/19/2005
 10 1 03/04/2005
 17 1 03/04/2005

6 rows selected.

• Just to illustrate how much typing the JOIN clause saves, here is the prior
query rewritten using join conditions in the WHERE clause. Note that you
now must qualify all references to the MOVIE_ID and COPY_NUMBER
columns to avoid ambiguous column references. This statement will give
you exactly the same result as the previous example:

SELECT A.MOVIE_ID, A.COPY_NUMBER, DUE_DATE
 FROM MOVIE_COPY A, MOVIE_RENTAL B
 WHERE A.MOVIE_ID = B.MOVIE_ID
 AND A.COPY_NUMBER = B.COPY_NUMBER
 AND DATE_SOLD IS NULL
 AND RETURNED_DATE IS NULL;

Natural Joins
A natural join is based on all columns in the two tables that have matching column
names. In essence, the equijoins you have already seen are also natural joins. How-
ever, the syntax for the natural join is much simpler because there is no need to

CHAPTER 5 Combining Data from Multiple Tables 133

name a condition or a column list—the columns to be used are understood. Note
that, as of this writing, only Oracle and MySQL support this form of join syntax.

Some descriptions of the natural join that you might read elsewhere indicate that
the column list being selected has something to do with the defi nition of a natural
join. Actually, it doesn’t—you can select whatever columns you wish, but like all
SELECT statements, no two columns in the result set may have the same column
name, so you have to rename any duplicate column names using a column alias.

Here is the join of MOVIE and MOVIE_GENRE, rewritten as a natural join:

SELECT MOVIE_ID, MOVIE_GENRE_DESCRIPTION AS GENRE,
 MOVIE_TITLE
 FROM MOVIE NATURAL JOIN MOVIE_GENRE
 ORDER BY MOVIE_ID;

By the way, joins can involve more than two tables. The following example
shows a natural join that gets the MOVIE_ID from the MOVIE table, the
MOVIE_GENRE_DESCRIPTION from the MOVIE_GENRE table, and the
MPAA_RATING_DESCRIPTION from the MPAA_RATING table for the fi rst
fi ve movies in the MOVIE table. Note the use of the WHERE clause to eliminate
unwanted rows from the MOVIE table. The text for the RATING_DESC column
was allowed to wrap to new lines in the query results because of its length. The
example actually specifi es two joins. The fi rst JOIN clause directs the SQL engine
to fi rst join the MOVIE and MOVIE_GENRE tables, and the second JOIN clause
directs it to take those joined rows (essentially an intermediate result set) and join
them to the MPAA_RATING table.

SELECT MOVIE_ID, MOVIE_GENRE_DESCRIPTION AS GENRE,
 MPAA_RATING_CODE AS RATING,
 MPAA_RATING_DESCRIPTION AS RATING_DESC
 FROM MOVIE NATURAL JOIN MOVIE_GENRE
 NATURAL JOIN MPAA_RATING
 WHERE MOVIE_ID < 6
 ORDER BY MOVIE_ID;

MOVIE_ID GENRE RATING RATING_DESC
--------- --------------------- ------ --------------------
 1 Drama R Under 17 requires ac
 companying parent or
 adult guardian

 2 Action and Adventure R Under 17 requires ac
 companying parent or
 adult guardian

 134 SQL Demystifi ed

 3 Comedy PG-13 Parents strongly cau
 tioned

 4 Action and Adventure PG-13 Parents strongly cau
 tioned

 5 Action and Adventure R Under 17 requires ac
 companying parent or
 adult guardian

5 rows selected.

Just in case you are using an SQL implementation that lacks support for natural
joins, here is the previous query rewritten using the JOIN and ON keywords:

SELECT A.MOVIE_ID, B.MOVIE_GENRE_DESCRIPTION AS GENRE,
 C.MPAA_RATING_CODE AS RATING,
 C.MPAA_RATING_DESCRIPTION AS RATING_DESC
 FROM MOVIE A JOIN MOVIE_GENRE B ON
 A.MOVIE_GENRE_CODE = B.MOVIE_GENRE_CODE
 JOIN MPAA_RATING C ON
 A.MPAA_RATING_CODE = C.MPAA_RATING_CODE
 WHERE MOVIE_ID < 6
 ORDER BY MOVIE_ID;

Outer Joins
All of the joins we have looked at so far are exclusive joins (a term I like a lot better
than inner joins), meaning that the only rows that appear in the result set are ones
where a match was found in all the tables being joined. However, there are times
when you want unmatched rows included in the query results. For example, what if
the manager of the video store wanted a listing of all movie genres and any movie
titles that are assigned to each one? It was business users in need of solutions to
problems such as this one who demanded (and eventually got) a solution from the
database vendors.

An outer join (which might be better named an inclusive join) includes un-
matched rows from at least one of the tables in the query results. When there are
unmatched rows, any data values selected from the table where a matching row was
not found are set to null. There are basically three types:

• Left outer join Returns all rows in the left-hand table (the one named
fi rst, or leftmost in the JOIN clause) along with any rows in the right-hand
table that can be matched.

CHAPTER 5 Combining Data from Multiple Tables 135

• Right outer join Returns all rows in the right-hand table (the one
named second, or rightmost in the JOIN clause) along with any rows in
the left-hand table that can be matched. Essentially, a left outer join may
be rewritten as a right outer join simply by reversing the order of the table
names and changing the keyword LEFT to RIGHT.

• Full outer join Returns all rows from both tables. This join is the least
likely to be supported by your SQL implementation because the standard
syntax for it is newer than the other two. It is essential to understand that
this is not the same as a Cartesian product, which joins every row in one
table with every row in the other. A full outer join joins each row in one
table with zero to many matching rows in the other table. In reality, you
won’t fi nd an occasion to use a full outer join very often, but it can come in
handy if there is a relationship between two tables that is optional in both
directions.

The general syntax for an outer join is

table_name {RIGHT | LEFT| FULL} [OUTER] JOIN table_name
 { ON condition | USING (column_name [,column_name]) }

Here are some examples of outer joins:

• Listing of all movie genre descriptions, along with any movies that are
assigned to each genre. Note the rows in the result set that have no value
for MOVIE_TITLE—these are the movie genres that have no movies
assigned to them. If your DBMS implementation does not support a join
with the USING keyword, just change the statement so it uses the ON
keyword as shown in the example following this one.

SELECT MOVIE_GENRE_DESCRIPTION AS GENRE,
 MOVIE_TITLE
 FROM MOVIE_GENRE LEFT OUTER JOIN MOVIE
 USING (MOVIE_GENRE_CODE);

GENRE MOVIE_TITLE
----------------------------- -------------------------
Action and Adventure Kill Bill: Vol. 1
Action and Adventure Man on Fire
Action and Adventure Pirates of the Caribbean:
Action and Adventure Master and Commander: The
Action and Adventure The Day After Tomorrow
Action and Adventure The Last Samurai
Action and Adventure The Italian Job

 136 SQL Demystifi ed

Anime and Animation
Children and Family
Classics
Comedy 50 First Dates
Comedy Matchstick Men
Comedy The School of Rock
Comedy Something's Gotta Give
Documentary
Drama Big Fish
Drama Road to Perdition
Drama Mystic River
Drama Monster
Drama Cold Mountain
Drama Lost in Translation
Foreign Das Boot
Horror
Independent
Music and Musicals
Romance 13 Going on 30
Romance Two Weeks Notice
Science Fiction and Fantasy
Special Interest
Sports
Thrillers

31 rows selected.

• Previous query rewritten as a right outer join with an ON condition.

SELECT MOVIE_GENRE_DESCRIPTION AS GENRE,
 MOVIE_TITLE
 FROM MOVIE RIGHT OUTER JOIN MOVIE_GENRE
 ON MOVIE.MOVIE_GENRE_CODE =
 MOVIE_GENRE.MOVIE_GENRE_CODE;

• Previous query rewritten as a full outer join. Since each movie must have a
genre code assigned, this will give exactly the same result as the right outer
join just shown. However, if the movie genre code were optional, the full
outer join would allow you to display genres that had no movie assigned as
well as movies that had no genre assigned.

SELECT MOVIE_GENRE_DESCRIPTION AS GENRE,
 MOVIE_TITLE
 FROM MOVIE FULL OUTER JOIN MOVIE_GENRE
 ON MOVIE.MOVIE_GENRE_CODE =
 MOVIE_GENRE.MOVIE_GENRE_CODE;

CHAPTER 5 Combining Data from Multiple Tables 137

• Listing of movie genre descriptions that have no movies assigned to them.
There are other ways to do this, but this query uses the fact that unmatched
rows come back as null values to select only genres with no matching
movies. Since MOVIE_TITLE will always be null in the result set, there is
no reason to select (and display) the column.

SELECT MOVIE_GENRE_DESCRIPTION AS GENRE
 FROM MOVIE RIGHT OUTER JOIN MOVIE_GENRE
 ON MOVIE.MOVIE_GENRE_CODE =
 MOVIE_GENRE.MOVIE_GENRE_CODE
 WHERE MOVIE_TITLE IS NULL;

GENRE

Anime and Animation
Children and Family
Classics
Documentary
Horror
Independent
Music and Musicals
Science Fiction and Fantasy
Special Interest
Sports
Thrillers

11 rows selected.

In answer to market demand from their customers, several relational database
vendors introduced outer joins before the standard JOIN clause was agreed upon.
The following topics present a few implementations of proprietary outer join
syntax. These proprietary solutions are shown here only because you might run
across them in legacy SQL. The standard JOIN clause should be used whenever
possible because it’s portable and easier to understand.

Oracle Outer Join Syntax
Oracle Corporation decided to use a plus sign enclosed by parentheses to defi ne
outer joins. The symbol “(+)” is placed in the WHERE clause on the side opposite
from the table from which you want all rows returned (whether matched or not).
Since the data from the other table (the one where only matching rows are returned)
is fi lled with null values when no matching row is found, it may be easiest to re-
member that the “(+)” symbol goes on the side of the WHERE clause where you

 138 SQL Demystifi ed

want nulls “added” when no matching row is found. Here is the previous example
rewritten in Oracle’s proprietary syntax:

SELECT MOVIE_GENRE_DESCRIPTION AS GENRE
 FROM MOVIE A, MOVIE_GENRE B
 WHERE A.MOVIE_GENRE_CODE(+) =
 B.MOVIE_GENRE_CODE
 AND MOVIE_TITLE IS NULL;

Microsoft SQL Server Outer Join Syntax
Microsoft SQL Server uses the operator “*=” in the WHERE condition for a left
outer join and “=*” for a right outer join. In both cases, there cannot be a space
between the asterisk and the equal sign. Here is the previous example rewritten in
the SQL Server proprietary syntax (as a right outer join):

SELECT MOVIE_GENRE_DESCRIPTION AS GENRE
 FROM MOVIE A, MOVIE_GENRE B
 WHERE A.MOVIE_GENRE_CODE =*
 B.MOVIE_GENRE_CODE
 AND MOVIE_TITLE IS NULL;

Self Joins
A self join is a join of a table to itself. This will seem very odd at fi rst, but some-
times there are relationships where the primary key and foreign key are in the same
table. These are called recursive relationships, and there is one in the video store
database. (You may want to refer back to Figure 1-8 in Chapter 1 at this point.) The
EMPLOYEE table has a column called SUPERVISOR_PERSON_ID, which is a
foreign key to PERSON_ID in the same table. It is used to link each employee to
their supervisor, who is, of course, another employee, which means that the super-
visor also has a row in the EMPLOYEE table. The following query shows three
columns from the EMPLOYEE table, including the PERSON_ID and SUPERVI-
SOR_PERSON_ID:

SELECT PERSON_ID, EMPLOYEE_HOURLY_RATE AS HOURLY_RATE,
 SUPERVISOR_PERSON_ID
 FROM EMPLOYEE;

PERSON_ID HOURLY_RATE SUPERVISOR_PERSON_ID
---------- ----------- --------------------
 1 15
 2 9.75 1
 10 9.75 1

CHAPTER 5 Combining Data from Multiple Tables 139

This data shows that Employees 2 and 10 report to Employee 1, and that Em-
ployee 1 reports to no one—it’s a good bet he or she is the owner or manager of the
video store. It’s no surprise that the supervisor earns a higher hourly rate than the
people he or she supervises.

Now suppose the video store is required to produce a report showing the wage
differential between supervisors and subordinates. The data here is small enough
that such calculations could be done manually, but let’s assume that you want to
automate the report and distribute it to an entire chain of stores that use your data-
base design. You can join each employee to their supervisor’s row in the table to
obtain the supervisor’s hourly rate. Here is that query:

SELECT A.PERSON_ID, A.EMPLOYEE_HOURLY_RATE AS HOURLY_RATE,
 B.EMPLOYEE_HOURLY_RATE AS SUPV_HOURLY_RATE
 FROM EMPLOYEE A JOIN EMPLOYEE B
 ON A.SUPERVISOR_PERSON_ID = B.PERSON_ID;

PERSON_ID HOURLY_RATE SUPV_HOURLY_RATE
---------- ----------- ----------------
 2 9.75 15

 10 9.75 15

Note the following:

• The FROM clause has the EMPLOYEE table listed twice. The older style
WHERE clause can also be used to invoke a self join. It would look like this:

SELECT A.PERSON_ID, A.EMPLOYEE_HOURLY_RATE AS HOURLY_RATE,
 B.EMPLOYEE_HOURLY_RATE AS SUPV_HOURLY_RATE
 FROM EMPLOYEE A, EMPLOYEE B
 WHERE A.SUPERVISOR_PERSON_ID = B.PERSON_ID

• The table names must include aliases because when you join a table to itself,
every column name is ambiguous. You therefore need to qualify every
column reference using the table alias.

• The supervisor (the row with PERSON_ID = 1) does not appear in the
query results. Why not? If you answered that the query is an inner join, you
got it. Employee 1 has no supervisor (the SUPERVISOR_PERSON_ID has
a null value for PERSON_ID = 1), so the inner join fails to fi nd a matching
row, and as a result, the unmatched row drops out of the query results.

Here is the fi nal query, including the calculation of the rate difference, and a join
to the PERSON table to obtain the employee’s name:

SELECT A.PERSON_ID, C.PERSON_GIVEN_NAME AS FIRST_NAME,
 C.PERSON_FAMILY_NAME AS LAST_NAME,

 140 SQL Demystifi ed

 B.EMPLOYEE_HOURLY_RATE - A.EMPLOYEE_HOURLY_RATE
 AS RATE_DIFF
 FROM EMPLOYEE A JOIN EMPLOYEE B
 ON A.SUPERVISOR_PERSON_ID = B.PERSON_ID
 JOIN PERSON C
 ON A.PERSON_ID = C.PERSON_ID;

PERSON_ID FIRST_NAME LAST_NAME RATE_DIFF
---------- ----------- ----------- ----------
 2 Tin Chung 5.25
 10 Gerald Bernstein 5.25

Other Joins
Most joins are equijoins. However, it isn’t always necessary to use the equal condi-
tion in matching rows to be joined. As a word of caution, however, there are more
potential performance issues with joins that are not equijoins because indexes are less
likely to be used by the DBMS when the conditional operator is other than “=”.

One common use of the not equal (<>) operator in joins is searching for dupli-
cate rows in a table. When joining a table to itself to detect duplicates, you always
have to add a join condition to make sure you don’t match a row to itself. Here is a
query that looks for duplicate movie titles in the MOVIE table. Note the “not equal”
(<>) comparison on the primary key column (MOVIE_ID) to prevent a row from
being matched to itself:

SELECT A.MOVIE_ID, B.MOVIE_ID
 FROM MOVIE A JOIN MOVIE B
 ON A.MOVIE_ID <> B.MOVIE_ID
 AND A.MOVIE_TITLE = B.MOVIE_TITLE;

Cross Joins
A cross join is nothing more than standard syntax for a Cartesian product. As men-
tioned earlier, sometimes a Cartesian product is desirable, and it must have been
those situations that motivated the standards committees to add this syntax to stan-
dard SQL. The query that appeared at the very beginning of this chapter (the one
that joined the MOVIE and MOVIE_GENRE tables into a Cartesian product) can
be written this way as a cross join:

SELECT MOVIE_ID, MOVIE_GENRE_DESCRIPTION AS GENRE, MOVIE_TITLE
 FROM MOVIE CROSS JOIN MOVIE_GENRE
 ORDER BY MOVIE_ID;

CHAPTER 5 Combining Data from Multiple Tables 141

Subselects
A very powerful feature of SQL is the subselect (or subquery), which as the name
implies, refers to a SELECT statement that contains a subordinate SELECT.
Subselects are typically used in the WHERE clause as a way of limiting rows
returned in the result set of the outer query. This can be a very fl exible way of
selecting data. However, they can be used in other ways, as you will see in the
next section, “Inline Views.”

An essential syntax rule is that the subselect must be enclosed in parentheses.
Another important point to understand is that anything you can do using a subselect
can also be done using a join. In fact, some SQL implementations automatically
rewrite subselects as joins inside the SQL engine before running them, but unless
you look at the internals of the SQL implementation, you as a database user will
never know that happened.

Noncorrelated Subselects
A noncorrelated subselect is a subselect where the inner select makes no reference to
the outer select that contains it. This means that the inner select can be run fi rst, and
the result set of the inner select used in the outer select. Here are some examples:

• Listing of all languages for which there are no movies in the video store
inventory.

SELECT LANGUAGE_CODE, LANGUAGE_NAME
 FROM LANGUAGE
 WHERE LANGUAGE_CODE NOT IN
 (SELECT DISTINCT LANGUAGE_CODE
 FROM MOVIE_LANGUAGE)
 ORDER BY LANGUAGE_CODE

LANGUAGE_CODE LANGUAGE_NAME
------------- -------------
ja Japanese
ko Korean
nl Dutch
ru Russian
zh Chinese

 The inner select returns a list of language codes that appear on movies in
the MOVIE_LANGUAGE table. The DISTINCT keyword removes any
duplicate language codes from the result set, and in doing so, makes the

 142 SQL Demystifi ed

outer select much more effi cient—the fewer the values that appear in an IN
clause list, the more effi cient the query. There are 40 rows in the MOVIE_
LANGUAGE table, and thus there would be 40 values in the IN list, but it
is reduced to only 4 values by the DISTINCT keyword. Here is the inner
select run by itself to help you visualize how it works:

SELECT DISTINCT LANGUAGE_CODE
 FROM MOVIE_LANGUAGE;

LANGUAGE_CODE

de (German)
en (English)
es (Spanish)
fr (French)

• The store manager is looking at the effect of a recent price increase and needs
a list of transactions (TRANSACTION_IDs) where the customer paid more
than the average fee (RENTAL_FEE) for a movie. Here is the query:

SELECT DISTINCT TRANSACTION_ID
 FROM MOVIE_RENTAL
 WHERE RENTAL_FEE >
 (SELECT AVG(RENTAL_FEE)
 FROM MOVIE_RENTAL)

TRANSACTION_ID

 9
 10

 The inner query fi nds the average rental fee and then the outer query fi nds
all rows in the MOVIE_RENTAL table with a RENTAL_FEE that exceeds
the average. While IN and NOT IN are the most common operators used
to connect subqueries to outer queries, in this case the subquery returns
only one row; therefore you can use the greater than (>) operator for
comparison. The DISTINCT eliminates any duplicate transaction IDs.

• The previous query result set would be more useful to the store manager if
it included the transaction date. One way to accomplish this is to add a join
to the CUSTOMER_TRANSACTION table in the outer select. However,
since you just learned about subselects, let’s do that with another subselect.
This demonstrates that you can nest subselects when you need to. Here is
the query:

CHAPTER 5 Combining Data from Multiple Tables 143

SELECT TRANSACTION_ID, TRANSACTION_DATE AS TRANS_DATE
 FROM CUSTOMER_TRANSACTION
 WHERE TRANSACTION_ID IN
 (SELECT DISTINCT TRANSACTION_ID
 FROM MOVIE_RENTAL
 WHERE RENTAL_FEE >
 (SELECT AVG(RENTAL_FEE)
 FROM MOVIE_RENTAL))

TRANSACTION_ID TRANS_DATE
-------------- ----------
 9 03/01/2005
 10 03/01/2005

Correlated Subselects
A correlated subselect is a subselect where the inner select refers to values pro-
vided by the outer select. These are far less effi cient than noncorrelated subselects
because the inner query must be invoked for each row found by the outer query.
Recall that with a noncorrelated subselect, the inner query is only run once. An
example follows.

• The store wishes to mail a discount coupon to any customer who paid more
than $15 in rental fees in any single rental transaction. Here is the query:

SELECT DISTINCT CUSTOMER_ACCOUNT_ID
 FROM CUSTOMER_TRANSACTION A
 WHERE 15 <
 (SELECT SUM(RENTAL_FEE)
 FROM MOVIE_RENTAL B
 WHERE A.TRANSACTION_ID = B.TRANSACTION_ID)

CUSTOMER_ACCOUNT_ID

 2
 7
 9

Note the alias assigned to the table names in the inner and outer queries and the use
of them in the WHERE clause in the inner query. This is the hallmark of a correlated
subselect. The outer select fi nds a distinct list of CUSTOMER_ACCOUNT_ID
values in the CUSTOMER_TRANSACTION_TABLE. For each value found, the
value is passed to the inner query, which is run to fi nd the sum of rental fees for that
transaction. If the sum of rental fees is greater than or equal to 15 (actually expressed

 144 SQL Demystifi ed

in the query as “if 15 is less than the sum of rental fees”), then the WHERE clause in
the outer select evaluates to “true,” and the corresponding CUSTOMER_ID is added
to the result set.

Inline Views
A few SQL implementations, Oracle in particular, support using a subselect in the
FROM clause of a query, a construct that is called an inline view. Essentially, this
allows the result set of a subquery to be treated as if it were a predefi ned table or
view. Here is an example:

• This query fi nds the maximum number of times any single movie has been
rented:

SELECT MAX(RENTAL_COUNT) AS MAX_RENTAL_COUNT
 FROM
 (SELECT MOVIE_ID, COUNT(*) AS RENTAL_COUNT
 FROM MOVIE_RENTAL
 GROUP BY MOVIE_ID)
MAX_RENTAL_COUNT

 5

The inner query counts the number of rentals for each value of MOVIE_ID. The
outer query then selects the maximum value of RENTAL_COUNT from the inner
query, treated it as if it were a predefi ned view. There is no limit to what you can do
with inline views—you can even join them to other views or tables.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. A subselect

 a. May be used to select values to be applied to WHERE clause conditions

 b. May be corrugated or noncorrugated

 c. Is a powerful way of calculating columns

 d. Must not be enclosed in parentheses

 e. Allows for the fl exible selection of rows

CHAPTER 5 Combining Data from Multiple Tables 145

 2. A join without a WHERE clause or JOIN clause

 a. Results in an error message

 b. Returns no rows in the result set

 c. Performs an outer join

 d. Performs an inner join

 e. Results in a Cartesian product

 3. An outer join

 a. May be written in Oracle SQL using a (+) symbol in the FROM clause

 b. May be written in Microsoft SQL Server using a *= or =* operator in
the WHERE clause

 c. Returns all rows from only one of the two tables

 d. Returns all rows from one or both of the two tables

 e. Can be a left, right, or full outer join

 4. A self join

 a. Can never result in a Cartesian product

 b. Can be either an inner or outer join

 c. Resolves recursive relationships

 d. May use a subselect to further limit rows

 e. Involves two different tables

 5. A join

 a. Combines columns from two or more tables into a single query result

 b. Combines rows from multiple queries into a single query result

 c. Occurs whenever the FROM clause references more than one table

 d. Requires the use of a JOIN clause

 e. Requires a comma-separated table name list in the FROM clause

 6. An equijoin

 a. Is also known as an outer join

 b. Is also known as an inner join

 c. Is also known as a self join

 d. Always matches rows using an equal (=) condition

 e. Always matches rows using a not equal (<>) condition

 146 SQL Demystifi ed

 7. Column name qualifi ers

 a. Resolve ambiguous column references

 b. May be a table name

 c. May be a number denoting the relative position of the table in the
FROM list

 d. May be a column alias defi ned in the FROM clause

 e. May be a table alias defi ned in the FROM clause

 8. A cross join is the same as

 a. A natural join

 b. A Cartesian product

 c. An outer join

 d. An inner join

 e. A self join

 9. A JOIN clause with a USING keyword

 a. Cannot be used when the columns being matched have different names

 b. Cannot be used when the columns being matched have the same names

 c. Defi nes an inner join

 d. Defi nes an outer join

 e. Defi nes a self join

 10. A correlated subselect

 a. Runs more effi ciently than a noncorrelated subselect

 b. Runs less effi ciently than a noncorrelated subselect

 c. Has a nested select that references column values from the outer select

 d. Has an outer select that references column values from the inner select

 e. Has a nested select that makes no reference to the column values in the
outer select

Write SQL SELECT statements to solve the problems listed below.

 11. List the name and Customer Account ID of any deceased person (DEATH_
DATE that is NOT NULL) who is still listed on a Customer Account.

 12. List the name of employees who are listed on a Customer Account. Use
joins to determine which customers are employees and which employees
have accounts.

CHAPTER 5 Combining Data from Multiple Tables 147

 13. Rewrite the previous query to use subselects instead of joins.

 14. List the last name of each employee along with the last name of their
supervisor.

 15. List the count of the number of rentals by format (DVD vs. VHS).

 16. List the Movie ID and Due Date of all movies that are currently out on
rental (Returned Data in Movie Rental contains NULL values) and have not
been purchased (Date Sold in Movie Copy contains NULL values).

 17. List the Movie ID and Title of any movies that have never been rented.

 18. Using subselects to fi lter rows, list the Movie Title of all movies where
there is a VHS copy in the inventory (MEDIA_FORMAT = ‘V’, DATE_
SOLD must be null) and yet there is no DVD copy in inventory (MEDIA_
FORMAT = ‘D’).

 19. Rewrite the previous query using a join instead of a subselect to fi nd the
VHS movie.

 20. List any movie where there are multiple copies in inventory in the same
format.

This page intentionally left blank

149

6

Advanced Query
Writing

Before we move on to Data Manipulation Language in Chapter 7, this chapter is in-
tended to round out your knowledge of SQL queries by covering some advanced topics
that were only brushed upon in Chapters 4 and 5. It covers the following topics:

• Advanced SQL functions, including character, mathematical, and date/time
functions

• A description of how to take advantage of views

• A description of how to use SQL to generate SQL statements

• Information on the SQL CASE expression and its use in forming statements
that have portions that are only executed under predefi ned conditions

CHAPTER

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 150 SQL Demystifi ed

Advanced SQL Functions
SQL functions were introduced in Chapter 4. The topics that follow describe func-
tions that were not covered in Chapter 4 but which you will fi nd useful. In addition
to character and mathematical functions, selected date and time functions are also
included. Remember that all SQL functions have a common characteristic in that
they return a single value, so they are useful in several places in SQL statements,
including the SELECT statement column list and WHERE clause. As a reminder,
there are many more implementation-specifi c functions provided by the various
DBMS vendors, so always check the vendor-supplied documentation for more use-
ful functions.

Character Functions
Character functions operate on character data. This topic presents some commonly
used functions in addition to those covered in Chapter 4. Except as noted, you will
fi nd the function supported by the most popular SQL implementations, including
Microsoft SQL Server, Oracle, DB2, and MySQL.

REPLACE
The REPLACE function searches a character string and replaces characters found
in a search string with characters listed in a replacement string. Here is the general
syntax:

REPLACE(character_string, search_string, replacement_string)

• character_string is the string to be searched and is most often a table
column name, but it can be any expression that yields a character string.

• search_string is the string of one or more characters to be found in
character_string.

• replacement_string is the string that replaces any occurrences of search_
string that are found in character_string.

Here is an example that replaces all hyphens (dashes) found in a person’s phone
number with periods (only the fi rst two rows in the result set are shown):

SELECT PERSON_PHONE,
 REPLACE(PERSON_PHONE,'-','.') AS DISPLAY_PHONE
 FROM PERSON;

NOTE:

CHAPTER 6 Advance Query Writing 151

PERSON_PHONE DISPLAY_PHONE
--------------- ---------------
230-229-8976 230.229.8976
401-617-7297 401.617.7297

LTRIM
The LTRIM function removes any leading (left-hand) spaces in a character string.
Note that only leading spaces are removed—embedded and trailing spaces are left
in the string. There is no data with leading and/or trailing spaces in the video store
database, so here is a general example:

LTRIM (' String with spaces ')
Returns this string: 'String with spaces '

RTRIM
The RTRIM function works like LTRIM, but it removes trailing spaces. If you need to
remove both leading and trailing spaces, you can nest LTRIM and RTRIM like this:

RTRIM(LTRIM (' String with spaces '))
Returns this string: 'String with spaces'

NOTE: NOTE: Oracle provides a convenient function named TRIM that trims both
leading and trailing spaces. For other implementations, you can always nest the
LTRIM and RTRIM functions and achieve the same result.

Null Value Function (NVL, ISNULL, IFNULL)
Oracle, Microsoft SQL Server, and MySQL all provide a function that replaces null
values with a selected value. Unfortunately, they each give the function a different
name: NVL in Oracle, ISNULL in SQL Server, and IFNULL in MySQL. Appar-
ently, DB2 has no equivalent function. The following examples select the
LATE_OR_LOSS_FEE from the MOVIE_RENTAL table with null values replaced
by 0. Transaction 9 was selected because it has two movies on it, one of which has
a null value for LATE_OR_LOSS_FEE (a good example that shows that null val-
ues are transformed while non-null values are left just the way they are).

 152 SQL Demystifi ed

Oracle:

SELECT NVL(LATE_OR_LOSS_FEE, 0) AS LATE_OR_LOSS_FEE
 FROM MOVIE_RENTAL
 WHERE TRANSACTION_ID=9;

LATE_OR_LOSS_FEE

 0
 29.98

2 rows selected.

Microsoft SQL Server:

SELECT ISNULL(LATE_OR_LOSS_FEE, 0) AS LATE_OR_LOSS_FEE
 FROM MOVIE_RENTAL
WHERE TRANSACTION_ID=9;

LATE_OR_LOSS_FEE

 29.98
 .00

 (2 rows affected)

MySQL:

SELECT IFNULL(LATE_OR_LOSS_FEE, 0) AS LATE_OR_LOSS_FEE
 FROM MOVIE_RENTAL
WHERE TRANSACTION_ID=9;

+------------------+
| LATE_OR_LOSS_FEE |
+------------------+
| 29.98 |
| 0.00 |
+------------------+
2 rows in set (0.16 sec)

Notice how differently the MySQL command line client formats its output.
While SQL clients from different vendors typically format results differently, the
good news is that the data is the same.

CHAPTER 6 Advance Query Writing 153

ASCII
The ASCII function returns the ASCII character set value (a number between 0 and
255) for a character string containing a single character. For example, the ASCII
code for a space is 32, so ASCII(‘ ‘) would return a value of 32.

CHAR (CHR)
The CHAR function (named CHR in Oracle and DB2) returns the character associ-
ated with an ASCII value (a number between 0 and 255). For example, the function
ASCII(44) returns a comma since the ASCII value for a comma is 44. This function
is particularly useful for concatenating characters that either cannot be displayed or
would be awkward to handle in SQL. Some of the ASCII characters typically used
with this function are listed in the following table. You can use the ASCII function
or an ASCII character set table (easily found on the Internet) if you need to know
other values.

ASCII Value Character

9 Tab

10 Line feed

13 Carriage return

39 Single quote

Some examples follow. Keep in mind that the concatenation operators are not
the same for all DBMS implementations (‘+’ for Microsoft SQL Server, ‘||’ for most
others).

• Find any movie titles that have a Tab character in them:

 Microsoft SQL Server:

SELECT MOVIE_ID FROM MOVIE
 WHERE MOVIE_TITLE LIKE '%'+CHAR(9)+'%';

MOVIE_ID
(0 rows affected)

 Oracle and DB2:

SELECT MOVIE_ID FROM MOVIE
 WHERE MOVIE_TITLE LIKE '%' || CHR(9) || '%';

no rows selected

 154 SQL Demystifi ed

NOTE: NOTE: You may modify the Tab query to fi nd movies with single quotes in their titles
by changing the 9 to 39. You should fi nd Movie ID 3 (Something’s Gotta Give).

Mathematical Functions
As you might guess from the name, mathematical functions return the result of a
mathematical operation and usually require a numeric expression as an input pa-
rameter, which can be a literal value, a numeric table column value, or any
expression (including the output of another function) that yields a numeric value.

SIGN
The SIGN function takes in a numeric expression and returns one of the following
values based on the sign of the input number:

Return Value Meaning

−1 Input number is negative

 0 Input number is zero

 1 Input number is positive

null Input number is null

Here is an example:

SELECT LATE_OR_LOSS_FEE,
 SIGN(LATE_OR_LOSS_FEE) AS FEE_SIGN
 FROM MOVIE_RENTAL
 WHERE LATE_OR_LOSS_FEE IS NOT NULL;

LATE_OR_LOSS_FEE FEE_SIGN
---------------- ----------
 29.99 1
 4 1
 4 1
 29.98 1

SQRT
The SQRT function takes in a single numeric expression and returns its square root.
The general syntax is

SQRT (numeric_expression)

CHAPTER 6 Advance Query Writing 155

The result is a bit meaningless, but let’s take the square root of the non-null Late
or Loss Fees we just looked at:

SELECT LATE_OR_LOSS_FEE,
 SQRT(LATE_OR_LOSS_FEE) AS FEE_SQRT
 FROM MOVIE_RENTAL
 WHERE LATE_OR_LOSS_FEE IS NOT NULL;

LATE_OR_LOSS_FEE FEE_SQRT
---------------- ----------
 29.99 5.47631263
 4 2
 4 2
 29.98 5.47539953

CEILING (CEIL)
The CEILING function returns the smallest integer that is greater than or equal to
the value of the numeric expression provided as an input parameter. In other words,
it rounds up to the next nearest whole number. There are some interesting naming
compatibility issues across SQL implementations: Microsoft SQL Server uses the
name CEILING, Oracle uses the name CEIL, and both DB2 and MySQL allow
either name (CEIL or CEILING) to be used.

As an example, let’s apply CEILING to the Late or Loss Fees (if you are using
Oracle, change CEILING to CEIL):

SELECT LATE_OR_LOSS_FEE,
 CEILING(LATE_OR_LOSS_FEE) AS FEE_CEILING
 FROM MOVIE_RENTAL
 WHERE LATE_OR_LOSS_FEE IS NOT NULL;

LATE_OR_LOSS_FEE FEE_CEILING
---------------- -----------
 4.00 4
 4.00 4
 29.99 30
 29.98 30

FLOOR
The FLOOR function is the logical opposite of the CEILING function—it returns the
integer that is less than or equal to the value of the numeric expression provided as an
input parameter. In other words, it rounds down to the next nearest whole number.

 156 SQL Demystifi ed

Here is an example showing FLOOR applied to Late or Loss Fees:

SELECT LATE_OR_LOSS_FEE,
 FLOOR(LATE_OR_LOSS_FEE) AS FEE_FLOOR
 FROM MOVIE_RENTAL
 WHERE LATE_OR_LOSS_FEE IS NOT NULL;

LATE_OR_LOSS_FEE FEE_FLOOR
---------------- ---------
 4.00 4
 4.00 4
 29.99 29
 29.98 29

Date and Time Functions
There is very little consistency in date and time functions across different DBMS
vendors. Largely, this is because most of them developed date and time data types
ahead of the development of standards. Because of this diversity, date and time
functions are presented in summary form for Microsoft SQL Server, Oracle, DB2,
and MySQL. As always, the vendor documentation should be consulted for detailed
explanations of the use of these functions. Terms shown in italics are defi ned in the
notes at the bottom of each table. The term “datetime” is used throughout this sec-
tion to mean a character string that contains both a date and time in a format that is
acceptable to the particular DBMS.

Microsoft SQL Server Date and Time Functions
Microsoft SQL Server offers the date and time functions shown in the following
table:

Function Purpose Input Parameters

DATEADD Returns a new datetime calculated
by adding an interval to the
datepart of the supplied date

datepart, interval quantity, datetime

DATEDIFF Returns the number of datetime
boundaries crossed between two
dates

datepart, start datetime, end
datetime

DATENAME Returns a text name representing
the selected datepart of the input
datetime

datepart, datetime

NOTE:

CHAPTER 6 Advance Query Writing 157

Function Purpose Input Parameters

DATEPART Returns an integer representing
the selected datepart of the
supplied datetime

datepart, datetime

DAY Returns an integer representing
the day contained in the supplied
datetime

datetime

GETDATE Returns the current system
datetime

None

GETUTCDATE Returns the current UTC
(Universal Coordinated Time)
datetime

None

MONTH Returns an integer representing
the month contained in the
supplied datetime

datetime

YEAR Returns an integer (four digits)
representing the year contained in
the supplied datetime

datetime

NOTE: NOTE: Datepart is a parameter that specifi es a part of a date, such as year,
month, day, hour, minute, second, and millisecond. Refer to Microsoft SQL Server
documentation for values and options.

Oracle Date and Time Functions
Oracle has more than 24 date and time functions. Remember that while Oracle calls
the data type DATE, all dates contain a time component—it’s just set to zeros (rep-
resenting midnight) when it’s not used. The functions you are most likely to use are
listed in the following table:

Function Purpose Input Parameters

ADD_MONTHS Adds the supplied number of months
to the supplied date

date, number of months
(positive or negative value)

CURRENT_DATE Returns the current date in the time
zone set for the database session

None

EXTRACT Extracts the specifi ed datetime fi eld
from the supplied date

datetime fi eld keyword, date

LAST_DAY Returns the supplied date with the day
shifted to the last day of the month

date

 158 SQL Demystifi ed

Function Purpose Input Parameters

MONTHS_BETWEEN Returns the number of months
(including fractional parts)
between the two supplied dates;
result is negative if second date is
before the fi rst date

fi rst date, second date

SYSDATE Returns the current system date
and time

None

TO_CHAR When used with a date, converts
the date to a character string in
a format specifi ed by the format
string

date, format_string

TO_DATE Converts the supplied character
string into an Oracle internally
formatted date, using the
format string as a template for
interpreting the character string’s
contents

date, format_string

TRUNC Truncates a date to the time
unit specifi ed in the datetime
fi eld keyword. If the keyword is
omitted, the date is truncated to
the current day

date, datetime fi eld keyword

NOTE:NOTE:

• Datetime fi eld keyword is a keyword that specifi es one of the fi elds
contained within an Oracle date, such as YEAR, MONTH, DAY, HOUR,
MINUTE, and SECOND.

• Format string is a character string of symbols that specify the format that
is to be used for the date when converted to or from a character string.
There are over 40 different symbols that may be used in the format string
(see Oracle documentation for an exhaustive list). For example, the format
string ‘MM/DD/YYYY HH:MI’ would refer to a date character string that
would look like ‘12/01/2004 11:58’, while the format string ‘DD-MON-RR’
(the Oracle default format) would refer to a string that would look like ‘01-
Dec-04’.

• TO_CHAR can also be used to convert numeric values to character strings.

• TRUNC can also be used to truncate numeric values, which chops off any
numbers to the right of the decimal point.

CHAPTER 6 Advance Query Writing 159

MySQL Date and Time Functions
MySQL has well over 30 date and time functions. Of those, the ones you are most
likely to use are listed in the following table:

Function Purpose Input Parameters

ADDDATE Adds two date, interval, or datetime
expressions, yielding a new date

expression 1, expression 2

ADDTIME Adds two time expressions, yielding a
new time

expression 1, expression 2

CURDATE Returns the current date in YYYY-MM-
DD format

None

DATE Returns the date part of a date or
datetime expression

datetime expression

DATEDIFF Returns the number of days between two
dates

start date, end date

DATE_FORMAT Formats a date according to a format
string

date, format string

DAYNAME Returns the text name for the day of the
week contained in a date

date

DAYOFMONTH Returns the day of the month, in the
range 1 to 31

date

DAYOFWEEK Returns a weekday index number for the
day contained in a date (1 for Sunday, 2
for Monday, and so forth)

date

DAYOFYEAR Returns the day of the year for the day
contained in a date with a valid range of
1 to 366

date

LAST_DAY Changes the day in a date to the last day
of the month

date

MONTH Returns the month contained in a date
with a valid range of 1 to 12

date

MONTHNAME Returns the text name of the month
contained in a date

date

NOW Returns the current date and time None

STR_TO_DATE Converts a character string to a
datetime format data item; the format
string indicates the format of the date
information in the input character string

character string, format string

TIME Extracts the time part of a datetime or
time expression

datetime

 160 SQL Demystifi ed

Function Purpose Input Parameters

TIMEDIFF Returns the time difference between two
datetime or time expression parameters

expression 1, expression 2

TIME_FORMAT Formats a time according to the format
string

time, format string

UTC_DATE Returns the current UTC (Universal
Coordinated Time) date

None

UTC_TIME Returns the current UTC (Universal
Coordinated Time) time

None

WEEKOFYEAR Returns the week of the year for a date,
in the range 1 to 54

date

NOTE: NOTE: Format string is a string of characters that indicates formatting options
for parts of the date. Consult MySQL documentation for details.

DB2 Date and Time Functions
DB2 UDB contains over 20 date and time functions. Of those, the ones you are
most likely to use are listed in the table that follows:

Function Purpose Input Parameters

DATE Converts an expression into a date expression

DAY Returns the day part of a datetime expression datetime expression

DAYNAME Returns the text name of the day of the week for
a date or datetime expression

datetime expression

DAYOFWEEK Returns the day of the week (1 for Sunday, 2 for
Monday, and so forth) for a datetime expression

datetime expression

DAYS Returns an integer representation of a date datetime expression

MINUTE Returns the minute part of a datetime expression datetime expression

MONTH Returns the month part of a datetime expression datetime expression

MONTHNAME Returns the text name of the month for a date or
datetime expression

datetime expression

QUARTER Returns an integer in the range 1 to 4 representing
the calendar quarter in which a date falls

datetime expression

SECOND Returns the seconds part of a date or datetime
expression

datetime expression

CHAPTER 6 Advance Query Writing 161

Function Purpose Input Parameters

TIME Returns the time part of a date or datetime
expression

datetime expression

WEEK Returns the week of the year as an integer in the
range 1 to 54

datetime expression

YEAR Returns the year part of a date or datetime
expression

datetime expression

Taking Advantage of Views
From Chapter 1, you should recall that a view is a stored database query that pro-
vides a database user with a customized subset of the data from one or more tables
in the database. Note that Microsoft Access uses the term query instead of view.
The inherent beauty of views is that, once created, they can be queried just like ta-
bles. In fact, the user never needs to know they are using a view instead of a real
table. There can be some restrictions when data manipulation (inserts, updates, and
deletes) is attempted using views (check your DBMS documentation), but queries
work just the same against views as they do against tables. Furthermore, views
provide a number of very useful benefi ts:

• Hiding columns a user does not need or should not see

• Hiding rows a user does not need or should not see

• Hiding complex operations such as joins

• Improving query performance (in some RDBMSs, such as Microsoft SQL
Server)

The examples in this section show views that provide the aforementioned bene-
fi ts. From Chapter 4, the general syntax for creating a view is

CREATE [OR REPLACE] VIEW view_name AS sql_query;

Here are some practical examples using the video store sample database:

• Obvious privacy rules require that the store manager keep employee tax IDs
(social security numbers) and rates of pay in strict confi dence. However,
there are a number of web-based applications that require some employee
information, such as the name of the employee and their supervisor’s name
(if any). What is required in such cases is a view that can be safely used by
those web applications without the possibility of a developer who’s using
the data accidentally revealing confi dential information. The query in the
view must join with the PERSON table to fi nd the name of the employee

 162 SQL Demystifi ed

and again (using an outer join) for the name of the employee’s supervisor.
Furthermore, column names should be as user friendly to a U.S.-based web
development team as possible. Here is the SQL statement to create the view:

CREATE VIEW EMPLOYEE_LIST AS
 SELECT A.PERSON_ID AS ID,
 B.PERSON_GIVEN_NAME AS FIRST_NAME,
 B.PERSON_MIDDLE_NAME AS MIDDLE_NAME,
 B.PERSON_FAMILY_NAME AS LAST_NAME,
 C.PERSON_GIVEN_NAME AS MANAGER_FIRST_NAME,
 C.PERSON_FAMILY_NAME AS MANAGER_LAST_NAME
 FROM EMPLOYEE A JOIN PERSON B
 ON A.PERSON_ID = B.PERSON_ID
 LEFT OUTER JOIN PERSON C
 ON A.SUPERVISOR_PERSON_ID = C.PERSON_ID

View created.

 Once the view is created, you can write queries against it just like you can
with tables. Here is a simple query against the view just created:

SELECT LAST_NAME, MANAGER_LAST_NAME
 FROM EMPLOYEE_LIST
 ORDER BY LAST_NAME;

LAST_NAME MANAGER_LAST_NAME
------------------------- -------------------------
Alexander
Bernstein Alexander
Chung Alexander

• For a movie catalog listing, you want to list the MPAA Rating Description
and the Movie Genre Description. It seems obvious that this three-table
join will be needed quite often, so you help the video store staff by creating
a view with the joins already done for them. Here is the SQL statement to
create the view:

CREATE VIEW MOVIE_LISTING AS
SELECT A.MOVIE_ID, B.MOVIE_GENRE_DESCRIPTION AS GENRE,
 C.MPAA_RATING_CODE AS RATING,
 C.MPAA_RATING_DESCRIPTION AS RATING_DESC,
 A.MOVIE_TITLE, A.RETAIL_PRICE_VHS,
 A.RETAIL_PRICE_DVD, A.YEAR_PRODUCED
 FROM MOVIE A JOIN MOVIE_GENRE B ON
 A.MOVIE_GENRE_CODE = B.MOVIE_GENRE_CODE
 JOIN MPAA_RATING C ON
 A.MPAA_RATING_CODE = C.MPAA_RATING_CODE

CHAPTER 6 Advance Query Writing 163

 Here is a simple query that uses the view instead of the base tables:

SELECT GENRE, RATING, MOVIE_TITLE
 FROM MOVIE_LISTING
 ORDER BY GENRE, RATING, MOVIE_TITLE;

GENRE RATING MOVIE_TITLE
-------------------- ------ ------------------------------
Action and Adventure PG-13 Master and Commander: The Far
Action and Adventure PG-13 Pirates of the Caribbean: The
Action and Adventure PG-13 The Day After Tomorrow
Action and Adventure PG-13 The Italian Job
Action and Adventure R Kill Bill: Vol. 1
Action and Adventure R Man on Fire
Action and Adventure R The Last Samurai
Comedy PG-13 50 First Dates
Comedy PG-13 Matchstick Men
Comedy PG-13 Something’s Gotta Give
Comedy PG-13 The School of Rock
Drama PG-13 Big Fish
Drama R Cold Mountain
Drama R Lost in Translation
Drama R Monster
Drama R Mystic River
Drama R Road to Perdition
Foreign R Das Boot
Romance PG-13 13 Going on 30
Romance PG-13 Two Weeks Notice

20 rows selected.

• The video store is very interested in placing a computer-based kiosk in
the children’s section to allow youngsters to search for movies online.
However, the store manager wants to be sure only G, PG, and PG-13
rated movies show up on the children’s kiosk. It would be simple enough
to enforce this rule in the application program that will control the kiosk.
However, if a database view is used and the kiosk application is forced to
use only the view, there can be no accidental slip-ups in the application
program’s logic, and it will be easy to adjust the view later if the MPAA
changes its rating system again (as they have done several times in the
past). Rather than repeat the join logic in the MOVIE_LISTING view again
in this view, you can simply use the MOVIE_LISTING view to create the

 164 SQL Demystifi ed

new view. Yes, you can create a view based on another view! It provides
unparalleled fl exibility. Here is the example:

CREATE VIEW CHILDRENS_MOVIE_LISTING AS
SELECT * FROM MOVIE_LISTING
 WHERE RATING IN ('G','PG','PG-13')

Using the same select you used against MOVIE_LISTING, here is the new result:

SELECT GENRE, RATING, MOVIE_TITLE
 FROM CHILDRENS_MOVIE_LISTING
 ORDER BY GENRE, RATING, MOVIE_TITLE;

GENRE RATING MOVIE_TITLE
-------------------- ------ -----------------------------
Action and Adventure PG-13 Master and Commander: The Far
Action and Adventure PG-13 Pirates of the Caribbean: The
Action and Adventure PG-13 The Day After Tomorrow
Action and Adventure PG-13 The Italian Job
Comedy PG-13 50 First Dates
Comedy PG-13 Matchstick Men
Comedy PG-13 Something's Gotta Give
Comedy PG-13 The School of Rock
Drama PG-13 Big Fish
Romance PG-13 13 Going on 30
Romance PG-13 Two Weeks Notice

11 rows selected.

Notice how the WHERE clause in the CHILDRENS_MOVIE_LISTING view
blocks the unwanted rows from the query results. However, a word of caution on
creating views based on other views: the CHILDRENS_MOVIE_LISTING view is
dependent on the MOVIE_LISTING view and may become invalid or otherwise
malfunction any time the MOVIE_LISTING view is changed. Without a bit of plan-
ning and control, a house of cards can result that will fall down every time changes
are made. Nevertheless, views are a powerful tool that simply cannot be ignored.

Using SQL to Generate SQL
Most RDBMS products come with a set of catalog views that allow query access to
the metadata that describes the database objects contained in the database. Experi-
enced database administrators know how to use the data in the catalog to their
advantage and actually use SQL statements to generate other SQL statements.

CHAPTER 6 Advance Query Writing 165

Generating SQL in Oracle
In Oracle, the USER_TABLES view contains information about each table that be-
longs to the current database user. You can use the command “DESCRIBE
USER_TABLES” to see the defi nition of the view, or refer to the Oracle Server Ref-
erence manual for descriptions of this and other catalog views.

Here is an SQL statement that creates a DROP TABLE command for every table
found in USER_TABLES. The WHERE clause was added to eliminate some
Oracle internal tables that might otherwise appear in the result set. There are also
techniques available for sending the query results to a fi le that can then be used as
a script, but they are beyond the scope of this text (see the Oracle SQL*Plus SPOOL
command for details).

SELECT 'DROP TABLE ' || TABLE_NAME ||
 ' CASCADE CONTRAINTS;' AS SQL
 FROM USER_TABLES
 WHERE TABLE_NAME NOT LIKE 'BIN$%';

SQL

DROP TABLE MOVIE_RENTAL CASCADE CONSTRAINTS;
DROP TABLE CUSTOMER_TRANSACTION CASCADE CONSTRAINTS;
DROP TABLE CUSTOMER_ACCOUNT_PERSON CASCADE CONSTRAINTS;
DROP TABLE EMPLOYEE CASCADE CONSTRAINTS;
DROP TABLE MOVIE_LANGUAGE CASCADE CONSTRAINTS;
DROP TABLE MOVIE_COPY CASCADE CONSTRAINTS;
DROP TABLE MOVIE CASCADE CONSTRAINTS;
DROP TABLE PERSON CASCADE CONSTRAINTS;
DROP TABLE MPAA_RATING CASCADE CONSTRAINTS;
DROP TABLE MOVIE_GENRE CASCADE CONSTRAINTS;
DROP TABLE LANGUAGE CASCADE CONSTRAINTS;
DROP TABLE CUSTOMER_ACCOUNT CASCADE CONSTRAINTS;

Generating SQL in Microsoft SQL Server
Microsoft uses the term “system tables” for the SQL Server tables that contain
metadata. You can fi nd descriptions of them in Books Online under the topic
“system tables.” Here is the SQL Server equivalent of the previous example (drop-
ping all tables) using the SQL Server SYSOBJECTS table. The WHERE clause
fi lters out all objects except those with the “user table” object type.

 166 SQL Demystifi ed

SELECT 'DROP TABLE ' + NAME + ';'
 FROM SYSOBJECTS
 WHERE XTYPE='U'

DROP TABLE PERSON;
DROP TABLE MOVIE;
DROP TABLE MOVIE_COPY;
DROP TABLE MOVIE_LANGUAGE;
DROP TABLE EMPLOYEE;
DROP TABLE CUSTOMER_ACCOUNT_PERSON;
DROP TABLE CUSTOMER_TRANSACTION;
DROP TABLE MOVIE_RENTAL;
DROP TABLE CUSTOMER_ACCOUNT;
DROP TABLE LANGUAGE;
DROP TABLE MOVIE_GENRE;
DROP TABLE MPAA_RATING;

NOTE: NOTE: These generated DROP statements won’t run without some additional
work because of the referential constraints. SQL Server doesn’t support the
“CASCADE CONSTRAINTS” clause with the DROP command, so the referential
constraints would have to be dropped before the tables could be, or the DROP
statements would have to be placed in the proper order before being run.

The CASE Expression
The CASE expression is a recent addition to the SQL standard but an important
one. For the fi rst time, parts of SQL statements can be executed conditionally. For
example, a column in the query results may be formatted based on the values con-
tained in another column. However, your SQL implementation may not support it
just yet because it is so new.

The CASE expression allows two general forms.

Simple CASE Expression
Here is the general syntax of the simple form of the CASE expression:

CASE input_expression
 WHEN comparison_expression THEN result_expression
 [WHEN comparison_expression THEN result_expression ...]
 [ELSE result_expression]
END

NOTE:

CHAPTER 6 Advance Query Writing 167

NOTE:NOTE:

• Each WHEN condition is evaluated as input_expression = comparision_
expression, and if the result is a logical TRUE, the result_expression is
returned and no other WHEN conditions are evaluated.

• If none of the WHEN conditions evaluates to TRUE, and there is an ELSE
condition, the result_expression associated with the ELSE condition is
returned.

• If none of the WHEN conditions evaluates to TRUE, and there is no ELSE
condition, a null value is returned.

As an example, you can use the CASE expression to translate the MPAA Rating
Code to a simple message that can be displayed at the checkout counter in the video
store to remind sales clerks to check customer ages for movies rated above PG-13.
Note the placement of the AS keyword just after the END keyword to assign a col-
umn name to the generated column in the result set. Here is the example:

SELECT MOVIE_ID, MPAA_RATING_CODE AS RATING,
 CASE MPAA_RATING_CODE
 WHEN 'G' THEN 'All ages'
 WHEN 'PG' THEN 'Parental guidance'
 WHEN 'PG-13' THEN 'Ages 13 and up'
 ELSE 'MUST be at least 17'
 END AS RATING_DESC
 FROM MOVIE
 ORDER BY MOVIE_ID;

 MOVIE_ID RATING RATING_DESC
---------- ------ -------------------
 1 R MUST be at least 17
 2 R MUST be at least 17
 3 PG-13 Ages 13 and up
 4 PG-13 Ages 13 and up
 5 R MUST be at least 17
 6 PG-13 Ages 13 and up
 7 PG-13 Ages 13 and up
 8 R MUST be at least 17
 9 PG-13 Ages 13 and up
 10 R MUST be at least 17
 11 PG-13 Ages 13 and up
 12 PG-13 Ages 13 and up
 13 PG-13 Ages 13 and up
 14 R MUST be at least 17

 168 SQL Demystifi ed

 15 R MUST be at least 17
 16 PG-13 Ages 13 and up
 17 PG-13 Ages 13 and up
 18 R MUST be at least 17
 19 PG-13 Ages 13 and up
 20 R MUST be at least 17

Searched CASE Expression
The so-called searched CASE expression allows for more fl exible comparison con-
ditions because each one is written as a complete condition, including the
comparison operator. Here is the general syntax:

CASE
 WHEN condition THEN result_expression
 [WHEN condition THEN result_expression ...]
 [ELSE result_expression]
END

NOTE:NOTE:

• Each condition can be any SQL expression that evaluates to TRUE or
FALSE.

• Each WHEN is evaluated in sequence, and if one of them evaluates to
TRUE, the associated result_condition is returned and no other WHEN
conditions are evaluated.

• If none of the WHEN conditions evaluates to TRUE, and there is an ELSE
condition, the result_expression associated with the ELSE condition is
returned.

• If none of the WHEN conditions evaluates to TRUE, and there is no ELSE
condition, a null value is returned.

As an example, here is a query that classifi es VHS movies by price range:

SELECT MOVIE_ID, RETAIL_PRICE_VHS,
 CASE
 WHEN RETAIL_PRICE_VHS IS NULL THEN 'Not Available'
 WHEN RETAIL_PRICE_VHS < 10 THEN 'Bargain'
 WHEN RETAIL_PRICE_VHS < 20 THEN 'Budget'
 WHEN RETAIL_PRICE_VHS < 40 THEN 'Average'
 ELSE 'Premium'

CHAPTER 6 Advance Query Writing 169

 END AS PRICE_CATEGORY
 FROM MOVIE
 ORDER BY MOVIE_ID;

 MOVIE_ID RETAIL_PRICE_VHS PRICE_CATEGORY
---------- ---------------- --------------
 1 58.97 Premium
 2 15.95 Budget
 3 14.95 Budget
 4 11.95 Budget
 5 24.99 Average
 6 24.99 Average
 7 14.95 Budget
 8 50.99 Premium
 9 12.98 Budget
 10 49.99 Premium
 11 6.93 Bargain
 12 9.95 Bargain
 13 6.93 Bargain
 14 24.99 Average
 15 9.99 Bargain
 16 11.69 Budget
 17 14.94 Budget
 18 24.99 Average
 19 12.98 Budget
 20 17.99 Budget

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. SQL functions

 a. Return a set of values

 b. Return a single value

 c. Can be used in the WHERE clause of an SQL statement

 d. Can be used as a table name alias in an SQL statement

 e. Can be used in the column list of an SQL statement

 170 SQL Demystifi ed

 2. The REPLACE function

 a. Replaces a table name with a view name

 b. Replaces a column name with a column alias

 c. Replaces a character string in a column with another character string

 d. Replaces all values in a column with a new set of values

 e. Replaces all rows in a view with rows containing data from another
table

 3. The null value function

 a. Is called NVL in Oracle databases

 b. Is called ISNULL in IBM DB2 databases

 c. Is called ISNULL in Microsoft SQL Server databases

 d. Is called ISNULL in MySQL databases

 e. Is called IFNULL in the SQL standard

 4. The LTRIM function

 a. Removes trailing spaces from character strings

 b. Removes leading spaces from character strings

 c. Can be nested with other functions

 d. Replaces null values with other values in character strings

 e. Removes both leading and trailing spaces from character strings

 5. The CHAR function

 a. Is named CHR in some SQL implementations

 b. Is identical to the ASCII function in some SQL implementations

 c. Returns the ASCII character set value for a character

 d. Returns the character for an ASCII character set value

 e. Converts a numeric value to a character string

 6. The SIGN function

 a. Returns −1 if the supplied parameter has a negative value

 b. Returns 0 if the supplied parameter has a value of zero

 c. Returns +1 if the supplied parameter has a value greater than or equal to
zero

 d. Returns 0 if the supplied parameter is null

 e. Returns a null value if the supplied parameter is not a number

CHAPTER 6 Advance Query Writing 171

 7. The CEILING function

 a. Rounds a number down to the next whole number

 b. Rounds a number up to the next whole number

 c. Always returns an integer

 d. Returns either an integer or a null value

 e. Is named CEIL in some SQL implementations

 8. The FLOOR function

 a. Rounds a number down to the next whole number

 b. Rounds a number up to the next whole number

 c. Always returns an integer

 d. Returns either an integer or a null value

 e. Is named FLR in some SQL implementations

 9. Date and time functions

 a. Are very similar across different vendor implementations

 b. Vary markedly across different vendor implementations

 c. Include functions that format date and time data items for display

 d. Include functions that convert character strings to dates and times

 e. Include functions that convert date and time data items to character
strings

 10. CASE expressions

 a. Allow for conditional execution of clauses within an SQL statement

 b. Come in two forms named static and dynamic

 c. Come in two forms named searched and nonsearched

 d. Come in two forms named simple and searched

 e. Come in two forms named standard and searched

Write SQL statements to solve each of the following problems.

 11. List the MPAA_RATING_CODE values from the MPAA_RATING table,
with hyphens (dashes) translated to spaces.

 12. Using the CHAR function (called CHR in Oracle), list the MOVIE_ID and
MOVIE_TITLE for all movies that have a single quote (ASCII character 39)
in their names.

 13. Find the ASCII character set value for an exclamation point (!).

 172 SQL Demystifi ed

 14. Find the average price of a DVD movie (column DVD_RETAIL_PRICE
in the MOVIE table), with the calculated average rounded up to the nearest
whole dollar.

 15. Find the average price of a VHS movie (column VHS_RETAIL_PRICE in
the MOVIE table), with the calculated average rounded down to the nearest
whole dollar.

 16. For an Oracle database, generate the SQL commands to drop all the
referential constraints owned by the current user. The Oracle catalog
view is called USER_CONSTRAINTS, and referential constraints have a
CONSTRAINT_TYPE of ‘R’. The table name on which the constraint is
based is in the TABLE_NAME column of the catalog view. Remember that
you have to use the ALTER TABLE command to drop table constraints.

 17. For a Microsoft SQL Server database, list all the foreign key constraints.
Use the SYSOBJECTS system table, where NAME is the name of the
constraint, and XTYPE has the value ‘F’ for foreign key constraints.

 18. Write an SQL statement that lists each Customer Account (CUSTOMER_
ACCOUNT_ID) with a character string based on the value of CHILD_
RENTAL_ALLOWED_INDIC where the string shows ‘Child Rental OK’
if the value is ‘Y’ and ‘NO CHILD RENTAL’ if the value is ‘N’. Hint: A
simple CASE expression should work the best here.

 19. Write an SQL statement that lists each Movie (MOVIE_ID) along with
the decade based on the value of YEAR_PRODUCED (80s, 90s, 00s,
Unknown). A search CASE expression should be helpful here.

 20. Write an SQL statement that lists each movie rental (MOVIE_RENTAL
table) with the LATE_OR_LOSS_FEE categorized as follows: None (data
value null or 0), Minor (data value < 10), Major (data value >=10).

173

7

Maintaining Data
Using DML

Thus far we have looked at Data Defi nition Language (DDL), which is used to cre-
ate and modify the database objects that hold and organize the data in the database,
and Data Query Language (DQL), which is used to select data from the database.
This chapter covers Data Manipulation Language (DML), which is the part of SQL
that is used to maintain the data that is stored in the database’s relational tables.

DML is comprised of three SQL commands:

• INSERT Adds new rows to a database table

• UPDATE Updates existing database table rows

• DELETE Deletes rows from a database table

Keep in mind that each individual DML statement can affect data in only one table.
It is possible to reference a view in a DML statement, including one that contains data
from more than one table (that is, a view that contains a table join), but in that case,

CHAPTER

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 174 SQL Demystifi ed

the DML statement may only reference the columns from one of the tables in the
view. Said another way, when a DML statement references a view, the view columns
referenced in the DML statement must all map to columns of one physical table in
the database.

The DBMS you are using most likely offers some form of transaction support,
wherein a series of SQL DML statements can be considered an “all or nothing”
group of statements that must either all be successful or all fail. This feature is very
useful when SQL statements are used in business transactions and is covered in
detail in Chapter 9. If you try out any of the statements in this chapter (as I strongly
recommend), you can ignore transaction support, unless you are using Oracle. With
the Oracle database, transaction support is automatically activated when you con-
nect to the database. This means that none of the modifi cations you make will be
permanently made in the database until you either disconnect (exit) from the data-
base normally or issue a commit command. That won’t be an issue under normal
circumstances, but if your computer system or your Oracle session crashes (that is,
you exit the database abnormally), any changes you have made since you con-
nected to the database will be automatically rolled back. Moreover, if you have
multiple connections to the database at the same time, the changes made by one
connection (session) won’t be seen by any other concurrent connection until a com-
mit has been performed. If you are using Oracle and want to change the default
behavior, see Chapter 9 for details on how to do so.

Even if transaction support is not specifi cally enabled, the DBMS will handle
each individual DML statement as a transaction. This means that if the DBMS fi nds
an error with a modifi cation to any row identifi ed by the DML statement, it will
“roll back” the statement so that the net effect is a complete failure of the DML
statement for all rows in the table. In other words, the DBMS will never leave the
data in an inconsistent state. For example, if I tried to delete all rows in the MOVIE
table, and the DBMS encountered an error deleting the third row in the table
(having already deleted the fi rst two rows in the table), the entire statement would
fail and the rollback operation would automatically (some say “automagically”) put
the fi rst two rows back.

The SQL statements in this chapter assume that your DBMS is using the format
YYYY-MM-DD for date values in SQL statements. If your DBMS uses a different
format, you will have to alter the examples in this chapter to run them successfully on
your DBMS. For Oracle databases, the following statement will change Oracle’s
default date format to the one that is used in this chapter but only for the current ses-
sion (the default format will be assumed every time you re-connect to the database):

ALTER SESSION SET NLS_DATE_FORMAT='YYYY-MM-DD';

CHAPTER 7 Maintaining Data Using DML 175

Another important consideration is the constraints defi ned on the table refer-
enced by the DML statement. The DBMS will not perform any modifi cation to the
data in the database if it violates one of the constraints. When forming DML
statements, you need to consider the following in regard to the constraints on the
table being modifi ed:

• Primary key constraints When you insert a new row into a table, the
primary key of the new row must be unique among all rows in the table.
When you modify a primary key value (which is rarely done), the new
value must be unique among all rows in the table.

• Unique constraints As with primary key columns, columns with a unique
constraint defi ned on them must always have values that are unique among
all rows in the table.

• Referential constraints You cannot insert or update a foreign key value
unless the corresponding parent row containing the key value in its primary
key column(s) already exists. Conversely, you cannot delete a parent row if
there are any child rows that still reference it unless the constraint includes
an ON DELETE CASCADE option. In general, table inserts have to be
in hierarchical sequence (parents before children) and deletes done in the
reverse sequence (children before parents).

• NOT NULL constraints For an INSERT, you must provide values for
any columns that have NOT NULL constraints. For an UPDATE, you cannot
change columns to null values if they have a NOT NULL constraint. If the
DML statement references a view, you cannot use it for INSERTS if any
of the table’s required columns (those with NOT NULL constraints) are
missing from the view defi nition.

• CHECK constraints An INSERT or UPDATE statement cannot apply
a value to a table column that violates any CHECK constraint on that column.

The INSERT Statement
The INSERT statement in SQL is used to add new rows of data to tables. It comes
in two basic forms: one where column values are provided in the statement itself,
and the other where values are selected from a table or view using a subselect. Let’s
have a look at those two forms.

 176 SQL Demystifi ed

Single Row Inserts Using the VALUES Clause
The INSERT statement that uses a VALUES clause can create only one row each
time it is run because the values for that one row of data are provided in the state-
ment itself. Here is the general syntax for the statement:

INSERT INTO table_or_view_name
 [(column_list)]
 VALUES (value_list);

Note the following:

• The column list is optional but if included must be enclosed in a pair of
parentheses.

• If the column list is omitted, a value must be provided for every column
in the table in the same order as the columns are defi ned in the table. It is
always a good idea to provide the column list, because leaving it out makes
the INSERT statement dependent on the table’s defi nition, which means
that if the column order is changed, or a new column is added to the table
(even an optional one), the INSERT statement will most likely fail the next
time it is run.

• If the column list is provided, the value list must provide a value for each
column in the column list and in the same order. In other words, the column
list and value list must have a one-to-one correspondence. Any column that
is omitted from the column list will be set to a null value, provided nulls are
allowed for that column.

• The keyword NULL may be used in the value list to specify a null value for
any column.

• In Microsoft SQL Server and Sybase Adaptive Server, you cannot insert
values into a column with the IDENTITY property set. The IDENTITY
property is a commonly used method for assigning sequential values to
a primary key, such as the MOVIE_ID column in the MOVIE table. If the
IDENTITY property is set, you can simply not reference the column in the
SQL INSERT statement and the DBMS will assign the next unique value
to the primary key. Alternatively, you can turn off the restriction by running
this statement:

SET identity_insert table_name ON

CHAPTER 7 Maintaining Data Using DML 177

Here is an example containing two INSERT statements, one that creates a new row
in the MOVIE table with the optional column list that skips the RETAIL_PRICE_VHS
column, and another that creates a MOVIE_COPY table row for the same movie but
without the optional column list:

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE, MPAA_RATING_CODE,
 MOVIE_TITLE, RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (21, 'Drama', 'PG-13', 'Ray', 29.95, '2004');

INSERT INTO MOVIE_COPY
 VALUES (21, 1, '2005-04-01', null, 'V');

For Microsoft SQL Server and Sybase Adaptive Server with the IDENTITY
property set for the MOVIE table, you can use this variation of the MOVIE table
INSERT statement:

INSERT INTO MOVIE
 (MOVIE_GENRE_CODE, MPAA_RATING_CODE,
 MOVIE_TITLE, RETAIL_PRICE_DVD, YEAR PRODUCED)
 VALUES ('Drama', 'PG-13', 'Ray', 29.95, '2004');

Bulk Inserts Using a Nested SELECT
As you likely noticed, it takes a lot of typing to insert a single row of data with an
INSERT statement that uses a VALUES clause. An alternative that can be used to
create multiple rows in a table with a single statement is the form that uses a
nested SELECT statement. This form is also useful for fi nding the next value for
sequentially assigned primary key values, such as the MOVIE_ID column in the
MOVIE table. It is also quite useful if a temporary table is created for testing and
you want to populate the table with all the data from another table. The general
syntax is

INSERT INTO table_or_view_name
 [(column_list)]
 SELECT select_statement;

Note the following:

• The column list is optional, but if included must be enclosed in a pair of
parentheses.

 178 SQL Demystifi ed

• If the column list is omitted, the nested SELECT must provide a value for
every column in the table, in the same order as the columns are defi ned in
the table. It is always a good idea to provide the column list, because leaving
it out makes the INSERT statement dependent on the table’s defi nition, which
means that if the column order is changed, or a new column is added to the
table (even an optional one), the INSERT statement will most likely fail the
next time it is run.

• If the column list is provided, the nested SELECT must provide a value for
each column in the column list and in the same order. In other words, the
column list and the columns in the result set of the SELECT must have
a one-to-one correspondence. Any column that is omitted from the column
list will be set to a null value, provided nulls are allowed for that column.

• The keyword NULL may be used in the SELECT to specify a null value for
any column.

As an example, let us assume that all movies are now available in French. The
MOVIE_LANGUAGE table has French language rows for only some movies, and
you want to add the missing ones. This is a deliberately complicated example
intended to show just how sophisticated the nested SELECT statement can be. Here
is the INSERT statement that will handle the task:

INSERT INTO MOVIE_LANGUAGE
 (MOVIE_ID, LANGUAGE_CODE)
 SELECT MOVIE_ID, 'fr'
 FROM MOVIE
 WHERE MOVIE_ID NOT IN
 (SELECT MOVIE_ID
 FROM MOVIE_LANGUAGE
 WHERE LANGUAGE_CODE = 'fr');

The following example inserts a new row in the MOVIE table, using the SELECT
to fi nd the maximum value for the MOVIE_ID column and incrementing it by 1 to
form the primary key value for the new row:

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE, MPAA_RATING_CODE,
 MOVIE_TITLE, RETAIL_PRICE_DVD, YEAR_PRODUCED)
 SELECT MAX(MOVIE_ID)+1, 'Drama', 'PG-13',
 'The Terminal', 24.95, '2004'
 FROM MOVIE;

CHAPTER 7 Maintaining Data Using DML 179

The UPDATE Statement
The UPDATE statement in SQL is used to update the data values for table (or
view) columns listed in the statement. Here is the general syntax for an UPDATE
statement:

UPDATE table_or_view_name
 SET column_name = expression
 [,column_name = expression ...]
 [WHERE Clause];

Note the following:

• The SET clause contains a list of one or more columns along with an
expression that specifi es the new value for each column. Essentially, it is
a comma-separated list of name and value pairs with an equal operator
between each name and value.

• The expression can be a constant, another column name, or any other
expression that SQL can resolve to a single value to be assigned to the
column.

• The WHERE clause contains an expression that limits the rows that are to
be updated. If the WHERE clause is omitted, the SQL engine will attempt
to update every row in the table or view.

Here are some examples:

• The movie added earlier in this chapter (MOVIE_ID = 21) was input with
incorrect prices. The VHS price should be 29.95 and the DVD price 34.95.
The following statement updates the prices to the correct amounts. Note
that it updates two columns in a single row in the MOVIE table.

UPDATE MOVIE
 SET RETAIL_PRICE_VHS = 29.95,
 RETAIL_PRICE_DVD = 34.95
 WHERE MOVIE_ID = 21;

• The video store has decided to give all the clerical employees (EMPLOYEE_
JOB_CATEGORY = ‘C’) an 8 percent raise. This will update one column
for several rows (all those with a matching job category). You can use
a calculation to increase each rate by 8 percent by multiplying the existing

 180 SQL Demystifi ed

rate by 1.08 and rounding to two decimal places using the ROUND function.
Here is the statement:

UPDATE EMPLOYEE
 SET EMPLOYEE_HOURLY_RATE =
 ROUND(EMPLOYEE_HOURLY_RATE * 1.08, 2)
 WHERE EMPLOYEE_JOB_CATEGORY = 'C';

The DELETE Statement
The DELETE statement removes one or more rows from a table. The statement
may also reference a view but only a view based on a single table (that is, views that
contain joins may not be referenced by DELETE statements). The DELETE state-
ment never references any columns because it removes entire rows of data, including
all data values (all columns) for each affected row. If you wish to remove single
data values in existing rows, use an UPDATE statement to set those column values
to null values (assuming nulls are permitted in those columns). The general syntax
of the DELETE statement is

DELETE FROM table_or_view_name
[WHERE Clause];

Note the following:

• The WHERE clause is optional. However, it is almost always included
because a DELETE without a WHERE clause attempts to delete all the
rows in the table, which is usually not the desired result.

• When included, the WHERE clause specifi es the rows to be deleted. Any
row for which the WHERE clause evaluates to TRUE is deleted.

• Keep in mind that you cannot delete rows when the DELETE would violate
a referential constraint. In general, children have to be deleted before parents.

Here are a few examples:

• Delete the movie you added earlier in this chapter (MOVIE_ID = 21). Note
that you must delete any corresponding MOVIE_COPY and MOVIE_
LANGUAGE rows fi rst because they would be children of the MOVIE table
row. You might try deleting the MOVIE table row fi rst just to see what error
message your DBMS displays when a referential constraint is violated.

DELETE FROM MOVIE_COPY
 WHERE MOVIE_ID = 21;

CHAPTER 7 Maintaining Data Using DML 181

DELETE FROM MOVIE_LANGUAGE
 WHERE MOVIE_ID = 21;

DELETE FROM MOVIE
 WHERE MOVIE_ID = 21;

• Delete all rows in the MOVIE_LANGUAGE table for the Spanish language
(LANGUAGE_CODE = ‘es’). Note that in many SQL implementations the
data is case sensitive, and in those cases the language code value must be
provided in lowercase to match the data.

DELETE FROM MOVIE_LANGUAGE
 WHERE LANGUAGE_CODE = 'es';

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. DML includes the following SQL commands:

 a. INSERT

 b. REMOVE

 c. UPDATE

 d. SELECT

 e. DROP

 2. A DML statement may reference

 a. Columns from multiple tables

 b. Columns from a single table

 c. A view that contains columns from only one table

 d. View columns that come from multiple tables

 e. View columns that come from a single table

 3. When forming DML statements, the following types of constraints must be
considered:

 a. Referential constraints

 b. Security constraints

 c. NOT NULL constraints

 182 SQL Demystifi ed

 d. Unique constraints

 e. Primary key constraints

 4. An INSERT statement with a VALUES clause

 a. Must have a column list

 b. Must have a values list

 c. Can insert multiple rows with one statement execution

 d. May use the keyword NULL to assign null values to columns

 e. May include a WHERE clause

 5. An INSERT statement with a nested SELECT is useful for

 a. Finding the next value for a sequentially assigned primary key

 b. Moving rows from one table to another

 c. Populating a test table with data from another table

 d. Eliminating duplicate rows in a table

 e. Inserting multiple rows with a single statement

 6. An INSERT statement with a nested SELECT

 a. Must have two column lists, one with the INSERT clause and one in the
nested SELECT

 b. Must have an embedded SELECT that returns only one row of data

 c. May use the keyword NULL to assign null values to columns

 d. May include a WHERE clause

 e. Must have a column list in the nested SELECT that corresponds with
either the INSERT column list or the columns in the table being inserted

 7. An UPDATE statement without a WHERE clause

 a. Updates all rows in the table to null values

 b. Attempts to update every row in the table

 c. Fails with an error condition

 d. Deletes all rows in the table

 e. Results in a Cartesian product

 8. A DELETE statement without a WHERE clause

 a. Updates all rows in the table to null values

 b. Fails with an error condition

CHAPTER 7 Maintaining Data Using DML 183

 c. Attempts to delete every row in the table

 d. Results in a Cartesian product

 e. Must include a column list

 9. An UPDATE statement

 a. Must include a SET clause

 b. Must provide a new value for at least one column

 c. Must include a WHERE clause

 d. May set a column to the value of another column

 e. May set a column to a list of values derived by an expression

 10. A DELETE statement

 a. May include an optional column list

 b. May include an optional WHERE clause

 c. May use the FORCE keyword to force deletion of rows

 d. Cannot violate any referential constraints on the table

 e. May have a nested SELECT as part of the WHERE clause

 11. The SET clause in an UPDATE statement may assign a value to a column
that is

 a. A constant

 b. Another column name

 c. A list of values

 d. Any expression that yields a single value

 e. The NULL keyword

 12. The SELECT statement that may be nested in a bulk INSERT statement
may include

 a. A WHERE clause

 b. A GROUP BY clause

 c. One or more aggregate functions

 d. A join of multiple tables

 e. A UNION clause

 184 SQL Demystifi ed

Write SQL statements to solve each of the following problems.

 13. Using an INSERT with a VALUES clause but no column list, insert a new
row into the MOVIE_GENRE table with a MOVIE_GENRE_CODE of
‘TRAIN’ and a MOVIE_GENRE_DESCRIPTION of ‘Training’.

 14. Using an INSERT with a VALUES clause and a column list, insert a new
row in the MOVIE table with the following data values:

MOVIE_ID: 99

MOVIE_GENRE_CODE: TRAIN

MPAA_RATING_CODE: NR

MOVIE_TITLE: Employee Training Video

 15. Using an INSERT with a nested SELECT, insert a row into MOVIE_
LANGUAGE for the Japanese language (LANGUAGE_CODE = ‘ja’) for
every movie in the MOVIE table. (There are currently no rows for Japanese
in the MOVIE_LANGUAGE table.)

 16. Create a table called RENTAL_TOTAL using the CREATE statement
below. Using an INSERT with a nested SELECT, insert a row into
RENTAL_TOTAL for each movie in MOVIE_RENTAL that contains the
total number of rentals and the total rental fee amount for that movie.

CREATE TABLE RENTAL_TOTAL
 (MOVIE_ID INTEGER NOT NULL,
 NUMBER_OF_RENTALS INTEGER NOT NULL,
 TOTAL_RENTAL_FEES NUMERIC(7,2) NOT NULL);

 17. Delete all rows in the RENTAL_TOTAL table.

 18. Delete the Japanese Language rows that you created in question 15.

 19. Copy 1 of Movie 1 (MOVIE_ID=1, COPY_NUMBER=1) was sold on
January 15, 2005. Update the correct row in the MOVIE_COPY table to set
DATE_SOLD accordingly.

 20. Update the MOVIE table to increase all non-null VHS prices (RETAIL_
PRICE_VHS) by 10 percent.

185

8

Applying
Security Controls

Using DCL

Security has become an essential consideration in modern computer systems. Noth-
ing can be more embarrassing to an organization than a media story regarding
sensitive data or trade secrets that were electronically stolen from their computer
systems. Recent federal security legislation places signifi cant restrictions on the use
of personal information. In California, a new law requires that notifi cation be sent
to any California resident who might have had their data compromised. The new
laws signifi cantly add to the expense and embarrassment related to the cleanup
effort, and it is very likely that stricter laws will be passed at the state and federal
levels in the near future.

CHAPTER

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 186 SQL Demystifi ed

This chapter introduces some general security concepts that must be taken into
consideration with any computer system. However, the focus will be on how SQL
is used to implement data access security controls. A good database administrator
will participate in all aspects of securing the computer system and network on
which the database is deployed, but security measures implemented outside the
DBMS are beyond this book’s scope.

Why Is Security Necessary?
Murphy’s Law states that anything that can go wrong will go wrong. Seasoned
information technology security professionals will tell you that Murphy was an
optimist. Reports of security breaches in computer systems are far too common.
There are many threats, ranging from malicious programs such as viruses and spy-
ware to hackers and thieves intent on stealing identities and anything of value they
can get using a stolen identity or credit card. In fact, identity theft and credit card
fraud are now the number one white collar crime in the United States (they’re com-
bined into a single category because one so often leads to the other). The ill effects
of security breaches range from public embarrassment to losses that can amount to
millions of dollars. In one of the more bizarre cases, thieves stole the identity of an
elderly couple and sold their house while they were still living in it—the couple
found out when they were served an eviction notice. It took them months to straighten
out the mess and restore their credit standing.

A computer system is only as secure as its weakest component. Therefore, one
must take a holistic approach to security and make every component as resistant to
intrusion as possible. This includes securing the computer network, the servers on
which applications and databases run, the operating systems on the servers, data
fi les that contain the database data (including any backups), the DBMS, access to
the data in the DBMS, and the client systems that connect to the servers and data-
bases. Servers placed on the Internet with default confi gurations and passwords
have been compromised within minutes. Default database passwords and common
security vulnerabilities are widely known. In early 2003, the Slammer worm
infected tens of thousands of Microsoft SQL Server databases that had been set up
with a default “sa” (system administrator) account that had no password. Oddly, the
worst damage done by this worm was the loss of service when infected computers
sent out hundreds of thousands of packets on the network in search of other com-
puters on the network to infect, so it could have been a lot worse. If you think this
cannot happen to you, think again. Here are some reasons security must be designed
into your computer systems:

CHAPTER 8 Applying Security Controls Using DCL 187

• Databases connected to the Internet or any other network are vulnerable
to hackers and other criminals who are determined to damage or steal the
data. These include the following:

• Spies from competitors who are after your secrets.

• Hackers interested in a sense of notoriety from penetrating your systems.

• Individuals interested in whatever they can obtain that has economic
value.

• Disgruntled employees. (It seems odd that we never hear of gruntled
employees—gruntle means “to make happy”—but only of disgruntled
ones.)

• Zealots interested in making a political statement at the expense of your
organization.

• The emotionally unbalanced and just plain evil people.

• Fraud attempts. Any bank auditor will tell you that 80 percent of fraud is
committed by or with the assistance of employees. So, don’t assume your
system is immune just because the database is not accessible from the
Internet.

• Honest mistakes by authorized users can cause security exposures, loss of
data, and processing errors.

• Security controls keep people honest in the same way that locks on homes
and offi ces do.

It must be understood that security precautions can never completely prevent the
most determined adversary from breaching a system. The only way to completely
guarantee that a system cannot ever be penetrated is to power it down and leave it
that way. However, the right precautions can slow down even the most determined
and talented adversary long enough to allow for detection and intervention. Above
all, the use of layers of security at all system levels offers the best protection for
valuable data resources.

Database Security Architectures
For database administrators who support databases from multiple vendors, one of
the challenges is that, with the exception of Microsoft SQL Server and Sybase
Adaptive Server, no two databases have the same architecture for database security.
Of course, this is a side effect of the overall database architectures being different.

 188 SQL Demystifi ed

The only reason that Microsoft SQL Server and Sybase Adaptive Server have such
similar architectures is that the former was derived from the latter. Because Micro-
soft SQL Server and Oracle are among the most popular databases today, let’s have
a quick look at how each implements database security.

Database Security in Microsoft SQL Server
and Sybase Adaptive Server
With Microsoft SQL Server and Sybase Adaptive Server, once the DBMS software
is installed on the server, a database server is created. This is a confusing term, of
course, because we call the hardware a “server.” In this case, the server or SQL
Server is a copy of the DBMS software running in memory as a set of processes
(also called services in Windows environments) with related control information
that is stored in a special database on the SQL Server. I will use the term SQL
Server to mean the DBMS software and the term database server to mean the hard-
ware platform on which the database is running. In this architecture, each SQL
Server manages many databases, with each database representing a logical grouping
of data as determined by the database designer. Figure 8-1 shows a simplifi ed view
of the security architecture for Microsoft SQL Server and Sybase Adaptive Server.

Figure 8-1 Database security in Microsoft SQL Server and Sybase Adaptive Server

Login “Mgr125”

SQL Server “Dev1”

Database “Employees”

Database “Products”

User “A”

User “B”

User “C”

User “D”

Grant Object
Privileges

Grant Object
Privileges

Table “T1”

Table “T2”

Table “T3”

Table “T4”

Gran
t A

cce
ss

Grant Access

CHAPTER 8 Applying Security Controls Using DCL 189

Security in Microsoft SQL Server and Sybase Adaptive Server may be adminis-
tered using either GUI tools (such as Enterprise Manager) or the vendor-provided
stored procedures invoked using SQL statements. Here’s a list of the components of
the security architecture:

• Login This is a user account on the SQL Server, also called a user login. It is
created using a GUI tool such as Enterprise Manager or the sp_addlogin stored
procedure supplied with the DBMS. The SQL Server login is not the same
as any operating system account the user may have on the database server.
However, on database servers running Microsoft Windows, the login can use
Windows authentication, meaning the Windows operating system stores the
credentials (login name and password) and authenticates users when they
connect to the SQL Server. An obvious advantage to Windows authentication
is that user access to the various SQL Servers in the enterprise can be centrally
managed through the Windows account, rather than locally managed on each
SQL Server. Note that once a login is defi ned in the SQL Server, the database
user may connect to the SQL Server, but a login alone does not give them
access to any database information. There is, however, a master login called
“sa” (system administrator) that, similar to “root” in Unix and “Administrator”
in Microsoft Windows, has full privileges to everything in the SQL Server
environment. Figure 8-1 shows only one user login, called Mgr125.

• Database A database is a logical collection of database objects (tables,
views, indexes, and so on) as defi ned by the database designer. Figure 8-1
shows two databases: Employees and Products. It is important to understand
that a login is allowed to connect to a database only after it has been granted
that privilege by an administrator. (See the “User” topic that follows.) In
addition to databases holding system data, some special databases are created
when the SQL Server is created (not shown in Figure 8-1) and are used
by the DBMS to manage the SQL Server. Among these are the following
databases:

• master The master database contains system-level information,
initialization settings, confi guration settings, login accounts, the list of
databases confi gured in the SQL Server, and the location of primary
database data fi les.

• tempdb The tempdb database contains temporary tables and temporary
stored procedures.

• model The model database contains a template for all other databases
created on the system.

• msdb In Microsoft SQL Server databases only, the msdb database
contains information used for scheduling jobs and alerts.

 190 SQL Demystifi ed

• User Each database has a set of users assigned to it. Each database user
maps to a login, so each user is a pseudo-account that is an alias to an SQL
Server login account. User accounts do not necessarily have to have the same
user name as their corresponding login accounts. When an administrator
grants access to a database for a particular login account, using either a GUI
tool such as Enterprise Manager or the sp_adduser stored procedure supplied
with the DBMS, the user account corresponding to the login account is created
by the DBMS. In Figure 8-1, the Mgr125 login corresponds to User A in the
Employees database and to User D in the Products database. These privileges
permit the login to connect to the database(s) but do not give the user any
privileges against objects in those databases. I discuss how this happens later
in this chapter.

• Privileges Each user account in a database may be granted any number of
privileges (also called permissions). System privileges are general privileges
applied at the database level. Microsoft SQL Server divides these into server
privileges, which include such permissions as starting up, shutting down, and
backing up the SQL Server, and statement privileges, which include such
permissions as creating a database and creating a table. Object privileges
allow specifi c actions on a specifi c object, such as allowing select and update
on Table T1. Figure 8-1 contains arrows that show the granting of object
privileges on Table T1 to User A in the Employees database and on Table T4
to User D in the Products database. These privileges work in much the same
way across all relational databases, thanks to SQL standards, and are therefore
covered in the “Database Privileges” section a little later in this chapter.

Database Security in Oracle
Oracle’s security architecture, shown in Figure 8-2, is markedly different compared
to that of Microsoft SQL Server and Sybase Adaptive Server. The differences be-
tween the two are highlighted as each component is introduced:

• Instance This is a copy of the Oracle DBMS software running in memory.
Each instance manages only one database.

• Database This is the collection of fi les managed by a single Oracle instance.
Taken together, the Oracle instance and database comprise what Microsoft SQL
Server and Sybase Adaptive Server call the SQL Server. Figure 8-2 depicts the
Dev1 database.

• User Each database account is called a user. As with Microsoft SQL
Server and Sybase Adaptive Server, the user account may be authenticated

CHAPTER 8 Applying Security Controls Using DCL 191

externally (that is, by the operating system) or internally (by the DBMS).
Each user is automatically allocated a schema (defi ned next), and this user
is the owner of that schema, meaning it automatically has full privileges
over any object in the schema. The following predefi ned users are created
automatically when the database is created (not shown in Figure 8-2):

• The SYS user is the owner of the Oracle instance and its schema contains
objects that Oracle uses to manage the instance. This user is equivalent to
the “sa” user in Microsoft SQL Server and Sybase Adaptive Server.

• The SYSTEM user is the owner of the Oracle database and its schema
contains objects that Oracle uses to manage the database. This user and
its corresponding schema are similar to the “dbo” (database owner) user
in the master database in Microsoft SQL Server and Sybase Adaptive
Server.

• Many Oracle database options create their own user accounts when those
options are installed.

• Schema This is the collection of database objects that belong to a specifi c
Oracle user. The Oracle schema is equivalent to what Microsoft SQL Server

Figure 8-2 Database security in Oracle

Schema “Mgr125”

Synonym for Employees.T1

Synonym for Products.T4

Database “Dev1”

Schema (User) “Employees”

Schema (User) “Products”

Table “T1”

Table “T2”

Table “T3”

Table “T4”

Grant Object Privileges

Grant Object Privileges

 192 SQL Demystifi ed

and Sybase Adaptive Server call a database. Figure 8-2 shows the Employees,
Products, and Mgr125 schemas, which are owned by the Employees, Products,
and Mgr125 users, respectively. Schema and user names are always identical
in Oracle. “Mgr125” is a workaround to a special challenge you face with
Oracle’s security architecture, as discussed in the “Schema Owner Accounts”
section later in this chapter.

• Privileges As with Microsoft SQL Server and Sybase Adaptive Server,
privileges are divided into system and object privileges. These are covered
in the “Database Privileges” section later in this chapter.

Implementing Database Access Security
The purpose of database access security is to protect the data from unauthorized
usage. In order to accomplish this, the database administrator must determine which
users are permitted to perform which actions against which objects in the database.
The permissions given to users are called database privileges. The next topic takes
a look at privileges, followed by a topic that covers the SQL statements used for
security administration.

Database Privileges
Privileges provide the authorization for database users to perform various actions in
the database. Remember that a database user can be a person or a process that con-
nects to the database. In general, when a database user is given permission to
connect to a database, they cannot do anything without being given some addi-
tional privileges. That is, a user who can connect to the database generally cannot
access any data or perform any administrative function on the database until they
are granted privileges to do so. In SQL, privileges are given to a database user with
the GRANT statement, and taken away with the REVOKE statement, both of which
are covered later in this chapter. Privileges are divided into two categories, as
described in the topics that follow: “System Privileges” and “Object Privileges.”

System Privileges
System privileges are general permissions to perform functions in managing the
server and the database(s). Hundreds of permissions are supported by each database

CHAPTER 8 Applying Security Controls Using DCL 193

vendor, with most of those being system privileges. Some of the most commonly
used ones are listed in the sections that follow. Complete details may be found in
vendor-supplied documentation.

Here are some commonly used Microsoft SQL Server system privileges:

• SHUTDOWN Provides the ability to issue the server shutdown command.

• CREATE DATABASE Provides the ability to create new databases on
the SQL Server.

• BACKUP DATABASE Provides the ability to run backups of the databases
on the SQL Server.

Here are some commonly used Oracle system privileges:

• CREATE SESSION Provides the ability to connect to the database.

• CREATE TABLE Provides the ability to create tables in your own
schema. Similar privileges exist for other object types, such as indexes,
synonyms, procedures, and so on.

• CREATE ANY TABLE Provides the ability to create tables in any user’s
schema. Similar privileges are available for other object types, such as
indexes, synonyms, procedures, and so on.

• CREATE USER Provides the ability to create new users in the database.

Oracle permits the WITH ADMIN OPTION clause to be included when granting
system permissions. When this option is included, the user(s) not only acquires the
privilege but also the ability to grant the permission to other users. I do not recom-
mend this practice because it opens up too many potential security exposures,
especially because revocation of permissions granted in this way do not cascade.

Object Privileges
Object privileges provide authorization to perform specifi c actions upon specifi c
database objects. For example, a database user may be given SELECT and UP-
DATE privileges against a particular table but not INSERT or DELETE. The
GRANT statement that gives database privileges to a database user may include a
WITH GRANT OPTION clause that allows the recipient to then grant the privilege
to others. If the privilege is subsequently revoked, a cascading revoke takes place if
this user has, in turn, granted the permission to anyone else. I do not recommend
use of the WITH GRANT OPTION clause because it is far too easy to lose control
over who has which privileges.

 194 SQL Demystifi ed

SQL Statements Used for Security Administration
This topic describes the SQL statements used to administer data access security.
Keep in mind that there is a lot of variation in the way that security is implemented
in different SQL implementations, so as always, you should consult the documenta-
tion supplied by your database vendor.

The CREATE USER Statement
Many database vendors provide a GUI (graphical user interface) for security ad-
ministration. However, the SQL standard contains a CREATE USER statement that
can be used to defi ne users in the database. The general syntax of the CREATE
USER statement is

CREATE USER username
 [IDENTIFIED BY password]
 [options];

NOTE:NOTE:

• The IDENTIFIED BY CLAUSE is used for users that are authenticated
by the DBMS. For users authenticated externally (that is, by the operating
system), the syntax will vary.

• The options (if any apply) are DBMS specifi c and may include such things
as defaults for various database connection properties.

• Microsoft SQL Server and Sybase Adaptive Server do not support the
CREATE USER statement. Instead, they use stored procedures supplied by
the database vendor: sp_addlogin is used to add logins to the SQL Server,
which gives users the ability to connect to the SQL Server, and sp_adduser
is used to add users to a database, which associates a login with a user
account to permit access to the particular database.

The GRANT Statement
The GRANT statement is used to bestow one or more privileges to a database user.
The general syntax of the GRANT statement is

GRANT privilege [,privilege ...]
 [ON object]
 TO grantee [,grantee ...]
 [WITH GRANT OPTION | WITH ADMIN OPTION];

NOTE:

NOTE:

CHAPTER 8 Applying Security Controls Using DCL 195

NOTE:NOTE:

• The privilege list can be either one or more system privileges, or one or
more object privileges. System and object privileges cannot be mixed in the
same GRANT statement.

• The ON object clause applies only to object privileges. It specifi es the object
on which object privileges listed in the privilege list are being granted.

• The grantee list specifi es one or more database users or roles that are to
receive the privilege(s). Roles are discussed later in this chapter.

• The WITH GRANT OPTION or WITH ADMIN OPTION clause allows the
grantee to then grant the privilege to others. The syntax and usage will
vary some across different SQL implementations. As already mentioned, I
don’t recommend using these because they essentially give away control of
database privileges.

One example follows. You will fi nd more examples in the “Simplifying Admin-
istration Using Roles” section toward the end of this chapter.

• Grant the SELECT privilege on the MPAA_RATING table to PUBLIC. In
most SQL implementations, PUBLIC is a keyword that is used to assign
a privilege to all users of the database. In general, this is not a great idea, but
the MPAA_RATING is just a code reference table, so allowing everyone to
select from it is not much of a security exposure.

GRANT SELECT ON MPAA_RATING TO PUBLIC;

The REVOKE Statement
The general syntax of the REVOKE statement is shown here, along with some ex-
amples:

REVOKE privilege [,privilege ...]
 [ON object]
 FROM grantee [,grantee ...];

NOTE:NOTE:

• The privilege list can be either one or more system privileges, or one or
more object privileges. System and object privileges cannot be mixed in the
same REVOKE statement.

 196 SQL Demystifi ed

• The ON object clause applies only to object privileges. It specifi es the object
for which object privileges listed in the privilege list are being revoked.

• The grantee list specifi es one or more database users or roles that are to
lose the privilege(s). Roles are discussed later in this chapter.

Here is an example—it reverses the GRANT from the previous topic:

REVOKE SELECT ON MPAA_RATING FROM PUBLIC;

Schema Owner Accounts
With all databases, you want to avoid giving database users more privileges than
they need to do their job. This not only prevents errors made by humans from be-
coming data disasters (including those errors contained in the application programs
and database queries they write), but it also keeps people honest.

In Microsoft SQL Server and Sybase Adaptive Server, you want to avoid having
database users connect as the “sa” user. You want to create database logins that have
the minimal privileges required. Sadly, this is often not done, and applications con-
nect as “sa” or to a database with a user account that has the DBO (database owner)
or DBA (database administrator) role. Roles are a collection of privileges and are
discussed in an upcoming section. Whether done out of lack of understanding or out
of laziness, this practice represents a huge security exposure that should be forbid-
den as a matter of policy.

In Figure 8-2, note that the Mgr125 user owns no tables but does have some
privileges granted to it by the Employees and Products users. This is to work around
a fundamental challenge with Oracle’s security architecture. If you allowed a data-
base user to connect to the database using a user such as Employees or Products, the
user would automatically have full privileges to every object in the schema, includ-
ing insert, delete, and update against any table, and also the ability to create and
alter tables without restriction. This is fundamentally the same issue as allowing
use of the “sa” user or the DBO and DBA roles in Microsoft SQL Server and Sybase
Adaptive Server. The Mgr125 user mimics the behavior of the login with the
same name shown in Figure 8-1. With the right system privileges, you can prevent
the Mgr125 user in Oracle from being able to create any tables of its own.

You may have noticed the synonyms for user Mgr125 in Figure 8-2. A synonym
is merely an alias or nickname for a database object. The synonyms are for the con-
venience of the user so that names do not have to be qualifi ed with their schema
name. To select from the T1 tables in the Employees schema directly, user Mgr125

CHAPTER 8 Applying Security Controls Using DCL 197

would have to refer to the table name as “Employees.T1” in the SQL statement.
This is not only inconvenient, but also can cause no end to problems if you ever
decide to change the name of the Employees user. By creating a synonym called
“T1” in the Mgr125 schema that points to Employees.T1, the user may now refer to
the table as just “T1”. Incidentally, you may recall that all user and object names in
Oracle are case insensitive, so the use of mixed case here is only for illustration.
The syntax for creating this synonym is as follows:

CREATE SYNONYM T1 FOR EMPLOYEES.T1;

Simplifying Administration Using Roles
A role is a named collection of privileges that can, in turn, be granted to one or more
users. Most RDBMS systems have predefi ned roles that come with the system, and
database users with the CREATE ROLE privilege may create their own. Roles have
the following advantages:

• Roles may exist before user accounts do. For example, you can create
a role that contains all the privileges required to work on a particular
development project. When a new hire joins the project team, one GRANT
statement gives their new user account all the permissions they need.

• Roles relieve the administrator of a lot of tedium. Many privileges may
be granted with a single command when a role is used.

• Roles survive when user accounts are dropped. In cases where the DBA
must drop and re-create a user account, it can be a lot of work to reinstate
all the privileges, which is simplifi ed if all the privileges are assembled into
one role.

The only potential disadvantage of roles, especially predefi ned ones, is that they
can be granted without suffi cient attention to all the privileges contained in them,
thereby giving a user more privileges than the minimum they need. For example,
the CONNECT role in Oracle includes CREATE SESSION and ALTER SESSION,
as you would expect, but it also includes CREATE CLUSTER, CREATE DATA-
BASE LINK, CREATE SEQUENCE, CREATE SYNONYM, CREATE TABLE,
and CREATE VIEW. This is probably a more powerful collection than you would
want a business user of the database to have, so it might be better to grant CREATE
SESSION instead.

 198 SQL Demystifi ed

For administrators, a common role is DBA, which conveys a lot of powerful
privileges (over 125 separate privileges in Oracle). Obviously, such a high-powered
privilege must be granted judiciously.

Administering Roles in Microsoft SQL Server
and Sybase Adaptive Server
Many SQL implementations use the SQL standard CREATE ROLE statement to
establish roles, and the GRANT statement to assign the privileges contained in a
role to a user. However, Microsoft SQL Server and Sybase Adaptive Server have a
proprietary solution that requires the use of vendor-supplied stored procedures to
invoke role-based security.

Roles are created using the sp_addrole stored procedure. The stored procedure
sp_droprole may subsequently be used to drop the role. The general syntax for the
stored procedure is

sp_addrole 'rolename' [,'ownername']

• The rolename parameter assigns a name to the role, which must be unique
among all user and role names in the current database.

• The optional ownername parameter specifi es the owner of the role, with a
default of “dbo” (the database owner user account).

Here are two statements that add roles for the manager of the video store and the
clerks who work in the store:

sp_addrole 'manager'
sp_addrole 'clerk'

Privileges are granted to the role using a standard GRANT statement. In the fol-
lowing examples, note how the same privileges can be granted to multiple roles
when that fi ts the needs of the business, but at the same time, different privileges
can be granted when required.

GRANT SELECT ON MPAA_RATING
 TO manager, clerk;
GRANT SELECT ON MOVIE
 TO clerk;
GRANT SELECT, INSERT, UPDATE, DELETE ON MOVIE
 TO manager;

CHAPTER 8 Applying Security Controls Using DCL 199

Roles are assigned to database users using the vendor supplied sp_addrolemem-
ber stored procedure. The stored procedure sp_droprolemember can be used to
remove a user from a role. The general syntax for sp_addrolemember is

sp_addrolemember 'rolename','username'

• The rolename parameter specifi es that role to which the user is to be
assigned.

• The username parameter specifi es the database user account that is to be
assigned the privileges contained in the role.

Administering Roles in Oracle
The SQL standard specifi es the CREATE ROLE statement to be used for the cre-
ation of roles. The DROP ROLE statement can be used to subsequently drop the
role if necessary. You must have the CREATE ROLE privilege to run the statement,
which usually means that you must be a high-powered user in Oracle, such as
SYSTEM. The general syntax of the CREATE ROLE statement is

CREATE ROLE rolename [options];

• The rolename provides the name of the new role.

• The options provide optional security specifi cations for the new role.

Here are two statements that add roles for the manager of the video store and the
clerks who work in the store:

CREATE ROLE manager;
CREATE ROLE clerk;

As with Microsoft SQL Server and Sybase Adaptive Server, privileges are
granted to the role using a standard GRANT statement. In the following examples,
note how the same privileges can be granted to multiple roles when that fi ts the
needs of the business, but at the same time, different privileges can be granted
when required.

GRANT SELECT ON MPAA_RATING
 TO manager, clerk;
GRANT SELECT ON MOVIE
 TO clerk;
GRANT SELECT, INSERT, UPDATE, DELETE ON MOVIE
 TO manager;

 200 SQL Demystifi ed

Roles are assigned to database users using the standard GRANT statement. The
syntax follows the same general syntax for the GRANT statement as described
earlier in this chapter.

Using Views to Implement Column
and Row Level Security

One of the common security issues to be addressed is how to allow database users
access to some rows and columns in a table while preventing access to other rows
and columns. Views are an excellent way to accomplish this. Here are some of the
benefi ts of using views to accomplish security objectives:

• Columns that a database user does not require may be omitted from
the view. Assuming the user has been granted access to the view rather
than the underlying table, this method totally prevents them from seeing
the information in the columns that were omitted from the view.

• A WHERE clause may be included in the view to limit returned
rows. Joins may be included to match to other tables as a way of limiting
rows. For example, the view could limit Product table rows to only those
products for a Division ID that matches the division in which the employee
works.

• Joins to “lookup” tables can be used to replace code values in a table
with their corresponding descriptions. A lookup table typically contains
a list of code values (for example, department codes, transaction codes, status
codes) and their descriptions, and it’s used to “look up” the descriptions for
the codes. Although this is a minor point, employees trying to hack database
records during fraud attempts have a much more diffi cult time if they cannot
see the codes used to categorize the transactions. Furthermore, employees
trying to do their best usually have a better time reading and understanding
code descriptions than the corresponding code values.

There are other ways to accomplish these objectives, however. Many modern
RDBMSs, including Oracle and Microsoft SQL Server, have provisions for col-
umn-level security wherein a DBA may grant access by table column. For
row-level restrictions, a feature called Virtual Private Database, available in Oracle
starting with version 9i, can be used to accomplish the objective. Finally, some
prefer to use stored procedures for all database access and thus use custom pro-
gramming to control all database access.

CHAPTER 8 Applying Security Controls Using DCL 201

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. Recent security legislation

 a. Requires the use of roles in administering database security

 b. Restricts the use of personal data

 c. Requires database administrators to secure the computer network

 d. Requires posting stolen identities on the Internet

 e. Requires notifi cation to individuals who might have had their data
compromised

 2. Security is necessary because

 a. Honest people make mistakes

 b. Application security controls alone are inadequate

 c. 80 percent of fraud is committed by outside hackers

 d. Databases connected to the Internet are vulnerable

 e. Security controls keep people honest

 3. Intruders who attempt to penetrate systems connected to the Internet
include

 a. Bank auditors

 b. Spies from competitors

 c. Web bloggers

 d. Hackers

 e. Disgruntled employees

 4. Components that must be secured include

 a. Client workstations

 b. Servers

 c. Databases

 d. Operating systems

 e. Networks

 202 SQL Demystifi ed

 5. In Microsoft SQL Server, a login (user login)

 a. Can connect to any number of databases

 b. Automatically has database access privileges

 c. Can use Windows authentication

 d. Can be authenticated by Microsoft SQL Server

 e. Owns a database schema

 6. In Microsoft SQL Server, a database

 a. Is owned by a login

 b. May have one or more users assigned to it

 c. May contain system data (for example, master) or user (application) data

 d. May be granted privileges

 e. Is a logical collection of database objects

 7. In Oracle, a user account

 a. Can connect (log in) to any number of databases

 b. Automatically has database privileges

 c. Can use operating system authentication

 d. Can be authenticated by the Oracle DBMS

 e. Owns a database schema

 8. In Oracle, a database

 a. Is owned by a user

 b. May have one or more user accounts defi ned in it

 c. May contain system data (for example, system schema) and user
(application) data

 d. Is the same as a schema

 e. Is managed by an Oracle instance

 9. System privileges

 a. Are granted in a similar way in Oracle, Sybase, and Microsoft SQL Server

 b. Are specifi c to a database object

 c. Allow the grantee to perform certain administrative functions on the
server, such as shutting it down

 d. Are rescinded using the SQL REMOVE statement

 e. Vary across databases from different vendors

CHAPTER 8 Applying Security Controls Using DCL 203

 10. Object privileges

 a. Are granted in a similar way in Oracle, Sybase, and Microsoft SQL Server

 b. Are specifi c to a database object

 c. Allow the grantee to perform certain administrative functions on the
server, such as shutting it down

 d. Are rescinded using the SQL REMOVE statement

 e. Are granted using the SQL GRANT statement

 11. Using the WITH GRANT OPTION when granting object privileges

 a. Allows the grantee to grant the privilege to others

 b. Gives the grantee DBA privileges on the entire database

 c. Can lead to security issues

 d. Will cascade if the privilege is subsequently revoked

 e. Is a highly recommended practice because it is so convenient to use

 12. Roles

 a. May be assigned to only one user

 b. May be shared by many users

 c. May exist before users do

 d. May contain any number of object privileges

 e. May contain only one object privilege

 13. Potential downsides of using roles for security include:

 a. They are more diffi cult to administer than individual privileges

 b. They are dropped when the user is dropped

 c. They are dropped when the privileges are dropped

 d. They can be granted without consideration for all the privileges they
contain

 e. Additional training time is required for administrators who must use them

 14. Views may assist with security policy implementation by

 a. Restricting the table columns to which a user has access

 b. Restricting the databases to which a user has access

 c. Restricting table rows to which a user has access

 d. Storing database audit results

 e. Monitoring for database intruders

 204 SQL Demystifi ed

 15. Roles are created in Microsoft SQL Server and Sybase Adaptive Server using

 a. The sp_create_role stored procedure

 b. The sp_add_role stored procedure

 c. The sp_addrole stored procedure

 d. The CREATE ROLE statement

 e. The GRANT statement

 16. Roles are created in Oracle using

 a. The sp_create_role stored procedure

 b. The sp_add_role stored procedure

 c. The sp_addrole stored procedure

 d. The CREATE ROLE statement

 e. The GRANT statement

 17. Role privileges are granted to database users in Microsoft SQL Server and
Sybase Adaptive Server using

 a. The sp_create_role_member stored procedure

 b. The sp_add_role_member stored procedure

 c. The sp_addrolemember stored procedure

 d. The CREATE ROLE MEMBER statement

 e. The GRANT statement

 18. Role privileges are granted to database users in Oracle using

 a. The sp_create_role_member stored procedure

 b. The sp_add_role_member stored procedure

 c. The sp_addrolemember stored procedure

 d. The CREATE ROLE MEMBER statement

 e. The GRANT statement

 19. Write the SQL statement to give users manager_1 and manager_2
privileges to SELECT, INSERT and DELETE rows in the EMPLOYEE
table. If you want to test the statement, you will fi rst have to create the
manager_1 and manager_2 users.

 20. Write the SQL statement to rescind INSERT, UPDATE, and DELETE
privileges for the clerk_127 user from the MOVIE table. If you want to test
the statement, you will fi rst have to create the clerk_127 user.

205

9

Preserving
Database

Integrity Using
Transactions

In the next chapter, we’ll look at how SQL can be incorporated into application
programs, such as those written in Java, the Microsoft .NET Framework, C, and
other programming languages/environments. However, before we do that, you need
to understand the concept of database transactions because you will need them in
order to properly implement business processes that update the database.

CHAPTER

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 206 SQL Demystifi ed

What Is a Database Transaction?
A transaction is a discrete series of actions that must be either completely pro-
cessed or not processed at all. Some call a transaction a unit of work as a way of
further emphasizing its all-or-nothing nature. Transactions have properties that can
be easily remembered using the acronym ACID (Atomicity, Consistency, Isolation,
Durability):

• Atomicity A transaction must remain whole. That is, it must completely
succeed or completely fail. When it succeeds, all changes that were made
by the transaction must be preserved by the system. Should a transaction
fail, all changes that were made by it must be completely undone. In database
systems, we use the term rollback for the process that backs out any changes
made by a failed transaction, and we use the term commit for the process that
makes transaction changes permanent.

• Consistency A transaction should transform the database from one
consistent state to another. For example, a transaction that creates an
invoice for an order transforms the order from a shipped order to an
invoiced order, including all the appropriate database changes.

• Isolation Each transaction should carry out its work independent of any
other transaction that might occur at the same time.

• Durability Changes made by completed transactions should remain
permanent, even after a subsequent shutdown or failure of the database or
other critical system component. In object terminology, the term persistence
is used for permanently stored data. The concept of “permanent” here can
be confusing, because nothing seems to ever stand still for long in an OLTP
(online transaction processing) database. Just keep in mind that permanent
means the change will not disappear when the database is shut down or
fails—it does not mean that the data is in a permanent state that can never
be changed again.

Transaction Support in Relational DBMSs
Aside from personal computer database systems, most relational DBMSs provide
transaction support. This includes provisions in SQL for identifying the beginning
and end of each transaction, along with a facility for logging all changes made by
transactions so that a rollback may be performed when necessary. As you might

CHAPTER 9 Preserving Database Integrity Using Transactions 207

guess, standards lagged behind the need for transaction support, so support for
transactions varies a bit across RDBMS vendors.

Most RDBMSs record all transactions and the modifi cations made by them in a
transaction log. The before and after image of each database modifi cation made by
a transaction is recorded in the transaction log. This facilitates any necessary roll-
back because the before images can be used to reverse the database changes made
by the transaction. A transaction commit is not complete until the commit record
has been written to the transaction log. Because database changes are not always
written to disk immediately, the transaction log is sometimes the only means of
recovery when there is a system failure.

Let’s look at transaction support in some of today’s most popular RDBMS
products.

Transaction Support in Microsoft SQL Server
Microsoft SQL Server supports transactions in three modes: autocommit, explicit,
and implicit. All three modes are available when you’re connected directly to the
database using a client tool designed for this purpose. However, if you plan to use
an ODBC or JDBC driver, you should consult the driver’s documentation for infor-
mation on the transaction support it provides. The three modes are

• Autocommit mode In autocommit mode, each SQL statement is
automatically committed as it completes. Essentially, this makes every
SQL statement a discrete transaction. Every connection to Microsoft SQL
Server uses autocommit until either an explicit transaction is started or the
implicit transaction mode is set. In other words, autocommit is the default
transaction mode for each SQL Server connection.

• Explicit mode In explicit mode, each transaction is started with a
BEGIN TRANSACTION statement and ended with either a COMMIT
TRANSACTION statement (for successful completion) or a ROLLBACK
TRANSACTION statement (for unsuccessful completion). This mode is
used most often in application programs, stored procedures, triggers, and
scripts. The general syntax of the three SQL statements follows:
BEGIN TRAN[SACTION] [tran_name | @tran_name_variable]
 [WITH MARK ['description']]

COMMIT [TRAN[SACTION] [tran_name | @tran_name_variable]]

ROLLBACK [TRAN[SACTION] [tran_name | @tran_name_variable |
 savepoint_name | @savepoint_name_variable]]

 208 SQL Demystifi ed

• Implicit mode Implicit transaction mode is toggled on or off with the
command SET IMPLICIT_TRANSACTIONS {ON | OFF}. When implicit
mode is on, a new transaction is started whenever any of a list of specifi c
SQL statements is executed, including DELETE, INSERT, SELECT,
and UPDATE, among others. Once a transaction is implicitly started, it
continues until the transaction is either committed or rolled back. If the
database user disconnects before submitting a transaction-ending statement,
the transaction is automatically rolled back.

Transaction Support in Sybase Adaptive Server
Transaction support in Sybase Adaptive Server is very much like that in Microsoft
SQL Server, but there are differences. Sybase Adaptive Server supports transac-
tions in two modes: autocommit and explicit. Both modes are available when you’re
connected directly to the database using a client tool designed for this purpose.
However, if you plan to use an ODBC or JDBC driver, you should consult the
driver’s documentation for information on the transaction support it provides.
Here’s a description of the two modes:

• Autocommit mode In autocommit mode, each SQL statement is
automatically committed as it completes. Essentially, this makes every
SQL statement a discrete transaction. Every connection to Sybase Adaptive
Server uses autocommit until an explicit transaction is started. In other
words, autocommit is the default transaction mode for each connection.

• Explicit mode In explicit mode, each transaction is started with a
BEGIN TRANSACTION statement and ended with either a COMMIT
TRANSACTION statement (for successful completion) or a ROLLBACK
TRANSACTION statement (for unsuccessful completion). There is also a
savepoint, which provides a consistent point in the processing of a transaction
that can be used in a rollback. The explicit mode is used most often in
application programs, stored procedures, triggers, and scripts. The general
syntax of the SQL statements that support transactions is

BEGIN TRAN[SACTION] transaction_name

SAVE TRAN[SACTION] savepoint_name

COMMIT TRAN | TRANSACTION | WORK [transaction_name]

ROLLBACK [TRAN | TRANSACTION | WORK]
 [transaction_name | savepoint_name]

CHAPTER 9 Preserving Database Integrity Using Transactions 209

Transaction Support in Oracle
Oracle supports only two transaction modes: autocommit and implicit. As with
Microsoft SQL Server and Sybase Adaptive Server, support varies when ODBC
and JDBC drivers are used, so the driver vendor’s documentation should be con-
sulted in those cases. The two transaction modes in Oracle are

• Autocommit mode As with other DBMSs, in autocommit mode each
SQL statement is automatically committed as it completes. However, in
Oracle, autocommit is not the default mode. Autocommit mode is toggled
on and off using the SET AUTOCOMMIT command, as shown here, and it
is off by default:

SET AUTOCOMMIT ON

SET AUTOCOMMIT OFF

• Implicit mode A transaction is implicitly started when the database user
connects to the database (that is, when a new database session begins). This
is the default transaction mode in Oracle. When a transaction ends with
a commit or rollback, a new transaction is automatically started. Unlike
Microsoft SQL Server and Sybase Adaptive Server, nested transactions
(transactions within transactions) are not permitted. A transaction ends with
a commit when any of the following occurs: 1) the database user issues the
SQL COMMIT statement; 2) the database session ends normally (that is, the
user issues an EXIT command); 3) the database user issues an SQL DDL
statement (that is, a CREATE, DROP, or ALTER statement). A transaction
ends with a rollback when either of the following occurs: 1) the database
user issues the SQL ROLLBACK statement; 2) the database sessions ends
abnormally (that is, client connection is canceled or the database crashes or
is shut down using one of the shutdown options that aborts client connections
instead of waiting for them to complete).

Transaction Support in MySQL
Transaction support was added to MySQL beginning with version 3.23.0. However,
in order to provide upward compatibility from older releases, transaction support
was added using new storage engines. Tables created using the default storage
engine (ISAM, which is called MyISAM in newer versions of MySQL) do not have
transaction support. In order to enable transaction support, either the InnoDB or

 210 SQL Demystifi ed

BDB (Berkeley DB) storage engine must be specifi ed when the table is created. For
example:

CREATE TABLE LANGUAGE
 (LANGUAGE_CODE CHAR(2) NOT NULL,
 LANGUAGE_NAME VARCHAR(40) NOT NULL,
 PRIMARY KEY (LANGUAGE_CODE))
 ENGINE = INNODB;

There are many implications to using a different storage engine, so you should
consult the documentation for the version of MySQL you are running before mak-
ing a decision.

For tables that are created using either the InnoDB or BDB storage engines,
transaction support is available in two modes:

• Autocommit mode Autocommit mode is toggled on and off using
a SET statement where a value of 0 turns off autocommit and a value
of 1 turns it on:

SET AUTOCOMMIT=0;

SET AUTOCOMMIT=1;

• Implicit mode Implicit mode takes effect whenever autocommit mode is
turned off. The following SQL statements may be used in implicit transaction
mode:

START TRANSACTION [WITH CONSISTENT SNAPSHOT];

SAVEPOINT savepoint_identifier;

ROLLBACK [TO savepoint_identifier];

COMMIT;

Transaction Support in DB2 UDB
All transactions in DB2 UDB (Universal Database) are implicit. The behavior is
quite similar to transaction support in Oracle. The SQL statements used for transac-
tion support are

COMMIT [WORK];

SAVEPOINT savepoint_name [options];

CHAPTER 9 Preserving Database Integrity Using Transactions 211

RELEASE [TO] SAVEPOINT savepoint_name;

ROLLBACK [WORK] [TO SAVEPOINT [savepoint_name]];

Figure 9-1 The concurrent update problem

Process
Customer

Invoice ($100)

Process
Customer

Payment ($100)

Database User “A”

2. Retrieve Customer Balance
($200)

Customer
Schema

Database User “B”

1. Retrieve Customer Balance
($200)

3. Update Customer Balance
($300)

4. Update Customer Balance
($100)

Locking and Transaction Deadlock
Although the simultaneous sharing of data among many database users has signifi -
cant benefi ts, there also is a serious drawback that can cause updates to be lost.
Fortunately, the database vendors have worked out solutions to the problem. This
section presents the concurrent update problem and various solutions.

The Concurrent Update Problem
Figure 9-1 illustrates the concurrent update problem that occurs when multiple
database sessions are allowed to concurrently update the same data. Recall that
a session is created every time a database user connects to the database, which
includes the same user connecting to the database multiple times. The concurrent
update problem happens most often between two different database users who are
unaware that they are making confl icting updates to the same data. However, one
database user with multiple connections can trip themselves up if they apply
updates using more than one of their database sessions.

The scenario presented uses a fi ctitious company that sells products and creates an
invoice for each order shipped. Figure 9-1 illustrates User A, a clerk in the shipping
department who is preparing an invoice for a customer, which requires updating the
customer’s data to add to the customer’s balance due. At the same time, User B,
a clerk in the accounts receivable department, is processing a payment from the very

 212 SQL Demystifi ed

same customer, which requires updating the customer’s balance due to subtract the
amount they paid. Here is the exact sequence of events, as illustrated in Figure 9-1:

 1. User A queries the database and retrieves the customer’s balance due,
which is $200.

 2. A few seconds later, User B queries the database and retrieves the same
customer’s balance, which is still $200.

 3. In a few more seconds, User A applies her update, adding the $100 invoice
to the balance due, which makes the new balance $300 in the database.

 4. Finally, User B applies his update, subtracting the $100 payment from
the balance due he retrieved from the database ($200), resulting in a new
balance due of $100. He is unaware of the update made by User A and thus
sets the balance due (incorrectly) to $100.

The balance due for this customer should be $200, but the update made by User
A has been overwritten by the update made by User B. The company is out $100
that either will be lost revenue or will take signifi cant staff time to uncover and
correct. As you can see, allowing concurrent updates to the database without some
sort of control can cause updates to be lost. Most database vendors implement
a locking strategy to prevent concurrent updates to the exact same data.

Locking Mechanisms
A lock is a control placed in the database to reserve data so that only one database
user may update it. When data is locked, no other database session can update the
data until the lock is released, which is usually done with a COMMIT or ROLL-
BACK SQL statement. Any other session that attempts to update locked data will
be placed in a lock wait state, and the session will stall until the lock is released.
Some database products, such as IBM’s DB2, will time out a session that waits too
long and return an error instead of completing the requested update. Others, such as
Oracle, may leave a session in a lock wait state for an indefi nite period of time.

By now it should be no surprise that there is signifi cant variation in how locks are
handled by different vendors’ database products. A general overview is presented
here with the recommendation that you consult your database vendor’s documenta-
tion for details on how locks are supported. Locks may be placed at various levels
(often called lock granularity), and some database products, including Sybase
Adaptive Server, Microsoft SQL Server, and DB2, support multiple levels with
automatic lock escalation, which raises locks to higher levels as a database session
places more and more locks on the same database objects. Locking and unlocking

CHAPTER 9 Preserving Database Integrity Using Transactions 213

small amounts of data requires signifi cant overhead, so escalating locks to higher
levels can substantially improve performance. Typical lock levels are as follows:

• Database The entire database is locked so that only one database session
may apply updates. This is obviously an extreme situation that should not
happen very often, but it can be useful when signifi cant maintenance is being
performed, such as upgrading to a new version of the database software.
Oracle supports this level indirectly when the database is opened in exclusive
mode, which restricts the database to only one user session.

• File An entire database fi le is locked. Recall that a fi le can contain part of
a table, an entire table, or parts of many tables. This level is less favored in
modern databases because the data locked can be so diverse.

• Table An entire table is locked. This level is useful when you’re performing
a table-wide change such as reloading all the data in the table, updating every
row, or altering the table to add or remove columns. Oracle calls this level
a DDL lock, and it is used when DDL statements (CREATE, DROP, and
ALTER) are submitted against a table or other database object.

• Block or page A block or page within a database fi le is locked. A block is
the smallest unit of data that the operating system can read from or write to
a fi le. On most personal computers, the block size is called the sector size.
Some operating systems use pages instead of blocks. A page is a virtual block
of fi xed size, typically 2K or 4K, which is used to simplify processing when
there are multiple storage devices that support different block sizes. The
operating system can read and write pages and let hardware drivers translate
the pages to appropriate blocks. As with fi le locking, block (page) locking is
less favored in modern database systems because of the diversity of the data
that may happen to be written to the same block in the fi le.

• Row A row in a table is locked. This is the most common locking level,
with virtually all modern database systems supporting it.

• Column Some columns within a row in the table are locked. This method
sounds terrifi c in theory, but it’s not very practical because of the resources
required to place and release locks at this level of granularity. Very sparse
support for it exists in modern commercial database systems.

Locks are always placed when data is updated or deleted. Most RDBMSs also
support the use of a FOR UPDATE OF clause on a SELECT statement to allow
locks to be placed when the database user declares their intent to update something.
Some locks may be considered read-exclusive, which prevents other sessions from
even reading the locked data. Many RDBMSs have session parameters that can be

 214 SQL Demystifi ed

set to help control locking behavior. One of the locking behaviors to consider is
whether all rows fetched using a cursor are locked until the next COMMIT or
ROLLBACK, or whether previously read rows are released when the next row is
fetched. Consult your database vendor documentation for more details.

The main problem with locking mechanisms is that locks cause contention,
meaning that the placement of locks to prevent loss of data from concurrent updates
has the side effect of causing concurrent sessions to compete for the right to apply
updates. At the least, lock contention slows user processes as sessions wait for
locks. At the worst, competing lock requests can stall sessions indefi nitely, as you
will see in the next section.

Deadlocks
A deadlock is a situation where two or more database sessions have locked some
data and then each requests a lock on data that another session has locked. Figure 9-2
illustrates this situation.

This example again uses two users from our fi ctitious company, cleverly named A
and B. User A is a customer representative in the customer service department and
is attempting to correct a payment that was credited to the wrong customer account.
He needs to subtract (debit) the payment from Customer 1 and add (credit) it to Cus-
tomer 2. User B is a database specialist in the IT department, and she has written an
SQL statement to update some of the customer phone numbers with one area code
to a new area code in response to a recent area code split by the phone company. The
statement has a WHERE clause that limits the update to only those customers having
a phone number with certain prefi xes in area code 510 and updates those phone
numbers to the new area code. User B submits her SQL UPDATE statement while
User A is working on his payment credit problem. Customers 1 and 2 both have

Figure 9-2 The deadlock

Correct a
payment

posting error:
Debit

Customer “1”
and Credit

Customer “2”

Split telephone
area code

“510”

Database User “A”

1. Select and Update Customer “1”
 (locks the Customer “1” row)

Customer
Schema

Database User “B”

3. Select and Update Customer “2”
 (must wait due to User “B” lock)

2. Update Customer “2”
 (locks the Customer “2” row)

4. Update Customer “1”
 (must wait due to User “A” lock)

CHAPTER 9 Preserving Database Integrity Using Transactions 215

phone numbers that need to be updated. The sequence of events (all happening with-
in seconds of each other), as illustrated in Figure 9-2, takes place as follows:

 1. User A selects the data from Customer 1 and applies an update to debit
the balance due. No commit is issued yet because this is only part of the
transaction that must take place. The row for Customer 1 now has a lock
on it due to the update.

 2. The statement submitted by User B updates the phone number for Customer
2. The entire SQL statement must run as a single transaction, so there is no
commit at this point, and thus User B holds a lock on the row for Customer 2.

 3. User A selects the balance for Customer 2 and then submits an update to
credit the balance due (same amount as debited from Customer 1). The
request must wait because User B holds a lock on the row to be updated.

 4. The statement submitted by User B now attempts to update the phone number
for Customer 1. The update must wait because User A holds a lock on the row
to be updated.

These two database sessions are now in deadlock. User A cannot continue due to
a lock held by User B, and vice versa. In theory, these two database sessions will be
stalled forever. Fortunately, modern DBMSs contain provisions to handle this situ-
ation. One method is to prevent deadlocks. Few DBMSs have this capability due to
the considerable overhead this approach requires and the virtual impossibility of
predicting what an interactive database user will do next. However, the theory is to
inspect each lock request for the potential to cause contention and not permit the
lock to take place if a deadlock is possible. The more common approach is deadlock
detection, which then aborts one of the requests that caused the deadlock. This can
be done either by timing lock waits and giving up after a preset time interval or by
periodically inspecting all locks to fi nd two sessions that have each other locked
out. In either case, one of the requests must be terminated and the transaction’s
changes rolled back in order to allow the other request to proceed.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. A transaction

 a. May be partially processed

 b. May not be partially processed

 216 SQL Demystifi ed

 c. Changes the database from one consistent state to another

 d. Is sometimes called a unit of work

 e. Has properties described by the ACID acronym

 2. The A in the ACID acronym stands for

 a. Automatically

 b. Auxiliary

 c. Atomicity

 d. Augmented

 e. Availability

 3. The C in the ACID acronym stands for

 a. Correlated

 b. Consistency

 c. Committed

 d. Calculated

 e. Consolidated

 4. The I in the ACID acronym stands for

 a. Integration

 b. Immediacy

 c. Iconic

 d. Isolation

 e. Information

 5. The D in the ACID acronym stands for

 a. Durability

 b. Dedication

 c. Duality

 d. Database

 e. Distribution

 6. The process that backs out changes made by a failed transaction is called

 a. Transaction logging

 b. Commit

 c. Rollback

CHAPTER 9 Preserving Database Integrity Using Transactions 217

 d. Recovery

 e. Savepoint creation

 7. The process that makes transaction changes permanent is called

 a. Transaction logging

 b. Commit

 c. Rollback

 d. Savepoint creation

 e. Saving the transaction

 8. Support for transactions in relational databases includes

 a. Identifying the beginning of each transaction

 b. Identifying the end of each transaction

 c. Distributed database management

 d. Periodic database backups

 e. The transaction log

 9. Microsoft SQL Server supports the following transaction modes:

 a. Autocommit

 b. Automatic

 c. Durable

 d. Explicit

 e. Implicit

 10. Oracle supports the following transaction modes:

 a. Autocommit

 b. Automatic

 c. Durable

 d. Explicit

 e. Implicit

 11. In implicit transaction mode in Microsoft SQL Server, a new transaction is
started by

 a. Connecting to the database

 b. A COMMIT statement

 c. A ROLLBACK statement

 218 SQL Demystifi ed

 d. An INSERT statement

 e. A SELECT statement

 12. In implicit transaction mode in Oracle, a new transaction is started by

 a. Connecting to the database

 b. A Commit statement

 c. A Rollback statement

 d. An INSERT statement

 e. A SELECT statement

 13. The SQL statements used to manage transactions in Microsoft SQL Server
and Sybase Adaptive Server include

 a. BEGIN TRANSACTION

 b. END TRANSACTION

 c. COMMIT

 d. ROLLBACK

 e. SET AUTOCOMMIT

 14. SQL statements used to manage transactions in Oracle are

 a. BEGIN TRANSACTION

 b. END TRANSACTION

 c. COMMIT

 d. ROLLBACK

 e. SET AUTOCOMMIT

 15. In MySQL, transaction support

 a. Only applies to the ISAM and MyISAM storage engines

 b. Only applies to the InnoDB and BDB storage engines

 c. Includes autocommit, implicit, and explicit modes

 d. Includes autocommit and implicit modes

 e. Includes autocommit and explicit modes

 16. SQL statements used to manage transactions in DB2 UDB are

 a. BEGIN TRANSACTION

 b. END TRANSACTION

CHAPTER 9 Preserving Database Integrity Using Transactions 219

 c. COMMIT

 d. ROLLBACK

 e. SAVEPOINT

 17. The amount of data held by a lock (lock granularity) can be a

 a. Database

 b. Table

 c. Row

 d. Column

 e. Block or page

 18. The concurrent update problem

 a. Is a consequence of simultaneous data sharing

 b. Cannot occur when AUTOCOMMIT is set to ON

 c. Is the reason that transaction locking must be supported

 d. Occurs when two database users submit confl icting SELECT statements

 e. Occurs when two database users make confl icting updates to the same
data

 19. A lock

 a. Is a control placed on data to reserve it so that the user may update it

 b. Is usually released when a COMMIT or ROLLBACK takes place

 c. Has a timeout set in DB2 and some other RDBMS products

 d. May cause contention when other users attempt to update locked data

 e. May have levels and an escalation protocol in some RDBMS products

 20. A deadlock

 a. Is a lock that has timed out and is therefore no longer needed

 b. Occurs when two database users each request a lock on data that is
locked by the other

 c. Can theoretically put two or more users in an endless lock wait state

 d. May be resolved by deadlock detection on some RDBMSs

 e. May be resolved by lock timeouts on some RDBMSs

This page intentionally left blank

221

10

Integrating SQL
into Applications

In this chapter, we’ll have a look at how SQL is used in applications. An application
is a set of computer programs designed to solve a particular business problem, such
as an order-entry system, a payroll-processing system, or an accounting system.
Applications can be built using a general-purpose procedural programming lan-
guage such as Java, C, or C++, or a programming environment such as the Microsoft
.NET Framework. A procedural programming language specifi es an explicit se-
quence of steps to follow in order to complete a transaction. In applications that use
relational databases, the application developers use various techniques for commu-
nicating with the database, which of course includes sending SQL statements to the
database for processing and dealing with the results. This chapter explores some of
those techniques.

CHAPTER

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 222 SQL Demystifi ed

Cursor Processing
Procedural programming languages are designed to handle one record at a time
(one object instance or collection at a time in the case of object-oriented languages
such as Java). This presents a dilemma when SQL is used in conjunction with the
programming language because SQL queries typically produce result sets that con-
tain multiple records (rows) of data. There is a mismatch that must be addressed.

To overcome the mismatch, most relational databases support the concept of
a cursor, which is merely a pointer to a single row in the result set. In Oracle, cursor
support is included in a procedural language SQL extension called PL/SQL (Proce-
dural Language/SQL) and similarly is included in Transact-SQL in Sybase Adaptive
Server and Microsoft SQL Server. These procedural SQL extensions are discussed
later in this chapter. The use of a cursor parallels the use of a traditional fl at fi le in
that the cursor must be defi ned and opened before it may be used, it may be read
from by fetching rows in a programming loop, and it should be closed when the
program no longer needs it.

The DECLARE CURSOR Statement
A cursor must be declared before it can be referenced by any other SQL statements.
Here is the general syntax of the DECLARE CURSOR statement that defi nes a
cursor:

DECLARE cursor_name CURSOR FOR
select_statement
[FOR UPDATE [OF column_name [, column_name...]]]

NOTE:NOTE:

• The exact syntax will vary from one DBMS to another. For example, the SQL
standard specifi es the keyword FOR, but the Oracle syntax uses the keyword
IS, and the Microsoft SQL Server syntax makes the keyword optional.
Also, Oracle requires the keyword CURSOR to appear before the cursor
name instead of after it. As usual, consult your DBMS documentation for
details.

• The DECLARE CURSOR statement only defi nes the cursor—no data is
selected until the cursor is subsequently opened and used. This is very much

CHAPTER 10 Integrating SQL into Applications 223

like defi ning a fi le in a traditional programming language—nothing really
happens until the fi le is opened and used.

• The cursor_name must be unique within the program and will be used to
reference the declared cursor in subsequent statements.

• The SQL statement included in the cursor declaration can contain most
SELECT statement clauses. However, the INTO clause may not be included
here because it is used in the FETCH statement as shown later in this
section.

• The FOR UPDATE clause is optional, but some SQL implementations
require it if subsequent SQL statements update and/or delete data selected
by the cursor. As usual, consult your RDBMS documentation for specifi cs.

Here is an example of a DECLARE CURSOR statement written in Oracle syntax.
It selects movie rentals that are currently overdue.

DECLARE CURSOR overdue_rentals IS
SELECT MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE
 FROM MOVIE_RENTAL
 WHERE DUE_DATE < CURRENT_DATE
 FOR UPDATE OF DUE_DATE;

You can tell that this is an Oracle example because of the syntax and the use of
CURRENT_DATE, which is an Oracle function that returns the current date and
time. For other SQL implementations, substitute the expression that yields the cur-
rent date and time in the RDBMS and adjust other syntax as required. For example,
for Microsoft SQL Server, the statement would be

DECLARE overdue_rentals CURSOR FOR
SELECT MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE
 FROM MOVIE_RENTAL
 WHERE DUE_DATE < getdate()
 FOR UPDATE OF DUE_DATE;

The OPEN CURSOR Statement
The cursor must be opened before it can be used. In this example, the RDBMS may
not have to retrieve any rows when you open the cursor, but for effi ciency it might
decide to retrieve some number of rows and place them in a buffer for you. A buffer
is merely an area of computer memory used to temporarily hold data. It is far more
effi cient to use a buffer to hold some number of prefetched rows than it is going to

 224 SQL Demystifi ed

the database fi les for every single row because computers can access memory so
much faster than fi les in the fi le system. In some cases, however, the RDBMS must
fetch all the rows matching a query and sort them before the fi rst row may be
returned to the application program. You may have guessed that these are queries
containing an ORDER BY to sequence the returned rows for us. If there is no index
on the column(s) used for sequencing, then the RDBMS must fi nd and sort all of
them before it knows which one is the correct one to return as the fi rst row (the one
that sorts the lowest in the requested sequence). Although a lot goes on when a cur-
sor is opened, the statement itself is quite simple. Here is the OPEN CURSOR
statement for our example:

OPEN overdue_rentals;

The FETCH Statement
Each time your program requires a new row from the result set, simply issue
a FETCH command against the cursor. This is very much like reading the next re-
cord from a fi le in an older fl at fi le system. Remember that the cursor is merely
a pointer into the result set. Every time a fetch is issued, the cursor is advanced one
row, and the row currently pointed to is returned to the calling program (that is, the
program that issued the FETCH). If there are no more rows in the result set (that is,
if the cursor has been advanced past the last row in the result set), a code is returned
to the calling program to indicate this. Another detail handled by the fetch is map-
ping the columns returned to programming language variables (called host language
variables, or just host variables). This is done with the INTO clause, and naturally
the syntax of the variable names will vary from one programming language to an-
other. The general form of the FETCH statement is

FETCH cursor_name
 [INTO variable_list];

Notice that the FETCH statement refers only to the cursor name and the host
variables. The cursor declaration ties the cursor to the table(s) and column(s) being
referenced. In most SQL implementations, host variables must be declared before
they can be referenced in a FETCH statement. The syntax and rules for declaring
host variables vary across SQL implementations, so you should consult your
vendor’s documentation for details. Here is an example that will run in most SQL
implementations (the INTO clause has been intentionally left out). However, Oracle
requires the INTO clause along with some other statements that start and end
a PL/SQL statement block, so this example won’t work in Oracle without some
modifi cations:

FETCH overdue_rentals;

CHAPTER 10 Integrating SQL into Applications 225

Cursor UPDATE and DELETE Statements
SQL provides a convenient way to update data selected with a cursor or to delete
rows from tables referenced by a cursor fetch. Keep in mind that no SQL statement
can update or delete data in more than one table, so a cursor that contains a join has
some update and delete restrictions. And as noted earlier, many SQL implementa-
tions require the FOR UPDATE clause for cursors that are to be used for updates
and/or deletes. A special form of UPDATE and DELETE statement is used when
a cursor is involved. It contains the WHERE CURRENT OF clause that names the
cursor. The row that is updated or deleted is the last one fetched by the named cur-
sor. If no row was successfully fetched from the cursor, any statement containing
WHERE CURRENT OF will fail.

Here is the general syntax of the cursor UPDATE statement, followed by Oracle
and Microsoft SQL Server examples:

UPDATE table_name
 SET column_and_value_list
 WHERE CURRENT OF cursor_name;

UPDATE MOVIE_RENTAL
 SET DUE_DATE = CURRENT_DATE
 WHERE CURRENT OF overdue_rentals;

UPDATE MOVIE_RENTAL
 SET DUE_DATE = getdate()
 WHERE CURRENT OF overdue_rentals;

Here is the general syntax of the cursor DELETE statement, followed by an
example:

DELETE FROM table_name
 WHERE CURRENT OF cursor_name;

DELETE FROM MOVIE_RENTAL
 WHERE CURRENT OF overdue_rentals;

The CLOSE Statement
As previously stated, you should always close the cursor when the program no lon-
ger needs it because this frees up any resources the cursor has used, including
memory for buffers. The CLOSE statement is as simple as the OPEN statement:

CLOSE overdue_rentals;

 226 SQL Demystifi ed

In Transact-SQL (Microsoft SQL Server and Sybase), memory used by a cursor
is not completely freed up when the cursor is closed, so it is also good programming
practice to deallocate the cursor as shown in this example:

DEALLOCATE overdue_rentals;

Embedding SQL in Application Programs
Now that you have seen how applications handle database query result sets using
cursors, you need to understand how the application connects to and interacts with
the database. Most connections between an application and database use a standard
API. An API (application programming interface) is a set of calling conventions by
which an application program accesses services. Such services can be provided by
the operating system or by other software products such as the DBMS. The API
provides a level of abstraction that allows the application to be portable across
various operating systems and vendors.

ODBC Connections
ODBC (Open Database Connectivity) is a standard API for connecting application
programs to DBMSs. ODBC is based on a Call Level Interface (CLI, a convention
that defi nes the way calls to services are made), which was fi rst defi ned by the SQL
Access Group and released in September 1992. Although Microsoft was the fi rst
company to release a commercial product based on ODBC, it is not a Microsoft
standard, and in fact there are now versions available for Unix, Macintosh, and
other platforms.

ODBC is independent of any particular language, operating system, or database
system. An application written to the ODBC API can be ported to another database
or operating system merely by changing the ODBC driver. It is the ODBC driver
that binds the API to the particular database and platform, and a defi nition known
as the ODBC data source contains the information necessary for a particular ap-
plication to connect with a database service. On Windows systems, the most
popular ODBC drivers are shipped with the operating system, as is a utility pro-
gram to defi ne ODBC data sources (found on the Control Panel or Administrative
Tools Panel, depending on the version of Windows).

Most commercial software products and most commercial databases support
ODBC, which makes it far easier for software vendors to market and support prod-
ucts across a wide variety of database systems. One notable exception is applications

CHAPTER 10 Integrating SQL into Applications 227

written in Java. They use a different API known as JDBC, which is covered in the
next section.

A common dilemma is that relational database vendors do not handle advanced
functions in the same way. This problem can be circumvented using an escape
clause that tells the ODBC driver to pass the proprietary SQL statements through
the ODBC API untouched. The downside of this approach, of course, is that appli-
cations written this way are not portable to a different vendor’s database (and
sometimes not even to a different version of the same vendor’s database).

Connecting Databases to Java Applications
Java started as a proprietary programming language (originally named Oak) that
was developed by Sun Microsystems. It rapidly became the de facto standard pro-
gramming language for web computing, at least in non-Microsoft environments.
Java is a type-safe, object-oriented programming language that can be used to build
client components (applets) as well as server components (servlets). It has a machine-
independent architecture, making it highly portable across hardware and operating
system platforms.

You may also run across the terms JavaScript and JScript. These are scripting
languages with a Java-like syntax that are intended to perform simple functions on
client systems, such as editing dates. They are not full-fl edged implementations of
Java and are not designed to handle database interactions.

JDBC (Java Database Connectivity)
JDBC (Java Database Connectivity) is an API, modeled after ODBC, for connect-
ing Java applications to a wide variety of relational DBMS products. Some JDBC
drivers translate the JDBC API to corresponding ODBC calls and thus connect to
the database via an ODBC data source. Other drivers translate directly to the propri-
etary client API of the particular relational database, such as the Oracle Call Interface
(OCI). As with ODBC, an escape clause is available for passing proprietary SQL
statements through the interface. The JDBC API offers the following features:

• Embedded SQL for Java The Java programmer codes SQL statements
as string variables, the strings are passed to Java methods, and an embedded
SQL processor translates the Java SQL to JDBC calls.

• Direct mapping of RDBMS tables to Java classes The results of SQL
calls are automatically mapped to variables in Java classes. The Java
programmer may then operate on the returned data as native Java objects.

 228 SQL Demystifi ed

Java examples are a bit too involved for this book, but you can fi nd lots of them
on the websites of vendors who support JDBC. For instance, the Oracle Technology
Network site contains many JDBC examples: http://www.oracle.com/technology.

JSQL (Java SQL, SQLJ)
JSQL (also called Java SQL and SQLJ) is a method of embedding SQL statements
in Java without having to do special coding to put the statements into Java strings. It
is an extension of the ISO/ANSI standard for SQL embedded in other host languag-
es, such as C. A special program called a precompiler is run on the source program
that automatically translates the SQL statements written by the Java programmer
into pure Java. This method can save a considerable amount of development effort.

Middleware Solutions
Middleware can be thought of as software that mediates the differences between an
application program and the services available on a network or between two dispa-
rate application programs. In the case of Java database connections, middleware
products can make the RDBMS look as if it is an object-oriented database running
on a remote server. The Java programmer then accesses the database using standard
Java methods, and the middleware product takes care of the translation between
objects and relational database components. There are a number of application de-
velopment environments that can be purchased that provide a middleware solution
between the Java class structure and relational databases. Most of these provide
a GUI tool for mapping relational data to Java classes, and using the mapping spec-
ifi cation, they automatically generate the SQL statements required to retrieve the
data from the database and populate the classes, as well as the SQL statements to
apply any data updates to the relational database.

The .NET Framework
.NET is the Microsoft web services strategy for applications that are integrated
across the Microsoft platform. The .NET Framework is a development and execu-
tion environment that allows different programming languages and libraries to work
together to create applications. The .NET Framework consists of:

• The Common Language Runtime (CLR) A language-neutral
development and execution environment. Support is provided for

http://www.oracle.com/technology

CHAPTER 10 Integrating SQL into Applications 229

standard languages such as C and C++ as well as Microsoft proprietary
languages such as Visual Basic .NET, C#, and J#.

• The Framework Class Libraries (FCL) A consistent, object-oriented
library of prepackage functions.

• Infrastructure Support for standard networking protocols and
specifi cations, programming libraries of various languages, and different
platforms.

Applications built using the .NET Framework can use classes and libraries
within the framework to send SQL to a relational database (typically Microsoft
SQL Server) and to process the results of the execution of the SQL statements by
the DBMS. I included the .NET Framework here as an example of a vendor-
proprietary development environment that includes provisions for embedding
SQL in the application. There are many such environments available from a variety
of vendors.

Computationally Complete SQL
As originally developed, SQL was solely a data language because it lacked several
types of statements that are essential in general programming languages, including
statements for looping, branching, and error handling. SQL that includes all the
statements required for the creation of complete programs is called computationally
complete. When database developers and DBAs needed to perform complex opera-
tions on the database, they had to resort to a general-purpose programming language
such as C. For business applications, the use of a general-purpose language was
(and still is) an appropriate solution. However, forcing DBAs to write triggers and
stored procedures in a general-purpose programming language, which was the only
option available in some early RDBMS products such as DB2, was not such a great
idea, especially since DBAs often were not well-versed in the supported program-
ming language.

Triggers and stored procedures are program modules that are stored in the data-
base. The difference between the two is that a trigger executes (fi res) automatically
based on an event in the database, such as inserting a row into a particular table,
while a stored procedure executes when it is invoked using a special SQL statement
such as CALL or EXECUTE. Stored procedures are useful for hiding complex SQL
statements from application programs, developers, and end users of the database.

 230 SQL Demystifi ed

In fact, some believe that all database access should be via stored procedures in
order to insulate the database users from any database design changes. Triggers are
useful for automating events such as logging data changes and replicating (copying)
data to another database, along with anything else that must be run automatically
based on an event. However, it is a good idea to keep business logic in the application
programs themselves instead of in the database to minimize requirements to change
the database as the business changes.

RDBMS vendors were quick to provide proprietary language extensions to SQL
that permitted complete programs to be written. The next two sections of this chap-
ter present high-level overviews of two such languages: Transact-SQL as offered
with Microsoft SQL Server and Sybase Adaptive Server (the two are similar but not
exactly identical implementations) and PL/SQL as offered with the Oracle
RDBMS. Keep in mind that entire books can (and have) been written on Transact-
SQL and PL/SQL, while only a brief overview is offered here.

Transact-SQL (Microsoft SQL Server
and Sybase Adaptive Server)
Microsoft SQL Server and Sybase Adaptive Server share a common SQL language
because they have the same roots. In 1987, Microsoft recognized that it lacked an
SQL implementation that would run on its new Windows Server operating system.
A partnership with Sybase was formed, and the result was an adaptation of Sybase’s
database technology that ran on both Windows and Unix. When the partnership
ended in 1993, both companies retained rights to the technology they developed,
which became Microsoft SQL Server and Sybase DataServer (later renamed to
Adaptive Server). Over time, these two product lines have diverged, but to this day,
if you know Transact-SQL for one of them, you can easily adapt your knowledge
and skills to the other.

Transact-SQL includes all the SQL statements and functions you have seen thus
far, including SELECT, INSERT, UPDATE, and DELETE, plus all the statements
required to make it a computationally complete language. In addition, Sybase and
Microsoft have provided a considerable number of stored procedures, written in
Transact-SQL, to assist in the management and use of the database. They are easy
to spot because their names all begin with “sp_”.

The following table provides an overview of the Transact-SQL language
elements:

CHAPTER 10 Integrating SQL into Applications 231

Language Element Description

BACKUP Backs up the database, transaction log, or one or
more fi les or fi legroups

BEGIN Starts a statement block

BREAK Exits a WHILE loop

CASE Evaluates a lists of conditions and returns one of
multiple possible result expressions

CONTINUE Restarts a WHILE loop

Cursor Control statements Includes the DECLARE CURSOR, OPEN, FETCH,
CLOSE, and DEALLOCATE statements as described
in this chapter

DCL statements Includes the standard SQL GRANT and REVOKE
statements as described in Chapter 8

DDL statements Includes the CREATE, ALTER, and DROP
statements as described in Chapter 3, with extensions
for the creation and management of triggers and
stored procedures written in Transact-SQL

DECLARE Defi nes Transact-SQL variables

DML statements Includes the standard SQL INSERT, UPDATE, and
DELETE statements as described in Chapter 7

END Ends a statement block

EXEC Executes a stored procedure

Functions Includes SQL functions as described in Chapters
4 and 6

GOTO Transfers control unconditionally (branches) to
a statement label

IF...ELSE Evaluates one or more conditions, providing
statements to execute when a condition evaluates
to TRUE

PRINT Returns a message to the client

RESTORE Restores a database, transaction log, or one or more
fi les or fi legroups from a backup

RETURN Ends the current procedure, returning control to the
calling module

 232 SQL Demystifi ed

Language Element Description

SELECT [INTO] Includes standard SQL SELECT, as described in
Chapters 4 through 6, with an optional INTO clause
added to allow storage of selected data in declared
Transact-SQL language variables

SHUTDOWN Immediately stops the RDBMS engine

Transaction statements Includes BEGIN TRANSACTION, END
TRANSACTION, COMMIT, and ROLLBACK
statements as described in Chapter 9

TRUNCATE TABLE Clears a table of all data, but without fi ring any
triggers defi ned on the table

USE Names the database that all subsequent Transact-SQL
will use

WAITFOR Delays statement execution

WHILE Repeats statements while a specifi c condition is
TRUE

Oracle PL⁄SQL
PL/SQL (Programming Language/SQL), originally known as the “procedural op-
tion,” was fi rst released in 1991 as part of Oracle version 6. It was modeled after
Ada, a programming language that at the time was the standard programming lan-
guage for the United States government. This may seem like an odd choice, but
Oracle Corporation has always had close ties with the federal government. In fact,
it is now well known that the CIA was Oracle’s very fi rst customer.

Unlike Transact-SQL, Oracle SQL is not considered a part of PL/SQL, but rath-
er a separate language that can be invoked from within PL/SQL as needed. Like
Microsoft SQL Server and Sybase Adaptive Server, Oracle provides a host of stored
procedures with the database, mostly written in PL/SQL, and usually with names
that begin with “DBMS_”. The combination of SQL, PL/SQL, and the SQL*Plus
client (which has its own set of commands) can be confusing at times because it is
diffi cult to remember to which language a particular statement belongs. However,
other than fi nding which product manual describes the command when you need
help with syntax, you don’t have to worry much because SQL*Plus, Oracle SQL,
and PL/SQL all interoperate seamlessly.

Here is a table that provides an overview of PL/SQL language elements:

CHAPTER 10 Integrating SQL into Applications 233

Language Element Description

BEGIN Starts a block of statements.

CALL Calls a PL/SQL procedure as a subprogram.

CURSOR FOR LOOP Defi nes a loop tied to a cursor that is repeated for each row
returned by the cursor.

Cursor statements Includes the DECLARE CURSOR, OPEN, FETCH, and
CLOSE statements as described in Chapter 10. There are
also special variables (attributes) associated with cursors
to allow for operations such as testing whether a FETCH
found a row of data or not.

DECLARE Defi nes PL/SQL variables. PL/SQL supports all the Oracle
SQL data types, plus it adds a bunch of its own, including
arrays, memory tables, record structures, and user-defi ned
types.

END Ends a block of statements.

END LOOP Marks the end of a LOOP or FOR LOOP.

EXCEPTION Starts a special section of the PL/SQL program that
handles exceptions (errors) trapped during statement
execution. A WHEN statement is included for each
condition to be handled.

EXECUTE Invokes (executes) a PL/SQL stored procedure.

EXIT [WHEN] Exits from a loop.

FOR LOOP Defi nes a loop that iterates a numeric variable. An optional
range can be included to control the number of loop
executions.

GOTO Transfers control (branches) unconditionally to a statement
label.

IF...THEN...ELSE Evaluates one or more conditions, providing statements to
execute when a condition evaluates to TRUE.

LOOP Defi nes a simple loop that will execute continuously until
stopped with an EXIT statement.

NULL Is a statement that does absolutely nothing (which reminds
me of a few coworkers I once had). It is often used as a
placeholder in a block of conditional statements.

RAISE Raises an error condition. If a WHEN statement is defi ned
for the condition, it takes over to handle the condition;
otherwise, the PL/SQL program fails.

 234 SQL Demystifi ed

Language Element Description

RETURN Exits from a PL/SQL block or procedure, returning control
to the block or procedure that invoked it.

Transaction statements Includes the COMMIT, ROLLBACK, and SAVEPOINT
statements as described in Chapter 9.

WHEN Used in an EXCEPTION section, defi nes an exception
condition and the actions to be taken when the exception
is raised. Note that exceptions can be raised when errors
occur or when the RAISE statement is executed.

WHILE Repeats statements while a specifi c condition is TRUE.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. A cursor is

 a. The collection of rows returned by a database query

 b. A pointer into a result set

 c. The same as a result set

 d. A buffer that holds rows retrieved from the database

 e. A method to analyze the performance of SQL statements

 2. A result set is

 a. The collection of rows returned by a database query

 b. A pointer into a cursor

 c. The same as a cursor

 d. A buffer that holds rows retrieved from the database

 e. A method to analyze the performance of SQL statements

 3. Before rows may be fetched from a cursor, the cursor must fi rst be

 a. Declared

 b. Committed

 c. Opened

 d. Closed

 e. Deallocated

CHAPTER 10 Integrating SQL into Applications 235

 4. Cursors are

 a. Intended to overcome the mismatch between the way object-oriented
languages and relational databases handle query results

 b. Intended to overcome the mismatch between the way procedural
languages and relational databases handle query results

 c. Included in the Oracle PL/SQL language

 d. Included in the Sybase Transact-SQL language

 e. Included in the Microsoft Transact-SQL language

 5. The cursor name is included in

 a. The DECLARE CURSOR statement

 b. The SELECT statement

 c. The OPEN statement

 d. The FETCH statement

 e. The CLOSE statement

 6. The cursor name must be unique within

 a. A table

 b. A row

 c. A result set

 d. A database

 e. A program

 7. A cursor OPEN statement

 a. Always causes the query to be run and the result set to be fi lled with data

 b. May cause the query to be run and some rows placed in the result set

 c. Must include an INTO clause

 d. Must include the cursor name

 e. Must include the table name(s)

 8. ODBC is

 a. A standard API for connecting to DBMSs

 b. Independent of any particular language, operating system, or DBMS

 c. A Microsoft standard

 d. Used by Java programs

 e. Flexible in handling proprietary SQL

 236 SQL Demystifi ed

 9. JDBC is

 a. A standard API for connecting to DBMSs

 b. Independent of any particular language, operating system, or DBMS

 c. A Microsoft standard

 d. Used by Java programs

 e. Flexible in handling proprietary SQL

 10. JSQL is

 a. A Sun Microsystems standard

 b. A method of embedding SQL statements in Java

 c. An extension of an ISO/ANSI standard

 d. A middleware solution

 e. Independent of any particular language, operating system, or DBMS

 11. Middleware solutions for Java connections

 a. Use standard Java methods for access to an RDBMS

 b. Make the RDBMS look like an object-oriented database

 c. Provide a method for embedding SQL statements in Java

 d. Are independent of any particular language, operating system, or
DBMS

 e. Usually run on a remote server

 12. The Microsoft .NET Framework includes

 a. The Transact-SQL language

 b. The Common Language Runtime (CLR)

 c. The Common Gateway Interface (CGI)

 d. The Framework Class Libraries (FCL)

 e. Infrastructure to support various network specifi cations, programming
languages, and platforms

 13. Computationally complete SQL includes statements for

 a. Report writing

 b. Error handling

 c. Looping

 d. Branching

 e. Cursor processing

CHAPTER 10 Integrating SQL into Applications 237

 14. A trigger is

 a. Executed only when called

 b. Executed automatically based on an event in the database

 c. Written in a nonprocedural language

 d. Written in a procedural language

 e. Stored in the database

 15. A stored procedure is

 a. Executed only when called

 b. Executed automatically based on an event in the database

 c. Written in a nonprocedural language

 d. Written in a procedural language

 e. Stored in the database

 16. Transact-SQL

 a. Appears in Oracle and Microsoft SQL Server

 b. First appeared in 1987

 c. Includes standard SQL with procedural extensions

 d. Was developed jointly by Oracle and Sybase

 e. Is the language used for many stored procedures provided by Microsoft
and Sybase

 17. Language elements included in Transact-SQL are

 a. BEGIN and END to start and end statement blocks

 b. WHILE for statement repetition

 c. SQL DDL, DQL, DML, and DCL statements

 d. DECLARE for defi nition of variables

 e. GOTO and EXIT to branch out of loops

 18. PL/SQL

 a. Was originally known as Ada

 b. Was fi rst released in 1991

 c. Was developed by the CIA

 d. Does not include standard SQL statements

 e. First appeared with Oracle version 6

 238 SQL Demystifi ed

 19. Language elements included in PL/SQL are

 a. DECLARE for the defi nition of variables

 b. WAITFOR to delay execution of statements

 c. EXCEPTION for the handling of exceptions

 d. FOR LOOP and WHILE for forming loops

 e. The SELECT statement

 20. Language elements included in both PL/SQL and Transact-SQL are

 a. BACKUP and RESTORE to back up and restore database elements

 b. IF...ELSE for conditional execution of statements

 c. NULL as a placeholder that does nothing

 d. DECLARE for the defi nition of variables

 e. RETURN to exit from a block of statements

239

11

SQL Performance
and Tuning

Considerations

This fi nal chapter covers performance and tuning considerations for making the
SQL statements you write run faster and more effi ciently. First, we’ll have a look at
general things that can be done at the DBMS level, followed by guidelines for writ-
ing effi cient SQL. The many differences across RDBMSs (even different versions
from the same vendor) make universal solutions to performance issues diffi cult to
develop. What works well in one DBMS often has a lesser, or even negative, effect
on another. While I have made every attempt to include guidelines in this chapter
that are universally applicable, I have also included some of the most important
vendor-specifi c guidelines. In all cases, be sure to check your RDBMS documenta-
tion for current information.

CHAPTER

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 240 SQL Demystifi ed

Any seasoned DBA (Database Administrator) will tell you that database perfor-
mance tuning is a neverending task. It seems there is always something that can be
tweaked to make it run better. The key to success is managing your time and the
expectations of the database users and setting the performance requirements for an
application before it is even written. Simple statements such as “every database
update must complete within four seconds” are usually the best. With that done,
performance tuning becomes a simple matter of looking for things that do not con-
form to the performance requirement and tuning them until they do. The law of
diminishing returns applies to database tuning, and you can put lots of effort into
tuning a database process for little or no gain. The beauty of having a standard per-
formance requirement is that you can stop when the process meets the requirement
and then move on to the next problem.

General RDBMS Tuning Considerations
Most RDBMS performance problems are the result of poorly written SQL state-
ments, but there are things that the DBA can do to make the entire database system
run more effi ciently. So, before we move on to tuning SQL queries, the sections that
follow offer some general considerations for tuning the RDBMS.

Minimize Disk Reads and Writes
This may seem obvious, but the slowest operation on most computer systems is I/O
(input/output), such as reading data from and writing data to the storage system (the
hard disks). Moving data around in memory and performing various calculations
and transformations on the data are both much faster than an I/O operation. So why
wouldn’t you just put the entire database in memory and keep it there? Actually,
that may happen someday. However, for now, memory is too expensive to be a
complete replacement for disks, and most memory is volatile, meaning that the data
held in it is lost when the computer system is shut down. There is nonvolatile mem-
ory, but it costs considerably more. Therefore, the best thing the DBA can do is to
make effi cient use of the available memory to minimize I/O operations and the time
spent waiting for them to complete. Here are some ways to do that:

• Allocate correctly sized buffers. You may recall that a buffer is an
area of memory used to hold data that has been recently read from or is
destined to be written to the storage system. With properly sized buffers,

CHAPTER 11 SQL Performance and Tuning Considerations 241

recently read data will stay in memory for a reasonable time, improving
the probability that a new query will fi nd the data it needs already sitting
in a buffer. On the output side, if there is room in the correct buffer, the
RDBMS can write the data to the buffer and copy the buffer from memory
to the storage system for permanent storage at a later time. This is called
asynchronous I/O, which is fundamental to an effi cient RDBMS.

• Spread out disk I/O. If you have multiple physical disk drives, spread
the database fi les out to allow for parallel I/O. (Multiple partitions on a
personal computer hard drive don’t count because those partitions are all on
the same physical drive.) In general, a disk drive can access only one spot
on the drive at a time, so multiple I/O operations on a single drive must be
handled serially. By spreading fi les out, multiple I/O operations can happen
at the same time (one per drive at any instant).

Tune the Computer System and Environment
It should be obvious that the computer system on which the DBMS runs should be
as fast and effi cient as possible. Here are some general considerations:

• Select fast and reliable hardware. The faster the hardware on your
computer system, particularly disk drives and processors, the faster your
database queries will run.

• Tune the operating system. While there is a lot of variation across
vendors and operating system versions, there are usually some things that
can be done to improve performance. For example, in Microsoft Windows
the size of the swap fi le can have a signifi cant effect on operating system
performance. Consult a tuning manual or white paper on your operating
system for specifi cs.

Design the Tables Effi ciently
Relational table design can have a huge effect on performance. Most popular
RDBMSs have manuals or white papers that cover best practices for designing effi -
cient tables. Here are some general guidelines that apply to all SQL implementations:

• CHAR vs. VARCHAR For character columns that are fi ve characters or
less, the CHAR data type is most appropriate, even if the data length varies.
The VARCHAR data type is better for variable length columns that are usually

 242 SQL Demystifi ed

longer than fi ve characters in size. For columns that always contain data of
the same length, CHAR is an obvious choice. The reason for using CHAR
for short columns is that VARCHAR columns include 1 to 3 bytes to hold
the length of the column data, and there is additional processing overhead for
calculating the length when the column data changes.

• Numeric column data types Use the smallest data type in which the data
will fi t. A lot of space is wasted if, for example, the BIGINT data type is
used when the data would always fi t in INT or SMALLINT.

• Identical data types for primary and foreign key columns Joins work
much more effi ciently if the data types of the columns used in the join
predicate (usually the primary key in one table and a foreign key in the
other table) have identical data types. When the data types are different, the
DBMS has to convert one of them so that the data values can be compared
correctly, and such conversion amounts to unnecessary overhead.

• Beware of triggers Triggers placed on database tables are sometimes
convenient and/or necessary ways to solve specifi c problems such as enforcing
complicated constraints. However, the work that the trigger does is part of the
unit of work of the SQL statement that modifi es the table (the statement that
caused the trigger to fi re), and therefore, it slows down that SQL statement.

Tuning SQL Queries
About 80 percent of database query performance problems can be solved by adjusting
the SQL statement. However, you must understand how the particular DBMS being
used processes SQL statements in order to know what to tweak. For example, placing
SQL statements inside stored procedures can yield remarkable performance improve-
ment in Microsoft SQL Server and Sybase, but the same is not true in Oracle.

A query execution plan is a description of how an RDBMS will process a par-
ticular query, including index usage, join logic, and estimated resource cost. It is
important to learn how to use the “explain plan” utility in your DBMS, if one is
available, because it will show you exactly how the DBMS will process the SQL
statement you are attempting to tune. Examples of obtaining execution plans for
Oracle and Microsoft SQL Server databases appear later in this chapter.

The next section covers some general query design and tuning tips for SQL,
followed by sections that offer recommendations for several of the most popular
RDBMS products currently on the market.

CHAPTER 11 SQL Performance and Tuning Considerations 243

General RDBMS Considerations
This section covers design and tuning considerations that apply to most SQL imple-
mentations. As always, consult the documentation for the DBMS you are using for
applicability information.

Know Your Optimizer
The query optimizer is the software component in the RDBMS that analyzes an
SQL statement to determine the best way to execute it. Most modern optimizers are
cost-based, which means that they estimate the cost of all possible ways to execute
a statement and then chose the one with the lowest cost. An important component
of cost-based optimizers is statistics gathered from the database, such as the num-
ber of rows in each table and the number of unique values each indexed column has.
However, some optimizers are rule-based, which means that they apply a set of
rules to the SQL statement instead of cost estimates when deciding how to best
execute it. A few optimizers such as Oracle’s allow a choice of either cost-based or
rule-based. Here are some considerations regarding query optimizers:

• Order of table names Does the order of the table names in the FROM or
JOIN clause have any infl uence on the order in which tables are accessed
when performing the joins? This is more likely the case with a rule-based
optimizer. Ideally, the DBMS should access the most selective table (the
one that will eliminate the most number of rows from the result set) fi rst.
For rule-based optimizers, you may fi nd some surprising differences. For
example, Oracle version 7 processed the table name list from right to left,
but this was changed to left to right order starting with version 8.

• Order of search predicates Does the order of the predicates in the
WHERE clause have any infl uence on the order in which the predicates are
evaluated? Ideally, the most restrictive predicate (the one that eliminates the
most number of rows) should be evaluated fi rst.

• Lack of statistics If a cost-based optimizer is being used, what does it
do when statistics have not been collected for one or more tables? Some
optimizers, such as Oracle’s, revert back to rule-based, while others assume
default values for the required statistics or simply refuse to use any indexes
and do full table scans of all the tables. A full table scan is where the DBMS
reads every row in the table to fi nd the desired ones, which of course can be
a performance disaster for tables with very large numbers of rows.

 244 SQL Demystifi ed

• Query rewrites Are queries rewritten into more effi cient forms by the
optimizer? For example, many optimizers automatically rewrite subselects
into equivalent joins in order to simplify subsequent processing. In some
cases, you may fi nd that certain DBMS options must be enabled in order to
allow the optimizer to rewrite queries.

• View defi nition merges For queries that use views, at what point does
the DBMS merge the view defi nition (the query that defi nes the view)
into the SQL statement submitted by the database user? This has obvious
implications for the optimizer —the sooner it can evaluate the entire SQL
statement, the smarter its decision should be.

• Other criteria What other criteria infl uence the optimizer? For example,
some optimizers will favor unique indexes over nonunique ones, and some
will favor the use of an index to sequence rows over sorting the result set.

Effi cient Query Design
Many application developers simply write SQL statements off the top of their heads
without giving much thought to designing them for effi cient processing. This is an
easy trap to fall into because SQL is a nonprocedural language that gives the false
impression that the form of the statement does not matter provided it produces the
correct result set. Statements that are not designed can introduce enormous perfor-
mance issues. For example, I recently reviewed an SQL statement that retrieved
about six million rows of data each time it was executed. The application that issued
the SQL only required the fi rst row found. When this statement was run, the entire
database seized until the processing was complete. It felt like the lights dimmed in
the building from all the resources this one query consumed. It took the developer
who fi xed the problem only about an hour to turn the query into a very effi cient one,
but a little bit of thought by the original developer would have avoided the crisis
entirely. Here are some considerations regarding query design:

• Know your data. When writing the SQL statement, you should have
some idea of how many rows are in each table, how selective your WHERE
predicates are, and how many rows you expect in the result set. The larger
the number of rows involved, the more time you should spend thinking
about the best way to write the SQL statement.

• Minimize returned rows. The fewer the rows in the result set, the more
effi ciently the query will run.

• Avoid scans of large tables. For tables over 1000 rows or so, scanning
all the rows in the table instead of using an index can be expensive in

CHAPTER 11 SQL Performance and Tuning Considerations 245

terms of resources required. And, of course, the larger the table, the more
expensive a table scan becomes. Full table scans occur in the following
situations:

• The query does not contain a WHERE clause to limit rows.

• None of the columns referenced in the WHERE clause matches the
leading column of an index on the table.

• Index and table statistics have not been updated. Most RDBMS
query optimizers use statistics to evaluate available indexes, and
without statistics, a table scan may be seen as more effi cient than
using an index.

• At least one column in the WHERE clause does match the fi rst column
of an available index, but the comparison used obviates the use of an
index. These cases include the following:

• Use of the NOT operator (for example, WHERE NOT CITY = ‘New
York’). In general, indexes can be used to fi nd what is in a table, but
cannot be used to fi nd what is not in a table.

• Use of the NOT EQUAL operator (for example, WHERE CITY <>
‘New York’).

• Use of a wildcard in the fi rst position of a comparison string (for
example, WHERE CITY LIKE ‘%York%’).

• Use of an SQL function in the comparison (for example, WHERE
UPPER(CITY) = ‘NEW YORK’).

• Avoid unnecessary columns. The wider the data in each row in the
result set, the more disk space and memory that is required for intermediate
operations such as sorts and to hold the result set.

• Avoid unnecessary tables. The fewer the tables, the more effi cient the
query.

• Avoid sorts of large result sets. Sorts are expensive, especially when the
rows being sorted will not fi t in memory. When the result set is expected to
be very large, sorts should be avoided. Most optimizers will use an index if
it can eliminate the need for a sort, but creating an index solely to avoid a
sort of a large number of rows is probably not wise because of the overhead
required to maintain the index.

• Match data types in predicates. Whether a predicate compares two
column values as is done with joins, or a column value and a literal as is
done when fi ltering rows, it is important for the data types to match. When

 246 SQL Demystifi ed

the data types do not match, the DBMS must convert one of them before
performing the comparison, and while the work to do this is relatively small,
it mounts quickly when it has to be done for each row in a large table.

• Use IN instead of OR when possible. The IN operator can be rewritten
as a JOIN, but the OR operator often requires multiple queries to be run
with the results combined by the DBMS. The former is far more effi cient.

• Use GROUP BY instead of DISTINCT. In most DBMSs, a GROUP
BY is a more effi cient way to eliminate duplicate rows compared with the
DISTINCT keyword. The reason for this is that a GROUP BY invokes
the sort required to fi nd the duplicates earlier in the processing of the
query, while a DISTINCT applies the sort as the very last step (applied
to the fi nal result set). The sooner the duplicate rows are eliminated, the
more effi ciently the remainder of the processing on that result set can be
performed.

• Use hints if you must. Hints are special syntax that can be placed in
the SQL statement to direct the optimizer to take certain actions, such
as forcing the use of a particular index or a particular method to join
tables. While this can be a very attractive option, it should only be used
as a last resort because hints are not portable across database vendors,
and they sometimes stop working when the DBMS software is upgraded
to a newer version. The Oracle, MySQL, and Microsoft SQL Server
optimizers all respond to hints, but the syntax accepted by each is
different.

• Temporary tables may help. Temporary tables can help in some
situations, such as assembling large result sets and then adding an index
or two to support multiple subsequent queries against the temporary table.
However, remember that you’re doubling up the reads and writes when you
do this because all the data selected from the original (base) tables must be
written to the temporary table(s) and then read back from there. In short,
there are no free lunches.

• Views may help. Views can help because they hide complex operations
such as nested aggregate functions. And with DBMSs that don’t have an
SQL statement cache, views may process more effi ciently than ordinary
queries because the SQL statement that defi nes the view has already been
parsed and optimized, which means this work does not have to be done
every time the view is accessed. But above all, remember that views are
also SQL queries, so they are subject to all the tuning considerations you
apply to any SQL statement.

CHAPTER 11 SQL Performance and Tuning Considerations 247

Use Indexes Wisely
Indexes can greatly improve data access times. However, always keep in mind that
indexes take up storage space and they have to be maintained. Here are some con-
siderations related to the use of indexes to improve query performance:

• Avoid indexes on frequently updated columns. Creating an index on a
column that is frequently updated doubles up the amount of writes required
when the column is updated. Always remember that when column data is
updated, the DBMS must also update any indexes that include that column.

• Create only selective indexes. Index selectivity is a ratio of the number
of distinct values a column has divided by the number of rows in a table.
For example, if a table has 1000 rows and a column has 800 distinct values,
the selectivity of the index is 0.8, which is considered good. However, a
column such as gender that only has two distinct values (M and F) has
very poor selectivity (.002 in this case). Unique indexes always have a
selectivity ratio of 1.0, which is the best possible. A good rule of thumb is
to avoid indexes with a selectivity of less than 0.33 unless they are indexes
especially designed for low selectivity such as bit-map indexes.

• Foreign key indexes improve joins. With most optimizers, an index on
a foreign key column greatly improves join performance, and it can enable
additional join methods for the optimizer to use.

• Index columns frequently used in predicates. For large tables, every
query should contain a WHERE predicate that references an indexed
column. Therefore, it is best to fi nd the columns that are most frequently
referenced by predicates and to index them.

• Don’t overindex. As a rule of thumb, don’t create more than three or four
indexes for any table. As already stated, indexes take up storage and must
be maintained. Too many indexes on a table can cripple the performance of
an INSERT or UPDATE issued against that table.

• Avoid overlapping indexes. Nearly every RDBMS can use an index
even when the WHERE predicate references only the fi rst column of the
index. Therefore, overlapping indexes (those that have the same leading
column) are redundant and unnecessary.

• Consider unique indexes. With some RDBMSs, such as DB2, unique
indexes are so superior that DBAs often add otherwise unnecessary
columns to an index just to make it unique.

• Drop indexes for bulk loads. For mass loads of data into a table, consider
dropping some of the indexes and re-creating them after the load is complete.
This can save a substantial amount of time in some DBMSs.

 248 SQL Demystifi ed

MySQL Considerations
Here are a few tuning considerations that are particular to the MySQL DBMS:

• Storage engine MySQL has a unique feature that provides multiple
storage engines, one of which may be selected for each new table. These
storage engines include MyISAM (a replacement for the original ISAM),
HEAP, MERGE, InnoDB, and BDB (Berkeley DB). The differences are
too involved to explain here, but there are several chapters of the MySQL
Reference Manual devoted to them. Suffi ce it to say that the choice of
storage engine has a profound effect on the optimizer and the performance
of SQL statements issued against the table.

• Hash indexes MySQL supports hash indexes where the data values are
sent through a hashing algorithm before being added to the index. While
this technique scatters sequentially assigned values so new rows of data
end up more uniformly spread out in the index, hash indexes have the
disadvantage of not being useful as a replacement for sorts because the
index entries are not in key sequence.

Oracle Considerations
This section covers some tuning considerations that are specifi c to Oracle databases.

Oracle Index Considerations
Oracle provides some additional indexing options that are worth consideration:

• Function-based indexes Normally a predicate such as WHERE
UPPER(MOVIE_TITLE) LIKE ‘BIG%’ precludes the use of an index.
However, Oracle allows an index to be created on a function, such as
UPPER(MOVIE_TITLE), which then is usable for queries that reference the
function. There are several prerequisites for the use of this option, so you may
need some help from your Oracle DBA before you can use it. The syntax for
a function-based index simply uses the function specifi cation instead of the
column name in the ON clause of the CREATE INDEX statement:

CREATE INDEX IX_MOVIE_TITLE_UPPER
 ON MOVIE (UPPER(MOVIE_TITLE));

• Bit-map indexes Oracle bit-map indexes are designed to handle columns
where the cardinality is low (that is, where there are relatively few data
values among many rows). A bit-map index contains records that have

CHAPTER 11 SQL Performance and Tuning Considerations 249

one bit for every row in the indexed table and one index record for every
possible data value in the indexed column. A bit is “on” (a binary 1) if the
corresponding row in the table contains the value that the index record
represents, and “off” (a binary 0) if not. For example, if the MOVIE
table contained 5000 rows and you built a bit-map index on the MPAA_
RATING_CODE column, the index would contain records that were 5000
bits (roughly 625 bytes) in size, and there would be 6 such records (one
for each value of MPAA_RATING_CODE). The fi rst index record would
represent the fi rst MPAA_RATING_CODE value (“G”) and bits in that
record would be “on” when the corresponding row in the MOVIE table had
a rating of “G”. The DBMS can use matrix algebra to quickly fi nd desired
data rows, particularly when the search predicates reference multiple
columns that have bit-map indexes. A bit-map index is created using the
normal CREATE INDEX syntax with the keyword BITMAP used instead
of the keyword UNIQUE:

CREATE BITMAP INDEX IX_MOVIE_MPAA_RATING
 ON MOVIE (MPAA_RATING_CODE);

• Index organized tables It’s a good practice to create an index on the
primary key of every table. However, for tables with only a few columns,
such as reference tables and small intersection tables, this always seems
wasteful because most or all of the data in the table is repeated in the
index. Oracle provides a nice solution that allows the entire table to be
stored in the index. Essentially, an index organized table (IOT) is a primary
key index and a table rolled into a single structure. While you can create
additional indexes on an IOT, in those cases you might be better off using
a conventional table. Here is an example that creates a reference table for
media formats as an IOT:

CREATE TABLE MEDIA_FORMAT (
 MEDIA_FORMAT_CODE CHAR(1),
 MEDIA_FORMAT_DESC VARCHAR(50),
 CONSTRAINT PK_MEDIA_FORMAT
 PRIMARY KEY (MEDIA_FORMAT_CODE))
 ORGANIZATION INDEX;

Using EXPLAIN PLAN
In Oracle, the SQL EXPLAIN PLAN statement analyzes an SQL statement and
posts analysis results to a special plan table. The plan table must be created exactly
as specifi ed by Oracle, so it is best to use the script they provide for this purpose,
which can be found under the Oracle Home directory as /RDBMS/ADMIN/

 250 SQL Demystifi ed

catplan.sql. After running the EXPLAIN PLAN statement, you must then retrieve
the results from the plan table using a SELECT statement. Fortunately, Oracle’s En-
terprise Manager has a GUI version available that makes query tuning a lot easier.

Here is an example of an EXPLAIN PLAN statement:

EXPLAIN PLAN
 SET STATEMENT_ID = 'STMT_1'
 FOR
 SELECT MOVIE_ID,
 MOVIE_GENRE.MOVIE_GENRE_DESCRIPTION AS GENRE,
 MOVIE.MPAA_RATING_CODE AS RATING,
 MPAA_RATING.MPAA_RATING_DESCRIPTION AS RATING_DESC
 FROM MOVIE
 JOIN MOVIE_GENRE ON MOVIE.MOVIE_GENRE_CODE =
 MOVIE_GENRE.MOVIE_GENRE_CODE
 JOIN MPAA_RATING ON MOVIE.MPAA_RATING_CODE =
 MPAA_RATING.MPAA_RATING_CODE
 WHERE MOVIE_ID < 6
 ORDER BY MOVIE_ID;

Explained.

NOTE:NOTE:

• STATEMENT_ID is any character string that the statement author wishes
to use to identify the explain results. This feature allows multiple explains
to be run with the STATEMENT_ID as the identifi er that keeps the
information about each execution plan separate in the plan table.

• The statement to be explained follows the FOR keyword and can be any
valid SQL statement.

• When the EXPLAIN PLAN statement is run, the SQL statement is not
actually executed. Instead of a result set containing rows of data, only the
message “Explained.” is returned to the user. This indicates that the explain
plan information has been successfully written to the plan table.

Following is the statement commonly used to retrieve and display the execution
plan. It is a complex SQL statement, but the only thing that has to be changed when
it is run is the STATEMENT_ID. The CONNECT BY clause is an Oracle proprie-
tary SQL extension that joins a recursive relationship in a table through all iterations
(from child to parent to grandparent, and so forth). This SQL was included here to
illustrate one method of viewing explain plan results. As mentioned before, there is
also a GUI tool in Oracle’s Enterprise Manager.

CHAPTER 11 SQL Performance and Tuning Considerations 251

SELECT rtrim(substr(LPAD(' ',2*(LEVEL-1))||operation,1,30))||' '
 ||rtrim(options)||' '||rtrim(object_name)|| ' '
 ||'(cost= '||cost||', cardinality='||cardinality||')'
 "Query Plan"
 FROM plan_table
 START WITH id = 0
 AND upper(statement_id) = upper('STMT_1')
CONNECT BY PRIOR id = parent_id
 AND upper(statement_id) = upper('STMT_1');

Query Plan

SELECT STATEMENT (cost= 10, cardinality=5)
 SORT ORDER BY (cost= 10, cardinality=5)
 HASH JOIN (cost= 9, cardinality=5)
 MERGE JOIN (cost= 5, cardinality=5)
 TABLE ACCESS BY INDEX ROWID MPAA_RATING
 (cost= 2, cardinality=6)
 INDEX FULL SCAN SYS_C005440
 (cost= 1, cardinality=6)
 SORT JOIN (cost= 3, cardinality=5)
 TABLE ACCESS BY INDEX ROWID MOVIE
 (cost= 2, cardinality=5)
 INDEX RANGE SCAN SYS_C005449
 (cost= 1, cardinality=5)
 TABLE ACCESS FULL MOVIE_GENRE
 (cost= 3, cardinality=16)

10 rows selected.

Here are some key points regarding the query plan that appears in the result set:

• The indentation shows the order of execution, with the innermost steps
being performed fi rst.

• The cost values show a relative cost. The numbers have no meaning beyond
their relative differences. For example, a cost of 10 represents a step that
uses twice the resources of a step that has a cost of 5.

• The cardinality values show the estimated number of rows that are
processed by the step.

• “TABLE ACCESS FULL” indicates a full table scan where all rows in the
table are read sequentially.

• “INDEX RANGE SCAN” indicates the scan of a portion of the rows in an
index.

• “TABLE ACCESS BY INDEX” indicates access to a table using the index
shown.

• The sorts and joins should be self evident by the step names.

 252 SQL Demystifi ed

Microsoft SQL Server Considerations
This section covers some tuning considerations that are specifi c to Microsoft SQL
Server databases.

SQL Server Query Performance Considerations
Here are some considerations for running queries in Microsoft SQL Server data-
bases:

• Access via stored procedures. Placing frequently used SQL queries
in stored procedures can yield signifi cant performance gains. In fact, in
older versions of Microsoft SQL Server, it was essential to do so in order
to achieve reasonable performance because there was no SQL cache to
hold recently used SQL statements. In SQL Server 2005, the SQL cache
allows the DBMS to recognize a statement similar to one that has already
been run and to bypass statement preparation and optimization steps when
the statement is reused from the cache. Nonetheless, any statement that is
accessed through a stored procedure is precompiled and optimized, so it
will always perform well (even if it is not found in the cache at the time it
is run). This is one reason why seasoned developers strive to do most or all
of their SQL Server database access using stored procedures.

• Avoid nulls in unique indexes. Unlike most other SQL implementations,
unique indexes in SQL Server do not handle null column values well. You
can defi ne a unique index that includes a column that is allowed to be null,
but the second index entry that contains a null is considered a duplicate
of the fi rst, and therefore results in a duplicate key error. Most other SQL
implementations avoid this issue by not indexing null values.

• Consider clustered indexes. A clustered index causes the table rows to
be physically ordered by the indexed column(s). This can help considerably
in search and join operations, but it’s at the expense of table maintenance,
particularly when new rows force existing rows to be moved to maintain
their sequence.

Displaying Execution Plans Using SQL Query Analyzer
Microsoft provides a facility for explaining query execution plans just as Oracle
and DB2 do. In Microsoft SQL Server 2000, the SQL Query Analyzer tool has
a button labeled “Display Estimated Execution Plan” that graphically displays how
the SQL statement will be executed. This feature is also accessible from the Query

CHAPTER 11 SQL Performance and Tuning Considerations 253

menu item as the option Show Execution Plan. These items may have different
names in other versions of Microsoft SQL Server. In SQL Server 2005, there does
not appear to be a tool called SQL Query Analyzer, and it is not clear what the tool
will be called when the product is formally released.

In the Query Analyzer tool, the default mode is Object Browser. To display an
execution plan, click the Display Estimated Execution Plan icon or press ctrl-l.
The execution plan is displayed graphically as shown in Figure 11-1. Each step is
shown as an icon and the number near the icon shows the percentage of the total
query cost that applies to that step. You can place your cursor pointer over any icon
to see a pop-up window showing more detailed information for that step.

Figure 11-1 SQL Query Analyzer output

 254 SQL Demystifi ed

DB2 UDB Considerations
Like Oracle and Microsoft SQL Server, DB2 also provides a utility to display que-
ry execution plans. IBM provides a script called EXPLAIN.DDL that creates the
tables needed to hold the output of the explain facility. Once the explain tables are
created, the explain facility can be used to create execution plans for queries, and
the plans can then be displayed using either Visual Explain in the Control Center or
by querying the explain tables using SQL.

Tuning DML Statements
DML (Data Manipulation Language) statements generally produce fewer perfor-
mance problems than query statements. However, there can be issues.

For INSERT statements, there are two main considerations:

• Ensuring adequate free space for new rows Tablespaces that are short
on space present problems as the DBMS searches for free space to hold
rows being inserted. Moreover, inserts do not usually put rows into the table
in primary key sequence because there usually isn’t free space in exactly
the right places. Therefore, reorganizing the table, which is essentially a
process of unloading the rows to a fl at fi le, re-creating the table, and then
reloading the table can improve both insert and query performance.

• Index maintenance Every time a row is inserted into a table, a
corresponding entry must be inserted into every index built on the table
(although null values are usually not indexed). The more indexes, the more
overhead every insert will require. Index free space can usually be tuned
just as table free space can.

UPDATE statements have the following considerations:

• Index maintenance If columns that are indexed are updated, the
corresponding index entries must also be updated. In general, updating
primary key values has particularly bad performance implications, so much
so that some RDBMSs prohibit them.

• Row expansion When columns are updated in such a way that the row
grows signifi cantly in size, the row may no longer fi t in its original location,
and there may not be free space around the row for it to expand in place
(other rows might be right up against the one just updated). When this
occurs, the row must either be moved to another location in the data fi le

CHAPTER 11 SQL Performance and Tuning Considerations 255

where it will fi t or be split with the expanded part of the row placed in a
new location, connected to the original location by a pointer. Both of these
situations are not only expensive when they occur but are also detrimental
to the performance of subsequent queries that touch those rows. Table
reorganizations can resolve the issue, but it’s better to prevent the problem
by designing the application so that rows tend not to grow in size after they
are inserted.

DELETE statements are the least likely to present performance issues. However,
a table that participates as a parent in a relationship that is defi ned with the ON
DELETE CASCADE option can perform poorly if there are many child rows to
delete. Moreover, index maintenance also comes into play here because index
entries must be removed for any deleted rows.

Quiz
Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. Performance requirements

 a. Should be set after the SQL statements are tuned

 b. Provide a way to identify statements that need tuning

 c. Are best when they contain complex criteria

 d. Provide a way to know when to stop tweaking a query

 e. Are developed just to make the auditors happy

 2. Disk reads and writes can be minimized by

 a. Allocating buffers of suffi cient size

 b. Placing all the database fi les on one disk drive

 c. Putting the entire database in memory

 d. Adding indexes for all the important table columns

 e. Spreading fi les across all available disk drives

 3. The computer system can be tuned by

 a. Collecting database statistics

 b. Applying available security patches

 c. Selecting fast and reliable hardware

 256 SQL Demystifi ed

 d. Following the DBMS tuning recommendations

 e. Consulting a tuning guide for the operating system

 4. Effi cient table design includes

 a. Using VARCHAR for all variable-length character columns

 b. Using the smallest possible numeric data type that holds the data values

 c. Using triggers whenever possible

 d. Using identical data types for primary keys and their matching foreign
keys

 e. Using identical data types for all primary key columns

 5. A query execution plan

 a. Describes how the DBMS will execute a query

 b. Is stored in the SQL cache

 c. Is created using the explain plan feature of the RDBMS

 d. Requires a plan table to hold the explain results

 e. Requires the use of a stored procedure

 6. The query optimizer

 a. Creates a query execution plan in the plan table

 b. Determines the best way to execute an SQL statement

 c. May use statistics gathered from the database

 d. May use rules applied to the way the statement was written

 e. Can be cost-based or rule-based

 7. In order to design proper queries, the developer should

 a. Know the characteristics of the data in the database

 b. Match data types in predicates

 c. Use hints as much as possible

 d. Avoid unnecessary tables and columns

 e. Maximize the number of rows in each result set

 8. Table scans can be avoided by

 a. Including a WHERE clause that references an indexed column

 b. Using GROUP BY instead of DISTINCT

 c. Making sure that statistics are up to date

CHAPTER 11 SQL Performance and Tuning Considerations 257

 d. Making at least one predicate references the leading column of an index

 e. Avoiding unnecessary columns

 9. An index cannot be used when

 a. The WHERE clause references the second column of an index

 b. A LIKE clause references a comparison string that contains a wildcard
(except in the fi rst position of the string)

 c. The NOT operator is used in a predicate

 d. An SQL function is included in a column comparison (except when
they match a function-based index)

 e. The NOT EQUAL operator is used in a predicate

 10. Considerations for using indexes include

 a. Placing indexes on all frequently updated columns

 b. Placing indexes on foreign key columns

 c. Avoiding overlapping indexes

 d. Creating indexes on columns that have only a few possible values

 e. Avoiding unique indexes

 11. Tuning considerations for MySQL include

 a. Function-based indexes

 b. Hash indexes

 c. Clustering indexes

 d. Storage engine options

 e. Bit-map indexes

 12. Tuning considerations for Oracle include

 a. Function-based indexes

 b. Hash indexes

 c. Clustering indexes

 d. Storage engine options

 e. Bit-map indexes

 13. Tuning considerations for Microsoft SQL Server include

 a. Function-based indexes

 b. Hash indexes

 258 SQL Demystifi ed

 c. Clustering indexes

 d. Storage engine options

 e. Bit-map indexes

 14. An explain plan in Oracle

 a. Requires the use of a plan table

 b. Contains a PLAN_ID to uniquely identify it

 c. Can be viewed using Enterprise Manager

 d. Can be viewed with SQL by selecting it from the plan table

 e. Is created using the CREATE PLAN statement

 15. An execution plan in Microsoft SQL Server

 a. Requires the use of a plan table

 b. Can be displayed using an option in SQL Query Analyzer

 c. Displays the execution plan in a text format

 d. Displays the execution plan in a graphical format

 e. Can be viewed with SQL by selecting it from the plan table

 16. When tuning INSERT statements, one should consider

 a. Index maintenance

 b. Row expansion

 c. The CASCADE option

 d. Adequate free space

 e. Query rewrites

 17. When tuning UPDATE statements, one should consider

 a. Index maintenance

 b. Row expansion

 c. The CASCADE option

 d. Adequate free space

 e. Query rewrites

 18. When tuning DELETE statements, one should consider

 a. Index maintenance

 b. Row expansion

 c. The CASCADE option

CHAPTER 11 SQL Performance and Tuning Considerations 259

 d. Adequate free space

 e. Query rewrites

 19. Data types should match

 a. For all primary key columns

 b. Between primary key and corresponding secondary key columns

 c. Between primary key and corresponding foreign key columns

 d. Between column values and literal values compared in predicates

 e. For all function-based indexes

 20. The most likely cause of query performance problems is

 a. A poorly tuned operating system

 b. A poorly written SQL statement

 c. Trigger overhead

 d. Index maintenance overhead

 e. Row expansion

This page intentionally left blank

261

Final Exam

Choose the correct responses to each of the multiple-choice questions. Note that
there may be more than one correct response to each question.

 1. SQL is a language

 a. Used to defi ne Entity Relationship Diagrams

 b. Used to defi ne web pages

 c. Invented by Dr. E.F. Codd

 d. Used to communicate with relational databases

 e. Used to defi ne and modify database objects

 2. A database is

 a. Software provided by the database vendor

 b. A collection of interrelated data items that are managed as a single unit

 c. A named data structure such as a table, view, or index

 d. Defi ned in the same way by all software vendors

 e. Implemented differently by different vendors

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 262 SQL Demystifi ed

 3. A database object is

 a. Software provided by the database vendor

 b. A collection of related records that are stored as a single unit

 c. A named data structure such as a table, view, or index

 d. Defi ned in the same way by all software vendors

 e. A collection of interrelated data items that are managed as a single unit

 4. A database management system is

 a. Software provided by the database vendor

 b. A collection of interrelated data items that are managed as a single unit

 c. Often abbreviated as DBMS

 d. A structure such as a table, view, or index

 e. A named data structure such as a table, view, or index

 5. Basic services provided by the DBMS include

 a. Moving data to and from the physical fi les as needed

 b. Storage of data in tabular form

 c. Security mechanisms to prevent unauthorized data access and
modifi cation

 d. Generation of Entity Relationship Diagrams

 e. Support of a query language

 6. Components of a relational database include

 a. ERDs

 b. Indexes

 c. Tables

 d. Relationships

 e. Constraints

 7. In an ERD, maximum cardinality is shown with

 a. The notation “<pk>” above the relationship line

 b. A “crow’s foot” on an end of the relationship line

 c. A circle drawn on the relationship line

 d. A vertical line drawn across the relationship line

 e. No symbol on the end of the relationship line

Final Exam 263

 8. Types of database constraints include

 a. NOT NULL

 b. Unique

 c. Primary key

 d. CHECK

 e. Relationship

 9. Normalization is intended to solve the following problems:

 a. Slow performance

 b. Creation anomaly

 c. Insert anomaly

 d. Delete anomaly

 e. Update anomaly

 10. To be in third normal form, a relation

 a. Must have a unique identifi er

 b. Must have no transitive dependencies

 c. Must have no repeating groups or multivalued attributes

 d. Must be in fi rst normal form

 e. Must be in second normal form

 11. SQL

 a. May be pronounced as the word “sequel”

 b. May be pronounced as the letters S-Q-L

 c. May be used to communicate with any database

 d. May be used to communicate with relational databases

 e. May be used to populate web pages with data

 12. SQL is

 a. A standard language

 b. A nonprocedural language

 c. A procedural language

 d. An object-oriented language

 e. A declarative language

 264 SQL Demystifi ed

 13. SQL statements

 a. Begin with a delimiter such as a semicolon

 b. End with a delimiter such as a semicolon

 c. Begin with a left parenthesis

 d. Begin with a command keyword

 e. End with a command keyword

 14. SQL language elements include

 a. Keywords

 b. Database object names

 c. Constraints

 d. Constants

 e. Operators

 15. SQL statements may be divided into the following categories:

 a. Data Defi nition Language (DDL)

 b. Data Control Language (DCL)

 c. Data Manipulation Language (DML)

 d. Data Selection Language (DSL)

 e. Data Replication Language (DRL)

 16. Data Defi nition Language (DDL) includes the following statements:

 a. CREATE

 b. ALTER

 c. SELECT

 d. UPDATE

 e. DELETE

 17. Data Query Language (DQL) includes the following statements:

 a. CREATE

 b. ALTER

 c. SELECT

 d. UPDATE

 e. DELETE

Final Exam 265

 18. Data Manipulation Language (DML) includes the following statements:

 a. CREATE

 b. ALTER

 c. SELECT

 d. UPDATE

 e. DELETE

 19. SQL was fi rst developed

 a. By IBM

 b. By ANSI

 c. In the 1980s

 d. In the 1970s

 e. Based on ANSI standards

 20. Standard numeric types include

 a. BOOLEAN

 b. INTERVAL

 c. NUMBER

 d. INTEGER

 e. FLOAT

 21. Standard temporal data types include

 a. TIMESTAMP

 b. TIMEZONE

 c. TIME

 d. DATETIME

 e. DATE

 22. NULL values

 a. Are equal to other NULL values

 b. Are not equal to other NULL values

 c. Are the same as blanks (spaces)

 d. Can be used to represent missing or unknown data values

 e. Are always allowed by default

 266 SQL Demystifi ed

 23. The column defi nition in the CREATE TABLE statement may include

 a. A DEFAULT clause

 b. A NULL or NOT NULL clause

 c. The table name

 d. A table constraint

 e. The column name

 24. A table column name

 a. Must be unique within the database

 b. Must be unique within the table

 c. Must be specifi ed in the CREATE TABLE statement

 d. Must be specifi ed in the ALTER TABLE statement

 e. May only be named in one index

 25. A column constraint

 a. Can be used anywhere a table constraint can be used

 b. May reference one or more columns

 c. Uses syntax that is identical or nearly identical to a table constraint of
the same type

 d. May be included in either a CREATE TABLE or ALTER TABLE
statement

 e. Has syntax that varies little from one constraint type to another

 26. The correct syntax for a DEFAULT clause is

 a. DEFAULT [UNIQUE | PRIMARY KEY]

 b. DEFAULT [NULL | NOT NULL]

 c. DEFAULT (precision, scale)

 d. DEFAULT (expression)

 e. DEFAULT (column_name) REFERENCES table_name (column_name)

 27. The correct syntax for a NOT NULL constraint is

 a. column_name REFERENCES NOT NULL

 b. column_name data_type NOT NULL

 c. column_name data_type IS NOT NULL

 d. CREATE NOT NULL INDEX ON column_name

 e. DEFAULT [NULL | NOT NULL]

Final Exam 267

 28. The correct syntax for a UNIQUE CONSTRAINT is

 a. DEFAULT UNIQUE (column_name)

 b. column_name REFERENCES UNIQUE table_name

 c. [CONSTRAINT constraint_name] UNIQUE (column_name)

 d. [CONSTRAINT constraint_name] UNIQUE (table_name)

 e. DEFAULT [UNIQUE | PRIMARY KEY]

 29. The correct syntax for a REFERENTIAL CONSTRAINT is

 a. REFERENCES table_name (column_name)

 b. column_name REFERENCES UNIQUE table_name

 c. [CONSTRAINT constraint_name] REFERENCES index_name

 d. [CONSTRAINT constraint_name] REFERENCES table_name

 e. FOREIGN KEY column_name REFERENCES table_name (column_
name)

 30. The DROP statement can be used to drop a

 a. Table column

 b. Table

 c. Referential constraint

 d. Index

 e. View

 31. The UNION operator

 a. Is named JOIN in some SQL implementations

 b. Includes duplicate rows in the result set

 c. Eliminates duplicate rows in the result set

 d. Combines two queries into a single joined query

 e. Combines the result sets of two queries into a single result set

 32. The proper syntax for eliminating null values in query results is

 a. = NULL

 b. IS NULL

 c. NOT = NULL

 d. IS NOT NULL

 e. <> NULL

 268 SQL Demystifi ed

 33. An SQL statement containing an aggregate function

 a. Must contain a GROUP BY clause

 b. May not include both GROUP BY and ORDER BY clauses

 c. Must include an ORDER BY clause

 d. May also contain calculated columns

 e. May also contain ordinary columns

 34. A subselect

 a. Must be enclosed in parentheses

 b. Is a powerful way of calculating columns

 c. May be corrugated or noncorrugated

 d. Allows for the fl exible selection of rows

 e. May be used to select values to be applied to WHERE clause
conditions

 35. A join without a WHERE clause or JOIN clause

 a. Performs an outer join

 b. Performs an inner join

 c. Results in an error message

 d. Results in a Cartesian product

 e. Returns no rows in the result set

 36. A selfjoin

 a. Can be either an inner or outer join

 b. Resolves recursive relationships

 c. Can never result in a Cartesian product

 d. Involves two different tables

 e. May use a subselect to further limit rows

 37. A join

 a. Requires the use of a JOIN clause

 b. Requires a comma-separated table name list in the FROM clause

 c. Combines rows from multiple queries into a single query result

 d. Combines columns from two or more tables into a single query result

 e. Occurs whenever the FROM clause references more than one table

Final Exam 269

 38. Column name qualifi ers

 a. May be a column alias defi ned in the FROM clause

 b. May be a table alias defi ned in the FROM clause

 c. May be a table name

 d. Resolve ambiguous column references

 e. May be a number denoting the relative position of the table in the
FROM list

 39. A correlated subselect

 a. Has a nested select that references column values from the outer select

 b. Has a nested select that makes no reference to the column values in the
outer select

 c. Runs more effi ciently than a noncorrelated subselect

 d. Runs less effi ciently than a noncorrelated subselect

 e. Has an outer select that references column values from the inner select

 40. SQL functions

 a. Can be used in the WHERE clause of an SQL statement

 b. Can be used as a table name alias in an SQL statement

 c. Can be used in the column list of an SQL statement

 d. Return a set of values

 e. Return a single value

 41. The RTRIM function

 a. Removes trailing spaces from character strings

 b. Removes leading spaces from character strings

 c. Can be nested with other functions

 d. Replaces null values with other values in character strings

 e. Removes both leading and trailing spaces from character strings

 42. CASE expressions

 a. Come in two forms named static and dynamic

 b. Come in two forms named simple and searched

 c. Come in two forms named standard and searched

 d. Come in two forms named searched and nonsearched

 e. Allow for conditional execution of clauses within an SQL statement

 270 SQL Demystifi ed

 43. A DML statement may reference

 a. View columns that come from multiple tables

 b. View columns that come from a single table

 c. Columns from multiple tables

 d. Columns from a single table

 e. A view that contains columns from only one table

 44. When forming DML statements, the following types of constraints must be
considered:

 a. Referential constraints

 b. Primary key constraints

 c. NOT NULL constraints

 d. Unique constraints

 e. Security constraints

 45. An INSERT statement with a VALUES clause

 a. May use the keyword NULL to assign null values to columns

 b. Can insert multiple rows with one statement execution

 c. Must have a column list

 d. Must have a values list

 e. May include a WHERE clause

 46. An UPDATE statement without a WHERE clause

 a. Fails with an error condition

 b. Results in a Cartesian product

 c. Updates all rows in the table to null values

 d. Attempts to update every row in the table

 e. Deletes all rows in the table

 47. An UPDATE statement

 a. Must include a WHERE clause

 b. May set a column to the value of another column

 c. May set columns of multiple tables to new values

 d. Must include a SET clause

 e. Must provide a new value for at least one column

Final Exam 271

 48. A DELETE statement

 a. May include an optional WHERE clause

 b. May use the FORCE keyword to force deletion of rows

 c. May include an optional column list

 d. Cannot violate any referential constraints on the table

 e. May have a nested SELECT as part of the WHERE clause

 49. The SET clause in an UPDATE statement may assign a value to a column
that is

 a. A list of values

 b. A constant

 c. Another column name

 d. Any expression that yields a single value

 e. The NULL keyword

 50. Security is necessary because

 a. Honest people make mistakes

 b. Databases connected to the Internet are vulnerable

 c. 80 percent of fraud is committed by outside hackers

 d. Application security controls alone are inadequate

 e. Security controls keep people honest

 51. Intruders who attempt to penetrate systems connected to the Internet include

 a. Disgruntled employees

 b. Spies from competitors

 c. Bank auditors

 d. Web bloggers

 e. Hackers

 52. Components that must be secured include

 a. Networks

 b. Operating systems

 c. Servers

 d. Client workstations

 e. Databases

 272 SQL Demystifi ed

 53. System privileges

 a. Are specifi c to a database object

 b. Vary across databases from different vendors

 c. Are granted in a similar way in Oracle, Sybase, and Microsoft SQL Server

 d. Are rescinded using the SQL REMOVE statement

 e. Allow the grantee to perform certain administrative functions on the
server, such as shutting it down

 54. Object privileges

 a. Are specifi c to a database object

 b. Allow the grantee to perform certain administrative functions on the
server, such as shutting it down

 c. Are granted in a similar way in Oracle, Sybase, and Microsoft SQL Server

 d. Are granted using the SQL GRANT statement

 e. Are rescinded using the SQL REMOVE statement

 55. Using the WITH GRANT OPTION when granting object privileges

 a. Is a highly recommended practice because it is so convenient to use

 b. Will cascade if the privilege is subsequently revoked

 c. Gives the grantee DBA privileges on the entire database

 d. Allows the grantee to grant the privilege to others

 e. Can lead to security issues

 56. Roles

 a. May exist before users do

 b. May contain any number of object privileges

 c. May contain only one object privilege

 d. May be assigned to only one user

 e. May be shared by many users

 57. Potential downsides of using roles for security include

 a. They are dropped when the user is dropped

 b. They are dropped when the privilege is dropped

 c. They can be granted without consideration for all the privileges they contain

 d. They are more diffi cult to administer than individual privileges

 e. Additional training time is required for administrators who must use them

Final Exam 273

 58. Views may assist with security policy implementation by

 a. Storing database audit results

 b. Restricting table rows to which a user has access

 c. Restricting the table columns to which a user has access

 d. Restricting the databases to which a user has access

 e. Monitoring for database intruders

 59. A transaction

 a. Changes the database from one consistent state to another

 b. Has properties described by the ACID acronym

 c. May not be partially processed

 d. May be partially processed

 e. Is sometimes called a unit of work

 60. The process that backs out changes made by a failed transaction is
called

 a. Recovery

 b. Savepoint creation

 c. Transaction logging

 d. Commit

 e. Rollback

 61. The process that makes transaction changes permanent is called

 a. Recovery

 b. Savepoint creation

 c. Transaction logging

 d. Commit

 e. Rollback

 62. Support for transactions in relational databases includes

 a. Distributed database management

 b. Logging each transaction in the transaction log

 c. Identifying the beginning of each transaction

 d. Identifying the end of each transaction

 e. Periodic database backups

 274 SQL Demystifi ed

 63. The amount of data held by a lock (lock granularity) can be a

 a. Column

 b. Row

 c. Table

 d. Block or page

 e. Database

 64. The concurrent update problem

 a. Cannot occur when AUTOCOMMIT is set to ON

 b. Occurs when two database users submit confl icting SELECT statements

 c. Occurs when two database users make confl icting updates to the same
data

 d. Is a consequence of simultaneous data sharing

 e. Is the reason that transaction locking must be supported

 65. A lock

 a. May cause contention when other users attempt to update locked data

 b. May have levels and an escalation protocol in some RDBMS products

 c. Has a timeout set in DB2 and some other RDBMS products

 d. Is a control placed on data to reserve it so that the user may update it

 e. Is usually released when a COMMIT or ROLLBACK takes place

 66. A deadlock

 a. Can theoretically put two or more users in an endless lock wait state

 b. Is a lock that has timed out and is therefore no longer needed

 c. May be resolved by deadlock detection on some RDBMSs

 d. May be resolved by lock timeouts on some RDBMSs

 e. Occurs when two database users each request a lock on data that is
locked by the other

 67. A cursor is

 a. A pointer into a result set

 b. The same as a result set

 c. A method to analyze the performance of SQL statements

 d. The collection of rows returned by a database query

 e. A buffer that holds rows retrieved from the database

Final Exam 275

 68. A result set is

 a. A pointer into a cursor

 b. A method to analyze the performance of SQL statements

 c. The same as a cursor

 d. A buffer that holds rows retrieved from the database

 e. The collection of rows returned by a database query

 69. Before rows may be fetched from a cursor, the cursor must fi rst be

 a. Opened

 b. Closed

 c. Deallocated

 d. Declared

 e. Committed

 70. Cursors are

 a. Included in the Oracle PL/SQL language

 b. Included in the Sybase Transact-SQL language

 c. Included in the Microsoft Transact-SQL language

 d. Intended to overcome the mismatch between the way object-oriented
languages and relational databases handle query results

 e. Intended to overcome the mismatch between the way procedural
languages and relational databases handle query results

 71. The cursor name is included in

 a. The OPEN statement

 b. The FETCH statement

 c. The CLOSE statement

 d. The DECLARE CURSOR statement

 e. The SELECT statement

 72. A cursor OPEN statement

 a. Must include an INTO clause

 b. Must include the cursor name

 c. Must include the table name(s)

 d. May cause the query to be run and some rows placed in the result set

 e. Always causes the query to be run and the result set to be fi lled with data

 276 SQL Demystifi ed

 73. ODBC is

 a. A Microsoft standard

 b. Independent of any particular language, operating system, or DBMS

 c. A standard API for connecting to DBMSs

 d. Flexible in handling proprietary SQL

 e. Used by Java programs

 74. JDBC is

 a. A Microsoft standard

 b. Independent of any particular language, operating system, or DBMS

 c. A standard API for connecting to DBMSs

 d. Flexible in handling proprietary SQL

 e. Used by Java programs

 75. A trigger is

 a. Written in a nonprocedural language

 b. Written in a procedural language

 c. Stored in the database

 d. Executed only when called

 e. Executed automatically based on an event in the database

 76. A stored procedure is

 a. Written in a nonprocedural language

 b. Written in a procedural language

 c. Stored in the database

 d. Executed only when called

 e. Executed automatically based on an event in the database

 77. Performance requirements

 a. Provide a way to know when to stop tweaking a query

 b. Are best when they contain complex criteria

 c. Should be set after the SQL statements are tuned

 d. Provide a way to identify statements that need tuning

 e. Are developed just to make the auditors happy

Final Exam 277

 78. Disk reads and writes can be minimized by

 a. Placing all the database fi les on one disk drive

 b. Putting the entire database in memory

 c. Spreading fi les across all available disk drives

 d. Allocating buffers of suffi cient size

 e. Adding indexes for all the important table columns

 79. Effi cient table design includes

 a. Using identical data types for primary keys and their matching foreign
keys

 b. Using identical data types for all primary key columns

 c. Using triggers whenever possible

 d. Using VARCHAR for all variable-length character columns

 e. Using the smallest possible numeric data type that holds the data values

 80. The query optimizer

 a. May use statistics gathered from the database

 b. May use rules applied to the way the statement was written

 c. Can be cost-based or rule-based

 d. Creates a query execution plan in the plan table

 e. Determines the best way to execute an SQL statement

 81. Table scans can be avoided by

 a. Making sure at least one predicate references the leading column of an
index

 b. Avoiding unnecessary columns

 c. Using GROUP BY instead of DISTINCT

 d. Including a WHERE clause that references an indexed column

 e. Making sure that statistics are up to date

 82. An index cannot be used when

 a. The NOT EQUAL operator is used in a predicate

 b. The NOT operator is used in a predicate

 c. An SQL function is included in a column comparison (except when
they match a function-based index)

 278 SQL Demystifi ed

 d. The WHERE clause references the second column of an index

 e. A LIKE clause references a comparison string that contains a wildcard
(except in the fi rst position of the string)

 83. Considerations for using indexes include

 a. Avoiding overlapping indexes

 b. Avoiding unique indexes

 c. Placing indexes on all frequently updated columns

 d. Placing indexes on foreign key columns

 e. Creating indexes on columns that have only a few possible values

Write the SQL statement for each of these problems.

 84. Find all movies in the MOVIE table where the MPAA_RATING_CODE is
either G, PG, or PG-13. Do not use an OR operator.

 85. How many movies in the MOVIE table have a title that contains the word
“of”? Make sure you handle cases where the word “of ” is the fi rst or last
word of the title as well as a word in the middle of the title, and cases
where it might be capitalized.

 86. How many customer accounts are terminated, as indicated by a data value
in the DATE_TERMINATED column?

 87. Find the minimum and maximum values for the VHS price (RETAIL_
PRICE_VHS) in the MOVIE table.

 88. Find the average DVD price (RETAIL_PRICE_DVD) for each genre
(MOVIE_GENRE_CODE) in the MOVIE table. Round the average price to
two decimal places.

 89. Use the SUM function to fi nd the total of the CUSTOMER_DEPOSIT_
AMOUNT column in the CUSTOMER_ACCOUNT table.

 90. Use a subselect to list the Movie ID and Title of every movie that has been
rented.

 91. Use a join with the join predicate in the WHERE clause to list the Movie
ID and Title of every movie that has been rented. Make sure that movies
rented multiple times only show up once in the result set.

 92. List the Title of each movie along with a count of the number of DVD
format copies in the inventory.

 93. List each Customer Account ID along with a count of the number of rentals
made by the account.

Final Exam 279

 94. Find the average price of a DVD movie (column RETAIL_PRICE_DVD in
the MOVIE table), with the calculated average rounded down to the nearest
whole dollar.

 95. Find the ASCII character set value for a semicolon (;).

 96. List the EMPLOYEE_TAX_ID values from the EMPLOYEE table, with
hyphens (dashes) translated to spaces.

 97. Write an SQL statement that lists each movie title with the DVD price
(RETAIL_PRICE_DVD) categorized as follows: None (data value null or
0), Bargain (data value < 20), Moderate (data value >=20 and <30), and
Premium (data value>=30).

 98. Using an INSERT with a VALUES clause and a column list, insert a new
row in the MOVIE table with the following data values:

MOVIE_ID 999

MOVIE_GENRE_CODE Drama

MPAA_RATING_CODE NR

MOVIE_TITLE How the Database Was Won

 99. Update the MOVIE table to increase all non-null DVD prices (RETAIL_
PRICE_DVD) by 1.00.

 100. Delete all rows in the MOVIE_GENRE table that are not referenced by any
rows in the MOVIE table.

This page intentionally left blank

281

Answers to
Quizzes and
Final Exam

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 282 SQL Demystifi ed

Chapter 1
 1. b, d

 2. c, e

 3. a, b

 4. c, d

 5. a, b, c, d, e

 6. a, c, d

 7. a, b, e

 8. c, d

 9. a, c, d, e

 10. b, c, d

 11. a, d, e

 12. b, d

 13. a, c, e

 14. b, d

 15. a

 16. c

 17. a, b, c, d, e

 18. b, d, e

 19. a, c, d

 20. b, e

Chapter 2
 1. a, b, c, e

 2. c, d, e

 3. b, d

 4. a, c, d

Answers to Quizzes and Final Exam 283

 5. b, e

 6. a, d

 7. b, c, d

 8. c, d, e

 9. a, b

 10. a, d

 11. b, c, d, e

 12. b, c, d

 13. a, d

 14. a, b, c, e

 15. c

 16. b, c, d

 17. a, d, e

 18. c, d

 19. a

 20. b, e

Chapter 3
 1. b, d, e

 2. a, b, e

 3. d, e

 4. a, c

 5. b, c, e

 6. a, d

 7. a, b

 8. b, d

 9. b, d, e

 10. a, c

 284 SQL Demystifi ed

 11. b, c

 12. c

 13. b

 14. a

 15. d

 16. b, e

 17. a, c, e

 18. a, b, d, e

 19. a, c, e

 20. b, c, e

Chapter 4
 1. c

 2. b, d

 3. a, c

 4. b, e

 5. a, b

 6. b, e

 7. e

 8. a, c, d

 9. b, e

 10. a, d

 11.

SELECT MOVIE_TITLE
 FROM MOVIE
 WHERE MPAA_RATING_CODE <> 'R';

 12.

SELECT MOVIE_TITLE, RETAIL_PRICE_DVD
 FROM MOVIE
 WHERE RETAIL_PRICE_DVD BETWEEN 19.99 AND 29.99;

Answers to Quizzes and Final Exam 285

 13.

SELECT MOVIE_TITLE, MOVIE_GENRE_CODE, MPAA_RATING_CODE
 FROM MOVIE
 WHERE (MOVIE_GENRE_CODE = 'Comdy' AND
 MPAA_RATING_CODE = 'PG-13')
 OR (MOVIE_GENRE_CODE = 'Drama' AND
 MPAA_RATING_CODE = 'R');

 14.

SELECT COUNT(*)
 FROM MOVIE_RENTAL
 WHERE LATE_OR_LOSS_FEE IS NULL;

 15.

SELECT COUNT(*)
 FROM PERSON
 WHERE UPPER(PERSON_FAMILY_NAME) LIKE '%A%';

 16.

SELECT MOVIE_TITLE
 FROM MOVIE
 WHERE UPPER(MOVIE_TITLE) LIKE '% THE %'
 OR UPPER(MOVIE_TITLE) LIKE 'THE %'
 OR UPPER(MOVIE_TITLE) LIKE '% THE';

 17.

SELECT SUM(RENTAL_FEE) AS TOTAL_RENTAL_FEES
 FROM MOVIE_RENTAL;

 18. For Oracle and DB2:

SELECT DISTINCT SUBSTR(PERSON_FAMILY_NAME,1,5)
 FROM PERSON;

For Microsoft SQL Server, Sybase Adaptive Server, and MySQL:

SELECT DISTINCT SUBSTRING(PERSON_FAMILY_NAME,1,5)
 FROM PERSON;

 19.

SELECT MOVIE_GENRE_CODE,
 ROUND(AVG(RETAIL_PRICE_DVD),2) AS AVG_PRICE
 FROM MOVIE
 GROUP BY MOVIE_GENRE_CODE

 286 SQL Demystifi ed

 20. For Oracle:

SELECT MOVIE_ID,
 SUM(RENTAL_FEE + NVL(LATE_OR_LOSS_FEE,0))
 AS TOTAL_FEES
 FROM MOVIE_RENTAL
 GROUP BY MOVIE_ID;

For Microsoft SQL Server and Sybase Adaptive Server:

SELECT MOVIE_ID,
 SUM(RENTAL_FEE + ISNULL(LATE_OR_LOSS_FEE,0))
 AS TOTAL_FEES
 FROM MOVIE_RENTAL
 GROUP BY MOVIE_ID;

For MySQL:

SELECT MOVIE_ID,
 SUM(RENTAL_FEE + IFNULL(LATE_OR_LOSS_FEE,0))
 AS TOTAL_FEES
 FROM MOVIE_RENTAL
 GROUP BY MOVIE_ID;

Chapter 5
 1. a, e

 2. e

 3. b, d, e

 4. b, c, d

 5. a, c

 6. b, d

 7. a, b, e

 8. b

 9. a, c

 10. b, c

 11.

SELECT PERSON_GIVEN_NAME, PERSON_FAMILY_NAME,
 CUSTOMER_ACCOUNT_ID

Answers to Quizzes and Final Exam 287

 FROM PERSON JOIN CUSTOMER_ACCOUNT_PERSON
 USING (PERSON_ID)
 WHERE DEATH_DATE IS NOT NULL;

or:

SELECT PERSON_GIVEN_NAME, PERSON_FAMILY_NAME,
 CUSTOMER_ACCOUNT_ID
 FROM PERSON A JOIN CUSTOMER_ACCOUNT_PERSON B
 ON A.PERSON_ID = B.PERSON_ID
 WHERE DEATH_DATE IS NOT NULL;

 12.

SELECT PERSON_GIVEN_NAME, PERSON_FAMILY_NAME
 FROM PERSON
 JOIN EMPLOYEE USING (PERSON_ID)
 JOIN CUSTOMER_ACCOUNT_PERSON USING (PERSON_ID);

or:

SELECT PERSON_GIVEN_NAME, PERSON_FAMILY_NAME
 FROM PERSON A
 JOIN EMPLOYEE B ON A.PERSON_ID = B.PERSON_ID
 JOIN CUSTOMER_ACCOUNT_PERSON C
 ON A.PERSON_ID = C.PERSON_ID;

 13.

SELECT PERSON_GIVEN_NAME, PERSON_FAMILY_NAME
 FROM PERSON
 WHERE PERSON_ID IN
 (SELECT PERSON_ID FROM EMPLOYEE)
 AND PERSON_ID IN
 (SELECT DISTINCT PERSON_ID
 FROM CUSTOMER_ACCOUNT_PERSON);

 14.

SELECT C.PERSON_FAMILY_NAME AS EMPLOYEE_NAME,
 D.PERSON_FAMILY_NAME AS SUPERVISOR_NAME
 FROM EMPLOYEE A
 JOIN EMPLOYEE B ON (A.SUPERVISOR_PERSON_ID =
 B.PERSON_ID)
 JOIN PERSON C ON (A.PERSON_ID = C.PERSON_ID)
 JOIN PERSON D ON (B.PERSON_ID = D.PERSON_ID);

 15.

SELECT MEDIA_FORMAT, COUNT(*)
 FROM MOVIE_COPY

 288 SQL Demystifi ed

 JOIN MOVIE_RENTAL USING (MOVIE_ID, COPY_NUMBER)
 GROUP BY MEDIA_FORMAT;

or:

SELECT MEDIA_FORMAT, COUNT(*)
 FROM MOVIE_COPY A JOIN MOVIE_RENTAL B
 ON A.MOVIE_ID = B.MOVIE_ID AND
 A.COPY_NUMBER = B.COPY_NUMBER
 GROUP BY MEDIA_FORMAT;

 16.

SELECT MOVIE_ID, DUE_DATE
 FROM MOVIE_RENTAL
 JOIN MOVIE_COPY USING (MOVIE_ID, COPY_NUMBER)
 WHERE RETURNED_DATE IS NULL
 AND DATE_SOLD IS NULL;

or:

SELECT A.MOVIE_ID, DUE_DATE
 FROM MOVIE_RENTAL A JOIN MOVIE_COPY B
 ON A.MOVIE_ID = B.MOVIE_ID AND
 A.COPY_NUMBER = B.COPY_NUMBER
 WHERE RETURNED_DATE IS NULL
 AND DATE_SOLD IS NULL;

 17.

SELECT A.MOVIE_ID, A.MOVIE_TITLE
 FROM MOVIE A
 WHERE MOVIE_ID NOT IN
 (SELECT DISTINCT MOVIE_ID
 FROM MOVIE_RENTAL);

 18.

SELECT MOVIE_TITLE
 FROM MOVIE
 WHERE MOVIE_ID IN
 (SELECT MOVIE_ID
 FROM MOVIE_COPY
 WHERE MEDIA_FORMAT = 'V'
 AND DATE_SOLD IS NULL)
 AND MOVIE_ID NOT IN
 (SELECT MOVIE_ID

Answers to Quizzes and Final Exam 289

 FROM MOVIE_COPY
 WHERE MEDIA_FORMAT = 'D'
 AND DATE_SOLD IS NULL);

 19.

SELECT MOVIE_TITLE
 FROM MOVIE A
 JOIN MOVIE_COPY B ON
 (A.MOVIE_ID = B.MOVIE_ID AND
 MEDIA_FORMAT = 'V' AND
 DATE_SOLD IS NULL)
 WHERE A.MOVIE_ID NOT IN
 (SELECT MOVIE_ID
 FROM MOVIE_COPY
 WHERE MEDIA_FORMAT = 'D'
 AND DATE_SOLD IS NULL)

 20.

SELECT MOVIE_ID, MEDIA_FORMAT, COUNT(*)
 FROM MOVIE_COPY
 GROUP BY MOVIE_ID, MEDIA_FORMAT
HAVING COUNT(*) >= 2;

Chapter 6
 1. b, c, e

 2. c

 3. a, c

 4. b, c

 5. a, d

 6. a, b

 7. b, d, e

 8. a, d

 9. b, c, d, e

 10. a, d

 290 SQL Demystifi ed

 11.

SELECT REPLACE(MPAA_RATING_CODE,'-',' ')
 AS MPAA_RATING_CODE
 FROM MPAA_RATING;

 12. Oracle:

SELECT MOVIE_ID, MOVIE_TITLE
 FROM MOVIE
 WHERE MOVIE_TITLE LIKE '%' || CHR(39) || '%';

Microsoft SQL Server:

SELECT MOVIE_ID, MOVIE_TITLE
 FROM MOVIE
 WHERE MOVIE_TITLE LIKE '%' + CHAR(39) + '%';

Other SQL implementations:

SELECT MOVIE_ID, MOVIE_TITLE
 FROM MOVIE
 WHERE MOVIE_TITLE LIKE '%' || CHAR(39) || '%';

NOTE NOTE This statement doesn’t seem to work correctly in MySQL 4.

 13.

SELECT ASCII('!');

NOTE NOTE Oracle requires a FROM clause on all SELECT statements, so the clause
“FROM DUAL” must be added to the statement in order to run it in Oracle.

 14. Oracle:

SELECT CEIL(AVG(RETAIL_PRICE_DVD)) AS AVERAGE_DVD_PRICE
 FROM MOVIE;

Most other SQL implementations:

SELECT CEILING(AVG(RETAIL_PRICE_DVD)) AS AVERAGE_DVD_PRICE
 FROM MOVIE;

 15.

SELECT FLOOR(AVG(RETAIL_PRICE_VHS)) AS AVERAGE_VHS_PRICE
 FROM MOVIE;

Answers to Quizzes and Final Exam 291

 16.

SELECT 'ALTER TABLE ' || TABLE_NAME ||
 ' DROP CONSTRAINT ' || CONSTRAINT_NAME || ';'
 FROM USER_CONSTRAINTS
 WHERE CONSTRAINT_TYPE = 'R';

 17.

SELECT NAME FROM SYSOBJECTS
 WHERE XTYPE = 'F';

 18.

SELECT CUSTOMER_ACCOUNT_ID,
 CASE CHILD_RENTAL_ALLOWED_INDIC
 WHEN 'Y' THEN 'Child Rental OK'
 WHEN 'N' THEN 'NO CHILD RENTAL'
 END AS CHILD_RENTAL
 FROM CUSTOMER_ACCOUNT
 ORDER BY CUSTOMER_ACCOUNT_ID;

 19.

SELECT MOVIE_ID, YEAR_PRODUCED,
 CASE
 WHEN YEAR_PRODUCED IS NULL THEN 'Unknown'
 WHEN YEAR_PRODUCED BETWEEN '1980' and '1989'
 THEN '80s'
 WHEN YEAR_PRODUCED BETWEEN '1990' and '1999'
 THEN '80s'
 WHEN YEAR_PRODUCED BETWEEN '2000' and '2009'
 THEN '00s'
 END AS DECADE
 FROM MOVIE
 ORDER BY MOVIE_ID;

 20.

SELECT MOVIE_ID, COPY_NUMBER, TRANSACTION_ID,
 CASE
 WHEN LATE_OR_LOSS_FEE IS NULL THEN 'None'
 WHEN LATE_OR_LOSS_FEE = 0 THEN 'None'
 WHEN LATE_OR_LOSS_FEE < 10 THEN 'Minor'
 WHEN LATE_OR_LOSS_FEE >= 10 THEN 'Major'
 END AS FEE_CATEGORY
 FROM MOVIE_RENTAL
 ORDER BY MOVIE_ID, COPY_NUMBER, TRANSACTION_ID;

 292 SQL Demystifi ed

Chapter 7
 1. a, c

 2. b, c, e

 3. a, c, d, e

 4. b, d

 5. a, c, e

 6. c, d, e

 7. b

 8. c

 9. a, b, d

 10. b, d, e

 11. a, b, d, e

 12. a, b, c, d, e

 13.

INSERT INTO MOVIE_GENRE
VALUES ('TRAIN','Training');

 14.

INSERT INTO MOVIE
(MOVIE_ID, MOVIE_GENRE_CODE, MPAA_RATING_CODE, MOVIE_TITLE)
VALUES (99, 'TRAIN', 'NR', 'Employee Training Video');

 15.

INSERT INTO MOVIE_LANGUAGE
 SELECT MOVIE_ID, 'ja'
 FROM MOVIE;

 16.

INSERT INTO RENTAL_TOTAL
 SELECT MOVIE_ID, COUNT(*), SUM(RENTAL_FEE)
 FROM MOVIE_RENTAL
 GROUP BY MOVIE_ID;

 17.

DELETE FROM RENTAL_TOTAL;

Answers to Quizzes and Final Exam 293

 18.

DELETE FROM MOVIE_LANGUAGE
 WHERE LANGUAGE_CODE = 'ja';

 19.

UPDATE MOVIE_COPY
 SET DATE_SOLD = '2005-01-15'
 WHERE MOVIE_ID = 1
 AND COPY_NUMBER = 1;

 20.

UPDATE MOVIE
 SET RETAIL_PRICE_VHS = ROUND(RETAIL_PRICE_VHS * 1.1, 2)
 WHERE RETAIL_PRICE_VHS IS NOT NULL;

Chapter 8
 1. b, e

 2. a, b, d, e

 3. b, d, e

 4. a, b, c, d, e

 5. a, c, d

 6. b, c, e

 7. b, c, d, e

 8. b, c, e

 9. a, c, e

 10. a, b, e

 11. a, c, d

 12. b, c, d

 13. d, e

 14. a, c

 15. c

 16. d

 294 SQL Demystifi ed

 17. c

 18. e

 19.

GRANT SELECT, INSERT, DELETE
 ON EMPLOYEE
 TO manager_1, manager_2;

 20.

REVOKE INSERT, UPDATE, DELETE
 ON MOVIE
 FROM clerk_127;

Chapter 9
 1. b, c, d, e

 2. c

 3. b

 4. d

 5. a

 6. c

 7. b

 8. a, b, e

 9. a, d, e

 10. a, e

 11. d

 12. a, b, c

 13. a, c, d

 14. c, d, e

 15. b, d

 16. c, d, e

 17. a, b, c, d, e

 18. a, c, e

 19. b, c, d, e

 20. b, d, e

Answers to Quizzes and Final Exam 295

Chapter 10
 1. b

 2. a

 3. a, c

 4. b, c, d, e

 5. a, c, d, e

 6. e

 7. b, d

 8. a, b, e

 9. a, d, e

 10. b, c

 11. a, b, e

 12. b, d, e

 13. b, c, d, e

 14. b, d, e

 15. a, d, e

 16. c, e

 17. a, b, c, d

 18. b, d, e

 19. a, c, d

 20. b, d, e

Chapter 11
 1. b, d

 2. a, c, e

 3. c, e

 4. b, d

 5. a, c, d

 6. b, c, d, e

 296 SQL Demystifi ed

 7. a, b, d

 8. a, c, d

 9. a, c, d, e

 10. b, c

 11. b, d

 12. a, e

 13. c

 14. a, c, d

 15. b, d

 16. a, d

 17. a, b

 18. a, c

 19. c, d

 20. b

Final Exam Answers
 1. c, d, e

 2. b, e

 3. c

 4. a, c

 5. a, c, e

 6. b, c, d, e

 7. b, e

 8. a, b, c, d

 9. c, d, e

 10. a, b, c, d, e

 11. a, b, d, e

 12. a, b, e

 13. b, d

 14. a, b, d, e

Answers to Quizzes and Final Exam 297

 15. a, b, c

 16. a, b

 17. c

 18. d, e

 19. a, d

 20. d, e

 21. a, c, e

 22. b, d

 23. a, b, e

 24. b, c

 25. c, d

 26. d

 27. b

 28. c

 29. a

 30. b, d, e

 31. c, e

 32. d

 33. d, e

 34. a, d, e

 35. b, d

 36. a, b, e

 37. d, e

 38. b, c, d

 39. d, e

 40. a, c, e

 41. a, c

 42. b, e

 43. b, d, e

 44. a, b, c, d

 45. a, d

 298 SQL Demystifi ed

 46. d

 47. b, d, e

 48. a, d, e

 49. b, c, d, e

 50. a, b, c, d, e

 51. a, b, e

 52. a, b, c, d, e

 53. b, c, e

 54. a, c, d

 55. b, d, e

 56. a, b, e

 57. c, e

 58. b, c

 59. a, b, c, e

 60. e

 61. d

 62. b, c, d

 63. a, b, c, d, e

 64. c, d, e

 65. a, b, c, d, e

 66. a, c, d, e

 67. a

 68. e

 69. a, d

 70. a, b, c, e

 71. a, b, c, d

 72. b, d

 73. b, c, d

 74. c, d, e

 75. b, c, e

 76. b, c, d

Answers to Quizzes and Final Exam 299

 77. a, d

 78. b, c, d

 79. a, e

 80. a, b, c, e

 81. a, d, e

 82. a, b, c, d

 83. a, d

 84.

SELECT MOVIE_ID, MOVIE_TITLE
 FROM MOVIE
 WHERE MPAA_RATING_CODE IN ('G','PG','PG-13');

 85.

SELECT COUNT(*)
 FROM MOVIE
 WHERE LOWER(MOVIE_TITLE) LIKE 'of %'
 OR LOWER(MOVIE_TITLE) LIKE '% of'
 OR LOWER(MOVIE_TITLE) LIKE '% of %';

 86.

SELECT COUNT(*)
 FROM CUSTOMER_ACCOUNT
 WHERE DATE_TERMINATED IS NOT NULL;

 87.

SELECT MIN(RETAIL_PRICE_VHS) AS MIN_PRICE,
 MAX(RETAIL_PRICE_VHS) AS MAX_PRICE
 FROM MOVIE;

 88.

SELECT MOVIE_GENRE_CODE,
 ROUND(AVG(RETAIL_PRICE_DVD),2) AS AVG_PRICE
 FROM MOVIE
 GROUP BY MOVIE_GENRE_CODE;

 89.

SELECT SUM(CUSTOMER_DEPOSIT_AMOUNT) AS TOTAL
 FROM CUSTOMER_ACCOUNT;

 90.

SELECT MOVIE_ID, MOVIE_TITLE
 FROM MOVIE A

 300 SQL Demystifi ed

 WHERE EXISTS
 (SELECT MOVIE_ID
 FROM MOVIE_RENTAL B
 WHERE A.MOVIE_ID = B.MOVIE_ID);

 91.

SELECT A.MOVIE_ID, A.MOVIE_TITLE
 FROM MOVIE A, MOVIE_RENTAL B
 WHERE A.MOVIE_ID = B.MOVIE_ID
 GROUP BY A.MOVIE_ID, A.MOVIE_TITLE;

The DISTINCT keyword may be used in place of the GROUP BY clause but is
usually less effi cient.

 92.

SELECT MOVIE_TITLE, COUNT(*) AS DVD_COPIES
 FROM MOVIE JOIN MOVIE_COPY
 ON MOVIE.MOVIE_ID = MOVIE_COPY.MOVIE_ID
 WHERE MEDIA_FORMAT = 'D'
 GROUP BY MOVIE_TITLE;

 93.

SELECT CUSTOMER_ACCOUNT_ID, COUNT(*) AS NUM_RENTALS
 FROM CUSTOMER_TRANSACTION A JOIN MOVIE_RENTAL B
 ON A.TRANSACTION_ID = B.TRANSACTION_ID
 GROUP BY CUSTOMER_ACCOUNT_ID;

 94.

SELECT FLOOR(AVG(RETAIL_PRICE_DVD)) AS AVERAGE_DVD_PRICE
 FROM MOVIE;

 95.

SELECT ASCII(';');

For Oracle, the clause FROM DUAL must be added.

 96.

SELECT REPLACE(EMPLOYEE_TAX_ID,'-',' ')
 AS EMPLOYEE_TAX_ID
 FROM EMPLOYEE;

 97.

SELECT MOVIE_TITLE,
 CASE
 WHEN RETAIL_PRICE_DVD IS NULL THEN 'None'
 WHEN RETAIL_PRICE_DVD = 0 THEN 'None'
 WHEN RETAIL_PRICE_DVD < 20 THEN 'Bargain'

Answers to Quizzes and Final Exam 301

 WHEN RETAIL_PRICE_DVD < 30 THEN 'Moderate'
 WHEN RETAIL_PRICE_DVD >= 30 THEN 'Premium'
 END AS PRICE_CATEGORY
 FROM MOVIE
 ORDER BY MOVIE_TITLE;

 98.

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE, MPAA_RATING_CODE,
 MOVIE_TITLE)
 VALUES (999, 'Drama', 'NR',
 'How the Database Was Won');

 99.

UPDATE MOVIE
 SET RETAIL_PRICE_DVD = RETAIL_PRICE_DVD + 1
 WHERE RETAIL_PRICE_DVD IS NOT NULL;

 100.

DELETE FROM MOVIE_GENRE
 WHERE MOVIE_GENRE_CODE NOT IN
 (SELECT DISTINCT MOVIE_GENRE_CODE
 FROM MOVIE);

The DISTINCT is not absolutely necessary, but it makes the list of values in the
subselect much shorter, which makes the statement far more effi cient.

This page intentionally left blank

303

INDEX

References to fi gures and illustrations are in italics.

% (percent), 103
_ (underscore), 103
<> (not equal operator), 140
, (commas), 46
- (hyphens), 46
; (semicolons), 45
‘ (single quotes), 46

AA
aggregate functions, 117–118
ALTER TABLE statement, 78–80
American National Standards Institute.

See ANSI
AND operator, 97
ANSI, 43, 44
answers to quizzes and fi nal exam, 281–301
APIs, 226
application programming interfaces. See APIs
applications, 221
approximate numeric data types, 57
arithmetic operators, 108–109
arrays, 69
ASC keyword, 77
ASCII function, 153
asynchronous I/O, 241
attributes, multivalued, 13–16

autocommit mode, 207, 208, 209, 210
AutoNumber data type, 61

BB
BETWEEN operator, 101–103
BFILE data type, 64
big integer data types, 58
BIGINT data type, 61, 66, 68
BIGSERIAL data type, 68
BINARY data type, 62
binary large object types, 60
BIT data type, 62, 67, 69
BIT VARYING data type, 69
bit-map indexes, 248–249
BLOB data type, 63, 64, 67
BOOLEAN data type, 60, 66, 68
Boyce-Codd normal form, 21
buffers, 223–224, 240–241
BYTEA data type, 68

CC
Call Level Interface (CLI), 226
Cartesian product, 128–129
CASE expression, 166

searched, 168–169
simple form, 166–168

case sensitivity, 45, 104

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 304 SQL Demystifi ed

CAST function, 117
CEILING (CEIL) function, 155
CHAR BINARY data type, 67
CHAR (CHR) function, 153–154
CHAR data type, 63, 64, 66

vs. VARCHAR data type, 241–242
CHARACTER (CHAR) data type, 61, 68
character data types, 55–56
character functions, 110–115, 150–154
character large object types, 60
CHARACTER VARYING data type, 68
CHECK constraints, 9, 73, 75, 175
clauses, 45
clients, 39
CLOB data type, 63, 65
CLOSE statement, 225–226
clustered indexes, 252
Codd, E.F., 3, 10, 21
collection types, 55
column functions, 110
column-level security, 200
columns

defi ned, 54
unnecessary, 245

command-line interfaces, 40
commas, 46
comments, multiline, 46
Common Language Runtime (CLR),

228–229
comparison operators, 94–97
composite data types, 69
compound query operators, 120–121
computationally complete SQL, 229–230
concurrent update problems, 211–212
conjunctive operators, 97–100
connecting to the database, client/server

arrangement, 39–40
constraints, 7–9
constructed data types, 55

conversion functions, 116–117
CONVERT TO function, 117
correlated subqueries, 107
correlated subselects, 143–144
CREATE DATABASE statement, 70
CREATE INDEX statement, 76–77
CREATE TABLE statement, 70–77
CREATE USER statement, 194
CREATE VIEW statement, 77–78
cross joins, 140
Currency data type, 61
cursors

CLOSE statement, 225–226
DECLARE CURSOR statement,

222–223
defi ned, 222
FETCH statement, 224
OPEN CURSOR statement, 223–224
UPDATE and DELETE statements, 225

DD
Data Control Language (DCL), 48
Data Defi nition Language (DDL), 47

ALTER TABLE statement, 78–80
basic commands, 70
CHECK constraints, 73, 75
column constraints, 72–74
column defi nition, 71–72
CREATE DATABASE statement, 70
CREATE INDEX statement, 76–77
CREATE TABLE statement, 70–77
CREATE VIEW statement, 77–78
DEFAULT clause, 72
ON DELETE clause, 74
DROP statement, 80
NULL | NOT NULL constraint, 73
PRIMARY KEY constraint, 74, 75
referential (FOREIGN KEY) constraint,

74, 76

INDEX 305

syntax conventions, 54
table constraints, 74–76
UNIQUE constraint, 74, 75

Data Manipulation Language (DML), 47–48,
173–175

DELETE statement, 180–181
INSERT statement, 175–178
single row inserts using the VALUES

clause, 176–177
tuning, 254–255
UPDATE statement, 179–180

Data Query Language (DQL), 47
column name aliases, 90
conjunctive operators, 97–100
logical operators, 100–107
SELECT command, 87, 88–89
sorting results, 90–93
WHERE clause, 94–107

data types, 54–55
Boolean, 60
character, 55–56
large object types, 60
Microsoft Access variations, 60–61
numeric, 56–58
SQL:2003, 55–60
temporal, 58–59

database management systems, defi ned,
2–3

database objects, 2
database privileges, 192–193
database transactions, 48, 206

and relational DBMSs, 206–207
support in DB2 UDB, 210–211
support in Microsoft SQL Server,

207–208
support in MySQL, 209–210
support in Oracle, 209
support in Sybase Adaptive Server, 208

databases, defi ned, 2

date and time functions
IBM DB2 Universal Database, 160–161
Microsoft SQL Server, 156–157
MySQL, 159–160
Oracle, 157–158

DATE data type, 63, 65, 66
date data types, 59
Date/Time data type, 61
DATETIME data type, 62, 67
datetime data types, 58
DBCLOB data type, 65
DBMSs. See database management systems
deadlocks, 214–215

See also locks
DECIMAL data type, 61, 63, 65, 66, 68
decimal data types, 57
declarative languages, 38
DECLARE CURSOR statement, 222–223
DEFAULT clause, 72
delete anomalies, 11
DELETE statement, 225

tuning, 255
delimiters, 45
DESC keyword, 77
determinants, 17
disk I/O, spreading out, 241
disk reads and writes, minimizing, 240–241
DISTINCT keyword, 246
DOUBLE PRECISION data type, 63, 65,

66, 68
double precision data types, 58
downloading the SQL scripts, 29–30
DROP statement, 80

EE
entities, 4
Entity Relationship Diagrams, 5–7

video store sample database, 22
ENUM data type, 67

 306 SQL Demystifi ed

equijoins, 129
ERDs. See Entity Relationship

Diagrams
exact numeric data types, 57
exam, 261–279

answers, 296–301
See also quizzes

EXCEPT operator, 121
execution plans, 242

displaying using SQL Query
Analyzer, 252–253

EXISTS operator, 106–107
EXPLAIN PLAN statement,

249–251
explicit mode, 207, 208

FF
FETCH statement, 224
fi elds, 59
fi les, defi ned, 2
fi ltering rows, 94–107
fi nal exam, 261–279

answers, 296–301
See also quizzes

fi xed-length character data types, 56
FLOAT data type, 61, 63, 66
fl oat data types, 58
FLOOR function, 155–156
foreign key columns, 242
FOREIGN KEY constraints,

74, 76
foreign key indexes, 247
foreign keys, 7
Framework Class Libraries

(FCL), 229
full outer joins, 135
full table scans, 243
functional dependence, 17
function-based indexes, 248

functions, 110
aggregate, 117–118
ASCII, 153
CAST, 117
CEILING (CEIL), 155
CHAR (CHR), 153–154
character, 110–115, 150–154
column, 110
conversion, 116–117
CONVERT TO, 117
date and time, 156–161
FLOOR, 155–156
LENGTH, 115
LOWER, 112–113
LTRIM, 151
mathematical, 115–116, 154–156
null value functions, 151–152
REPLACE, 150–151
ROUND, 116
RTRIM, 151
SIGN, 154
SQRT, 154–155
SUBSTR, 114–115
UPPER, 111–112

GG
geometric data types, 68
GRANT statement, 194–195
GRAPHIC data type, 65
graphical user interfaces, 40
GROUP BY clause, 119, 246
GUI, 40

HH
hardware, selecting, 241
hash indexes, 248
hints, 246
host language variables, 224
Hyperlink data type, 61
hyphens, 46

INDEX 307

II
IBM DB2 Universal Database

data type variations, 64–65
date and time functions, 160–161
transaction support in, 210–211
tuning, 254

IFNULL function, 151–152
IMAGE data type, 62
implementations, 44
implicit mode, 208, 209, 210
IN operator, 105–106, 246
index organized tables, 249
indexes, 247

bit-map, 248–249
clustered indexes, 252
function-based, 248
hash indexes, 248
Oracle, 248–249
selective indexes, 247

inline views, 144
inner joins, 129
insert anomalies, 11
INSERT statement, 175

bulk inserts using a nested SELECT
statement, 177–178

single row inserts using the VALUES
clause, 176–177

tuning, 254
INTEGER data type, 61, 63, 65, 66, 67
integer data types, 57
interfaces, 40–41
International Organization for

Standardization. See ISO
INTERSECT operator, 121
INTERVAL data type, 63, 68
interval data types, 59
interval qualifi ers, 59
IS NULL operator, 100–101
ISNULL function, 151–152
ISO, 43, 44

JJ
Java

connecting databases to Java
applications, 227–228

middleware solutions, 228
Java Database Connectivity. See JDBC
JavaScript, 227
JDBC, 227–228
JOIN clause, joins using, 131–132
joins, 127–129

cross, 140
equijoins, 129
natural, 132–134
outer, 134–137, 137–138
self joins, 138–140
using the JOIN clause, 131–132
using the WHERE clause, 129–131

JScript, 227
JSQL, 228

LL
language elements, 45
large object types, 60
left outer joins, 134
LENGTH function, 115
LIKE operator, 103–105
lock escalation, 212
lock granularity, 212
lock levels, 213
lock wait state, 212
locks, 212–214

contention, 214
read-exclusive, 213
See also deadlocks

logical operators, 100–107
LONG data type, 64
LONG RAW data type, 64
LONGBLOB data type, 67
LONGTEXT data type, 67
Lookup wizard data type, 61

 308 SQL Demystifi ed

LOWER function, 112–113
LTRIM function, 151

MM
mathematical functions, 115–116, 154–156
maximum cardinality, 6
MEDIUMBLOB data type, 67
MEDIUMINT data type, 67
MEDIUMTEXT data type, 67
Memo data type, 61
Microsoft Access, data type variations, 60–61
Microsoft SQL Server

administering roles in, 198–199
data type variations, 61–63
date and time functions, 156–157
generating SQL in, 165–166
modifi cations required for SQL

scripts, 31
outer join syntax, 138
security architecture, 188–190
transaction support in, 207–208
Transact-SQL, 230–232
tuning, 252–253

middleware, 228
minimum cardinality, 6
MONEY data type, 62, 68
MOVIE table, 4
multiline comments, 46
multivalued attributes, 13–16
MySQL

data type variations, 66–67
date and time functions, 159–160
transaction support in, 209–210
tuning, 248

NN
national character data types, 56
national character large object types, 60
NATIONAL CHAR data type, 66
NATIONAL VARCHAR data type, 66

national variable character data types, 56
natural joins, 132–134
NCARCHAR data type, 62
NCHAR data type, 62, 63
NCLOB data type, 63
.NET Framework, 228–229
network address data types, 69
noncorrelated subselects, 141–143
nonprocedural languages, 38
normalization

applying, 11–21
Boyce-Codd normal form, 21
choosing a unique identifi er, 12–13
defi ned, 10
fi rst normal form, 13–16
need for, 10–11
second normal form, 17–18, 19
third normal form, 18–21

not equal (<>) operator, 140
NOT NULL constraints, 8, 69, 175
NTEXT data type, 62
NULL | NOT NULL constraint, 73
null values, 69, 252
Number data type, 61
NUMBER data type, 64
NUMERIC data type, 62, 63, 65, 68
numeric data types, 56–58, 242
NVARCHAR data type, 63
NVARCHAR2 data type, 64
NVL function, 151–152

OO
object identifi er data types, 69
object privileges, 190, 193
objects, defi ned, 2
ODBC connections, 226–227
ODBC data source, 226
OLE Object data type, 61
ON clause, 131
ON DELETE clause, 74

INDEX 309

one-to-many relationships, 6
OPEN CURSOR statement, 223–224
operating system, tuning, 241
optimizers, 243–244
OR operator, 97, 246
OR REPLACE keyword, 78
Oracle

administering roles in, 199–200
data type variations, 63–64
date and time functions, 157–158
default date format, 30
EXPLAIN PLAN statement, 249–251
generating SQL in, 165
outer join syntax, 137–138
PL/SQL, 232–234
security architecture, 190–192
transaction support in, 209
tuning, 248–251

outer joins, 134–137
Microsoft SQL Server outer join

syntax, 138
Oracle outer join syntax, 137–138

PP
percent (%), 103
permissions, 190
PL/SQL, 232–234
portability, 44
PostgreSQL, data type variations, 67–69
precision, 57, 59
precompilers, 228
predefi ned data types, 55
predicates, 245–246, 247
primary key columns, 242
PRIMARY KEY constraints, 8, 74, 75, 175
primary keys, 7
privileges, 190, 192–193

roles, 197–200
See also security

procedural languages, 38, 221

QQ
queries

defi ned, 38
effi cient query design, 244–246
See also views

query optimizers, 243–244
quizzes

answers, 281–296
Chapter 1, 31–35
Chapter 2, 48–52
Chapter 3, 81–85
Chapter 4, 121–124
Chapter 5, 144–147
Chapter 6, 169–172
Chapter 7, 181–184
Chapter 8, 201–204
Chapter 9, 215–219
Chapter 10, 234–238
Chapter 11, 255–259

quotes, single, 46

RR
RAW data type, 64
RDBMSs, 2

defi ned, 3
tuning, 240–242

REAL data type, 62, 63, 65, 68
real data types, 58
recursive relationships, 138
referential constraints, 8–9, 74, 76, 175
referential integrity constraints, 8–9
relational database management systems. See

RDBMSs
relational databases, 2

components, 3–9
relationships, 5–7
repeating groups, 14–16
REPLACE function, 150–151
reserved words, 46

 310 SQL Demystifi ed

result sets, 87–88, 245
REVOKE statement, 195–196
right outer joins, 135
roles, 197–198

administering in Microsoft SQL Server
and Sybase Adaptive Server,
198–199

administering in Oracle, 199–200
ROUND function, 116
ROWID data type, 64
row-level security, 200
RTRIM function, 151
rule-based optimizers, 243

SS
schema owner accounts, 196–197
security

database security architectures, 187–188
Microsoft SQL Server and Sybase

Adaptive Server, 188–190
need for, 186–187
Oracle, 190–192
schema owner accounts, 196–197
SQL statements used for, 194–196
using views to implement column and

row level security, 200
See also privileges

SELECT command, 87, 88–89
FROM clause, 88
column name aliases, 90
DISTINCT keyword, 88
ORDER BY clause, 90–93

selective indexes, 247
self joins, 138–140
semicolons, 45
SERIAL data type, 68
server privileges, 190
servers, 39
SET data type, 67

SIGN function, 154
small integer data types, 57–58
SMALLDATETIME data type, 62
SMALLINT data type, 62, 63, 65, 66, 67
SMALLMONEY data type, 62
software, SQL clients, 41–42
SQL

categories of statements, 47–48
defi ned, 38
functions, 110
history of, 42–44
standards, 43–44
syntax conventions, 44–46

SQL clients, 39–40
software, 41–42

SQL queries, tuning, 242
SQL Query Analyzer, 252–253
SQL scripts, downloading from the website,

29–30
SQL:2003, 43–44

standard data types, 55–60
SQRT function, 154–155
standard joins, 129
standards, 43–44
statement privileges, 190
storage engines, 248
stored procedures, 229–230, 252
string concatenation, 110–111
structured programming, 42–43
Structured Query Language. See SQL
subselects, 105, 141

correlated, 143–144
noncorrelated, 141–143

SUBSTR function, 114–115
Sybase Adaptive Server

administering roles in, 198–199
security architecture, 188–190
transaction support in, 208
Transact-SQL, 230–232

INDEX 311

synonyms, 88, 196
syntax conventions, 44–46

Data Defi nition Language (DDL), 54
system privileges, 190, 192–193

TT
tables, 4–5

unnecessary, 245
temporal data types, 58–59
temporary tables, 246
Text data type, 61
TEXT data type, 62, 67, 68
three-valued logic, 69
TIME data type, 65, 66, 68
time data types, 59
TIMESTAMP data type, 62, 64, 65, 66, 68
timestamp data types, 59
TINYBLOB data type, 67
TINYINT data type, 62, 67
TINYTEXT data type, 67
transaction control commands, 48
transaction logs, 207
transactions, 206

and relational DBMSs, 206–207
support in DB2 UDB, 210–211
support in Microsoft SQL Server,

207–208
support in MySQL, 209–210
support in Oracle, 209
support in Sybase Adaptive Server, 208

Transact-SQL, 230–232
transitive dependencies, 18–21
triggers, 229–230, 242
tuning

Data Manipulation Language (DML),
254–255

IBM DB2 Universal Database, 254
Microsoft SQL Server, 252–253
MySQL, 248

Oracle, 248–251
RDBMSs, 240–242
SQL queries, 242–254

UU
UDB. See IBM DB2 Universal

Database
underscore (_), 103
UNION ALL operator, 120
UNION operator, 120
UNIQUE constraints, 8, 74, 75, 175
UNIQUE keyword, 77
UNIQUEIDENTIFIER data type, 63
update anomalies, 11
UPDATE statement, 179–180, 225

tuning, 254–255
UPPER function, 111–112
UROWID data type, 64
user views, 11–12
user-defi ned data types, 55
USING clause, 131

VV
VARBINARY data type, 63
VARCHAR BINARY data type, 67
VARCHAR data type, 62, 64, 65, 66

vs. CHAR data type, 241–242
VARCHAR2 data type, 64
VARGRAPHIC data type, 65
variable character data types, 56
video store sample database

downloading the SQL scripts, 29–30
Entity Relationship Diagram, 22
modifi cations required for Microsoft

SQL Server, 31
modifi cations required for Oracle, 30
overview, 21–29
table columns, 24–29
tables, 23–24

 312 SQL Demystifi ed

views, 9, 161–164, 246
implementing column and row level

security, 200
virtual tables, 9

WW
web-based interfaces, 40–41
WHERE clause, 94

comparison operators, 94–97
conjunctive operators, 97–100

joins using, 129–131
logical operators, 100–107

Whitemarsh Information Systems
Corporation, 44

YY
YEAR data type, 67
Yes/No data type, 61

www.osborne.com

This page intentionally left blank

1

CREATE
and INSERT

Statements for
Video Store

Sample Database

APPENDIX

Copyright © 2005 by The McGraw-Hill Companies. Click here for terms of use.

 2 SQL Demystifi ed

This appendix contains the CREATE statements to create all the video store sample
database tables and indexes used in the examples throughout this book, along with
the INSERT statements to populate the tables with the sample data that was used in
the examples. I strongly encourage you to create the sample database and run the
examples as you read this book. You may have to modify these statements to ac-
commodate SQL implementation differences as noted in the section that follows.

Modifi cations Required for Different DBMSs
In an ideal world, SQL that complied with the ISO/ANSI standard would run on
any database that supported SQL. While that is not quite the case, the good news is
that very few (if any) modifi cations have to be made for the most popular DBMSs
on the market today. For most DBMSs, you’ll need to create a database and/or a
schema to hold the database objects as well as a database user account that will be
used to access the database. The DBMS architecture varies from one vendor to an-
other, so consult your DBMS documentation for the steps required to do this. Here
are the modifi cations required for three of the most popular DBMSs.

Modifi cations Required for Oracle
The Oracle default date format is DD-MON-RR, which is a two-digit day, a three-
letter month, and a two-digit year with the century assumed based on a 50-year
window. For example, January 15, 2005 would display as 15-JAN-05 in the Oracle
default format. The SQL INSERT statements in this appendix, and all the examples
in this book, use MM/DD/YYYY as the date format, with January 15, 2005 written
as 01/15/2005. There are two ways to overcome this difference:

• Change the date format While possible to do, it is not wise to change
the default date format permanently for the database. However, it is very
simple to change the format for your session just after you connect to the
Oracle database. All you have to do is run this command in your Oracle
SQL client (SQL*Plus or iSQL*Plus) before you run any statements that
include dates:

ALTER SESSION SET NLS_DATE_FORMAT='MM/DD/YYYY';

• Alter all date strings This is a more tedious solution that involves editing
the SQL statements and changing all dates in MM/DD/YYYY format to
DD-MON-RR format.

APPENDIX CREATE and INSERT Statements 3

Modifi cations Required for Microsoft SQL Server
For Microsoft SQL Server, the following modifi cations are required:

• Change DATE to DATETIME Microsoft SQL Server does not
recognize DATE as a data type. DBMS features are always changing, so
it may be supported in SQL Server 2005 or a subsequent version. At least
through SQL Server 2000, all references to DATE in the CREATE TABLE
statements must be changed to DATETIME.

• For iSQL, put statements in batches The iSQL client expects SQL
statements to be run in batches with the keyword go written on a line by
itself at the end of every batch. While most SQL clients run statements as
soon as they encounter the semicolon that marks the end of each statement,
iSQL waits for the keyword go. The number of statements in a batch is
purely up to you, but if you put too many in a batch, problems are more
diffi cult to resolve. Just add the keyword on a line by itself periodically
throughout the SQL statements—and make sure you also have one at the
very end.

Modifi cations Required for MySQL
I have wonderful news for you: no modifi cations of any kind are required in order
to run the statements included in this appendix in MySQL.

CREATE Statements for Video
Store Sample Database

--===
-- Drop all tables
--(Only needed if the tables already exist).
--===
DROP TABLE MOVIE_RENTAL;
DROP TABLE CUSTOMER_TRANSACTION;
DROP TABLE CUSTOMER_ACCOUNT_PERSON;
DROP TABLE EMPLOYEE;
DROP TABLE MOVIE_LANGUAGE;
DROP TABLE MOVIE_COPY;
DROP TABLE MOVIE;
DROP TABLE PERSON;

 4 SQL Demystifi ed

DROP TABLE MPAA_RATING;
DROP TABLE MOVIE_GENRE;
DROP TABLE LANGUAGE;
DROP TABLE CUSTOMER_ACCOUNT;

--===
-- Table: CUSTOMER_ACCOUNT
--===
CREATE TABLE CUSTOMER_ACCOUNT (
CUSTOMER_ACCOUNT_ID INTEGER NOT NULL,
CUSTOMER_HOLD_INDIC CHAR(1) DEFAULT 'N' NOT NULL
 CHECK (CUSTOMER_HOLD_INDIC IN ('Y','N')),
DATE_ENROLLED DATE NOT NULL,
DATE_TERMINATED DATE NULL,
CUSTOMER_DEPOSIT_AMOUNT NUMERIC(5,2) NULL,
CREDIT_CARD_ON_FILE_INDIC CHAR(1) NOT NULL
 CHECK (CREDIT_CARD_ON_FILE_INDIC IN ('Y','N')),
CHILD_RENTAL_ALLOWED_INDIC CHAR(1) NOT NULL
 CHECK (CHILD_RENTAL_ALLOWED_INDIC IN ('Y','N')),
PRIMARY KEY (CUSTOMER_ACCOUNT_ID)
);

--===
-- Table: LANGUAGE
--===
CREATE TABLE LANGUAGE (
LANGUAGE_CODE CHAR(2) NOT NULL,
LANGUAGE_NAME VARCHAR(40) NOT NULL,
PRIMARY KEY (LANGUAGE_CODE)
);

--===
-- Table: MOVIE_GENRE
--===
CREATE TABLE MOVIE_GENRE (
MOVIE_GENRE_CODE CHAR(5) NOT NULL,
MOVIE_GENRE_DESCRIPTION VARCHAR(100) NOT NULL,
PRIMARY KEY (MOVIE_GENRE_CODE)
);

APPENDIX CREATE and INSERT Statements 5

--===
-- Table: MPAA_RATING
--===
CREATE TABLE MPAA_RATING (
MPAA_RATING_CODE CHAR(5) NOT NULL,
MPAA_RATING_DESCRIPTION VARCHAR(100) NOT NULL,
PRIMARY KEY (MPAA_RATING_CODE)
);

--===
-- Table: PERSON
--===
CREATE TABLE PERSON (
PERSON_ID INTEGER NOT NULL,
PERSON_GIVEN_NAME VARCHAR(25) NOT NULL,
PERSON_MIDDLE_NAME VARCHAR(25) NULL,
PERSON_FAMILY_NAME VARCHAR(25) NOT NULL,
PERSON_ADDRESS_1 VARCHAR(100) NULL,
PERSON_ADDRESS_2 VARCHAR(100) NULL,
PERSON_ADDRESS_CITY VARCHAR(40) NULL,
PERSON_ADDRESS_STATE_PROV CHAR(2) NULL,
PERSON_ADDRESS_POSTAL_CODE VARCHAR(10) NULL,
PERSON_ADDRESS_COUNTRY CHAR(2) NULL,
PERSON_PHONE VARCHAR(15) NULL,
BIRTH_DATE DATE NULL,
DEATH_DATE DATE NULL,
PRIMARY KEY (PERSON_ID)
);

--===
-- Table: MOVIE
--===
CREATE TABLE MOVIE (
MOVIE_ID INTEGER NOT NULL,
MOVIE_GENRE_CODE CHAR(5) NOT NULL,
MPAA_RATING_CODE CHAR(5) NOT NULL,
MOVIE_TITLE VARCHAR(100) NOT NULL,
RETAIL_PRICE_VHS NUMERIC(5,2) NULL,
RETAIL_PRICE_DVD NUMERIC(5,2) NULL,

 6 SQL Demystifi ed

YEAR_PRODUCED CHAR(4) NULL,
PRIMARY KEY (MOVIE_ID),
FOREIGN KEY (MOVIE_GENRE_CODE)
 REFERENCES MOVIE_GENRE (MOVIE_GENRE_CODE),
FOREIGN KEY (MPAA_RATING_CODE)
 REFERENCES MPAA_RATING (MPAA_RATING_CODE)
);

--===
-- Index: IX_MOVIE_GENRE_MOVIE
--===
CREATE INDEX IX_MOVIE_GENRE_MOVIE
 ON MOVIE (MOVIE_GENRE_CODE ASC);

--===
-- Index: IX_MOVIE_TITLE
--===
CREATE INDEX IX_MOVIE_TITLE
 ON MOVIE (MOVIE_TITLE ASC);

--===
-- Table: MOVIE_COPY
--===
CREATE TABLE MOVIE_COPY (
MOVIE_ID INTEGER NOT NULL,
COPY_NUMBER INTEGER NOT NULL,
DATE_ACQUIRED DATE NOT NULL,
DATE_SOLD DATE NULL,
MEDIA_FORMAT CHAR(1) NOT NULL
 CHECK (MEDIA_FORMAT IN ('D','V')),
PRIMARY KEY (MOVIE_ID, COPY_NUMBER),
FOREIGN KEY (MOVIE_ID)
 REFERENCES MOVIE (MOVIE_ID)
);

APPENDIX CREATE and INSERT Statements 7

--===
-- Table: MOVIE_LANGUAGE
--===
CREATE TABLE MOVIE_LANGUAGE (
MOVIE_ID INTEGER NOT NULL,
LANGUAGE_CODE CHAR(2) NOT NULL,
PRIMARY KEY (MOVIE_ID, LANGUAGE_CODE),
FOREIGN KEY (LANGUAGE_CODE)
 REFERENCES LANGUAGE (LANGUAGE_CODE),
FOREIGN KEY (MOVIE_ID)
 REFERENCES MOVIE (MOVIE_ID)
);

--===
-- Index: IX_LANG_MOVIE_LANG
--===
CREATE INDEX IX_LANG_MOVIE_LANG
 ON MOVIE_LANGUAGE (LANGUAGE_CODE ASC);

--===
-- Table: EMPLOYEE
--===
CREATE TABLE EMPLOYEE (
PERSON_ID INTEGER NOT NULL,
SUPERVISOR_PERSON_ID INTEGER NULL,
EMPLOYEE_TAX_ID VARCHAR(15) NOT NULL,
EMPLOYEE_JOB_CATEGORY CHAR(1) NOT NULL
 CHECK (EMPLOYEE_JOB_CATEGORY IN ('M','C','O')),
EMPLOYEE_HOURLY_RATE NUMERIC(5,2) NOT NULL,
HIRE_DATE DATE NOT NULL,
TERMINATION_DATE DATE NULL,
PRIMARY KEY (PERSON_ID),
FOREIGN KEY (PERSON_ID)
 REFERENCES PERSON (PERSON_ID),
FOREIGN KEY (SUPERVISOR_PERSON_ID)
 REFERENCES EMPLOYEE (PERSON_ID)
);

 8 SQL Demystifi ed

--===
-- Index: IX_SUPERVISOR_PERSON_ID
--===
CREATE INDEX IX_SUPERVISOR_PERSON_ID
 ON EMPLOYEE (SUPERVISOR_PERSON_ID ASC);

--===
-- Table: CUSTOMER_ACCOUNT_PERSON
--===
CREATE TABLE CUSTOMER_ACCOUNT_PERSON (
CUSTOMER_ACCOUNT_ID INTEGER NOT NULL,
PERSON_ID INTEGER NOT NULL,
PRIMARY KEY (CUSTOMER_ACCOUNT_ID, PERSON_ID),
FOREIGN KEY (PERSON_ID)
 REFERENCES PERSON (PERSON_ID),
FOREIGN KEY (CUSTOMER_ACCOUNT_ID)
 REFERENCES CUSTOMER_ACCOUNT (CUSTOMER_ACCOUNT_ID)
);

--===
-- Index: IX_PERSON_CUSTOMER_ACCT_PERSON
--===
CREATE INDEX IX_PERSON_CUSTOMER_ACCT_PERSON
 ON CUSTOMER_ACCOUNT_PERSON (PERSON_ID ASC);

--===
-- Table: CUSTOMER_TRANSACTION
--===
CREATE TABLE CUSTOMER_TRANSACTION (
TRANSACTION_ID INTEGER NOT NULL,
CUSTOMER_ACCOUNT_ID INTEGER NOT NULL,
EMPLOYEE_PERSON_ID INTEGER NOT NULL,
TRANSACTION_DATE DATE NOT NULL,
SALES_TAX NUMERIC(5,2) NOT NULL,

APPENDIX CREATE and INSERT Statements 9

PRIMARY KEY (TRANSACTION_ID),
FOREIGN KEY (EMPLOYEE_PERSON_ID)
 REFERENCES EMPLOYEE (PERSON_ID),
FOREIGN KEY (CUSTOMER_ACCOUNT_ID)
 REFERENCES CUSTOMER_ACCOUNT (CUSTOMER_ACCOUNT_ID)
);

--===
-- Index: IX_EMPLOYEE_CUSTOMER_TRANS
--===
CREATE INDEX IX_EMPLOYEE_CUSTOMER_TRANS
 ON CUSTOMER_TRANSACTION (EMPLOYEE_PERSON_ID ASC);

--===
-- Index: IX_CUST_ACCT_CUST_TRANS
--===
CREATE INDEX IX_CUST_ACCT_CUST_TRANS
 ON CUSTOMER_TRANSACTION (CUSTOMER_ACCOUNT_ID ASC);

--===
-- Table: MOVIE_RENTAL
--===
CREATE TABLE MOVIE_RENTAL (
MOVIE_ID INTEGER NOT NULL,
COPY_NUMBER INTEGER NOT NULL,
TRANSACTION_ID INTEGER NOT NULL,
DUE_DATE DATE NULL,
RENTAL_FEE NUMERIC(7,2) NULL,
LATE_OR_LOSS_FEE NUMERIC(5,2) NULL,
RETURNED_DATE DATE NULL,
PRIMARY KEY (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID),
FOREIGN KEY (MOVIE_ID, COPY_NUMBER)
 REFERENCES MOVIE_COPY (MOVIE_ID, COPY_NUMBER),
FOREIGN KEY (TRANSACTION_ID)
 REFERENCES CUSTOMER_TRANSACTION (TRANSACTION_ID)
);

 10 SQL Demystifi ed

--===
-- Index: IX_MOVIE_CUST_TRANS
--===
CREATE INDEX IX_MOVIE_CUST_TRANS
 ON MOVIE_RENTAL (TRANSACTION_ID ASC);

INSERT Statements for Video
Store Sample Database

--==
-- Table: CUSTOMER_ACCOUNT
--==
INSERT INTO CUSTOMER_ACCOUNT
 (CUSTOMER_ACCOUNT_ID, CUSTOMER_HOLD_INDIC, DATE_ENROLLED,
 DATE_TERMINATED, CUSTOMER_DEPOSIT_AMOUNT,
 CREDIT_CARD_ON_FILE_INDIC, CHILD_RENTAL_ALLOWED_INDIC)
 VALUES (1, 'N', '01/01/2005', null, null ,'N', 'N');

INSERT INTO CUSTOMER_ACCOUNT
 (CUSTOMER_ACCOUNT_ID, CUSTOMER_HOLD_INDIC, DATE_ENROLLED,
 DATE_TERMINATED, CUSTOMER_DEPOSIT_AMOUNT,
 CREDIT_CARD_ON_FILE_INDIC, CHILD_RENTAL_ALLOWED_INDIC)
 VALUES (2, 'N', '01/18/2005', null, null, 'N', 'N');

INSERT INTO CUSTOMER_ACCOUNT
 (CUSTOMER_ACCOUNT_ID, CUSTOMER_HOLD_INDIC, DATE_ENROLLED,
 DATE_TERMINATED, CUSTOMER_DEPOSIT_AMOUNT,
 CREDIT_CARD_ON_FILE_INDIC, CHILD_RENTAL_ALLOWED_INDIC)
 VALUES (3, 'N', '02/01/2005', null, null, 'Y', 'N');

INSERT INTO CUSTOMER_ACCOUNT
 (CUSTOMER_ACCOUNT_ID, CUSTOMER_HOLD_INDIC, DATE_ENROLLED,
 DATE_TERMINATED, CUSTOMER_DEPOSIT_AMOUNT,
 CREDIT_CARD_ON_FILE_INDIC, CHILD_RENTAL_ALLOWED_INDIC)
 VALUES (4, 'N', '02/01/2005', null, 50, 'N', 'Y');

INSERT INTO CUSTOMER_ACCOUNT
 (CUSTOMER_ACCOUNT_ID, CUSTOMER_HOLD_INDIC, DATE_ENROLLED,
 DATE_TERMINATED, CUSTOMER_DEPOSIT_AMOUNT,
 CREDIT_CARD_ON_FILE_INDIC, CHILD_RENTAL_ALLOWED_INDIC)
 VALUES (5, 'N', '02/01/2005', null, 50, 'N', 'N');

APPENDIX CREATE and INSERT Statements 11

INSERT INTO CUSTOMER_ACCOUNT
 (CUSTOMER_ACCOUNT_ID, CUSTOMER_HOLD_INDIC, DATE_ENROLLED,
 DATE_TERMINATED, CUSTOMER_DEPOSIT_AMOUNT,
 CREDIT_CARD_ON_FILE_INDIC, CHILD_RENTAL_ALLOWED_INDIC)
 VALUES (6, 'Y', '02/15/2005', '03/01/2005', null, 'Y', 'N');

INSERT INTO CUSTOMER_ACCOUNT
 (CUSTOMER_ACCOUNT_ID, CUSTOMER_HOLD_INDIC, DATE_ENROLLED,
 DATE_TERMINATED, CUSTOMER_DEPOSIT_AMOUNT,
 CREDIT_CARD_ON_FILE_INDIC, CHILD_RENTAL_ALLOWED_INDIC)
 VALUES (7, 'N', '02/15/2005', null, null, 'Y', 'N');

INSERT INTO CUSTOMER_ACCOUNT
 (CUSTOMER_ACCOUNT_ID, CUSTOMER_HOLD_INDIC, DATE_ENROLLED,
 DATE_TERMINATED, CUSTOMER_DEPOSIT_AMOUNT,
 CREDIT_CARD_ON_FILE_INDIC, CHILD_RENTAL_ALLOWED_INDIC)
 VALUES (8, 'N', '03/01/2005', null, null, 'Y', 'N');

INSERT INTO CUSTOMER_ACCOUNT
 (CUSTOMER_ACCOUNT_ID, CUSTOMER_HOLD_INDIC, DATE_ENROLLED,
 DATE_TERMINATED, CUSTOMER_DEPOSIT_AMOUNT,
 CREDIT_CARD_ON_FILE_INDIC, CHILD_RENTAL_ALLOWED_INDIC)
 VALUES (9, 'Y', '03/01/2005', null, 50, 'N', 'N');

--==
-- Table: LANGUAGE
--==
INSERT INTO LANGUAGE (LANGUAGE_CODE, LANGUAGE_NAME)
 VALUES ('es','Spanish');

INSERT INTO LANGUAGE (LANGUAGE_CODE, LANGUAGE_NAME)
 VALUES ('zh','Chinese');

INSERT INTO LANGUAGE (LANGUAGE_CODE, LANGUAGE_NAME)
 VALUES ('nl','Dutch');

INSERT INTO LANGUAGE (LANGUAGE_CODE, LANGUAGE_NAME)
 VALUES ('en','English');

INSERT INTO LANGUAGE (LANGUAGE_CODE, LANGUAGE_NAME)
 VALUES ('fr','French');

 12 SQL Demystifi ed

INSERT INTO LANGUAGE (LANGUAGE_CODE, LANGUAGE_NAME)
 VALUES ('de','German');

INSERT INTO LANGUAGE (LANGUAGE_CODE, LANGUAGE_NAME)
 VALUES ('ja','Japanese');

INSERT INTO LANGUAGE (LANGUAGE_CODE, LANGUAGE_NAME)
 VALUES ('ru','Russian');

INSERT INTO LANGUAGE (LANGUAGE_CODE, LANGUAGE_NAME)
 VALUES ('ko','Korean');

--==
-- Table: MOVIE_GENRE
--==
INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('ActAd','Action and Adventure');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Anime','Anime and Animation');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('ChFam','Children and Family');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Class','Classics');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Comdy','Comedy');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Doc','Documentary');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Drama','Drama');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Forgn','Foreign');

APPENDIX CREATE and INSERT Statements 13

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Hor','Horror');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Indep','Independent');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Music','Music and Musicals');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Rmce','Romance');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('SciFi','Science Fiction and Fantasy');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Specl','Special Interest');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Sport','Sports');

INSERT INTO MOVIE_GENRE
 (MOVIE_GENRE_CODE, MOVIE_GENRE_DESCRIPTION)
 VALUES ('Thril','Thrillers');

--==
-- Table: MPAA_RATING
--==
INSERT INTO MPAA_RATING
 (MPAA_RATING_CODE, MPAA_RATING_DESCRIPTION)
 VALUES ('G','General audiences');

INSERT INTO MPAA_RATING
 (MPAA_RATING_CODE, MPAA_RATING_DESCRIPTION)
 VALUES ('PG','Parental guidance suggested');

INSERT INTO MPAA_RATING
 (MPAA_RATING_CODE, MPAA_RATING_DESCRIPTION)
 VALUES ('PG-13','Parents strongly cautioned');

 14 SQL Demystifi ed

INSERT INTO MPAA_RATING
 (MPAA_RATING_CODE, MPAA_RATING_DESCRIPTION)
 VALUES ('R',
'Under 17 requires accompanying parent or adult guardian');

INSERT INTO MPAA_RATING
 (MPAA_RATING_CODE, MPAA_RATING_DESCRIPTION)
 VALUES ('NC-17','No one 17 and under admitted');

INSERT INTO MPAA_RATING
 (MPAA_RATING_CODE, MPAA_RATING_DESCRIPTION)
 VALUES ('NR','Not Rated');

--==
-- Table: PERSON
--==
INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (1,'Austin','Byron','Alexander',
 '420 Central','Apt. 4A',
 'Paperwork City', 'CA', '94645',
 'US', '805-280-2018', '07/04/1970', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (2,'Tin','Tang','Chung',
 '3467 Skyline Blvd','Apt. 4583',
 'Oakland', 'CA', '94620',
 'US', '230-229-8976', '05/05/1968', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,

APPENDIX CREATE and INSERT Statements 15

 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (3,'Cassandra','R','Alvarado',
 '553 Elm St.','',
 'Denver', 'CO', '80012',
 'US', '836-429-8375', '09/27/1981', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (4,'Raul','Ramon', 'Alvarado',
 '553 Elm St.','',
 'Denver', 'CO', '80012',
 'US', '836-429-8375', '08/26/1983', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (5,'Klaus','Jurgen', 'Schmidt',
 '2920 College Drive','Apt. 12',
 'Dayton', 'OH', '45404',
 'US', '514-369-0478', '06/20/1951', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (6,'Katarina','C', 'Schmidt',
 '2920 College Drive','Apt. 12',
 'Dayton', 'OH', '45404',
 'US', '514-369-0478', '12/15/1953', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,

 16 SQL Demystifi ed

 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (7,'Karl','Jurgen', 'Schmidt',
 '2920 College Drive','Apt. 12',
 'Dayton', 'OH', '45404',
 'US', '514-369-0479', '04/16/1980', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (8,'Toshiro','Isuzu', 'Yamada',
 '720 Geary Blvd.','',
 'San Francisco', 'CA', '94111',
 'US', '401-617-7297', '03/16/1949', '03/30/2005');

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (9,'Beverly','Virginia', 'Baker',
 '748 Highway 63','',
 'Thunder Bay', 'ON', '4WC2RY',
 'CA', '705-555-6376', '02/28/1981', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (10,'Gerald','M', 'Bernstein',
 '12940 Wilshire Blvd.','',
 'Los Angeles', 'CA', '90048',
 'US', '820-541-8590', '08/13/1959', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,

APPENDIX CREATE and INSERT Statements 17

 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (11,'Rose','Barbara', 'Bernstein',
 '12940 Wilshire Blvd.','',
 'Los Angeles', 'CA', '90048',
 'US', '820-541-8590', '04/16/1960', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (12,'Steven','R', 'Bernstein',
 '12940 Wilshire Blvd.','',
 'Los Angeles', 'CA', '90048',
 'US', '820-541-8590', '06/17/1994', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (13,'Linda','R', 'Campos',
 'Box 426','Rural Route 12',
 'Searchlight', 'NV', '89046',
 'US', '615-995-1458', '11/15/1974', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)
 VALUES (14,'Jorge','Luis', 'Jimenez',
 'Box 426','Rural Route 12',
 'Searchlight', 'NV', '89046',
 'US', '615-995-3748', '12/21/1974', null);

INSERT INTO PERSON
 (PERSON_ID, PERSON_GIVEN_NAME, PERSON_MIDDLE_NAME,
 PERSON_FAMILY_NAME, PERSON_ADDRESS_1, PERSON_ADDRESS_2,
 PERSON_ADDRESS_CITY, PERSON_ADDRESS_STATE_PROV,
 PERSON_ADDRESS_POSTAL_CODE, PERSON_ADDRESS_COUNTRY,
 PERSON_PHONE, BIRTH_DATE, DEATH_DATE)

 18 SQL Demystifi ed

 VALUES (15,'Liyi','F', 'Huang',
 '228 1st St. NE','',
 'St. Paul', 'MN', '55111',
 'US', '708-668-6696', '05/14/1976', null);

--==
-- Table: MOVIE
--==
INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (1, 'Drama', 'R', 'Mystic River',
 58.97, 19.96, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (2, 'ActAd', 'R', 'The Last Samurai',
 15.95, 19.96, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (3, 'Comdy', 'PG-13', 'Something''s Gotta Give',
 14.95, 29.99, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (4, 'ActAd', 'PG-13', 'The Italian Job',
 11.95, 19.99, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (5, 'ActAd', 'R', 'Kill Bill: Vol. 1',
 24.99, 29.99, '2003');

APPENDIX CREATE and INSERT Statements 19

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (6, 'ActAd', 'PG-13',
 'Pirates of the Caribbean: The Curse of the Black Pearl',
 24.99, 29.99, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (7, 'Drama', 'PG-13', 'Big Fish',
 14.95, 19.94, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (8, 'ActAd', 'R', 'Man on Fire',
 50.99, 29.98, '2004');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (9, 'ActAd', 'PG-13',
 'Master and Commander: The Far Side of the World',
 12.98, 39.99, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (10, 'Drama', 'R', 'Lost in Translation',
 49.99, 14.98, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (11, 'Rmce', 'PG-13', 'Two Weeks Notice',
 6.93, 14.97, '2002');

 20 SQL Demystifi ed

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (12, 'Comdy', 'PG-13', '50 First Dates',
 9.95, 19.94, '2004');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (13, 'Comdy', 'PG-13', 'Matchstick Men',
 6.93, 19.97, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (14, 'Drama', 'R', 'Cold Mountain',
 24.99, 29.99, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (15, 'Drama', 'R', 'Road to Perdition',
 9.99, 14.99, '2002');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (16, 'Comdy', 'PG-13', 'The School of Rock',
 11.69, 29.99, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (17, 'Rmce', 'PG-13', '13 Going on 30',
 14.94, 28.95, '2004');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,

APPENDIX CREATE and INSERT Statements 21

 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (18, 'Drama', 'R', 'Monster',
 24.99, 29.99, '2003');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (19, 'ActAd', 'PG-13', 'The Day After Tomorrow',
 12.98, 29.98, '2004');

INSERT INTO MOVIE
 (MOVIE_ID, MOVIE_GENRE_CODE,
 MPAA_RATING_CODE, MOVIE_TITLE, RETAIL_PRICE_VHS,
 RETAIL_PRICE_DVD, YEAR_PRODUCED)
 VALUES (20, 'Forgn', 'R', 'Das Boot',
 17.99, 19.94, '1981');

--==
-- Table: MOVIE_COPY
--==
INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (1, 1, '01/01/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (2, 1, '01/10/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (2, 2, '01/01/2005', null, 'V');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (3, 1, '01/01/2005', '01/30/2005', 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,

 22 SQL Demystifi ed

 MEDIA_FORMAT)
 VALUES (3, 2, '02/15/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (4, 1, '02/15/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (5, 1, '02/15/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (5, 2, '02/15/2005', null, 'V');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (6, 1, '02/15/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (7, 1, '02/28/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (8, 1, '02/28/2005', '03/15/2005', 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (9, 1, '02/28/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (10, 1, '03/01/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,

APPENDIX CREATE and INSERT Statements 23

 MEDIA_FORMAT)
 VALUES (10, 2, '03/01/2005', null, 'V');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (11, 1, '03/10/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (12, 1, '03/10/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (13, 1, '03/10/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (14, 1, '03/10/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (14, 2, '03/10/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (15, 1, '04/01/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (16, 1, '04/01/2005', null, 'V');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (17, 1, '04/01/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,

 24 SQL Demystifi ed

 MEDIA_FORMAT)
 VALUES (18, 1, '04/01/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (19, 1, '04/01/2005', null, 'D');

INSERT INTO MOVIE_COPY
 (MOVIE_ID, COPY_NUMBER, DATE_ACQUIRED, DATE_SOLD,
 MEDIA_FORMAT)
 VALUES (20, 1, '04/15/05', '04/15/05', 'V');

--==
-- Table: MOVIE_LANGUAGE
--==
INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (1, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (1, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (2, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (2, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (3, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (3, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (4, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (4, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (5, 'en');

APPENDIX CREATE and INSERT Statements 25

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (5, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (6, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (6, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (7, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (7, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (8, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (8, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (9, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (9, 'es');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (9, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (10, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (10, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (11, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (11, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (12, 'en');

 26 SQL Demystifi ed

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (12, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (13, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (13, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (14, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (15, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (15, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (16, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (16, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (17, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (18, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (19, 'en');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (19, 'es');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (19, 'fr');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (20, 'de');

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (20, 'en');

APPENDIX CREATE and INSERT Statements 27

INSERT INTO MOVIE_LANGUAGE (MOVIE_ID, LANGUAGE_CODE)
 VALUES (20, 'fr');

--==
-- Table: EMPLOYEE
--==
INSERT INTO EMPLOYEE
 (PERSON_ID, SUPERVISOR_PERSON_ID, EMPLOYEE_TAX_ID,
 EMPLOYEE_JOB_CATEGORY, EMPLOYEE_HOURLY_RATE,
 HIRE_DATE, TERMINATION_DATE)
 VALUES (1, null, '000-01-1234', 'M', 15.00,
 '01/01/2004', null);

INSERT INTO EMPLOYEE
 (PERSON_ID, SUPERVISOR_PERSON_ID, EMPLOYEE_TAX_ID,
 EMPLOYEE_JOB_CATEGORY, EMPLOYEE_HOURLY_RATE,
 HIRE_DATE, TERMINATION_DATE)
 VALUES (2, 1, '000-02-8564', 'C', 9.75,
 '01/01/2004', null);

INSERT INTO EMPLOYEE
 (PERSON_ID, SUPERVISOR_PERSON_ID, EMPLOYEE_TAX_ID,
 EMPLOYEE_JOB_CATEGORY, EMPLOYEE_HOURLY_RATE,
 HIRE_DATE, TERMINATION_DATE)
 VALUES (10, 1, '000-57-8385', 'C', 9.75,
 '03/01/2004', null);

--==
-- Table: CUSTOMER_ACCOUNT_PERSON
--==
INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (1, 1);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (2, 2);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (3, 3);

 28 SQL Demystifi ed

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (3, 4);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (3, 7);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (4, 5);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (4, 6);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (4, 7);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (5, 8);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (6, 9);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (7, 10);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (7, 11);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (7, 12);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (8, 13);

APPENDIX CREATE and INSERT Statements 29

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (8, 14);

INSERT INTO CUSTOMER_ACCOUNT_PERSON
 (CUSTOMER_ACCOUNT_ID, PERSON_ID)
 VALUES (9, 15);

--==
-- Table: CUSTOMER_TRANSACTION
--==
INSERT INTO CUSTOMER_TRANSACTION
 (TRANSACTION_ID, CUSTOMER_ACCOUNT_ID, EMPLOYEE_PERSON_ID,
 TRANSACTION_DATE, SALES_TAX)
 VALUES (1, 1, 1, '1/5/2005', 1.00);

INSERT INTO CUSTOMER_TRANSACTION
 (TRANSACTION_ID, CUSTOMER_ACCOUNT_ID, EMPLOYEE_PERSON_ID,
 TRANSACTION_DATE, SALES_TAX)
 VALUES (2, 1, 1, '1/5/2005', 2.97);

INSERT INTO CUSTOMER_TRANSACTION
 (TRANSACTION_ID, CUSTOMER_ACCOUNT_ID, EMPLOYEE_PERSON_ID,
 TRANSACTION_DATE, SALES_TAX)
 VALUES (3, 2, 2, '1/18/2005', 1.50);

INSERT INTO CUSTOMER_TRANSACTION
 (TRANSACTION_ID, CUSTOMER_ACCOUNT_ID, EMPLOYEE_PERSON_ID,
 TRANSACTION_DATE, SALES_TAX)
 VALUES (4, 3, 1, '2/1/2005', 0.50);

INSERT INTO CUSTOMER_TRANSACTION
 (TRANSACTION_ID, CUSTOMER_ACCOUNT_ID, EMPLOYEE_PERSON_ID,
 TRANSACTION_DATE, SALES_TAX)
 VALUES (5, 4, 2, '2/1/2005', 1.00);

INSERT INTO CUSTOMER_TRANSACTION
 (TRANSACTION_ID, CUSTOMER_ACCOUNT_ID, EMPLOYEE_PERSON_ID,
 TRANSACTION_DATE, SALES_TAX)
 VALUES (6, 6, 2, '2/15/2005', 0.50);

 30 SQL Demystifi ed

INSERT INTO CUSTOMER_TRANSACTION
 (TRANSACTION_ID, CUSTOMER_ACCOUNT_ID, EMPLOYEE_PERSON_ID,
 TRANSACTION_DATE, SALES_TAX)
 VALUES (7, 7, 1, '2/15/2005', 1.00);

INSERT INTO CUSTOMER_TRANSACTION
 (TRANSACTION_ID, CUSTOMER_ACCOUNT_ID, EMPLOYEE_PERSON_ID,
 TRANSACTION_DATE, SALES_TAX)
 VALUES (8, 7, 1, '2/23/2005', 1.50);

INSERT INTO CUSTOMER_TRANSACTION
 (TRANSACTION_ID, CUSTOMER_ACCOUNT_ID, EMPLOYEE_PERSON_ID,
 TRANSACTION_DATE, SALES_TAX)
 VALUES (9, 8, 10, '3/1/2005', 3.51);

INSERT INTO CUSTOMER_TRANSACTION
 (TRANSACTION_ID, CUSTOMER_ACCOUNT_ID, EMPLOYEE_PERSON_ID,
 TRANSACTION_DATE, SALES_TAX)
 VALUES (10, 9, 10, '3/1/2005', 2.08);

--==
-- Table: MOVIE_RENTAL
--==
INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (1, 1, 1, '1/9/2005', 6.00, null, '1/7/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (2, 2, 1, '1/9/2005', 6.00, null, '1/8/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (3, 1, 2, '1/9/2005', 6.00, 29.99, '1/30/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (1, 1, 3, '1/22/2005', 6.00, null, '1/22/2005');

APPENDIX CREATE and INSERT Statements 31

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (2, 1, 3, '1/22/2005', 6, null,'1/18/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (2, 2, 3, '1/22/2005', 6, null, '1/20/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (1, 1, 4, '2/5/2005', 6, null, '2/4/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (2, 1, 5, '2/5/2005', 6, 4, '2/8/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (5, 2, 6, '2/19/2005', 6, null, null);

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (6, 1, 7, '2/19/2005', 6, null, '2/19/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (16, 1, 7, '2/19/2005', 6, null, '2/19/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (1, 1, 8, '2/27/2005', 6, 4, '3/1/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (2, 2, 8, '2/27/2005', 6, null, null);

 32 SQL Demystifi ed

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (5, 1, 8, '2/27/2005', 6, null, null);

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (10, 1, 9, '03/04/2005', 6.25, null, null);

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (8, 1, 9, '03/04/2005', 6.25, 29.98, '3/15/05');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (4, 1, 10, '03/04/2005', 6.25, null, '3/4/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (18, 1, 10, '03/04/2005', 6.25, null, '3/5/2005');

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (3, 2, 10, '03/04/2005', 6.25, null, null);

INSERT INTO MOVIE_RENTAL
 (MOVIE_ID, COPY_NUMBER, TRANSACTION_ID, DUE_DATE,
 RENTAL_FEE, LATE_OR_LOSS_FEE, RETURNED_DATE)
 VALUES (17, 1, 10, '03/04/2005', 6.25, null, null);

	Contents
	Acknowledgments
	Introduction
	Chapter 1 Relational Database Concepts
	What Is a Database?
	What Is a Database Management System (DBMS)?
	What Is a Relational Database?
	Relational Database Components

	How Relational Databases Are Designed
	The Need for Normalization
	Applying the Normalization Process

	Overview of the Video Store Sample Database
	Downloading the SQL for the Sample Database

	Quiz

	Chapter 2 SQL Concepts
	What Is SQL?
	Connecting to the Database
	A Brief History of SQL
	SQL Syntax Conventions
	SQL Statement Categories
	Data Definition Language (DDL)
	Data Query Language (DQL)
	Data Manipulation Language (DML)
	Data Control Language (DCL)
	Transaction Control Commands

	Quiz

	Chapter 3 Defining Database Objects Using SQL
	Syntax Conventions Used in This Chapter
	Data Types
	SQL:2003 Standard Data Types
	Vendor Data Type Extensions and Differences

	NULL Values and Three-Valued Logic
	Data Definition Language (DDL) Statements
	The CREATE DATABASE Statement
	The CREATE TABLE Statement
	The CREATE INDEX Statement
	The CREATE VIEW Statement
	The ALTER TABLE Statement
	The DROP Statement

	Quiz

	Chapter 4 Retrieving Data Using Data Query Language (DQL)
	The Basic SELECT Statement
	Column Name Aliases

	Sorting Results
	Using the WHERE Clause to Filter Rows
	Comparison Operators
	Conjunctive Operators
	Logical Operators

	Arithmetic Operators
	Basic SQL Functions
	Character Functions
	Mathematical Functions
	Conversion Functions

	Aggregate Functions and Grouping Rows
	GROUP BY Clause
	Compound Query Operators
	UNION
	UNION ALL
	INTERSECT
	EXCEPT

	Quiz

	Chapter 5 Combining Data from Multiple Tables
	Joins
	Equijoins
	Natural Joins
	Outer Joins
	Self Joins
	Other Joins
	Cross Joins

	Subselects
	Noncorrelated Subselects
	Correlated Subselects

	Inline Views
	Quiz

	Chapter 6 Advanced Query Writing
	Advanced SQL Functions
	Character Functions
	Mathematical Functions
	Date and Time Functions

	Taking Advantage of Views
	Using SQL to Generate SQL
	Generating SQL in Oracle
	Generating SQL in Microsoft SQL Server

	The CASE Expression
	Simple CASE Expression
	Searched CASE Expression

	Quiz

	Chapter 7 Maintaining Data Using DML
	The INSERT Statement
	Single Row Inserts Using the VALUES Clause
	Bulk Inserts Using a Nested SELECT

	The UPDATE Statement
	The DELETE Statement
	Quiz

	Chapter 8 Applying Security Controls Using DCL
	Why Is Security Necessary?
	Database Security Architectures
	Database Security in Microsoft SQL Server and Sybase Adaptive Server
	Database Security in Oracle

	Implementing Database Access Security
	Database Privileges
	SQL Statements Used for Security Administration
	Schema Owner Accounts

	Simplifying Administration Using Roles
	Administering Roles in Microsoft SQL Server and Sybase Adaptive Server
	Administering Roles in Oracle

	Using Views to Implement Column and Row Level Security
	Quiz

	Chapter 9 Preserving Database Integrity Using Transactions
	What Is a Database Transaction?
	Transaction Support in Relational DBMSs
	Transaction Support in Microsoft SQL Server
	Transaction Support in Sybase Adaptive Server
	Transaction Support in Oracle
	Transaction Support in MySQL
	Transaction Support in DB2 UDB

	Locking and Transaction Deadlock
	The Concurrent Update Problem
	Locking Mechanisms
	Deadlocks

	Quiz

	Chapter 10 Integrating SQL into Applications
	Cursor Processing
	The DECLARE CURSOR Statement
	The OPEN CURSOR Statement
	The FETCH Statement
	Cursor UPDATE and DELETE Statements
	The CLOSE Statement

	Embedding SQL in Application Programs
	ODBC Connections
	Connecting Databases to Java Applications
	The .NET Framework

	Computationally Complete SQL
	Transact-SQL (Microsoft SQL Server and Sybase Adaptive Server)
	Oracle PL/SQL

	Quiz

	Chapter 11 SQL Performance and Tuning Considerations
	General RDBMS Tuning Considerations
	Minimize Disk Reads and Writes
	Tune the Computer System and Environment
	Design the Tables Efficiently

	Tuning SQL Queries
	General RDBMS Considerations
	MySQL Considerations
	Oracle Considerations
	Microsoft SQL Server Considerations
	DB2 UDB Considerations

	Tuning DML Statements
	Quiz

	Final Exam
	Answers to Quizzes and Final Exam
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Final Exam Answers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Acknowledgments:
	Introduction:
	Chapter 1 Relational Database Concepts:
	What Is a Database?:
	What Is a Database Management System (DBMS)?:
	What Is a Relational Database?:
	Relational Database Components:
	How Relational Databases Are Designed:
	The Need for Normalization:
	Applying the Normalization Process:
	Overview of the Video Store Sample Database:
	Downloading the SQL for the Sample Database:
	Chapter 2 SQL Concepts:
	What Is SQL?:
	Connecting to the Database:
	A Brief History of SQL:
	SQL Syntax Conventions:
	SQL Statement Categories:
	Data Definition Language (DDL):
	Data Query Language (DQL):
	Data Manipulation Language (DML):
	Data Control Language (DCL):
	Transaction Control Commands:
	Quiz:
	Chapter 3 Defining Database Objects Using SQL:
	Syntax Conventions Used in This Chapter:
	Data Types:
	SQL:2003 Standard Data Types:
	Vendor Data Type Extensions and Differences:
	NULL Values and Three-Valued Logic:
	Data Definition Language (DDL) Statements:
	The CREATE DATABASE Statement:
	The CREATE TABLE Statement:
	The CREATE INDEX Statement:
	The CREATE VIEW Statement:
	The ALTER TABLE Statement:
	The DROP Statement:
	Chapter 4 Retrieving Data Using Data Query Language (DQL):
	The Basic SELECT Statement:
	Column Name Aliases:
	Sorting Results:
	Using the WHERE Clause to Filter Rows:
	Comparison Operators:
	Conjunctive Operators:
	Logical Operators:
	Arithmetic Operators:
	Basic SQL Functions:
	Conversion Functions:
	Aggregate Functions and Grouping Rows:
	GROUP BY Clause:
	Compound Query Operators:
	UNION:
	UNION ALL:
	INTERSECT:
	EXCEPT:
	Chapter 5 Combining Data from Multiple Tables:
	Joins:
	Equijoins:
	Natural Joins:
	Outer Joins:
	Self Joins:
	Other Joins:
	Cross Joins:
	Subselects:
	Noncorrelated Subselects:
	Correlated Subselects:
	Inline Views:
	Chapter 6 Advanced Query Writing:
	Advanced SQL Functions:
	Character Functions:
	Mathematical Functions:
	Date and Time Functions:
	Taking Advantage of Views:
	Using SQL to Generate SQL:
	Generating SQL in Oracle:
	Generating SQL in Microsoft SQL Server:
	The CASE Expression:
	Simple CASE Expression:
	Searched CASE Expression:
	Chapter 7 Maintaining Data Using DML:
	The INSERT Statement:
	Single Row Inserts Using the VALUES Clause:
	Bulk Inserts Using a Nested SELECT:
	The UPDATE Statement:
	The DELETE Statement:
	Chapter 8 Applying Security Controls Using DCL:
	Why Is Security Necessary?:
	Database Security Architectures:
	Database Security in Microsoft SQL Server and Sybase Adaptive Server:
	Database Security in Oracle:
	Implementing Database Access Security:
	Database Privileges:
	SQL Statements Used for Security Administration:
	Schema Owner Accounts:
	Simplifying Administration Using Roles:
	Administering Roles in Microsoft SQL Server and Sybase Adaptive Server:
	Administering Roles in Oracle:
	Using Views to Implement Column and Row Level Security:
	Chapter 9 Preserving Database Integrity Using Transactions:
	What Is a Database Transaction?:
	Transaction Support in Relational DBMSs:
	Transaction Support in Microsoft SQL Server:
	Transaction Support in Sybase Adaptive Server:
	Transaction Support in Oracle:
	Transaction Support in MySQL:
	Transaction Support in DB2 UDB:
	Locking and Transaction Deadlock:
	The Concurrent Update Problem:
	Locking Mechanisms:
	Deadlocks:
	Chapter 10 Integrating SQL into Applications:
	Cursor Processing:
	The OPEN CURSOR Statement:
	The FETCH Statement:
	Cursor UPDATE and DELETE Statements:
	The CLOSE Statement:
	Embedding SQL in Application Programs:
	ODBC Connections:
	Connecting Databases to Java Applications:
	The :
	NET Framework:

	Computationally Complete SQL:
	Transact-SQL (Microsoft SQL Server and Sybase Adaptive Server):
	Oracle PL/SQL:
	Chapter 11 SQL Performance and Tuning Considerations:
	General RDBMS Tuning Considerations:
	Minimize Disk Reads and Writes:
	Tune the Computer System and Environment:
	Design the Tables Efficiently:
	Tuning SQL Queries:
	General RDBMS Considerations:
	MySQL Considerations:
	Oracle Considerations:
	Microsoft SQL Server Considerations:
	DB2 UDB Considerations:
	Tuning DML Statements:
	Final Exam:
	Answers to Quizzes and Final Exam:
	Chapter 1:
	Chapter 2:
	Chapter 3:
	Chapter 4:
	Chapter 5:
	Chapter 6:
	Chapter 7:
	Chapter 8:
	Chapter 9:
	Chapter 10:
	Chapter 11:
	Final Exam Answers:
	Index:
	The DECLARE CURSOR Statement:
	Copyright © 2005 by The McGraw-Hill Companies:
	 Click here for terms of use:

