
 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
SQL in a Nutshell, 2nd Edition

By Kevin E. Kline

Publisher: O'Reilly

Pub Date: September 2004

ISBN: 0-596-00481-8

Pages: 710

This essential desktop reference drills down and documents every SQL command and how to use it in both commercial
(Oracle, DB2, and Microsoft SQL Server) and open source implementations (PostgreSQL, and MySQL). It includes the
command syntax (by vendor, if the syntax differs across implementations), a description, and practical examples. And it
also explains how the leading commercial and open sources database product implement SQL. This wealth of
information is packed into a succinct, comprehensive, and extraordinarily easy-to-use format.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
SQL in a Nutshell, 2nd Edition

By Kevin E. Kline

Publisher: O'Reilly

Pub Date: September 2004

ISBN: 0-596-00481-8

Pages: 710

 Copyright

 Preface

 Why This Book?

 Who Should Read This Book?

 How This Book Is Organized

 Conventions Used in This Book

 How to Use This Book

 How to Contact Us

 Safari Enabled

 Resources

 Changes in the Second Edition

 Acknowledgments

 Chapter 1. SQL History and Implementations

 Section 1.1. The Relational Model and ANSI SQL

 Section 1.2. History of the SQL Standard

 Section 1.3. SQL Dialects

 Chapter 2. Foundational Concepts

 Section 2.1. Database Platforms Described in This Book

 Section 2.2. Categories of Syntax

 Section 2.3. SQL2003 and Platform-Specific Datatypes

 Section 2.4. Constraints

 Chapter 3. SQL Statement Command Reference

 Section 3.1. How to Use This Chapter

 Section 3.2. SQL Platform Support

 Section 3.3. SQL Command Reference

 Chapter 4. SQL Functions

 Section 4.1. Types of Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 4.2. ANSI SQL Aggregate Functions

 Section 4.3. ANSI SQL Window Functions

 Section 4.4. ANSI SQL Scalar Functions

 Section 4.5. Platform-Specific Extensions

 Chapter 5. Database Programming

 Section 5.1. Database Programming Overview

 Section 5.2. Opening a Database Connection

 Section 5.3. Closing a Database Connection

 Section 5.4. Managing Transactions

 Section 5.5. Executing Statements

 Section 5.6. Retrieving Data

 Section 5.7. Bound Parameters

 Section 5.8. Error Handling

 Section 5.9. Examples

 Appendix A. Sybase Adaptive Server

 Section A.1. Sybase Adaptive Server Datatypes

 Section A.2. Sybase Adaptive Server SQL Statements

 Section A.3. Sybase Adaptive Server SQL Functions

 Section A.4. Sybase Adaptive Server Keywords

 Appendix B. Shared and Platform-Specific Keywords

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
The In a Nutshell series designations, SQL in a Nutshell, the image of a chameleon, and related trade dress are
trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
Since its first incarnation in the 1970s, the Structured Query Language (SQL) has been developed hand in hand with
the information boom, and as a result, is the most widely used database manipulation language in business and
industry. A number of different software companies and program developers, including those in the open source
movement, have concurrently developed their own SQL dialects in response to specific professional needs. All the while,
standards bodies have developed a growing list of common features.

SQL in a Nutshell, Second Edition, describes the latest ANSI standard, SQL2003, version of each SQL command, and
then documents each platform's implementation of that command. In this book, you will find a concise explanation of
the Relational Database Management System (RDBMS) model, a clear-cut explanation of foundational RDBMS concepts,
and thorough coverage of SQL syntax and commands.

Most importantly, at least if you're a programmer or developer, is that SQL in a Nutshell, Second Edition, provides a
concise guide both to the most popular commercial database packages on the market (Microsoft SQL Server, IBM's DB2
Universal Database, Sybase Adaptive Server, and Oracle), and to two of the best-known open source
(http://www.opensource.org) database products (MySQL and PostgreSQL). SQL in a Nutshell's attention to open source
SQL platforms is an affirmation of the growing importance of the open source movement within the computing
community.

The database platforms covered in this book include:

IBM DB2 UDB Version 8.0 for Linux, Unix, and Windows

MySQL Version 4

Oracle Database 10g

PostgreSQL Version 7.0

Microsoft SQL Server 2000

Sybase Adaptive Server Version 12.5

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Why This Book?
The primary source of information for relational databases is the documentation and help files provided by the vendors
themselves. While each vendor's documentation is an indispensable resource that most database programmers and
database administrators turn to first, it has a number of limitations:

It covers only a single, specific vendor's product. There is no coverage for translation, migration, or integration
issues.

It describes programming methods, usually in a multitude of small, disconnected documents or help files.

It covers individual commands, often in confusing detail, obscuring the simple and direct uses of commands that
are used every day by programmers and administrators.

In other words, the documentation included with the vendor database is an exhaustive explanation of every aspect of
their platform. After all, help texts are naturally geared toward delivering the main facts about the product. They'll tell
you a command's specific syntax (and all its obscure variants) and, in general terms, how to implement it. However, if
you move between RDMS's and you need to be productive very quickly, you will rarely use those obscure command
variations and instead utilize the common capabilities in real-life situations.

This book begins where the vendor documentation ends by distilling the experiences of professional database
administrators and developers who have used these SQL variants day in and day out to support complex enterprise
applications. You'll get the benefit of their experience in a compact and easily usable format. Whether SQL is new to
you or you have been using SQL since its earliest days, there are always new tips and techniques to learn. And, when
moving between different implementations, it's always important to find out about the implementations that can bite
you if you're not careful and informed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who Should Read This Book?
SQL in a Nutshell, Second Edition, benefits several groups of users. It is useful for programmers who require a concise
and handy SQL reference tool. It is useful for developers who need to migrate from one SQL dialect to another. Finally,
it is useful for database administrators (DBAs) who need to both execute a myriad of SQL statements to keep their
enterprise databases up and running, and create and manage objects such as tables, indexes, and views.

This book is a reference work, not a tutorial. The writing is not expository. For example, we won't explain the concept of
an elementary loop. Experienced developers already know such things. You want the meat. So we will explain, for
example, the detailed workings of an ANSI standard cursor, how it works on each of the database platforms we cover,
the special capabilities of cursors on each database platform, and the various pitfalls of cursors and how to get around
them.

While we don't intend for SQL in a Nutshell, Second Edition, to be a tutorial on SQL or a handbook for database design,
we do provide some brief coverage of those topics, and we hope you find that helpful. Chapter 1 and Chapter 2 provide
a concise introduction to SQL, covering the general origins, essential structure, and basic operation of the language. If
you're new to SQL, the introductions in Chapter 1 and Chapter 2 will help you to get started.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How This Book Is Organized
SQL in a Nutshell, Second Edition, is divided into five chapters and two appendixes:

Chapter 1, SQL History and Implementations

Discusses the Relational Database Model, describes the current and previous SQL standards, and introduces the
SQL implementations covered in this book.

Chapter 2, Foundational Concepts

Describes the fundamental concepts necessary for understanding relational databases and SQL commands.

Chapter 3, SQL Statement Command Reference

Provides an alphabetical command reference to SQL statements. It details the latest ANSI standard, SQL2003,
for each command, as well as the implementation of each command by DB2, MySQL, Oracle, PostgreSQL, and
SQL Server.

Chapter 4, SQL Functions

Provides an alphabetical reference of the SQL2003 functions, describing vendor implementations of all SQL2003
functions. In addition, Chapter 4 includes coverage for all platform-specific functions that are unique to each
implementation.

Chapter 5, Database Programming

Provides an overview of database programming from a variety of connectivity methods. ADO.NET and JDBC are
discussed, among other topics.

Appendix A, Sybase Adaptive Server

Sybase's Adaptive Server product and Microsoft SQL Server share a common heritage. As a result, most of the
SQL Server commands detailed in Chapter 3, and most of the functions detailed in Chapter 4, will work with
Sybase. However, "most" is the operative word, and we provide this appendix to show where Sybase differs
from SQL Server.

Appendix B, Shared and Platform-Specific Keywords

Provides a table of keywords declared in SQL2003 and by the different database platforms. You can use this
table to look for words that you should not use for object or variable names.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book

Constant Width

Used to indicate programming syntax, code fragments, and examples.

Constant Width Italic

Used to indicate variables in code that should be replaced with values.

Constant Width Bold

Used in code sections to highlight portions of the code.

Italic

Used to introduce new terms, for emphasis, to indicate commands or user-specified file and directory names,
and to indicate variables within text.

Bold

Used to display the names of database objects, such as tables, columns, and stored procedures.

UPPERCASE ITALIC

Used to indicate SQL keywords when they appear in the text.

This icon indicates a tip, suggestion, or general note.

Indicates a warning or caution.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How to Use This Book
SQL in a Nutshell, Second Edition, is primarily a command reference. As a consequence, you'll probably use it to look up
a variety of SQL commands and functions. However, with documentation for the ANSI standard itself, plus five database
platforms, each command has the potential to get very large.

In order to reduce the verbiage describing each command, we compare each platform's implementation to the SQL2003
standard. If the platform supports a clause described in the SQL2003 discussion, then we won't repeat that clause
again.

Generic and transportable examples are provided within the body of each SQL2003 command description. Since the
SQL2003 standard is ahead of most database platforms, examples aren't provided for elements of the SQL2003
commands that are not supported by any platform discussed in this book. In addition, more examples are provided for
each database platform that highlight unique extensions and enhancements.

We recognize that our approach may necessitate jumping from a description of a platform's implementation of a
command back to the corresponding SQL2003 command description. However, we felt that this was better than packing
the book with hundreds of pages of redundant content.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How to Contact Us
We have tested and verified the information in this book to the best of our ability, but you may find that features have
changed (or even that we have made mistakes!). We want to hear from you, especially with information that will make
this book better. Please let us know about any errors you find, as well as your suggestions for future editions, by writing
to:

O'Reilly Media, Inc.
1005 Gravenstein Highway NorthSebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web site for the book, where we'll list any examples, errata, or plans for future editions. You can access this
page at:

http://www.oreilly.com/catalog/sqlnut2/

Please help us out by pointing out any typos or syntactical errors that you encounter. (You can imagine how hard it is to
proofread a book covering the ANSI standard and five separate products.) You may also ask technical questions or
comment on the book by sending an email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site:

http://www.oreilly.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Safari Enabled

When you see the Safari® Enabled icon on the back cover of your favorite technology book, that
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top
technology books, cut and paste code samples, download chapters, and find quick answers when you need the most
accurate, current information.

Try it for free at http://safari.oreilly.com.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Resources
The following web sites provide additional information about the various platforms covered in this book:

DB2

IBM's DB2 database is supported on the Web at http://www.software.ibm.com/data/db2/. DB2 has an active
and vibrant user community located on the Web at http://www.idug.org.

MySQL

The corporate resource for MySQL is http://www.mysql.com, and another good site is
http://theoryx5.uwinnipeg.ca/mysql. A great developer resource with lots of useful tips is Devshed.com. See
http://www.devshed.com/Server_Side/MySQL/ for MySQL-specific information.

PostgreSQL

The home for this open source database is located at http://www.postgresql.org. With a great deal of useful
information available for download, this site also maintains mailing lists for PostgreSQL users. Another
PostgreSQL site worth investigating is http://www.pgsql.com, which offers support for commercial customers.

Oracle

Oracle's cyberspace home is http://www.oracle.com. A great resource for hard-core Oracle users is
http://www.oracle.com/technology. You can also find all Oracle documentation at http://tahiti.oracle.com.

SQL Server

The official Microsoft SQL Server web site is http://www.microsoft.com/sql/. Another good resource is found at
the home of the Professional Association for SQL Server (PASS) at http://www.sqlpass.org.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Changes in the Second Edition
Although the ANSI standards committee released the current version of SQL in 2003, called SQL2003, this book has
grown dynamically in a variety of new ways in response to request from our readers. In fact, when you compare the
first and second editions of SQL in a Nutshell, you'll see that the second edition is, in reality, an entirely new book. Here
are more details about changes in the second edition:

New format

We've developed an entirely new format that reduces redundancy and increases coverage for the SQL2003
standard and each vendor's implementation. Rather than use the expository style of the first edition, we've
taken a keyword description style that breaks all the keywords and clauses into small, bite-sized entries.

New database platforms

We've added full coverage for IBM's DB2 UDB database platform running on Unix, Linux, and Windows. In
addition, we've added an appendix that describes Sybase's implementation of the SQL commands, as they differ
from Microsoft SQL Server's implementation.

Database programming

We've added a chapter that covers the basics of how programmers can interface their frontend programs to the
backend database platforms covered in this book.

More complete coverage

We've added many more examples and added SQL commands not covered in the first edition. In addition,
we've added much more complete coverage for SQL functions — in particular, vendor-specific functions that are
not part of the SQL2003 standard.

More examples

You can never have too many examples. We've added examples for the most basic uses of the commands
under the SQL2003 headings, with even more examples that highlight the unique and powerful extensions
offered by each database platform.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
We'd like to take a moment to thank a few special individuals at O'Reilly Media. First, we owe a huge debt of gratitude
to Jonathan Gennick, the editor of the second edition. Jonathan kept us on track and on task, even when the cares of
this world threatened to derail the project. Jonathan's attention to detail and exceptional management skills, in addition
to his talents as an editor, are the reason this book is here today. Thank you! And of course, thanks to Tim O'Reilly for
having a direct hand in the birth of this book.

We also owe a debt to our fine technical reviewers. To Peter Gulutzan (SQL Standard), Thomas Lockhart (PostgreSQL),
Alan Beaulieu (Oracle), Baya Pavliachvili (Microsoft SQL Server), Bobby Fielding (DB2), Doug Doole (DB2), Rick
Swagerman (DB2), Josh Stellan (DB2), Brian Lalonde (Database Programming), John Haydu (Oracle, Phani Arega
(Oracle), and Paul DuBois (MySQL): we owe you a hearty thanks! Your contributions have greatly improved the
accuracy, readability, and value of this book. Without you, our sections on each of the language extensions would have
been on shaky ground. In addition, we'd like to tip our hat to Peter Gulutzan and Trudy Pelzer for their book SQL-99
Complete, Really!, which assisted our understanding of the ANSI SQL2003 standards.

Brand Hunt's Acknowledgments

To my wife Michelle, without your continued support and love, I wouldn't be a part of this project. I'm appreciative for
every moment we've shared and your forgiveness for my keeping you awake at night with the "tappity-tap-taps"
emanating from the computer.

To my parents Rex and Jackie, the two biggest influences in everything I've ever done correctly — especially those
things that frequently take multiple attempts (like writing!)

A huge thanks to my teammates Kevin, Daniel, and Jonathan for letting me participate in this project and exercising so
much patience tutoring a first time O'Reilly author. Your professionalism, work ethic, and ability to make the most
tedious tasks fun is so admirable I plan to steal it and adopt it as my own!

Mad props to my friends and colleagues at Rogue Wave Software, ProWorks, NewCode Technology, and Systems
Research and Development, for providing the ultimate sand box for refining skills in SQL, databases, business, software
development, writing, and friendship: Gus Waters, Greg Koerper, Marc Manley, Wendi Minne, Erin Foley, Elaine Cull,
Randall Robinson, Dave Ritter, Edin Zulic, David Noor, Jim Shur, Chris Mosbrucker, Dan Robin, Mike Faux, Jason
Prothero, Tim Romanowski, Andy Mosbrucker, Jeff Jonas, Jeff Butcher, Charlie Barbour, Steve Dunham, Brian Macy,
and Ze'ev Mehler.

Daniel Kline's Acknowledgments

I'd like to thank my brother, Kevin, for his continued willingness to work with me, to my colleagues at the University of
Alaska Anchorage for their suggestions, and to the readers and users of the first edition of SQL in a Nutshell for their
honest feedback and useful critiques. I'd also like to thank the Japanese translators of the first edition—Ryoko Akaike,
O'Reilly Japan editor; Ishii Tatsuo, open source manager of Software Research Associates, Inc. and author of
PostgresSQL Perfect Guide; and Toru Miyahara, CEO of BigiNet Co., Ltd.—for their careful review and helpful
suggestions.

Kevin E. Kline's Acknowledgments

Many people helped deliver the big, thick book you hold in your hands. This note expresses our appreciation to those
who helped make this a book reality.

First of all, Dan and Brand get a big slap on the back for working so hard to create the content you are now reading.
Brand had to spend a lot of nights working on this both before and after his wedding. Thank you, Michelle, for lending
us Brand when you wanted him the most.

Next, Jonathan Gennick, our editor at O'Reilly Media, gets a warm handshake and squeeze on the shoulder. You
travailed through many extra months of hard labor bringing this book out of the shadows and into the light. I think
there's a special blessing in store for those who've carried themselves with as much patience, professionalism, and
good humor as you.

We must also express deep thanks and appreciation to our technical reviewers who caught many errors, omissions, and
plain ol' mistakes and diverted us from many embarrassments:

ANSI SQL — Peter Gulutzan, author of SQL-99 Complete, Really and SQL Performance Tuning

DB2 — Doug Doole, Bobby Fielding, and Richard Swagerman of IBM; Josh Steffan of Quest Software

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2 — Doug Doole, Bobby Fielding, and Richard Swagerman of IBM; Josh Steffan of Quest Software

MySQL — Paul DuBois, author of MySQL

Oracle — Phani Arega of Quest Software and the reviewers at Oracle

PostgreSQL — Thomas Lockhart, original author of the PostgreSQL open source documentation

SQL Server — Baya Pavliashvili of Healthstream, Inc.

Database Programming — Brian LaLonde

To all of my colleagues at Quest Software go a very big thanks for your support and encouragement. Rony Lerner, Deb
Jenson, Eyal Aronoff, John Newsom, and Vinny Smith: thank you for investing your trust in me and making these last
three years with Quest Software such a blast.

Thank you to all the guys on the SQL Server team for making our products the best on the market: John Theron,
Patrick O'Keeffe, John Ortega, Mark Simon, Hasan Fahimi, Lee Grissom, Joe Motley, Adrian Tudor, Israel Kalush, Amit
Kubovsky, and Ross Doering. I couldn't ask for a better team or a better set of friends.

Thanks to the SQL Server team at Microsoft for keeping me in the know: Euan Garden, Richard Waymire, Joe Yong,
Don Peterson, Mark Sousa, Steven Dybing, Fernando Caro, Tom Rizzo, and Bill Baker. Your product rocks!

Finally, a word for my family. It's hard to work ridiculously long hours for months on end, between the day job and the
book project, without making some sacrifices. And yet, somehow, we managed to spend so much good time together.
Katie Jo, you've learned how to talk between the time I started and the time I finished. I still get choked up hearing you
say "Yi yove you, daddy." Anna Lynn, your super powers rescued me plenty of times when I was down. I want to hear
"Supergirl to da rescue!" the next time I need rescuing. Here's a secret: I keep that jar of fresh pistachios on my desk
just because they're your favorite. Emily, thank you for letting me paint your nails. Some daughters don't let their dads
that close. Dylan, you whipped me at so many games on the PS2 that I don't know why you still want me to play with
you. But, one day, the ol' man is gonna take you down! Kelly, you are my tonic, my therapy, and my medicine. Just a
touch or a glance or a smile from you and my night turns to day and my despair to hope. Thank you for loving me,
supporting me, and seeing me through this project.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. SQL History and Implementations
In the early 1970s, the seminal work of IBM research fellow Dr. E. F. Codd led to the development of a relational data
model product called SEQUEL, or Structured English Query Language. SEQUEL ultimately became SQL, or Structured
Query Language.

IBM, along with other relational database vendors, wanted a standardized method for accessing and manipulating data
in a relational database. Although IBM was first to develop relational database theory, Oracle was first to market with
the technology. Over time, SQL proved popular enough in the marketplace to attract the attention of the American
National Standards Institute (ANSI), which released standards for SQL in 1986, 1989, 1992, 1999, and 2003. Since
1986, competing languages have allowed programmers and developers to access and manipulate relational data.
However, few were as easy to learn or as universally accepted as SQL. Programmers and administrators now have the
benefit of learning a single language that, with minor adjustments, is applicable to a wide variety of database platforms,
applications, and products.

SQL in a Nutshell, Second Edition, describes five common implementations of SQL2003:

IBM's DB2 Universal Database Version 8 for Linux, Unix, and Windows

MySQL Version 4

Oracle Database 10g

PostgreSQL Version 7

Microsoft's SQL Server 2000

We also cover Sybase Adaptive Server Enterprise (ASE), but to a lesser degree, in Appendix B.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 The Relational Model and ANSI SQL
Relational Database Management Systems (RDBMSs), such as those covered in this book, are the primary engines of
information systems worldwide, particularly web applications and distributed client/server computing systems. They
enable a multitude of users to quickly and simultaneously access, create, edit, and manipulate data without impeding or
impacting other users. They also allow developers to write useful applications to access their resources as well as
provide administrators with the capabilities they need to maintain, secure, and optimize organizational data resources.

An RDBMS is defined as a system whose users view data as a collection of tables related to each other through common
data values. Data is stored in tables, which are composed of rows and columns. Tables of independent data can be
linked (or related) to one another if they each have unique, identifying columns of data (called keys) that represent a
data value held in common. E. F. Codd first described relational database theory in his landmark paper "A Relational
Model of Data for Large Shared Data Banks," published in the Communications of the ACM (Association for Computing
Machinery) in June, 1970. Under Codd's new relational data model, data was structured (into tables of rows and
columns); manageable using operations like selections, projections, and joins; and consistent as the result of integrity
rules like keys and referential integrity. Codd also articulated rules that governed how a relational database should be
designed; the process for applying these rules is now known as normalization.

1.1.1 Codd's Rules for Relational Database Systems

Codd applied rigorous mathematical theories, primarily set theory, to the management of data, and he compiled a list of
criteria a database must meet to be considered relational. At its core, the relational database concept centers around
storing data in tables. This concept is now so common as to seem trivial; however, not long ago designing a system
capable of sustaining the relational model was considered a long shot with limited usefulness. Following are Codd's
Twelve Principles of Relational Databases:

1. Information is represented logically in tables.

2. Data must be logically accessible by table, primary key, and column.

3. Null values must be uniformly treated as "missing information," not as empty strings, blanks, or zeros.

4. Metadata (data about the database) must be stored in the database just as regular data is.

5. A single language must be able to define data, views, integrity constraints, authorization, transactions, and data
manipulation.

6. Views must show the updates of their base tables and vice versa.

7. A single operation must be available to do each of the following operations: retrieve data, insert data, update
data, or delete data.

8. Batch and end-user operations are logically separate from physical storage and access methods.

9. Batch and end-user operations can change the database schema without having to recreate it or the
applications built upon it.

10. Integrity constraints must be available and stored in the metadata, not in an application program.

11. The data manipulation language of the relational system should not care where or how the physical data is
distributed and should not require alteration if the physical data is centralized or distributed.

12. Any row processing done in the system must obey the same integrity rules and constraints that set-processing
operations do.

These principles continue to be the litmus test used to validate the "relational" characteristics of a database platform; a
database that does not meet all of these rules is not fully relational. While these rules do not apply to applications
development, they do determine whether the database engine itself can be considered truly "relational." Currently,
most commercial RDBMS products pass Codd's test. Among the platforms discussed in SQL in a Nutshell, Second
Edition, only MySQL fails to support all of these requirements.

Understanding Codd's principles assists programmers and developers in the proper development and design of
Relational Databases (RDBs). The following sections detail how some of these requirements are met within SQL using
RDBs.

1.1.1.1 Data structures (rules 1, 2, and 8)

Codd's rules 1 and 2 state that "information is represented logically in tables" and that "data must be logically

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Codd's rules 1 and 2 state that "information is represented logically in tables" and that "data must be logically
accessible by table, primary key, and column." So the process of defining a table for a SQL database does not require
that programs instruct the database how to interact with the underlying physical data structures. Furthermore, SQL
logically isolates the process of accessing data and physically maintaining that data as required by rule 8, "batch and
end-user operations are logically separate from physical storage and access methods."

In the relational model, data is shown logically as a two-dimensional table that describes a single entity (for example,
business expenses). Academics refer to tables as entities and to columns as attributes. Tables are composed of rows, or
records (academics call them tuples), and columns (called attributes, since each column of a table describes a specific
attribute of the entity). The intersection of a record and a column provides a single value. The column or columns
whose values uniquely identify each record can act as a primary key. These days this representation seems elementary,
but it was actually quite innovative when it was first proposed.

SQL2003 defines a whole data structure hierarchy beyond simple tables, though tables are the core data structure.
Relational design handles data on a table-by-table basis, not on a record-by-record basis. This table-centric orientation
is the heart of set programming. Consequently, almost all SQL commands operate much more efficiently against sets of
data within or across tables than against individual records. Said another way, effective SQL programming requires that
you think in terms of sets of data, rather than of individual rows.

Figure 1-1 is a description of the SQL2003 terminology used to describe the hierarchical data structures used by a
relational database: clusters contain sets of catalogs; catalogs contain sets of schemas; schemas contain sets of
objects, such as tables and views; and tables are composed of sets of columns and records.

Figure 1-1. SQL2003 dataset hierarchy

For example, in a Business_Expense table, a column called Expense_Date might show when an expense was

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, in a Business_Expense table, a column called Expense_Date might show when an expense was
incurred. Each record in the table describes a specific entity; in this case, everything that makes up a business expense
(when it happened, how much it cost, who incurred the expense, what it was for, and so on). Each attribute of an
expense, in other words each column, is supposed to be atomic; that is, each column is supposed to contain one, and
only one, value. If a table is constructed in which the intersection of a row and column can contain more than one
distinct value, then one of SQL's primary design guidelines has been violated. (Naturally, some of the database
platforms discussed in this book allow you to place more than one value into a column, via VARRAY or TABLE
datatypes.)

There are rules of behavior specified for column values. Foremost is that column values must share a common domain,
better known as a datatype. For example, the value ELMER should not be placed into the Expense_Date field. The
value ELMER is a string, not a date, while the Expense_Date field can contain only dates. Therefore, this column would
be defined as having a DATE datatype. In addition, SQL2003 allows further controls of such values through the
application of constraints and assertions. (Constraints are discussed in detail later in Chapter 2.) A SQL constraint might
limit Expense_Date to expenses less than a year old.

Additionally, data access for all individuals and computer processes is controlled at the schema level by an
AuthorizationID or user. Permissions to specific sets of data may be granted or restricted to each user.

Moreover, SQL databases also employ character sets and collations. Character sets are the "symbols" or "alphabets"
used by the "language" of the data. For example, the American English character set does not contain the special
character for ñ in the Spanish character set. Collations are sets of sorting rules that operate on a character set. A
collation defines how a given data manipulation operation sorts data. For example, an American English character set
might be sorted either by character-order, case-insensitive, or by character-order, case-sensitive.

The ANSI standard does not say how sorts should be done, only that platforms must
provide common collations found in a particular language.

It is important to know what collation you are using when writing SQL code against a database platform since it can
have a direct impact on how queries behave, particularly on the behavior of the WHERE and ORDER BY clauses of
SELECT statements. For example, a query that sorts data using a binary collation will return data in a very different
order than one that sorts data using, say, an American English collation.

1.1.1.2 NULLS (rule 3)

Most databases allow any of their supported datatypes to store NULL values. Inexperienced SQL programmers and
developers tend to think of NULL as zero or blank. In fact, NULL is neither of these. In SQL2003, NULL literally means
that the value is unknown or indeterminate. (This question alone—whether NULL should be considered unknown or
indeterminate—is the subject of academic debate.) This differentiation enables a database designer to distinguish
between those entries that represent a deliberately placed zero (for example) and those where either the data is not
recorded in the system or where a NULL has been explicitly entered. For an example of this semantic difference,
consider a system that tracks payments. A product with a NULL price does not mean that the product is free; instead, a
NULL price indicates that the amount is not known or perhaps not yet determined.

There is a good deal of differentiation between the database platforms in terms of how
they handle NULL values. This leads to some major porting issues between those platforms
relating to NULLs. For example, an empty string (i.e., a NULL string) is inserted as a NULL
value on Oracle. With the exception of Sybase, all the other databases covered in this book
permit the insertion of an empty string into VARCHAR and CHAR columns.

One side effect of the indeterminate nature of a NULL value is that it cannot be used in a calculation or a comparison.
Here are a few brief but very important rules, from the ANSI standard, to remember about the behavior of NULL values
when dealing with NULLs in SQL statements:

A NULL value cannot be inserted into a column defined as NOT NULL.

NULL values are not equal to each other. It is a frequent mistake to compare two columns that contain NULL
and expect the NULL values to match. (The proper way to identify a NULL value in a WHERE clause or in a
Boolean expression is to use phrases such as "value IS NULL" and "value IS NOT NULL".)

A column containing a NULL value is ignored in the calculation of aggregate values such as AVG, SUM, or MAX.
COUNT.

When columns that contain NULL values are listed in the GROUP BY clause of a query, the query output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When columns that contain NULL values are listed in the GROUP BY clause of a query, the query output
contains a single row for NULL values. In essence, the ANSI standard considers all NULLs found to be in a single
group.

DISTINCT and ORDER BY clauses, like GROUP BY, also see NULL values as indistinguishable from each other.
With the ORDER BY clause, the vendor is free to choose whether NULL values sort high (first in the result set)
or sort low (last in the result set) by default.

1.1.1.3 Metadata (rules 4 and 10)

Codd's fourth rule for relational databases states that data about the database (metadata) must be stored in standard
tables, just as all other data. Metadata is data that describes the database itself. For example, every time you create a
new table or view in a database, records are created and stored that describe the new table. Additional records are
needed to store any columns, keys, or constraints on the table. This technique is implemented in most commercial and
open source SQL database products. For example, SQL Server uses what it calls "system tables" to track all the
information about the databases, tables, and database objects in any given database. It also has "system databases"
that keep track of information about the server on which the database is installed and configured.

1.1.1.4 The language (rules 5 and 11)

Codd's rules do not require SQL to be used with a relational database. His rules, particularly rules 5 and 11, only specify
how the language should behave when coupled with a relational database. At one time, SQL competed with other
languages (like Digital's RDO or Fox/PRO) that might have fit the relational bill, but SQL won out for three reasons.
First, SQL is a relatively simple, intuitive, English-like language that handles most aspects of data manipulation. Second,
SQL is satisfyingly high-level. A programmer or Database Administrator (DBA) does not have to spend time ensuring
that data is stored in the proper memory registers or that data is cached to disk. The Database Management System
(DBMS) handles that task automatically. Finally, because SQL is not owned by any single vendor, it was adopted across
a number of platforms.

1.1.1.5 Views (rule 6)

A view is a virtual table that does not exist as a physical data repository of data, but is instead constructed, on the fly,
from a SELECT statement whenever the view is queried. Views enable you to construct different representations out of
the same source data for a variety of audiences without having to alter the way in which the data is stored.

Some vendors support database objects called materialized views. Materialized views are
not governed by the same rules as ANSI standard views.

1.1.1.6 Set operations (rules 7 and 12)

Other database manipulation languages, such as the venerable Xbase, perform their data operations quite differently
from SQL. These languages require you to tell the program exactly how to treat the data, one record at a time. Since
the program cycles down through a list of records, performing its logic on one record after another, this style of
programming is frequently called row processing or procedural programming.

In contrast, SQL programs operate on logical sets of data. Set theory is applied in most all SQL statements such as
SELECT, INSERT, UPDATE, or DELETE statements. In effect, data is selected from a set called a table. Unlike the row
processing style, set processing allows a programmer to tell the database simply what is required, not how each
individual piece of data should be handled. Sometimes set processing is referred to as declarative processing, since a
programmer declares only what data is wanted, as in "Give me all employees in the southern region who earn more
than $70,000 per year," rather than describing the exact procedure used to retrieve or manipulate the data.

Set theory was the brainchild of mathematician Georg Cantor, who developed it at the end
of the nineteenth century. At the time, set theory (and his theory of the infinite) was quite
controversial. Today, set theory is such a common part of life that it is learned in
elementary school.

Examples of set theory in conjunction with relational databases are detailed in the following section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Examples of set theory in conjunction with relational databases are detailed in the following section.

1.1.2 Codd's Rules in Action: Simple SELECT Examples

Up to this point, the chapter has been about the individual aspects of a relational database platform as defined by Codd
and implemented under ANSI SQL. This section presents a high-level overview of the most important SQL statement,
SELECT, and some of its most salient points—namely, the relational operations known as projections, selections, and
joins:

Projection

Retrieves specific columns of data.

Selection

Retrieves specific rows of data.

Join

Returns columns and rows from two or more tables in a single result set.

Although at first glance it might appear that the SELECT statement deals only with the relational selection operation, in
actuality, SELECT embodies all three operations. (Refer to SELECT Statement.)

The following statement embodies the projection operation by selecting the first and last names of an author, plus his
home state, from the authors table:

SELECT au_fname, au_lname, state

FROM authors

The results from any such SELECT statement are presented as another table of data:

au_fname au_lname state

-------------------- ----------------------------------- -----

Johnson White CA

Marjorie Green CA

Cheryl Carson CA

Michael O'Leary CA

Meander Smith KS

Morningstar Greene TN

Reginald Blotchet-Halls OR

Innes del Castillo MI

The resulting data is sometimes called a result set, work table, or a derived table, differentiating it from the base table
in the database that is the target of the SELECT statement.

It is important to note that the relational operation of projection, and not selection, is specified using the SELECT clause
(that is, the keyword SELECT followed by a list of expressions to be retrieved) of a SELECT statement. Selection, the
operation of retrieving specific rows of data, is specified using the WHERE clause in a SELECT statement. WHERE filters
out unwanted rows of data and retrieves only the requested rows. Using the previous example, the following selects
authors from states other than California:

SELECT au_fname, au_lname, state

FROM authors

WHERE state <> 'CA'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE state <> 'CA'

The previous query retrieved all authors; the result of this query is a much smaller subset of records:

au_fname au_lname state

-------------------- ----------------------------------- -----

Meander Smith KS

Morningstar Greene TN

Reginald Blotchet-Halls OR

Innes del Castillo MI

By combining the capabilities of projection and selection together in a single query, you can use SQL to retrieve only
the columns and records that you need at any given time.

Joins are the next, and last, relational operation we're going to talk about in this section. A join relates one table to
another in order to return a result set consisting of related data from both tables.

Different vendors allow varying numbers of tables to join in a single join operation. For
example, Oracle places no limit on the number of joins, while Microsoft SQL Server allows
up to 256 tables in a join operation.

The ANSI standard method of performing joins is to use the JOIN clause in a SELECT statement. An older method, know
as a theta join, performs the join analysis in the WHERE clause. The following example shows both approaches. Each
statement retrieves employee information from the employee base table as well as job descriptions from the jobs
base table. The first SELECT uses the newer, ANSI JOIN clause, while the second SELECT uses a theta join:

-- ANSI style

SELECT a.au_fname, a.au_lname, t.title_id

FROM authors AS a

JOIN titleauthor AS t ON a.au_id = t.au_id

WHERE a.state <> 'CA'

-- Theta style

SELECT a.au_fname, a.au_lname, t.title_id

FROM authors AS a,

 titleauthor AS t

WHERE a.au_id = t.au_id

 AND a.state <> 'CA'

For more information about joins, refer to JOIN Subclause.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 History of the SQL Standard
Because SQL dialects began to proliferate, the ANSI published its first SQL standard in 1986 to bring greater conformity
among vendors, and a second, widely-adopted standard in 1989. The International Standards Organization (ISO) also
approves the SQL standard. ANSI released updates in 1992, known as SQL92 and SQL2, and again in 1999, termed
both SQL99 and SQL3. Now that the ANSI standard has advanced, we generally use the industry standard term
SQL2003. Each time it revises the SQL standard, ANSI adds new features and incorporates new commands and
capabilities into the language. For example, the SQL99 standard added a group of capabilities that handled object-
oriented datatype extensions.

1.2.1 What's New in SQL2003

SQL99 had two main parts, Foundation:1999 and Bindings:1999. The SQL2003 Foundation section includes all of the
Foundation and Bindings standards from SQL99, but a new section called Schemata was created.

The Core requirements of SQL2003 did not change from Core SQL99. So the database platforms that conformed to
Core SQL99 automatically conform to SQL2003. Although the Core of SQL2003 has no additions (except for a few new
reserved words), a number of individual statements and behaviors have been updated or modified. Because these
updates are reflected in the individual syntax descriptions of each statement in Chapter 3, we won't spend time on
them here.

A few elements of the Core in SQL99 have been deleted from SQL2003, including:

The BIT and BIT VARYING datatypes

The UNION JOIN clause

The UPDATE...SET ROW statement

In addition, a number of features, most of which were rather obscure, have been added, deleted, or renamed. At this
point in time, many of the new features of SQL2003 standard are interesting mostly from an academic standpoint
because none of the database platforms support the feature yet. However, there are a few new features that hold more
than passing interest:

Elementary OLAP functions

Adds an Online Analytical Processing (OLAP) amendment, including a number of windowing functions to support
widely used calculations such as moving averages and cumulative sums. Windowing functions are aggregates
computed over a window of data: ROW_NUMBER, RANK, DENSE_RANK, PERCENT_RANK, and CUME_DIST.
OLAP functions are fully described in T611 of the standard. Some database platforms are starting to support the
OLAP functions. Refer to Chapter 4 for details.

Sampling

Adds the TABLESAMPLE clause to the FROM clause. This is useful for statistical queries on large databases, such
as a data warehouse.

Enhanced numeric functions

Adds a large number of numeric functions. In this case, the standard was mostly catching up with the trend in
the industry, since the new functions are already supported by one or more of the database platforms. Refer to
Chapter 4 for details.

Another important change from SQL92 is that SQL99 is built upon SQL92's levels of conformance.

1.2.2 Levels of Conformance

SQL92 first introduced levels of conformance by defining three categories: Entry, Intermediate, and Full. Vendors had
to achieve at least Entry-level conformance to claim ANSI SQL compliance. The U.S. National Institute of Standards and
Technology (NIST) later added the Transitional level between the Entry and Intermediate levels. So NIST's levels of
conformance were Entry, Transitional, Intermediate, and Full, while ANSI's were only Entry, Intermediate, and Full.
Each higher level of the standard was a superset of the subordinate level, meaning that each higher level of the
standard included all the features of the lower level of conformance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

standard included all the features of the lower level of conformance.

Later, SQL99 altered the base levels of conformance. Gone were the Entry, Intermediate, and Full levels of
conformance. With SQL99, vendors must implement all the features of the lowest level of conformance, Core SQL99, in
order to claim (and publish) that they are SQL99 ready. Core SQL99 includes the old Entry SQL92 feature set, features
from other SQL92 levels, and some brand new features. A vendor may also choose to implement additional feature
packages described in the SQL99 standard.

1.2.3 Supplemental Features Packages in the SQL2003 Standard

The SQL2003 standard represents the ideal, but very few vendors currently meet or exceed the Core SQL2003
requirements. The Core standard is like the interstate speed limit: some drivers go above, others go below, but few go
exactly the speed limit. Similarly, vendor implementations can vary greatly.

The nine supplemental features packages, representing different subsets of commands, are platform-optional. Some
features might show up in multiple packages, while others do not appear in any of the packages. These packages and
their features are described in the list that follows.

Two committees—one within ANSI, the other within ISO, and both composed of representatives from virtually every
RDBMS vendor—drafted the definitions shown in the list. In this collaborative and somewhat political environment,
vendors compromised on exactly which proposed features and implementations were incorporated into a new standard.

Many times, a new feature in the ANSI standard is derived from an existing product or is the outgrowth of new research
and development in the academic community. Consequently, vendor adoption of specific ANSI standards can be spotty
at times. A relatively new addition to the SQL2003 standard is SQL/XML. The other parts of the SQL99 standard are
persisted in SQL2003, though their names may have changed or they may have been slightly rearranged.

Part 1 - SQL/Framework

Includes common definitions and concepts used throughout the standard. Defines the way the standard is
structured and how the various parts relate to one another. Describes the conformance requirements set out by
the standards committee.

Part 2 - SQL/Foundation

Includes the Core, an augmentation of the SQL99 Core, and is the largest and most important part of the
standard.

Part 3 - SQL/CLI (Call-Level Interface)

Defines the call-level interface for dynamically invoking SQL statements from external application programs.
SQL/CLI also includes over 60 routine specifications to facilitate the development of truly portable shrink-
wrapped software.

Part 4 - SQL/PSM (Persistent Stored Modules)

Standardizes procedural language constructs similar to those found in database platform-specific SQL dialects
like PL/SQL and Transact-SQL.

Part 9 - SQL/MED (Management of External Data)

Defines the management of data located outside of the database platform using datalinks and a wrapper
interface.

Part 10 - SQL/OBJ (Object Language Binding)

Describes how to embed SQL statements in Java programs. It is closely related to JDBC, but offers a few
advantages over JDBC. It is also very different from the traditional host language binding possible in early
versions of the standard.

Part 11 - SQL/Schemata

Defines over 85 views (three more than in SQL99) used to describe the metadata of each database and stored
in a special schema called INFORMATION_SCHEMA. A number of views that existed in SQL99 have been
updated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

updated.

Part 12 - SQL/JRT (Java Routines and Types)

Defines a number of SQL routines and types using the Java programming language. Features of Java, such as
Java static methods and Java classes, are now supported.

Part 14 - SQL/XML

Adds a new type, called XML, four new operators (XMLPARSE, XMLSERIALIZE, XMLROOT, and XMLCONCAT),
several new functions (described in Chapter 4), and the new IS DOCUMENT predicate. It also includes rules for
mapping SQL-related elements (like identifiers, schemas, and objects) to XML-related elements.

Note that parts 5, 6, 7, and 8 do not exist by design.

Be aware that an RDBMS platform may claim SQL2003 compliance by meeting Core SQL99 standards, so read the
vendor's fine print for a full description of its ANSI conformity features. By understanding what features comprise the
nine packages, you gain a clear idea of both the capabilities of a particular RDBMS and how the various features behave
when SQL code is transported to other database products.

The ANSI standards—which cover retrieval, manipulation, and management of data in commands, such as SELECT,
JOIN, ALTER TABLE, and DROP—formalize many SQL behaviors and syntax structures across a variety of platforms.
These standards become even more important as open source database products, such as MySQL and PostgreSQL,
grow in popularity and are developed by virtual teams rather than large corporations.

SQL in a Nutshell, Second Edition, explains the SQL implementation of five popular RDBMSs. These vendors do not
meet all the SQL2003 standards; in fact, all RDBMS platforms play a constant game of tag with the standards bodies.
Many times, as soon as vendors close in on the standard, the standards bodies update, refine, or otherwise change the
benchmark. Conversely, the vendors often implement new features that are not yet a part of the standard.

1.2.4 SQL2003 Statement Classes

Comparing statement classes further delineates SQL2003 from SQL92. However, you will still hear these terms
bantered about. So you need to know them. In SQL92, SQL statements are grouped into three broad categories:

Data Manipulation Language (DML)

Provides specific data-manipulation commands such as SELECT, INSERT, UPDATE, and DELETE.

Data Definition Language (DDL)

Contains commands that handle the accessibility and manipulation of database objects, including CREATE and
DROP.

Data Control Language (DCL)

Contains the permission-related commands GRANT and REVOKE.

In contrast, SQL2003 supplies seven core categories, now called classes, that provide a general framework for the
types of commands available in SQL. These statement "classes" are slightly different than the SQL92 statement
categories, since they attempt to identify the statements within each class more accurately and logically. Furthermore,
because SQL is constantly under development, new features and commands enter the standard and may necessitate
new statement classes. So, SQL2003 has a new sets of statement classes, originally added in the SQL99 standard,
making them somewhat more comprehensible and logical. Additionally, the new statement classes now allow some
"orphaned" statements—which did not fit well into any of the old categories—to be properly classified.

Table 1-1 identifies the SQL2003 statement classes and lists some commands in each class, each of which is fully
discussed later. At this point, the key is to remember the statement class title.

Table 1-1. SQL2003 statement classes
Class Description Example commands

SQL connection
statements Start and end a client connection CONNECT, DISCONNECT

SQL control
statements Control the execution of a set of SQL statements CALL, RETURN

SQL data
statements May have a persistent and enduring effect upon data SELECT, INSERT, UPDATE,

DELETE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL diagnostic
statements Provide diagnostic information and raise exceptions and errors GET DIAGNOSTICS

SQL schema
statements

May have a persistent and enduring effect on a database schema
and objects within that schema ALTER, CREATE, DROP

SQL session
statements Control default behavior and other parameters for a session SET statements like SET

CONSTRAINT

SQL transaction
statements Set the starting and ending point of a transaction COMMIT, ROLLBACK

Those who work with SQL regularly should become familiar with both the old (SQL92) and the new (SQL2003)
statement classes, since both nomenclatures are still used to refer to SQL features and statements.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 SQL Dialects
The constantly evolving nature of the SQL standard has given rise to a number of SQL dialects among the various
vendors and platforms. These dialects most commonly evolved because the user community of a given database vendor
required capabilities in the database before the ANSI committee created a standard. Occasionally, though, a new
feature is introduced by the academic or research communities due to competitive pressures from competing
technologies. For example, many database vendors are augmenting their current programmatic offerings with Java (as
is the case with DB2, Oracle, and Sybase) or VBScript (as Microsoft is doing). In the future, programmers and
developers will use these programming languages in concert with SQL to build SQL programs.

Many of these dialects include conditional processing capabilities (such as that controlled through IF . . . THEN
statements), control-of-flow functions (such as WHILE loops), variables, and error handling. Because ANSI had not yet
developed a standard for these important features at the time users began to demand them, RDBMS developers and
vendors were free to create their own commands and syntax. In fact, some of the earliest vendors from the 1980s have
variances in the most elementary commands, such as SELECT, because their implementations predate the standards.
ANSI is now refining standards that address these inconsistencies.

Some of these dialects have introduced procedural commands to support the functionality of a much more complete
programming language. For example, these procedural implementations contain error-handling commands, control-of-
flow language, conditional commands, variable handling, arrays, and many other extensions. Although these are
technically divergent procedural implementations, they are called dialects here. The SQL/PSM (Persistent Stored
Module) package provides many features associated with programming stored procedures and incorporates many of the
extensions offered by these dialects.

Some popular dialects of SQL include:

PL/SQL

Found in Oracle. PL/SQL stands for Procedural Language/SQL and contains many similarities to the language
Ada.

Transact-SQL

Used by both Microsoft SQL Server and Sybase Adaptive Server. As Microsoft and Sybase have moved away
from the common platform they shared early in the 1990s, their implementations of Transact-SQL have also
diverged.

PL/pgSQL

The name of the SQL dialect and extensions implemented in PostgreSQL. The acronym stands for Procedural
Language/postgreSQL.

SQLPL

The newest dialect is DB2's SQLPL (SQLProcedural Language), which is based on the standard SQL control
statements. Most of the other dialects predate the standard, meaning you'll find a lot of variations from the SQL
standard. But since SQLPL came after the standard, it is in greater compliance.

If you plan to work extensively with a single database system, you should learn the intricacies of your preferred SQL
dialect or platform.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Foundational Concepts
SQL provides an easy, intuitive way to interact with a database. While the SQL2003 standard does not define the
concept of a "database," it does define all the functions and concepts needed for a user to create, retrieve, update, and
delete data. It is important to know the types of syntax in the SQL2003 standard and the particular platform-specific
syntax guidelines.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Database Platforms Described in This Book
SQL in a Nutshell, Second Edition, describes the SQL standard and the platform-specific implementations of five leading
RDBMSs:

DB2

IBM's popular DBMS runs on hardware platforms ranging from PCs all the way up to huge mainframes. It runs
on a multitude of operating systems, including the burgeoning Linux OS. DB2 is very popular in corporate
environments, especially those with a healthy investment in IBM software, equipment, or services. This book
covers DB2 Universal Database Version 8.1 for Linux, Unix, and Windows.

MySQL

MySQL is a popular open source DBMS that is known for its blistering performance. It runs on numerous
operating systems, including most Linux variants. To improve performance, it has a slimmer feature set than do
many other DBMSs. This book covers MySQL 4.0.

Oracle

Oracle is a leading RDBMS in the commercial sector. It runs on a multitude of operating systems and hardware
platforms. Its scalable, reliable architecture has made it the platform of choice for many users. SQL in a
Nutshell, Second Edition, covers Oracle Database 10g.

PostgreSQL

PostgreSQL is the most feature-rich open source database platform available. Where MySQL is best known for
its high-speed performance, PostgreSQL is best known for its excellent support for ANSI standards and robust
transaction processing capabilities, as well as rich datatype and database object support. In addition to its full
set of features, PostgreSQL runs on a wide variety of operating systems and hardware platforms. This book
covers PostgreSQL 7.2.

SQL Server

Microsoft SQL Server is a popular RDBMS that runs only on the Windows platform. Its features include ease of
use, an all-inclusive feature set, low cost, and high performance. This book covers Microsoft SQL Server 2000.

In addition to the five databases just mentioned, Sybase Adaptive Server Enterprise (ASE) Version 12.5 is covered
separately in Appendix A. Because Sybase and SQL Server have common roots, the appendix discusses the differences
between the generally usable SQL Server syntax and those specifics and extensions offered by Sybase ASE.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Categories of Syntax
To begin to use SQL, you must understand how statements are written. SQL syntax falls into four main categories. Each
category is introduced in the following list and then explained in further detail in the sections that follow:

Identifiers

Describe a user- or system-supplied name for database objects, such as a database, a table, a constraint on a
table, the columns in a table, a view, etc.

Literals

Describe a user- or system-supplied string or value that is not otherwise an identifier or a keyword. Literals may
be strings like "hello", numbers like 1234, dates like "Jan 01, 2002", or Boolean values like TRUE.

Operators

Are symbols specifying an action performed on one or more expressions, most often in DELETE, INSERT,
SELECT, or UPDATE statements. Operators are also used frequently in the creation of database objects.

Reserved words and keywords

Have special meaning to the database SQL parser, such as SELECT, GRANT, DELETE, or CREATE. Reserved
words are words that cannot be used as identifiers within the database platform, usually commands or SQL
statements. Keywords are words that may become reserved some time in the future. You can circumvent the
restriction on using reserved words and keywords as identifiers through quoted identifiers, described in a
moment. This is not recommended! Elsewhere in the book (besides here), we use the term keyword to describe
both concepts.

2.2.1 Identifiers

Keep in mind that RDBMSs are built upon set theory. In ANSI terms, clusters contain sets of catalogs, catalogs contain
sets of schemas, schemas contain sets of objects, and so on. Most database platforms use corollary terms: instances
contain one or more databases; databases contain one or more schemas; schemas contain one or more tables, views,
or stored procedures, and the privileges associated with each object. At each level of this structure, items require a
unique name (that is, an identifier) so that they can be referenced by programs and system processes.This means that
each object (whether a database, table, view, column, index, key, trigger, stored procedure, or constraint) in a RDBMS
must be identified. When issuing the command that creates a database object, you must specify an identifier (i.e., a
name) for that new object.

There are two important categories of rules that experienced programmers keep in mind when choosing an identifier for
a given item:

Naming conventions

Include logical rules of thumb or naming conventions that ultimately create better database structures and data
tracking. These are not so much required by SQL as they are the distilled experience of practiced programmers.

Identifier rules

Are those set by the SQL standard and implemented by the platforms. Such rules include characteristics like
how long a name may be. These identifier conventions are covered for each vendor later in this chapter.

2.2.1.1 Naming conventions

Naming conventions establish a standard baseline for choosing object identifiers. In this section, we show a list of
naming conventions (rules for picking your identifiers) that are based on long years of experience. The SQL standard
has no comment on naming conventions outside of the uniqueness of an identifier, its length, and the characters that
are valid within the identifier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select a name that is meaningful, relevant, and descriptive

Do not name a table XP03; instead, name it Expenses_2005, showing that it stores expenses for the year
2005. Remember that other people will likely be using the table or database too, perhaps long after you have
gone, and the names should make sense at a glance. Each database vendor has limits on object name size, but
names generally may be long enough to make sense to anyone reading them.

Choose and apply the same case throughout

Use either all uppercase or all lowercase for all objects throughout the database. Some database servers are
case-sensitive, so using mixed-case identifiers might cause problems later.

Use abbreviations consistently

Once an abbreviation has been chosen, it should be used consistently throughout the database. For example, if
EMP is used as an abbreviation for EMPLOYEE, then EMP should be used throughout the database. Do not use
EMP in some places and EMPLOYEE in others.

Use complete, descriptive, meaningful names with underscores for reading clarity

A column name UPPERCASEWITHUNDERSCORES is not as easy to read as
UPPERCASE_WITH_UNDERSCORES.

Do not put company or product names in database object names

Companies get acquired and products change names. These elements are too transitory to be included in
database object names.

Do not use overly obvious prefixes or suffixes

For example, don't use "DB_" as a prefix for a database, and don't prefix every view with "V_". Simple queries
to the system table of the database can tell the DBA or database programmer what type of object an identifier
represents.

Do not fill up all available space for the object name

If the database platform allows a 32-character table name, try to leave at least a few free characters at the
end. Some database platforms sometimes append prefixes or suffixes to table names when manipulating
temporary copies of the tables.

Do not use quoted identifiers

Quoted identifiers are object names stored within double-quotes. (The ANSI standard calls these delimited
identifiers.) Encapsulating an identifier within double-quotes allows you to create names that will be difficult to
use and that may cause you problems later. Quoted identifiers are also case-sensitive. For example, you could
embed spaces, special characters, mixed case characters, or even escape sequences within a quoted identifier,
but because some third-party tools (and even vendor-supplied tools) cannot handle special characters in
names, you should not make extensive use of quoted identifiers. Some platforms allow other delimiting symbols
than double-quotes. For example, SQL Server uses brackets [] to designate quoted identifiers.

There are several benefits to following these naming conventions. First, your SQL code becomes, in a sense, self-
documenting because the chosen names are meaningful and understandable to other users. Second, your SQL code and
database objects are easier to maintain—especially for other users who come after you—because your objects are
consistently named. Finally, maintaining consistency increases database functionality. If the database ever has to be
transferred or migrated to another RDMS, consistent and descriptive naming saves both time and energy. Giving a few
minutes of thought to naming SQL objects in the beginning can prevent problems later on.

2.2.1.2 Identifier rules

Identifier rules are rules for identifying objects, enforced by the database platforms, within the database. These rules
apply to normal identifiers, not quoted identifiers. Rules specified by the SQL2003 standard generally differ somewhat
from those of a specific database vendor. Table 2-1 contrasts the SQL2003 rules with those of the five RDMS platforms
covered in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 2-1. Platform-specific rules for regular object identifiers (excludes quoted
identifiers)

Characteristic Platform Specification

Identifier size SQL2003 128 characters

 DB2 128 characters, depending on the object

 MySQL 64 characters

 Oracle 30 bytes (number of characters depends on the character set); database names
are limited to 8 bytes

 PostgreSQL 31 characters (NAMEDATALEN property minus 1)

 SQL Server 128 characters (temp tables are limited to 116 characters)

Identifier may
contain SQL2003 Any number, character, or underscore

 DB2 Any number, uppercase character, digit, or the underscore character

 MySQL Any number, character, or symbol

 Oracle Any number, character, and the underscore (_), pound (#), and dollar ($) symbols

 PostgreSQL Any number, character, or the underscore (_) symbol

 SQL Server Any number, character, and the underscore (_), at sign (@), pound (#), and dollar
($) symbols

Identifier must
begin with SQL2003 A letter

 DB2 A letter

 MySQL A letter or number (but cannot be composed entirely of numbers)

 Oracle A letter

 PostgreSQL A letter or underscore (_)

 SQL Server A letter, underscore (_), at sign (@), or pound (#)

Identifier cannot
contain SQL2003 Spaces or special characters

 DB2 Spaces or special characters

 MySQL Period (.), slash (/), or ASCII(0) and ASCII(255). Quote (') and double-quote (")
are only allowed in quoted identifiers.

 Oracle Spaces, double-quotes ("), or special characters

 PostgreSQL Double-quote (")

 SQL Server Spaces or special characters

Allows quoted
identifiers SQL2003 Yes

 DB2 Yes

 MySQL Yes

 Oracle Yes

 PostgreSQL Yes

 SQL Server Yes

Quoted identifier
symbol SQL2003 Double-quote (")

 DB2 Double-quote (")

 MySQL Quote (') or double-quote (") in ANSI compatibility mode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Oracle Double-quote (")

 PostgreSQL Double-quote (")

 SQL Server Double-quote (") or brackets ([]); brackets are preferred

Identifier may be
reserved SQL2003 No, unless as a quoted identifier

 DB2 Yes

 MySQL No, unless as a quoted identifier

 Oracle No, unless as a quoted identifier

 PostgreSQL No, unless as a quoted identifier

 SQL Server No, unless as a quoted identifier

Schema
addressing SQL2003 Catalog.schema.object

 DB2 Schema.object

 MySQL Database.object

 Oracle Schema.object

 PostgreSQL Database.schema.object

 SQL Server Server.database.schema.object

Identifier must be
unique SQL2003 Yes

 DB2 Yes

 MySQL Yes

 Oracle Yes

 PostgreSQL Yes

 SQL Server Yes

Other rules SQL2003 None

 DB2 None

 MySQL May not contain numbers only

 Oracle Database links are limited to 128 bytes and may not be quoted identifiers

 PostgreSQL None

 SQL Server None

Identifiers must be unique within their scope. Thus, in our earlier discussion of the hierarchy of database objects,
database names must be unique on a given instance of a database server, while the names of tables, views, functions,
triggers, and stored procedures must be unique within a given schema. On the other hand, you can have a table and a
stored procedure with the same name since they are different object types. The names of columns, keys, and indexes
must be unique on a single table or view, and so forth. Check with the database platform documentation for more
information — some platforms require unique identifiers where others may not. For example, DB2 requires all index
identifiers to be unique throughout the database, while SQL Server requires that the index identifier be unique only for
the table it depends on.

Remember, quoted identifiers (object names encapsulated within a special delimiter, usually double quotes) may be
used to break some of the identifier rules specified earlier. Specifically, quoted identifiers may be used to bestow a
reserved word as a name, or to allow normally unusable characters and symbols within a name. For example, you
normally can't use the percent sign (%) in a table name. However, you can, if you must, use the percent sign in a table
name so long as you always enclose that table name within double quotes. To name a table expense%%ratios, you
would specify the name in quotes as "expense%%ratios". Again, remember that in SQL2003, such names are
sometimes known as delimited identifiers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you have created an object name as a quoted identifier, we recommend that you
always reference it using its special delimiter.

2.2.2 Literals

SQL evaluates literal values as any explicit numeric, character string, temporal value (like a date or time), or Boolean
value that is not an identifier or a keyword. SQL databases allow a variety of literal values in a SQL program. Literal
values are allowed for most of the numeric, character, Boolean, and date datatypes. For example, SQL Server numeric
datatypes include (among others) INTEGER, REAL, and MONEY. Thus, numeric literals can look like:

30

-117

+883.3338

-6.66

$70000

2E5

7E-3

As the example illustrates, SQL Server allows signed or unsigned numerals, in scientific or normal notation. And since
SQL Server has a money datatype, even a dollar sign can be included. SQL Server does not allow other symbols in
numeric literals (besides 0 1 2 3 4 5 6 7 8 9 + - $. E e), so do not include commas (or periods in Europe). Most
databases interpret a comma in a numeric literal as a list item separator. Thus, the literal value 3,000 would be
interpreted by the database as 3 and, separately, 000.

Boolean, character string, and date literals look like:

TRUE

'Hello world!'

'OCT-28-1966 22:14:30:00'

Character string literals should always be enclosed by single quotation marks (' '), the standard delimiter for all
character string literals. Character string literals are not restricted just to the alphabet. In fact, any character in the
character set can be represented as a string literal. All of the following are string literals:

'1998'

'70,000 + 14000'

'There once was a man from Nantucket,'

'Oct 28, 1966'

All of these examples are, in fact, compatible with the CHARACTER datatype. Remember not to confuse the string literal
`1998' with the numeric literal 1998. Once string literals are associated with CHARACTER datatypes, it is poor practice
to use them in arithmetic operations without explicitly converting them to a numeric datatype. Some database products
will perform automatic conversion of string literals containing numbers when compared against any DATE or NUMBER
datatype values.

By doubling the delimiter, you can effectively represent a single quotation mark in a literal string, if necessary. That is,
use two quotation marks each time a single quotation mark is part of the value. This example taken from SQL Server
illustrates the idea:

SELECT 'So he said ''Who''s Le Petomaine?'''

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT 'So he said ''Who''s Le Petomaine?'''

This gives the result:

So he said 'Who's Le Petomaine?'

2.2.3 Operators

An operator is a symbol specifying an action that is performed on one or more expressions. Operators are used most
often in DELETE, INSERT, SELECT, or UPDATE statements, but also are used frequently in the creation of database
objects, such as stored procedures, functions, triggers, and views.

Operators typically fall into these categories:

Arithmetic operators

Supported by all databases

Assignment operators

Supported by all databases

Bitwise operators

Supported by Microsoft SQL Server

Comparison operators

Supported by all databases

Logical operators

Supported by DB2, Oracle, SQL Server, and PostgreSQL

Unary operators

Supported by DB2, Oracle, and SQL Server

2.2.3.1 Arithmetic operators

Arithmetic operators perform mathematical operations on two expressions of any datatypes in the numeric datatype
category. See Table 2-2 for a listing of the arithmetic operators.

Table 2-2. Arithmetic operators
Arithmetic operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modula (SQL Server only); returns the remainder of a division operation as an integer value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In DB2, Oracle, and SQL Server, the + and - operators also can be used to perform
arithmetic operations on date values.

2.2.3.2 Assignment operators

Except in Oracle, which uses :=, the assignment operator (=) assigns a value to a variable or the alias of a column
heading. In SQL Server, the keyword AS may serve as an operator for assigning table- or column-heading aliases.

2.2.3.3 Bitwise operators

Microsoft SQL Server provides bitwise operators as a shortcut to perform bit manipulations between two-integer
expressions (see Table 2-3). Valid datatypes that are accessible to bitwise operators include binary, bit, int, smallint,
tinyint, and varbinary.

Table 2-3. Bitwise operators
Bitwise operator Meaning

& Bitwise AND (two operands)

| Bitwise OR (two operands)

^ Bitwise exclusive OR (two operands)

2.2.3.4 Comparison operators

Comparison operators test whether two expressions are equal or unequal. The result of a comparison operation is a
Boolean value: TRUE, FALSE, or UNKNOWN. Also, note that the ANSI standard behavior for a comparison operation
where one or more of the expressions are NULL is NULL. For example, the expression 23 + NULL returns NULL, as does
the expression Feb 23, 2002 + NULL. See Table 2-4 for a list of the comparison operators.

Table 2-4. Comparison operators
Comparison operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

!= Not equal to (not ANSI standard)

!< Not less than (not ANSI standard)

!> Not greater than (not ANSI standard)

Boolean comparison operators are used most frequently in a WHERE clause to filter the rows that qualify for the search
conditions. The following Microsoft SQL Server example uses the greater than or equal to comparison operation:

SELECT *

 FROM Products

 WHERE ProductID >= @MyProduct

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2.3.5 Logical operators

Logical operators are commonly used in a WHERE clause to test for the truth of some condition. Logical operators
return a Boolean value of either TRUE or FALSE. Logical operators also are discussed in SELECT Statement. Not all
database systems support all operators. See Table 2-5 for a list of logical operators.

Table 2-5. Logical operators
Logical

operator Meaning

ALL TRUE if all of a set of comparisons are TRUE

AND TRUE if both Boolean expressions are TRUE

ANY TRUE if any one of a set of comparisons is TRUE

BETWEEN TRUE if the operand is within a range

EXISTS TRUE if a subquery contains any rows

IN TRUE if the operand is equal to one of a list of expressions or one or more rows returned by a
subquery

LIKE TRUE if the operand matches a pattern

NOT Reverses the value of any other Boolean operator

OR TRUE if either Boolean expression is TRUE

SOME TRUE if some of a set of comparisons is TRUE

2.2.3.6 Unary operators

Unary operators perform an operation on only one expression of any of the datatypes of the numeric datatype
category. Unary operators may be used on integer datatypes, though positive and negative may be used on any
numeric datatype (see Table 2-6).

Table 2-6. Unary operators
Unary operator Meaning

+ Numeric value is positive

- Numeric value is negative

~ A bitwise NOT, returns the complement of the number (not in Oracle or DB2)

2.2.3.7 Operator precedence

Sometimes operator expressions become rather complex. When an expression has multiple operators, operator
precedence determines the sequence in which the operations are performed. The order of execution can significantly
affect the resulting value.

Operators have the precedence levels listed below. An operator on a higher level is evaluated before an operator on a
lower level. The following listing denotes operators from highest to lowest precedence:

() (parenthetical expressions)

+, -, ~ (unary operators)

*, /, % (mathematical operators)

+, - (arithmetic operators)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+, - (arithmetic operators)

=, >, <, >=, <=, <>, !=, !>, !< (comparison operators)

^ (Bitwise Exclusive OR), & (Bitwise AND), | (Bitwise OR)

NOT

AND

ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

= (variable assignment)

Operators are evaluated from left to right when they are of equal precedence. However, parentheses are used to
override the default precedence of the operators in an expression. Expressions within a parentheses are evaluated first,
while operations outside the parentheses are evaluated next.

For example, the following expressions in an Oracle query return very different results:

SELECT 2 * 4 + 5 FROM dual

-- Evaluates to 8 + 5 which yields an expression result of 13.

SELECT 2 * (4 + 5) FROM dual

-- Evaluates to 2 * 9 which yields an expression result of 18.

In expressions with nested parentheses, the most deeply nested expression is evaluated first.

This next example contains nested parentheses, with the expression 5 - 3 in the most deeply nested set of parentheses.
This expression yields a value of 2. Then the addition operator (+) adds this result to 4, which yields a value of 6.
Finally, the 6 is multiplied by 2 to yield an expression result of 12:

SELECT 2 * (4 + (5 - 3)) FROM dual

-- Evaluates to 2 * (4 + 2) which further evaluates to 2 * 6,

--and yields an expression result of 12.

RETURN

2.2.3.8 System delimiters and operators

String delimiters mark the boundaries of a string of alphanumeric characters. System delimiters are those symbols
within the character set that have special significance to your database server. Delimiters are symbols that are used to
judge the order or hierarchy of processes and list items. Operators are those delimiters used to judge values in
comparison operations, including symbols commonly used for arithmetic or mathematical operations. Table 2-7 lists the
system delimiters and operators allowed by SQL.

Table 2-7. SQL delimiters and operators
Symbol Usage Example

+ Addition operator; in SQL Server, also serves as a concatenation
operator

On all database platforms:

SELECT MAX(emp_id) + 1

FROM employee

As a subtraction operator:

SELECT MIN(emp_id) - 1

FROM employee

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

- Subtraction operator; also a range indicator in CHECK constraints

FROM employee

As a range operator, in a CHECK
constraint:

ALTER TABLE authors

ADD CONSTRAINT authors_zip_num

CHECK (zip LIKE '%[0-9]%')

* Multiplication operator

SELECT salary * 0.05 AS 'bonus'

FROM employee;

/ Division operator

SELECT salary / 12 AS 'monthly'

FROM employee;

= Equality operator

SELECT *

FROM employee

WHERE lname = 'Fudd'

<> Inequality operators (!= is a nonstandard equivalent on several
platforms)

On all platforms:

SELECT *

FROM employee

WHERE lname <> 'Fudd'

<

<=

Less-than operator

Less-than or equal-to operator

SELECT lname, emp_id,

 (salary * 0.05) AS bonus

FROM employee

WHERE (salary * 0.05) <= 10000

 AND exempt_status < 3

>

>=

Greater-than operator

Greater-than or equal-to operator

SELECT lname, emp_id,

 (salary * 0.025) AS bonus

FROM employee

WHERE (salary * 0.025) > 10000

 AND exempt_status >= 4

(

)

Expression, function calls, order of operations, and subquery
delimiter

Expression:

SELECT (salary / 12) AS monthly

FROM employee

WHERE exempt_status >= 4

Function call:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function call:

SELECT SUM(travel_expenses)

FROM "expense%%ratios"

Order of operations:

SELECT (salary / 12) AS monthly,

 ((salary / 12) / 2) AS biweekly

FROM employee

WHERE exempt_status >= 4

Subquery:

SELECT *

FROM stores

WHERE stor_id IN

 (SELECT stor_id FROM sales

WHERE ord_date > '01-JAN-2004')

%
Wildcard attribute indicator

(refer toLIKE Operator.)

SELECT *

FROM employee

WHERE lname LIKE 'Fud%'

, List item separator

SELECT lname,

 fname,

 ssn,

 hire_date

FROM employee

WHERE lname = 'Fudd'

. Identifier qualifier separator

SELECT *

FROM scott.employee

WHERE lname LIKE 'Fud%'

' Character string indicators

SELECT *

FROM employee

WHERE lname LIKE 'FUD%'

 OR fname = 'ELMER'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

" Quoted identifier indicators

SELECT expense_date,

 SUM(travel_expense)

FROM "expense%%ratios"

WHERE expense_date

 BETWEEN '01-JAN-2004'

 AND '01-APR-2004'

— Single-line comment delimiter (two dashes followed by a space)

-- Finds all employees like Fudd,

-- Fudge, and Fudston

SELECT *

FROM employee

WHERE lname LIKE 'Fud%'

/*

*/

Beginning multiline comment delimiter

Ending multiline comment indicator

/* Finds all employees like Fudd,

 Fudge, and Fudston */

SELECT *

FROM employee

WHERE lname LIKE 'Fud%'

2.2.4 Keywords and Reserved Words

Just as certain symbols have special meaning and functionality within SQL, certain words and phrases have special
significance. SQL keywords are words whose meanings are so closely tied to the operation of the RDBMS that they
should not be used for any other purpose; generally, they are words used in a SQL statement. (Note that they can be
used as an identifier on most platforms, but they shouldn't be.) For example, the word "SELECT" is a reserved word and
should not be used as a table name.

It is generally a good idea to avoid naming columns or tables after a keyword that occurs
in any major platform, because database applications are frequently converted from one
platform to another.

Reserved words, on the other hand, do not have special significance now, but they probably will in a future release. To
emphasize the fact that keywords should not be used as an identifier, but nevertheless could be, the SQL standard calls
them "nonreserved keywords." Reserved words and keywords are not always words used in SQL statements, but may
be words commonly associated with database technology. For example, CASCADE is used to describe data
manipulations that allow their action, such as a delete or update, to "flow down," or cascade, to any subordinant tables.
Reserved words and keywords are widely published so that programmers will not use them as identifiers that will, at
some later revision, cause a problem.

SQL2003 specifies its own list of reserved words and keywords. In addition, the database platform specify their own list
of reserved words and keywords because they each have their own extensions to the SQL command set. SQL standard
keywords, as well as the keywords in the different vendor implementations, are shown in Appendix B.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 SQL2003 and Platform-Specific Datatypes
A table can contain one or many columns. Each column must be defined with a datatype that provides a general
classification of the data that the column will store. In real-world applications, datatypes provide some control and
efficiency as to how tables are defined and how the data is stored within the table. Using specific datatypes enables
better, more understandable queries and helps control the integrity of data.

The tricky thing about SQL2003 datatypes is that they do not always map directly to an identical implementation in a
given platform. Although the platforms specify "datatypes" that correspond to the SQL2003 datatypes, these are not
always true SQL2003 datatypes. For example, MySQL's implementation of a BIT datatype is actually identical to a
CHAR(1) datatype value. Nonetheless, each of the platform datatypes is close enough to the standard to be both easily
understandable and job-ready.

The official SQL2003 datatypes (as opposed to platform-specific datatypes) fall into the general categories described in
Table 2-8. (Note that the SQL2003 standard contains a few rarely used datatypes (ARRAY, MULTISET, REF, and ROW)
that are shown only in Table 2-8 and not elsewhere in the book.)

Table 2-8. SQL2003 categories and datatypes

Category

Example
datatypes

and
abbreviations

Description

BINARY
BINARY LARGE
OBJECT
(BLOB)

This datatype stores binary string values in hexadecimal format. Binary string values
are stored without reference to any character set and without any length limit.

BOOLEAN BOOLEAN This datatype stores truth values—either TRUE or FALSE.

CHARACTER
string types

CHAR

CHARACTER
VARYING
(VARCHAR)

These datatypes can store any combination of characters from the applicable
character set. The varying datatypes allow variable lengths, while the other datatypes
allow only fixed lengths. Also, the variable-length datatypes automatically trim trailing
spaces, while the other datatypes pad all open space.

NATIONAL
CHARACTER
(NCHAR)

NATIONAL
CHARACTER
VARYING
(NCHAR
VARYING)

The national character datatypes are designed to support a particular implementation-
defined character set.

CHARACTER
LARGE OBJECT
(CLOB)

CHARACTER LARGE OBJECT and BINARY LARGE OBJECT are collectively referred to as
large object string types.

NATIONAL
CHARACTER
LARGE OBJECT
(NCLOB)

Same as CHARACTER LARGE OBJECT, but supports a particular implementation-
defined character set.

DATALINK DATALINK Defines a reference to a file or other external data source that is not part of the SQL
environment.

INTERVAL INTERVAL Specifies a set of time values or span of time.

COLLECTION
ARRAY

MULTISET

ARRAY was offered in SQL99. MULTISET was added in SQL2003. Whereas an ARRAY
is a set-length, ordered collection of elements, MULTISET is a variable-length,
unordered collection of elements. The elements ARRAY and MULTISET must be of a
predefined datatype.

NUMERIC

INTEGER

(INT)

SMALLINT

BIGINT

NUMERIC(p,s)

DEC[IMAL]
(p,s)

These datatypes store exact numeric values (integers or decimals) or approximate
(floating point) values. INT, BIGINT, and SMALLINT store exact numeric values with a
predefined precision and a scale of zero. NUMERIC and DEC store exact numeric
values with a definable precision and a definable scale. FLOAT stores approximate
numeric values with a definable precision, while REAL and DOUBLE PRECISION have
predefined precisions. You may define a precision (p) and scale (s) for a DECIMAL,
FLOAT, or NUMERIC datatype to indicate the total number of allowed digits in the
number and the number of decimal places, respectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(p,s)

FLOAT(p,s)

REAL

DOUBLE
PRECISION

INTEGER (INT), SMALLINT, and DEC[IMAL] (p,s) are sometimes referred to as exact
numeric types, while FLOAT (p,s), REAL, and DOUBLE PRECISION are sometimes
called approximate numeric types.

TEMPORAL

DATE

TIME

TIME WITH
TIME ZONE

TIMESTAMP

TIMESTAMP
WITH TIME
ZONE

These datatypes handle values related to time. DATE and TIME are self-explanatory.
Datatypes with the WITH TIME ZONE suffix also include a time zone offset. The
TIMESTAMP datatypes store a value that represents the a precise moment in time.
Temporal types are also known as datetime types.

XML XML

Stores XML data and can be used wherever a SQL datatype is allowed, such as a
column of a table, field in a row, etc. Operations on the values of an XML type assume
a tree-based internal data structure. The internal data structure is based on the XML
Information Set Recommendation (Infoset) using a new document information item
called the XML root information item.

Not every database platform supports each and every ANSI SQL datatype. Table 2-9 compares datatypes across the
five platforms. The table is organized by datatype name. Be careful to look for footnotes when reading this table
because some platforms support a datatype of a given name, but implement it in a different or contrary way than the
ANSI standard and/or other vendors.

While platforms may support similarly named datatypes, their implementations can vary.
Please consult the detailed information in this chapter for specific requirements of each
platform's datatypes.

Table 2-9. Comparison of platform-specific datatypes

Vendor datatype DB2 MySQL Oracle PostgreSQL SQL
Server

SQL2003
datatype

BFILE Y none

BIGINT Y Y Y BIGINT

BINARY Y BLOB

BINARY_FLOAT Y FLOAT

BINARY_DOUBLE Y DOUBLE
PRECISION

BIT Y Y Y none

BIT VARYING, VARBIT Y none

BLOB Y Y Y BLOB

BOOL, BOOLEAN Y Y BOOLEAN

BOX Y none

BYTEA Y BLOB

CHAR, CHARACTER Y Y Y Y Y CHARACTER

CHAR FOR BIT DATA Y none

CIDR Y none

CIRCLE Y none

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLOB Y Y CLOB

CURSOR Y none

DATALINK Y DATALINK

DATE Y Y Y Y DATE

DATETIME Y Y TIMESTAMP

DBCLOB Y NCLOB

DEC, DECIMAL Y Y Y Y Y DECIMAL

DOUBLE, DOUBLE PRECISION Y Y Y Y[1] Y FLOAT

ENUM Y none

FLOAT Y Y Y Y DOUBLE
PRECISION

FLOAT4 Y[2] FLOAT(P)

FLOAT8 Y[3] FLOAT(P)

GRAPHIC Y BLOB

IMAGE Y none

INET Y none

INT, INTEGER Y Y Y Y Y INTEGER

INT2 Y SMALLINT

INT4 Y INT,
INTEGER

INTERVAL Y INTERVAL

INTERVAL DAY TO SECOND Y
INTERVAL
DAY TO
SECOND

INTERVAL YEAR TO MONTH Y
INTERVAL
YEAR TO
MONTH

LINE Y none

LONG Y none

LONG VARCHAR Y none

LONGBLOB Y
BINARY
LARGE
OBJECT

LONG RAW Y BLOB

LONG VARGRAPHIC Y none

LONGTEXT Y none

LSEG Y none

MACADDR Y none

MEDIUMTEXT Y none

MEDIUMBLOB Y none

MONEY Y[4] Y none

NATIONAL CHARACTER VARYING, NATIONAL CHAR
VARYING, NCHAR VARYING,NVARCHAR Y Y Y

NATIONAL
CHARACTER
VARYING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NCHAR, NATIONAL CHAR, NATIONAL CHARACTER Y Y NATIONAL
CHARACTER

NCLOB Y NCLOB

NTEXT, NATIONAL TEXT Y NCLOB

NVARCHAR2(N) Y none

NUMBER Y Y Y Y[5] Y none

NUMERIC NUMERIC

OID Y none

PATH Y none

POINT Y none

POLYGON Y none

RAW Y none

REAL Y Y Y Y REAL

ROWID Y none

ROWVERSION Y none

SERIAL, SERIAL4 Y none

SERIAL8, BIGSERIAL Y none

SET Y none

SMALLDATETIME Y none

SMALLINT Y Y Y Y SMALLINT

SMALLMONEY Y none

SQL_VARIANT Y none

TABLE Y none

TEXT Y Y Y none

TIME Y Y TIME

TIMESPAN Y INTERVAL

TIMESTAMP Y Y Y Y TIMESTAMP

TIMETZ Y TIME WITH
TIME ZONE

TINYINT Y none

UNIQUEIDENTIFIER Y none

UROWID Y none

VARBINARY Y BLOB

VARCHAR, CHAR VARYING,

CHARACTER VARYING
Y Y Y[6] Y Y CHARACTER

VARYING(N)

VARCHAR2 Y CHARACTER
VARYING

VARCHAR FOR BIT DATA Y BIT
VARYING

VARGRAPHIC Y NCHAR
VARYING

XMLTYPE Y XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XMLTYPE Y XML

[1] Synonym for FLOAT

[2] Synonym for REAL

[3] Synonym for DOUBLE PRECISION

[4] Synonym for DECIMAL(9,2)

[5] Synonym for DECIMAL

[6] Oracle vastly prefers VARCHAR2

Each of the following sections lists platform-specific datatypes, the SQL2003 datatype category (if any), and pertinent
details. Descriptions are provided for non-SQL2003 datatypes.

2.3.1 DB2 Datatypes

As shown below, DB2 supports a rich variety of datatypes, including most of the SQL2003 datatypes:

BIGINT (SQL2003 Datatype: BIGINT)

Stores signed or unsigned integers between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807.
Uses 8 bytes of storage.

BLOB (SQL2003 Datatype: BLOB)

Holds variable-length binary data up to 2,147,483,647 bytes in length.

CHAR(n), CHARACTER(n) (SQL2003 Datatype: CHARACTER(n))

Holds fixed-length character data up to 254 bytes in length. Uses (n) bytes of storage.

CHAR(n) FOR BIT DATA (SQL2003 Datatype: none)

Holds a fixed number of values. Uses (n) bytes of storage.

CLOB (SQL2003 Datatype: CLOB)

Holds variable-length character data up to 2,147,483,647 bytes in length.

DATALINK(n) (SQL2003 Datatype: DATALINK)

Stores a link to a file external to the database. Uses n+54 bytes of storage.

DATE (SQL2003 Datatype: DATE)

Holds a calendar date without time of day. Uses 4 bytes of storage.

DBCLOB(n) (SQL2003 Datatype: NCLOB)

Holds variable-length double-byte character data up to 107,3741,823 characters in length.

DEC(p,s), DECIMAL(p,s) (SQL2003 Datatype: DECIMAL, DECIMAL(p,s))

May have a precision of 1 to 31 and a scale of 0 to 31. Uses the integral part of (p/2)+1, where p is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

May have a precision of 1 to 31 and a scale of 0 to 31. Uses the integral part of (p/2)+1, where p is the
precision bytes storage.

DOUBLE, DOUBLE PRECISION (SQL2003 Datatype: DOUBLE PRECISION)

Holds floating point numbers of -1.79769E+308 through 1.79769E+308. Uses 8 bytes of storage.

FLOAT (SQL2003 Datatype: FLOAT)

A synonym of DOUBLE PRECISION.

FLOAT (p) (SQL2003 Datatype: REAL, DOUBLE PRECISION)

Can range from 1 through 53. If p <= 24, then FLOAT (p) is a synonym for REAL. If 24 < p <= 53 then FLOAT
(p) is a synonym for DOUBLE PRECISION.

GRAPHIC(n) (SQL2003 Datatype: NATIONAL CHARACTER)

Is not an image datatype, but rather holds fixed-length character strings (DBCS) up to 127 characters in length.
Uses n*2 bytes of storage when using double-byte character sets or n bytes of storage when using single-byte
character sets.

INT, INTEGER (SQL2003 Datatype: INTEGER)

Stores signed or unsigned integers between -2,147,483,648 and 2,147,483,647. Uses 4 bytes of storage.

LONG VARCHAR (SQL2003 Datatype: VARCHAR)

Holds variable-length character data up to 32,700 bytes in length. Uses 24 bytes of storage.

LONG VARCHAR FOR BIT DATA (SQL2003 Datatype: BIT VARYING)

Holds variable-length character data up to 32,700 bytes in length. Uses 24 bytes of storage.

LONG VARGRAPHIC (SQL2003 Datatype: none)

Holds variable-length double-byte character strings (DBCS) up to 16,350 characters in length. Uses 24 bytes of
storage.

NUM(p,s), NUMERIC(p,s) (SQL2003 Datatype: NUMERIC, NUMERIC(p,s))

Is a synonym for DECIMAL. Uses the integral part of (p/2)+1, where p is the precision bytes storage.

REAL (SQL2003 Datatype: REAL)

Holds floating point numbers of -3.402E+38 through 3.402E+38. Uses 4 bytes of storage.

SMALLINT (SQL2003 Datatype: SMALLINT)

Stores signed or unsigned integers between -32,768 and 32,767. Uses 2 bytes of storage.

TIME (SQL2003 Datatype: TIME)

Holds the time of day. Uses 3 bytes of storage.

TIMESTAMP (SQL2003 Datatype: TIMESTAMP)

Stores the date and time. Uses 10 bytes of storage.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores the date and time. Uses 10 bytes of storage.

VARCHAR(n), CHAR VARYING(n), CHARACTER VARYING(n) (SQL2003 Datatype: CHARACTER VARYING, CHARACTER
VARYING(n))

Holds variable-length character data up to 32,672 bytes in length. Uses n+4 bytes of storage.

VARCHAR(n) FOR BIT DATA (SQL2003 Datatype: none)

Stores a variable number of values. Uses n+4 bytes of storage.

VARGRAPHIC(n) (SQL2003 Datatype: NCHAR VARYING)

Holds variable-length double-byte character data up to 16,336 characters in length. Uses (n*2)+4 bytes of
storage.

2.3.2 MySQL Datatypes

MySQL numeric datatypes support the following optional attributes:

UNSIGNED

The numeric value is assumed to be non-negative (positive or zero). For fixed-point datatypes like DECIMAL
and NUMERIC, the space normally used to show a positive or negative condition of the numeric value can then
be used as part of the value, providing a little extra numeric range in the column for DECIMAL and NUMERIC
types. (There is no SIGNED optional attribute.)

ZEROFILL

Used for display formatting, this attribute tells MySQL that the numeric value is padded with zeros to its full size
rather than spaces. ZEROFILL automatically forces the UNSIGNED attribute as well.

MySQL also enforces a maximum display size for columns of up to 255 characters. Columns longer than 255 characters
are stored properly, but only 255 characters are displayed. Floating-point numeric datatypes may have a maximum of
30 digits after the decimal point.

The list below shows that MySQL supports most of the SQL2003 datatypes, plus several additional datatypes used to
contain lists of values, as well as datatypes used for binary large objects (BLOBs). Datatypes that extend the ANSI
standard include TEXT, ENUM, SET, and MEDIUMINT. Special datatype attributes that go beyond the ANSI standard
include AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL.

BIGINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 Datatype: BIGINT)

Stores signed or unsigned integers. The signed range is -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. The unsigned range is 0 to 18,446,744,073,709,551,615. BIGINT can perform
imprecise calculations due to rounding issues.

BIT, BOOL (SQL2003 Datatype: none)

Synonyms for TINYINT.

BLOB (SQL2003 Datatype: BLOB)

Stores up to 65,535 characters of data. Support for indexing BLOB columns is found only in MySQL Version
3.23.2 or greater (a feature not found in any other platform covered in this book). In MySQL, BLOBs are
functionally equivalent to the MySQL datatype VARCHAR BINARY (discussed below) with the default upper limit.
BLOBs always require case-sensitive comparisons. They differ from a MySQL VARCHAR BINARY column by not
allowing DEFAULT values and not removing trailing spaces. Do not perform GROUP BY or ORDER BY on BLOB
columns. They also are stored separately from their table, whereas all other datatypes in MySQL are stored in
the table file structure itself.

CHAR(n)[BINARY], CHARACTER(n) [BINARY] (SQL2003 Datatype: CHARACTER(n))

Contains a fixed-length character string of 1 to 255 characters in length. CHAR pads with blank spaces when it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Contains a fixed-length character string of 1 to 255 characters in length. CHAR pads with blank spaces when it
stores values, but trims spaces upon retrieval as ANSI SQL2003 VARCHAR does. The BINARY option allows
binary searches rather than dictionary-order, case-insensitive searches.

DATE (SQL2003 Datatype: DATE)

Stores a date from 1000-01-01 to 9999-12-31 (delimited by quotes). MySQL displays these values by default as
YYYY-MM-DD, though the user may specify some other display format.

DATETIME (SQL2003 Datatype: TIMESTAMP)

Stores date and time values within the range of 1000-01-01 00:00:00 to 9999-12-31 23:59:59.

DECIMAL [(p[,s])] [ZEROFILL] (SQL2003 Datatype: DECIMAL(PRECISION, SCALE))

Stores exact numeric values as if they were strings, using a single character for each digit. Precision is 10 if
omitted, and scale is 0 if omitted.

DOUBLE[(p,s)] [ZEROFILL], DOUBLE PRECISION[(p,s)] [ZEROFILL] (SQL2003 Datatype: DOUBLE PRECISION)

Holds double-precision numeric values and is otherwise identical to the double-precision FLOAT datatype,
except that its allowable range is -1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308.

ENUM ("val1""val2," . . . n) (SQL2003 Datatype: none)

A datatype whose value must be one of those contained in the list of values (expressed as strings but stored as
integers), NULL, or an empty string("") as an error value. Up to 65,535 distinct values are allowed.

FLOAT[(p)] [ZEROFILL], float(p,s) [ZEROFILL] (SQL2003 Datatype: FLOAT(P))

Stores floating-point numbers in the range -3.402823466E+38 to -1.175494351E-38 and 1.175494351E-38 to
3.402823466E+38. FLOAT without a precision, or with a precision of <= 24, is single precision. Otherwise,
FLOAT is double precision. When specified alone, precision can range from 0 to 53. When you specify both
precision and scale, precision may be as high as 255 and the scale may be as high as 253. All FLOAT
calculations in MySQL are done with double precision and may, since FLOAT is an approximate datatype,
encounter rounding errors.

INT[EGER][(n)][UNSIGNED][ZEROFILL][AUTO_INCREMENT] (SQL2003 Datatype: INT, INTEGER)

Stores signed or unsigned integers within the range of -2,147,483,648 to 2,147,483,647 on ISAM tables.
Unsigned, the range is 0 to 4,294,967,295 on ISAM tables. The range of values varies slightly on other types of
tables. AUTO_INCREMENT is available to all of the INT variants. It creates a unique row identity for all new rows
added to the table. (Refer to CREATE/ALTER TABLE Statement for more information on AUTO_INCREMENT.)

LONGBLOB (SQL2003 Datatype: BINARY LARGE OBJECT)

Stores BLOB data up to 4,294,967,295 characters in length. Note that this might be too much information for
some client/server protocols to support.

LONGTEXT (SQL2003 Datatype: CLOB)

Stores TEXT data up to 4,294,967,295 characters in length. Note that this might be too much data for some
client/server protocols to support.

MEDIUMBLOB (SQL2003 Datatype: none)

Stores BLOB data up to 16,777,215 characters in length.

MEDIUMTEXT (SQL2003 Datatype: none)

Stores TEXT data up to 16,777,215 characters in length.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores TEXT data up to 16,777,215 characters in length.

MEDIUMINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 Datatype: none)

Stores signed or unsigned integers within the range of 8,388,608 to -8,388,608. The unsigned range is 0 to
16,777,215.

NCHAR(n) [BINARY], [NATIONAL] CHAR(n) [BINARY] (SQL2003 Datatype: NCHAR(n))

Synonyms for CHAR. The NCHAR datatypes provide UNICODE support beginning in MySQL v4.1.

NUMERIC(p,s) (SQL2003 Datatype: DECIMAL(p,s))

A synonym of DECIMAL.

NVARCHAR(n) [BINARY], [national] VARCHAR(n) [BINARY], NATIONAL CHARACTER VARYING(n) [BINARY] (SQL2003
Datatype: NCHAR VARYING)

Synonyms for VARYING [BINARY]. Holds variable length character strings up to 255 characters in length.
Values are stored and compared as case-insensitive unless the BINARY keyword is used.

REAL(p,s) (SQL2003 Datatype: REAL)

Is a synonym of DOUBLE PRECISION.

SET("val1," "val2," . . . n) (SQL2003 Datatype: none)

Is a CHAR datatype whose value must be equal to zero or more values specified in the list of values. Up to 64
items are allowed in the list of values.

SMALLINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 Datatype: SMALLINT)

Stores signed or unsigned integers. The signed range is from -32768 to 32,767. The unsigned range is 0 to
65,535.

TEXT (SQL2003 Datatype: none)

Stores up to 65,535 characters of data. TEXT datatypes are stored separately from their tables, whereas all
other datatypes are stored in their respective table file structures. TEXT is functionally equivalent to VARCHAR
with no specific upper limit (besides the maximum size of the column), and requires case-insensitive
comparisons. TEXT differs from a standard VARCHAR column by not allowing DEFAULT values, and by not
removing trailing spaces. TEXT columns cannot be used in GROUP BY or ORDER BY clauses. In addition, support
for indexing TEXT columns comes only in MySQL Version 3.23.2 or greater.

2.3.3 Oracle Datatypes

As shown below, Oracle supports a rich variety of datatypes, including most of the SQL2003 datatypes.

BFILE (SQL2003 Datatype: DATALINK)

Holds a pointer to a BLOB stored outside the database, but present on the local server, of up to 4 GB in size.
The database streams input (but not output) access to the external BLOB. If you delete a row containing a
BFILE value, only the pointer value is deleted. The actual file structure is not deleted.

BINARY_FLOAT (SQL2003 Datatype: FLOAT)

Holds a 32-bit floating point number.

BINARY_DOUBLE (SQL2003 Datatype: FLOAT)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Holds a 64-bit floating point number.

BLOB (SQL2003 Datatype: BLOB)

Holds a binary large object (BLOB) value of between 8 and 128 terabytes in size, depending on the database
blocksize. In Oracle, large binary objects (BLOBs, CLOBs, and NCLOBs) have the following restrictions:

They cannot be selected remotely.

They cannot be stored in clusters.

They cannot compose a varray.

They cannot be a component of an ORDER BY or GROUP BY clause in a query.

They cannot be used by an aggregate function in a query.

They cannot be referenced in queries using DISTINCT, UNIQUE, or joins.

They cannot be referenced in ANALYZE...COMPUTE or ANALYZE...ESTIMATE statements.

They cannot be part of a primary key or index key.

They cannot be used in the UPDATE OF clause in an UPDATE trigger.

CHAR(n)[BYTE | CHAR], CHARACTER(n)[BYTE | CHAR] (SQL2003 Datatype: CHARACTER(n))

Holds fixed-length character data up to 2,000 bytes in length. BYTE tells Oracle to use bytes for the size
measurement. CHAR tells Oracle to use characters for the size measurement.

CLOB (SQL2003 Datatype: CLOB)

Stores a character large object (CLOB) value of between 8 and 128 terabytes in size, depending on the
database blocksize. See BLOB for a list of restrictions on the use of the CLOB type.

DATE (SQL2003 Datatype: DATE)

Stores a valid date and time within the range of 4712BC-01-01 00:00:00 to 9999AD-12-31 23:59:59.

DECIMAL(p,s) (SQL2003 Datatype: DECIMAL(p,s))

Is a synonym of NUMBER that accepts precision and scale arguments.

DOUBLE PRECISION (SQL2003 Datatype: DOUBLE PRECISION)

Stores floating point values with double precision, the same as FLOAT(126).

FLOAT(n) (SQL2003 Datatype: FLOAT(n))

Stores floating-point numeric values with a binary precision of up to 126.

INTEGER(n) (SQL2003 Datatype: INTEGER)

Stores signed and unsigned integer values with a precision of up to 38. INTEGER is treated as a synonym for
NUMBER.

INTERVAL DAY (n) TO SECOND (x) (SQL2003 Datatype: INTERVAL)

Stores a time span in days, hours, minutes, and seconds where n is the number of digits in the day field (0 to 9
acceptable, 2 is the default) and x is the number of digits used for fractional seconds in the seconds field (0 to 9
acceptable, 6 is the default).

INTERVAL YEAR (n) TO MONTH (SQL2003 Datatype: INTERVAL)

Stores a time span in years and months where n is the number of digits in the year field. The value n can be 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores a time span in years and months where n is the number of digits in the year field. The value n can be 0
to 9, with a default of 2.

LONG (SQL2003 Datatype: none)

Stores variable-length character data up to 2 gigabytes in size. Please note, however, that LONG is not
scheduled for long-term support by Oracle. Use another datatype, such as CLOB, instead of LONG, whenever
possible.

LONG RAW (SQL2003 Datatype: none)

Stores raw variable-length binary data up to 2 gigabytes in size. LONG RAW and RAW are typically used to store
graphics, sounds, documents, and other large data structures. BLOB is preferred over LONGRAW in Oracle
because BLOB has fewer restrictions on its use. LONGRAW is also deprecated.

NATIONAL CHARACTER VARYING (n), NATIONAL CHAR VARYING (n),

NCHAR VARYING (n) (SQL2003 Datatype: NCHAR VARYING (n))

The same as NVARCHAR2.

NCHAR(n), NATIONAL CHARACTER(n),NATIONAL CHAR(n) (SQL2003 Datatype: NATIONAL CHARACTER)

Holds UNICODE character data of 1 to 2,000 bytes in length. Default size is 1 byte.

NCLOB (SQL2003 Datatype: NCLOB)

Represents a CLOB that supports multibyte and UNICODE values of between 8 and 128 terabytes in size,
depending on the database blocksize. See BLOB for a list of restrictions on the use of the CLOB type.

NUMBER (p,s), NUMERIC (p,s) (SQL2003 Datatype: NUMERIC (p,s))

Stores a number with a precision of 1 to 38 and a scale of -84 to 127.

NVARCHAR2(n) (SQL2003 Datatype: none)

Represents Oracle's preferred UNICODE variable-length character datatype. It can hold 1 to 4,000 bytes.

RAW(n) (SQL2003 Datatype: none)

Stores raw, variable-length binary data up to 2,000 bytes in size. The value n is the specified size of the
datatype. RAW is also deprecated in Oracle 10g. See LONG RAW.

REAL (SQL2003 Datatype: REAL)

Stores floating-point values as single-precision and is the same as FLOAT(63).

ROWID (SQL2003 Datatype: none)

Represents a unique, base-64 identifier for each row in a table, often used in conjunction with the ROWID
pseudocolumn.

SMALLINT (SQL2003 Datatype: SMALLINT)

The same as INTEGER.

TIMESTAMP(n){[WITH TIME ZONE] | [WITH LOCAL TIME ZONE]} (SQL2003 Datatype: TIMESTAMP[WITH TIME ZONE])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A full date and time value where n is the number of digits (0 to 9 are acceptable, 6 is the default) in the
fractional part of the seconds field. WITH TIME ZONE stores whatever time zone you pass to it (the default is
your session time zone) and returns a time value in that same time zone. WITH LOCAL TIME ZONE stores data
in the time zone of the current session and returns data in the time zone of the user's session.

UROWID [(n)] (SQL2003 Datatype: none)

Stores a base-64 value showing the logical address of the row in its table. It defaults to 4,000 bytes in size, but
you may optionally specify its size up to 4,000 bytes.

VARCHAR(n), CHARACTER VARYING(n), CHAR VARYING(n) (SQL2003 Datatype: CHARACTER VARYING(n))

Holds variable-length character data of 1 to 4,000 bytes in size.

Oracle does not recommend using VARCHAR. Oracle has encouraged the use of VARCHAR2
instead for many years.

VARCHAR2(n [BYTE | CHAR]) (SQL2003 Datatype: CHARACTER VARYING(n))

Holds variable-length character data up to 4,000 bytes in length as defined by n. BYTE tells Oracle to use bytes
for the size measurement. CHAR tells Oracle to use characters for the size measurement. If you use CHAR,
Oracle internally must still transform that into some number of bytes, which is then subject to the 4,000-byte
upper limit.

XMLTYPE (SQL2003 Datatype: XML)

Stores XML data within the Oracle database. The XML data is accessed using XPath expressions as well as a
number of built-in XPath functions, SQL functions, and PL/SQL packages. The XMLTYPE datatype is a system-
defined type, so it is usable as an argument in functions, or as a datatype of column in a table or view. When
used in a table, the data can be stored in a CLOB column or object-relationally.

2.3.4 PostgreSQL Datatypes

PostgreSQL database supports most SQL2003 datatypes, plus an extremely rich set of datatypes that store spatial and
geometric data. PostgreSQL sports a rich set of operators and functions especially for the geometric datatypes,
including capabilities such as rotation, finding intersections, and scaling. PostgreSQL also supports additional versions of
existing datatypes that are smaller and take up less disk space than their corresponding primary datatypes. For
example, PostgreSQL offers several variations on INTEGER to accommodate small or large numbers and thereby
consume proportionally less or more space.

BIGSERIAL

See SERIALS.

BIT (SQL2003 Datatype: BIT)

A fixed-length bit string.

BIT VARYING(n), varbit(n) (SQL2003 Datatype: BIT VARYING)

Denotes a variable-length bit string n bits in length.

BOOL, BOOLEAN (SQL2003 Datatype: BOOLEAN)

Stores a logical Boolean (true/false/unknown) value. The keywords TRUE and FALSE are preferred, but
PostgreSQL supports the following valid literal values for the "true" state: TRUE, t, true, y, yes, and 1. Valid
"false" values are: FALSE, f, false, n, no, and 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"false" values are: FALSE, f, false, n, no, and 0.

BOX ((x1, y1), (x2, y2)) (SQL2003 Datatype: none)

Stores the values of a rectangular box in a 2D plane. Values are stored in 32 bytes and are represented as
((x1,y1),(x2,y2)), signifying the opposite corners of the box (upper-right and lower-left corners, respectively).
The outer parentheses are optional.

BYTEA (SQL2003 Datatype: BINARY LARGE OBJECT)

Raw, binary data such as that used to store graphics, sound, or documents. For storage, this datatype requires
4 bytes plus the actual size of the binary string.

CHAR(n), CHARACTER(n) (SQL2003 Datatype: CHARACTER(n))

Contains a fixed-length character string padded with spaces up to a length of n. Attempting to insert a value
longer than n results in an error (unless the extra length is composed of spaces, which are then truncated such
that the result fits in n characters).

CIDR (x.x.x.x/y) (SQL2003 Datatype: none)

Describes an IP-Version 4 network or host address in a 12-byte storage space. The range is any valid IPv4
network address. Data in CIDR datatypes is represented as x.x.x.x/y where the xs are the IP address and y is
the number of bits in the netmask. CIDR does not accept nonzero bits to the right of a zero bit in the netmask.

CIRCLE x, y, r (SQL2003 Datatype: none)

Describes a circle in a 2D plane. Values are stored in 24 bytes of storage space and are represented as: x, y, r.
The x, y value represents the coordinates of the center of the circle, while r represents the length of the radius.
Parentheses or arrow brackets may optionally delimit the values for x, y, and r.

DATE (SQL2003 Datatype: DATE)

Holds a calendar date (year, day, and month) without the time of day in a 4-byte storage space. Dates must be
between 4713 BC and 32767 AD. DATE's lowest resolution, naturally, is to the day.

DATETIME (SQL2003 Datatype: TIMESTAMP)

Holds a calendar date with a specific time of day.

DECIMAL [(p,s)], NUMERIC[(p,s)](SQL2003 Datatype: DECIMAL (PRECISION, SCALE), NUMERIC (p,s))

Stores exact numeric values with a precision (p) as high as 9 and a scale (s) of 0, with no upper limit.

FLOAT4, REAL (SQL2003 Datatype: FLOAT(p))

Stores floating-point numbers with a precision of 8 or less and 6 decimal places.

FLOAT8, DOUBLE PRECISION (SQL2003 Datatype: FLOAT(p), 7 <= p < 16)

Stores floating-point numbers with a precision of 16 or less, and 15 decimal places.

INET (x.x.x.x/y)

Stores an IP-Version 4 network or host address in a 12-byte storage space. The range is any valid IPv4 network
address. The x's represent the IP address, and y is the number of bits in the netmask. The netmask defaults to
32. Unlike CIDR, INET accepts nonzero bits to the right of the netmask.

SMALLINT (SQL2003 Datatype: SMALLINT)

Stores signed or unsigned 2-byte integers within a range of -32,768 to 32,767. INT2 is a synonym.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores signed or unsigned 2-byte integers within a range of -32,768 to 32,767. INT2 is a synonym.

INTEGER (SQL2003 Datatype: INTEGER)

Stores signed or unsigned 4-byte integers within a range of -2,147,483,648 to 2,147,483,647. INT4 is a
synonym.

INT8 (SQL2003 Datatype: none)

Stores signed or unsigned 8-byte integers with a range from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

INTERVAL(p) (SQL2003 Datatype: none)

Holds general-use time-span values within the range of -178,000,000 to 178,000,000 years in a 12-byte
storage space. INTERVAL's lowest resolution is to the microsecond. This is a different datatype than the ANSI
standard, which requires an interval qualifier such as INTERVAL YEAR TO MONTH.

LINE ((x1, y1) , (x2, y2)) (SQL2003 Datatype: none)

Holds line data, without endpoints, in 2D plane values. Values are stored in 32 bytes and are represented as
((x1,y1), (x2,y2)), indicating the start and end points of a line. Parentheses are optional for line syntax.

LSEG ((x1, y1) , (x2, y2)) (SQL2003 Datatype: none)

Holds line segment (LSEG) data, with endpoints, in a 2D plane. Values are stored in 32 bytes and are
represented as ((x1,y1), (x2,y2)). Parentheses are optional for LSEG syntax. To those who are interested, the
"line segment" is what most people traditionally think of as a line. For example, the lines on a playing field are
actually line segments.

In true geometric nomenclature, a line stretches to infinity, having no terminus at either
end, while a line segment has end points. PostgreSQL allows datatypes for both, but they
are functionally equivalent.

MACADDR (SQL2003 Datatype: none)

Holds a value for the MAC address of a computer's network interface card in a 6-byte storage space. MACADDR
accepts a number of industry standard representations, such as:

08002B:010203
08002B-010203
0800.2B01.0203
08-00-2B-01-02-03
08:00:2B:01:02:03

MONEY, DECIMAL(9,2) (SQL2003 Datatype: none)

Stores U.S.-style currency values in the range of (-21,474,836.48 to 21,474,836.47).

NUMERIC [(p, s)], DECIMAL [(p, s)] (SQL2003 Datatype: none)

Stores exact numeric values with a precision (p) and scale (s).

OID (SQL2003 Datatype: none)

Stores unique object identifiers.

PATH ((x1, y1), ...n), Path [(x1, y1), ...n] (SQL2003 Datatype: none)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PATH ((x1, y1), ...n), Path [(x1, y1), ...n] (SQL2003 Datatype: none)

Describes an open and closed geometric path in a 2D plane. Values are represented as [(x1, y1),...] and
consume 4 + 32n bytes of storage space. Each (x,y) value represents a point on the path. Paths are either
open, where the first and last points do not intersect, or closed, where the first and last points do intersect.
Parentheses are used to encapsulate closed paths, while brackets encapsulate open paths.

POINT (x, y) (SQL2003 Datatype: none)

Stores values for a geometric point in a 2D plane in a 16-byte storage space. Values are represented as (x,y).
The point is the basis for all other two-dimensional spatial datatypes supported in PostgreSQL. Parentheses are
optional for point syntax.

POLYGON ((x1, y1), ...n) (SQL2003 Datatype: none)

Stores values for a closed geometric path in a 2D plane using 4 + 32n bytes of storage. Values are represented
as [(x1,y1),...]. POLYGON is essentially a closed path datatype.

SERIAL, SERIAL4 (SQL2003 Datatype: none)

Stores an autoincrementing, unique, integer ID for indexing and cross-referencing. These types store up to 4
bytes of data (a range of numbers from 1 to 2,147,483,647). Tables defined with this datatype cannot be
directly dropped. You must first issue the DROP SEQUENCE command, then follow up with the DROP TABLE
command.

SERIAL8, BIGSERIAL (SQL2003 Datatype: none)

Stores an autoincrementing, unique integer ID for indexing and cross-referencing. It stores up to 8 bytes of
data (a range of numbers from 1 to 9,223,372,036,854,775,807). Tables defined with this datatype cannot be
directly dropped. You must first issue the DROP SEQUENCE command, and then follow up with the DROP TABLE
command.

TEXT (SQL2003 Datatype: CLOB)

Stores large, variable-length, character-string data up to 1 gigabyte. PostgreSQL automatically compresses
TEXT strings, so the disk size may be less than the string size.

TIME [(p)] [WITHOUT TIME ZONE | WITH TIME ZONE] (SQL2003 Datatype: TIME)

Holds the time of day and stores either no time zone (using 8 bytes of storage space) or the time zone of the
database server (using 12 bytes of storage space). The allowable range is from 00:00:00.00 to 23:59:59.99.
The lowest granularity is 1 microsecond. Note that time zone information on most Unix systems is available only
for the years 1902 through 2038.

TIMESPAN (SQL2003 Datatype: none)

Holds a value that represents a specific span of time. The ANSI datatype most like PostgreSQL's TIMESPAN is
INTERVAL.

TIMESTAMP [(p)] [WITHOUT TIME ZONE | WITH TIME ZONE] (SQL2003 Datatype: TIMESTAMP [WITH TIME ZONE |
WITHOUT TIME ZONE])

Stores the date and time and stores either no time zone or the time zone of the database server. The range of
values is from 4713 BC to 1465001 AD. TIMESTAMP uses 8 bytes of storage space per value. The lowest
granularity is 1 microsecond. Note that time zone information on most Unix systems is available only for the
years 1902 through 2038.

TIMETZ (SQL2003 Datatype: TIME WITH TIME ZONE)

Holds the time of day, including the time zone.

VARCHAR(n), CHARACTER VARYING(n) (SQL2003 Datatype: CHARACTER VARYING(n))

Stores variable-length character strings up to a length of n. Trailing spaces are not stored.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores variable-length character strings up to a length of n. Trailing spaces are not stored.

2.3.5 SQL Server Datatypes

The list below shows that Microsoft SQL Server supports most SQL2003 datatypes. SQL Server supports additional
datatypes used to uniquely identify rows of data within a table and across multiple servers, such as
UNIQUEIDENTIFIER, in support of Microsoft's hardware philosophy of "scale-out" (that is, deploying on many Intel-
based servers), rather than "scale-up" (deploying on a single, huge, high-end Unix server or a Windows Data Center
Server).

An interesting side note about SQL Server dates: SQL Server supports dates starting at
the year 1753. You can't store dates prior to that year using any of SQL Server's date
datatypes. Why not? The rationale is that the English-speaking world started using the
Gregorian calendar in 1753 (the Julian calendar was used prior to September, 1753) and
converting dates prior to Julian to the Gregorian calendar can be quite challenging.

BIGINT (SQL2003 Datatype: BIGINT)

Stores signed and unsigned integers between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807
using 8 bytes of storage space. See INT for IDENTITY property rules that also apply to BIGINT.

BINARY[(n)] (SQL2003 Datatype: BLOB)

Stores a fixed-length binary value of 1 to 8,000 bytes in size. BINARY datatypes consume n + 4 bytes of
storage space.

BIT (SQL2003 Datatype: BOOLEAN)

Stores 1, 0, or NULL to indicate "unknown." Up to 8 BIT columns on a single table will be stored in a single
byte. An additional 8 BIT columns consume one more byte of storage space. BIT columns cannot be indexed.

CHAR[(n)], CHARACTER[(n)] (SQL2003 Datatype: CHARACTER(n))

Holds fixed-length character data of 1 to 8,000 characters in length. Any unused space is, by default, padded
with spaces. (You can disable the automatic padding of spaces.) Storage size is n bytes.

CURSOR (SQL2003 Datatype: none)

A special datatype used to describe a cursor as a variable or stored procedure OUTPUT parameter. It cannot be
used in a CREATE TABLE statement. The CURSOR datatype is always nullable.

DATETIME (SQL2003 Datatype: TIMESTAMP)

Holds date and time data within the range of 1753-01-01 00:00:00 through 9999-12-31 23:59:59. Values are
stored in an 8-byte storage space.

DECIMAL (p,s), DEC (p,s), NUMERIC (p,s) (SQL2003 Datatype: DECIMAL (p,s), NUMERIC (p,s))

Stores decimal values up to 38 digits long. The values p and s define precision and scale, respectively. The
default value for scale is 0. The precision of the datatype determines how much storage space it will consume:

Precision 1-9 uses 5 bytes
Precision 10-19 uses 9 bytes
Precision 20-28 uses 13 bytes
Precision 29-39 uses 17 bytes

See INT for IDENTITY property rules that also apply to DECIMAL.

DOUBLE PRECISION (SQL2003 Datatype: none)

A synonym for FLOAT(53).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A synonym for FLOAT(53).

FLOAT [(n)] (SQL2003 Datatype: FLOAT, FLOAT (n))

Holds floating-point numbers in the range -1.79E+308 through 1.79E+308. Precision, represented by n, may be
1 to 53. Storage size is 4 bytes for 7 digits, where n is 1 to 24. Anything larger requires 8 bytes of storage.

IMAGE (SQL2003 Datatype: BLOB)

Stores a variable-length binary value up to 2,147,483,647 bytes in length. This datatype is commonly used to
store graphics, sounds, and files like MS-Word documents and MS-Excel spreadsheets. IMAGE cannot be freely
manipulated. IMAGE and TEXT columns have a lot of constraints on how they can be used. See TEXT for a list of
the commands and functions that work on an IMAGE datatype.

INT [IDENTITY [(seed, increment)] (SQL2003 Datatype: INTEGER)

Stores signed or unsigned integers between -2,147,483,648 and 2,147,483,647 in 4 bytes of storage space. All
integer datatypes, as well as the decimal type, support the IDENTITY property. An identity is an automatically
incrementing row identifier. Refer to the CREATE/ALTER TABLE Statement.

MONEY (SQL2003 Datatype: none)

Stores monetary values in a range from -922,337,203,685,477.5808 to 922,337,203,685,477.5807. Values are
stored in an 8-byte storage space.

NCHAR(n), NATIONAL CHAR(n), NATIONAL CHARACTER(n) (SQL2003 Datatype: NATIONAL CHARACTER (n))

Holds fixed-length UNICODE data up to 4,000 characters in length. NCHAR consumes twice n in storage space.

NTEXT, NATIONAL TEXT (SQL2003 Datatype: NCLOB)

Holds UNICODE text passages up to 1,073,741,823 characters in length. See TEXT for rules about the
commands and functions available for NTEXT.

NUMERIC(p,s) (SQL2003 Datatype: DECIMAL(p,s))

A synonym for DECIMAL. See INT for rules about the IDENTITY property.

NVARCHAR(n), NATIONAL CHAR VARYING(n), NATIONAL CHARACTER VARYING(n) (SQL2003 Datatype: NATIONAL
CHARACTER VARYING(n))

Holds variable-length UNICODE data up to 4,000 characters in length. Storage space consumed is double the
character length (characters * 2) inserted into the field. The system setting SET ANSI_PADDING is always
enabled (ON) for NCHAR and NVARCHAR fields in SQL Server.

REAL, FLOAT(24) (SQL2003 Datatype: REAL)

Holds floating point numbers of -3.40E + 38 through 3.40 E+38 in a 4-byte storage space. REAL is functionally
equivalent to FLOAT(24).

ROWVERSION (SQL2003 Datatype: none)

A unique number within a database that is updated whenever a row is updated. Called TIMESTAMP in earlier
versions.

SMALLDATETIME (SQL2003 Datatype: none)

Holds date and time data within the range of `1900-01-01 00:00' through `2079-06-06 23:59' down to the
nearest minute. (Minutes are rounded down when seconds are 29.998 or less. Otherwise, they are rounded up.)
Values are stored in a 4-byte storage space.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SMALLINT (SQL2003 Datatype: SMALLINT)

Stores signed or unsigned integers between -32,768 and 32,767 in 2 bytes of storage space. See INT for rules
about the IDENTITY property, which applies to this type.

SMALLMONEY (SQL2003 Datatype: none)

Stores monetary values within the range of 214,748.3648 and -214,748.3647. Values are stored in a 4-byte
storage space.

SQL_VARIANT (SQL2003 Datatype: none)

Stores values of other SQL Server-supported datatypes, except TEXT, NTEXT, ROWVERSION, and other
SQL_VARIANTs. It can store up to 8,016 bytes of data and supports NULL and DEFAULT values. SQL_VARIANT
is used in columns, parameters, variables, and return values of functions and stored procedures.

TABLE (SQL2003 Datatype: none)

A special datatype that stores a result set for a later process. It is used solely in procedural processing and
cannot be used in a CREATE TABLE statement. This datatype alleviates the need for temporary tables in many
applications. It can reduce the need for procedure recompiles, thus speeding execution of stored procedures
and user-defined functions.

TEXT (SQL2003 Datatype: CLOB)

Stores very large passages of text up to 2,147,483,647 characters in length. TEXT and IMAGE values are often
more difficult to manipulate than, say, VARCHAR values. For example, you cannot place an index on a TEXT or
IMAGE column. TEXT can be manipulated using the functions DATALENGTH, PATINDEX, SUBSTRING, TEXTPTR,
and TEXTVALID as well as the commands READTEXT, SET TEXTSIZE, UPDATETEXT, and WRITETEXT.

TIMESTAMP (SQL2003 Datatype: TIMESTAMP)

Stores an automatically generated binary number that guarantees uniqueness in the current database and is
therefore different from the ANSI TIMESTAMP datatype. TIMESTAMPs consume 8 bytes of storage space.
ROWVERSION is now preferred over TIMESTAMP to uniquely track each row.

TINYINT (SQL2003 Datatype: none)

Stores unsigned integers between 0 and 255 in 1 byte of storage space. See the entry for INT to see rules
about the IDENTITY property, which applies to this type.

UNIQUEIDENTIFIER (SQL2003 Datatype: none)

Represents a value that is globally unique across all databases and all servers. Values are represented as
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, in which each x is a hexadecimal digit in the range 0-9 or a-f. The
only operations allowed against UNIQUEIDENTIFIERs are comparisons and NULL checks. Column constraints
and properties are allowed on UNIQUEIDENTIFIER columns, with the exception of the IDENTITY property.

VARBINARY[(n)] (SQL2003 Datatype: BLOB)

Describes a variable-length binary value up to 8,000 bytes in size. Storage space consumed is equivalent to the
size of the data inserted, plus 4 bytes.

VARCHAR[(n)], CHAR VARYING[(n)], CHARACTER VARYING [(n)] (SQL2003 Datatype: CHARACTER VARYING(n))

Holds fixed-length character data of 1 to 8,000 characters in length. Storage space is the actual size of the
value entered in bytes, not the value of n.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 Constraints
Constraints allow you to automatically enforce the integrity of data and to filter the data that is placed in a database. In
a sense, constraints are rules that define which data values are valid during INSERT, UPDATE, and DELETE operations.
When a data modification transaction breaks the rules of a constraint, the transaction is rejected.

In the ANSI standard, there are four constraint types: CHECK, PRIMARY KEY, UNIQUE, and FOREIGN KEY. (The RDBMS
platforms may allow more. Refer to different platform sections of the CREATE/ALTER TABLE Statement to find out these
exceptions.)

2.4.1 Scope

Constraints may be applied at the column-level or the table-level:

Column-level constraints

Declared as part of a column definition and apply only to that column.

Table-level constraints

Declared independently from any column definitions (traditionally, at the end of a CREATE TABLE statement)
and may apply to one or more columns in the table. A table constraint is required when you wish to define a
constraint that applies to more than one column.

2.4.2 Syntax

Constraints are defined when you create or alter a table. The general syntax for constraints is shown here:

CONSTRAINT [constraint_name] constraint_type [(column [,...])]

[predicate] [constraint_deferment] [deferment_timing]

The syntax elements are as follows:

CONSTRAINT [constraint_name]

Begins a constraint definition and, optionally, provides a name for the constraint. When you omit
constraint_name, the system will create one for you automatically. On some platforms, like DB2, you may omit
the CONSTRAINT keyword as well. System-generated names are often incomprehensible. It is good practice to
specify human-readable, sensible names for constraints.

constraint_type

Declares the constraint as one of the allowable types: CHECK, PRIMARY KEY, UNIQUE, or FOREIGN KEY. More
information about each type of constraint appears later in this section.

column [,...]

Associates one or more columns with the constraint. Specify the columns in a comma-delimited list. The column
list must be enclosed in parentheses. The column list should be omitted for column-level constraints. Columns
are not used in every constraint. For example, CHECK constraints do not generally use column references.

predicate

Defines a predicate for CHECK constraints.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

constraint_deferment

Declares a constraint as DEFERRABLE or NOT DEFERRABLE. When a constraint is deferrable, you can specify
that it be checked for a rules violation at the end of a transaction. When a constraint is not deferrable, it is
checked for a rules violation at the conclusion of every SQL statement.

deferment_timing

Declares a deferrable constraint as INITIALLY DEFERRED or INITIALLY IMMEDIATE. When set to INITIALLY
DEFERRED, the constraint check time will be deferred until the end of a transaction, even if it is composed of
many SQL statements. In this case, the constraint must also be DEFERRABLE. When set to INITIALLY
IMMEDIATE, the constraint check time is at the end of every SQL statement. In this case, the constraint may be
either DEFERRABLE or NOT DEFERRABLE. The default is INITIALLY IMMEDIATE.

Note that the vendor platforms may have some variations on this syntax. Check different platform sections of
CREATE/ALTER TABLE Statement for more details.

2.4.3 PRIMARY KEY Constraints

A PRIMARY KEY constraint declares one or more columns whose values uniquely identify each record in the table. It is
considered a special case of the UNIQUE constraint. Some rules about primary keys:

Only one primary key may exist on a table at a time.

Columns in the primary key cannot contain datatypes of BLOB, CLOB, NCLOB, or ARRAY.

Primary keys may be defined at the column level for a single column key or at the table level if multiple
columns make up the primary key.

Values in the primary key column(s) must be unique and not NULL.

In a multicolumn primary key, called a concatenated key, the combination of values in all of the key columns
must be unique and not NULL.

Foreign keys can be declared that reference the primary key of a table to establish direct relationships between
tables (or possibly, though rarely, within a single table).

The following ANSI standard code includes the options for creating both a table- and column-level primary key
constraint on a table called distributors. The first example shows a column-level primary-key constraint, while the
second shows a table-level constraint:

-- Creating a column-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) NOT NULL PRIMARY KEY,

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) ,

 phone CHAR(12) ,

 sales_rep INT);

-- Creating a table-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) NOT NULL,

 dist_name VARCHAR(40),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) ,

 phone CHAR(12) ,

 sales_rep INT ,

CONSTRAINT pk_dist_id PRIMARY KEY (dist_id));

In the example showing a table-level primary key, we could easily have created a concatenated key by listing several
columns separated by commas between each one.

2.4.4 FOREIGN KEY Constraints

A FOREIGN KEY constraint defines one or more columns in the table as referencing columns to a UNIQUE or PRIMARY
KEY in another table. (A foreign key can reference a unique or primary key in the same table as the foreign key itself,
but such foreign keys are rare.) Foreign keys can then prevent the entry of data into a table where there is no matching
value in the related table. They are the primary means of identifying the relationship between tables in a relational
database. Some rules about foreign keys:

Many foreign keys may exist on a table at a time.

A foreign key can be declared to reference either the primary key or a unique key of another table to establish a
direct relationship between the two tables.

The full SQL2003 syntax for foreign keys is more elaborate than the general syntax for constraints shown earlier, and is
dependent on whether you are making a table-level or column-level declaration:

-- Table-level foreign key

[CONSTRAINT [constraint_name]]

FOREIGN KEY (local_column [,...])

REFERENCES referenced_table [(referenced_column [,...])]

[MATCH {FULL | PARTIAL | SIMPLE}]

[ON UPDATE {NO ACTION | CASCADE | RESTRICT |

 SET NULL | SET DEFAULT}]

[ON DELETE {NO ACTION | CASCADE | RESTRICT |

 SET NULL | SET DEFAULT}]

[constraint_deferment] [deferment_timing]

-- Column-level foreign key

[CONSTRAINT [constraint_name]]

REFERENCES referenced_table [(referenced_column [,...])]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REFERENCES referenced_table [(referenced_column [,...])]

[MATCH {FULL | PARTIAL | SIMPLE}]

[ON UPDATE {NO ACTION | CASCADE | RESTRICT |

 SET NULL | SET DEFAULT}]

[ON DELETE {NO ACTION | CASCADE | RESTRICT |

 SET NULL | SET DEFAULT}]

[constraint_deferment] [deferment_timing]

Keywords common to a standard constraint declaration are described above, under the "Syntax" section. Keywords
specific to foreign keys are described in the following list:

FOREIGN KEY (local_column [,...])

Declares one or more columns of the table being created or altered and are subject to the foreign key
constraint. This syntax is used only in table-level declarations and is excluded from column-level declarations.
We recommend that the ordinal position and datatype of each column in the local_column list match comparably
with the ordinal position and datatype of the columns in the referenced_column list.

REFERENCES referenced_table [(referenced_column [,...])]

Names the table and, where appropriate, the column(s) that hold the valid list of values for the foreign key. A
referenced_column must already be named in a NOT DEFERRABLE PRIMARY KEY or NOT DEFERRABLE
UNIQUE KEY. The table types must match. For example, if one is a local temporary table then both must be
local temporary tables.

MATCH {FULL | PARTIAL | SIMPLE}

Defines the degree of matching required between the local and referenced columns in foreign key constraints
when NULLs are present.

FULL

Declares that a match is acceptable when: 1) none of the referencing columns are NULL and match all
of the values of the referenced column, or 2) all of the referencing columns are NULL. In general, you
should use MATCH FULL or else ensure that all columns involved have NOT NULL constraints.

PARTIAL

Declares that a match is acceptable when at least one of the referenced column is NULL and the others
match the corresponding referenced columns.

SIMPLE

Declares that a match is acceptable when any of the values of the referencing column are NULL or a
match. This is the default.

ON UPDATE

Specifies that, when an UPDATE operation affects one or more referenced_columns of the primary or unique
key on the referenced table, a corresponding action should be taken to ensure the foreign key does not lose
data integrity. ON UPDATE may be declared independently of or with the ON DELETE clause. When omitted, the
default is ON UPDATE NO ACTION.

ON DELETE

Specifies that when a DELETE operation affects one or more referenced_columns of the primary or unique
key on the referenced table, that a corresponding action should be taken to ensure the foreign key does not
lose data integrity. ON DELETE may be declared independent of or with the ON UPDATE clause. When omitted,
the default for the ANSI standard is ON DELETE NO ACTION.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the default for the ANSI standard is ON DELETE NO ACTION.

NO ACTION | CASCADE | RESTRICT | SET NULL | SET DEFAULT

Defines the action the database takes to maintain data integrity of the foreign key when a referenced primary
or unique key constraint value is changed or deleted.

NO ACTION

Tells the database to do nothing when a primary key or unique key value, referenced by a foreign key,
is changed or deleted.

CASCADE

Tells the database to perform the same action (i.e., DELETE or UPDATE) on the matching foreign key
when a primary key or unique key value is changed or deleted.

RESTRICT

Tells the database to prevent changes to the primary key or unique key value, referenced by the foreign
key.

SET NULL

Tells the database to set the value in the foreign key to NULL when a primary key or unique key value is
changed or deleted.

SET DEFAULT

Tells the database to set the value in the foreign key to the default (using default values you specify for
each column) when a primary key or unique key value is changed or deleted.

As with the code example for primary keys, you can adapt this generic syntax to both column-level and table-level
foreign key constraints. Note that column-level and table-level constraints perform their function in exactly the same
way. They are merely defined at different levels of the CREATE TABLE command. In the following example, we create a
single-column foreign key on the salesrep column referencing the empid column of the employee table. We create
the foreign key two different ways, the first time at the column level, the second time at the table level:

-- Creating a column-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) PRIMARY KEY,

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) ,

 phone CHAR(12) ,

 sales_rep INT NOT

 NULL REFERENCES employee(empid));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NULL REFERENCES employee(empid));

-- Creating a table-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) NOT NULL,

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) ,

 phone CHAR(12) ,

 sales_rep INT ,

CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),

CONSTRAINT fk_empid FOREIGN KEY (sales_rep)

 REFERENCES employee(empid));

2.4.5 UNIQUE Constraints

A UNIQUE constraint, sometimes called a candidate key, declares that the values in one column, or the combination of
values in more than one column, must be unique. Rules concerning unique constraints include:

Columns in a unique key cannot contain datatypes of BLOB, CLOB, NCLOB, or ARRAY.

The column or columns in a unique key may not be identical to those in any other unique keys, or to any
columns in the primary key of the table.

A single NULL value, if the unique key allows NULL values, is allowed.

SQL2003 allows you to substitute the column list, shown in the general syntax diagram for constraints, with the
keyword (VALUE). UNIQUE (VALUE) indicates that all columns in the table are part of the unique key. The
VALUE keyword also disallows any other unique or primary keys on the table.

In the following example, we limit the number of distributors we do business with to only one distributor per ZIP Code.
We also allow one (and only one) "catch-all" distributor with a NULL ZIP Code. This functionality can be implemented
easily using a UNIQUE constraint, either at the column or the table level:

-- Creating a column-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) PRIMARY KEY,

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) UNIQUE ,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 zip CHAR(5) UNIQUE ,

 phone CHAR(12) ,

 sales_rep INT NOT NULL

 REFERENCES employee(empid));

-- Creating a table-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) NOT NULL,

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) ,

 phone CHAR(12) ,

 sales_rep INT ,

CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),

CONSTRAINT fk_emp_id FOREIGN KEY (sales_rep)

 REFERENCES employee(empid),

CONSTRAINT unq_zip UNIQUE (zip));

2.4.6 CHECK Constraints

CHECK constraints allow you to perform comparison operations to ensure that values match specific conditions that you
set out. The syntax for a check constraint is very similar to the general syntax for constraints:

[CONSTRAINT] [constraint_name] CHECK (search_conditions)

[constraint_deferment] [deferment_timing]

Other elements of the constraint are introduced earlier in this section. The following element is unique to the CHECK
constraint:

search_conditions

Specifies one or more search conditions that constrain the values inserted into the column or table, using one or
more expressions and a predicate. Multiple search conditions may be applied to a column in a single check
constraint using the AND and OR operators. (Think of a WHERE clause.)

A check constraint is considered matched when the search conditions evaluate to TRUE or UNKNOWN. Check constraints
are limited to Boolean operations (e.g., =, >=, <=, or <>), though they may include any SQL2003 predicates such as
IN or LIKE. Check constraints may be appended to one another (when checking a single column) using the AND and OR
operators. Some other rules about CHECK constraints:

A column or table may have one or more CHECK constraints.

A search condition cannot contain aggregate functions, except in a subquery.

A search condition cannot use non-deterministic functions or subqueries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A search condition cannot use non-deterministic functions or subqueries.

A check constraint can only reference like objects. So if a check constraint is declared on a global temporary
table, it cannot then reference a permanent table.

A search condition cannot reference these ANSI functions: CURRENT_USER, SESSION_USER, SYSTEM_USER,
USER, CURRENT_PATH, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and
LOCALTIMESTAMP.

The following example adds a check constraint to the dist_id and zip columns. (This example uses generic code run on
SQL Server.) The ZIP Code must fall into the normal ranges for postal ZIP Codes, while the dist_id values are allowed
to contain either four alphabetic characters or two alphabetic and two numeric characters:

-- Creating column-level CHECK constraints

CREATE TABLE distributors

 (dist_id CHAR(4)

 CONSTRAINT pk_dist_id PRIMARY KEY

 CONSTRAINT ck_dist_id CHECK

 (dist_id LIKE '[A-Z][A-Z][A-Z][A-Z]' OR

 dist_id LIKE '[A-Z][A-Z][0-9][0-9]'),

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2)

 CONSTRAINT def_st DEFAULT ("CA"),

 zip CHAR(5)

 CONSTRAINT unq_dist_zip UNIQUE

 CONSTRAINT ck_dist_zip CHECK

 (zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),

 phone CHAR(12),

 sales_rep INT

 NOT NULL DEFAULT USER REFERENCES employee(emp_id))

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. SQL Statement Command Reference
This chapter is the heart of SQL in a Nutshell, Second Edition. It is an alphabetical listing of SQL commands with
detailed explanations and examples. Each command and function is identified in Table 3-1 as being "supported,"
"supported with variations," "supported with limitations," or "not supported," for each of the five SQL dialects covered
in this book: DB2, MySQL, Oracle, PostgreSQL, SQL Server. After a brief description of the SQL2003 standard, each
vendor application is discussed briefly but thoroughly, with supporting examples. If a specific platform does not support
a particular command, that fact will be noted in the table that heads the command and then the command will not be
listed for that platform. Similarly, although SQL in a Nutshell, Second Edition, is not a comprehensive review of the
SQL2003 standard, each command has been validated against SQL2003.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 How to Use This Chapter
When researching a command in this chapter:

1. Read Section 3.2.

2. Check the platform support table.

3. Read the section on SQL2003 syntax and description even if you are looking for a specific platform
implementation.

4. Finally, read the specific platform implementation information.

Any common features between the platform implementations of a command are discussed and compared against the
SQL2003 topic. Thus, the subsection on a platform's implementation of a particular command may not describe every
aspect of that command, since some of its details may be covered in the SQL2003 section. Please note that if there is a
keyword that appears in a command syntax but not in its keyword description, this is because we chose not to repeat
descriptions that appear under the ANSI entry.

If you skip straight to a platform implementation and do not see a discussion of a keyword
or clause that you are interested in, that means it is described (in common across all
supporting platforms) under the SQL2003 entry of the command.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 SQL Platform Support
Table 3-1 provides a listing of the SQL statements, the platforms that support them, and the degree to which they
support them. The following list offers useful tips for reading Table 3-1, as well as what each abbreviation stands for.
The sections that follow describe the commands from the table in detail:

1. The first column contains the alphabetized SQL commands.

2. The SQL statement class for each command is indicated in the second column.

3. The subsequent columns list the vendor's level of support:

Supported (S)

The platform supports the SQL2003 standard for the particular command.

Supported, with variations (SWV)

The platform supports the SQL2003 standard for the particular command, using vendor-specific code or syntax.

Supported, with limitations (SWL)

The platform supports some but not all of the functions specified by the SQL2003 standard for the particular
command.

Not supported (NS)

The platform does not support the particular command according to the SQL2003 standard.

Remember that even if a specific SQL2003 command is listed as "Not supported," the platform usually has alternative
coding or syntax to enact the same command or function. Therefore, be sure to read the discussion and examples for
each command later in this chapter. Likewise, a few of the commands in Table 3-1 are not found in the SQL2003
standard, and these have been indicated with the term "Non-ANSI" under the heading "SQL2003 class" in the table.

Conversely, a few ANSI commands in the table (such as CREATE DOMAIN and ALTER DOMAIN) are not currently
supported by any of the database platforms covered in this text. Since this book focuses on the implementation of the
SQL language, unsupported ANSI commands are shown in Table 3-1 but are not documented elsewhere in the book.

Table 3-1. Alphabetical quick SQL command reference

SQL2003
Command

SQL2003
class

DB2

v8.1

MySQL

v4.0
Oracle v10g Postgre SQL v7.2

SQL

Server

2000

ALL/ANY/SOME SQL-data S NS S S S

BETWEEN SQL-data S S S S S

ALTER
DATABASE

SQL-
schema SWV SWV SWV SWV SWV

ALTER
DOMAIN

SQL-
schema NS NS NS NS NS

ALTER
FUNCTION

SQL-
schema SWV SWL SWV SWL SWV

ALTER INDEX Non-ANSI SWV SWV SWV SWV SWV

ALTER
METHOD

SQL-
schema SWV NS NS NS NS

ALTER

PROCEDURE

SQL-
schema SWV SWL SWV SWL SWV

ALTER TABLE SQL-
schema SWV SWV SWV SWV SWV

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALTER
TRIGGER Non-ANSI SWV NS T SWV SWV SWV

ALTER TYPE SQL-
schema SWV NS SWV NS NS

ALTER VIEW Non-ANSI SWV NS SWV SWV SWV

CALL SQL-
control SWV NS T SWV NS NS

CLOSE
CURSOR SQL-data SWV NS S S SWV

COMMIT SQL-
transaction S SWV SWV SWV SWV

CONNECT SQL-
connection SWV NS S NS SWV

CREATE
DATABASE Non-ANSI SWV SWV SWV SWV SWV

CREATE
DOMAIN

SQL-
schema NS NS NS NS NS

CREATE
FUNCTION

SQL-
schema SWV SWL SWV SWL SWV

CREATE INDEX Non-ANSI SWV SWV SWV SWV SWV

CREATE
METHOD

SQL-
schema SWV NS NS NS NS

CREATE
PROCEDURE

SQL-
schema S NS S NS S

CREATE ROLE SQL-
schema NS NS SWV NS NS

CREATE
SCHEMA

SQL-
schema SWL NS SWV NS SWL

CREATE TABLE SQL-
schema SWV SWV SWV SWV SWV

CREATE
TRIGGER

SQL-
schema SWV NS SWV SWV SWV

CREATE TYPE SQL-
schema SWV NS SWL SWV NS

CREATE VIEW SQL-
schema SWV NS SWV SWV SWV

DECLARE
CURSOR SQL-data SWL NS SWL SWL SWL

DELETE SQL-data SWV SWV SWV S SWL

DISCONNECT SQL-
connection SWL NS SWL NS SWL

DROP
DATABASE Non-ANSI NS SWV S SWV SWV

DROP DOMAIN SQL-
schema NS NS NS NS NS

DROP
FUNCTION

SQL-
schema SWV SWV SWV SWV SWV

DROP INDEX Non-ANSI SWV SWV SWV SWV SWV

DROP METHOD SQL-
schema SWV NS SWV SWV NS

DROP

PROCEDURE

SQL-
schema SWV NS S NS S

DROP ROLE SQL-
schema NS NS SWV NS NS

DROP TABLE SQL-
schema SWV SWV SWV SWV SWV

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP TABLE schema SWV SWV SWV SWV SWV

DROP TYPE SQL-
schema S NS S S NS

DROP
TRIGGER

SQL-
schema SWV NS SWV SWV SWV

DROP VIEW SQL-
schema S NS S S S

EXCEPT SQL-data SWL NS SWL SWL NS

EXISTS SQL-data S S S S S

FETCH SQL-data SWL NS SWL SWV SWV

GRANT SQL-
schema SWV SWV SWV SWV SWV

IN SQL-data S S SWV S S

INSERT SQL-data SWV SWV SWV S SWV

INTERSECT SQL-data SWL NS SWL SWL NS

IS SQL-data S S S S S

JOIN subclause SQL-data SWL SWV S SWV SWL

LIKE SQL-data S SWV S SWV SWV

MERGE SQL-data S NS S NS NS

OPEN SQL-data SWV NS S NS S

OPERATORS SQL-
schema SWV SWV SWV SWV SWV

ORDER BY SQL-data SWL SWL SWV SWV SWL

RELEASE
SAVEPOINT

SQL-
transaction SWV NS NS NS NS

RETURN SQL-
control SWV NS S SWL S

REVOKE SQL-
schema SWV SWV SWV SWV SWV

ROLLBACK SQL-
transaction S SWL SWV SWL SWV

SAVEPOINT SQL-
transaction SWV NS S NS SWL

SELECT SQL-data
SWV (ANSI
joins sup-
ported)

SWV (ANSI joins
partially
supported)

SWV (ANSI
joins
supported)

SWV (ANSI joins
par-tially sup-
ported)

SWV (ANSI
joins
supported)

SET SQL-
session S S NS S S

SET CATALOG SQL-
session NS NS NS NS NS

SET
COLLATION

SQL-
session NS NS NS NS NS

SET
CONNECTION

SQL-
connection SWL NS NS NS SWL

SET
CONSTRAINT

SQL-
connection NS NS SWV SWV NS

SET
DESCRIPTOR

SQL-
session NS NS NS NS NS

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3 SQL Command Reference

ALL/ANY/SOME Operators

The ALL operator performs a Boolean test of a subquery for the existence of a value in all rows. The ANY operator, and
its synonym SOME, performs a Boolean test of a subquery for the existence of a value in any of the rows tested.

Platform Command

DB2 Supported

MySQL Not supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL2003 Syntax

SELECT ...

WHERE expression comparison {ALL | ANY | SOME} (subquery)

Keywords

WHERE expression

Tests a scalar expression, such as a column, against every value in the subquery, for ALL, and against every
value until a match is found for ANY and SOME. All rows must match the expression to return a Boolean TRUE
value for the ALL operator, while one or more rows must match the expression, for ANY and SOME, to return a
Boolean TRUE value.

comparison

Compares the expression to the subquery. The comparison must be a standard comparison operator like =, <>, !=,
>, >=, <, or <=.

Rules at a Glance

The ALL operator returns a Boolean TRUE value when one of two things happen: either the subquery returns an empty
set (i.e., no records) or every record in the set meets the comparison. ALL returns FALSE when any records in the set
do not match the value comparison. ANY and SOME operators return a Boolean TRUE when at least one record in the
subquery matches the comparison operation, and FALSE when no record matches the comparison operation (or when a
subquery returns an empty result set). If even one return value of the subquery is NULL, then the operation evaluates
as NULL, not as TRUE.

Do not include special clauses like ORDER BY, GROUP BY, CUBE, ROLLUP, WITH, etc. in
your subquery. Refer to SUBQUERY Substatement for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, we want to see which authors currently have no titles:

SELECT au_id

FROM authors

WHERE au_id <> ALL(SELECT au_id FROM titleauthor)

You can use ANY / SOME to perform filtering checks of different kinds. For example, the following query will retrieve
any records from the employees table that exist in the employees_archive table that were located in Anchorage:

SELECT *

FROM employees

WHERE job_lvl = ANY(SELECT job_lvl FROM employees_archive

 WHERE city = 'Anchorage')

The above query returns information about employees who have the same job_lvl as any employee working in
Anchorage, Alaska.

Programming Tips and Gotchas

The ALL and ANY/SOME operators are somewhat difficult to get used to. Most developers find it a lot easier to use
similar functions like IN and EXISTS.

EXISTS is symantically equivalent to the ANY/SOME operator.

Platform Differences

All of the platforms support ALL and ANY/SOME in the manner described above except MySQL, which doesn't support
subqueries until Version 4.0. On pre-Version 4.0 MySQL platforms, consider using the IN operator instead of EXISTS for
ANY/SOME.

Oracle supports one minor variation in that you can supply a list of values instead of a subquery. For example, we can
find all employees who have a job_lvl value equal to 9 or 14:

SELECT * FROM employee

WHERE job_lvl = ALL(9, 14);

DB2 and SQL Server support some additional comparison operators: not greater than (!>) and not less than (!<).

See Also

ALL/ANY/SOME
BETWEEN
EXISTS
SELECT
WHERE

BETWEEN Operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The BETWEEN operator performs a Boolean test of a value against a range of values. It returns TRUE when the value is
included in the range and FALSE when the value falls outside of the range. The results are NULL (unknown) if any of the
range values are NULL.

Platform Command

DB2 Supported

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL2003 Syntax

SELECT ...

WHERE expression [NOT] BETWEEN lower_range AND upper_range

Keywords

WHERE expression

Compares a scalar expression, such as a column, to the range of values bounded by upper_range and
lower_range.

[NOT] BETWEEN lower_range AND upper_range

Compares the expression to the lower_range and upper_range. The comparison is inclusive, meaning that it is
equivalent to saying "where expression is [not] greater than or equal to lower_range and less than or equal to
upper_range."

Rules at a Glance

The BETWEEN operator is used to test an expression against a range of values. The BETWEEN operator may be used
with any datatype except BLOB, CLOB, NCLOB, REF, and ARRAY.

For example, we want to see title_ids that have year-to-date sales between 10,000 and 20,000:

SELECT title_id

FROM titles

WHERE ytd_sales BETWEEN 10000 AND 20000

BETWEEN is inclusive of the range of values listed. In this case, it includes the values of 10,000 and 20,000 in the
search. If you want an exclusive search, then you must use the greater than (>) and less than (<) symbols:

SELECT title_id

FROM titles

WHERE ytd_sales > 10000

 AND ytd_sales < 20000

The NOT operator allows you to search for values outside of the BETWEEN range. For example, you can also find all the
title_ids that were not published during 2002:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

title_ids that were not published during 2002:

SELECT title_id

FROM titles

WHERE pub_date NOT BETWEEN '01-JAN-2003' AND '31-DEC-2003'

Programming Tips and Gotchas

Some coders are very particular about how the keyword AND is used in WHERE clauses. To prevent a casual reviewer
from thinking that the AND used in a BETWEEN operation is a logical AND operator, you might want to use parentheses
to encapsulate the entire BETWEEN clause:

SELECT title_id

FROM titles

WHERE (ytd_sales BETWEEN 10000 AND 20000)

 AND pubdate >= '1991-06-12 00:00:00.000'

Platform Differences

All of the platforms support BETWEEN in the manner described above.

See Also

ALL/ANY/SOME
EXISTS
SELECT
WHERE

CALL Statement

The CALL statement invokes a stored procedure.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

CALL procedure_name ([parameter [,...]])

Keywords

CALL procedure_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies the stored procedure that you want to invoke. It must be a previously defined stored procedure that is
available in the current user context (instance, database, schema, etc.).

(parameter [,...])

Provides values for each input parameter required by the stored procedure. Each parameter listed is required by
the stored procedure in the same ordinal position. Thus, the fifth parameter listed would provide the value for
the fifth argument required by the stored procedure. The parameters must be enclosed in parentheses and
separated by commas. Note that the parentheses are required even if there are no parameter values (e.g.,
even if there are no parameter values, you must still use CALL()). Strings should be in single quotes. If the
stored procedure has only OUT parameters, place host variables or parameter markers within the parentheses.

Rules at a Glance

The CALL statement makes it easy to invoke a stored procedure. Simply provide the name of the stored procedure and
include any parameters used by the stored procedure, enclosing them within parentheses.

This Oracle example creates a simple stored procedure, and then calls it:

CREATE PROCEDURE update_employee_salary

(emp_id NUMBER, updated_salary NUMBER)

IS

BEGIN

 UPDATE employee SET salary = updated_salary

WHERE employee_id =emp_id ;

END;

CALL update_employee_salary(1517, 95000);

Programming Tips and Gotchas

The return status of a called stored procedure can be found, typically, by using GET DIAGNOSTIC. GET DIAGNOSTIC is
not widely supported among the various database platforms, so check the platform documentation for more details.

Many platforms also support an alternative command called EXECUTE to perform the same functionality. In some cases,
you may prefer EXECUTE to CALL, since the former can be used to execute any kind of prepared SQL, including
methods, functions, or batches of SQL code.

DB2

DB2 supports CALL along with DESCRIPTOR capabilities:

CALL procedure_name { [(parameter [,...])] | USING DESCRIPTOR

 descriptor_name }

where:

USING DESCRIPTOR descriptor_name

Identifies a SQL Descriptor Area (SQLDA) structure containing a valid description of the host variables. An
SQLDA is a collection of variables that is required for execution of the SQL DESCRIBE statement. The SQLDA
variables are options that can be used by the PREPARE, OPEN, FETCH, EXECUTE, and CALL statements. Values
in the SQLDA must be set prior to issuing the CALL statement. This is a deprecated feature in DB2. We
recommend that you instead use the standard CALL proc(param, param) syntax.

DB2 allows you to substitute host variables for the procedure name or the parameters, where appropriate. When using
the USING DESCRIPTOR clause, the variables must be string variables of 254 or fewer characters.

On DB2, any return status issued by the called stored procedure is returned to the SQLERRD field of the SQLCA (SQL
Communications Area). You can also use the GET DIAGNOSTIC statement to retrieve the RETURN_STATUS value (-1
indicates error) or row count.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

indicates error) or row count.

MySQL

Not supported.

Oracle

Oracle allows the CALL statement to invoke standalone stored procedures, functions, and methods, as well as stored
procedures and functions contained within a type or package. Following is the Oracle syntax:

CALL [schema.][{type_name | package_name}.]procedure_name@dblink

[(parameter [,...])]

[INTO :variable_name [[INDICATOR] :indicator_name]]

where:

CALL [schema.][{type_name | package_name}.] procedure_name@dblink

Calls the named object. You may fully enumerate the object name, including schema, type, etc., or allow Oracle
to assume the current schema and database instance. If the procedure or function resides in another database,
simply specify the database via a database link name, shown as dblink in the syntax. dblink must refer to a
previously created database link.

INTO :variable_name

Specifies the name of a previously declared variable that will store the value returned when you call a function.
INTO is required, and only usable, when calling a function.

INDICATOR :indicator_name

Retains the condition of the host variable, for example whether the return value is NULL, for functions
precompiled in a Pro*C/C++ routine.

The parameters used in an Oracle CALL statement may not include pseudocolumns or the VALUE or REF functions. You
must use a host variable for any parameter that corresponds to an OUT or IN OUT argument of the called stored
procedure.

PostgreSQL

Not Supported.

SQL Server

Not supported. Instead, use the non-ANSI EXECUTE statement.

See Also

CREATE/ALTER PROCEDURE

CLOSE CURSOR Statement

The CLOSE CURSOR statement closes a server-side cursor created with a DECLARE CURSOR statement.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle Supported

PostgreSQL Supported

SQL Server Supported, with variations

SQL2003 Syntax

CLOSE cursor_name

Keywords

cursor_name

Names a cursor previously created with the DECLARE CURSOR statement.

Rules at a Glance

The CLOSE statement closes a cursor and destroys the cursor result set. All the database platforms release any locks
that were held by the cursor, though this is not specified in the ANSI standard. For example:

CLOSE author_names_cursor;

Programming Tips and Gotchas

You can also close a cursor implicitly using a COMMIT statement or, for cursors defined WITH HOLD, using a ROLLBACK
statement.

DB2

DB2 supports an added optional WITH clause on the CLOSE statement:

CLOSE cursor_name [WITH RELEASE]

where:

WITH RELEASE

Attempts to release all read locks held by the cursor. Note that DB2 is not always able to release all locks since
some locks may be in use by other operations.

The WITH RELEASE clause is ignored on cursors run under isolation level 3 CS or UR, when the cursor is defined in a
method, when the cursor is defined in a function, or when the cursor is defined in a stored procedure that is called by a
function or method. WITH RELEASE may allow phantom read and nonrepeatable read anomalies when run under
isolation levels RS or RR. For a detailed explanation of isolation levels, including phantom reads and nonrepeatable
reads, refer to SET TRANSACTION ISOLATION LEVEL.

PostgreSQL

PostgreSQL supports the ANSI standard syntax. PostgreSQL issues an implicit CLOSE statement for every open cursor
when a transaction is ended with a COMMIT or ROLLBACK statement.

SQL Server

Microsoft SQL Server supports the ANSI standard syntax, and an additional GLOBAL keyword:

CLOSE [GLOBAL] cursor_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLOSE [GLOBAL] cursor_name

where:

GLOBAL

Identifies the previously defined cursor as a global cursor.

In the ANSI standard behavior, closing a cursor destroys the cursor result set. Locking is a physical feature of each
database platform and thus not a part of the ANSI SQL definition. However, all the database platforms covered here
drop the locks taken up by the cursor. Another physical implementation detail is that SQL Server does not automatically
reallocate memory structures consumed by a cursor to the memory pool. To accomplish such reallocation, you must
issue a DEALLOCATE cursor_name command.

This example from Microsoft SQL Server opens a cursor and fetches a result set of all employees who have a last name
starting with "K":

DECLARE employee_cursor CURSOR FOR

 SELECT lname, fname

 FROM pubs.dbo.employee

 WHERE lname LIKE 'K%'

OPEN employee_cursor

FETCH NEXT FROM employee_cursor

WHILE @@FETCH_STATUS = 0

BEGIN

 FETCH NEXT FROM employee_cursor

END

CLOSE employee_cursor

DEALLOCATE employee_cursor

GO

See Also

DECLARE CURSOR
FETCH
OPEN

COMMIT Statement

The COMMIT statement explicitly ends an open transaction and makes the changes permanent in the database.
Transactions can be opened implicitly as part of an INSERT, UPDATE, or DELETE statement, or opened explicitly with a
START statement. In either case, an explicitly issued COMMIT statement will end the open transaction.

Platform Command

DB2 Supported

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

COMMIT [WORK] [AND [NO] CHAIN]

Keywords

COMMIT [WORK]

Ends the current, open transaction and writes any data manipulated by the transaction to the database. The
optional keyword WORK is noise and has no effect.

AND [NO] CHAIN

AND CHAIN tells the DBMS to treat the next transaction as if it were a part of the preceding transaction. In
effect, the two transactions are separate units of work, but they share a common transaction environment
(such as transaction isolation level). Including the optional NO keyword tells the DMBS to explicitly use the ANSI
default behavior. The COMMIT keyword by itself is functionally equivalent to the statement COMMIT WORK AND
NO CHAIN.

Rules at a Glance

For simple operations, you will execute transactions (that is, SQL code that manipulates or changes data and objects in
a database) without explicitly declaring a transaction. However, all transactions are best managed by explicitly closing
them with a COMMIT statement. Because records and even entire tables can be locked for the duration of a transaction,
it is extremely important that transactions are completed as quickly as possible. Thus, manually issuing a COMMIT
statement with a transaction can help control user concurrency issues and locking problems on the database.

Programming Tips and Gotchas

The most important gotcha to consider is that some database platforms perform automatic and implicit transactions,
while others require explicit transactions. If you assume a platform uses one method of transactions over the other, you
may get bitten. Thus, when moving between database platforms you should follow a standard, preset way of addressing
transactions. We recommend always using explicit transactions with START TRAN, on database platforms that support
it, to begin a transaction, and COMMIT or ROLLBACK to end a transaction.

In addition to finalizing a single or group of data-manipulation operation(s), COMMIT has some interesting effects on
other aspects of a transaction. First, it closes any associated open cursors. Second, any temporary table(s) specified
with ON COMMIT DELETE ROWS (an optional clause of the CREATE TABLE statement) are cleared of data. Third, all
deferred constraints are checked. If any deferred constraints are violated, the transaction is rolled back. Finally, all
locks opened by the transaction are released. Please note that SQL2003 dictates that transactions are implicitly opened
when one of the following statements is executed:

ALTER

CLOSE

COMMIT AND CHAIN

CREATE

DELETE

DROP

FETCH

FREE LOCATOR

GRANT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GRANT

HOLD LOCATOR

INSERT

OPEN

RETURN

REVOKE

ROLLBACK AND CHAIN

SELECT

START TRANSACTION

UPDATE

If you did not explicitly open a transaction when you started one of the commands listed above, the standard dictates
that the DBMS platform open a transaction for you.

DB2

DB2 supports the standard, but not the AND [NO] CHAIN clause.

MySQL

MySQL supports COMMIT and transactions only with InnoDB tables. It does not support the AND [NO] CHAIN clause.

Oracle

Oracle supports the standard, but not the AND [NO] CHAIN clause. In addition, Oracle has a couple of extensions to the
standard clause:

COMMIT [WORK] [{COMMENT 'text' | FORCE 'text' [, int]}];

where:

COMMENT 'text'

Associates a comment with the current transaction where 'text' is a literal string up to 255 characters long. The
text string is stored in the Oracle data dictionary view DBA_2PC_PENDING with the transaction ID, in case
the transaction rolls back.

FORCE 'text' [, int]

Allows an in-doubt distributed transaction to be manually committed, where 'text' is a literal string that identifies
the local or global transaction ID. Transactions can be identified by querying the Oracle data dictionary view
DBA_2PC_PENDING. The optional int parameter is an integer that explicitly assigns a system change number
(SCN) to the transaction. Without int, the transaction commits using the current SCN.

Issuing a COMMIT statement with the FORCE clause will commit only the transaction explicitly identified in the FORCE
clause. It will not affect the current transaction unless it is explicitly identified. The FORCE clause is not usable in
PL/SQL statements.

The following example commits a transaction while associating a comment with the transaction:

COMMIT WORK COMMENT 'In-doubt transaction, Call (949) 555-1234';

PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostgreSQL implements the following syntax:

COMMIT [WORK | TRANSACTION];

In PostgreSQL, both the WORK and TRANSACTION keywords are optional. When you issue a COMMIT, all open
transactions are written to disk and the results of those transactions then become visible to other users. For example:

INSERT INTO sales VALUES('7896','JR3435','Oct 28 1997',25,

 'Net 60','BU7832');

COMMIT WORK;

SQL Server

SQL Server does support the AND [NO] CHAIN clause. SQL Server supports the keyword TRANSACTION as an
equivalent to WORK, as in the following syntax:

COMMIT { [TRAN[SACTION] [transaction_name]] | [WORK] }

Microsoft SQL Server allows the creation of a specific, named transaction using the START TRAN statement. The
COMMIT TRANSACTION syntax allows you to specify an explicit, named transaction to close or to store a transaction
name in a variable. Curiously, SQL Server still commits only the most recently opened transaction, despite the name of
the transaction that is specified.

When you issue COMMIT WORK, SQL Server terminates all open transactions and writes their changes to the database.
You may not specify a transaction name when using COMMIT WORK.

See Also

ROLLBACK
START TRANSACTION

CONNECT

The CONNECT statement establishes a connection to the DBMS and to a specific database within the DBMS.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

SQL Server Supported, with variations

SQL2003 Syntax

CONNECT TO {DEFAULT | {[server_name] [AS connection_name]

 [USER user_name] }

Keywords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEFAULT

Initiates a default session with the server where the user authorization is the default and the current database
is the default. The standard specifies that CONNECT TO DEFAULT is issued implicitly if you start a SQL session
without first issuing a CONNECT statement.

server_name

Establishes a connection to a named server. The server_name may be a string literal enclosed in single-quotes or
a host variable.

AS connection_name

Establishes a connection with the name connection_name shown in single-quotes. The optional connection_name
may be a string literal enclosed in single quotes or a host variable. It is optional only for the first connection
attached to a server. All subsequent sessions must include the AS clause. This is useful for telling user
connections apart when many users, perhaps even a single user, have many open sessions on a given
server_name.

USER user_name

Establishes a connection to the named server under the user_name specified.

Rules at a Glance

Issue the CONNECT statement to open an interactive SQL session with a DBMS. The period between issuing the
CONNECT and DISCONNECT statements is commonly called a session. Typically, you will complete all work on a DBMS
during an explicitly invoked session.

If you do not specify the server name, the connection name, or the username, then the platform DBMS will provide
default values for you. The defaults vary from platform to platform.

To connect to the "houston" server under a specific user ID, you might issue the command:

CONNECT TO houston USER pubs_admin

If the DBMS requires named connections, you might use the following, alternative syntax:

CONNECT TO houston USER pubs_admin AS

 pubs_administrative_session;

If you want just a simple, short-term connection then you might use the default:

CONNECT TO DEFAULT;

Programming Tips and Gotchas

If the CONNECT statement is invoked without explicitly disconnecting, the old session becomes dormant and the new
session becomes active. You can then switch between connections using the SET CONNECTION statement.

The Oracle tool SQL*Plus uses the CONNECT command somewhat differently: to connect a
user to a specific schema.

DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2

DB2 supports a couple of variations to the ANSI standard:

CONNECT { [TO] {[server_name] [IN SHARE MODE |

 IN EXCLUSIVE MODE [ON SINGLE DBPARTITIONNUM] | [RESET] }

[USER user_name] { [USING password] | [NEW password

 CONFIRM password]}

where:

CONNECT

Equates to the SQL statement CONNECT TO DEFAULT, when used alone.

TO server_name

Identifies the server to which the connection will be established. The server_name may be a string literal or a
character datatype variable of 8 or fewer characters (UDB) or 16 or fewer characters (OS/390 or z/OS).

IN SHARE MODE

Establishes a concurrent connection and allows other users to connect to the database. Prevents other users
from connecting in exclusive mode.

IN EXCLUSIVE MODE [ON SINGLE DBPARTITIONNUM]

Acquires an exclusive connection on the application server and prevents any new users from connecting unless
they use the same user_name and password. The optional ON SINGLE DBPARTITIONNUM clause is only usable on
a partitioned database. This option specifies that the coordinator database partition is connected in exclusive
mode, while all other database partitions are connected in share mode.

RESET

Executes a COMMIT statement, then disconnects the session from the server.

USER user_name

Establishes the connection under the named user account. The user_name may be a string literal or a character
datatype variable of 8 or fewer characters in length.

USING password

Specifies the password for the user account of user_name. It may be a string literal or a character datatype
variable of 8 or fewer characters in length.

NEW password CONFIRM password

Specifies a new password that will be assigned to the user account called user_name. It may be a string literal or
a character datatype variable of 18 or fewer characters in length.

For example, we might want to change the password for the user account sam to mephrun using a VARCHAR(8) host
variable, app_server, to store the value of the application server:

CONNECT TO :app_server USER sam NEW 'mephrun' CONFIRM 'mephrun';

MySQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL

Not supported.

Oracle

The CONNECT clause allows a database connection as a specific username. Alternately, a connection can be established
for special privileges with AS SYSOPER or AS SYSDBA. The Oracle syntax is:

CONN[ECT] [[username/password] {AS {SYSOPER | SYSDBA}]]

where:

CONN[ECT] username/password

Establishes a connection to the database instance.

AS { SYSOPER | SYSDBA }

Establishes the connection as one of the two optional system roles.

If another connection is already open, CONNECT commits any open transactions, closes the current session, and opens
the new one.

Oracle also allows the CONNECT statement in its SQL*Plus and iSQL*Plus tools.

PostgreSQL

PostgreSQL does not explicitly support the CONNECT statement. However, it does support the statement SPI_CONNECT
under the Server Programming Interface and PG_CONNECT under the PG/TCL programming package.

SQL Server

SQL Server supports the basic elements of the CONNECT statement within Embedded SQL (inside of C++ or Visual
Basic programs), as in the following:

CONNECT TO [server_name.]database_name [AS connection_name]

USER {login_name[.password] | $integrated}

where:

CONNECT TO server_name.database_name

Specifies the server and database to which you want a connection. You may leave off the server_name if you
wish to default to the local server.

AS connection_name

Names the connection as an alphanumeric string up to 30 characters in length. Symbols are allowed, except for
hyphens (-), but the first character must be a letter. CURRENT and ALL are reserved and may not be used for a
connection_name. You need only define connection names when making more than one connection.

USER {login_name[.password | $integrated]}

Connects the session under the login_name specified using the password provided or using Windows integrated
security. The password is optional when supplying a login name.

For example, we can connect to the server named new_york as the Windows login pubs_admin:

CONNECT TO new_york.pubs USER pubs_admin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To issue the same command under SQL Server standard security:

EXEC SQL CONNECT TO new_york.pubs USER pubs_admin

To issue the same command under Windows integrated security:

EXEC SQL CONNECT TO new_york.pubs USER $integrated

To switch to a different connection, you should use the SET CONNECTION statement.

See Also

SET CONNECTION

CREATE/ALTER DATABASE Statement

The ANSI standard does not actually contain a CREATE DATABASE statement. However, since it is nearly impossible to
operate a SQL database without this command, we've added CREATE DATABASE here. Almost all database platforms
support some version of this command.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

Rules at a Glance

This command creates a new, blank database with a specific name. Most DBMS platforms require the user to possess
administrator privileges in order to create a new database. Once the new database is created, you can populate it with
database objects (such as tables, views, triggers, and so on) and populate the tables with data.

Depending on the platform, CREATE DATABASE may also create corresponding files on the filesystem that contain the
data and metadata of the database.

Programming Tips and Gotchas

Since CREATE DATABASE is not an ANSI command, it is prone to rather extreme variation in syntax between platforms.

DB2

The DB2 statement CREATE DATABASE initializes a new database with a variety of user-defined characteristics, such as
collation and autoconfiguration options. In addition, the statement also creates the three initial tablespaces, system
tables, and recovery logs required by a DB2 database:

CREATE {DATABASE | DB} database_name

[AT DBPARITIONNUM] [ON path_and_drive] [ALIAS database_alias]

[USING CODESET codeset TERRITORY territory]

[COLLATE USING {COMPATIBILTIY | IDENTITY | NLSCHAR | SYSTEM}]

[NUMSEGS int] [DFT_EXTENT_SZ int]

[CATALOG TABLESPACE tablespace_definition]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[CATALOG TABLESPACE tablespace_definition]

[USER TABLESPACE tablespace_definition]

[TEMPORARY TABLESPACE tablespace_definition] [WITH "comments"]

[AUTOCONFIGURE [USING param value [...]]

[APPLY {DB ONLY | DB AND DBM | NONE}]

where:

CREATE {DATABASE | DB} database_name

Creates a database called database_name. The name must be unique from all other database names on either
the local database directory or the system database directory.

AT DBPARITIONNUM

Creates the database on the database partition where the command was issued. This command is used only to
recreate a database that was dropped; it should not be used to create a brand new database. Once the CREATE
DATABASE AT DBPARTITIONNUM statement is issued, the database must be immediately restored to the node.

ON path_and_drive

Specifies the path and drive, up to 205 characters long, to create the database on a Windows or Unix-based
system. When this clause is omitted, the database is created on the default database path declared in the
database manager configuration file dftdbpath parameter.

ALIAS database_alias

Declares an alias for the database within the system database directory.

USING CODESET codeset TERRITORY territory

Declares the codeset and territory used by the database. Once these values are set, they cannot be changed
later.

COLLATE USING {COMPATIBILTIY | IDENTITY | NLSCHAR | SYSTEM}

Specifies the type of collation used for the database. Once set, the collation sequence cannot be changed later.
Options are:

COMPATIBILITY

Uses DB2 v2 collation sequence for backward compatibility.

IDENTITY

Uses the identity collation sequence, where strings are compared byte for byte.

NLSCHAR

Uses the collation sequence unique for the database codeset and territory. This option is currently only
supported with the Thai code page (CP874).

SYSTEM

Uses the collation sequence for the current territory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NUMSEGS int

Specifies the number of segment directories, as int, created to store DAT, IDX, LF, LB, and LBA files for any
default System Managed Space (SMS) tablespaces. This setting does not affect DMS tablespaces, SMS
tablespaces with explicitly defined creation characteristics, or SMS tablespaces created after the database is
created.

DFT_EXTENT_SZ int

Specifies the default extent size, as int, of the tablespaces in the database.

CATALOG TABLESPACE tablespace_definition

Specifies the definition of the tablespace that holds the catalog tables. Details on the syntax for
tablespace_definition are detailed below. When this clause is omitted, the catalog tables will be created in an SMS
tablespace called SYSCATSPACE with the values set by the NUMSEGS and DFT_EXTENT_SZ clauses.

USER TABLESPACE tablespace_definition

Specifies the definition of the tablepace that holds the initial user tablespace. Details on the syntax for
tablespace_definition are detailed below. When this clause is omitted, the user tablespace will be created in an
SMS tablespace called USERSPACE1 with the values set by the NUMSEGS and DFT_EXTENT_SZ clauses.

TEMPORARY TABLESPACE tablespace_definition

Specifies the definition of the tablepace that holds the initial system temporary tablespace. Details on the
syntax for tablespace_definition are detailed below. When this clause is omitted, the user tablespace will be
created in an SMS tablespace called TEMPSPACE1 with the values set by the NUMSEGS and DFT_EXTENT_SZ
clauses.

WITH "comments"

Specifies a description, up to 30 characters in length, for the database within the database directory.

AUTOCONFIGURE [USING param value [...]]

Declares user-defined settings for important database settings such as the buffer pool size. When issued
without the USING clause, DB2 calculates the optimal settings and applies them. The list of param settings and
their possible values are:

mem_percent

Defines the percentage of memory dedicated to the database. The default is 25, but may range from 1-
100. Do not set this to 100 if other applications are running on the server.

workload_type

Defines the database workload as either 'simple', 'mixed', or 'complex', with 'mixed' as the default. The
'simple' workload tunes I/O for transactions, while 'complex' tunes the workload for more CPU intensive
queries. 'Mixed' provides tuning that is effective, though not optimized, for both workloads.

num_stmts

Defines the number of statements per unit of work. The default is 25, but may range from 1-1,000,000.

tpm

Defines the expect number of transactions per minute. The default is 60, but may range from 1-50,000.

admin_priority

Defines whether the database should be tuned for better performance (value = 'performance') or better

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defines whether the database should be tuned for better performance (value = 'performance') or better
recovery time (value = 'recovery'), or the middle ground (value = 'both'), which is the default.

num_local_apps

Defines the number of connected local applications. The default is 0, but may range from 0-5,000.

num_remote_apps

Defines the number of connections by remote applications. The default is 100, but may range from 0-
5,000.

isolation

Defines the transaction isolation level of the applications connecting to the database. The default is RR,
but valid values include RR, RS, CS, and UR. Refer to the entry on SET TRANSACTION ISOLATION
LEVEL for more details on DB2's isolation levels.

bp_resizeable

Defines whether buffer pools may be resized or not. The default is yes, but it may also be set to no.

APPLY {DB ONLY | DB AND DBM | NONE}

Determines the scope of any autoconfiguration parameters set using the AUTOCONFIGURATION clause:

DB ONLY

Applies changes only to the database configuration and buffer pool settings.

DB AND DBM

Applies settings to the database manager configuration, the database configuration, and the buffer pool
settings.

NONE

Displays the recommended settings, but does not apply them.

The tablespace_definition used by DB2 has its own syntax as well:

MANAGED BY

 {SYSTEM USING ('container' [,...]) |

 DATABASE USING ({FILE | DEVICE} 'container' int [,...]) }

 [EXTENTSIZE int] [PREFETCHSIZE int] [OVERHEAD int]

 [TRANSFERRATE int]

where:

MANAGED BY

Defines whether the tablespace is managed by a system managed space (SMS) or a database managed space
(DMS):

SYSTEM USING ('container' [,...])

Defines one or more containers for the SMS of up to 240 bytes in length. The container may be an
absolute or relative directory name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

absolute or relative directory name.

DATABASE USING ({FILE | DEVICE} 'container' int [,...])

Defines one or more containers for the DMS of up to 254 bytes in length. The container may be an
absolute or relative directory name. The type of container (FILE for a filename or DEVICE for a pre-
existing device) and its size (int), plus a suffix of K (kilobytes), M (megabytes), or G (gigabytes) are also
specified. If the file does not exist when specified, DB2 will create one. The device must already exist to
be used.

EXTENTSIZE int

Defines the number of pages, int, that are written to the container before skipping to the next container. (The
size of the pages is determined by the PAGESIZE setting.) Alternately, the extentsize (int) may be declared in
bytes by attaching a suffix of K (kilobytes), M (megabytes), or G (gigabytes) to the integer value.

PREFETCHSIZE int

Defines the number of pages, int, that are read from the tablespace when prefetching data. (The size of the
pages are determined by the PAGESIZE setting.) Alternately, the extent size (int) may be declared in bytes by
attaching a suffix of K (kilobytes), M (megabytes), or G (gigabytes) to the integer value.

OVERHEAD int

Defines the I/O controller overhead, disk seek, and latency time, in milliseconds, int, used to determine the cost
of I/O during query optimization. The value for int should be an average for all containers that belong to the
tablespace.

TRANSFERRATE int

Defines the time to read one page into memory, in milliseconds, int, used to determine the cost of I/O during
query optimization. The value for int should be an average for all containers that belong to the tablespace.

Note that DB2 tablespaces may also be created using the DB2-specific command CREATE TABLESPACE.

On DB2 servers that are enabled to support Lightweight Directory Access Protocol (LDAP), the new database is
automatically registered in the LDAP directory.

DB2 does not support an ALTER DATABASE statement.

The following example creates a database called sales with specifically declared NUMSEGS, DFT_EXTENT_SZ, and
AUTOCONFIGURATION enabled and applied:

CREATE DATABASE sales

NUMSEGS 200 DFT_EXTENT_SZ 1000

WITH "Temporary sales database"

AUTOCONFIGURE APPLY DB ONLY;

The WITH clause adds a description of the sales database to the database directory.

MySQL

In MySQL, CREATE DATABASE essentially creates a new directory that holds the database objects:

CREATE DATABASE [IF NOT EXISTS] database_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where:

CREATE DATABASE database_name

Creates a database and directory of database_name. The database directory appears under the MySQL data
directory. Tables in MySQL then appear as files in the database directory.

IF NOT EXISTS

Avoids an error if the database already exists.

For example, we could create a database called sales_archive on a MySQL server. If the database already exists, we
want to abort the command without causing an error:

 CREATE DATABASE IF NOT EXISTS sales_archive

Any tables that we create in the sales_archive database will now appear as files within the sales_archive directory.

MySQL does not support an ALTER DATABASE statement.

Oracle

Oracle provides an extraordinary level of control over database file structures beyond merely naming the database and
specifying a path for the database files. CREATE and ALTER DATABASE are very powerful commands in Oracle. Some of
the more sophisticated clauses are best used only by experienced DBAs. These commands can be very large and
complex. (ALTER DATABASE alone consumes over 50 pages in the Oracle vendor documentation!)

Novices should be aware that CREATE DATABASE, when run, erases all data in the specified datafiles that are already in
existence. Similarly, all the data in an existing database will be lost.

Following is the syntax to create a new database in Oracle:

CREATE DATABASE [database_name]

{[USER SYS IDENTIFIED BY password | USER SYSTEM IDENTIFIED BY password]}

[CONTROLFILE REUSE]

{[LOGFILE definition [,...]] [MAXLOGFILES int] [[MAXLOGMEMBERS] int]

 [[MAXLOGHISTORY] int] [{ARCHIVELOG | NOARCHIVELOG}] [FORCE LOGGING]}

[MAXDATAFILES int]

[MAXINSTANCES int]

[CHARACTER SET charset]

[NATIONAL CHARACTER SET charset]

[EXTENT MANAGEMENT {DICTIONARY | LOCAL}]

[DATAFILE definition [,...]]

[SYSAUX DATAFILE definition [,...]]

[DEFAULT TABLESPACE tablespace_name

 [DATAFILE file_definition]

 EXTENT MANAGEMENT {DICTIONARY |

 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M] } }]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M] } }]

[[{ BIGFILE | SMALLFILE}] DEFAULT [TEMPORARY] TABLESPACE tablespace_name

 [TEMPFILE file_definition]

 EXTENT MANAGEMENT {DICTIONARY |

 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M] } }]

[[{ BIGFILE | SMALLFILE}] UNDO TABLESPACE tablespace_name

 [DATAFILE temp_datafile_definition]]

[SET TIME_ZONE = ' { {+ | -} hh:mi | time_zone_region}']

[SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE]

Following is the syntax to alter an existing database:

ALTER DATABASE [database_name]

[ARCHIVELOG | NOARCHIVELOG] |

{MOUNT [{STANDBY | CLONE} DATABASE] |

 OPEN [READ WRITE | READ ONLY

 [RESETLOGS | NORESETLOGS] | [UPGRADE | DOWNGRADE] } |

{ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE

 [SKIP [STANDBY LOGFILE]] |

 SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION | AVAILABILITY |

 PERFORMANCE} |

 REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']

 [FOR logminer_session_name] |

 {COMMIT | PREPARE} TO SWITCHOVER TO

 {{[PHYSICAL | LOGICAL] PRIMARY | STANDBY} [WITH[OUT]

 SESSION SHUTDOWN] [WAIT | NOWAIT]} |

 CANCEL} |

 START LOGICAL STANDBY APPLY [IMMEDIATE] [NODELAY]

 [{INITIAL int | NEW PRIMARY dblink_name | {FINISH |

 SKIP FAILED TRANSACTION] }] |

 {STOP | ABORT} LOGICAL STANDBY APPLY |

 [[NO]PARALLEL int] } |

{RENAME GLOBAL_NAME TO database[.domain[.domain ...]] |

 CHARACTER SET character_set |

 NATIONAL CHARACTER SET character_set |

 DEFAULT TABLESPACE tablespace_name |

 DEFAULT TEMPORARY TABLESPACE {GROUP int | tablespace_name} |

 {DISABLE BLOCK CHANGE TRACKING | ENABLE BLOCK CHANGE TRACKING [USING

 FILE 'file' [REUSE] } |

 FLASHBACK {ON | OFF} |

 SET TIME_ZONE = '{ {+ | -} hh:mi | time_zone_region}' |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SET TIME_ZONE = '{ {+ | -} hh:mi | time_zone_region}' |

 SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE } |

{ENABLE | DISABLE} { [PUBLIC] THREAD int | INSTANCE 'instance_name' } |

{GUARD {ALL | STANDBY | NONE} } |

{CREATE DATAFILE 'file' [,...] [AS {NEW | file_definition [,...] }] |

 {DATAFILE 'file' | TEMPFILE 'file'} [,...]

 {ONLINE | OFFLINE [FOR DROP | RESIZE int [K | M] |

 END BACKUP | AUTOEXTEND {OFF | ON [NEXT int [K | M] [MAXSIZE

 [UNLIMITED | int [K | M] } |

 {TEMPFILE 'file' | TEMPFILE 'file'} [,...]

 {ONLINE | OFFLINE | DROP [INCLUDING DATAFILES] |

 RESIZE int [K | M] | AUTOEXTEND {OFF | ON [NEXT int [K | M]

 [MAXSIZE [UNLIMITED | int [K | M] } |

 RENAME FILE 'file' [,...] TO 'new_file_name' [,...] } |

{[[NO] FORCE LOGGING] | [[NO]ARCHIVELOG [MANUAL]] |

 [ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY | UNIQUE |

 FOREIGN KEY) [,...]] COLUMNS |

 [ADD | DROP] [STANDBY] LOGFILE

 {{[THREAD int | INSTANCE 'instance_name']} {[GROUP int |

 logfile_name [,...]} [SIZE [K | M]] | [REUSE] |

 [MEMBER] 'file' [REUSE] [,...] TO logfile_name [,...]} |

 ADD LOGFILE MEMBER 'file' [RESUSE] [,...] TO {[GROUP int |

 logfile_name [,...]} |

 DROP [STANDBY] LOGFILE {MEMBER 'file' | {[GROUP int | logfile_name

 [,...]} }

 CLEAR [UNARCHIVED] LOGFILE {[GROUP int | logfile_name [,...]} [,...]

 [UNRECOVERABLE DATAFILE] } |

{CREATE [LOGICAL | PHYSICAL] STANDBY CONTROLFILE AS 'file' [REUSE] |

 BACKUP CONTROLFILE TO

 {'file' [REUSE] | TRACE [AS 'file' [REUSE]] {RESETLOGS |

 NORESETLOGS]} } |

{RECOVER

 {[AUTOMATIC [FROM 'location']] |

 {[STANDBY] DATABASE

 {[UNTIL {CANCEL | TIME date | CHANGE int}] |

 USING BACKUP CONTROLFILE } |

 {{[STANDBY] {TABLESPACE tablespace_name [,...] | DATAFILE

 'file' [,...] } [UNTIL [CONSISTENT WITH] CONTROLFILE]} |

 TABLESPACE tablespace_name [,...] | DATAFILE 'file' [,...]} |

 LOGFILE filename [,...] } [{TEST | ALLOW int CORRUPTION | [NO]PARALLEL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LOGFILE filename [,...] } [{TEST | ALLOW int CORRUPTION | [NO]PARALLEL

 int}]} |

 CONTINUE [DEFAULT] |

 CANCEL [IMMEDIATE][NOWAIT] }

 {MANAGED STANDBY DATABASE

 {[[NO]TIMEOUT int] [{[NO]DELAY int | DEFAULT DELAY}] [NEXT int]

 [[NO]EXPIRE int] [{[NO]PARALLEL int}] [USING CURRENT LOGFILE]

 [UNTIL CHANGE int]

 [THROUGH

 {ALL ARCHIVELOG | {ALL | LAST | NEXT} SWITCHOVER |

 [[THREAD int] SEQUENCE int] } |

 [CANCEL [IMMEDIATE] [{WAIT | NOWAIT}]] |

 [DISCONNECT [FROM SESSION] [{[NO]PARALLEL int}]

 FINISH [SKIP [STANDBY LOGFILE]] [{WAIT | NOWAIT}]] |

{BEGIN | END} BACKUP} }

The syntax elements in Oracle are as follows:

{CREATE | ALTER} DATABASE database_name

Creates or alters a database with the name database_name. The database name can be up to 8 bytes in length
and may not contain European or Asian characters. You can omit a database name and allow Oracle to create a
database name for you, but beware that Oracle can create some counter-intuitive names.

USER SYS IDENTIFIED BY password

USER SYSTEM IDENTIFIED BY password

Specifies passwords for the SYS and SYSTEM users. You may specify neither or both of these clauses, but not
just one of them.

CONTROLFILE REUSE

Causes existing control files to be reused, enabling you to specify existing files in the CONTROL_FILES
parameter in INIT.ORA. Oracle will then overwrite any information those files may contain. This clause is
normally used when recreating a database. Consequently, you probably don't want to use this clause in
conjunction with MAXLOGFILES, MAXLOGMEMBER, MAXLOGHISTORY, MAXDATAFILES, or MAXINSTANCES.

LOGFILE definition

Specifies one or more logfiles for the database. You may define multiple files all with the same size and
characteristics, using the file parameter, or you may define multiple files, each with its own size and
characteristics. The entire logfile definition syntax is rather ponderous, but offers a great deal of control:

LOGFILE { ('file' [,...]) [SIZE int [K | M]

[GROUP int] [REUSE]} [,...]

where:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where:

LOGFILE ('file' [,...])

Defines one or more files that will act as redo logfiles; file is both the filename and path. Any files
defined in the CREATE DATABASE statement are assigned to redo log thread number 1. When specifying
multiple redo logfiles, each filename should be enclosed in single quotes and separated from the other
names by commas. The entire list should be enclosed in parentheses.

SIZE int [K | M]

Specifies the size of the redo logfile in bytes as an integer value, int. Alternately, you may define the
redo logfile in large units than bytes by appending a K (for kilobytes) or an M (for megabytes).

GROUP int

Defines the integer ID, int, of the redo logfile group. The value may be from 1 to the value of the
MAXLOGFILES clause. An Oracle database must have at least two redo logfile groups. Oracle will create
a redo logfile group for you, at 100 MB each, if you leave off this group ID.

REUSE

Reuses an existing redo logfile.

MAXLOGFILES int

Sets the maximum number of logfiles, int, available to the database being created. The minimum, maximum,
and default for this clause are OS-dependent.

MAXLOGMEMBERS int

Sets the maximum number of members (i.e., copies) for a redo logfile group. The minimum value is 1 while the
maximum and default values for this clause are OS-dependent.

MAXLOGHISTORY int

Sets the maximum number of archived redo logfiles available to a Real Application Cluster. You can use the
MAXLOGHISTORY clause only when Oracle is in ARCHIVELOG mode on a Real Application Cluster. The minimum
value is 0 while the maximum and default values for this clause are OS-dependent.

ARCHIVELOG | NOARCHIVELOG

Defines how redo logs operate. When used with ALTER DATABASE, allows the current setting to be changed.
ARCHIVELOG saves data stored in the redo log(s) to an archiving file, providing for media recoverability.
Conversely, NOARCHIVELOG allows a redo log to be reused without archiving the contents. Both options
provide recoverability, although NOARCHIVELOG (the default) does not provide media recovery.

FORCE LOGGING

Places all instances of the database into FORCE LOGGING mode, in which all changes to the database are
logged, except for changes to temporary tablespaces and segments. This setting takes precedence over any
tablespace- or object-level settings.

MAXDATAFILES int

Sets the initial number of datafiles, int, available to the database being created. Note that the INIT.ORA setting,
DB_FILES, also limits the number of datafiles accessible to the database instance.

MAXINSTANCES int

Sets the maximum number of instances, int, which may mount and open the database being created. The
minimum value is 1 while the maximum and default values for this clause are OS-dependent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

minimum value is 1 while the maximum and default values for this clause are OS-dependent.

CHARACTER SET charset

Controls the language character set in which the data is stored. The value for charset cannot be AL16UTF16. The
value of charset is OS-dependent.

NATIONAL CHARACTER SET charset

Controls the national language character set for data stored in NCHAR, NCLOB, and NVARCHAR2 columns. The
value for charset must be either AL16UTF16 (the default) or UTF8.

EXTENT MANAGEMENT {DICTIONARY | LOCAL}

Creates a locally managed SYSTEM tablespace, otherwise the SYSTEM tablespace will be dictionary managed.
This clause requires a default temporary tablespace. If you omit a DATAFILE clause, you can also omit a default
temporary tablespace because Oracle will create them both for you.

DATAFILE definition

Specifies one or more datafiles for the database. (All these datafiles become part of the SYSTEM tablespace.)
You may repeat filenames to define multiple files all with the same size and characteristics. Alternately, you
may repeat the entire DATAFILE clause, with each occurrence defining one or more files with the same size and
characteristics. The entire datafile definition syntax is rather large, but offers a great deal of control:

DATAFILE {('file1' [,...]) [GROUP int] [SIZE int [K | M] [REUSE]

[AUTOEXTEND [OFF | ON [NEXT int [K | M]

[MAXSIZE [UNLIMITED | int [K | M]] } [,...]

where:

DATAFILE ('file1' [,...])

Defines one or more files that will act as the datafile(s), where file1 is both the filename and path. For
multiple files, each filename should be enclosed in single-quotes and separated by a comma. The entire
list should be enclosed in parentheses.

GROUP int

Defines the integer ID, int, of the datafile group. The value may be from 1 to the value of MAXLOGFILES
clause. An Oracle database must have at least two datafile groups. Oracle will create them for you, at
100 MB each, if you leave off this clause.

SIZE int [K | M]

Specifies the size of the datafile in bytes as an integer value, int. Alternately, you may define the
datafile in large units by appending a K (for kilobytes) or an M (for megabytes).

REUSE

Reuses the existing datafile.

AUTOEXTEND

Enables (ON) the automatic extension of new or existing data or temp files (but does not redo logfiles).
NEXT specifies the next increment of space allocated to the file in bytes, kilobytes (K), or megabytes
(M) when more space is needed.

MAXSIZE [UNLIMITED | int [K | M]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies the maximum disk space allowed for automatic extension of the file. UNLIMITED allows the file
to grow without an upper limit, except of course the total capacity of the drive. Otherwise, you may
define the maximum size limit as an integer, int, in bytes (the default), kilobytes with the keyword K,
and megabytes with the keyword M.

SYSAUX DATAFILE definition

Specifies one or more datafiles for the SYSAUX tablespace. By default, Oracle creates and manages the SYSTEM
and SYSAUX tablespaces automatically. You must use this clause if you have specified a datafile for the SYSTEM
tablespace. If you omit the SYSAUX clause when using Oracle-managed files, then Oracle will create the
SYSAUX tablespace as an online, permanent, locally managed tablespace with a single datafile of 100 MB, using
automatic segment-space management and logging.

BIGFILE | SMALLFILE

Specifies the default file type of a subsequently created tablespace. BIGFILE indicating the tablespace will
contain a single datafile or tempfile of up to 8 exabytes (8 million terabytes) in size, while SMALLFILE indicates
the tablespace is a traditional Oracle tablespace. The default, when omitted, is SMALLFILE.

DEFAULT TABLESPACE tablespace_name

Specifies a default permanent tablespace for the database for all non-SYSTEM users. When this clause is
omitted, the SYSTEM tablespace is the default permanent tablespace for non-SYSTEM users. The EXTENT
MANAGEMENT clause has the same syntax as in the DEFAULT TEMPORARY TABLESPACE clause appearing later.

DEFAULT TEMPORARY TABLESPACE tablespace_name [TEMPFILE file_definition]

Defines the name and location of the default temporary tablespace for the database. Users who are not
explicitly assigned to a temporary tablespace will operate in this one. If you don't create a default temporary
tablespace, Oracle uses the SYSTEM tablespace. Under ALTER DATABASE, this clause allows you to change the
default temporary tablespace.

TEMPFILE file_definition

The tempfile definition is optional when the DB_CREATE_FILE_DEST INIT.ORA parameter is set.
Otherwise, you'll have to define the tempfile yourself. The TEMPFILE definition syntax is otherwise
identical to the DATAFILE definition syntax earlier in this section.

EXTENT MANAGEMENT {DICTIONARY | LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M]}}

Defines the way in which the SYSTEM tablespace is managed. When this clause is omitted, the SYSTEM
tablespace is dictionary-managed. Once created as a locally managed tablespace, it cannot be converted back
to a dictionary-managed tablespace, nor can any new dictionary-managed tablespaces be created in the
database.

DICTIONARY

Specifies that the Oracle data dictionary manages the tablespace. This is the default. The
AUTOALLOCATE and UNIFORM subclauses are not used with this clause.

LOCAL

Declares that the tablespace is locally managed. This clause is optional since all temporary tablespaces
have locally managed extents by default. Use of this clause requires a default temporary tablespace. If
you do not manually create one, Oracle will automatically create one called TEMP of 10 MB size with
autoextend disabled.

AUTOALLOCATE

Specifies that new extents will be allocated as needed by the locally managed tablespace.

UNIFORM [SIZE int [K | M]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that all extents of the tablespace are the same size (UNIFORM), in bytes, as int. The SIZE
clause allows you to configure the size of the extents to your liking in bytes (the default), in kilobytes
using the keyword K, or in megabytes using the keyword M. The default is 1M.

UNDO TABLESPACE tablespace_name [DATAFILE temp_datafile_definition]

Defines the name and location for undo data, creating a tablespace named tablespace_name, but only if you have
set the UNDO_MANAGEMENT INIT.ORA parameter to AUTO. If you don't use this clause, Oracle manages undo
space via rollback segments. (You may also set the INIT.ORA parameter to UNDO_TABLESPACE. If so, the value
of the parameter and the tablespace_name used here must be identical.)

where:

DATAFILE temp_datafile_definition

Creates and assigns the datafile, as you have defined it, to the undo tablespace. Refer to the earlier
section on DATAFILE for the full syntax on this clause. This clause is required if you have not specified a
value for the INIT.ORA parameter DB_CREATE_FILE_DEST.

SET TIME_ZONE = ' { {+ | -} hh:mi | time_zone_region}'

Sets the time zone for the database, either by specifying a delta from Greenwich Mean Time (now called
Coordinated Universal Time) or by specifying a time zone region. (For a list of time zone regions, query the
tzname column of the v$timezone_names view.) If you do not use this clause, Oracle defaults to the operating-
system time zone.

SET DEFAULT TABLESPACE

Sets all tablespaces created by the current CREATE DATABASE or ALTER DATABASE statement as either
BIGFILE or SMALLFILE. When creating databases, this clause also applies to the SYSTEM and SYSAUX
tablespaces.

MOUNT [[{STANDBY} | CLONE] DATABASE]

Mounts a database for users to access. The STANDBY keyword mounts a physical standby database, enabling it
to receive archived redo logs from the primary instance. The CLONE keyword mounts a clone database. This
clause cannot be used with OPEN.

OPEN [READ WRITE | READ ONLY] [RESETLOGS | NORESETLOGS] [UPGRADE | DOWNGRADE]

Opens the database separately from the mounting process. (Mount the database first.) READ WRITE opens the
database in read/write mode, allowing users to generate redo logs. READ ONLY allows reads but disallows
changes to redo logs. RESETLOGS discards all redo information not applied during recovery and sets the log
sequence number to 1. NORESETLOGS retains the logs in their present condition. The optional UPGRADE and
DOWNGRADE clauses tell Oracle to dynamically modify the system parameters as required for database
upgrade or downgrade, respectively. The default is OPEN READWRITE NORESETLOGS.

ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [SKIP [STANDBY LOGFILE]]

Promotes a standby database to the primary database. You can optionally specify a PHYSICAL standby, the
default, or a LOGICAL standby. Use the SKIP clause to immediately promote a physical standby and discard any
data still unapplied by the RECOVER MANAGED STANDBY DATABASE FINISH statement. The clause STANDBY
LOGFILE is noise.

SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION | AVAILABILITY | PERFORMANCE}

Sets the level of protection for data in the primary database. The old terms PROTECTED and UNPROTECTED
equate to TO MAXIMIZE PROTECTION and MAXIMIZE PERFORMANCE, respectively, where:

PROTECTION

Provides the highest level of data protection, but has the greater overhead and negatively impacts
availability. This setting commits transactions only after all data necessary for recovery has been
physically written in at least one physical standby database that uses SYNC log transport mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

physically written in at least one physical standby database that uses SYNC log transport mode.

AVAILABILITY

Provides the second highest level of data protection, but the highest level of availability. This setting
commits transactions only after all data necessary for recovery has been physically written in at least
one physical or logical standby database that uses SYNC log transport mode.

PERFORMANCE

Provides the highest level of performance, but compromises data protection and availability. This setting
commits transactions before all data necessary for recovery has been physically written to a standby
database.

REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']

Manually registers redo logfiles from a failed primary server when issued from a standby server. The logfile may
optionally be declared as PHYSICAL or LOGICAL. The OR REPLACE clause allows updates to details for an
existing archivelog entry.

FOR logminer_session_name

Registers the logfile with a single, specific LogMiner session in an Oracle Streams environment.

{COMMIT | PREPARE} TO SWITCHOVER TO {[PHYSICAL | LOGICAL] PRIMARY | STANDBY}

Performs a graceful switchover, moving the current primary database to standby status and promoting a
standby database to primary. (In a RAC environment, all instances other than the current instance have to be
shutdown.) To gracefully switch over, you should issue the command twice, once to prepare the primary and
standby databases to begin exchanging logfiles in advance of the switchover using PREPARE TO SWITCHOVER.
To demote the primary database and switchover of the standby databases, use COMMIT TO SWITCHOVER. The
PHYSICAL clause puts the primary database into physical standby mode. The LOGICAL clause puts the primary
database into logical standby mode. However, you must then issue an ALTER DATABASE START LOGICAL
STANDBY APPLY statement.

WITH[OUT] SESSION SHUTDOWN] [WAIT | NOWAIT]

WITH SESSION SHUTDOWN closes any open application sessions and rolls back any uncommitted transactions
during a switchover of physical databases (but not logical ones). WITHOUT SESSION SHUTDOWN, the default,
causes the COMMIT TO SWITCHOVER statement to fail if it encounters any open application sessions. WAIT
returns control to the console after completion of the SWITCHOVER command, while NOWAIT returns control
before the command completes.

START LOGICAL STANDBY APPLY [IMMEDIATE][NODELAY][{INITIAL int | NEW PRIMARY dblink_name}
| {FINISH | SKIP} FAILED TRANSACTIONS}]

Starts to apply redo logs to the logical standby database. IMMEDIATE tells the Oracle LogMiner to read the redo
data in the standby redo logfiles. NODELAY tells Oracle to ignore a delay for the apply, such as when the
primary database is unavailable or disabled. INITIAL is used the first time you apply logs to the standby
database. NEW PRIMARY is required after a switchover has completed or after a standby database has
processed all redo logs and another standby is promoted to primary. Use SKIP FAILED TRANSACTION to skip
the last transaction and to restart the apply. Use FINISH to apply the data in the redo logs if the primary
database is disabled.

[STOP | ABORT] LOGICAL STANDBY APPLY

Stops the application of redo logs to a logical standby server. STOP performs an orderly stop, while ABORT
performs an immediate stop.

[NO]PARALLEL [int]

[NO]PARALLEL determines whether parallel recovery of media is used. NOPARALLEL is the default and enforces
serial reading of the media. PARALLEL with no int value tells Oracle to choose the degree of parallelism to apply.
Specifying int declares the degree of parallelism to apply.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifying int declares the degree of parallelism to apply.

RENAME GLOBAL_NAME TO database[.domain[.domain ...]]

Changes the global name of the database, where database is the new name of up to 8 bytes in length. The
optional domain specifications identify the database's location in the network. This does not propagate database
name changes to any dependent objects like synonyms, stored procedures, etc.

{DISABLE | ENABLE} BLOCK CHANGE TRACKING [USING FILE 'file'] [REUSE]

Tells Oracle to stop or start tracking the physical location of all database updates, respectively, and maintain
the information in a special file called the block change tracking file. Oracle will automatically create the file as
defined by the DB_CREATE_FILE_DEST parameter, unless you add the USING FILE 'file' clause, where 'file' is
the path and name of the file. REUSE tells Oracle to overwrite an existing block change tracking file of the same
name as 'file'. The USING and REUSE subclauses are only allowed with the ENABLE BLOCK clause.

FLASHBACK {ON | OFF}

Places the database in or out of FLASHBACK mode, respectively. When in flashback mode, an Oracle database
automatically creates and maintains flashback database logs in the flash recovery area. When OFF, the
flashback database logs are deleted and unavailable.

SET TIME ZONE

Specifies the time zone for the server. Refer to the SET TIME ZONE statement for more information.

ENABLE [PUBLIC] THREAD int | DISABLE THREAD int | INSTANCE 'instance_name'

In Real Application Cluster (RAC) environments, you can ENABLE or DISABLE a redo log thread by number (int).
You may optionally specify an instance_name to enable or disable a thread mapped to a specific database
instance of an Oracle Real Application Cluster environment. The instance_name may be up to 80 characters long.
The PUBLIC keyword makes the thread available to any instance. When omitted, the thread is only available
when explicitly requested. To enable a thread, the thread must have at least two redo logfile groups. To disable
a thread, the database must be open but not mounted by an instance using the thread.

GUARD {ALL | STANDBY | NONE}

Protects the data in a database from changes. ALL prevents users other than SYS from making changes.
STANDBY prevents all users other than SYS from making changes in a logical standby. NONE provides normal
security for the database.

CREATE DATAFILE 'file' [,...] [AS {NEW | file_definition}]

Creates a new empty datafile, replacing an existing one. The value 'file' identifies a file (either by filename or file
number) that was lost or damaged without a backup. AS NEW creates a new file in the default filesystem using
an Oracle-supplied name. AS file_definition allows you to specify a filename and sizing details, as defined under
the file_definition section earlier in the list.

DATAFILE 'file' | TEMPFILE 'file' [,...] {ONLINE | OFFLINE [FOR DROP]}
| RESIZE int [K | M] | AUTOEXTEND {OFF | ON [NEXT
int [K | M]} [MAXSIZE [UNLIMITED | int [K | M]]} {END BACKUP [INCLUDING DATAFILES}]

Changes the attributes, such as the size, of one or more existing datafiles or tempfiles. You may alter one or
more files in a comma-delimited list, identified in the value 'file' by filename or file number. Do not mix datafile
and tempfile declarations; only one or the other should appear in this clause at a time, where:

ONLINE

Sets the file online.

OFFLINE [FOR DROP]

Sets the file offline allowing media recovery. FOR DROP is required to take a file offline in
NOARCHIVELOG mode, but does not actually destroy the file. It is ignored in ARCHIVELOG mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOARCHIVELOG mode, but does not actually destroy the file. It is ignored in ARCHIVELOG mode.

RESIZE int [K | M]

Sets a new size for an existing datafile or tempfile.

END BACKUP

Described later in the list under END BACKUP. Used only with the DATAFILE clause.

DROP INCLUDING DATAFILES

Drops not only the tempfile, but all datafiles on the filesystem associated with the tempfile. Oracle also
adds an entry to the alert log for each file that is erased. Used only with the TEMPFILE clause.

AUTOEXTEND {OFF | ON [NEXT int [K | M] [MAXSIZE [UNLIMITED | int [K | M] }

Described earlier in the list under DATAFILE definition.

RENAME FILE 'file' [,...] TO 'new_file_name' [,...]

Renames a datafile, tempfile, or redo logfile member from the old name, 'file', to the 'new_file_name'. You can
rename multiple files at once by specifying multiple old and new filenames. This command does not rename
files at the operating system level. Rather, it specifies new names that Oracle will use to open the files. You
need to rename at the operating system level yourself.

[NO] FORCE LOGGING

Puts the database into force logging mode (FORCE LOGGING) or takes it out of force logging mode (NO FORCE
LOGGING). In the former, Oracle logs all changes to the database except in temporary tablespaces or
segments. This database-level FORCE LOGGING setting supersedes all tablespace level declarations regarding
force logging mode.

[NO]ARCHIVELOG [MANUAL]

Tells Oracle to create redo logfiles, but the user will handle the archiving of the redo logfiles explicitly. It is used
only with the ALTER DATABASE statement and only for backward compatibility for users with older tape backup
systems. When this clause is omitted, Oracle defaults the redo logfile destination to the LOG_ARCHIVE_DEST_n
initialization parameter.

[ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY | UNIQUE | FOREIGN KEY) [,...] COLUMNS]

ADD places additional column data into the log stream whenever an update is executed. It also enables minimal
supplemental logging, which ensures that LogMiner can support chained rows and special storage arrangements
like clustered tables. Supplemental logging is disabled by default. You can add the clauses PRIMARY KEY
COLUMNS, UNIQUE KEY COLUMNS, FOREIGN KEY COLUMNS, or ALL (to get all three earlier options), if you
need to enable full referential integrity via foreign keys in another database, such as a logical standby. In either
case, Oracle places either the primary key columns, unique key columns (or where none exist, a combination of
columns that uniquely identify each row), foreign key columns, or all three into the log. DROP tells Oracle to
suspend supplemental logging.

[ADD | DROP] [STANDBY] LOGFILE [THREAD int] [GROUP int] [MEMBER] 'file' [,...]

ADD adds one or more primary or standby redo logfile groups to the specified instance. THREAD assigns the
added files to a specific thread number (int) on a Real Application Cluster. When omitted, the default is the
thread assigned to the current instance. GROUP assigns the redo logfile groups to a specific group within the
thread. MEMBER adds the specified 'file' (or files in a comma-delimited list) to an existing redo logfile group.
DROP LOGFILE MEMBER drops one or more redo logfile members, after issuing an ALTER SYSTEM SWITCH
LOGFILE statement.

CLEAR [UNARCHIVED] LOGFILE GROUP int logfile_name [,...] [UNRECOVERABLE DATAFILE] }

Reinitializes one or more specified online redo logs. Specify the logs in a comma-delimited list. UNARCHIVED
skips archiving the redo logs. UNRECOVERABLE DATAFILE is required when any datafile is offline and the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

skips archiving the redo logs. UNRECOVERABLE DATAFILE is required when any datafile is offline and the
database is in ARCHIVELOG mode.

CREATE {LOGICAL | PHYSICAL} STANDBY CONTROLFILE AS 'file' [REUSE]}

Creates a control file that maintains a logical or physical standby database. REUSE is needed if the file already
exists.

BACKUP CONTROLFILE TO {'file' [REUSE] | TRACE [AS 'file' [REUSE]] [RESETLOGS | NORESETLOGS]

Backs up the current control file of an open or mounted database. TO 'file' identifies a full path and filename for
the control file. TO TRACE writes SQL statements to recreate the control file to a trace file. TO TRACE AS 'file'
writes all the SQL statements to a standard file rather than a trace file. REUSE is needed if the file already
exists. RESETLOGS initializes the trace file with the statement ALTER DATABASE OPEN RESETLOGS, and is only
valid when online logs are unavailable. NORESETLOGS initializes the trace file with the statement ALTER
DATABASE OPEN NORESETLOGS and is only valid when online logs are available.

RECOVER

Controls media recovery for the database, standby database, tablespace, or file. In Oracle, the ALTER TABLE
command is one of the primary means of recovering a damaged or disabled database, file, or tablespace. Use
RECOVER when the database is mounted (in exclusive mode), the files and tablespaces involved are not in use
(offline), and the database is in either an open or closed state. The entire database can be recovered only when
it is closed, but specific files or tablespaces can be recovered in a database that is open.

AUTOMATIC [FROM 'location']

Tells Oracle to automatically generate the name of the next archived redo logfile necessary for continued
operation during recovery. Oracle will prompt you if it cannot find the next file. The FROM 'location' clause tells
Oracle where to find the archived redo logfile group. The following subclauses may be applied to an
automatically recovered database.

STANDBY

Specifies that the database or tablespace to recover is a standby type.

DATABASE {UNTIL {CANCEL | TIME date | CHANGE int} | USING BACKUP CONTROLFILE }

Tells Oracle to recover the entire database. The UNTIL keyword tells Oracle to continue recovery until ALTER
DATABASE...RECOVER CANCEL (CANCEL) is issued, until a specified time is reached (TIME) in the format YYYY-
MM-DD:HH24:MI:SS, or until a specific system change number (CHANGE int) is reached where int is the
number. The clause USING BACKUP CONTROLFILE enables use of the backup, rather than current, control file.

[STANDBY] TABLESPACE tablespace_name [,...] | DATAFILE 'file' [,...]

Recovers one or more specific tablespaces or datafiles, respectively. You may specify more than one tablespace
or datafile using a comma-delimited list. You may also recover a datafile by datafile number, rather than by
name. The tablespace may be in normal or standby mode. The standby tablespace or datafile is reconstructed
using archived redo logfiles copied from the primary database and a control file.

UNTIL [CONSISTENT WITH] CONTROLFILE

Tells Oracle to recover an older standby tablespace or datafile by using the current standby control file.
CONSISTENT WITH are noise words.

LOGFILE filename [,...]

Continues media recovery by applying one or more redo logfiles that you specify in a comma-delimited list.

TEST | ALLOW int CORRUPTION | [NO]PARALLEL int

TEST performs a trial recovery, allowing you to foresee any problems. ALLOW int CORRUPTION tells how many
corrupt blocks (int) to tolerate before causing recovery to abort. Int must be 1 for a real recovery, but may be
any number you chose when paired with TEST. Parallelism is described earlier in the list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

any number you chose when paired with TEST. Parallelism is described earlier in the list.

CONTINUE [DEFAULT]

Determines whether multi-instance recovery continues after interruption. CONTINUE DEFAULT is the same as
RECOVER AUTOMATIC, but does not result in a prompt for a filename.

CANCEL [IMMEDIATE][[NO]WAIT]

Cancels a managed recovery operation at the next archived log boundary, if it was started with the USING
CANCEL clause. The IMMEDIATE keyword cancels the managed recovery in process after the current I/O or
archived log boundary, whichever is first. NOWAIT cancels the recovery immediately without regard to current
work in process, while WAIT allows current work to complete normally.

MANAGED STANDBY DATABASE

Specifies managed physical standby recovery mode on an active component of a standby database. This
command is used for media recovery only and not to construct a new database, using the following parameters:

[NO]TIMEOUT int

TIMEOUT specifies, in minutes (int), how long the foreground managed recovery operation will wait for
the next available redo log before timing out. NOTIMEOUT, the default, tells Oracle to wait indefinitely
for the next redo log, or until the instance is shutdown, or until RECOVER CANCEL is issued.

CANCEL [IMMEDIATE][[NO]WAIT]

Described earlier.

[NO]DELAY int | DEFAULT DELAY int

Tells, in minutes (int), how long Oracle should wait to apply an archived redo log after it has been
selected for recovery. DEFAULT DELAY tells Oracle to use the delay specified by the
LOG_ARCHIVE_DEST_n INIT.ORA parameter. NODELAY tells Oracle to apply the archived redo log
immediately.

NEXT int

Tells Oracle to apply the int next archived redo logs as soon as possible after they have been archived.
Incompatible with FINISH.

[NO]EXPIRE int

Tells Oracle, in minutes (int), when to automatically terminate a managed recovery relative to the time
the recovery started. NOEXPIRE disables a previously set EXPIRE value. Incompatible with FINISH.

USING CURRENT LOGFILE

Invokes real time apply, which allows recovery of redos from standby online logs as they are being
filled, without first requiring that they be archived by the standby database.

UNTIL CHANGE int

Conducts a managed recovery up to (but not including) the specified system change number called int.

THROUGH {ALL ARCHIVELOG | {ALL | LAST | NEXT} SWITCHOVER | [THREAD int] SEQUENCE int}

Tells Oracle when to terminate managed recovery to a standby server. THROUGH ALL ARCHIVELOG, the
default, continues managed recovery until all archivelogs are recovered. THROUGH...SWITCHOVER
controls the termination of managed recovery when Oracle switches over to a secondary standby
server. ALL keeps managed recovery in operation through any switchovers. LAST terminates managed
recovery after receiving the final end-of-redo indicator. NEXT terminates managed recovery after

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

recovery after receiving the final end-of-redo indicator. NEXT terminates managed recovery after
receiving the next end-of-redo indicator. THROUGH...SEQUENCE tells Oracle to terminate managed
recovery when it encounters a specific THREAD number and/or SEQUENCE number.

DISCONNECT [FROM SESSION] [[NO]PARALLEL int]

Causes the managed redo process to occur in the background, leaving the current process available for
other tasks. FROM SESSION are noise words. DISCONNECT is incompatible with TIMEOUT.

FINISH [SKIP [STANDBY LOGFILE]] [{WAIT | NOWAIT}]]

Recovers the current physical standby online redo logfiles in preparation of the standby assuming the
primary database role when the primary database has failed. The FINISH clause, when used without
any other keywords, is known as a terminal recovery. The optional clause SKIP [STANDBY LOGFILE]
allows the standby to prepare for the primary role when standby online redo logfiles are not available.
The FINISH SKIP clause, when used without any other keywords, is known as a terminal incomplete
recovery. WAIT tells Oracle to return control after completing the recovery process, while NOWAIT
returns control immediately. Incompatible with TIMEOUT, DELAY, EXPIRE, and NEXT.

{BEGIN | END} BACKUP

Controls online backup mode for any datafiles. BEGIN places all datafiles into online backup mode. The
database must be mounted and open, in archivelog mode with media recovery enabled. (Note that while the
database is in online backup mode the instance cannot be shutdown, and individual tablespaces cannot be
backed up, taken offline, or made read only.) END takes all datafiles currently in online backup mode out of that
mode. The database must be mounted, but need not be open.

After that long discussion of specific syntax, it's important to establish some Oracle basics.

Oracle allows the use of primary and standby databases. A primary database is a mounted and open database
accessible to users. The primary database then ships its redo logs to a standby database where they are recovered,
thus making the standby database a very up-to-date copy of the primary.

Unique to the Oracle environment is the INIT.ORA file, which specifies the database name and a variety of other options
when creating and starting up the database. You should always define startup parameters, such as the name of any
control files, in the INIT.ORA file to identify the control files or else the database will not start. Starting in Oracle 9.1,
you can use binary parameter files rather than INIT.ORA files.

When a group of logfiles is listed, they are usually shown in parentheses. The parentheses aren't needed when creating
a group with only one member, but this is seldom done. Here's an example using a parenthetical list of logfiles:

CREATE DATABASE publications

LOGFILE ('/s01/oradata/loga01','/s01/oradata/loga02') SIZE 5M

DATAFILE;

The example above creates a database called publications with an explicitly defined logfile clause and an automatically
created datafile. The following example of an Oracle CREATE DATABASE command is much more sophisticated:

CREATE DATABASE sales_reporting

CONTROLFILE REUSE

LOGFILE

 GROUP 1 ('diskE:log01.log', 'diskF:log01.log') SIZE 15M,

 GROUP 2 ('diskE:log02.log', 'diskF:log02.log') SIZE 15M

MAXLOGFILES 5

MAXLOGHISTORY 100

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MAXLOGHISTORY 100

MAXDATAFILES 10

MAXINSTANCES 2

ARCHIVELOG

CHARACTER SET AL32UTF8

NATIONAL CHARACTER SET AL16UTF16

DATAFILE

 'diskE:sales_rpt1.dbf' AUTOEXTEND ON,

 'diskF:sales_rpt2.dbf' AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED

DEFAULT TEMPORARY TABLESPACE temp_tblspc

UNDO TABLESPACE undo_tblspc

SET TIME_ZONE = '-08:00';

This example defines log and data files, as well as all appropriate character sets. We also define a few characteristics for
the database, such as the use of ARCHIVELOG mode and CONTROLFILE REUSE mode, the time zone, maximum number
of instances, datafiles, etc. The example also assumes that the INIT.ORA parameter for DB_CREATE_FILE_DEST has
already been set. Thus, we don't have to define file definitions for the DEFAULT TEMPORARY TABLESPACE and UNDO
TABLESPACE clauses.

When issued by a user with SYSDBA privileges, this statement creates a database and makes it available to users in
either exclusive or parallel mode, as defined by the value of the CLUSTER_DATABASE initialization parameter. Any data
that exists in predefined datafiles is erased. You will usually want to create tablespaces and rollback segments for the
database. (Refer to the vendor documentation for the platform specific commands CREATE TABLESPACE and CREATE
ROLLBACK SEGMENT.)

Oracle has tightened up security around default database user accounts. Many default database user accounts are now
locked and expired during initial installation. Only SYS, SYSTEM, SCOTT, DBSNMP, OUTLN, AURORAJISUTILITY$,
AURORAORBUNAUTHENTICATED, and OSE$HTTP$ADMIN are the same as they were in earlier versions. You must
manually unlock and assign a new password to all locked accounts, as well as assign a password to SYS and SYSTEM
during the initial installation.

In the next example, we add more logfiles to the current database, then add a datafile:

ALTER DATABASE ADD LOGFILE GROUP 3

 ('diskf: log3.sales_arch_log','diskg:log3.sales_arch_log')

SIZE 50M;

ALTER DATABASE sales_archive

CREATE DATAFILE 'diskF:sales_rpt4.dbf'

AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED;

We can set a new default temporary tablespace, as shown in the next example:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE sales_tbl_spc_2;

Next, we'll perform a simple full database recovery:

ALTER DATABASE sales_archive RECOVER AUTOMATIC DATABASE;

In the next example, we perform a more elaborate partial database recovery:

ALTER DATABASE RECOVER STANDBY DATAFILE 'diskF:sales_rpt4.dbf'

UNTIL CONTROLFILE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UNTIL CONTROLFILE;

Now, we'll perform a simple recovery of a standby database in managed standby recovery mode:

ALTER DATABASE RECOVER sales_archive MANAGED STANDBY DATABASE;

In the following example, we gracefully switch over from a primary database to a logical standby, and promote the
logical standby to primary:

-- Demotes the current primary to logical standby database.

ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

-- Applies changes to the new standby.

ALTER DATABASE START LOGICAL STANDBY APPLY;

-- Promotes the current standby to primary database.

ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

PostgreSQL

PostgreSQL's implementation of the CREATE DATABASE command creates a database and a file location for the
datafiles:

CREATE DATABASE database_name

 [WITH {[LOCATION = 'dbpath'] [TEMPLATE = tmp_name]

 [ENCODING = enc_value]}]

Where:

WITH LOCATION = 'dbpath'

Specifies the file path where the database will be located. You can leave off this clause to accept the default
location or use the clause WITH LOCATION = DEFAULT. The path must be prepared in advance using the
initlocation command (which is a Unix command, not a SQL statement). In general, PostgreSQL uses
environmental variable names (an environmental variable name is a pathname without slashes). If you want to
specify an absolute file and path name, like /usr/local/pgsql/data01, you must set and compile the server with
the ALLOW_ABSOLUTE_DBPATH parameter.

TEMPLATE = tmp_name

Names a template to use for creating the new database. You can leave off this clause to accept the default
template describing the location of the database files or use the clause TEMPLATE = DEFAULT. The default is to
copy the standard system database template1. You can get a pristine database (one that contains only required
database objects) by specifying TEMPLATE = template0.

ENCODING = enc_value

Specifies the multibyte encoding method to use in the new database using either a string literal (such as
'SQL_ASCII'), an integer encoding number, or DEFAULT for the default encoding.

For example, to create the database sales_revenue in the /home/teddy/private_db directory:

CREATE DATABASE sales_revenue WITH LOCATION =

'/home/teddy/private_db';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'/home/teddy/private_db';

Be careful using absolute file- and pathnames, since they impact security and data integrity issues.

PostgreSQL advises that databases used as templates be treated as read-only. Template databases should not be used
for general purpose "copy database" functionality.

PostgreSQL does not support the ALTER DATABASE command.

SQL Server

SQL Server offers a high degree of control over the OS filesystem structures that hold the database and its objects. The
syntax for Microsoft SQL Server's CREATE DATABASE statement looks like this:

CREATE DATABASE database_name

[ON file_definition [,...]]

[, FILEGROUP filegroup_name file_definition [,...]]

[LOG ON file_definition [,...]]

[COLLATE collation_name]

[FOR LOAD | FOR ATTACH]

Following is the syntax for ALTER DATABASE:

ALTER DATABASE database_name

{ADD FILE file_definition [,...] [TO FILEGROUP filegroup_name]

| ADD LOG FILE file_definition [,...]

| REMOVE FILE file_name

| ADD FILEGROUP filegroup_name

| REMOVE FILEGROUP filegroup_name

| MODIFY FILE file_definition

| MODIFY NAME = new_database_name

| MODIFY FILEGROUP filegroup_name {filegroup_property

| NAME = new_filegroup_name }

| SET {state_option | cursor_option

| auto_option | sql_option |

recovery_option}

 [,...] [WITH termination_option]

| COLLATE collation_name }

Parameter descriptions are as follows:

{CREATE | ALTER} DATABASE database_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a database, or alters an existing database, of database_name. The name cannot be longer than 128
characters. You should limit the database name to 123 characters when no logical filename is supplied, since
SQL Server will create a logical filename by appending a suffix to the database name.

{ON | ADD} file_definition [,...]

Defines the disk file(s) that store the data components of the database for CREATE DATABASE or adds disk
file(s) for ALTER DATABASE. ON is required for CREATE DATABASE only if you wish to provide one or more file
definitions, where the syntax for file_definition is:

{[PRIMARY] ([NEW][NAME = file_name] [, FILENAME = 'os_file_name']

[, SIZE = int [KB | MD | GB | TB]] [, MAXSIZE = { int |

UNLIMITED }] [, FILEGROWTH = int]) } [,...]

where:

PRIMARY

Defines the file_definition as the primary file. Only one is allowed per database. (If you don't define a
primary file, SQL Server defaults primary status to the file that it autocreates, in the absence of any
user-defined file, or to the first file that you define.) The primary file, or groups of files (also called
filegroups), contains the logical start of the database, all the database system tables, and all other
objects not contained in user filegroups.

[NEW]NAME = file_name

Defines the logical name of the file defined by the file_definition for CREATE DATABASE. Use NEWNAME
for ALTER DATABASE to define a new logical name for the file. In either case, the logical name must be
unique within the database. This clause is optional when using FOR ATTACH.

FILENAME = 'os_file_name'

Defines the operating system path and filename for the file defined by file_definition. The file must be in a
non-compressed directory on the filesystem. For raw partitions, specify only the drive letter of the raw
partition.

SIZE = int [KB | MB | GB | TB]

Defines the size of the file defined by the file_definition. This clause is optional, but defaults to the file
size for the primary file of the model database, which is usually very small. Logfiles and secondary
datafiles default to 1MB in size. The value of int defaults to megabytes; however, you can explicitly
define the size of the file using suffixes for kilobyte (KB), megabyte (MB), gigabyte (GB), and terabyte
(TB). Size cannot be smaller than 512KB or the size of the primary file of the model database.

MAXSIZE = { int | UNLIMITED }

Defines the maximum size the file may grow to. Suffixes, as described under the entry for SIZE, are
allowed. The default, UNLIMITED, allows the file to grow until all available disk space is consumed. Not
required for files on raw partitions.

FILEGROWTH = int

Defines the growth increment for the file each time it grows. Suffixes, as described under the entry for
SIZE, are allowed. You may also use the percentage (%) suffix to indicate that the file should grow by
the percentage of the total disk space currently consumed. If you omit the FILEGROWTH clause, the file
will grow in 10% increments, but never less than 64KB. Not required for files on raw partitions.

[ADD] LOG {ON | FILE} file_definition

Defines the disk file(s) that store the log component of the database for CREATE DATABASE or adds disk file(s)
for ALTER DATABASE. You can provide one or more file_definitions for the transaction logs in a comma-delimited
list. Refer to the earlier section under the keyword ON for the full syntax of file_definition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

list. Refer to the earlier section under the keyword ON for the full syntax of file_definition.

REMOVE FILE file_name

Removes a file from the database and deletes the physical file. The file must be emptied of all content first.

[ADD] FILEGROUP filegroup_name file_definition [,...]

Defines any user filegroups and their file definitions used by the database. All database have at least one
primary filegroup (though many databases only use the primary filegroup that comes with SQL Server by
default). Adding filegroups and then moving files to the filegroups can allow you greater control over disk I/O.
(We recommend that you do not add filegroups without careful analysis and testing.)

REMOVE FILEGROUP filegroup_name

Removes a filegroup from the database and deletes all the files in the filegroup. The files and the filegroup must
be empty first.

MODIFY FILE file_definition

Changes the definition of a file. This clause is very similar to the {ADD | ON} FILE clause. For example: MODIFY
FILE (NAME = file_name, NEWNAME = new_file_name, SIZE=...).

MODIFY NAME = new_database_name

Changes the database name from its current name to new_database_name.

MODIFY FILEGROUP filegroup_name {filegroup_property | NAME = new_filegroup_name }

Used with ALTER DATABASE, this clause has two forms. The first form allows you to change a filegroup name,
as in MODIFY FILEGROUP filegroup_name NAME = new_filegroup_name. The second form allows you to specify a
filegroup_property for the filegroup, which must be one of the following:

READONLY

Sets the filegroup to read-only and disallows updates to all objects within the filegroup. READONLY can
only be enabled by users with exclusive database access and cannot be applied to the primary filegroup.

READWRITE

Disables the READONLY property and allows updates to objects within the filegroup. READWRITE can
only be enabled by users with exclusive database access.

DEFAULT

Sets the filegroup as the default filegroup for the database. All new tables and indexes are assigned to
the default filegroup unless explicitly assigned elsewhere. Only one default filegroup is allowed per
database. (By default, the CREATE DATABASE statement sets the primary filegroup as the default
filegroup.)

SET {state_option | cursor_option | auto_option | sql_option | recovery_option} [,...]

Controls a wide variety of behaviors for the database. These are discussed in the rules and information later in
this section.

WITH termination_option

Used after the SET clause, WITH sets the rollback behavior for incomplete transactions whenever the database
is in transition. When omitted, transactions must commit or rollback on their own with the database state
changes. There are two termination_option settings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROLLBACK AFTER int [SECONDS] | ROLLBACK IMMEDIATE

Causes the database to roll back in int number of seconds, or immediately. SECONDS is a noise word
and does not change the behavior of the ROLLBACK AFTER clause.

NO_WAIT

Causes database state or option changes to fail if a change cannot be completed immediately, without
waiting for the current transaction to independently commit or roll back.

COLLATE collation_name

Defines or alters the default collation used by the database. Collation_name can be either a SQL Server collation
name or a Windows collation name. By default, all new databases receive the collation of the SQL Server
instance. (You can execute the query SELECT * FROM ::fn_helpcollations() to see all the collation names
available.) To change the collation of a database, you must be the only user in the database, no schema bound
objects that depend on the current collation may exist in the database, and the collation change must not result
in the duplication of any object names in the database.

FOR LOAD | FOR ATTACH

Places the database in special startup mode. FOR LOAD is supported only for backward compatibility with
versions earlier than 7.0 and sets the database to a status of loading and "dbo use only." FOR ATTACH creates
the database from a set of pre-existing operating system files, almost always database files created previously.
Because of this, the new database must have the same code page and sort order as the previous database. You
only need the file_definition of the first primary file or those files that have a different path from the last time the
database was attached. In general, you should use the sp_attach_db system stored procedure over the CREATE
DATABASE FOR ATTACH statement unless you need to specify more than 16 file_definitions.

The CREATE DATABASE command should be issued from the master system database. You can, in fact, issue the
command CREATE DATABASE database_name, with no other clauses, to get a very small, default database.

SQL Server uses files, formerly called devices, to act as a repository for databases. Files are grouped into one or more
filegroups, with at least a PRIMARY filegroup assigned to each database. A file is a predefined block of space created on
the disk structure. A database may be stored on one or more files or filegroups. SQL Server also allows the transaction
log to be placed in a separate location from the database using the LOG ON clause. These functions allow sophisticated
file planning for optimal control of disk I/O. For example, we can create a database called sales_report with a data
and transaction logfile:

USE master

GO

CREATE DATABASE sales_report

ON

(NAME = sales_rpt_data, FILENAME =

 'c:\mssql\data\salerptdata.mdf',

 SIZE = 100, MAXSIZE = 500, FILEGROWTH = 25)

LOG ON

(NAME = 'sales_rpt_log',

 FILENAME = 'c:\mssql\log\salesrptlog.ldf',

 SIZE = 25MB, MAXSIZE = 50MB,

 FILEGROWTH = 5MB)

GO

When a database is created, all objects in the model database are copied into the new database. All of the empty space
within the file or files defined for the database is then initialized (i.e., emptied out), which means that creating a new
and very large database can take a while, especially on a slow disk.

A database always has at least a primary datafile and a transaction logfile, but may also have secondary files for both
the data and log components of the database. SQL Server uses default filename extensions: .mdf for primary datafiles,
.ndf for secondary files, and .ldf for transaction logfiles. The following example creates a database called sales_archive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.ndf for secondary files, and .ldf for transaction logfiles. The following example creates a database called sales_archive
with several very large files that are grouped into a couple of filegroups:

USE master

GO

CREATE DATABASE sales_archive

ON

PRIMARY (NAME = sales_arch1, FILENAME = 'c:\mssql\data\archdata1.mdf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

 (NAME = sales_arch2,

 FILENAME = 'c:\mssql\data\archdata2.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

 (NAME = sales_arch3,

 FILENAME = 'c:\mssql\data\archdat3.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB)

FILEGROUP sale_rpt_grp1

 (NAME = sale_rpt_grp1_1_data,

 FILENAME = ' c:\mssql\data\SG1Fi1dt.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

 (NAME = sale_rpt_grp1_1_data,

 FILENAME = ' c:\mssql\data\SG1Fi2dt.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

FILEGROUP sale_rpt_grp2

(NAME = sale_rpt_grp2_1_data, FILENAME = ' c:\mssql\data\SRG21dt.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

 (NAME = sale_rpt_grp2_2_data, FILENAME = ' c:\mssql\data\SRG22dt.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

LOG ON

 (NAME = sales_archlog1,

 FILENAME = 'd:\mssql\log\archlog1.ldf',

 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%),

 (NAME = sales_archlog2,

 FILENAME = 'd:\ mssql\log\archlog2.ldf',

 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%)

GO

The FOR ATTACH clause is commonly used for situations like a salesperson traveling with a database on a CD. This
clause tells SQL Server that the database is attached from an existing operating-system file structure, such as a DVD-
ROM, CD-ROM, or portable hard drive. When using FOR ATTACH, the new database inherits all the objects and data of
the parent database, not the model database.

The following examples show how to change the name of a database, file, or filegroup:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following examples show how to change the name of a database, file, or filegroup:

-- Rename a database

ALTER DATABASE sales_archive MODIFY NAME = sales_history

GO

-- Rename a file

ALTER DATABASE sales_archive MODIFY FILE

NAME = sales_arch1,

NEWNAME = sales_hist1

GO

-- Rename a filegroup

ALTER DATABASE sales_archive MODIFY FILEGROUP

sale_rpt_grp1

NAME = sales_hist_grp1

GO

There may be times when you want to add new free space to a database, especially if you have not enabled it to auto-
grow:

USE master

GO

ALTER DATABASE sales_report ADD FILE

(NAME = sales_rpt_added01, FILENAME = 'c:\mssql\data\salerptadded01.mdf',

 SIZE = 50MB, MAXSIZE = 250MB, FILEGROWTH = 25MB)

GO

When you alter a database, you can set many behavior options on the database. State options (shown as state_option in
the earlier syntax diagram) control how users access the database. Following is a list of valid state options:

SINGLE_USER | RESTRICTED_USER | MULTI_USER

Sets the number and type of users with access to the database. SINGLE_USER mode allows only one user to
access the database at a time. RESTRICTED_USER mode allows access only members of the system roles
db_owner, dbcreator, or sysadmin. MULTI_USER, the default, allows concurrent database access from all users
who have permission.

OFFLINE | ONLINE

Sets the database to offline (unavailable) or online (available).

READ_ONLY | READ_WRITE

Sets the database to READ_ONLY mode, where no modifications are allowed, or to READ_WRITE mode, where
data modifications are allowed. READ_ONLY databases can be very fast for query intensive operations, since
almost no locking is needed.

Cursor options control default behavior for cursors in the database. In the ALTER DATABASE syntax shown earlier, you
can replace cursor_option with any of the following:

CURSOR_CLOSE_ON_COMMIT { ON | OFF }

When set ON, any open cursors are closed when a transaction commits or rolls back. When set OFF, any open

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When set ON, any open cursors are closed when a transaction commits or rolls back. When set OFF, any open
cursors remain open when transactions are committed and open cursors close when a transaction rolls back
unless the cursor is INSENSITIVE or STATIC. (See DECLARE CURSOR Command later in this chapter for more
details.)

CURSOR_DEFAULT { LOCAL | GLOBAL }

Sets the default scope of all cursors in the database to either LOCAL or GLOBAL. (See DECLARE CURSOR
Command later in this chapter for more details.)

In the SET clause, auto_option controls the automatic file handling behaviors of the database. The following are valid
replacements for auto_option:

AUTO_CLOSE { ON | OFF }

When set ON, the database automatically shuts down cleanly and frees all resources when the last user exits.
When set OFF, the database remains open when the last user exits. The default is OFF.

AUTO_CREATE_STATISTICS { ON | OFF }

When set ON, statistics are automatically created when SQL Server notices they are missing during query
optimization. When set OFF, statistics are not created during optimization. The default is ON.

AUTO_SHRINK { ON | OFF }

When set ON, the database files may automatically shrink. The database periodically looks for an opportunity to
shrink files, though the time is not always predictable. When set OFF, files will shrink only when you explicitly
and manually shrink them. The default is OFF.

AUTO_UPDATE_STATISTICS { ON | OFF }

When set ON, out-of-date statistics are reassessed during query optimization. When set OFF, statistics are
reassessed only by explicitly and manually recompiling them using the SQL Server command UPDATE
STATISTICS.

The sql_options clause controls ANSI compatibility of the database. You can use the standalone SQL Server command
SET ANSI_DEFAULTS ON to enable all the ANSI SQL92 behaviors at one time, rather than using the individual
statements below. In the SET clause, you can replace sql_option with any of the following:

ANSI_NULL_DEFAULT { ON | OFF }

When set ON, the CREATE TABLE statement causes columns with no nullability setting to default to NULL. When
set OFF, the nullability of a column defaults to NOT NULL. The default is OFF.

ANSI_NULLS { ON | OFF }

When set ON, comparisons to null yield UNKNOWN. When set OFF, comparisons to null yield null if both non-
UNICODE values are null. The default is OFF.

ANSI_PADDING { ON | OFF }

When set ON, strings are padded to the same length for insert or comparison operations on VARCHAR and
VARBINARY columns. When set OFF, strings are not padded. The default is ON. (We recommend that you do
not change this!)

ANSI_WARNINGS { ON | OFF }

When set ON, the database warns when problems like "divide by zero" or "null in aggregates" occur. When set
OFF, these warnings are not raised. The default is OFF.

ARITHABORT { ON | OFF }

When set ON, divide-by-zero and overflow errors cause a query or Transact-SQL batch to terminate and roll
back any open transactions. When set OFF, a warning is raised but processing continues. The default is ON. (We

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

back any open transactions. When set OFF, a warning is raised but processing continues. The default is ON. (We
recommend that you do not change this!)

CONCAT_NULL_YIELDS_NULL { ON | OFF }

When set ON, returns a null when a null is concatenated to a string. When set OFF, nulls are treated as empty
strings when concatenated to a string. The default is OFF.

NUMERIC_ROUNDABORT { ON | OFF }

When set ON, an error is raised when a numeric expression loses precision. When set OFF, losses of precision
result in rounding of the result from the numeric expression. The default is OFF.

QUOTED_IDENTIFIER { ON | OFF }

When set ON, double quotation marks identify an object identifier with special characters or one that is a
reserved word (e.g., a table named SELECT). When set OFF, identifiers may not contain special characters or
reserved words and all occurrences of double quotation marks signify a literal string value. The default is OFF.

RECURSIVE_TRIGGERS { ON | OFF }

When set ON, triggers can fire recursively. That is, the actions taken by one trigger may cause another trigger
to fire, and so on. When set OFF, triggers cannot cause other triggers to fire. The default is OFF.

Recovery options control the recovery model used by the database. Use any of the following in place of recovery_option
in the ALTER DATABASE syntax:

RECOVERY { FULL | BULK_LOGGED | SIMPLE }

When set to FULL, database backups and transaction logs provide full recoverability even for bulk operations
like SELECT...INTO, CREATE INDEX, etc. FULL is the default for SQL Server 2000 Standard Edition and
Enterprise Edition. FULL provides the most recoverability, even from a catastrophic media failure, but uses more
space. When set to BULK_LOGGED, logging for bulk operations is minimized. Space is saved and fewer I/Os are
incurred, but risk of data loss is greater than under FULL. When set to SIMPLE, the database can only be
recovered to the last full or differential backup. SIMPLE is the default for SQL Server 2000 Desktop Edition and
Personal Edition.

TORN_PAGE_DETECTION { ON | OFF }

When set ON, SQL Server can detect incomplete I/O operations at the disk level by checking each 512-byte
sector per 8K database page. (Torn pages are usually detected in recovery.) The default is ON.

For example, we may want to change some behavior settings for the sales_report database without actually changing
the underlying file structure:

ALTER DATABASE sales_report SET ONLINE, READ_ONLY,

AUTO_CREATE_STATISTICS ON

GO

This statement puts the database online and in read-only mode. It also sets the AUTO_CREATE_STATISTICS behavior
to ON.

See Also

CREATE SCHEMA
DROP STATEMENT

CREATE/ALTER FUNCTION/PROCEDURE Statements

The CREATE FUNCTION and CREATE PROCEDURE statements are very similar in syntax and coding (as are the
respective ALTER statements).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

respective ALTER statements).

The CREATE PROCEDURE statement creates a stored procedure, which takes input arguments and performs conditional
processing against various objects in the database. According to the ANSI standard, a stored procedure returns no
result set (though it may return a value in an OUTPUT parameter). For example, you might use a stored procedure to
perform all the processes that close an accounting cycle.

The CREATE FUNCTION statement creates a user-defined function (UDF), which takes input arguments and returns a
single value output in the same way as system-supplied functions like CAST() or UPPER(). These functions, once
created, can be called in queries and data-manipulation operations, such as INSERT, UPDATE, and the WHERE clause of
DELETE statements. Refer to Chapter 4 for descriptions of built-in SQL functions and their individual vendor
implementations.

Platform Command

DB2 Supported, with variations

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Supported, with variations

SQL2003 Syntax

Use the following syntax to create a stored procedure or function:

CREATE {PROCEDURE | FUNCTION} object_name

 ([{[IN | OUT | INOUT] [parameter_name] datatype [AS LOCATOR] [RESULT]}

 [,...]])

 [RETURNS datatype [AS LOCATOR]

 [CAST FROM datatype [AS LOCATOR]]

[LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}]

[PARAMETER STYLE {SQL | GENERAL}]

[SPECIFIC specific_name]

[DETERMINISTIC | NOT DETERMINISTIC]

[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]

[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]

[DYNAMIC RESULT SETS int]

[STATIC DISPATCH]

code_block

Use the following syntax to alter a pre-existing UDF or stored procedure:

ALTER {PROCEDURE | FUNCTION} object_name

 [({parameter_name datatype } [,...])]

[NAME new_object_name]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[NAME new_object_name]

[LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}]

[PARAMETER STYLE {SQL | GENERAL}]

[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]

[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]

[DYNAMIC RESULT SETS int]

[CASCADE | RESTRICT]

Keywords

CREATE {PROCEDURE | FUNCTION} [AS LOCATOR] [RESULT] object_name

Creates a new stored procedure or user-defined function with the name object_name. A user-defined function
returns a value, where a stored procedure, in ANSI SQL, does not.

([IN | OUT| INOUT] [parameter_name] datatype [,...])

Declares one or more parameters to be passed into a stored procedure in a comma-delimited list enclosed in
parentheses. Parameters used with a procedure may pass a value IN, OUT, or both in and out via INOUT.

The syntax for the parameter declaration is:

[{IN | OUT | INOUT}] parameter_name1 datatype,

[{IN | OUT | INOUT}] parameter_name2 datatype,[...]

To provide an optional parameter_name, make sure the name is unique within the stored procedure. The optional AS
LOCATOR subclause is used to validate an external routine with a RETURNS parameter that is a BLOB, CLOB, NCLOB,
ARRAY, or user-defined type. If you need to change the datatype of a RETURNS parameter on the fly, use the CAST
clause (refer to the function, CAST, in Chapter 4). For example, RETURNS VARCHAR(12) CAST FROM DATE.When used
with ALTER, this clause adds parameters to a pre-existing stored procedure. Refer to Chapter 2 for details on datatypes.

RETURNS datatype [AS LOCATOR] [CAST FROM datatype [AS LOCATOR]]

Declares the datatype of the result returned by a function. (This clause is used only in the CREATE FUNCTION
statement and is not used in stored procedures.) The key purpose of a user-defined function is to return a
value.

LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}

Declares the language in which the function is written. Most database platforms do not support all of these
languages, and often support several not mentioned, like Java. When omitted, the default is SQL. When used
with ALTER, this clause changes the existing LANGUAGE value to the value that you declare.

PARAMETER STYLE {SQL | GENERAL}

Indicates, for external routines only, whether certain implicit and automatic parameters are passed, explicitly,
with the options (SQL) or not (GENERAL). (The difference between SQL style and GENERAL style is that SQL
style passes automatic SQL parameters, such as indicators, while the GENERAL style does not automatically
pass parameters.) The default is PARAMETER STYLE SQL. When used with ALTER, this clause changes the
existing PARAMETER STYLE value to the value that you declare.

SPECIFIC specific_name

Uniquely identifies the function generally used with user-defined types.

DETERMINISTIC | NOT DETERMINISTIC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DETERMINISTIC | NOT DETERMINISTIC

States the nature of values returned by a function. (This clause is used only in CREATE and ALTER FUNCTION
statement.) DETERMINISTIC functions always return the same value when given the same parameter values.
NOT DETERMINISTIC functions may return variable results when given the same parameter values. For
example, CURRENT_TIME is not deterministic because it returns a constantly advancing value corresponding to
the time.

NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA

Specifies, in conjunction with the LANGUAGE setting, the type of SQL contained in the user-defined function.
When used with ALTER, this clause changes the existing SQL style value to the value that you declare.

NO SQL

Indicates that no SQL statements of any type are in the function. It is used with a non-SQL LANGUAGE
setting such as LANGUAGE ADA...CONTAINS NO SQL.

CONTAINS SQL

Indicates that SQL statements other than read or modify statements are in the function. This is the
default.

READS SQL DATA

Indicates the function contains SELECT or FETCH statements.

MODIFIES SQL DATA

Indicates the function contains INSERT, UPDATE, or DELETE statements.

RETURN NULL ON NULL INPUT | CALL ON NULL INPUT

These options are for use with a host LANGUAGE that cannot support nulls. The RETURNS NULL ON NULL INPUT
setting causes the function to immediately return a null value if it is passed a null value. The CALL ON NULL
INPUT setting causes the function to handle nulls according to standard rules, for example returning UNKNOWN
when a comparison of two null values occurs. (This clause is used in the CREATE and ALTER PROCEDURE and
FUNCTION statements.) When used with ALTER, this clause changes the existing NULL style value to the value
that you declare.

DYNAMIC RESULT SETS int

Declares that a certain number of cursors, int, can be opened by the stored procedure and that those cursors
are visible after returning from the procedure. When omitted, the default is DYNAMIC RESULT SETS 0. (This
clause is not used in CREATE FUNCTION statements.) When used with ALTER, this clause changes the existing
DYNAMIC RESULT SETS value to the value that you declare.

STATIC DISPATCH

Returns the static values of a user-defined type or ARRAY datatype. Required for non-SQL functions that
contain parameters that use user-defined types or ARRAYS. (This clause is not used in CREATE PROCEDURE
statements.) This clause must be the last clause in the function or procedure declaration before the code_block.

code_block

Declares the procedural statements that handle all processing within the user-defined function or stored
procedure. This is the most important, and usually largest, part of a function or procedure. We assume you're
interested in a user-defined function of LANGUAGE SQL, so note that the code_block may not contain SQL-
Schema statements, SQL-Transaction statements, nor SQL-Connection statements. While we assume that
you're interested in SQL-based UDFs and stored procedures (this is a SQL book after all), you can declare that
the code block is derived externally. The syntax for external code_blocks is:

EXTERNAL [NAME external_routine_name] [PARAMETER STYLE

{SQL | GENERAL}] [TRANSFORM GROUP group_name]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{SQL | GENERAL}] [TRANSFORM GROUP group_name]

where:

EXTERNAL [NAME external_routine_name]

Defines an external routine and assigns a name to it. When omitted, the unqualified routine name is
used.

PARAMETER STYLE [SQL | GENERAL]

Same as for CREATE PROCEDURE.

TRANSFORM GROUP group_name

Transforms values between user-defined types and host variables in a user-defined function or a stored
procedure. When omitted, the default is TRANSFORM GROUP DEFAULT.

NAME new_object_name

Declares the new name to use for a previously defined UDF or stored procedure. This clause is only used with
ALTER FUNCTION and ALTER PROCEDURE statements.

CASCADE | RESTRICT

Allows you to cause changes to CASCADE down to all dependent UDFs or stored procedures, or to RESTRICT a
change from happening if there are dependent objects. We strongly recommend that you do not issue an ALTER
statement against UDFs or stored procedures that have dependent objects. This clause is only used with ALTER
FUNCTION and ALTER PROCEDURE statements.

Rules at a Glance

With a user-defined function (UDF), you declare the input arguments and the single output argument that the function
passes back out. You can then call the user-defined function just as you would any other function, for example, in
SELECT statements, INSERT statements, or the WHERE clause of DELETE statements.

User-defined functions and stored procedures, when referred to generically, are called
routines.

With a stored procedure, you declare the input arguments that go into the stored procedure and the output arguments
that come out from it. You invoke a stored procedure using the CALL statement.

The content of the code_block must conform to the rules of whatever procedural language is supported by the database
platform. Some platforms do not have their own internal procedural language, requiring you to use EXTERNAL
code_block constructs.

For example, you might want build a user-defined function on Microsoft SQL Server that returns the first and last name
of a person as a single string:

CREATE FUNCTION formatted_name (@fname VARCHAR(30),

@lname VARCHAR(30))

RETURNS VARCHAR(60)

AS

BEGIN

 DECLARE @full_name VARCHAR(60)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DECLARE @full_name VARCHAR(60)

 SET @full_name = @fname + ' ' + @lname

 RETURN @full_name

END

You could then use this user-defined function as any other function:

SELECT formatted_name(au_fname, au_lname) AS name, au_id AS id

FROM authors

The SELECT statement in this example will return a result set with the two columns, name and id.

The ANSI statement CREATE METHOD is supported only by DB2 at this time. A method is
essentially a special purpose user-defined function and follows the same syntax.

Stored procedures behave similarly. In the following small example, this Microsoft SQL Server stored procedure
generates a unique 22-digit value (based on elements of the system date and time) and returns it to the calling
process:

-- A Microsoft SQL Server stored procedure

CREATE PROCEDURE get_next_nbr

 @next_nbr CHAR(22) OUTPUT

AS

BEGIN

 DECLARE @random_nbr INT

 SELECT @random_nbr = RAND() * 1000000

SELECT @next_nbr =

 RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))AS

 CHAR(6), 6) +

 RIGHT('0000' + CAST(DATEPART (yy, GETDATE()) AS CHAR(4)), 2) +

 RIGHT('000' + CAST(DATEPART (dy, GETDATE()) AS CHAR(3)), 3) +

 RIGHT('00' + CAST(DATEPART (hh, GETDATE()) AS CHAR(2)), 2) +

 RIGHT('00' + CAST(DATEPART (mi, GETDATE()) AS CHAR(2)), 2) +

 RIGHT('00' + CAST(DATEPART (ss, GETDATE()) AS CHAR(2)), 2) +

 RIGHT('000' + CAST(DATEPART (ms, GETDATE()) AS CHAR(3)), 3)

END

GO

In this next, and final, ANSI SQL2003 example, we change the name of an existing stored procedure:

ALTER PROCEDURE get_next_nbr

NAME 'get_next_ID'

RESTRICT;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RESTRICT;

Programming Tips and Gotchas

A key advantage of a stored procedure or function is the fact that it is precompiled, meaning that once created its query
plans are already stored in the database. Precompiled routines can often (though not always) be cached in database
memory to provide an additional boost in performance. A stored procedure or user-defined function can perform many
statements with a single communication to the server, thus reducing network traffic.

Implementations of user-defined functions and stored procedures vary widely by platform. Some database platforms do
not support internal code_block content. On these platforms, you can only write an external code_block. Be sure to read
about the variations and capabilities on each platform.

If you execute an ALTER PROCEDURE or FUNCTION statement, dependent objects may become invalid after a change
to an object they depend on. Be careful to check all dependencies when altering UDFs or stored procedures on which
other UDFs or stored procedures may depend.

DB2

DB2's implementations of these commands are very close to the ANSI standard. Although the syntax diagrams are
long, much of the usage is identical to the ANSI standard. Consequently, the keyword explanation section that follows
the syntax diagram is relatively short, since many of the clauses are explained in the SQL standard.

DB2 supports several classifications of functions. Each kind of UDF has its own set of allowable syntax, though much of
it is shared across the various kinds of UDF. DB2 allows external scalar functions, external table functions, OLE-DB
external table functions, sourced (or template) functions, and SQL functions. DB2 supports two kinds of stored
procedures: external and SQL.

The following syntax is the full syntax to create any sort of stored procedure or a UDF in DB2. It is grouped together
here to give you a concise list of clause definitions. However, refer to the sections below for greater detail on the
specific allowable syntax for each type of UDF and stored procedure. If you prefer, for example, to see only the
allowable syntax for a SQL user-defined function, then skip to the section below. The total available syntax for UDFs
and stored procedures follows:

CREATE {PROCEDURE | FUNCTION} object_name

 [({[IN | OUT| INOUT] [parameter_name] datatype } [,...])]

RETURNS {datatype | {ROW | TABLE} column_list} [AS LOCATOR]

 [CAST FROM datatype [AS LOCATOR]]

[LANGUAGE {C | JAVA | COBOL | OLE | SQL]

[PARAMETER STYLE {SQL | DB2GENERAL | GENERAL | GENERAL WITH NULLS | JAVA}]

[SPECIFIC specific_name]

[EXTERNAL NAME external_routine_name]

[DETERMINISTIC | NOT DETERMINISTIC]

[[NO] EXTERNAL ACTION]

[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]

[CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT]

[DYNAMIC RESULT SETS int]

[STATIC DISPATCH]

[SOURCE object_name | AS TEMPLATE]

[INHERIT SPECIAL REGISTERS]

[[NOT] FENCED] [[NOT] THREADSAFE]

[PROGRAM TYPE {SUB | MAIN}]

[[NO] SCRATCHPAD int] [[NO] FINAL CALL]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[[NO] SCRATCHPAD int] [[NO] FINAL CALL]

[{ALLOW | DISALLOW} PARALLEL]

[[NO] DBINFO]

[TRANSFORM GROUP group_name]

[CARDINALITY int]

[PREDICATES (predicate_definition)]

code_block

In addition, use the following syntax to alter a pre-existing UDF or stored procedure, and assign it the characteristics
that you declare:

ALTER {PROCEDURE | FUNCTION} object_name

[EXTERNAL NAME external_routine_name]

[[NOT] FENCED] [[NOT] THREADSAFE]

Following are the parameter descriptions for DB2:

RETURNS {datatype | {ROW | TABLE} column_list}

Allows you to return a single value of datatype, a ROW of values, or a TABLE of values where column_list uses the
syntax column_name1 datatype1, column_name2 datatype2 [,...].

LANGUAGE {C | JAVA | COBOL | OLE | SQL}

Same as the ANSI standard, though DB2 supports other languages than in the ANSI standard. When you
declare a LANGUAGE setting, other options are restricted or made available.

PARAMETER STYLE {SQL | DB2GENERAL | GENERAL | GENERAL WITH NULLS | JAVA}

Similar to the ANSI SQL standard but with a richer variety of choices. PARAMETER STYLE is only used with
external stored procedures or user-defined functions. The various styles determine how parameters are passed,
where:

SQL

Defines that when parameters are passed with the CALL statement, a null indicator for each parameter
and a qualified and specific name for the stored procedure or function are also passed. In addition, the
SQLSTATE and SQL diagnostic string are passed back to DB2.

DB2GENERAL

Available only with the LANGAUGE JAVA clause, the DB2GENERAL clause specifies that the parameters
are passed using the convention defined for Java.

GENERAL

Passes parameters directly from the CALL statement to the stored procedure without using a SQLDA
structure. Nulls are not passed. Only available with LANGUAGE C or COBOL.

GENERAL WITH NULLS

Same as GENERAL, but also passes null indicators.

JAVA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passes parameters using the Java and SQLJ Routines specifications. For example, INOUT and OUT
parameters are passed as a single entry array. Available only with the LANGUAGE JAVA clause. This
clause is mutually exclusive of the DBINFO clause and PROGRAM TYPE clause.

EXTERNAL NAME [external_routine_name]

Registers a new function or procedure using a linked and interfaced external program. When
external_routine_name is omitted, object_name is assumed to be the name of the external program. The method of
linking depends on the LANGUAGE setting.

NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA

Same as the ANSI standard, though certain options are not usable for certain LANGUAGE settings.

INHERIT SPECIAL REGISTERS

Declares that updateable special registers receive their initial value from the invoking process. The invoking
process could be a UDF, a stored procedure, trigger, view, or user issuing a CALL statement.

[[NOT] FENCED] [{THREADSAFE | NOT THREADSAFE}]

Specifies whether (or NOT) the external stored procedure or user-defined function is "safe" to run in DB2's
manager operating environment process or address space. This is used only for external stored procedures.
NOT FENCED procedures tend to be faster, but open the database up to potential risks.

[[NOT] THREADSAFE]

Declares whether the method is safe to run in the same process as other routines (THREADSAFE) or not (NOT
THREADSAFE). When declared THREADSAFE, a procedure is considered safe to run in the same process as
other UDFs and stored procedures. NOT THREADSAFE can only be used with FENCED stored procedures.

PROGRAM TYPE {SUB | MAIN}

Tells whether the external stored procedure should expect parameters in the style of a SUB routine or a MAIN
routine. SUB, the default, declares that the parameters are expected as separate arguments. MAIN declares
that the parameters are expected as an argument counter and argument vector. MAIN also requires that the
external stored procedure is named "main" and that it is built as a shared library, not as a standalone
executable. PROGRAM TYPE MAIN is only valid with LANGUAGE C or COBOL and PARAMETER STYLE GENERAL,
GENERAL WITH NULLS, SQL, or DB2SQL.

[NO] SCRATCHPAD int

Provides a scratch pad for any external function or procedure. A SCRATCHPAD provides a way for a UDF to save
its state from one call to the next. The default is NO SCRATCHPAD. If an int is specified, it represents the size of
the scratch pad in bytes (defaulting to 100 bytes). One scratch pad is initialized per reference to an external
routine.

[NO] FINAL CALL

FINAL CALL causes the routine to invoke two extra times. The first invocation occurs before data is first loaded
so the routine can perform any one-time initialization needed. The second invocation occurs last and allows the
routine to do any cleanup needed. Table functions are always a FINAL CALL. This clause is incompatible with
PARAMETER STYLE JAVA. The clause NO FINAL CALL prevents a final call from happening.

{ALLOW | DISALLOW} PARALLEL

Allows the routine to be split in parallel across multiple CPUs (a.k.a. parallelized) during plan optimization on an
SMP or MPP server, with ALLOW PARALLEL. Otherwise, DB2 enforces the serial processing of a routine on a
single CPU, regardless of how many CPUs exist on the server, with DISALLOW PARALLEL. ALLOW PARALLEL is
the default, unless the routine contains any of these clauses: NOT DETERMINISTIC, EXTERNAL ACTION,
SCRATCHPAD, or FINAL CALL.

[NO] DBINFO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[NO] DBINFO

Tells whether the external stored procedure receives an additional argument (DBINFO) or not (NO DBINFO, the
default) when invoked. The DBINFO argument tells the database name, application ID, application authorization
ID, code page, database release version, and platform. DBINFO is mutually exclusive of LANGAUGE OLD and
PARAMETER STYLE JAVA and DB2GENERAL.

TRANSFORM GROUP group_name

Declares the transform group, group_name, if the routine uses a user-defined structured type for either a
parameter or return datatype.

CARDINALITY int
PREDICATES (predicate_definition)

Used with CREATE FUNCTION to create a user-defined predicate. This option is used when defining user-defined
functions for use with DB2's index extensions. Index extensions are quite complex and not used by the average
DB2 user. Consequently, you should refer to DB2's documentation on index extensions for information on this
clause. In addition, DETERMINISTIC with NO EXTERNAL ACTION clauses are required to use PREDICATES.

DB2 accommodates several kinds of user-defined functions: external scalar, external table, OLE-DB, source/template,
and SQL, and two kinds of stored procedures: external and SQL. Each of these types allows a mix of only some of the
clauses shown above.

DB2 external scalar user-defined functions

This variation of the CREATE FUNCTION statement is used to register a user-defined external scalar function with an
application server. (Remember that scalar functions return a single value each time they are invoked and are valid
wherever SQL expressions are valid.) An external scalar UDF allows the following clauses:

CREATE FUNCTION object_name (parameter_name datatype

 [,...]) [AS LOCATOR]

 RETURNS datatype [AS LOCATOR] [CAST FROM datatype

 [AS LOCATOR]]

 [LANGUAGE {C | JAVA | OLE}] [PARAMETER STYLE

 {SQL | DB2GENERAL | JAVA}]

 [SPECIFIC specific_name]

 [EXTERNAL NAME external_routine_name]

 [DETERMINISTIC | NOT DETERMINISTIC] [STATIC DISPATCH]

 [[NO] EXTERNAL ACTION]

 [NO SQL | CONTAINS SQL | READS SQL DATA]

 [CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT]

 [INHERIT SPECIAL REGISTERS]

 [[NOT] FENCED [{THREADSAFE | NOT THREADSAFE}]]

 [[NO] SCRATCHPAD int] [[NO] FINAL CALL]

 [{ALLOW | DISALLOW} PARALLEL]

 [[NO] DBINFO] [TRANSFORM GROUP group_name]

 [PREDICATES (predicate_definition)]

code_block

The following code is an example of an external scalar UDF, called report_reader.center, that defines the center of a
circle. The statement explicitly declares all option clauses, even those that have identical defaults to the declared
values:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

values:

CREATE FUNCTION report_reader.center (FLOAT, FLOAT, FLOAT)

RETURNS DECIMAL(8,4) CAST FROM FLOAT

SPECIFIC center04

EXTERNAL NAME 'center!focalpt'

LANGUAGE C PARAMETER STYLE SQL DETERMINISTIC FENCED NOT NULL CALL

NO SQL NO EXTERNAL ACTION SCRATCHPAD NO FINAL CALL

DISALLOW PARALLEL

Note that the report_reader.center UDF uses a scratch pad and can accumulate and act on results stored there

DB2 external table user-defined functions

This variation of the CREATE FUNCTION statement is used to register a user-defined external table function with an
application server. (A table function can be used in the FROM clause of a SELECT statement, returning a table to the
SELECT one row at a time.) An external table UDF allows the following clauses:

CREATE FUNCTION object_name (parameter_name datatype }

 [AS LOCATOR] [,...])

 RETURNS TABLE datatype [AS LOCATOR] [,...]]

 [LANGUAGE {C | JAVA | OLE}] [PARAMETER STYLE

 {SQL | DB2GENERAL}]

 [SPECIFIC specific_name] [EXTERNAL NAME external_routine_name]

 [DETERMINISTIC | NOT DETERMINISTIC] [[NO] EXTERNAL ACTION]

 [NO SQL | CONTAINS SQL | READS SQL DATA]

 [CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT]

 [INHERIT SPECIAL REGISTERS] [[NOT] FEDERATED]

 [[NOT] FENCED [{THREADSAFE | NOT THREADSAFE}]]

 [[NO] SCRATCHPAD int] [[NO] FINAL CALL]

 [DISALLOW PARALLEL]

 [[NO] DBINFO] [TRANSFORM GROUP group_name]

 [CARDINALITY int]

code_block

Following is an example external table UDF that retrieves message header information and some message text from
Microsoft Exchange:

CREATE FUNCTION MAIL()

RETURNS TABLE (time_rcvd DATE, subjct VARCHAR(15),

 lngth INTEGER, txt VARCHAR(30))

EXTERNAL NAME 'mail.header!list'

LANGUAGE OLE

PARAMETER STYLE SQL

NOT DETERMINISTIC FENCED CALLED ON NULL INPUT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOT DETERMINISTIC FENCED CALLED ON NULL INPUT

 SCRATCHPAD FINAL CALL

NO SQL

EXTERNAL ACTION DISALLOW PARALLEL

Note that the external function, mail.header!list, should already exist.

DB2 OLE-DB external table user-defined functions

This variation of the CREATE FUNCTION statement registers a user-defined OLE-DB external table function to access
data from an OLE-DB provider. The table function may then be used in the FROM clause of a SELECT statement. This is
useful to link to non-DB2 sources of relational data. An OLE-DB external table UDF allows the following clauses:

CREATE FUNCTION object_name (parameter_name datatype) [,...])

 RETURNS TABLE datatype [,...]] [SPECIFIC specific_name]

 [LANGUAGE OLEDB] [EXTERNAL NAME external_routine_name]

 [DETERMINISTIC | NOT DETERMINISTIC] [[NO] EXTERNAL ACTION]

 [STATIC DISPATCH] [CALLED ON NULL INPUT |

 RETURNS NULL ON NULL INPUT]

 [CARDINALITY int]

code_block

The following example registers an OLE-DB table function that retrieves order information from the Microsoft Access
database called Northwind:

CREATE FUNCTION orders ()

RETURNS TABLE (orderid INTEGER, customerid CHAR(5), employeeid INTEGER,

 orderdate TIMESTAMP, requireddate TIMESTAMP, shippeddate TIMESTAMP,

 shipvia INTEGER, freight DEC(19,4))

LANGUAGE OLEDB

EXTERNAL NAME '!orders!Provider=Microsoft.Jet.OLEDB.3.51;

 Data Source=c:\sqllib\samples\oledb\nwind.mdb';

Note that the connection string is defined in the external name of the function.

DB2 sourced user-defined functions

This variation of the CREATE FUNCTION statement registers a user-defined function that is based on another existing
scalar or column function. This statement can also be used to register a function template with an application server
that acts as a federated server. (A function template is a partial function that has no executable code, but instead uses
it to map to a data source function. Once the mapping is created, the user specifies the function template in queries to
the federated server. The federated server will invoke the data source function and return values that correspond to
those in the RETURNS portion of the template definition.) A source/template UDF allows the following clauses:

CREATE FUNCTION object_name (parameter_name datatype [,...])

 RETURNS datatype [,...]]

 [SOURCE {object_name [input_argument [,...]] |

 [SPECIFIC specific_name]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [SPECIFIC specific_name]]

 [AS TEMPLATE [DETERMINISTIC | NOT DETERMINISTIC]

 [[NO] EXTERNAL ACTION]]

code_block

For example, the following sourced UDF is based on the report_reader.center scalar function created earlier in this
section. The following function, called fn_center, accepts only integer arguments:

CREATE FUNCTION fn_center (INTEGER, INTEGER)

RETURNS FLOAT

SOURCE report_reader.center (INTEGER, FLOAT);

In the next example, using a federated server, we can invoke an Oracle UDF, called statistics in the schema scott, that
returns table statistics as a double-precision floating point value:

CREATE FUNCTION scott.statistics (DOUBLE, DOUBLE)

RETURNS DOUBLE AS TEMPLATE

DETERMINISTIC NO EXTERNAL ACTION;

DB2 SQL user-defined functions

This variation of the CREATE FUNCTION statement defines a SQL scalar, table, or row function. This application shows
the most common form of SQL UDF's in DB2. (Remember a scalar function returns a single value when invoked. A table
function may be used in the FROM clause of a SELECT statement and returns a table. A row function returns a row and
may be used as a transform function.)

A SQL UDF allows the following clauses:

CREATE FUNCTION object_name [(parameter_name datatype [,...])]

RETURNS {datatype | {ROW | TABLE} column_list}

 [SPECIFIC specific_name]

 [LANGUAGE SQL] [DETERMINISTIC | NOT DETERMINISTIC]

 [[NO] EXTERNAL ACTION]

 [CONTAINS SQL | READS SQL DATA] [STATIC DISPATCH]

 [CALLED ON NULL INPUT] [PREDICATES (predicate_definition)]

code_block

Here's an example of a SQL user-defined function that returns a concatenated name from separate fields:

CREATE FUNCTION prod.cust_name

 (in_custno INTEGER)

 RETURNS VARCHAR(31)

 LANGUAGE SQL

 READS SQL DATA

 NO EXTERNAL ACTION

 DETERMINISTIC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DETERMINISTIC

 RETURN

 SELECT (c.firstnme CONCAT ' '

 CONCAT c.midinit CONCAT '. '

 CONCAT c.lastname)

 AS name

 FROM prod.customer c

 WHERE c.custno = 10;

DB2 external stored procedure

This variation of the CREATE PROCEDURE statement defines an external procedure with a DB2 application server.
Usually, external procedures are written in a non-SQL language like C or Java. An external procedure allows the
following clauses:

CREATE PROCEDURE object_name

 [([IN | OUT | INOUT] parameter_name datatype [,...])]

 [SPECIFIC specific_name] [DYNAMIC RESULT SETS int]

 [NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]

 [DETERMINISTIC | NOT DETERMINISTIC] [CALLED ON NULL INPUT]

LANGUAGE {C | JAVA | COBOL | OLE}

 EXTERNAL NAME external_routine_name

 [INHERIT SPECIAL REGISTERS]

PARAMETER STYLE {SQL | DB2GENERAL | DB2SQL | GENERAL |

 GENERAL WITH NULLS | JAVA}

 [[NOT] FENCED [{THREADSAFE | NOT THREADSAFE}]]

 [PROGRAM TYPE {SUB | MAIN}]

 [[NO] DBINFO]

code_block

Following is an example of an external procedure. In the example, we define a procedure definition in DB2 for a C
program that, when passed an author ID, tells us the total books sold, the total sales in dollars, and the book titles the
specified author wrote:

CREATE PROCEDURE author_sales

 (IN au_id INTEGER, OUT books_sold INTEGER,

 OUT total_sales DOUBLE, OUT title VARCHAR(50))

EXTERNAL NAME 'authors!sales'

DYNAMIC RESULT SETS 1 NOT FENCED

LANGUAGE C PARAMETER STYLE GENERAL

DB2 SQL stored procedure

This variation of the CREATE PROCEDURE statement defines a SQL-based procedure with a DB2 application server. A
SQL procedure allows the following clauses:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL procedure allows the following clauses:

CREATE PROCEDURE object_name [([IN |

 OUT| INOUT] parameter_name datatype [,...])]

 [SPECIFIC specific_name] [DYNAMIC RESULT SETS int]

 [CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]

 [DETERMINISTIC | NOT DETERMINISTIC] [CALLED ON NULL INPUT]

 [INHERIT SPECIAL REGISTERS] [LANGUAGE SQL]

code_block

The following SQL stored procedure returns a customer's record based upon a SOUNDEX function on their name and
state:

CREATE PROCEDURE prod.custlookup

 (IN in_lastname VARCHAR(15),

 IN in_st CHARACTER(2))

 DYNAMIC RESULT SETS 1

 LANGUAGE SQL

 NOT DETERMINISTIC

 CALLED ON NULL INPUT

 MODIFIES SQL DATA

 INHERIT SPECIAL REGISTERS

 P1: BEGIN

 DECLARE cursor1 CURSOR WITH RETURN FOR

 SELECT *

 FROM prod.customer c

 WHERE SOUNDEX (c.lastname) = SOUNDEX (in_lastname)

 AND c.st = UPPER (in_st);

 OPEN cursor1;

 END P1;

DB2 has recently implemented new procedural extensions to SQL. You can now define the code_block for a DB2 UDF or
stored procedure using conditional processing constructs like IF...THEN and WHILE loops (as shown in the examples
above).

RETURNS TABLE is available as a return value for any LANGUAGE. The only clauses allowed are STATIC DISPATCH,
DETERMINISTIC, EXTERNAL ACTION, RETURNS NULL ... | CALLED NULL... ON INPUT, and CARDINALITY.

READ SQL DATA and CONTAINS SQL are the only SQL-style options allowed when you chose LANGUAGE SQL. These
clauses disable the CAST clause and the RETURNS NULL ON NULL INPUT clause. It also makes available (though
optional) the RETURNS {ROW | TABLE} clause, FEDERATED clause, PREDICATES clause, and INHERIT SPECIAL
REGISTERS clause.

ALTER FUNCTION and PROCEDURE on DB2 merely change the characteristics of an existing UDF or stored procedure.
The two examples shown next make a function and a procedure, respectively, NOT FENCED.

ALTER FUNCTION mail() NOT FENCED;

ALTER PROCEDURE employee_pay NOT FENCED;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALTER PROCEDURE employee_pay NOT FENCED;

MySQL

MySQL does not support the ALTER FUNCTION statement, nor does it support the CREATE PROCEDURE and ALTER
PROCEDURE statements.

All user-defined functions created on a MySQL database are, in effect, external function calls:

CREATE [AGGREGATE] FUNCTION function_name

RETURNS {STRING | REAL | INTEGER}

SONAME shared_program_library_name ;

where:

CREATE [AGGREGATE] FUNCTION function_name

Creates an external function with a function_name of not more than 64 characters. The module will be stored in
the mysql2/udf directory, with an extension of .udf. If AGGREGATE is specified, the user-defined function must
return an aggregate value like SUM() or AVG().

RETURNS {STRING | REAL | INTEGER}

Returns either STRING for character data, REAL for floating-point numbers, or INTEGER for whole numbers.

SONAME shared_program_library_name

Names the C/C++ program that performs the processing. This shared_program can be compiled and built into the
MySQL engine, or it can function as an independent, linked program.

Once implemented, a MySQL UDF may be called just like any built-in function, such as ABS() or SOUNDEX().

The implementation of CREATE FUNCTION in MySQL is dependent on procedural code in C/C++ under an operating
system that supports dynamic loading. The C/C++ program is named in the shared_program_library_name option. The
function may be compiled either directly into the MySQL server, making the function permanently available, or as a
dynamically callable program. For example, the code behind the UDF created in the following statement might be found
on a Unix server:

CREATE FUNCTION find_radius RETURNS INT SONAME "radius.so";

Oracle

Oracle supports ALTER and CREATE for both FUNCTION and PROCEDURE object types. (You may also wish to learn
about Oracle packages, which can also be used to create UDFs and stored procedures. Check Oracle's documentation.)
Oracle's CREATE PROCEDURE syntax is as follows:

CREATE [OR REPLACE] {FUNCTION | PROCEDURE} [schema.]object_name

[(parameter1 [IN | OUT | IN OUT] [NOCOPY] datatype] [,...])]]

RETURN datatype

[DETERMINISTIC] [AUTHID {CURRENT_USER | DEFINER}]

[PARALLEL_ENABLE [(PARTITION prtn_name BY {ANY | {HASH | RANGE}

 (column [,...]) [{ORDER | CLUSTER} BY (column [,...])]]

{ [PIPELINED | AGGREGATE] USING [schema.]implementation_type] |

 [PIPELINED] {IS | AS} }

{code_block | LANGUAGE {JAVA NAME external_program_name |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{code_block | LANGUAGE {JAVA NAME external_program_name |

 C [NAME external_program_name]

 LIBRARY lib_name [AGENT IN (argument [,...]) [WITH CONTEXT]

 [PARAMETERS (param [,...])] };

The ALTER FUNCTION and ALTER PROCEDURE statement shown next is used to recompile invalid UDFs or stored
procedures:

ALTER {FUNCTION | PROCEDURE} [schema.]object_name

COMPILE [DEBUG] [compiler_param = value [...]] [REUSE SETTINGS]

Following are the parameter descriptions:

CREATE [OR REPLACE] FUNCTION [schema.]object_name

Creates a new UDF or stored procedure. Use OR REPLACE to replace an existing procedure or UDF without first
dropping it, and then having to reassign all permissions to it. Certain clauses are only used with user-defined
functions, including the RETURN clause, the DETERMINISTIC clause, and the entirety of the USING clause.

[IN | OUT | IN OUT]

Specifies whether a parameter is an input to the function, an output from the function, or both.

NOCOPY

Speeds up performance when an OUT or IN OUT argument is very large, as with a VARRAY or RECORD
datatype.

AUTHID {CURRENT_USER | DEFINER}

Forces the routine to run in the permission context of either the current user or the person who owns the
function, using AUTHID CURRENT_USER or AUTHID DEFINER, respectively.

PARALLEL_ENABLE

Enables the routine to be executed by a parallel query operation on an SMP or parallel-processor server. This
clause is used only for UDFs. (Don't use session state or package variables because they can't be expected to
be shared among parallel execution servers.) Define the behavior of the PARALLEL_ENABLE query operation
using these subclauses, where:

PARTITION prtn_name BY {ANY | {HASH | RANGE} (column [,...])

Defines partitioning of inputs on functions with REF CURSOR arguments. This may benefit table
functions. ANY allows random partitioning. You can restrict partitioning to a specific RANGE or HASH
partition on a comma-delimited column list.

{ORDER | CLUSTER} BY (column [,...])

Orders or clusters parallel processing based on a comma-delimited column list. ORDER BY causes the
rows to be locally ordered on the parallel execution server according to the column list. CLUSTER BY
restricts the rows on the parallel execution server to the key values identified in the column list.

{PIPELINED | AGGREGATE} [USING [schema.] implementation_type]

PIPELINED iteratively returns the results of a table function, instead of the normal serial return of the VARRAY
or nested table result set. This clause is only used for UDFs. The clause PIPELINED USING implementation_type is
for an external UDF that uses a language like C++ or Java. The AGGEGATE USING implementation_type clause
defines a UDF as an aggregate function (a function that evaluates many rows, but returns a single value).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defines a UDF as an aggregate function (a function that evaluates many rows, but returns a single value).

IS | AS

Oracle treats IS and AS equally. Use either one to introduce the code_block.

code_block

Oracle allows a PL/SQL code block for user-defined functions and stored procedures. Alternately, you may use
the LANGUAGE clause for stored procedures written in Java or C.

LANGUAGE {JAVA NAME external_program_name | C [NAME external_program_name] LIBRARY lib_name [AGENT IN
(argument) [WITH CONTEXT] [PARAMETERS (params)] }

Defines the Java or C implementation of the external program. The parameters and semantics of each
declaration are specific to Java and C, not SQL.

ALTER {FUNCTION | PROCEDURE} [schema.]object_name

Recompiles an invalid standalone stored routine. Use CREATE ... OR REPLACE to change the arguments,
declarations, or definition of an existing routine.

COMPILE [DEBUG] [REUSE SETTINGS]

Recompiles the routine. Note that COMPILE is required. (You can see compile errors with the SQL*Plus
command SHOW ERRORS.) The routine is marked valid if no compiler errors are encountered. The following
optional subclauses may also be included with the COMPILE clause, where:

DEBUG

Generates and stores code used by the PL/SQL debugger.

compiler_param = value [...]

Specifies a PL/SQL compiler parameter. Allowable parameters include PLSQL_OPTIMIZE_LEVEL,
PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and NLS_LENGTH_SEMANTICS. Refer to
Oracle's documentation on the PL/SQL compiler for more details.

REUSE SETTINGS

Maintains the existing compiler switch settings and reuses them for recompilation. Normally, Oracle
drops and reacquires compiler switch settings.

In Oracle, UDFs and stored procedures are very similar in composition and structure. The primary difference is that a
stored procedure cannot return a value to the invoking process, while a function may return a single value to the
invoking process.

For example, you can pass in the name of a construction project to the following function to obtain the project's profit:

CREATE OR REPLACE FUNCTION project_revenue (project IN varchar2)

RETURN NUMBER

AS

 proj_rev NUMBER(10,2);

BEGIN

 SELECT SUM(DECODE(action,'COMPLETED',amount,0)) -

 SUM(DECODE(action,'STARTED',amount,0)) +

 SUM(DECODE(action,'PAYMENT',amount,0))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INTO proj_rev

 FROM construction_actions

 WHERE project_name = project;

 RETURN (proj_rev);

END;

In this example, the user-defined function accepts the project name as an argument. Then it processes the project
revenue, behind the scenes, by subtracting the starting costs from the completion payment and adding any other
payments into the amount. The RETURN (proj_rev); line returns the amount to the invoking process.

In Oracle, UDFs cannot be used in the following situations:

In a CHECK constraint or DEFAULT constraint of a CREATE TABLE or ALTER TABLE statement.

In a SELECT, INSERT, UPDATE, or DELETE, the UDF cannot, either directly or indirectly (if invoked by another
routine):

Have an OUT or IN OUT parameter. (Indirect calls may take OUT and IN OUT parameters.)

Terminate the transaction with COMMIT, ROLLBACK, SAVEPOINT, or a CREATE, ALTER, or DROP
statement that implicitly issues a COMMIT or ROLLBACK.

Use session control (SET ROLE) or system control (the Oracle-specific statement ALTER SYSTEM)
statements.

Write to a database (when a component of a SELECT statement or a parallelized INSERT, UPDATE, or
DELETE statement).

Write to the same table that is modified by the statement that calls the UDF.

Note that when you recompile a routine with the ALTER statement, it is marked valid if no compiler errors are
encountered. (It is marked invalid if any errors are encountered.) Perhaps more importantly, any objects that depend
upon the recompiled routine are marked invalid, regardless of whether an error occurs. You can either recompile those
dependent objects yourself, or you can allow Oracle to take some additional time to recompile them at runtime.

By way of example, the following recompiles the project_revenue function and maintains any compiler information for
the PL/SQL debugger:

ALTER FUNCTION project_revenue COMPILE DEBUG;

PostgreSQL

PostgreSQL supports the CREATE FUNCTION statement, but not CREATE PROCEDURE, ALTER FUNCTION, or ALTER
PROCEDURE. Since PostgreSQL does not have an internal procedural language, user-defined functions are usually
external functions, though they may be simple SQL queries. The syntax to use to create a function is:

CREATE [OR REPLACE] FUNCTION function_name

 ([parameter [,...]])

RETURNS datatype

AS {code_block | object_file, link_symbol}

LANGUAGE {C | SQL | PLPGSQL | PLTCL | PLTCLU | PLPERL |

 internal}

[WITH {[ISCACHABLE] [,] [ISSTRICT]}]

where:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where:

CREATE [OR REPLACE] function_name

Creates a new function of the name you provide, or replaces an existing function. OR REPLACE does not enable
you to change the name, input parameters, or output results of an existing function. You must drop and
recreate a function to change any of those settings.

RETURNS datatype

Specifies the type of data required by the function.

AS {code_block | object_file, link_symbol}

Defines the composition of the user-defined function. The code_block can be a string defining the function
(dependent on the LANGUAGE setting), such as an internal function name, the path and name of an object file,
a SQL query, or the text of a procedural language. The definition also can be an object file and link symbol for a
C-language function.

LANGUAGE {C | SQL | PLPGSQL | PLTCL | PLTCLU | PLPERL | internal}

Defines a call to an external program or an internal SQL routine. Since all of the language options, except SQL,
are programs compiled in other languages, they are beyond the scope of this book. However, the LANGUAGE
SQL clause should be used when writing SQL user-defined functions.

Add a new language not installed by default on PostgreSQL by using the CREATE
LANGUAGE statement.

[WITH {[ISCACHABLE] [,] [ISSTRICT]}]

Optimizes PostgreSQL performance by indicating that the function always returns the same value when
provided with the same parameter values. WITH ISCACHABLE is similar to the ANSI setting DETERMINISTIC,
except that this setting then allows the optimizer to pre-evaluate the call of the function. WITH ISSTRICT is
similar to the ANSI setting RETURNS NULL ON NULL INPUT. When omitted, the default behavior is similar to
CALLED ON NULL INPUT. Note that you may include both keywords in a single function declaration.

PostgreSQL also allows function overloading in which the same function name is allowed for different functions, as long
as they accept distinct input parameters.

Whenever you drop an existing function, all dependent objects are invalidated and must be
recompiled.

Here's an example of a simple SQL function in PostgreSQL:

CREATE FUNCTION max_project_nbr

RETURNS int4

AS "SELECT MAX(title_ID) FROM titles AS RESULT"

LANGUAGE 'sql';

In this example, we created a UDF that returns the maximum title_ID from the titles table.

PostgreSQL uses CREATE FUNCTION as a substitute for CREATE PROCEDURE, as well as to define actions for CREATE
TRIGGER.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRIGGER.

SQL Server

SQL Server supports CREATE and ALTER for both types of routines. By default, SQL Server stored procedures can
return result sets and SQL Server UDFs can return single or multirow result sets using the TABLE datatype on RETURNS
arguments, contrary to the ANSI standard. However, this makes SQL Server routines more flexible and powerful. Use
the following syntax to create a user-defined function or stored procedure:

CREATE {FUNCTION | PROCEDURE} [owner_name.]object_name[;int]

([{@parameter datatype [VARYING] [=default] [OUTPUT]} [,...]])

RETURNS {datatype | TABLE]

[WITH {ENCRYPTION | SCHEMABINDING | RECOMPILE |

 RECOMPILE, ENCRIPTION}]

[FOR REPLICATION]

[AS]

 code_block

Use the following syntax to alter an existing user-defined function or stored procedure:

ALTER {FUNCTION | PROCEDURE} [owner_name.]object_name[;int]

([{@parameter datatype [VARYING] [=default] [OUTPUT]} [,...]])

RETURNS {datatype | TABLE]

[WITH {ENCRYPTION | SCHEMABINDING | RECOMPILE |

 RECOMPILE, ENCRIPTION}]

[FOR REPLICATION]

[AS]

 code_block

Following are the parameter descriptions:

CREATE {FUNCTION | PROCEDURE} [owner_name.] object_name[;int]

Creates a new UDF or stored procedure in the current database. For SQL Server stored procedures, you may
optionally specify a version number in the format procedure_name;1, where 1 is an integer indicating the version
number. This facility allows you to have multiple versions of a single stored procedure.

{@parameter datatype [VARYING] [=default] [OUTPUT]} [,...]

Defines one or more input arguments for a UDF or stored procedure. SQL Server parameters are always
declared with an at sign (@) as the first character.

where:

VARYING

Used in stored procedures with a CURSOR datatype parameter. Indicates that the result set is
constructed dynamically by the procedure.

= default

Assigns a default value to the parameter. The default value is used whenever the stored procedure or
UDF is invoked without supplying a value for the parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UDF is invoked without supplying a value for the parameter.

OUTPUT

Used for stored procedures, OUTPUT is functionally equivalent to the ANSI OUT clause in the CREATE
FUNCTION statement. The value stored in the return parameter is passed back to the calling procedure
through the return variables of the SQL Server EXEC[UTE] command. Output parameters can be any
datatype except TEXT and IMAGE.

RETURNS {datatype | TABLE}

Allows SQL Server UDFs to return a single datatype value or to return multiple values via the TABLE datatype.
The TABLE datatype is considered inline if it has no accompanying column list and is defined with a single
SELECT statement. If the RETURN clause returns multiple values via the TABLE datatype, and if the TABLE has
defined columns and datatypes, the function is considered a multistatement, table-valued function.

WITH

Allows the assignment of additional characteristics to a SQL Server UDF or stored procedure.

ENCRYPTION

Tells SQL Server to encrypt the column in the system table that stores the text of the function, thus preventing
unwarranted review of the function code. Usable by both UDFs and stored procedures.

SCHEMABINDING

Specifies that the function is bound to a specific database object, such as a table or view. That database object
cannot be altered or dropped as long as the function exists (or maintains the SCHEMABINDING option). Usable
only by UDFs.

RECOMPILE

Tells SQL Server not to store a cache plan for the stored procedure, but instead to recompile the cache plan
each time the stored procedure is executed. This is useful when using atypical or temporary values in the
procedure, but can cause serious degradation in performance. Used only by stored procedures. Note that
RECOMPILE and ENCRYPTION can be invoked together.

FOR REPLICATION

Disables execution of the stored procedure on a subscribing server. It is used primarily to create a filtering
stored procedure that is executed only by SQL Server's built-in replication engine. It is incompatible with
RECOMPILE.

Like tables (see CREATE TABLE), local and global temporary stored procedures may be declared by prefixing a pound
symbol (#) and double-pound symbol (##) to the name of the procedure, respectively. Temporary procedures exist
only for the duration of the user or process session that created them. When that session ends, the temporary
procedure automatically deletes itself.

A SQL Server stored procedure or UDF may have as many as 1,024 input parameters, specified by the at sign (@).
Parameters are defined using SQL Server datatypes. (Parameters of CURSOR datatype must be both VARYING and
OUTPUT.) The user or calling process must supply values for any input parameters. However, a default value can be
supplied for any input parameter to allow the procedure to execute without a user- or process-supplied value. The
default must be a constant or NULL, but it may contain wildcard characters, as discussed later in this chapter in the
section LIKE Operator.

SQL Server requires that one or more user-supplied parameters be declared for a given user-defined function. All SQL
Server datatypes are supported as parameters, except TIMESTAMP. Values returned by the function can be any
datatype except TIMESTAMP, TEXT, NTEXT, or IMAGE. If an inline table value is required, the TABLE option without an
accompanying column list may be used.

The ALTER FUNCTION and ALTER PROCEDURE statements support the full syntax provided
by the corresponding CREATE statements. You can use the ALTER statements to change
any of the attributes of an existing routine without changing permissions or affecting any
dependent objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For UDFs, the code_block is either a single SELECT statement for an inline function, in the format RETURN (SELECT...),
or a series of Transact-SQL statements following the AS clause for a multistatement operation. When using RETURN
(SELECT), the AS clause is optional. Some other rules for SQL Server UDFs:

When using the AS clause, the code_body should be encapsulated in BEGIN...END delimiters.

UDFs cannot make any permanent changes to data or cause other lasting side effects. A number of other
restrictions exist as a result. For example, INSERT, UPDATE, and DELETE statements may modify only TABLE
variables local to a function.

When returning a scalar value, a SQL Server UDF must contain the clause RETURN datatype, where datatype is
the same as that identified in the RETURNS clause.

The last statement of the code_block must be an unconditional RETURN that returns a single datatype value or
TABLE value.

The code_block may not contain any global variables that return a perpetually changing value, such as
@@CONNECTIONS or GETDATE. But it may contain those that return a single, unchanging value, such as
@@SERVERNAME.

The following is an example of a scalar function that returns a single value. Once created, the scalar UDF can then be
utilized in a query just like a system-supplied function. For example:

CREATE FUNCTION metric_volume -- Input dimensions in centimeters.

 (@length decimal(4,1),

 @width decimal(4,1),

 @height decimal(4,1))

RETURNS decimal(12,3) -- Cubic Centimeters.

AS BEGIN

 RETURN (@length * @width * @height)

 END

GO

SELECT project_name,

 metric_volume(construction_height,

 construction_length,

 construction_width)

FROM housing_construction

WHERE metric_volume(construction_height,

 construction_length,

 construction_width) >= 300000

GO

An inline table-valued UDF supplies values via a single SELECT statement using an AS RETURN clause. For example, we
can supply a store ID and find all of their titles:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can supply a store ID and find all of their titles:

CREATE FUNCTION stores_titles (@stor_id varchar(30))

RETURNS TABLE

AS

RETURN (SELECT title, qty

 FROM sales AS s

 JOIN titles AS t ON t.title_id = s.title_id

 WHERE s.stor_id = @storeid)

Now, let's alter the UDF just a bit by changing the input argument datatype length and adding another condition to the
WHERE clause (indicated in boldface):

ALTER FUNCTION stores_titles

(@stor_id VARCHAR(4))

RETURNS TABLE

AS

RETURN (SELECT title, qty

 FROM sales AS s

 JOIN titles AS t ON t.title_id = s.title_id

 WHERE s.stor_id = @storeid

AND s.city = 'New York')

User-defined functions that return TABLE values are often selected as result set values or are used in the FROM clause
of a SELECT statement, just as a regular table is used. These multi-statement, table-valued functions can have very
elaborate code bodies since the code_block is composed of many Transact-SQL statements that populate a TABLE return
variable.

Here is an example invoking a multistatement, table-valued function in a FROM clause. Notice that a table alias is
assigned, just as for a regular table:

SELECT co.order_id, co.order_price

FROM construction_orders AS co,

 fn_construction_projects('Cancelled') AS fcp

WHERE co.construction_id = fcp.construction_id

ORDER BY co.order_id

GO

For stored procedures, the code_block clause contains one or more Transact-SQL commands, up to a maximum size of
128 MB, delimited by BEGIN and END clauses. Some rules about Microsoft SQL Server stored procedures include:

The code_block allows most valid Transact-SQL statements, but SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL
are prohibited.

Some other commands have restricted usages within stored procedures, including ALTER TABLE, CREATE
INDEX, CREATE TABLE, all DBCC statements, DROP TABLE, DROP INDEX, TRUNCATE TABLE, and UPDATE
STATISTICS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STATISTICS.

SQL Server allows deferred name resolution, meaning that a stored procedure compiles without an error even
though it references an object that has not yet been created. SQL Server creates the execution plan and fails
only when the object is actually invoked, for instance in a stored procedure, if the object still doesn't exist.

Stored procedures can be nested easily in SQL Server. Whenever a stored procedure invokes another stored
procedure, the system variable @@NESTLEVEL is incremented by 1. It is decreased by 1 when the called
procedure completes. Use SELECT @@NESTLEVEL inside a procedure or from an ad hoc query session to find
the current nesting depth.

In the following example, a SQL Server stored procedure generates a unique 22-digit value (based on elements of the
system date and time) and returns it to the calling process:

-- A Microsoft SQL Server stored procedure

CREATE PROCEDURE get_next_nbr

 @next_nbr CHAR(22) OUTPUT

AS

BEGIN

 DECLARE @random_nbr INT

 SELECT @random_nbr = RAND() * 1000000

SELECT @next_nbr =

 RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))

 AS CHAR(6), 6) +

 RIGHT('0000' + CAST(DATEPART (yy, GETDATE())

 AS CHAR(4)), 2) +

 RIGHT('000' + CAST(DATEPART (dy, GETDATE())

 AS CHAR(3)), 3) +

 RIGHT('00' + CAST(DATEPART (hh, GETDATE())

 AS CHAR(2)), 2) +

 RIGHT('00' + CAST(DATEPART (mi, GETDATE())

 AS CHAR(2)), 2) +

 RIGHT('00' + CAST(DATEPART (ss, GETDATE())

 AS CHAR(2)), 2) +

 RIGHT('000' + CAST(DATEPART (ms, GETDATE())

 AS CHAR(3)), 3)

END

GO

See Also

CALL
RETURN

CREATE/ALTER INDEX Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Indexes are special objects built on top of tables that speed many data-manipulation operations, such as SELECT,
UPDATE, and DELETE statements. The selectivity of a given WHERE clause and the available query plans the database
query optimizer can choose from is usually based upon the quality of indexes that have been placed on the table in a
given database.

The CREATE INDEX command is not a part of the ANSI SQL standard, and thus varies greatly among vendors.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

Common Vendor Syntax

CREATE [UNIQUE] INDEX index_name ON table_name

(column_name [, ...])

Keywords

CREATE [UNIQUE] INDEX index_name

Creates a new index named index_name in the current database and schema context. Since indexes are
associated with specific tables (or sometimes views), the index_name need only be unique to the table it is
dependent on. The UNIQUE keyword defines the index as a unique constraint for the table and disallows any
duplicate values into the indexed column or columns of the table. (Refer to Section 2.4.)

ON table_name

Declares the pre-existing table that the index is associated with. The index is dependent upon the table. If the
table is dropped, so is the index.

(column_name [, ...])

Defines one or more columns in the table that are indexed. The pointers derived from the indexed column or
columns enable the database query optimizer to greatly speed up data manipulation operations like SELECT and
DELETE statements. All major vendors support composite indexes, also known as concatenated indexes. These
indexes are used when two or more columns are best searched as a unit—for example, last name and first
name.

Rules at a Glance

Indexes are created on tables to speed data manipulation operations that go against the tables such as those in a
WHERE or JOIN clause. Indexes may also speed other operations, like:

Identifying a MIN() or MAX() value in an indexed column.

Sorting or grouping columns of a table.

Searching based on IS NULL or IS NOT NULL.

Fetching data much more quickly when the indexed data is all that is requested. A SELECT statement that
retrieves data from an index and not directly from the table itself is called a covering query. An index that
answers a query in this way is a covering index.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

answers a query in this way is a covering index.

After creating a table, you can create indexes on columns within the table. It is a good idea to create indexes on
columns that are frequently part of the WHERE clause or JOIN clause of the queries that go against a table. For
example, the following statement creates an index on a column in the sales table that is frequently used in the WHERE
clause of queries against that table:

CREATE INDEX ndx_ord_date ON sales(ord_date);

In another case, we want to set up the pub_name and country as a unique index on the publishers table:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country);

Since the index is unique, any new record entered into the publishers table must have a unique combination of
publisher name and country.

Some vendor platforms allow you to create indexes on views as well as tables.

Programming Tips and Gotchas

Concatenated indexes are most useful when queries address the columns of the index starting from the left. If you omit
left-side columns in a query against a concatenated key, the query may not perform as well. For example, assume that
we have a concatenated index on (last_name, first_name). If we query only by first_name, the concatenated index
that starts with last_name and includes first_name may not be any good to us. Some of the vendor platforms have
advanced their query engines to the point where this is much less of a problem.

Creating an index may take as much as 1.2 to 1.5 times more space than the table
currently occupies. Make sure you have enough room! Most of that space is released after
the index has been created.

You should be aware that there are situations in which too many indexes can actually slow down system performance.
In general, indexes greatly speed lookup operations, especially in SELECT statements, against a table or view.
However, every index you create adds overhead whenever you perform an UPDATE, DELETE, or INSERT operation
because the database must then update all dependent indexes with the values that have changed in the table. As a rule
of thumb, six to twelve indexes are about the most you might want to create on a single table.

In addition, indexes take up extra space within the database. The more columns in an index, the more space it
consumes. This is not usually a problem, but sometimes catches novices off guard when developing a new database.

Most databases use indexes to create statistical samplings, usually just called statistics, so that the query engine can
quickly determine which, if any, index or combination of indexes will be most useful for a query. These indexes are
always fresh and useful when the index is first created, but may become stale and less useful over time as records are
deleted, updated, and inserted within the table. Consequently, indexes, like day-old bread, are not guaranteed to be
useful as they age. You need to be sure to refresh, rebuild, and maintain your databases regularly to keep index
statistics fresh.

DB2

DB2 supports the CREATE INDEX statement, but not the ALTER INDEX statement. (DB2 does have the COMMENT ON
INDEX statement to allow users to update the comment for an index without dropping and recreating the index. Also,
DB2 has a RENAME INDEX statement to rename an index with having to drop and recreate it.) The CREATE INDEX
statement has additional clauses that allow partitioning based upon indexed columns, as well as other clauses that
impact how data is physically arranged on disk:

CREATE [UNIQUE] INDEX index_name

ON table_name ({column_name [ASC | DESC]} [, ...])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON table_name ({column_name [ASC | DESC]} [, ...])

[SPECIFICATION ONLY]

[INCLUDE (column_name [ASC | DESC] [,...])]

[{CLUSTER | EXTEND USING index_extension [(constant [,...])] }]

[PCTFREE int] [MINPCTUSED int]

[[DIS]ALLOW REVERSE SCANS]

[COLLECT [SAMPLED [DETAILED]] STATISTICS]

where:

ASC | DESC

Specifies that the values in the index are kept in either ascending (ASC) or descending (DESC) order. When
ASC or DESC is omitted, ASC is used by default.

SPECIFICATION ONLY

Used to indicate that the value defined by table_name is a nickname; that is, it is the name of a table in a
federated database. A DB2 federated database integrates data from heterogeneous data sources, such as tables
on Oracle or SQL Server, and names them locally within the DB2 database as a nickname. To tell the DB2
optimizer about indexes on one of these nicknamed Oracle or SQL Server tables, create an index against the
nickname and declare SPECIFICATION ONLY. DB2 then knows that the index exists and is available to the
optimizer, but that it does not have to create the index.

INCLUDE (column_name [,...])

Adds extra columns to a unique index for added selectivity, but any such included columns are not counted
towards uniqueness. The main use for INCLUDE columns is to build covering indexes. Any columns added with
the INCLUDE clause count towards the column and byte maximum allowed by DB2. INCLUDE is mutually
exclusive of EXTEND USING and SPECIFICATION ONLY clauses, and cannot be used when indexing temporary
tables.

CLUSTER

Declares that the index is clustered. A clustered index specifically controls the physical arrangement of the rows
in the table to speed query I/O. The cluster factor is maintained and improved dynamically as data is inserted
into the table. Only one clustered index is allowed per table. CLUSTER is mutually exclusive of EXTEND USING
and SPECIFICATION ONLY clauses, and cannot be used with temporary tables or tables in append mode.

EXTEND USING index_extension [(constant [,...])]

Names an index extension that manages the index. The index must be defined on a single column that is either
a structured or a distinct type. One or more constants must be provided for any parameters required by the
type. EXTEND cannot be used on a temporary table. Index extensions are very complex and somewhat
uncommon. Refer to the vendor documentation for more detail.

PCTFREE int

Specifies a percentage (int) of space, which must be an integer of 0 to 99, to leave free on each index page of
the index when it is created. When omitted, the default is 10. This option cannot be used on nicknames or
temporary tables.

MINPCTUSED int

Defines the percentage (int) of free space, which must be an integer of 0 to 99, required on an index page
before DB2 will consider merging index pages together. DB2 recommends a value of 50 or below so that the
database will not spend excessive I/O merging index pages. This clause is usually effective only if background
processes are able to gain an occasional table lock. If this is not possible due to heavy usage, consider using the
DB2 command REORG INDEXES. This option cannot be used on nicknames or temporary tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2 command REORG INDEXES. This option cannot be used on nicknames or temporary tables.

[DIS]ALLOW REVERSE SCANS

Declares that the index can or cannot support scans under the order that the index was created in, with ALLOW
and DISALLOW, respectively. The default is DISALLOW. This option cannot be used on nicknames.

COLLECT [SAMPLED [DETAILED]] STATISTICS

Collects index statistics during index creation. If the SAMPLED and DETAILED clauses are left off, then basic
index statistics are created. The DETAILED clause collects extra statistics information for the index, namely
PAGE_FETCH_PAIRS and CLUSTERFACTOR. The SAMPLED clause tells DB2 that sampling, a shortcut, can be
used on extra statistics information from the DETAILED clause.

DB2 will not create a new index where an identical index exists. DB2 considers an index identical to another when one
index contains the same columns in the same order as the other.

DB2 allows online use of a table while a new index is being created. Read access is always available during the index
creation process, but write access is temporarily locked at the end of the index build process. Use the DB2 command
LOCK TABLE to temporarily lock the table and avoid read access. You should also use the DB2 command RUNSTATS to
update index statistics whenever a great deal of data has changed or after an index is created without the COLLECT
STATISTICS clause included in the statement. The following two index creation examples are functionally the same:

-- collect basic index statistics at index creation

CREATE INDEX ndx_ord_date ON sales(ord_date) COLLECT STATISTICS;

-- collect index statistics after index creation

LOCK TABLE sales IN EXCLUSIVE MODE;

CREATE INDEX ndx_ord_date ON sales(ord_date);

RUNSTATS ON TABLE sales AND INDEX ndx_ord_date;

Now, we'll collect detailed statistics using sampling on the publishers table:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)

COLLECT SAMPLED DETAILED STATISTICS;

You may wish to create an index on a nicknamed object. In the example below, the publishers nickname represents
the current_publishers table:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)

SPECIFICATION ONLY;

The following example shows how to create an extended indextype on a structured type column. The
coordinate_positions UDT requires a literal value to maintain the satellite_images column:

CREATE INDEX satellite_images ON gis_sites(coordinates)

EXTEND USING (coordinate_positions (x'00010010010000100020'));

DB2 also supports a statement called CREATE INDEX EXTENSION. It is used to enable
user-defined indexing on typed tables. Refer to the vendor documentation for more
details.

MySQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL supports a form of the CREATE INDEX statement, but not the ALTER INDEX statement. MySQL indexes are
always stored in B-tree structures on the filesystem. Strings within an index are automatically prefix- and end-space-
compressed. MySQL's CREATE INDEX syntax is:

CREATE [UNIQUE | FULLTEXT] INDEX index_name

 ON table_name (column_name(length) [,...])

where:

FULLTEXT

Creates a full-text search index against a column. Full-text indexes are only supported on MyISAM table types,
CHAR, VARCHAR, or TEXT datatypes, and do not support the (length) clause.

MySQL supports the basic industry standard syntax for the CREATE INDEX statement. Interestingly, MySQL also lets
you build an index on the first length characters of a CHAR or VARCHAR column. MySQL requires the (length) clause for
BLOB and TEXT columns. Specifying a length can be useful when selectivity is sufficient in the first, say, 10 characters
of a column, and in those situations where saving disk space is very important. For example:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name(25),

 country(10))

This example indexes only the first 25 characters of the pub_name column and the first 10 characters of the country
column.

As a general rule, MySQL allows at least 16 keys per table with a total maximum length of at least 256 bytes. This can
vary by storage engine, however.

Oracle

Oracle allows the creation of indexes on tables, partitioned tables, clusters, and index-organized tables, as well as on
scalar type object attributes of a typed table or cluster, and on nested table columns using the CREATE INDEX
statement. Oracle also allows several types of indexes, including normal B-tree indexes, BITMAP indexes (useful for
columns that have each value repeated 100 or more times), partitioned indexes, function-based indexes (based on an
expression rather than a column value), and domain indexes.

Oracle index names must be unique within a schema, not just to the table they are
assigned to.

Oracle also supports the ALTER INDEX statement. It is used to change or rebuild an existing index without forcing the
user to drop and recreate the index. Oracle's CREATE INDEX syntax is:

CREATE [UNIQUE | BITMAP] INDEX index_name

{ON

 {table_name ({column | expression} [ASC | DESC] [,...]) [{INDEXTYPE IS

 index_type [PARALLEL [int] | NOPARALLEL] [PARAMETERS ('values') }] |

 CLUSTER cluster_name |

 FROM table_name WHERE condition [LOCAL partitioning] }

[{LOCAL partitioning | GLOBAL partitioning}]

[physical_attributes_clause] [{LOGGING | NOLOGGING}] [ONLINE]

[COMPUTE STATISTICS] [{TABLESPACE tablespace_name | DEFAULT}]

[{COMPRESS int | NOCOMPRESS}] [{NOSORT | SORT}] [REVERSE]

[{PARALLEL [int] | NOPARALLEL}]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[{PARALLEL [int] | NOPARALLEL}]

The syntax for ALTER INDEX is:

ALTER INDEX index_name

{ {ENABLE | DISABLE} | UNUSABLE | RENAME TO new_index_name | COALESCE |

 [NO]MONITORING USAGE | UPDATE BLOCK REFERENCES |

 PARAMETERS ('ODCI_params') | alter_index_partitioning_clause |

 rebuild_clause |

 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]

 [ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE 'filename']

 [INSTANCE int])]

 [SHRINK SPACE [COMPACT] [CASCADE]]

 [{PARALLEL [int] | NOPARALLEL}]

 [{LOGGING | NOLOGGING}]

 [physical_attributes_clause] }

where the non-ANSI clauses are:

BITMAP

Creates an index bitmap for each index value, rather than indexing each individual row. Bitmaps are best for
low concurrency tables, like read-intensive tables. BITMAP indexes are incompatible with global partitioned
indexes, the INDEXTYPE clause, or index-organized tables without a mapping table association.

ASC | DESC

Specifies that the values in the index are kept in either ascending (ASC) or descending (DESC) order. When
ASC or DESC is omitted, ASC is used by default. However, be aware that Oracle treats DESC indexes as
function-based indexes, so there is some difference in functionality between ASC indexes and DESC indexes.
You may not use ASC or DESC when also using the INDEXTYPE clause. DESC is ignored on BITMAP indexes.

INDEXTYPE IS index_type [PARAMETERS ('values')]

Creates an index on a user-defined type of index_type. Domain indexes require that the user-defined type
already exists (refer to the CREATE/ALTER TYPE Statement section). If the user-defined type requires
arguments, pass them in using the optional PARAMETERS clause. You may also optionally parallelize the
creation of the type index using the PARALLEL clause (explained below in more detail).

CLUSTER cluster_name

Declares a clustering index based on the specified pre-existing cluster_name. On Oracle, a clustering index
physically co-locates two tables that are frequently queried on the same columns, usually a primary key and a
foreign key. (Clusters are created with the Oracle-specific command CREATE CLUSTER.) You do not declare a
table or columns on a CLUSTER index, since both the tables involved and the columns indexed are already
declared with the previously issued CREATE CLUSTER statement.

GLOBAL partitioning

Includes the full syntax of:

GLOBAL PARTITION BY

 {RANGE (column_list) (PARTITION [partition_name] VALUE LESS THAN

 (value_list) [physical_attributes_clause] [TABLESPACE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (value_list) [physical_attributes_clause] [TABLESPACE

 tablespace_name] [LOGGING | NOLOGGING] } [,...]), |

 HASH (column_list) (PARTITION [partition_name]

 {[TABLESPACE tablespace_name] [[OVERFLOW] TABLESPACE

 tablespace_name] [VARRAY varray_name STORE AS {LOB

 lob_segment_name] [LOB (lob_name) STORE AS [lob_segment_name]

 [TABLESPACE tablespace_name] } } |

 [STORE IN (tablespace_name [,...])] [OVERFLOW STORE IN

 (tablespace_name [,...]), } [,...] }

The GLOBAL PARTITION clause declares that the global index is manually partitioned via either range or hash
partitioning onto partition_name. (The default is to partition the index equally in the same way the underlying table is
partitioned, if at all.) You can specify a maximum of 32 columns, though none may be ROWID. You may also apply the
[NO]LOGGING clause, TABLESPACE clause, and the physical_attributes_clause (defined earlier) to a specific partition. You
cannot partition on ROWID. You may include one or more partitions, along with any attributes, in a comma-delimited
list, according to the following:

RANGE

Creates a range-partitioned global index based on the range of values from the table columns listed in the
column_list.

VALUE LESS THAN (value_list)

Sets an upper bound for the current partition of the global index. The values in the value_list correspond to the
columns in the column_list, both of which are comma-delimited lists of columns. Both lists are prefix-dependent,
meaning that for a table with columns (a, b, c), you could define partitioning on (a, b) or (a, b, c), but not (b,
c). The last value in the list should always be the keyword MAXVALUE.

HASH

Creates hash-partitioned global index assigned rows in the index to each partition based on a hash function of
the values of the columns in the column_list. You may specify the exact tablespace to store special database
objects such as VARRAYs, and LOBs, and for any OVERFLOW of the specified (or default) tablespaces.

LOCAL partitioning

Supports local index partitioning on range-partitioned indexes, list-partitioned indexes, hash-partitioned
indexes, and composite-partitioned indexes. You may include zero or more partitions, along with any attributes,
in a comma-delimited list. When omitted, Oracle generates one or more partitions consistent with those of the
table partition. Index partitioning is done in one of three ways:

Range- and list-partitioned indexes

Applied to regular or equipartitioned tables. Range- and list-partitioned indexes (synonyms for the same
thing) follow the syntax:

LOCAL [(PARTITION [partition_name]

 { [physical_attributes_clause] [TABLESPACE tablespace_name]

 [LOGGING | NOLOGGING] |

 [COMPRESS | NOCOMPRESS] } [,...])]

All of the options are the same as for GLOBAL PARTITION (earlier), except that the scope is for a local
index.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hash-partitioned indexes

Applied to hash-partitioned tables. Hash-partitioned indexes allow you to choose between the earlier
syntax and the optional syntax:

 LOCAL {STORE IN (tablespace_name [,...]) |

 (PARTITION [partition_name [TABLESPACE tablespace_name]] }

to store the index partition on a specific tablespace. When you supply more tablespace names than
index partitions, Oracle will cycle through the tablespaces when it partitions the data.

Composite-partitioned indexes

Composite-partitioned indexes can be applied on composite-partitioned tables using the following
syntax:

LOCAL [STORE IN (tablespace_name [,...])]

PARTITION [partition_name

 {[physical_attributes_clause] [TABLESPACE tablespace_name]

 [LOGGING | NOLOGGING] |

 [COMPRESS | NOCOMPRESS] }

 [{STORE IN (tablespace_name [,...]) |

 (SUBPARTITION [subpartition_name [TABLESPACE

 tablespace_name]) }]

You may use the LOCAL STORE clause shown under the hash-partitioned indexes entry or from the
LOCAL clause under the range- and list-partitioned indexes entry. (When using the LOCAL clause,
substitute the keyword SUBPARTITION for PARTITION.)

physical_attributes_clause

Establishes values for one or more of the following settings: PCTFREE int (discussed here), INITRANS int, and
STORAGE (discussed in theCREATE/ALTER TABLE Statement section). When omitted, Oracle defaults to
PCTFREE 10 and INITRANS 2. The default for MAXTRANS depends on the system block size, according to the
following:

PCTFREE int

Designates the percentage of free space to leave on each block of the index as it is created. This speeds up new
entries and updates on the table. However, PCTFREE is only applied when the index is created. It is not
maintained over time. Therefore, the amount of free space can erode over time as records are inserted,
updated, and deleted from the index. This clause is not allowed on index-organized tables.

INITRANS int

Designates the initial number of concurrent transactions allocated to each data block of the database. The value
may range from 1 to 255. If a physical_attributes_clause is omitted, Oracle defaults to PCTFREE 10 and INITRANS
2.

LOGGING | NOLOGGING

Tells Oracle to log the creation of the index on the redo logfile (LOGGING), or to not log it (NOLOGGING). This
clause also sets the default behavior for subsequent bulk loads using Oracle SQL* Loader. For partitioned
indexes, this clause establishes the default value of all partitions, segments associated with the partitions, and
the defaults used on any partitions or subpartitions later added with an ALTER TABLE...ADD PARTITION
statement. (When using NOLOGGING, we recommend that you take a full backup after the index has been
loaded in case the index must be rebuilt due to a failure.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ONLINE

Allows data manipulation on the table while the index is being created. Even when ONLINE, there is a very small
window at the end of the create index operation where the table will be locked while the index creation
completes. Any changes made to the base table at that time will then be reflected in the newly created index.
ONLINE is incompatible with bitmap, cluster, or parallel clauses. It also cannot be used on indexes on a
UROWID column or on index-organized tables with more than 32 columns in their primary keys.

COMPUTE [STATISTICS]

Collects statistics while the index is created, when it can be done at relatively little cost. Otherwise, you will
have to collect statistics after the index is created.

TABLESPACE tablespace_name | DEFAULT

Assigns the index to a specific tablespace. When omitted, the index is placed on the default tablespace. Use the
DEFAULT keyword to explicitly place an index into the default tablespace. (When local partitioned indexes are
placed in TABLESPACE DEFAULT, the index partition (or subpartition) is placed in the corresponding tablespace
of the base table partition (or subpartition).

COMPRESS [int] | NOCOMPRESS

Enables or disables key compression, respectively. Compression eliminates repeated occurrences of key column
values, yielding a substantial space savings at the cost of speed. The integer value, int, defines the number of
prefix keys to compress. The value can range from 1 to the number of columns in the index for nonunique
indexes, and from 1 to n-1 columns for unique indexes. The default is NOCOMPRESS, but if you specify
COMPRESS without an int value, the default is COMPRESS n (for nonunique indexes) or COMPRESS n-1 (for
unique indexes), where n is the number of columns in the index. COMPRESS can only be used on nonpartitioned
and nonbitmapped indexes.

NOSORT | REVERSE

NOSORT an index to be created quickly for a column that is already sorted in ascending order. If the values of
the column are not in perfect ascending order, the operation aborts, allowing a retry without the NOSORT
option. REVERSE, by contrast, places the index blocks in storage by reverse order (excluding rowid). REVERSE is
mutually exclusive of NOSORT and cannot be used on a bitmap index or an index-organized table. NOSORT is
most useful for creating indexes immediately after a base table is loaded with data in pre-sorted order.

PARALLEL [int] | NOPARALLEL

Allows the parallel creation of the index using multiple server process, each operating on a distinct subset of the
index, to speed up the operation. An optional integer value, int, may be supplied to define the exact number of
parallel threads used in the operation. When omitted, Oracle calculates the number of parallel threads to use.
NOPARALLEL, the default, causes the index to be created serially.

{ENABLE | DISABLE}

Enables or disables a pre-existing function-based index, respectively. You cannot specify any other clauses of
the ALTER INDEX statement with ENABLE or DISABLE.

UNUSABLE

Marks the index (or index partition or subpartition) as unusable. When UNUSABLE, an index (or index partition
or subpartition) may only be rebuilt or dropped and recreated before it can be used.

RENAME TO new_index_name

Renames the index from index_name to new_index_name.

COALESCE

Merges the contents of index blocks used to maintain the index-organized table so that the blocks can be
reused. COALESCE is similar to SHRINK, though COALESCE compacts the segments less densely than does
SHRINK, and it does not release unused space.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SHRINK, and it does not release unused space.

[NO]MONITORING USAGE

Declares that Oracle should clear existing information on index usage and monitor the index, posting
information in the V$OBJECT_USAGE dynamic performance view, until ALTER INDEX ... NOMONITOR USAGE is
executed.

UPDATE BLOCK REFERENCES

Updates all stale guess data block addresses stored as part of the index row on normal or domain indexes of an
index-organized table. The guess data blocks contain the correct database addresses for the corresponding
blocks identified by the primary key. This clause cannot be used with other clauses of the ALTER INDEX
statement.

PARAMETERS ('ODCI_params')

Specifies a parameter string passed, without interpretation, to the ODCI indextype routine of a domain index.
The parameter string, called 'ODCI_params', may be up to 1,000 characters long. Refer to the vendor
documentation for more information on ODCI parameter strings.

alter_index_partitioning_clause

Refer to Oracle partitioned and subpartitioned tables in the CREATE/ALTER TABLE Statement section for more
details.

rebuild_clause

Rebuilds the index or a specific partition (or subpartition) of the index. A successful rebuild marks an UNUSABLE
index as USABLE. The syntax for the rebuild_clause is:

REBUILD {[NO]REVERSE | [SUB]PARTITION partn_name}

 [{PARALLEL [int] | NOPARALLEL}] [TABLESPACE tablespace_name]

 [PARAMETERS ('ODCI_params')] [ONLINE] [COMPUTE STATISTICS]

 [COMPRESS int | NOCOMPRESS] [[NO]LOGGING]

 [physical_attributes_clause]

where:

[NO]REVERSE

Stores the bytes of the index block in reverse order and excludes rows when the index is rebuilt
(REVERSE) or stores the bytes of the index blocks in regular order (NOREVERSE).

DEALLOCATE UNUSED [KEEP int [K | M | G | T]

Deallocates unused space at the end of the index (or at the end of each range- or hash-partition of a partitioned
index) and frees the space for other segments in the tablespace. The optional KEEP keyword defines how many
bytes, int, above the high-water mark the index will keep after deallocation. You can append a suffix to the int
value to indicate that the value equals kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T). When the
KEEP clause is omitted, all unused space is freed.

ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE 'filename'] [INSTANCE int])

Explicitly allocates a new extent for the index using the specified parameters. You may mix and match any of
the parameters. SIZE specifies the amount of next extent. The size of the extents may be in bytes (no suffix),
kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T). DATAFILE allocates an entirely new datafile to
the index extent. INSTANCE, used only on Oracle Real Application Clusters, makes a new extent available to a
freelist group associated with the specified instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SHRINK SPACE [COMPACT] [CASCADE]

Shrinks the index segments, though only segments in tablespaces with automatic segment management may
be shrunk. Shrinking a segment moves rows in the table, so make sure ENABLE ROW MOVEMENT is also used in
the ALTER TABLE...SHRINK statement. Oracle compacts the segment, releases the emptied space, and adjusts
the high-water mark unless the optional keywords COMPACT and/or CASCADE are applied. The COMPACT
keyword only defragments the segment space and compacts the index, but it does not readjust the high-water
mark nor empty the space immediately. The CASCADE keyword performs the same shrinking operation (with
some restrictions and exceptions) on all dependent objects of the index. The statement ALTER INDEX ...
SHRINK SPACE COMPACT is functionally equivalent to ALTER INDEX ... COALESCE.

By default, Oracle indexes are non-unique. It is also important to know that Oracle's regular B-tree indexes do not
include records that have a null key value.

Oracle does not support indexes on columns with the following datatypes: LONG, LONG RAW, REF (with the SCOPE
attribute), or user-defined datatypes. You may create indexes on functions and expressions, but they cannot allow null
values or aggregate functions. When you create an index on a function, the function, if it has no parameters, should
show an empty set. For example: function_name(). If the function is a UDF, it must be DETERMINISTIC.

Oracle supports a special index structure called an index-organized table (IOT). IOTs combine the table data and
primary key index on a single physical structure, instead of having separate structures for the table and for the index.
IOTs are created using the CREATE TABLE...ORGANIZATION INDEX statement. Refer to CREATE/ALTER TABLE
Statement for more information on making an IOT.

Oracle automatically creates any additional indexes on an index-organized table as secondary indexes. Secondary
indexes do not support the REVERSE clause.

Oracle allows the creation of partitioned indexes and tables with the PARTITION clause. Consequently, Oracle's indexes
also support partitioned tables. The LOCAL clause tells Oracle to create separate indexes for each partition of a table.
The GLOBAL clause tells Oracle to create a common index for all the partitions.

Note that any time an object name is referenced in the syntax diagram, you may optionally supply the schema. This
applies to indexes, tables, etc., but not to tablespaces. You must have the explicitly declared privilege to create an
index in a schema besides the current one.

As an example, you can use a statement such as the following to create an Oracle index that is compressed, created in
parallel, and with compiled statistics, but without logging the creation:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)

COMPRESS 1 PARALLEL NOLOGGING COMPUTE STATISTICS;

As with other Oracle object creation statements, you can control how much space they consume and in what
increments they grow. The following example constructs an index in Oracle on a specific tablespace with specific
instructions for how the data is to be stored:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)

STORAGE (INITIAL 10M NEXT 5M PCTINCREASE 0)

TABLESPACE publishers;

For example, when you create the housing_construction table as a partitioned table on an Oracle server, you should
also create a partitioned index with its own index partitions:

CREATE UNIQUE CLUSTERED INDEX project_id_ind

ON housing_construction(project_id)

GLOBAL PARTITION BY RANGE (project_id)

 (PARTITION part1 VALUES LESS THAN ('H')

 TABLESPACE construction_part1_ndx_ts,

 PARTITION part2 VALUES LESS THAN ('P')

 TABLESPACE construction_part2_ndx_ts,

 PARTITION part3 VALUES LESS THAN (MAXVALUE)

 TABLESPACE construction_part3_ndx_ts);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If in fact the housing_construction table used a composite partition, we could accommodate that here:

CREATE UNIQUE CLUSTERED INDEX project_id_ind

ON housing_construction(project_id)

STORAGE (INITIAL 10M MAXEXTENTS UNLIMITED)

LOCAL (PARTITION part1 TABLESPACE construction_part1_ndx_ts,

 PARTITION part2 TABLESPACE construction_part2_ndx_ts

 (SUBPARTITION subpart10, SUBPARTITION subpart20,

 SUBPARTITION subpart30, SUBPARTITION subpart40,

 SUBPARTITION subpart50, SUBPARTITION subpart60),

 PARTITION part3 TABLESPACE construction_part3_ndx_ts);

In the following example, we could rebuild the project_id_ind index that was created earlier by using parallel
execution processes to scan the old index and build the new index in reverse order:

ALTER INDEX project_id_ind

REBUILD REVERSE PARALLEL;

Similarly, we could split out an additional partition on project_id_ind:

ALTER INDEX project_id_ind

SPLIT PARTITION part3 AT ('S')

INTO (PARTITION part3_a TABLESPACE constr_p3_a LOGGING,

 PARTITION part3_b TABLESPACE constr_p3_b);

PostgreSQL

PostgreSQL allows the creation of ascending-order indexes, as well as UNIQUE indexes. Its implementation also
includes a performance enhancement under the USING clause. PostgreSQL's CREATE INDEX syntax is:

CREATE [UNIQUE] INDEX index_name ON table_name

[USING {BTREE | RTREE | HASH}]

{function_name | (column_name [,...]) }

[WHERE condition]

where:

USING [BTREE | RTREE | HASH | GIST]

Specifies one of three dynamic access methods to optimize performance. Of particular importance is the fact
that the indexes are fully dynamic and do not require periodic refreshes of their statistics. The USING options
are as follows:

BTREE

Uses Lehman-Yao's high-concurrency B-tree structures to optimize the index. This is the default method
when no other is specified. B-tree indexes, the default, can be invoked for comparisons using =, <, <=,
>, and >=. B-tree supports multicolumn indexes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>, and >=. B-tree supports multicolumn indexes.

RTREE

Uses Guttman's quadratic-split algorithm R-tree structures to optimize the index. R-tree indexes can be
invoked for comparison using <<, &<, &>, >> @, ~=, and &&. R-tree indexes must be single-column
indexes.

HASH

Uses Litwin's linear hashing algorithm to optimize the index. Hash indexes can be invoked for
comparisons using =. Hash indexes must be single-column indexes.

GIST

Uses Generalized Index Search Trees (GISTs) to optimize the index. GIST indexes may be multicolumn.

function_name

Defines a user-defined function, rather than a column from the base table, as the basis of the index values. A
function-based index is mutually exclusive of a regular column-based index.

WHERE condition

Defines a WHERE clause search condition, which is then used to generate a partial index. A partial index
contains entries for a select set of records in the table, not all records of the table. You can get some interesting
effects from this clause. For example, you can pair UNIQUE and WHERE to enforce uniqueness for a subset of
the table rather than for the whole table. The WHERE clause must:

Reference columns in the base table (though they need not be columns of the index itself).

Not make use of aggregate functions.

Not use subqueries.

In PostgreSQL, a column may have an associated operator class based on the datatype of the column. An operator class
specifies the operators for a particular index. Although users are free to define any valid operator class for a given
column, the default operator class is the appropriate operator class for that column type.

In the following example, we create an index using the GIST indextype. We also make sure that uniqueness is only
enforced for publishers outside of the USA:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)

USING GIST

WHERE country <> 'USA';

SQL Server

SQL Server's CREATE INDEX syntax is:

CREATE [UNIQUE] [[NON]CLUSTERED] INDEX index_name

ON {table_name | view_name} (column [ASC | DESC] [,...])

[WITH [PAD_INDEX]

 [[,] FILLFACTOR = int]

 [[,] IGNORE_DUP_KEY]

 [[,] DROP_EXISTING]

 [[,] STATISTICS_NORECOMPUTE]]

 [[,] SORT_IN_TEMPDB]]

[ON filegroup]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[ON filegroup]

where:

[NON]CLUSTERED

Controls the physical ordering of data for the table using either a CLUSTERED or NONCLUSTERED index. The
columns of a CLUSTERED index determine the order in which the records of the table are physically written.
Thus, if you create an ascending clustered index on column A of table Foo, the records will be written to disk in
ascending alphabetical order. The NONCLUSTERED clause, the default, when either value is omitted, creates a
secondary index containing only pointers and has no impact on how the actual rows of the table are written to
disk.

ASC | DESC

Specifies that the values in the index are kept in either ascending (ASC) or descending (DESC) order. When
ASC or DESC is omitted, ASC is used by default.

WITH

Allows the specification of one or more optional attributes for the index.

PAD_INDEX

Specifies that space should be left open on each 8K index page, according to the value established by the
FILLFACTOR setting.

FILLFACTOR = int

Declares a percentage value, int, from 1 to 100 that tells SQL Server how much of each 8K data page should be
filled at the time the index is created. This is useful to reduce I/O contention and page splits when a data page
fills up. Creating a clustered index with an explicitly defined fillfactor can increase the size of the index, but also
speed up processing in certain circumstances.

IGNORE_DUP_KEY

Controls what happens when a duplicate record is placed into a unique index through an insert or update
operation. If this value is set for a column, only the duplicate row is excluded from the operation. If this value is
not set, then all records in the operation (even nonduplicate records) are rejected as duplicates.

DROP_EXISTING

Drops any pre-existing indexes on the table and rebuilds the specified index.

STATISTICS_NORECOMPUTE

Stops SQL Server from recomputing index statistics. This can speed the CREATE INDEX operation, but it may
mean that the index is less effective.

SORT_IN_TEMPDB

Stores any intermediate results used to build the index in the system database, TEMPDB. This increases the
space needed to create the index, but could speed processing if TEMPDB is on a different disk than the table
and index.

ON filegroup

Creates the index on a given pre-existing filegroup. This enables the placing of indexes on a specific hard disk
or RAID device. Issuing a CREATE CLUSTERED INDEX...ON FILEGROUP effectively moves a table to the new
filegroup, since the leaf level of the clustered index is the same as the actual data pages of the table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

filegroup, since the leaf level of the clustered index is the same as the actual data pages of the table.

SQL Server allows the creation of a unique clustered index on a view, effectively materializing the view. This can greatly
speed up data retrieval operations against the view. Once a view has a unique clustered index, nonclustered indexes
also can be added to the view. Note that the view also must be created using the SCHEMABINDING option. Indexed
views are only allowed in SQL Server 2000 Enterprise Edition, unless you add a NOEXPAND hint to the view. Indexed
views support data retrieval, but not data modification. (See the SQL Server section of CREATE/ALTER VIEW
Statement" for specific restrictions on indexed views.)

SQL Server allows up to 249 nonclustered indexes (unique or non-unique) on a table, as well as one primary key index.
Index columns may not be of datatype NTEXT, TEXT, or IMAGE. Concatenated keys may contain up to 16 columns
and/or a total of 900 bytes across all fixed-length columns.

SQL Server automatically parallelizes the creation of the index according to the configuration option max degree of
parallelism.

It is often necessary to build indexes that span several columns—i.e., a concatenated key. Here is an example:

CREATE UNIQUE INDEX project2_ind

ON housing_construction(project_name, project_date)

WITH PAD_INDEX, FILLFACTOR = 80

ON FILEGROUP housing_fg

GO

Adding the PAD_INDEX clause and setting the FILLFACTOR to 80 tells SQL Server to leave the index and data pages
80% full, rather than 100% full. The example also tells SQL Server to create the index on the housing_fg filegroup,
rather than the default filegroup.

See Also

CREATE/ALTER TABLE
DROP

CREATE/ALTER METHOD Statement

The CREATE/ALTER METHOD statements allow the creation of a new database method or the alteration of an already
existing database method. An easy (but loose) way to think of a method is that it is a user-defined function associated
with a user-defined type. For example, a method called Office, of type Address, can accept a VARCHAR input
parameter and passes out a result of Address.

An implicitly defined method is created every time a structured type is created (see CREATE/ALTER TYPE Statement" for
more details). Using a combination of the CREATE TYPE statement and the CREATE METHOD statement creates user-
defined methods.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

{CREATE | ALTER} [INSTANT | STATIC] METHOD method_name

 ([[{IN | OUT | INOUT}] param datatype [AS LOCATOR] [RESULT] [,...])

RETURNS datatype

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RETURNS datatype

FOR udt_name

[SPECIFIC specific_name]

code_body

Keywords

CREATE | ALTER [INSTANT | STATIC] method_name

Creates a new method or alters an existing method and, optionally, specifies it as an INSTANT or STATIC
method.

([IN | OUT | INOUT] param datatype [,...])

Declares one or more parameters to be passed into the method in a comma-delimited list enclosed in
parentheses. Parameters used with a method may pass a value IN, OUT, or both in and out via INOUT. The
syntax for the parameter declaration is:

[{IN | OUT | INOUT}] parameter_name1 datatype,

[{IN | OUT | INOUT}] parameter_name2 datatype,[...]

Make sure the name is unique within the method. When used with ALTER, this clause adds parameters to a pre-existing
method. Refer to Chapter 2 for details on datatypes.

AS LOCATOR

The optional AS LOCATOR clause is used to validate an external routine with a RETURNS parameter that is a
BLOB, CLOB, NCLOB, ARRAY, or user-defined type. In other words, the locator (i.e., a pointer) for the LOB is
returned but not the entire value of the LOB.

RESULT

Designates a user-defined type, but is not needed for standard datatypes.

RETURNS datatype

Declares the datatype of the results returned by a method. The key purpose of a user-defined method is to
return a value. If you need to change the datatype of a RETURNS parameter on the fly, use the CAST clause
(refer to the function CAST). For example, RETURNS VARCHAR(12) CAST FROM DATE.

FOR udt_name

Associates the method with a specific, pre-existing user-defined type, created using CREATE TYPE.

SPECIFIC specific_name

Uniquely identifies the function generally used with user-defined types.

Rules at a Glance

User-defined methods are essentially a different approach to the same output provided by user-defined functions. For
example, consider the following two pieces of code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example, consider the following two pieces of code:

CREATE FUNCTION my_fcn (order_udt)

RETURNS INT;

CREATE METHOD my_mthd ()

RETURNS INT

FOR order_udt;

Although the code sections for the function and method are different, they do exactly the same thing.

The rules for use and invocation of methods are otherwise the same as for functions.

Programming Tips and Gotchas

The main difficulty with methods is that they are an object-oriented approach to the same sort of functionality provided
by user-defined functions. Since they accomplish the same work, using a different approach, it can be hard to decide
which approach to use.

DB2

DB2 supports both the CREATE METHOD and ALTER METHOD statements:

CREATE [SPECIFIC] METHOD method_name

 ([[{IN | OUT | INOUT}] [param] datatype [AS LOCATOR] [RESULT] [,...])

[RETURNS datatype [{AS LOCATOR | CAST FROM datatype [AS LOCATOR] }]

FOR udt_name

EXTERNAL [NAME 'name'] [TRANSFORM GROUP group_name]

code_body

The syntax for ALTER METHOD is quite a bit simpler:

ALTER METHOD method_name

FOR udt_name

EXTERNAL NAME 'name'

where:

[SPECIFIC] METHOD method_name

Defines the method being created or altered. The optional SPECIFIC keyword identifies a method using the
name assigned (either implicitly or explicitly) using the CREATE TYPE statement. The method must exist in the
named or current schema.

CAST FROM datatype

Returns a different datatype to the invoking statement from the datatype that was returned by the method.

EXTERNAL [NAME 'external_name'] [TRANSFORM GROUP group_name]

Indicates that the statement is registering an external method, rather than creating an internal (SQL) method.
The user-defined type created using the CREATE TYPE statement must be defined with a LANGUAGE other than
SQL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NAME 'name'

Defines the name of the external code that implements the method. The name may be up to 254 characters
long. The name must be appropriate for the type of LANGUAGE associated with the user-defined type. This
clause may also define the name of an internal (SQL) method specification for user-defined types defined with
LANGUAGE SQL.

TRANSFORM GROUP group_name

Specifies a transform group for user-defined structure type transformations when the method is invoked. When
omitted, the transform group DB2_FUNCTION is the default.

The method specification is determined by the LANGUAGE setting of the CREATE TYPE statement associated with the
method. For LANGUAGE SQL, the method specification is SQL. For any other LANGUAGE setting, the method
specification is external.

The following example method, called office_zip, checks to see if a ZIP Code is valid based on the user-defined type
address_type:

CREATE METHOD office (address address_type)

RETURNS INTEGER

FOR address_type

RETURN

(CASE

 WHEN (self..zip = address.zip) THEN 1 -- valid

 ELSE 0 -- invalid

END);

In the next example, the method distance uses and external routine and transform group to process the between two
address_types:

CREATE METHOD distance (address_type)

FOR address_type

EXTERNAL NAME 'addrlib!distance'

TRANSFORM GROUP method_group;

Later, we could change the method so that it uses a different external routine:

ALTER METHOD distance ()

FOR TYPE address_type

EXTERNAL NAME 'newaddrlib!distance_2';

MySQL

Not supported.

Oracle

Not supported.

PostgreSQL

Not supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

Not supported.

See Also

CREATE/ALTER TYPE

CREATE ROLE Statement

CREATE ROLE allows the creation of a named set of privileges that may be assigned to users of a database. When a role
is granted to a user, that user gets all the privileges and permissions of that role. Roles are generally accepted as one
of the best means for maintaining security and controlling privileges within a database.

Platform Command

DB2 Not supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

CREATE ROLE role_name [WITH ADMIN {CURRENT_USER | CURRENT_ROLE}]

Keywords

CREATE ROLE role_name

Creates a new role and differentiates that role from a host DBMS user and other roles. A role can be assigned
any permission that a user can be assigned. The important difference is that a role can then be assigned to one
or more users, thus giving them all the permissions of that role.

WITH ADMIN {CURRENT_USER | CURRENT_ROLE}

Assigns a role immediately to the currently active user or currently active role along with the privilege to pass
the use of the role on to other users. By default, the statement defaults to WITH ADMIN CURRENT_USER.

Rules at a Glance

Using roles for database security can greatly ease administration and user maintenance. The general steps for using
roles in database security are:

1. Assess the needs for roles and pick the role names (e.g., administrator, manager, data_entry, report_writer, etc.).

2. Assign permissions to each role as if it were a standard database user using the GRANT statement. For
example, the manager role might have permissions to read and write from all user tables in a database, while
the report_writer role only has permissions to execute read-only reports against certain reporting tables in the
database.

3. Use the GRANT statement to grant roles to users of the system according to the types of work they will
perform.

Permissions can be disabled using the REVOKE command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

The main problem with roles is that occasionally a database administrator will provide redundant permissions to a role
and separately to a user. If you ever need to prevent a user's access to the resource in situations like this, you usually
will need to REVOKE the permissions twice. The role must be revoked from the user and then the specific user-level
privilege must also be revoked from the user.

DB2

Not supported.

Instead, DB2 uses operating system groups, so you can achieve similar functionality but you need to:

1. Create an OS group.

2. Grant or revoke permissions to the group.

3. Add users to the group at the OS level.

DB2 allows OS groups to be assigned special admin roles at the instance level using the sysadm_group,
sysctrl_group, and sysmaint_group configuration parameters.

MySQL

Not supported.

Oracle

Although it is not currently supported by the ANSI standard, Oracle also offers an ALTER ROLE statement. Oracle
supports the concept of roles, though Oracle's implementation of the commands is very different from the ANSI SQL
standard:

{CREATE | ALTER} ROLE role_name

 [NOT IDENTIFIED |

 IDENTIFIED {BY password | EXTERNALLY | GLOBALLY |

 USING package_name}]

where:

CREATE | ALTER ROLE role_name

Identifies the name of the new role being created or the pre-existing role being modified.

NOT IDENTIFIED

Declares that no password is needed for the role to receive authorization to the database. This is the default.

IDENTIFIED

Declares that the users of the role must authenticate themselves by the method indicated before the role is
enabled via the SET ROLE command, where:

BY password

Creates a local role authenticated by the string value of password. Only single-byte characters are
allowed in the password even when using a multibyte character set.

EXTERNALLY

Creates an external role that is authenticated by the operating system or a third-party provider. In
either case, the external authentication service will likely require a password.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

either case, the external authentication service will likely require a password.

GLOBALLY

Creates a global role that is authenticated by an enterprise directory service, such as an LDAP directory.

USING package_name

Creates an application role that enables a role only through an application that uses a PL/SQL package
of package_name. If you omit the schema, Oracle assumes that the package is in your schema.

In Oracle, the role is created first, then granted privileges and permissions as if it is a user via the GRANT command.
When users want to get access to the permissions of a role protected by a password, they use the SET ROLE command.
If a password is placed on the role, any user wishing to access it must provide the password with the SET ROLE
command.

Oracle ships with several preconfigured roles. CONNECT, DBA, and RESOURCE are available in all versions of Oracle.
EXP_FULL_DATABASE and IMP_FULL_DATABASE are newer roles used for import and export operations. The GRANT
statement reference has a more detailed discussion of all of the preconfigured roles available in Oracle.

The following example uses CREATE to specify a new role in Oracle, GRANTs it privileges, assigns it a password with
ALTER ROLE, and GRANTs that role to a couple of users:

CREATE ROLE boss;

GRANT ALL ON employee TO boss;

GRANT CREATE SESSION, CREATE DATABASE LINK TO boss;

ALTER ROLE boss IDENTIFIED BY le_grande_fromage;

GRANT boss TO emily, jake;

PostgreSQL

Although PostgreSQL does not support the CREATE ROLE command, it offers a nearly identical facility of its own called
CREATE GROUP. PostgreSQL also offers an ALTER GROUP statement to modify existing groups. In PostgreSQL, a group
and a role are identical:

{CREATE | ALTER} GROUP name

[[WITH] {SYSID int | USER username [,...] }]

[{DROP | ADD} username [,...] }

where:

{CREATE | ALTER} GROUP name

Specifies if a new group (i.e., role) is created or if an existing group is modified where name is the name of the
group to create or modify.

WITH {SYSID int | USER username [,...]

Assigns an explicit group ID to the new group, with the SYSID clause, or assigns a list of one or more pre-
existing users to the group. When omitted, PostgreSQL will create the group using the highest assigned group
ID plus one (starting at 1). The WITH clause is only used with the CREATE GROUP statement.

{DROP | ADD} username

Drops or adds one or more pre-existing users to the group. Used only with the ALTER GROUP clause.

Use the DROP GROUP clause to drop a group you no longer want.

SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

Microsoft SQL Server does not support the CREATE ROLE command, but has the equivalent capability via the system
stored procedure sp_add_role.

See Also

GRANT
REVOKE

CREATE SCHEMA Statement

This statement creates a schema—i.e., a named group of related objects. A schema is a collection of tables, views, and
permissions granted to specific users or roles. According to the ANSI standard, specific object permissions are not
schema objects in themselves and do not belong to a specific schema. However, roles are sets of privileges that do
belong to a schema.

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Supported, with limitations

SQL2003 Syntax

CREATE SCHEMA [schema_name] [AUTHORIZATION owner_name]

[DEFAULT CHARACTER SET char_set_name]

[PATH schema_name [,...]]

 [ANSI CREATE statements [...]]

 [ANSI GRANT statements [...]]

Keywords

CREATE SCHEMA [schema_name]

Creates a schema called schema_name. When omitted, the database will create a schema name for you using the
name of the user who owns the schema.

AUTHORIZATION owner_name

Sets the owner_name as the user who owns the schema. When omitted, the current user is set as the owner.
The ANSI standard allows you to omit either the schema_name or the AUTHORIZATION clause, or to use them
both together.

DEFAULT CHARACTER SET char_set_name

Declares a default character set of char_set_name for all objects created within the schema.

PATH schema_name [,...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PATH schema_name [,...]

Optionally declares a file path and filename for any unqualified routines (i.e., stored procedures, user-defined
functions, user-defined methods) in the schema.

ANSI CREATE statements [...]

Contains one or more CREATE statements. No commas are used between the CREATE statements.

ANSI GRANT statements [...]

Contains one or more GRANT statements to previously defined objects. Usually, the objects were created earlier
in the same CREATE SCHEMA statement, but they may be any previously created object. No commas are used
between the GRANT statements.

Rules at a Glance

The CREATE SCHEMA statement is a container that can hold many other CREATE and GRANT statements. The most
common way to think of a schema is as all of the objects that a specific user owns. For example, the user jake may
own several tables and views including the table, publishers, in his own schema. Meanwhile, the user dylan may own
several other tables and views in his schema, but may also own his own separate copy of the publishers table.

The ANSI standard requires that all CREATE statements are allowed in a CREATE SCHEMA statement. In practice, most
implementations of CREATE SCHEMA only allow three subordinate statements: CREATE TABLE, CREATE VIEW, and
GRANT. The order of the commands is not important, meaning you can grant privileges on tables or views whose
CREATE statements appear later in the CREATE SCHEMA statement.

Programming Tips and Gotchas

It is not required, but is considered a best practice, to arrange the objects and grants within a CREATE SCHEMA
statement in an order that will execute naturally. In other words, CREATE VIEW statements should follow the CREATE
TABLE statements that they depend on, and then GRANT statements should come last.

If your database system uses schemas, we recommend that you always reference your objects by schema and then
object name (as in jake.publishers). If you do not include a schema qualifier, the database platform will typically
assume the default schema for the current user connection.

Some database platforms do not explicitly support the CREATE SCHEMA command. However, they implicitly create a
schema when a user creates database objects. For example, Oracle creates a schema whenever a user is created. The
CREATE SCHEMA command is simply a single-step method of creating all the tables, views, and other database objects
along with their permissions.

DB2

DB2 supports the basic elements of the CREATE SCHEMA statement. It does not support the PATH or DEFAULT
CHARACTER SET clauses:

CREATE SCHEMA [schema_name] [AUTHORIZATION owner_name]

 [ANSI CREATE statements [...]]

 [ANSI GRANT statements [...]]

The syntax and usage is otherwise identical to the ANSI standard.

DB2 creates a schema implicitly whenever a new schema is referenced in a GRANT or CREATE statement.

DB2 does not support an ALTER SCHEMA statement.

MySQL

Not supported.

Oracle

In Oracle, the CREATE SCHEMA does not create a schema—only the CREATE USER statement does that. CREATE
SCHEMA allows a user to perform multiple CREATEs and GRANTs in a previously created schema in one SQL statement:

CREATE SCHEMA AUTHORIZATION schema_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE SCHEMA AUTHORIZATION schema_name

 [ANSI CREATE statements [...]]

 [ANSI GRANT statements [...]]

Note that Oracle only allows ANSI standard CREATE TABLE, CREATE VIEW, and GRANT statements within a CREATE
SCHEMA statement. You should not use any of Oracle's extensions to these commands when using the CREATE
SCHEMA statement.

The following Oracle example places the permissions before the objects within the CREATE SCHEMA statement:

CREATE SCHEMA AUTHORIZATION emily

 GRANT SELECT, INSERT ON view_1 TO sarah

 GRANT ALL ON table_1 TO sarah

 CREATE VIEW view_1 AS

 SELECT column_1, column_2

 FROM table_1

 ORDER BY column_2

 CREATE TABLE table_1(column_1 INT, column_2 CHAR(20));

As the example above shows, the order of the statements within the CREATE SCHEMA statement is unimportant. Oracle
commits the CREATE SCHEMA statement only if all CREATE and GRANT statements in the statement complete
successfully.

PostgreSQL

Not supported.

SQL Server

SQL Server supports the basic CREATE SCHEMA statement without support for the PATH clause or the DEFAULT
CHARACTER SET clause:

CREATE SCHEMA AUTHORIZATION owner_name

 [ANSI CREATE statements [...]]

 [ANSI GRANT statements [...]]

If any statement fails within the CREATE SCHEMA statement, then the entire statement fails.

SQL Server does not require that the CREATE or GRANT statements be in any particular order, except that nested views
must be declared in their logical order. Thus, if view_100 references view_10, then view_10 must appear in the
CREATE SCHEMA statement before view_100.

For example:

CREATE SCHEMA AUTHORIZATION katie

 GRANT SELECT ON view_10 TO public

 CREATE VIEW view_10(col1) AS SELECT col1 FROM foo

 CREATE TABLE foo(col1 INT)

 CREATE TABLE foo

 (col1 INT PRIMARY KEY,

 col2 INT REFERENCES foo2(col1))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 col2 INT REFERENCES foo2(col1))

 CREATE TABLE foo2

 (col1 INT PRIMARY KEY,

 col2 INT REFERENCES foo(col1))

See Also

CREATE/ALTER TABLE
CREATE/ALTER VIEW
GRANT

CREATE/ALTER TABLE Statement

Manipulating tables is one of the most common activities that database administrators and programmers perform when
working with database objects. This section details how to create and modify tables.

The ANSI standard represents a sort of least common denominator among the vendors, though not every option of the
ANSI standard version of CREATE TABLE and ALTER TABLE is offered by each of the vendors. However, the ANSI
standard does represent the basic form that can be used across all of the platforms. In turn, the vendor platforms offer
a variety of extensions and additions to the ANSI standards for CREATE and ALTER TABLE.

Typically, a great deal of consideration goes into the design and creation of a table. This
discipline is known as database design. The discipline of analyzing the relationship of a
table to its own data and to other tables within the database is known as normalization.
We recommend that database programmers and administrators alike study both database
design and normalization principles thoroughly before issuing CREATE TABLE commands.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

The SQL2003 statement CREATE TABLE creates a permanent or temporary table within the database where the
command is issued. The syntax is as follows:

CREATE [{LOCAL TEMPORARY| GLOBAL TEMPORARY}] TABLE table_name

 (column_name datatype attributes [,...]) |

 [column_name WITH OPTIONS options] |

 [LIKE table_name] |

 [REF IS column_name

 {SYSTEM GENERATED | USER GENERATED | DERIVED}]

 [CONSTRAINT constraint_type [constraint_name] [,...]]

[OF type_name [UNDER super_table] [table_definition]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[OF type_name [UNDER super_table] [table_definition]]

[ON COMMIT {PRESERVE ROWS | DELETE ROWS}

The SQL2003 statement ALTER TABLE allows many useful modifications to be made to an existing table without
dropping any existing indexes, triggers, or permissions assigned to it. Following is the ALTER TABLE syntax:

ALTER TABLE table_name

[ADD [COLUMN] column_name datatype attributes]

| [ALTER [COLUMN] column_name SET DEFAULT default_value]

| [ALTER [COLUMN] column_name DROP DEFAULT]

| [ALTER [COLUMN] column_name ADD SCOPE table_name

| [ALTER [COLUMN] column_name DROP SCOPE {RESTRICT | CASCADE}]

| [DROP [COLUMN] column_name {RESTRICT | CASCADE}]

| [ADD table_constraint]

| [DROP CONSTRAINT table_constraint_name {RESTRICT | CASCADE}]

Keywords

[LOCAL | GLOBAL] TEMPORARY

Declares a permanent table or a TEMPORARY table of LOCAL or GLOBAL scope. Local temporary tables are only
accessible to the session that created them and are automatically dropped when the session that created them
terminates. Global temporary tables are accessible by all active sessions, but are automatically dropped when
the session that created them terminates. Do not qualify a temporary table with a schema name.

(column_name datatype attributes [,...])

Defines a comma-delimited list of one or more columns, their datatypes, and any additional attributes such as
nullability. Every table declaration must contain at least one column, which may include:

Column_name

Specifies a name for a column. The name must be a valid identifier according to the rules of the specific
DBMS. Make sure the name makes sense!

Datatype

Associates a specific datatype with the column of column_name. An optional length may be specified for
datatypes that allow user-defined lengths, for example VARCHAR(255). It must be a valid datatype on
the specific DBMS. Refer to Chapter 2 for a full discussion of acceptable datatypes and vendor
variations.

Attributes

Associates specific constraint attributes with the column_name. Many attributes may be applied to a
single column_name, no commas required. Typical ANSI attributes include:

NOT NULL

Tells the column to reject null values or accept null values, when NOT NULL is omitted. Any INSERT or
UPDATE statement that attempts to place a null value in a NOT NULL column will fail and roll back.

DEFAULT expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells the column to use the value of expression when no value is supplied by an INSERT or UPDATE
statement. The expression must be acceptable according to the datatype of the column; for example,
no alphabetic characters may be used in an INTEGER column. Expression may be a string or numeric
literal, but you may also define a user-defined function or system function. SQL2003 allows these
system functions in a DEFAULT expression: NULL, USER, CURRENT_USER, SESSION_USER,
SYSTEM_USER, CURRENT_PATH, CURRENT_DATE, CURRENT_TIME, LOCALTIME,
CURRENT_TIMESTAMP, LOCALTIMESTAMP, ARRAY, or ARRAY[].

COLLATE collation_name

Defines a specific collation, or sort order, for the column it is assigned to. The name of the collation is
platform dependent. If you do not define a collation, the columns of the table default to the collation of
the character set used for the column.

REFERENCES ARE [NOT] CHECKED [ON DELETE {RESTRICT | SET NULL}]

Indicates whether references are to be checked on a REF column defined with a scope clause. The
optional ON DELETE clause tells whether any values in records referenced by a deleted record should
set to NULL or whether the operation should be restricted.

CONSTRAINT constraint name [constraint_type [constraint]]

Assigns a constraint and, optionally a constraint name, to the specific column. Constraint types are
discussed in Chapter 2. Because the constraint is associated with a specific column, the constraint
declaration assumes that the column is the only one in the constraint. After the table is created, the
constraint is treated as a table-level constraint.

column_name [WITH OPTIONS options]

Defines a column with special options, such as a scope clause, a default clause, a column-level constraint, or a
COLLATE clause. For many implementations, the WITH OPTIONS clause is restricted to the creation of typed
tables.

LIKE table_name

Creates a new table with the same column definitions as the pre-existing table of table_name.

REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}

Defines the object identifier column (OID) for a typed table. An OID is necessary for the root table of a table
hierarchy. Based on the option, the REF might be automatically generated by the system (SYSTEM
GENERATED), manually provided by the user when inserting the row (USER GENERATED), or derived from
another REF (DERIVED). Requires the inclusion of a REFERENCES column attribute for column_name.

CONSTRAINT constraint_type [constraint_name] [,...]

Assigns one or more constraints to the table. This option is noticeably different than the CONSTRAINT option at
the column level because column-level constraints are assumed to apply only to the column they are associated
with. Table-level constraints, however, give the option of associating multiple columns with a constraint. For
example, in a sales table you might wish to declare a unique constraint on a concatenated key of store_id,
order_id, and order_date. This can only be done using a table-level constraint. Refer to Chapter 2 for a full
discussion of constraints.

OF type_name [UNDER super_table] [table_definition]

Declares that the table is based upon a pre-existing user-defined type (see CREATE/ALTER TYPE Statement").
In this situation, the table may have only a single column for each attribute of the structured type, plus an
additional column as defined in the REF IS clause. The REF datatype is described in greater detail in the section
CREATE/ALTER TYPE Statement. This clause is incompatible with the LIKE table_name clause.

where:

UNDER super_table [table_definition]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Declares the direct supertable of the currently declared table within the same schema, if any exists. The
table being created is thus a direct subtable of the supertable. You may optionally provide a complete
table_definition of the new subtable, complete with columns, constraints, etc.

ON COMMIT {PRESERVE ROWS | DELETE ROWS}

ON COMMIT PRESERVE ROWS preserves data rows in a temporary table on issuance of a COMMIT statement.
ON COMMIT DELETE ROWS deletes all data rows in a temporary table on COMMIT.

ADD [COLUMN] column_name datatype attributes

Adds a column to a table, along with the appropriate datatype and attributes.

ALTER [COLUMN] column_name SET DEFAULT default_value

Adds a default value to the column if none exists, and resets the default value if a previous one exists.

ALTER [COLUMN] column_name DROP DEFAULT

Completely removes a default from the named column.

ALTER [COLUMN] column_name ADD SCOPE table_name

Adds a scope to the named column. A scope is a reference to a user-defined datatype (see CREATE/ALTER TYPE
Statement").

ALTER [COLUMN] column_name DROP SCOPE [RESTRICT | CASCADE]

Drops a scope from the named column. RESTRICT and CASCADE clauses are defined at the end of this list.

DROP COLUMN column_name [RESTRICT | CASCADE]

Drops the named column from the table. RESTRICT and CASCADE clauses are defined at the end of this list.

ADD table_constraint

Adds a table constraint of the specified name and characteristics to the table.

DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]

Drops a previously defined constraint from the table.

RESTRICT

Tells the DBMS to abort the command if it finds any other objects in the database that depend on the object.

CASCADE

Tells the DBMS to drop any other objects that depend on the object.

Rules at a Glance

The typical CREATE TABLE statement is very simple. Generally, it names the table and any columns contained in the
table. Many table definitions also include a nullability constraint for most of the columns, as in this SQL Server example:

CREATE TABLE housing_construction

 (project_number INT NOT NULL,

 project_date DATE NOT NULL,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 project_date DATE NOT NULL,

 project_name VARCHAR(50) NOT NULL,

 construction_color NCHAR(20) ,

 construction_height DECIMAL(4,1),

 construction_length DECIMAL(4,1),

 construction_width DECIMAL(4,1),

 construction_volume INT)

This example adds a foreign key to the example table:

-- Creating a column-level constraint

CREATE TABLE favorite_books

 (isbn CHAR(100) PRIMARY KEY,

 book_name VARCHAR(40) UNIQUE,

 category VARCHAR(40) ,

 subcategory VARCHAR(40) ,

 pub_date DATETIME NOT NULL,

 purchase_date DATETIME NOT NULL,

 CONSTRAINT fk_categories FOREIGN KEY (category)

 REFERENCES category(cat_name));

The foreign key on the categories column relates it to the cat_name table in the category table. All the vendors
mentioned in this book support this syntax.

Examples for creating a table with each constraint type are shown in Chapter 2. Similarly,
the foreign key could be added after the fact as a multicolumn key including both the
category and subcategory columns:

ALTER TABLE favorite_books ADD CONSTRAINT fk_categories

 FOREIGN KEY (category, subcategory)

 REFERENCES category(cat_name, subcat_name));

Now, we could use an ALTER TABLE statement to drop the constraint altogether:

ALTER TABLE favorite_books DROP CONSTRAINT fk_categories RESTRICT;

Listed here are more full examples from pubs, the sample database that ships with Microsoft SQL Server and Sybase
Adaptive Server:

-- For a Microsoft SQL Server database

CREATE TABLE jobs

 (job_id SMALLINT IDENTITY(1,1) PRIMARY KEY CLUSTERED,

 job_desc VARCHAR(50) NOT NULL DEFAULT 'New Position',

 min_lvl TINYINT NOT NULL CHECK (min_lvl >= 10),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 min_lvl TINYINT NOT NULL CHECK (min_lvl >= 10),

 max_lvl TINYINT NOT NULL CHECK (max_lvl <= 250))

-- For a MySQL database

CREATE TABLE employee

 (emp_id INT AUTO_INCREMENT CONSTRAINT PK_emp_id PRIMARY KEY,

 fname VARCHAR(20) NOT NULL,

 minit CHAR(1) NULL,

 lname VARCHAR(30) NOT NULL,

 job_id SMALLINT NOT NULL DEFAULT 1

 REFERENCES jobs(job_id),

 job_lvl TINYINT DEFAULT 10,

 pub_id CHAR(4) NOT NULL DEFAULT ('9952')

 REFERENCES publishers(pub_id),

 hire_date DATETIME NOT NULL DEFAULT (CURRENT_DATE());

CREATE TABLE publishers

 (pub_id char(4) NOT NULL

 CONSTRAINT UPKCL_pubind PRIMARY KEY CLUSTERED

 CHECK (pub_id IN ('1389', '0736', '0877', '1622', '1756')

 OR pub_id LIKE '99[0-9][0-9]'),

 pub_name varchar(40) NULL,

 city varchar(20) NULL,

 state char(2) NULL,

 country varchar(30) NULL DEFAULT('USA'))

Once you get into the vendor extensions, the CREATE TABLE command is no longer portable between database
platforms. The following is an example of an Oracle CREATE TABLE statement with many storage properties:

CREATE TABLE classical_music_cds

 (music_id INT,

 composition VARCHAR2(50),

 composer VARCHAR2(50),

 performer VARCHAR2(50),

 performance_date DATE DEFAULT SYSDATE,

 duration INT,

 cd_name VARCHAR2(100),

CONSTRAINT pk_class_cds PRIMARY KEY (music_id)

 USING INDEX TABLESPACE index_ts

 STORAGE (INITIAL 100K NEXT 20K),

CONSTRAINT uq_class_cds UNIQUE

 (composition, performer, performance_date)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 USING INDEX TABLESPACE index_ts

 STORAGE (INITIAL 100K NEXT 20K))

TABLESPACE tabledata_ts;

When issuing a CREATE or ALTER statement, we recommend that it be the only statement in your transaction. For
example, do not attempt to create a table and select from it in the same batch. Instead, (1) create the table, (2) verify
the operation, (3) COMMIT, and then (4) perform any subsequent operations against the table.

Table_name is the name for a new or existing table. New table names should start with an alphabetic character and in
general contain no other special symbol besides underscore (_). Length of the name and exact composition is
governed differently according to each vendor.

When creating or altering a table, the list of column definitions is always encapsulated within parentheses and
separated by commas between each new column definition.

Programming Tips and Gotchas

The user issuing the CREATE TABLE command must have the appropriate permissions. Similarly, any user wishing to
ALTER or DROP a table should own the table within his own schema or have adequate permissions to the alter or drop
the table. Since the ANSI standard does not specify the privileges required, expect some variation between vendors.

You can encapsulate a CREATE TABLE or ALTER TABLE statement within a transaction, using a COMMIT or ROLLBACK
statement to explicitly conclude the transaction. We recommend that it be the only command in the transaction.

You can have a great deal of control over the way that the records of a table are physically written to disk through
extensions to the ANSI standard. DB2 and SQL Server use a technique called clustered indexes to control the way that
records are written to disk. Oracle uses a technique that is functionally similar called an index-organized table.

Some databases will lock a table that is being modified by an ALTER TABLE statement. It is wise to issue this command
only on tables that are not in use on a production database.

Some databases will lock the target and source tables when using the CREATE TABLE...LIKE statement.

DB2

DB2 supports a very rich and elaborate set of extensions to the CREATE TABLE statement:

CREATE TABLE table_name

 {(column_name datatype attributes [,...]) |

 OF type_name [{UNDER super_table INHERIT SELECT PRIVILEGES |

 HIERARCHY hierarchy_name}] [table_definition] |

 AS subquery {derived_table_options |

 DEFINITION ONLY [copy_options] } |

 [LIKE table_name] [copy_options] |

 [[(staging_column [,...])]

 FOR table_name PROPAGATE IMMEDIATE] }

[ORGANIZE BY [DIMENSTIONS] (column_name [,...])]

[DATA CAPTURE {NONE | CHANGES}]

[IN tablespace_name [INDEX IN tablespace_name]

 [LONG IN tablespace_name]]

[VALUE COMPRESSION]

[WITH RESTRICT ON DROP]

[NOT LOGGED INITIALLY]

[{REPLICATED | PARTITIONING KEY (column_name [,...])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[{REPLICATED | PARTITIONING KEY (column_name [,...])

 [USING HASHING] }]

[OPTIONS (REMOTE_SERVER 'server_name'

 [, REMOTE_SCHEMA 'schema_name']

 [, REMOTE_TABNAME 'table_name']]

Similarly rich, the DB2 statement ALTER TABLE allows many useful modifications to be made to an existing table
without dropping any existing indexes, triggers, or permissions assigned to it:

ALTER TABLE table_name

{[ADD { {[COLUMN] column_name datatype attributes} |

 table_constraint | partitioning_key | RESTRICT_ON_DROP } |

{[ALTER { {CHECK | FOREIGN KEY} constraint_name constraint_definition] |

 [COLUMN] column_name column_definition } |

{[DROP constraint_type constraint_name] | partitioning_key |

 RESTRICT_ON_DROP } |

 [DATA CAPTURE {NONE | CHANGES [INCLUDE LONGVAR COLUMNS]} |

 [ACTIVATE NOT LOGGED INITIALLY [WITH EMPTY TABLE]] |

 [PCTFREE int] |

 [LOCKSIZE {ROW | TABLE}] |

 [APPEND {ON | OFF}] |

 [[NOT] VOLATILE [CARDINATITY]] |

 [[DE]ACTIVATE VALUE COMPRESSION] } [...] |

SET MATERIALIZED QUERY AS {DEFINITION ONLY | subquery]

The parameters for both commands are as follows:

(column_name datatype attributes [,...])

Defines columns according to the ANSI standard. However, DB2 supports several additional attributes that are
specific to special datatypes on DB2. All the ANSI standard attributes, such as NOT NULL, are supported. Refer
to the section on datatypes in Chapter 2 for more details.

UNDER super_table INHERIT SELECT PRIVILEGES | HIERARCHY hierarchy_name

Similar to the ANSI standard OF clause in the CREATE TABLE command, with two added optional clauses —
INHERIT and HIERARCHY. INHERIT tells DB2 that any user or group with read privileges on the super_table
should also have read privileges on the new subtable. HIERARCHY associates the subtable with a table
hierarchy, where hierarchy_name is the name of the root table of the hierarchy. When omitted, DB2 will generate
its own hierarchy_name.

table_definition

Defines the elements of the typed table, including addition options for columns, an OID column on the root
table, and table constraints.

AS subquery

Materializes the table from the results of a query. You may include a standard column definition list, but the
columns must match the number and datatype of columns retrieved by the subquery.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

columns must match the number and datatype of columns retrieved by the subquery.

derived_table_options

The full syntax for derived_table_options is:

DATA INITIALLY DEFERRED REFRESH {DEFERRED | IMMEDIATE}

[{ENABLE | DISABLE} QUERY OPTIMIZATION]

[MAINTAINED BY {SYSTEM | USER}]

The keywords have the following meanings:

DATA INITIALLY DEFERRED

Defers the insertion of data into the table until a DB2 REFRESH TABLE command is issued.

REFRESH {DEFERRED | IMMEDIATE}

Allows the table to be refreshed only when a DB2 REFRESH TABLE statement is issued (via DEFERRED)
or immediate after any data manipulation operation (via IMMEDIATE).

{ENABLE | DISABLE} QUERY OPTIMIZATION

Enables or disables the derived table for query optimization when DB2 decides optimization is
appropriate. Of course, the table is always available for direct queries.

MAINTAINED BY {SYSTEM | USER}

Declares that the derived table data is maintained automatically by the SYSTEM (the default) or
manually by the USER via the DB2 REFRESH TABLE command. If you select MAINTAINED BY USER, the
table must also be declared as REFRESH DEFERRED.

DEFINITION ONLY [copy options]

Defines the table without populating the table with a query result set.

copy_options

Allows the modification of the DEFINITION ONLY and LIKE clauses. Copy options include:

{INCLUDING | EXCLUDING} [COLUMN] DEFAULTS

Includes or excludes column defaults of the copied table, respectively. INCLUDING is the default for
base tables or temporary tables. Otherwise, EXCLUDING is the default.

{INCLUDING | EXCLUDING} [IDENTITY] [COLUMN ATTRIBUTES]

Includes or excludes column attributes of the copied table, respectively. The IDENTITY attributes of the
column may optionally be copied.

LIKE table_name [copy options]

Copies the entire set of column definitions from an existing table, table_name, though a view or nickname is also
allowed. You may use the copy_options shown previously in the list to alter the default behavior of the LIKE
clause.

[(staging_column [,...])] FOR table_name PROPAGATE IMMEDIATE]

Defines an intermediate table (i.e., a staging table) between the base table(s) that define a derived table and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defines an intermediate table (i.e., a staging table) between the base table(s) that define a derived table and
the derived table itself. (Naturally, this clause should only be used with the AS subquery clause.)

The components of this clause are:

staging_column

Defines one or more staging columns. However, the list of staging columns will always contain two more
columns than the number of columns in the derived table — GLOBALTRANSID and GLOBALTRANSTIME. The
PROPAGATE clause, adds one more column — OPERATIONTYPE — which is used to maintain consistency
in replicated a materialized query table. When omitted, DB2 will create the appropriate staging columns
it needs for the operation.

FOR table_name

Names the table that defines the staging table. table_name must represent a derived table with REFRESH
DEFERRED already existing in the database. Whenever a REFRESH TABLE command is issued, the
contents of the staging table are used to refresh the derived table.

PROPAGATE IMMEDIATE

Specifies that data modifications to the underlying tables cascade immediately to the staging table.

ORGANIZE BY [DIMENSIONS] (column_name [,...])

Defines a cluster or dimension on a column or group of columns, depending on whether the DIMENSIONS
keyword is excluded or included, respectively. In effect, a clustered index is defined with the ORGANIZE BY
clause, while the ORGANIZE BY DIMENSIONS clause is used to create a clustered index on more than one
column (i.e., on a dimension).

DATA CAPTURE {NONE | CHANGES}

Writes extra data to the log in support of inter-database replication. NONE declares that no extra information
will be stored, while CHANGES declares that changes are written to the log. The DATA CAPTURE CHANGES
clause is required on replicated tables. This clause is incompatible when creating subtables.

IN tablespace_name [INDEX IN tablespace_name][LONG IN tablespace_name]

Declares a specific, pre-existing tablespace where the table is placed. This clause is incompatible when creating
a subtable and in System Managed tablespaces. The components of the clause are:

INDEX IN tablespace_name

Declares a separate pre-existing tablespace where the indexes of the table will be placed. When
omitted, the default is the same tablespace as the table data.

LONG IN tablespace_name

Declares a separate pre-existing tablespace where the data of long datatypes (LONG VARCHAR, LONG
VARGRAPHIC, LOB, etc.) for the table will be placed. When omitted, the default is the same tablespace
as the table data.

VALUE COMPRESSION

Enables high compression storage of NULL and 0-length data values.

WITH RESTRICT ON DROP

Restricts the table and its tablespace from being dropped.

NOT LOGGED INITIALLY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Declares that any changes to the data of the table that occur in the same batch as when the table is created are
not logged. On the other hand, all catalog changes and storage changes are logged. This setting can cause the
rollback of an entire batch of work under certain circumstances.

REPLICATED

Declares that the data in the table is replicated on each database partition of the database partition group
where it is defined, in effect copying the data to all database partitions. This clause is incompatible with
PARTITIONING KEY, but is required for derived tables.

PARTITIONING KEY (column_name [,...]) [USING HASHING]

Defines a partitioning key for the table where column_name becomes the partitioning key. The column_name may
not be a long or special datatype — LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK —
or structured or distinct types built upon these datatypes. This clause is incompatible when creating subtables.
When omitted and the table is defined on a database partition group, DB2 will attempt to find a method for
partitioning the table. Otherwise, the table will be placed on a single-partition database partition group. USING
HASHING declares that a hashing algorithm is used to distribute data among the partitions.

OPTIONS (REMOTE_SERVER 'server_name' [, REMOTE_SCHEMA 'schema_name'] [, REMOTE_TABNAME 'table_name']

Defines a remote operation, such as creating, altering, or dropping a table on a federated system. This is called
transparent DDL. Federated systems are quite complex and are outside of the ANSI standard. Refer to the
vendor documentation for more information.

ADD table_constraint

Adds a table-level constraint to an existing table.

ALTER {CHECK | FOREIGN KEY} constraint_name constraint_definition

Alters the attributes of an existing CHECK or FOREIGN KEY of constraint_name and assigns it a new
constraint_definition. You may also apply these additional constraint characteristics:

[NOT] ENFORCED

Changes the constraint to ENFORCED or NOT ENFORCED. Under ENFORCED, the constraint is
automatically enforced by the database. NOT ENFORCED causes the constraint to not be checked during
data modification operations.

{ENABLE | DISABLE} QUERY OPTIMIZATION

Enables or disables query optimization on the constraint.

ALTER [COLUMN] column_name column_definition

Alters a specific column, column_name, in the table. You can change a number of column characteristics
beyond the standard column definition options, including things like SCOPE, COMPRESS, and identity
alterations. Refer to the material later in this section for information on type-related attributes and
other alterable attributes. Some additional characteristics can be changed on a column-by-column basis,
such as:

SET DATA TYPE VARCHAR (int)

Alters the length of the named VARCHAR column to int. The value of int should not increase the
total row length or the total primary key length beyond the allowed maximum.

SET EXPRESSION AS (generation-expression)

Alters the original generated expression, a sort of auto-incrementing identity column, of the
named column to a new generation-expression. The difference between a generated expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

named column to a new generation-expression. The difference between a generated expression
and an identity is that identities are automatically handled by DB2, but generated expressions
give you full control over the values returned by the expression. Generated expressions can be
quite complex and are covered in the vendor documentation. This clause requires the table be
placed in "check pending state," where the data in the table is not verified against constraints,
via DB2's SET INTEGRITY statement. Afterwards, the values must all be checked.

SET INLINE LENGTH int

Alters the inline length of the named structured type column to int, storing the values inline with
the rest of the data in the row.

DROP constraint_type constraint_name

Drops a constraint of constraint_name from the table. The constraint_type may be any of the allowable
types: primary key, foreign key, unique, check, as well as PARTITIONING KEY. You may also substitute
constraint_type with RESTRICT ON DROP, to drop the RESTRICT ON DROP characteristic.

DATA CAPTURE {NONE | CHANGES [INCLUDE LONGVAR COLUMNS] }

Captures extra information to the log in support of replication. Usable with any non-typed table. The
options for DATA CAPTURE are:

NONE

Specifies that no extra information is captured.

CHANGES

Writes extra information to the table in support of replication. This clause is required for
replication. This clause is incompatible with tables that store data on non-catalog partitions. The
INCLUDE LONGVAR COLUMNS clause includes LONG VARCHAR and LONG VARGRAPHIC columns
in the data replication.

ACTIVATE NOT LOGGED INITIALLY [WITH EMPTY TABLE]

Disables logging of any transaction made in the same batch as the ALTER TABLE statements.
Statements that are not logged include INSERT, DELETE, UPDATE, CREATE INDEX, DROP INDEX, or
another ALTER TABLE statement. Logging returns to normal after the current SQL batch completes. The
optional WITH EMPTY TABLE clause tells DB2 to empty the table of data. The data is not recoverable
except through the DB2 RECOVER facility.

PCTFREE int

Declares a percentage of free space, int, that DB2 should leave on each page during load or
reorganization of the table.

LOCKSIZE {ROW | TABLE}

Declares that locks should be taken at a ROW or TABLE level when reading or writing data in the table.
The default is ROW. This clause is only supported in the root table of a typed-table hierarchy.

APPEND {ON | OFF}

Adds all new data to the end of the table when turned ON or puts data in the free space available within
data pages throughout the table when turned OFF. The default is OFF. Setting this value to ON causes
DB2 not to keep any free space information. The APPEND clause is not usable on tables with a clustered
index.

[NOT] VOLATILE [CARDINALITY]

Declares whether the table cardinality varies greatly over time. When set to VOLATILE, tells DB2 to
generally ignore statistics in favor of an index scan because the amount of data in the table change a
great deal. VOLATILE is supported only on normal tables and the root table of a typed-table hierarchy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

great deal. VOLATILE is supported only on normal tables and the root table of a typed-table hierarchy.
NOT VOLATILE tells DB2 that the amount of data in the table is generally static, so that it can use
existing statistics and optimization paths. Adding the optional CARDINALITY keyword tells DB2 that the
amount of data in the table may change but that the table itself is static.

[DE]ACTIVATE VALUE COMPRESSION

Deactivates or activates the compression of NULL and zero-length data values in the table for all
datatypes of BLOB, CLOB, DBLOB, LONG VARCHAR, or LONG VARGRAPHIC.

SET MATERIALIZED QUERY {AS DEFINITION ONLY | subquery}

Alters the properties of a materialized query table. DEFINITION ONLY tells DB2 to consider the table as
a normal table and not a materialized query table. When using DEFINITION ONLY, the materialized
query table cannot be replicated. The subquery clause is any valid subquery used to define a materialized
query table. The subquery redefines a regular table as a materialized query table during query
optimization. When using the subquery clause, the table may not be a typed table, have constraints,
unique indexes, or triggers, or be defined as or referenced in a materialized query table.

DB2 also has a number of special attributes that may be applied to columns over the standard constraints that
the ANSI SQL standard provides. These optional attributes are specific to specific datatypes. The following are
LOB-related attributes:

[NOT] LOGGED

Declares whether changes made to the column are written to the logfile (LOGGED) or not (NOT
LOGGED). The default is LOGGED. However, any LOB values greater than 10 megabytes should not be
logged and those over 1 gigabyte cannot be logged.

[NOT] COMPACT

Compresses the values of LOBs as much as possible, usually by freeing any extra space on the last
group used by the LOB or allowing free space in the last group to go unused. COMPACT takes some
extra processing and I/O overhead. NOT COMPACT is the default.

For example, you might have a table called emp_images, which stores the security ID images of your
employees:

CREATE TABLE emp_images

 (emp_id INT NOT NULL,

 emp_photo_image LONGVARGRAPHIC NOT LOGGED COMPACT)

DB2 supports the following datalink-related attributes:

LINKTYPE URL

Defines a URL as the type of link.

NO LINK CONTROL

Declares that there is no check for file existence.

FILE LINK CONTROL [options]

Declares that file existence will be checked. Additional options may impact the style of check, including:

INTEGRITY [ALL]

Sets the level of checks between the DATALINK value and an actual file. The optional ALL
keyword disables operating system control for deleting or renaming the file.

READ PERMISSION {FS | DB}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

READ PERMISSION {FS | DB}

Sets read permission on the file as either filesystem derived (FS) or database derived (DB).

WRITE PERMISSION {FS | BLOCKED | ADMIN}

Sets write permission on the file as either filesystem derived (FS), no writes allowed
(BLOCKED), or determined by the Data Links Manager (ADMIN). The WRITE PERMISSION
ADMIN clause is based on a passed token. You should further specify [NOT] REQUIRING TOKEN
FOR UPDATE, which details whether a write token is needed to finish a file update operation.

RECOVERY {YES | NO}

Declares that DB2 will support point in time recovery of files referenced by the values in the
column (YES) or not (NO). RECOVERY YES also requires the INTEGRITY ALL clause and either
WRITE PERMISSION BLOCKED or WRITE PERMISSION ADMIN.

ON UNLINK {RESTORE | DELETE}

Declares that DB2 either return the file to its original permissions when the DATALINK value is
changed or deleted (RESTORE) or that the file is deleted when unlinked (DELETE). ON UNLINK
RESTORE requires the INTEGRITY ALL clause and either WRITE PERMISSION BLOCKED or
WRITE PERMISSION ADMIN. ON UNLINK DELETE requires the READ PERMISSION DB clause and
either WRITE PERMISSION BLOCKED or WRITE PERMISSION ADMIN.

MODE DB2OPTIONS

Defines a default group of file link options: INTEGRITY ALL, READ PERMISSION FS, WRITE PERMISSION
FS, and RECOVERY NO.

DB2 supports the following type-related attributes:

SCOPE type_name

Declares the scope of a reference-type column, where type_name is the pre-existing typed table or view.
It is required for columns that will be used as the left operand of a dereference operator or as the
argument of a DEREF function.

INLINE LENGTH int

Declares a maximum byte size, int, for a structured-type column. If the structured type is too long, DB2
will automatically store the structured types in a separate table from the base table, similar to the way
LOB values are stored.

DB2 supports just one storage-related attribute:

COMPRESS SYSTEM DEFAULT

Defines that the system default value for any column is compressed. It should not be used on columns
of DATE, TIME, or TIMESTAMP datatypes. You gain some storage space at the sacrifice of performance.

Use the following DEFAULT-related attributes to set various defaults:

[WITH] DEFAULT {CURRENT SCHEMA | USER | NULL | constant}

Declares a default for the column. That is, whenever an INSERT or UPDATE (or LOAD) statement does
not provide a value for the column, then DB2 will use the default value you specify. WITH is a noise
word. When omitted, NULL is always the default. The options for the DEFAULT clause are:

CURRENT SCHEMA

Inserts the CURRENT SCHEMA system value. The column must have a character datatype of
sufficient length to store CURRENT SCHEMA.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

USER

Inserts the USER system value. The column must have a character datatype of sufficient length
to store USER.

NULL

Inserts a null value, the default.

constant

Can be any constant string, date, or number of 254 characters or fewer.

GENERATED {ALWAYS | BY DEFAULT}

Tells DB2 to generate values for the column, in particular for IDENTITY columns, either every time a
record is inserted in the table (ALWAYS) or whenever a value is not provided for the column (BY
DEFAULT).

AS (expression)

Assigns the default value based on the evaluation of an expression. The expression might be something
like an external user-defined function, a subquery, or a stored procedure. Refer to the ALTER
COLUMN...generated expressions material earlier in this section.

AS IDENTITY [START WITH int | INCREMENT BY int}

Declares that the column is an auto-incrementing identity for a column of a number datatype. Identities
can be either ascending or descending in nature. DB2 allows only one identity column per table. All
identity columns are implicitly NOT NULL. Identities are further defined by these optional
characteristics:

START WITH int

Declares the seed value (i.e., the starting value), int, of the identity column. The default is MINVALUE
for ascending identities and MAXVALUE for descending identities.

INCREMENT BY int

Declares the amount each entry to the identity will increase (if positive) or decrease (if negative). The
default is 1. A negative INCREMENT BY value tells DB2 that the identity is descending in nature.

[NO] {MINVALUE | MAXVALUE} [int]

Declares the value, int, at which the identity either cycles to the beginning or stops generating values.
Both clauses may appear as attributes of an identity. They are not mutually exclusive. NO MINVALUE,
the default minimum value setting, tells DB2 to start ascending identities at the START WITH value or 1,
if omitted. MINVALUE int tells DB2 the lowest allowable value for a descending identity. NO MAXVALUE,
the default maximum value setting, tells DB2 to stop or recycle ascending identities at maximum value
allowed for the datatype. For descending identities, the default is the START WITH value or -1, when
omitted. MINVALUE int tells DB2 the highest allowable value for an ascending identity.

[NO] CYCLE

Declares that DB2 should recycle the identity values (CYCLE) when the maximum value is exceeded on
ascending identities (or the minimum value is decremented on a descending identity) or that DB2
should stop generating identities (NO CYCLE) once the minimum or maximum is reached. NO CYCLE is
the default. DB2 will generate duplicate values under the CYCLE setting.

[NO] CACHE [int]

Tells DB2 to cache some pre-allocated values in memory (CACHE) or not (NO CACHE). You may
optionally tell DB2 how many identity values, int, to cache using CACHE int.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

optionally tell DB2 how many identity values, int, to cache using CACHE int.

[NO] ORDER

Tells DB2 whether identity values must be generated in the order they were requested (ORDER) or not
(NOT ORDER). When omitted, NOT ORDER is the default.

For example, our company has acquired another company with a whole roster of employees. We want to assign
the new employees a new emp_id based on our current highest emp_id identity column value:

CREATE TABLE temp_emp

 (new_emp_id INT NOT NULL GENERATED ALWAYS AS IDENTITY

 (START WITH 500, INCREMENT BY 1, NO CYCLE, CACHE),

 dept VARCHAR (50) NOT NULL,

 mgr_id INT,

 location CHAR(30))

DB2 supports the creation of temporary tables, but not in the CREATE TABLE
statement. Instead, use the DECLARE GLOBAL TEMPORARY TABLE statement
described in the DB2 documentation.

However, be extra careful whenever altering a table. You should generally expect that any procedural objects
that are dependent on the table, such as procedures or functions, will become invalid.

-- Creating a column-level constraint

CREATE TABLE favorite_books

 (isbn CHAR(100) PRIMARY KEY,

 book_name VARCHAR(40) UNIQUE,

 category VARCHAR(40) NULL,

 subcategory VARCHAR(40) NULL,

 pub_date DATETIME NOT NULL,

 purchase_date DATETIME NOT NULL,

 CONSTRAINT fk_categories FOREIGN KEY (category)

 REFERENCES category(cat_name));

In the following example, we alter our example table, favorite_books, to not log SQL changes for replication.
We also assign some free space to the data pages of the table:

ALTER TABLE favorite_books

 PCTFREE 20

 DATA CAPTURE NONE

We also finally decide that although the records in the table change quite frequently, the table structure itself
should be static:

ALTER TABLE favorite_books NO VOLATILE CARDINALITY

MySQL

The MySQL syntax for CREATE TABLE creates a permanent or local temporary table within the database in which the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MySQL syntax for CREATE TABLE creates a permanent or local temporary table within the database in which the
command is issued.

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table_name

{(column_name datatype attributes

 constraint_type constraint_name [,...])

 [constraint_type [constraint_name] [,...]]

 [MATCH FULL | MATCH PARTIAL]

 [ON {DELETE | UPDATE} {RESTRICT | CASCADE | SET NULL |

 NO ACTION | SET DEFAULT}]

LIKE other_table_name }

{[TYPE = {ISAM | MyISAM | HEAP | BDB | InnoDB | MERGE |

 MRG_MyISAM} |

 AUTO_INCREMENT = int |

 AVG_ROW_LENGTH = int |

 CHECKSUM = {0 | 1} |

 COMMENT = "string" |

 DELAY_KEY_WRITE = {0 | 1} |

 MAX_ROWS = int |

 MIN_ROWS = int |

 PACK_KEYS = {0 | 1} |

 PASSWORD = "string" |

 ROW_FORMAT= { default | dynamic | static | compressed } |

 RAID_TYPE = {1 | STRIPED | RAID0} |

 RAID_CHUNKS = int |

 RAID_CHUNKSIZE = int |

 INSERT_METHOD = {NO | FIRST | LAST} |

 DATA DIRECTORY = "path to directory"

 INDEX DIRECTORY = " path to directory "] }

[[IGNORE | REPLACE] select_statement]

The MySQL syntax for ALTER TABLE allows modifications to a table or even renaming of a table:

ALTER [IGNORE] TABLE table_name

{[ADD [COLUMN] (column_name datatype attributes]

[FIRST | AFTER column_name]]

| [ADD [UNIQUE | FULLTEXT] INDEX [index_name]

| (index_col_name [,...])]

| [ADD PRIMARY KEY (index_col_name [,...])]

| [ALTER [COLUMN] column_name {SET DEFAULT literal |

| DROP DEFAULT}]

| [CHANGE | MODIFY] [COLUMN] old_col_name new_column_name]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

| [CHANGE | MODIFY] [COLUMN] old_col_name new_column_name]

 [FIRST | AFTER column_name]

| [MODIFY] column_name datatype attributes

| [DROP [COLUMN] column_name]

| [DROP PRIMARY KEY]

| [DROP INDEX index_name]

| [{ENABLE | DISABLE} KEYS]

| [RENAME [TO] new_tbl_name]

| [table_options] } [,...]

Keywords and parameters are as follows:

TEMPORARY

Creates a table that persists for the duration of the connection under which it was created. Once that
connection closes, the temporary table is automatically deleted.

IF NOT EXISTS

Prevents an error if the table already exists. A schema specification is not required.

constraint_type

Allows standard ANSI SQL constraints to be assigned at the column or table level. MySQL fully supports these
constraints: primary key, unique, and default (must be a constant). MySQL provides syntax support for check,
foreign key, and references constraints, but they are not functional except on InnoDB tables. MySQL also has
three specialty constraints:

FULLTEXT [INDEX]

Creates a fulltext-search index to facilitate rapid searches of large blocks of text. Note that only MyISAM
tables support FULLTEXT indexes and that they can only be made on CHAR, VARCHAR, and TEXT
columns.

AUTO_INCREMENT

Sets up an integer column so that it automatically increases its value by 1 (starting with a value of 1).
MySQL only allows one AUTO_INCREMENT column per table. When the maximum value is deleted, the
value is reused. When all records are deleted (using DELETE or TRUNCATE), the values may start over.
This option is allowed on ISAM tables, but not MyISAM and InnoDB tables.

[UNIQUE] INDEX

When an INDEX characteristic is assigned to a column, a name for the index also can be included. (A
MySQL synonym for INDEX is KEY.) If a name is not assigned to the primary key, MySQL assigns a
name of column_name plus a numeric suffix (_2, _3,. . .) to make it unique. All table types, except for
the ISAM table type, support indexes on NULL columns, or on BLOB or TEXT datatype columns. Note
that UNIQUE without INDEX is valid syntax on MySQL.

TYPE

Describe how the data should be physically stored. You can convert tables between types using the ALTER
TABLE statement. Only InnoDB and BDB tables offer recoverability with the COMMIT or ROLLBACK statements.
All other table types will result in the loss of data if the database crashes, but are much faster and take up less
space. The default is MyISAM. Following is the list of MySQL table types:

BDB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BDB

Creates a transaction-safe table with page locking. Tables of this type are based on the BerkeleyDB
transaction processing engine available at http://www.sleepycat.com. BDB maintains logfiles and keeps
track of checkpoints and ROLLBACK and COMMIT statements. BDB tables must have a declared primary
key. Some operations on BDB tables are slower than the same operations on MyISAM tables.

HEAP

Creates a memory resident table that uses hashed indexes. Since they are memory resident, they are
not transaction safe. Any data that they contain will be lost if the server crashes. Think of HEAP tables
as an alternative to temporary tables. If you use HEAP tables, always specify the MAX_ROWS option so
that you do not use all available memory. HEAP tables also do not support BLOB columns, TEXT
columns, AUTO_INCREMENT constraints, ORDER BY clauses, or variable-length record format.

InnoDB

Creates a transaction-safe table with row-level locking. It also provides an independently managed
tablespace, checkpoints, non-locking reads and fast reads from large datafiles for heightened
concurrency and performance. Requires the innodb_data_file_path startup parameter. InnoDB supports all
ANSI constraints including CHECK and FOREIGN KEY. (InnoDB is a separate complete transaction
processing engine available at http://www.innodb.com. Well-known developer web sites like
Slashdot.org run on InnoDB.) InnoDB requires special setup, including a possible recompile of the
MySQL kernel, init file parameters, and the creation of tablespaces. Although InnoDB is included by
default in the binary distributions of MySQL 4.0 and greater, you should check with your DBA to ensure
you can use InnoDB tables.

ISAM

Creates a table in the older ISAM style. ISAM is deprecated as a feature and will probably not be
supported beyond MySQL v5.0.

MERGE | MRG_MyISAM

Collects several identically structured MyISAM tables for use as one table. The MERGE table type
provides some of the performance benefits of a partitioned table. The two keywords, MERGE and
MRG_MyISAM, are synonyms. SELECT, DELETE, and UPDATE statements operate against the collection
of tables as if they were one table. Think of a merge table as the collection, but not as the table(s)
containing the data. Dropping a merge table only removes it from the collection. It does not erase the
table or data from the database. Specify a MERGE table by using the statement UNION=(table1, table2,
...).

MyISAM

Stores data in .MYD files and indexes in .MYI files. MyISAM is based on ISAM code with several
extensions. MyISAM is a binary storage structure that is more portable than ISAM. MyISAM supports
AUTO_INCREMENT columns, compressed tables (with the myisampack utility), and large table sizes.
Under MyISAM, BLOB and TEXT columns can be indexes, and up to 32 indexes are allowed per table.

AUTO_INCREMENT = int

Sets the auto_increment value, int, for the table (MyISAM only).

AVG_ROW_LENGTH = int

Sets an approximate average row length for tables with variable-size records. MySQL uses avg_row_length *
max_rows to decide how big a table may be.

CHECKSUM = {0 | 1}

When set to 1, maintains a checksum for all rows in the table (MyISAM only). Makes processing slower, but is
less prone to corruption.

COMMENT = "string"

Allows a comment of up to 60 characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Allows a comment of up to 60 characters.

DELAY_KEY_WRITE = {0 | 1}

When set to 1, delays key table updates until the table is closed (MyISAM only).

MAX_ROWS = int

Sets a maximum number of rows to store in the table. The default maximum is 4 GB of space.

MIN_ROWS = int

Sets a minimum number of rows to store in the table.

PACK_KEYS = {0 | 1}

When set to 1, compacts the indexes of the table, making reads faster but updates slower (MyISAM and ISAM
only). By default, only strings are packed. When set to 1, both strings and numeric values are packed.

PASSWORD = "string"

Encrypts the .FRM file with a password, "string", but not the table itself.

ROW_FORMAT = { default | dynamic | static | compressed }

Determines how future rows should be stored in a MyISAM table. DYNAMIC allows the rows to be of variable
sizes (i.e., using VARCHAR) while FIXED expects fixed size columns (i.e., CHAR, INT, etc.).

RAID_TYPE = {1 | STRIPED | RAID0}

Enables tables to cross the 2 gigabyte/4 gigabyte size limit for MyISAM datafiles (but not index files) on
operating systems that don't support very large files. The RAID_TYPE clause is intended as a workaround for
database servers experiencing the aforementioned size limits, so you should not use RAID_TYPE on operating
systems that support larger files. The keywords 1, STRIPED, and RAIDZERO are all synonyms, where STRIPED
is the most commonly seen. The --with-raid init parameter is required. Currently, MySQL handles the
RAID_CHUNKS and RAID_CHUNKSIZE clauses automatically.

RAID_CHUNKS = int

Overrides the default subdirectories used for the RAID_TYPE. MySQL usually creates subdirectories named 00,
01, and 02 in the database directory for all each MyISAM table. Each subdirectory will contain a file called
my_table_name.MYD.

RAID_CHUNKSIZE = int

Sets a chunksize other than the default of 1,024 bytes. As the file size for the MyISAM table grows, MySQL will
allocate additional space in int bytes in a round-robin fashion.

INSERT_METHOD = {NO | FIRST | LAST}

Required for MERGE tables. If no setting is specified for a MERGE table or the value is NO, then INSERTS are
disallowed. FIRST inserts all records to the first table in the collection, while LAST inserts them all to the last
table of the collection

DATA DIRECTORY = "path to directory"

Overrides the default path and directory that MySQL should use for MyISAM table storage.

INDEX DIRECTORY = "path to directory"

Overrides the default path and directory that MySQL should use for MyISAM index storage.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Overrides the default path and directory that MySQL should use for MyISAM index storage.

[IGNORE | REPLACE] SELECT_statement

Creates a table with columns based upon the elements listed in the SELECT statement. The new table will be
populated with the results of the SELECT statement if the statement returns a result set.

ALTER [IGNORE]

The altered table will include all duplicate records unless the IGNORE keyword is used. Otherwise, the
statement will fail if a duplicate row is encountered, the table has a unique index or primary key, and IGNORE is
not used.

{ADD | COLUMN} [FIRST | AFTER column_name]

Adds or moves a column, index, or key to the table. When adding or moving columns, the new column appears
as the last column on the table unless it is placed AFTER another named column.

ALTER COLUMN

Allows the definition or reset of a default value for a column. If you reset a default, MySQL will assign a new
default value to the column.

CHANGE

Renames a column or changes its datatype.

MODIFY

Changes a column's datatype or attributes such as NOT NULL. Existing data in the column is automatically
converted to the new datatype.

DROP

Drops the column, key, or index. A dropped column is also removed from any indexes it participated in. When
dropping a primary key, MySQL will drop the first unique key if no primary key is present.

{ENABLE | DISABLE} KEYS

Enables or disables all non-unique keys on a MyISAM table simultaneously. This can be useful for bulk loads
where you want to temporarily disable constraints until after the load is finished. It also speeds performance by
finishing all index block flushing at the end of the operation.

RENAME [TO] new_tbl_name

Renames a table.

For example:

CREATE TABLE test_example

 (column_a INT NOT NULL AUTO_INCREMENT,

 PRIMARY KEY(column_a),

 INDEX(column_b))

 TYPE=HEAP

IGNORE

SELECT column_b,column_c FROM samples;

This creates a heap table with three columns: column_a, column_b, and column_c. Later on, we could change this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This creates a heap table with three columns: column_a, column_b, and column_c. Later on, we could change this
table to the MyISAM type:

ALTER TABLE example TYPE=MyISAM;

Three operating-system files are created when MySQL creates a MyISAM table: a table definition file with the extension
.FRM, a datafile with the extension .MYD, and an index file with the extension .MYI. The .FRM datafile is used for all
other tables.

The following example creates two base MyISAM tables and then creates a MERGE table from them:

CREATE TABLE message1

 (message_id INT AUTO_INCREMENT PRIMARY KEY,

 message_text CHAR(20));

CREATE TABLE message2

 (message_id INT AUTO_INCREMENT PRIMARY KEY,

 message_text CHAR(20));

CREATE TABLE all_messages

 (message_id INT AUTO_INCREMENT PRIMARY KEY,

 message_text CHAR(20))

 TYPE=MERGE UNION=(message1, message2) INSERT_METHOD=LAST;

The following example renames both a table and a column:

ALTER TABLE employee RENAME AS emp;

ALTER TABLE employee CHANGE employee_ssn emp_ssn INTEGER;

Since MySQL allows the creation of indexes on a portion of a column (for example, on the first ten characters of a
column), you can also build short indexes on very large columns.

MySQL can redefine the datatype of an existing column. To avoid losing any data, the values contained in the column
must be compatible with the new datatype. For example, a date column could be redefined to a character datatype, but
not a character datatype to an integer. Here's an example:

ALTER TABLE mytable MODIFY mycolumn LONGTEXT

MySQL allows some additional flexibility in the ALTER TABLE statement by allowing users to issue multiple ADD, ALTER,
DROP, and CHANGE clauses in a comma-delimited list in a single ALTER TABLE statement. However, be aware that the
CHANGE column_name and DROP INDEX clauses are MySQL extensions not found in SQL2003. MySQL supports the
clause MODIFY column_name to mimic the same feature found in Oracle.

Oracle

The Oracle syntax for CREATE TABLE creates a relational table either by declaring the structure or by referencing an
existing table. You can modify a table after it is created using the ALTER TABLE statement. Oracle also allows the
creation of a relational table that uses user-defined types for column definitions. You can also create an object table
that is explicitly defined to hold a specific UDT, usually a VARRAY or NESTED TABLE type, as well as XMLType tables.

The standard ANSI style CREATE TABLE statement is supported, but Oracle has added many sophisticated extensions to
the command. For example, Oracle allows significant control over the storage and performance parameters of a table.
In both the CREATE TABLE and ALTER TABLE statements, you'll see a great deal of nesting and reusable clauses. To
make this somewhat easier to read, we have broken Oracle's CREATE TABLE statement into three distinct variations
(relational table, object table, and XML table) so that you can more easily follow the syntax.

The CREATE TABLE syntax for a standard relational table, which has no object or XML properties, is as follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name

[({column | attribute} [SORT] [DEFAULT expression] [{column_constraint |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[({column | attribute} [SORT] [DEFAULT expression] [{column_constraint |

 inline_ref_constraint}] |

 {table_constraint_clause | table_ref_constraint} |

 {GROUP log_group (column [NO LOG] [,...]) [ALWAYS] | DATA

 (constraints [,...]) COLUMNS})]

[ON COMMIT {DELETE | PRESERVE} ROWS]

[table_constraint_clause]

{ [physical_attributes_clause] [TABLESPACE tablespace_name]

 [storage_clause] [[NO]LOGGING] |

 [CLUSTER (column [,...])] |

 {[ORGANIZATION

 {HEAP [physical_attributes_clause][TABLESPACE

 tablespace_name][storage_clause]

 [COMPRESS | NOCOMPRESS] [[NO]LOGGING] |

 INDEX [physical_attributes_clause][TABLESPACE

 tablespace_name][storage_clause]

 [PCTTHRESHOLD int] [COMPRESS [int] | NOCOMPRESS]

 [MAPPING TABLE | NOMAPPING][...] [[NO]LOGGING]

 [[INCLUDING column] OVERFLOW

 [physical_attributes_clause][TABLESPACE tablespace_name]

 [storage_clause] [[NO]LOGGING] }] |

 EXTERNAL ([TYPE driver_type]) DEFAULT DIRECTORY directory_name

 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format) }]

 LOCATION ([directory_name:]'location_spec' [,...])

 [REJECT LIMIT {int | UNLIMITED}] } }

[{ENABLE | DISABLE} ROW MOVEMENT]

[[NO]CACHE] [[NO]MONITORING] [[NO]ROWDEPENDENCIES]

[PARALLEL int | NOPARALLEL] [NOSORT] [[NO]LOGGING]]

[COMPRESS [int] | NOCOMPRESS]

[{ENABLE | DISABLE} [[NO]VALIDATE]

 {UNIQUE (column [,...] | PRIMARY KEY | CONSTRAINT constraint_name}]

 [USING INDEX {index_name | CREATE_INDEX_statement}] [EXCEPTIONS INTO]

 [CASCADE] [{KEEP | DROP} INDEX]] |

[partition_clause]

[AS subquery]

The relational table syntax contains a large number of optional clauses. However, the table definition must contain, at a
minimum, either column names and datatypes specifications or the AS subquery clause.

The Oracle syntax for an object table follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE [GLOBAL] [TEMPORARY] TABLE table_name

AS object_type [[NOT] SUBSTITUTABLE AT ALL LEVELS]

[({column | attribute} [DEFAULT expression] [{column_constraint |

 inline_ref_constraint}] |

 {table_constraint_clause | table_ref_constraint } |

 {GROUP log_group (column [NO LOG] [,...]) [ALWAYS] | DATA

 (constraints [,...]) COLUMNS})]

[ON COMMIT {DELETE | PRESERVE} ROWS]

[OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]

[OIDINDEX [index_name] ([physical_attributes_clause] [storage_clause])]

[physical_attributes_clause] [TABLESPACE tablespace_name] [storage_clause]

The Oracle syntax for an XMLType table follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name

OF XMLTYPE

[({column | attribute} [DEFAULT expression] [{column_constraint |

 inline_ref_constraint}] |

 {table_constraint_clause | table_ref_constraint } |

 {GROUP log_group (column [NO LOG] [,...]) [ALWAYS] | DATA

 (constraints [,...]) COLUMNS})]

[XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] |

 CLOB [lob_segname] [lob_params]}] [xml_schema_spec]

[ON COMMIT {DELETE | PRESERVE} ROWS]

[OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]

[OIDINDEX index_name ([physical_attributes_clause] [storage_clause])]

[physical_attributes_clause] [TABLESPACE tablespace_name] [storage_clause]

The Oracle syntax for ALTER TABLE changes the table or column properties, storage characteristics, LOB or VARRAY
properties, partitioning characteristics, and integrity constraints associated with a table and/or its columns. The
statement does other things like move an existing table into a different tablespace, free recuperated space, compact
the table segment, and adjust the "high-water mark."

The ANSI SQL standard uses the ALTER keyword to modify existing elements of a table, while Oracle uses MODIFY to
mean the same thing. Since they are essentially the same thing, please consider the behavior of otherwise identical
clauses (for example, ANSI's ALTER TABLE...ALTER COLUMN to Oracle's ALTER TABLE...MODIFY COLUMN) to be
functionally equivalent.

Oracle's ALTER TABLE syntax is:

ALTER TABLE table_name

-- alter table characteristics

 [physical_attributes_clause] [storage_clause]

 [[NO]LOGGING] [[NO]CACHE] [[NO]MONITORING] [[NO]COMPRESS]

 [SHRINK SPACE [COMPACT] [CASCADE]]

 [UPGRADE [[NOT] INCLUDING DATA] column_name datatype attributes]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [UPGRADE [[NOT] INCLUDING DATA] column_name datatype attributes]

 [[NO]MINIMIZE RECORDS_PER_BLOCK]

 [PARALLEL int | NOPARALLEL]

 [{ENABLE | DISABLE} ROW MOVEMENT]

 [{ADD | DROP} SUPPLEMENTAL LOG

 {GROUP log_group [(column_name [NO LOG] [,...]) [ALWAYS]] |

 DATA ({ALL | PRIMARY KEY | UNIQUE | FOREIGN KEY} [,...]) COLUMNS}]

 [ALLOCATE EXTENT

 [(SIZE int[K|M|G|T]] [DATATILE 'filename'] [INSTANCE int}])]

 [DEALLOCATE UNUSED [KEEP int[K|M|G|T]]]

 [ORGANIZATION INDEX ...

 [COALESCE] [MAPPING TABLE | NOMAPPING] [{PCTTHRESHOLD int]

 [COMPRESS int | NOCOMPRESS]

 [{ ADD OVERFLOW [TABLESPACE tablespace_name] [[NO]LOGGING]

 [physical_attributes_clause]]] |

 OVERFLOW { [ALLOCATE EXTENT (SIZE int [K | M]] [DATAFILE

 'filename'] [INSTANCE int]) |

 [DEALLOCATE UNUSED [KEEP int [K | M]] }]]

 [RENAME TO new_table_name]

-- alter column characteristics

 [ADD (column_name datatype attributes [,...])]

 [DROP { {UNUSED COLUMNS | COLUMNS CONTINUE} [CHECKPOINT int] |

 {COLUMN column_name | (column_name [,...]) } [CHECKPOINT int]

 [{CASCADE CONSTRAINTS | INVALIDATE}] }]

 [SET UNUSED {COLUMN column_name | (column_name [,...]) }

 [{CASCADE CONSTRAINTS | INVALIDATE}]

 [MODIFY { (column_name datatype attributes [,...]) |

 COLUMN column_name [NOT] SUBSTITUTABLE AT ALL LEVELS [FORCE] }]

 [RENAME COLUMN old_column_name TO new_column_name]

 [MODIFY {NESTED TABLE | VARRAY} collection_item [RETURN AS {LOCATOR |

 VALUE}]]

-- alter constraint characteristics

 [ADD CONSTRAINT constraint_name table_constrain_clause]

 [MODIFY CONSTRAINT constraint_name constraint_state_clause]

 [RENAME CONSTRAINT old_constraint_name TO new_constraint_name]

 [DROP { { PRIMARY KEY | UNIQUE (column [,...]) } [CASCADE]

 [{KEEP | DROP} INDEX] |

 CONSTRAINT constraint_name [CASCADE] }]

-- alter table partition characteristics

 [alter partition clauses]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [alter partition clauses]

-- alter external table characteristics

 DEFAULT DIRECTORY directory_name

 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format) }]

 LOCATION ([directory_name:]'location_spec' [,...])

 [ADD (column_name ...)][DROP column_name ...][MODIFY (column_name ...)]

 [PARALLEL int | NOPARALLEL]

 [REJECT LIMIT {int | UNLIMITED}]

 [PROJECT COLUMN {ALL | REFERENCED}]} }

-- move table clauses

 [MOVE [ONLINE] [physical_attributes_clause]

 [TABLESPACE tablespace_name] [[NO]LOGGING] [PCTTHRESHOLD int]

 [COMPRESS int | NOCOMPRESS] [MAPPING TABLE | NOMAPPING]

 [[INCLUDING column] OVERFLOW

 [physical_attributes_clause] [TABLESPACE tablespace_name]

 [[NO]LOGGING]]]

 [LOB ...] [VARRAY ...] [PARALLEL int | NOPARALLEL]]

-- enable/disable attributes and constraints

 [{ {ENABLE | DISABLE} [[NO]VALIDATE]] {UNIQUE (column [,...]) |

 PRIMARY KEY | CONSTRAINT constraint_name}]

 [USING INDEX {index_name | CREATE_INDEX_statement |

 [TABLESPACE tablespace_name] [physical_attributes_clause]

 [storage_clause]

 [NOSORT] [[NO]LOGGING]] [ONLINE] [COMPUTE STATISTICS]

 [COMPRESS | NOCOMPRESS] [REVERSE]

 [{LOCAL | GLOBAL} partition_clause]

 [EXCEPTIONS INTO table_name] [CASCADE] [{KEEP | DROP} INDEX]] |

 [{ENABLE | DISABLE}] [{TABLE LOCK | ALL TRIGGERS}] }]

The parameters are as follows:

column_constraint

Specifies a column constraint using the syntax found in the description later.

GROUP log_group (column [NO LOG] [,...]) [ALWAYS] | DATA (constraints [,...]) COLUMNS

Specifies a log group rather than a single logfile for the table.

ON COMMIT {DELETE | PRESERVE} ROWS

Declares whether a declared temporary table should keep the data in the table active for the entire session
(PRESERVE) or only for the transaction that the temporary table is created in (DELETE).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(PRESERVE) or only for the transaction that the temporary table is created in (DELETE).

table_constraint_clause

Specifies a table constraint using the syntax found in the description later.

physical_attributes_clause

Specifies the physical attributes of the table using the syntax found in the description later.

TABLESPACE tablespace_name

Specifies the name of the tablespace where the table you are creating will be stored. If omitted, the default
tablespace for the schema owner will be used. See below for specifics. See the Oracle Concepts manual to learn
about tablespaces and their use.

storage_clause

Specifies physical storage characteristics of the table using the syntax found in the description later.

[NO]LOGGING

Specifies that redo log records will be written during object creation (LOGGING) or not (NOLOGGING).
LOGGING is the default. In case of database failure under the NOLOGGING option, the operation cannot be
recovered by applying logfiles, and the object must be recreated. NOLOGGING can speed the creation of
database objects. The LOGGING clause replaces the older RECOVERABLE clause, which is deprecated.

CLUSTER (column [,...])

Declares that the table is part of a clustered index. The column list should correspond, one to one, with the
columns in a previously declared clustered index. Because it uses the clustered indexes space allocation, the
CLUSTER clause is compatible with the physical_attributes_clause, storage_clause, or TABLESPACE clause. Tables
containing LOBs are incompatible with the CLUSTER clause.

ORGANIZATION HEAP

Declares how the data of the table should be recorded to disk. HEAP, the default for an Oracle table, declares
that no order is associated with the storage of rows of data (i.e., the physical order in which records are written
to disk) for this table. The ORGANIZATION HEAP clause allows several optional clauses, described in detail
elsewhere in this list, control storage, logging, and compression for the table.

ORGANIZATION INDEX

Declares how the data of the table should be recorded to disk. INDEX declares that the records of the table are
physically written to disk in the sort order defined by the primary key of the table. Oracle calls this an index-
organized table. A primary key is required. Note that the physical_attributes_clause, the TABLESPACE clause, and
the storage_clause — all described in greater detail elsewhere in this section — as well as the [NO]LOGGING
keyword may all be associated with the new INDEX segment as you create it. In addition, the following
subclauses may also be associated with an ORGANIZATION INDEX clause:

PCTTHRESHOLD int

Declares the percentage, int, of space in each index block preserved for data. Data, on a record by
record basis, that cannot fit in this space will be placed in the overflow segment.

INCLUDING column

Declares the point at which a record is to split between index and overflow portions. All columns that
follow the specified column will be stored in the overflow segment. The column cannot be a primary key
column.

MAPPING TABLE | NOMAPPING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MAPPING TABLE | NOMAPPING

Tells the database to create a mapping of local to physical ROWIDs. This mapping is required to create
a bitmap index on an IOT. Mappings are also partitioned identically if the table is partitioned.
NOMAPPING tells the database not to create the ROWID map.

[INCLUDING column] OVERFLOW

Declares that a record that exceeds the PCTTHRESHOLD value be placed in a segment described in this
clause. The physical_attributes_clause, the TABLESPACE clause, the storage_clause — all described
elsewhere in the list in greater detail — and the [NO]LOGGING keyword may all be associated with a
specific OVERFLOW segment when you create it. The optional INCLUDING column clause defines a
column at which to divide an IOT row into index and overflow portions. Primary key columns are always
stored in the index. However, all non-primary key columns that follow column are stored in the overflow
data segment.

ORGANIZATION EXTERNAL

Declares how the data of the table should be recorded to disk. EXTERNAL declares that the table stores its data
outside of the database and is usually read-only. Its metadata is stored in the database but its data is stored
outside of the database. There are some restrictions on external tables. They cannot be temporary. They cannot
have constraints. They can only have column, datatype, and attribute column-descriptors. LOB and LONG
datatypes are disallowed. No other ORGANIZATION clauses are allowed with EXTERNAL. The following
subclauses may be used with the ORGANIZATION EXTERNAL clause:

TYPE driver_type

Defines the access driver API for the external table. The default is ORACLE_LOADER.

DEFAULT DIRECTORY directory_name

Defines the default directory on the filesystem where the external table resides.

ACCESS PARAMETERS {USING CLOB subquery | (opaque_format) }

Assigns and passes specific parameters to the access driver. Oracle does not interpret this information.
USING CLOB subquery tells Oracle to derive the parameters and their values from a subquery that
returns a single row with a single column of datatype CLOB. The subquery cannot contain an ORDER BY,
UNION, INTERSECT, or MINUS/EXCEPT. The opaque_format clause allows you to list parameters and their
values as described in the ORACLE LOADER section of the "Oracle9i Database Utilities" guide.

LOCATION (directory_name:'location_spec' [,...])

Defines one or more external data sources, usually as files. Oracle does not interpret this information.

REJECT LIMIT {int | UNLIMITED}

Defines the number of conversion errors, int, that are allowed during the query to the external data
source before Oracle aborts the query and returns an error. UNLIMITED tells Oracle to continue with the
query no matter how many errors are encountered. The default is 0.

{ENABLE | DISABLE} ROW MOVEMENT

Specifies that a row may be moved to a different partition or subpartition if required due to an update of the
key (ENABLE) or not (DISABLE). The DISABLE keyword also specifies that Oracle return an error if an update to
a key would require a move.

[NO]CACHE

Buffers a table for rapid reads, while NOCACHE turns off this behavior. Index-organized tables offer CACHE
behavior.

[NO]MONITORING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that modification statistics can be collected for this table (MONITORING) or not (NOMONITORING).
NOMONITORING is the default.

[NO]ROWDEPENDENCIES

Specifies whether a table will use row-level dependency tracking, a feature that applies a system change
number (SCN) greater than or equal to the last time of the transaction affecting the row. The SCN adds 6 extra
bytes of space to each record. Row-level dependency tracking is most useful in replicated environments with
parallel data propagation. NOROWDEPENDENCIES is the default.

PARALLEL int | NOPARALLEL

Allows for the parallel creation of the table by distinct CPUs to speed the operation. It also enables parallelism
for queries and other data-manipulation operations against the table after its creation. An optional integer value
may be supplied to define the exact number of parallel threads used to create the table in parallel, as well as
the parallel threads allowed to service the table in the future. (Oracle calculates the best number of threads to
use in a given parallel operation, so the PARALLEL clause is an optional feature.) NOPARALLEL, the default,
creates the table serially and disallows future parallel queries and data-manipulation operations.

COMPRESS [int] | NOCOMPRESS

Specifies if the table should be compressed or not. On index-organized tables, only the key is compressed; on
heap-organized tables, the entire table is compressed. This can greatly reduce the amount of space consumed
by the table. NOCOMPRESS is the default. In index-organized tables, you can specify the number of prefix
columns, int, to compress. The default value for int is the number of keys in the primary key minus one. You
need not specify an int value on other clauses such as ORGANIZATION. When you omit the int value, Oracle will
apply compression to the entire table.

{ENABLE | DISABLE} [[NO]VALIDATE]] {UNIQUE (column [,...] | PRIMARY KEY | CONSTRAINT constraint_name}

Declares whether the named key or constraint applies to all of the data in the new table. ENABLE specifies that
the key or constraint applies to all new data in the table. DISABLE specifies that the key or constraint is
disabled for the new table, with the following options:.

[NO]VALIDATE

Verifies that all existing data in the table complies with the key or constraint (VALIDATE) or not
(NOVALIDATE). When NOVALIDATE is specified with ENABLE, Oracle does not verify that existing data
in the table complies with the key or constraint, but ensures that new data added to the table does
comply with the constraint.

{UNIQUE (column [,...] | PRIMARY KEY | CONSTRAINT constraint_name}

Declares the unique constraint, primary key, or constraint that is enabled or disabled.

USING INDEX index_name | CREATE_INDEX_statement

Declares the name, index_name, of a pre-existing index (and its characteristics) used to enforce the key
or constraint, or creates a new index, CREATE_INDEX_statement. If neither are declared, Oracle creates a
new index.

EXCEPTIONS INTO

Specifies the name of a table into which Oracle places information about rows violating the constraint.
Run the utlexpt1.sql script before using this keyword to explicitly create this table.

CASCADE

Cascades the disablement/enablement to any integrity constraints that depend on the constraint named
in the clause. Usable only with the DISABLE clause.

{KEEP | DROP} INDEX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lets you keep (KEEP) or drop (DROP) an index used to enforce a unique or primary key. You can drop
the key only when disabling it.

partition_clause

Declares partitioning and subpartitioning of a table. Partitioning syntax can be quite complex. Refer to the
material later in this section under Oracle partitioned and subpartitioned tables for the full syntax and examples.

AS subquery

Declares a subquery that inserts rows into the table upon creation. The column names and datatypes used in the
subquery can act as substitutes for column name and attribute declarations for the table.

AS object_type

Declares that the table is based on a pre-existing object type.

[NOT] SUBSTITUTABLE AT ALL LEVELS

Declares whether row objects corresponding to subtypes can be inserted into the type table or not. When this
clause is omitted, the default is SUBSTITUTABLE AT ALL LEVELS.

inline_ref_constraint and table_ref_constraint

Declares a reference constraint used by an object-type table or XMLType table. These clauses are described in
greater detail later in this section under Oracle XMLType and object-type tables.

OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}

Declares whether the object ID (OID) of the object-type table is SYTEM GENERATED or based on the PRIMARY
KEY. When omitted, the default is SYSTEM GENERATED.

OIDINDEX [index_name]

Declares an index, and possibly a name for the index, if the OID is system generated. You may optionally apply
a physical_attributes_clause and a storage_clause to the OIDINDEX. If the OID is based on the primary key, then
this clause is unnecessary.

OF XMLTYPE

Declares that the table is based on Oracle's XMLTYPE datatype.

XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] | CLOB [lob_segname] [lob_params]}

Declares how the underlying storage of the XMLTYPE is handled. OBJECT RELATIONAL stores the data in object-
relational columns. This subclause requires an xml_schema_spec and a schema that has been preregistered using
the DBMS_XMLSCHEMA package. CLOB specifies that the XMLTYPE data will be stored in a LOB column. You
may optionally specify the LOB segment name and/or the LOB storage parameters.

xml_schema_spec

Allows you to specify the URL of a registered XML schema and an XML element name. The element name is
required but the URL is optional.

ADD ...

Adds a new column, constraint, overflow segment, or supplemental log group to an existing table.

MODIFY ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Changes an existing column, constraint, or supplemental log group on an existing table.

DROP ...

Drops an existing column, constraint, or supplemental log group from an existing table. You can explicitly drop
columns marked as unused from a table with DROP UNUSED COLUMNS; however, Oracle will also drop all
unused columns when any other column is dropped. The INVALIDATE keyword causes any object that depends
on the dropped object to become invalid and unusable until it is recompiled or when it is next used. The
COLUMNS CONTINUE clause is used only when a DROP COLUMN statement failed with an error and you wish to
continue where it left off.

RENAME ...

Renames an existing table, column, or constraint on an existing table.

SET UNUSED ...

Declares a column or columns to be unused. The column or columns are no longer accessible from SELECT
statements, though they still count toward the maximum number of columns allowed per table (1000). SET
UNUSED is the fastest way to render a column unusable within a table, but it is not the best way. Only use SET
UNUSED as a shortcut until you can actually use ALTER TABLE...DROP to drop the column.

COALESCE

Merges the contents of index blocks used to maintain the index-organized table so that the blocks can be
reused. COALESCE is similar to SHRINK, though COALESCE compacts the segments less densely than does
SHRINK and it does not release unused space.

ALLOCATE EXTENT

Explicitly allocates a new extent for the table using the specified parameters. You may mix and match any of
the parameters. The size of the extents may be in bytes (no suffix), kilobytes (K), megabytes (M), gigabytes
(G), or terabytes (T).

DEALLOCATE UNUSED [KEEP int[K | M | G | T]]

Deallocates unused space at the end of the table, LOB segment, partition, or subpartition. The deallocated
space is then usable by other objects in the database. The KEEP keyword tells how much space you want to
have left over after deallocation is complete.

SHRINK SPACE [COMPACT] [CASCADE]

Shrinks the table, index-organized table, index, partition, subpartition, materialized view, or materialized log
view, though only segments in tablespaces with automatic segment management may be shrunk. Shrinking a
segment moves rows in the table, so make sure ENABLE ROW MOVEMENT is also used in the ALTER
TABLE...SHRINK statement. Oracle compacts the segment, releases the emptied space, and adjusts the high-
water mark unless the optional keywords COMPACT and/or CASCADE are applied. The COMPACT keyword only
defragments the segment space and compacts the table row for subsequent release, but it does not readjust
the high-water mark nor empty the space immediately. The CASCADE keyword performs the same shrinking
operation (with some restrictions and exceptions) on all dependent objects of the table, including secondary
indexes on index-organized tables. Used only with ALTER TABLE.

UPGRADE [NOT] INCLUDING DATA

Converts the metadata of object tables and relational tables with object columns to the latest version for each
referenced type. The INCLUDING DATA clause will convert the data to the latest type format (INCLUDING
DATA) or leave it unchanged (NOT INCLUDING DATA).

MOVE ...

Moves the tablespace, index-organized table, partition, or subpartition to a new location on the filesystem.

[NO]MINIMIZE RECORDS_PER_BLOCK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[NO]MINIMIZE RECORDS_PER_BLOCK

Tells Oracle to restrict or leave open the number of records allowed per block. The MINIMIZE keyword tells
Oracle to calculate the maximum number of records per block and set the limit at that number. (Best to do this
when a representative amount of data is already in the table.) This clause is incompatible with nested tables
and index-organized tables. NOMINIMIZE is the default.

PROJECT COLUMN {REFERENCE | ALL}

Determines how the driver for the external data source validates the rows of the external table in subsequent
queries. REFERENCE processes only those columns in the select item list. ALL processes the values in all
columns, even those not in the select item list, and validates rows with full and valid column entries. Under ALL,
rows are rejected when errors occur, even on columns that are not selected. ALL returns consistent results,
while REFERENCE returns varying numbers of rows depending on the columns referenced.

{ENABLE | DISABLE} {TABLE LOCK | ALL TRIGGERS}

Enables or disables table-level locks and all triggers on the table, respectively. ENABLE TABLE LOCK is required
if you wish to change the structure against an existing table, but it is not required when changing or reading the
data of the table.

A global temporary table is available to all user sessions, but the data stored within a global temporary table is visible
only to the session that inserted it. The ON COMMIT clause, which is allowed only when creating temporary tables, tells
Oracle to either truncate the table after each commit against the table (DELETE ROWS) or to truncate the table when
the session terminates (PRESERVE ROWS). For example:

CREATE GLOBAL TEMPORARY TABLE shipping_schedule

 (ship_date DATE,

 receipt_date DATE,

 received_by VARCHAR2(30),

 amt NUMBER)

ON COMMIT PRESERVE ROWS;

The CREATE TABLE statement shown above creates a global temporary table, shipping_schedule, which retains
inserted rows across multiple transactions.

The Oracle physical_attributes_clause

The physical_attributes_clause (as shown in the following code block) defines storage characteristics for an entire local
table, or if the table is partitioned, for a specific partition (discussed later). To declare the physical attributes of a new
table or change the attributes on an existing table, simply declare the new values:

-- physical_attributes_clause

[{PCTFREE int | PCTUSED int | INITRANS int |

 MAXTRANS int | storage_clause}]

where:

PCTFREE int

Defines the percentage of free space reserved for each data block in the table. For example, a value of 10
reserves 10% of the data space for new rows to be inserted.

PCTUSED int

Defines the minimum percentage of space allowed in a block before it can receive new rows. For example, a
value of 90 means new rows are inserted in the data block when the space used falls below 90%. The sum of
PCTFREE and PCTUSED cannot exceed 100.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INITRANS int

Rarely tinkered with; it defines the allocation of from 1 to 255 initial transactions to a data block.

MAXTRANS int

Defines the maximum number of concurrent transactions on a data block.

The Oracle storage_clause and LOBs

The storage_clause controls a number of attributes governing the physical storage of data:

-- storage_clause

STORAGE ([{INITIAL int [K | M]

 | NEXT int [K | M]

 | MINEXTENTS int

 | MAXEXTENTS { int | UNLIMITED}

 | PCTINCREASE int

 | FREELISTS int

 | FREELIST GROUPS int

 | BUFFER_POOL {KEEP | RECYCLE | DEFAULT}] [...])

When delineating the storage clause attributes, enclose them in parentheses and separate them with spaces—for
example, (INITIAL 32M NEXT8M). The attributes are as follows:

INITIAL int [K | M]

Sets the initial extent size of the table in bytes, kilobytes (K), or megabytes (M). Oracle 10g allows [K|M|G|T]
to describe the size allocation in bytes, kilobytes (K), megabytes (M), gigabytes (G), and terabytes (T).

NEXT int [K | M]

Tells how much additional space to allocate after INITIAL is filled.

MINEXTENTS int

Tells Oracle to create a minimum number of extents. By default, only one is created, but more can be created
when the object is initialized.

MAXEXTENTS int

Tells Oracle the maximum extents allowed. This value may be set to UNLIMITED. (Note that UNLIMITED should
be used with caution since a table could grow until it consumes all free space on a disk.)

PCTINCREASE int

Controls the growth rate of the object after the first growth. The initial extent gets allocated as specified. The
second extent is the size specified by NEXT. The third extent is NEXT + (NEXT * PCTINCREASE). When
PCTINCREASE is set to 0, NEXT is always used. Otherwise, each added extent of storage space is PCTINCREASE
larger than the previous extent.

FREELISTS int

Establishes the number of freelists for each group, defaulting to 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FREELIST GROUPS int

Sets the number of groups of freelists, defaulting to 1.

BUFFER_POOL {KEEP | RECYCLE | DEFAULT}

Specifies a default buffer pool or cache for any non-cluster table where all object blocks are stored. Index-
organized tables may have a separate buffer pool for the index and overflow segments. Partitioned tables
inherit the buffer pool from the table definition unless they are specifically assigned a separate buffer pool.

KEEP

Puts object blocks into the KEEP buffer pool; that is, directly into memory. This enhances performance
by reducing I/O operations on the table. KEEP takes precedence over the NOCACHE clause.

RECYCLE

Puts object blocks into the RECYCLE buffer pool.

DEFAULT

Puts object blocks into the DEFAULT buffer pool. When omitted, DEFAULT is the default buffer pool
behavior.

For example, the table books_sales is defined on the sales tablespace as consuming an initial 8 MB of space, to grow
by no less than 8 MB when the first extent is full. The table has no less than 1 and no more than 8 extents, limiting its
maximum size to 64 MB:

CREATE TABLE book_sales

 (qty NUMBER,

 period_end_date DATE,

 period_nbr NUMBER)

TABLESPACE sales

STORAGE (INITIAL 8M NEXT 8M MINEXTENTS 1 MAXEXTENTS 8);

An example of a LOB table called large_objects with special handling for text and image storage might look like:

CREATE TABLE large_objects

 (pretty_picture BLOB,

 interesting_text CLOB)

STORAGE (INITIAL 256M NEXT 256M)

LOB (pretty_picture, interesting_text)

 STORE AS (TABLESPACE large_object_segment

 STORAGE (INITIAL 512M NEXT 512M)

 NOCACHE LOGGING);

The exact syntax used to define a LOB, CLOB, or NCLOB column is defined by the lob_parameter_clause. LOBs can appear
at many different levels within an Oracle table. For instance, separate LOB definitions could exist in a single table in a
partition definition, a subpartition definition, and at the top table-level. The syntax of lob_parameter_clause follows:

{TABLESPACE tablespace_name] [{ENABLE | DISABLE} STORAGE IN ROW]

 [storage_clause] [CHUNK int] [PCTVERSION int]

 [RETENTION] [FREEPOOLS int]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [RETENTION] [FREEPOOLS int]

[{CACHE | {NOCACHE | CACHE READS} [{LOGGING | NOLOGGING}] }] }

In the lob_parameter_clause, each parameter is identical to those of the wider CREATE TABLE LOB-object level. However,
the following four parameters are unique to LOBs:

{ENABLE | DISABLE} STORAGE IN ROW

Defines whether the LOB value is stored inline with the other columns of the row and the LOB locator (ENABLE),
when it is smaller than approximately 4,000 bytes or less, or outside of the row (DISABLE). This setting cannot
be changed once it is set.

CHUNK int

Allocates int number of bytes for LOB manipulation. int should be a multiple of the database blocksize, otherwise
Oracle will round up. int should also be less than or equal to the value of NEXT, from the storage_clause, or else
an error results. When omitted, the default chunk size is one block. This setting cannot be changed once it is
set.

PCTVERSION int

Defines the maximum percentage, as int, of the overall LOB storage dedicated to maintaining old versions of the
LOB. When omitted, the default is 10%.

RETENTION

Used in place of PCTVERSION on databases in automatic undo mode. RETENTION tells Oracle to retain old
versions of the LOB.

The following example shows our large_objects LOB table with added parameters to control inline storage and
retention of old LOBs:

CREATE TABLE large_objects

 (pretty_picture BLOB,

 interesting_text CLOB)

STORAGE (INITIAL 256M NEXT 256M)

LOB (pretty_picture, interesting_text)

 STORE AS (TABLESPACE large_object_segment

 STORAGE (INITIAL 512M NEXT 512M)

 NOCACHE LOGGING

 ENABLE STORAGE IN ROW

 RETENTION);

The earlier example added parameter values for STORAGE IN ROW and RETENTION. But since we did not set one for
CHUNK, that value is set to the Oracle default for the LOB.

Oracle nested tables

Oracle allows the declaration of a NESTED TABLE in which a table is virtually stored within a column of another table.
The STORE AS clause enables a proxy name for the table within a table, but the nested table must be created initially
as a user-defined datatype. This capability is valuable for sparse arrays of values, but we don't recommend it for day-
to-day tasks. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to-day tasks. For example:

CREATE TYPE prop_nested_tbl AS TABLE OF props_nt;

CREATE TABLE proposal_types

 (proposal_category VARCHAR2(50),

 proposals PROPS_NT)

NESTED TABLE props_nt STORE AS props_nt_table;

This example creates a table called proposal_types along with a nested table called props_nt, which is stored as
props_nt_table.

Oracle compressed tables

Oracle 10g (and Oracle 9i Release 2) allows compression of both keys and entire tables. (Oracle 9i allowed only key
compression.) Although compression adds a tiny bit of overhead, it significantly reduces that amount of disk space
consumed by a table. This is especially useful for databases pushing the envelop in terms of size. Key compression is
handled in the ORGANIZE INDEX clause, while table compression is handled in the ORGANIZE HEAP clause.

Oracle partitioned and subpartitioned tables

Oracle allows tables to be partitioned and subpartitioned. You can also break out LOBs onto their own partition(s). A
partitioned table may be broken into distinct parts, possibly placed on separate disk subsystems to improve I/O
performance, based on four strategies: range, hash, list, and a composite of the first three. Partitioning syntax is quite
elaborate:

{ PARTITION BY RANGE (column [,...]) (PARTITION [partition_name]

 VALUES LESS THAN ({MAXVALUE | value} [,...])

 [table_partition_description]) |

 PARTITION BY HASH (column [,...])

 {(PARTITION [partition_name] [partition_storage_clause] [,...] |

 PARTITIONS hash_partition_qty [STORE IN (tablespace [,...])]

 [OVERFLOW STORE IN (tablespace [,...])]} |

 PARTITION BY LIST (column [,...]) (PARTITION [partition_name]

 VALUES ({MAXVALUE | value} [,...])

 [table_partition_description] |

 PARTITION BY RANGE (column [,...])

 {subpartition_by_list | subpartition_by_hash}

 (PARTITION [partition_name] VALUES LESS THAN

 ({MAXVALUE | value} [,...])

 [table_partition_description]) }

The following example code shows the orders table partitioned by range:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 qty NUMBER,

 cust_shp_id NUMBER)

PARTITION BY RANGE(order_date)

 (PARTITION pre_yr_2000 VALUES LESS THAN

 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),

 PARTITION pre_yr_2004 VALUES LESS THAN

 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'

 PARTITION post_yr_2004 VALUES LESS THAN

 MAXVALUE)) ;

This example creates three partitions on the orders table — one for the orders taken before the year 2000
(pre_yr_2000), one for the orders taken before the year 2004 (pre_yr_2004), and another for the orders taken after the
year 2004 (post_yr_2004) — all based on the range of dates that appear in the order_date column.

The next example creates the orders table based on a hash value in the customer_shipping_id:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER)

PARTITION BY HASH (cust_shp_id)

 (PARTITION shp_id1 TABLESPACE tblspc01,

 PARTITION shp_id2 TABLESPACE tblspc02,

 PARTITION shp_id3 TABLESPACE tblspc03)

ENABLE ROW MOVEMENT;

The big difference in how the records are divided among partitions between the hash partition example and the range
partition example is that the range partition code explicitly defines where each record goes, while the hash partition
example allows Oracle to decide (by applying a hash algorithm) in which partition to place the record. (Note that we
also enabled row movement for the table.)

Examples of list and composite partitioning are shown with the subpartitioning information detailed in the next
paragraph. In addition to breaking tables apart into partitions (for easier backup, recovery, or performance reasons),
you may further break it apart into subpartitions. The subpartition_by_list clause syntax follows:

SUBPARTITION BY LIST (column)

[SUBPARTITION TEMPLATE

 { (SUBPARTITION subpartition_name

 [VALUES {DEFAULT | {val | NULL} [,...] }

 [partitioning_storage_clause]) |

 hash_subpartition_qty }]

For example, we'll recreate the orders table once again, this time using a range-hash composite partition. In a range-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, we'll recreate the orders table once again, this time using a range-hash composite partition. In a range-
hash composite partition, the partitions are broken apart by range values, while the subpartitions are broken apart by
hashed values. List partitions and subpartitions are broken apart by a short list of specific values. Because you must list
out all the values by which the table is partitioned, the partition value is best taken from a small list of values. In this
example, we've added a column (shp_region_id) that allows four possible regions:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER,

 shp_region VARCHAR2(20))

PARTITION BY RANGE(order_date)

SUBPARTITION BY LIST(shp_region)

 SUBPARTITION TEMPLATE(

 (SUBPARTITION shp_region_north

 VALUES ('north','northeast','northwest'),

 SUBPARTITION shp_region_south

 VALUES ('south','southeast','southwest'),

 SUBPARTITION shp_region_central

 VALUES ('midwest'),

 SUBPARTITION shp_region_other

 VALUES ('alaska','hawaii','canada')

 (PARTITION pre_yr_2000 VALUES LESS THAN

 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),

 PARTITION pre_yr_2004 VALUES LESS THAN

 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'

 PARTITION post_yr_2004 VALUES LESS THAN

 MAXVALUE))

ENABLE ROW MOVEMENT;

This code example not only sends the records of the table to one of three partitions based on the order_date, it
further partitions the records into one of four subpartitions based on the region where the order is being shipped and on
the value of the shp_region column. By using the SUBPARTITION TEMPLATE, you apply the same set of subpartitions
to each partition. You can manually override this behavior by specifying subpartitions for each partition.

You may also subpartition using a hashing algorithm. The subpartition_by_hash clause follows:

SUBPARTITION BY HASH (column [,...])

 {SUBPARTITIONS qty [STORE IN (tablespace_name [,...])] |

 SUBPARTITION TEMPLATE

 { (SUBPARTITION subpartition_name [VALUES {DEFAULT | {val | NULL}

 [,...] } [partitioning_storage_clause]) |

 hash_subpartition_qty }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 hash_subpartition_qty }

The table_partition_description clause referenced in the partitioning syntax (in the earlier section Oracle partitioned and
subpartitioned tables) is, in itself, very flexible and supports precise handling of LOB and VARRAY data:

[segment_attr_clause] [[NO] COMPRESS [int]] [OVERFLOW segment_attr_clause]

[partition_level_subpartition_clause]

[{ LOB { (lob_item [,...]) STORE AS lob_param_clause |

 (lob_item) STORE AS {lob_segname (log_param_clause) |

 log_segname | (log_param_clause) } } |

 VARRAY varray_item {[{[ELEMENT] IS OF [TYPE] (ONLY type_name) |

 [NOT] SUBSTITUTABLE AT ALL LEVELS}] STORE AS LOB { log_segname |

 [log_segname] (log_param_clause) } |

 [{[ELEMENT] IS OF [TYPE] (ONLY type_name) |

 [NOT] SUBSTITUTABLE AT ALL LEVELS}]

The partition_level_subpartition_clause syntax follows:

{SUBPARTITIONS hash_subpartition_qty [STORE IN (tablespace_name [,...])] |

 SUBPARTITION subpartition_name [VALUES {DEFAULT | {val | NULL} [,...]]

 [partitioning_storage_clause] }

The partition_storage_clause (see the earlier section Oracle partitioned and subpartitioned tables), like the table-level
storage_clause defined earlier, defines how elements of a partition (or subpartition) are stored. The syntax follows:

[{TABLESPACE tablespace_name] | [OVERFLOW TABLESPACE tablespace_name] |

 VARRAY varray_item STORE AS LOB log_segname |

 LOB (lob_item) STORE AS { (TABLESPACE tablespace_name) |

 Log_segname [(TABLESPACE tablespace_name)] }]

In this final partitioning example, we'll again recreate the orders table using a composite range-hash partition, this
time with LOB (actually, an NCLOB column) and storage elements:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER,

 shp_region VARCHAR2(20),

 order_desc NCLOB)

PARTITION BY RANGE(order_date)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PARTITION BY RANGE(order_date)

SUBPARTITION BY HASH(cust_shp_id)

 (PARTITION pre_yr_2000 VALUES LESS THAN

 TO_DATE('01-JAN-2000', 'DD-MON-YYYY') TABLESPACE tblspc01

 LOB (order_desc) STORE AS (TABLESPACE tblspc_a01

 STORAGE (INITIAL 10M NEXT 20M))

 SUBPARTITIONS subpartn_a,

 PARTITION pre_yr_2004 VALUES LESS THAN

 TO_DATE('01-JAN-2004', 'DD-MON-YYYY') TABLESPACE tblspc02

 LOB (order_desc) STORE AS (TABLESPACE tblspc_a02

 STORAGE (INITIAL 25M NEXT 50M))

 SUBPARTITIONS subpartn_b TABLESPACE tblspc_x07,

 PARTITION post_yr_2004 VALUES LESS THAN

 MAXVALUE (SUBPARTITION subpartn_1,

 SUBPARTITION subpartn_2,

 SUBPARTITION subpartn_3

 SUBPARTITION subpartn_4))

ENABLE ROW MOVEMENT;

In this somewhat more complex example, we now define the orders table with the added NCLOB table called
order_desc. In the pre_yr_2000 and pre_yr_2004 partitions, we specify that all of the non-LOB data goes to
tablespaces tblspc01 and tblspc02, respectively. However, the NCLOB values of the order_desc column will be
stored in the tblespc_a01 and tblspc_a02, respectively, with their own unique storage characteristics. Note that the
subpartition subpartn_b under partition pre_yr_2004 is also stored in its own tablespace, tblspc_x07. Finally, the
last partition (post_yr_2004) and its subpartitions are stored in the default tablespace for the orders table because
no partition- or subpartition-level TABLESPACE clause overrides the default.

Altering partitioned and subpartition tables

Anything about partitions and subpartitions that is explicitly set by the CREATE TABLE statement may be altered after
the table is created. Many of the clauses shown later are merely repetitions of clauses that are described in the earlier
section about creating partitioned tables; for example, the SUBPARTITION TEMPLATE clause or the MAPPING TABLE
clause. Consequently, these clauses will not be repeated. Altering the partitions and/or subpartitions of an Oracle table
is governed by this syntax:

ALTER TABLE table_name

 [MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]

 [physical_attributes_clause] [storage_clause] [PCTTHRESHOLD int]

 [{ADD OVERFLOW ... | OVERFLOW ...}] [[NO]COMPRESS]

 [{LOB (lob_name) | VARRAY varray_name} [(lob_parameter_clause)]]

 [COMPRESS int | NOCOMPRESS]

 [SET SUBPARTITION TEMPLATE {hash_subpartn_quantity |

 (SUBPARTITION subpartn_name [partn_list]

[storage_clause])}]

 [MODIFY PARTITION partn_name

 { [table_partition_description] |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { [table_partition_description] |

 [[REBUILD] UNUSABLE LOCAL INDEXES] |

 [ADD [subpartn specification]] |

 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]] |

 [{ADD | DROP} VALUES (partn_value [,...])] |

 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSUED ...}]

 [MODIFY SUBPARTITION subpartn_name {hash_subpartn_attributes |

 list_subpartn_attributes}]

 [MOVE {PARTITION | SUBPARTITION} partn_name

 [MAPPING TABLE] [table_partition_description] [[NO]PARALLEL]

 [update_index_clause]]

 [ADD PARTITION [partn_name] [p table_partition_description]

 [[NO]PARALLEL] [update_index_clause]]

 [COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]]

 [DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL]

 [update_index_clause]]

 [RENAME {PARTITION | SUBPARTITION} old_partn_name TO

new_partn_name]

 [TRUNCATE {PARTITION | SUBPARTITION} partn_name

 [{DROP | REUSE} STORAGE] [[NO]PARALLEL] [update_index_clause]]

 [SPLIT {PARTITION | SUBPARTITION} partn_name {AT | VALUES}

 (value [,...])

 [INTO (PARTITION [partn_name1]

[table_partition_description] ,

 (PARTITION [partn_name2]

[table_partition_description])]

 [[NO]PARALLEL] [update_index_clause]]

 [MERGE {PARTITION | SUBPARTITION} partn_name1 , partn_name2

 [INTO PARTITION [partn_name] [partn_attributes]] [[NO]PARALLEL]

 [update_index_clause]]

 [EXCHANGE {PARTITION | SUBPARTITION} partn_name WITH TABLE table_name

 [{INCLUDING | EXCLUDING} INDEXES] [{WITH | WITHOUT} VALIDATION]

 [[NO]PARALLEL] [update_index_clause] [EXCEPTIONS INTO table_name]]

where:

MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]

Modifies a wide variety of attributes for the current partition or a specific partition of partn_name. Refer to the
earlier section Oracle partitioned and subpartitioned tables for all the details on partition attributes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET SUBPARTITION TEMPLATE {hash_subpartn_quantity | (SUBPARTITION subpartn_name [partn_list] [storage_clause]) }

Sets a new subpartition template for the table.

MODIFY PARTITION partn_name

Changes a wide variety of physical and storage characteristics, including the storage properties of LOB and
VARRAY columns, of a pre-existing partition or subpartition called partn_name. Additional syntax may be
appended to the MODIFY PARTITION partn_name clause:

{ [table_partition_description] | [[REBUILD] UNUSABLE LOCAL INDEXES] |

 [ADD [subpartn specification]] |

 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]

 { [{UPDATE | INVALIDATE} GLOBAL INDEXES] |

 UPDATE INDEXES [(index_name (

 {index_partn | index_subpartn})) [,...]] }] |

 [{ADD | DROP} VALUES (partn_value [,...])] |

 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSUED ...}

where:

table_partition_description

Described in the earlier section Oracle partitioned and subpartitioned tables. This clause may be used on
any partitioned table.

[REBUILD] UNUSABLE LOCAL INDEXES

Marks the local index partition as UNUSABLE. Adding the optional REBUILD keyword tells Oracle to
rebuild the unusable local index partition as part of the operation performed by the MODIFY PARTITION
statement. This clause may not be used with any other subclause of the MODIFY PARTITION statement
nor may it be used on tables with subpartitions. This clause may be used on any partitioned table.

ADD [subpartn specification]

Adds a hash or list subpartition specification, as described in the earlier section Oracle partitioned and
subpartitioned tables, to an existing range partition. This clause may be used to define range-hash or
range-list composite partitions only. Oracle populates the new subpartition with rows from other
subpartitions using either the hash function or the list values you specify. We recommend the total
number of subpartitions be set to a power of 2 for optimal load balancing. You may add range-list
subpartitions only if the table does not already have a DEFAULT subpartition. When adding range-list
subpartitions, the list value clause is required but it cannot duplicate values found in any other
subpartition of the current partition. The only storage or physical attribute you may couple with this
clause for both range-hash and range-list subpartitions is the TABLESPACE clause.

COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]

Coalesces the subpartition of a range-hash composite partitioned table. This clause tells Oracle to
distribute the contents of the last hash subpartitions to one or more remaining subpartition in the set,
and then drop the last hash subpartition. Oracle also drops local index subpartitions corresponding to
the subpartition you are coalescing. The update_index_clause is described later in this list. Global indexes
may be updated or invalidated using the syntax {UPDATE | INVALIDATE} GLOBAL INDEXES. In
addition, local indexes, index partitions, or index subpartitions may be updated using the syntax
UPDATE INDEXES (index_name ({index_partn | index_subpartn}].

{ADD | DROP} VALUES (partn_value [,...])

Adds a new value (or values) or drops existing values on an existing list-partitioned table, respectively.
Local and global indexes are not affected by this clause. Values cannot be added to or dropped from a
DEFAULT list partition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEFAULT list partition.

MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSUED ...}

Defines a mapping table for a partitioned table that is an IOT. The ALLOCATE EXTENT and DEALLOCATE
UNUSED clauses are described earlier in the syntax description list of the "CREATE TABLE" statement.
This clause may be used on any type of partitioned table, as long as the table is an index-organized
table.

MODIFY SUBPARTITION subpartn_name {hash_subpartn_attributes | list_subpartn_attributes}

Modifies a specific hash or list subpartition according to the subpartition attributes described in the earlier
section Oracle partitioned and subpartitioned tables.

[MOVE {PARTITION | SUBPARTITION} partn_name [MAPPING TABLE] [table_partition_description] [[NO]PARALLEL]
[update_index_clause]]

Moves a specified partition (or subpartition) of partn_name to another partition (or subpartition) described in the
table_partition_description clause, which is described in the earlier section Oracle partitioned and subpartitioned
tables. Moving a partition is I/O intensive, so the optional PARALLEL clause may be used to parallelize the
operation. When omitted, NOPARALLEL is the default. In addition, you may optionally update or invalidate the
local and global index as described in the update_index_clause shown below in this list.

ADD PARTITION [partn_name] [table_partition_description] [[NO]PARALLEL]

Adds a new partition (or subpartition) of partn_name to the table. The ADD PARTITION clause supports all
aspects of creating a new partition or subpartition, via the table_partition_description clause, which is described in
the earlier section Oracle partitioned and subpartitioned tables. Adding a partition may be I/O intensive, so the
optional PARALLEL clause may be used to parallelize the operation. When omitted, NOPARALLEL is the default.
In addition, you may optionally update or invalidate local and global indexes on the table using the
update_index_clause shown earlier in this list.

update_index_clause

Controls the status assigned to indexes once the partitions and/or subpartitions of a table are altered. By
default, Oracle invalidates the entire index(es) of a table, not just those portions of the index on the partition
and/or subpartition being altered. You may update or invalidate global indexes on the table OR update one or
more specific index(es) on the table, respectively, using this syntax:

{ UPDATE | INVALIDATE} GLOBAL INDEXES] |

 UPDATE INDEXES [(index_name ({index_partn|index_subpartn})) [,...] }

COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]

Takes the contents of the last partition of a set of hash partitions and rehashes the contents to one or more of
the other partitions in the set. The last partition is then dropped. Obviously, this is only for use with hash
partitions. The update_index_clause, shown earlier in this list, may be applied to update or invalidate the local
and/or global indexes of the table being coalesced.

DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL] [update_index_clause]

Drops an existing range or list partition or subpartition of partn_name from the table. The data within the
partition is also dropped. If you want to keep the data, use the MERGE PARTITION clause. If you want to get rid
of a hash partition or subpartition, use the COALESCE PARTITION clause instead. Tables with only a single
partition are not affected by the ALTER TABLE...DROP PARTITION statement; instead, use the DROP TABLE
statement.

RENAME {PARTITION | SUBPARTITION} old_partn_name TO new_partn_name

Renames an existing partition or subpartition of old_partn_name to a new name of new_partn_name.

TRUNCATE {PARTITION | SUBPARTITION} partn_name [{DROP | REUSE} STORAGE] [[NO]PARALLEL]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRUNCATE {PARTITION | SUBPARTITION} partn_name [{DROP | REUSE} STORAGE] [[NO]PARALLEL]
[update_index_clause]

Removes all of the rows of a partition or subpartition of partn_name. If you truncate a composition partition, all
the rows of the subpartition(s) are also dropped. On IOTs, mapping table partitions and overflow partitions are
also truncated. LOB data and index segments, if the table has any LOB columns, are also truncated. Finally,
disable any existing referential integrity constraints on the data, or else delete the rows from the table first,
then truncate the partition or subpartition. The optional DROP STORAGE and REUSE STORAGE subclauses
define whether the space freed by the truncated data is made available for other objects in the tablespace or
still allocated to the original partition or subpartition, respectively.

SPLIT {PARTITION | SUBPARTITION} partn_name {AT | VALUES} (value [,...]) [INTO (PARTITION [partn_name1]
[table_partition_description], (PARTITION [partn_name2] [table_partition_description])] [[NO]PARALLEL] [update_index_clause]
]

Creates from the current partition (or subpartition) of partn_name two new partitions (or subpartitions) called
partn_name1 and partn_name2. These new partitions may have their own complete specification, as defined by the
table_partition_description clause. When omitted, the new partitions inherit all physical characteristics of the
current partition. When splitting a DEFAULT partition, all of the split values go to partn_name1 while all of the
default values go to partn_name2. For IOTs, Oracle splits any mapping table partition in a manner corresponding
to the split. Oracle also splits LOB and OVERFLOW segments, but you may also specify your own LOB and
OVERFLOW storage characteristics, described in the earlier section Oracle partitioned and subpartitioned tables.
Additional syntax for this clause is described below:

{AT | VALUES} (value [,...])

Splits range partitions (using AT) or list partitions (using VALUES) according to the value or values you
specify. The AT (value) clause defines the new noninclusive upper range for the first of the two new
partitions. The new value should be less than the partition bound of the current partition, but greater
than the partition bound of the next lowest partition (if one exists). The VALUES (value1, value2, [,...])
clause defines the values going into the first of the two new list partitions. The first new list partition is
built from value1 and the second is built from the remaining partition values in the current partition of
partn_name. The value list must include values that already exist in the current partition, but it cannot
contain all of the values of the current partition.

INTO

Defines the two new partitions that result from the split. At a minimum, the two PARTITION keywords,
in parentheses, are required. Any characteristics not explicitly declared for the new partitions are
inherited from the current partition of partn_name, including any subpartitioning. There are a few
restrictions to note. When subpartitioning range-hash composition partitioned tables, only the
TABLESPACE value is allowed for the subpartitions. Subpartitioning is not allowed at all when splitting
range-list composite partitioned tables. Any indexes on heap-organized tables are invalidated by default
when the table is split. You must use the update_index_clause to update their status.

[MERGE {PARTITION | SUBPARTITION} partn_name1, partn_name2 [INTO PARTITION [partn_name] [partn_attributes]]
[[NO]PARALLEL] [update_index_clause]]

Merges the contents of two or more partitions or subpartitions of a table into a single new partition. Oracle then
drops the two original partitions. Merged range partitions must be adjacent and are then bound by the higher
boundary of the original two partitions when merged. Merged list partitions need not be adjacent and result in a
single new partition with a union of the two sets of partition values. If one of the list partitions was the DEFAULT
partition, then the new partition will be the default. Merged range-list composite partitions are allowed but may
not have a new subpartition template. Oracle creates a subpartition template from the existing one(s) or, if
none exist, creates a new DEFAULT subpartition. Physical attributes not defined explicitly are inherited from the
table-level settings. By default, Oracle makes all local index partitions and global indexes UNUSABLE unless you
override this behavior using the update_index_clause. (The exception to this rule is with IOTs, which, being index-
based, will remain USABLE throughout the merge operation.) Merge operations are not allowed on hash-
partitioned tables, so use the COALESCE PARTITION clause instead.

EXCHANGE {PARTITION | SUBPARTITION} partn_name WITH TABLE table_name [{INCLUDING | EXCLUDING} INDEXES]
[{WITH | WITHOUT} VALIDATION] [[NO]PARALLEL] [update_index_clause] [EXCEPTIONS INTO table_name]

Exchanges the data and index segments of a nonpartitioned table with a partitioned table, or of a partitioned
table of one type to another partitioned type. The structure of the tables in the exchange must be identical,
including the same primary key. All segment attributes (like tablespaces, logging, and statistics) of the current
partitioned table, called partn_name, and the table it is being exchanged with, called table_name, are exchanged.
Tables containing LOB columns will also exchange LOB data and index segments. Additional syntax details,
which are not previously defined elsewhere in this list, follow:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WITH TABLE table_name

Defines the table that will exchange with the current partition or subpartition.

{INCLUDING | EXCLUDING} INDEXES

Exchanges local index partitions or subpartitions with the table index (on nonpartitioned tables) or the
local index (on hash-partitioned tables), using the INCLUDING INDEXES clause. Alternately, marks all
index partitions and subpartitions as well as regular indexes and partitioned indexes of the exchanged
table to be marked with UNUSABLE status, using the EXLCUDING INDEXES clause.

{WITH | WITHOUT} VALIDATION

Returns errors when any rows in the current table fail to map into a partition or subpartition of the
exchanged table, using the WITH VALIDATION clause. Otherwise, the WITHOUT VALIDATION clause
may be included to skip checking of row mapping between the tables.

EXCEPTIONS INTO table_name

Places the ROWIDs of all rows violating a UNIQUE constraint (in DISABLE VALIDATE state) on the
partitioned table. When omitted, Oracle assumes a table in the current schema called EXCEPTIONS. The
EXCEPTIONS table is defined in the utlexcpt.sql and utlexpt1.sql scripts that ship with Oracle. Refer to
the Oracle documentation if you need these scripts.

There are a couple of notes to remember about altering a partitioned table. First, altering a partition on a table that
serves as the source for one or more materialized views requires that the materialized views be refreshed. Second,
bitmap join indexes defined on the partitioned table being altered will be marked UNUSABLE. Third, several restrictions
apply if the partitions (or subpartitions) are ever spread across tablespaces that use different block sizes. Refer to the
Oracle documentation when attempting these sorts of alterations to a partitioned table.

In the next few examples, assume we are using the orders table partitioned as shown below:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER)

PARTITION BY RANGE(order_date)

 (PARTITION pre_yr_2000 VALUES LESS THAN

 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),

 PARTITION pre_yr_2004 VALUES LESS THAN

 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'

 PARTITION post_yr_2004 VALUES LESS THAN

 MAXVALUE)) ;

The following statement will mark all of the local index partitions as UNUSABLE in the orders table for the
post_yr_2004 partition:

ALTER TABLE orders MODIFY PARTITION post_yr_2004

 UNUSABLE LOCAL INDEXES;

However, we've decided to now split the orders table partition post_yr_2004 into two all new partitions,
pre_yr_2008 and post_yr_2008. Values that are now less than MAXVALUE will be stored in the post_yr_2008
partition, while values less than `01-JAN-2008' will be stored in pre_yr_2008:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

partition, while values less than `01-JAN-2008' will be stored in pre_yr_2008:

ALTER TABLE orders SPLIT PARITION post_yr_2004

 AT (TO_DATE('01-JAN-2008','DD-MON-YYYY'))

 INTO (PARTITION pre_yr_2008, PARTITION post_yr_2008);

Assuming that the orders table contained a LOB or a VARRAY column, we could further refine the alteration by
including additional details for handling these columns, while also updating the global indexes as the operation
completes:

ALTER TABLE orders SPLIT PARITION post_yr_2004

 AT (TO_DATE('01-JAN-2008','DD-MON-YYYY'))

 INTO

 (PARTITION pre_yr_2008

 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1),

 PARTITION post_yr_2008)

 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1))

 UPDATE GLOBAL INDEXES;

Now, assuming the orders table has been grown at the upper end, lets merge together the partitions at the lower end:

ALTER TABLE orders

 MERGE PARTITIONS pre_yr_2000, pre_yr_2004

 INTO PARTITION yrs_2004_and_earlier;

After a few years more, we might want to even get rid of the oldest partition, or if not get rid of it, at least give it a
better name:

ALTER TABLE orders DROP PARTITION yrs_2004_and_earlier;

ALTER TABLE orders RENAME PARTITION yrs_2004_and_earlier TO pre_yr_2004;

Finally, let's truncate a table partition, delete all of its data, and return the empty space for use by other objects in the
tablespace:

ALTER TABLE orders

 TRUNCATE PARTITION pre_yr_2004

 DROP STORAGE;

As the examples illustrate, anything relating to partitioning and subpartitioning that can be created with the Oracle
CREATE TABLE statement can later be changed, augmented, or cut down using the Oracle ALTER TABLE statement.

Organized tables: heaps, IOTs, and external tables

Oracle 10g allows powerful means of controlling the physical storage behavior of tables.

The most useful aspect of the ORGANIZATION HEAP clause is that you can now compress an entire table within Oracle.
This is extremely useful for reducing disk storage costs in database environments with multi-terabyte tables. The
following example creates the orders table in a compressed and logged heap along with a primary key constraint and
storage details:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

storage details:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER,

 shp_region VARCHAR2(20),

 order_desc NCLOB,

CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))

ORGANIZATION HEAP

 COMPRESS LOGGING

PCTTHRESHOLD 2

STORAGE

 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)

OVERFLOW STORAGE

 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)

ENABLE ROW MOVEMENT;

To define the same table using an index-organized table based on the order_date column, we would use this syntax:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER,

 shp_region VARCHAR2(20),

 order_desc NCLOB,

CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))

ORGANIZATION HEAP

 INCLUDING order_date

PCTTHRESHOLD 2

STORAGE

 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)

OVERFLOW STORAGE

 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)

ENABLE ROW MOVEMENT;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ENABLE ROW MOVEMENT;

Finally, we will create an external table that stores our customer shipping information called cust_shipping_external.
The code shown in bold is the opaque_format_spec:

CREATE TABLE cust_shipping_external

 (external_cust_nbr NUMBER(6),

 cust_shp_id NUMBER,

 shipping_company VARCHAR2(25))

ORGANIZATION EXTERNAL

 (TYPE oracle_loader

 DEFAULT DIRECTORY dataloader

 ACCESS PARAMETERS

 (RECORDS DELIMITED BY newline

 BADFILE 'upload_shipping.bad'

 DISCARDFILE 'upload_shipping.dis'

 LOGFILE 'upload_shipping.log'

 SKIP 20

 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'

 (client_id INTEGER EXTERNAL(6),

 shp_id CHAR(20),

 shipper CHAR(25)))

 LOCATION ('upload_shipping.ctl'))

REJECT LIMIT UNLIMITED;

Examining this example, we see that the external table type is ORACLE_LOADER and the default directory is
DATALOADER. The example illustrates the fact that you define the metadata of the table within Oracle and then
describe how that metadata references a data source outside of the Oracle database server itself.

Oracle XMLType and object-type tables

When an Oracle XMLType table is created, Oracle automatically stores the data in a CLOB column, unless you create an
XML schema-based table. (For details on Oracle's XML support, see Oracle's XMLDB Developer's Guide.) The following
code example first creates an XMLType table, distributors, with the implicit CLOB data storage, and followed by a
second code example, suppliers, with a more sophisticated XML-schema definition:

CREATE TABLE distributors OF XMLTYPE;

CREATE TABLE suppliers OF XMLTYPE

XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"

ELEMENT "vendors";

A key advantage of a table based on an XML schema is that you can create B-Tree indexes on them. In the following
example, we create an index on suppliercity:

CREATE INDEX supplier-city-index

ON suppliers

(S."XMLDATA"."ADDRESS"."CITY");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(S."XMLDATA"."ADDRESS"."CITY");

You may similarly create tables using a mix of standard and XMLTYPE columns. In this case, the XMLTYPE column may
store its data as a CLOB, or it may store its data in an object-relational column of a structure determined by your
specification. For example, we'll recreate the distributors table (this time with some added storage specifications) and
the suppliers table with columns of both standard and XMLTYPE:

CREATE TABLE distributors

 (distributor_id NUMBER,

 distributor_spec XMLTYPE)

XMLTYPE distributor_spec

STORE AS CLOB

 (TABLESPACE tblspc_dist

 STORAGE (INITIAL 10M NEXT 5M)

 CHUNK 4000

 NOCACHE

 LOGGING);

CREATE TABLE suppliers

 (supplier_id NUMBER,

 supplier_spec XMLTYPE)

XMLTYPE supplier_spec STORE AS OBJECT RELATIONAL

 XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"

 ELEMENT "vendors"

OBJECT IDENTIFIER IS SYSTEM GENERATED

OIDINDEX vendor_ndx TABLESPACE tblspc_xml_vendors;

When creating XML and object tables, you may refer to inline_ref_constraint and table_ref_constraint clauses. The syntax for
an inline_ref_constraint clause is:

{SCOPE IS scope_table |

 WITH ROWID |

 [CONSTRAINT constraint_name] REFERENCES object [(column_name)]

 [ON DELETE {CASCADE | SET NULL}]

 [constraint_state] }

The only difference between an inline reference constraint and a table reference constraint is that inline reference
constraints operate at the column level and table reference constraints operate at the table level, respectively. (This is
essentially the same behavior and coding rule as standard relational constraints like PRIMARY KEY or FOREIGN KEY.)
The syntax for a table_ref_constraint follows:

{SCOPE FOR (ref_col | ref_attr) IS scope_table |

 REF (ref_col | ref_attr) WITH ROWID |

 [CONSTRAINT constraint_name] FOREIGN KEY (ref_col | ref_attr)

 REFERENCES object [(column_name)]

 [ON DELETE {CASCADE | SET NULL}]

 [constraint_state] }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [constraint_state] }

The constraint_state clause contains a number of options that have already been defined earlier in the Oracle CREATE
TABLE statement. However, these options are only applied to the condition of the scope reference:

[NOT] DEFERRABLE

INITIALLY {IMMEDIATE | DEFERRED}

{ENABLE | DISABLE}

{VALIDATE | NOVALIDATE}

{RELY | NORELY}

EXCEPTIONS INTO table_name

USING INDEX {index_name | (create_index_statement) | index_attributes}

Object-type tables are useful for creating tables containing user-defined types. For example, the following code creates
the building_type type:

CREATE TYPE OR REPLACE building_type AS OBJECT

 (building_name VARCHAR2(100),

 building_address VARCHAR2(200));

We can then create a table called offices_object_table that contains the object and defines some of its
characteristics, such as OID information. In addition, we'll create two more tables, based upon building_type, that
reference the object type as an inline_ref_constraint and a table_ref_constraint, respectively:

CREATE TABLE offices_object_table

 OF building_type (building_name PRIMARY KEY)

OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE TABLE leased_offices

 (office_nbr NUMBER,

 rent DEC(9,3),

 office_ref REF building_type

 SCOPE IS offices_object_table);

CREATE TABLE owned_offices

 (office_nbr NUMBER,

 payment DEC(9,3),

 office_ref REF building_type

 CONSTRAINT offc_in_bld REFERENCES offices_object_table);

In these examples, the SCOPE IS clause defines the inline_ref_constraint, while the CONSTRAINT clause defines the
table_ref_constraint.

Oracle ALTER TABLE

When using the Oracle command ALTER TABLE, you are able to ADD, DROP, or MODIFY every aspect of each element
of the table. For example, the syntax diagram shows that the method for adding or modifying an existing column
includes its attributes, but we need to explicitly state that the attributes include any Oracle-specific extensions. So while
the ANSI standard only lets you modify attributes such as DEFAULT or NOT NULL, as well as column-level constraints

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the ANSI standard only lets you modify attributes such as DEFAULT or NOT NULL, as well as column-level constraints
assigned to the column, Oracle also allows you to alter any special characteristics like LOB, VARRAY, NESTED TABLE,
index-organized table, CLUSTER, or PARTITION settings that might exist.

For example, the following code adds a new column to a table in Oracle, and also adds a new, unique constraint to that
table:

ALTER TABLE titles

ADD subtitle VARCHAR2(32) NULL

CONSTRAINT unq_subtitle UNIQUE;

When a foreign key constraint is added to a table, the DBMS verifies that all existing data in the table meets that
constraint. If they do not, the ALTER TABLE fails.

Any queries that use SELECT * return the new columns, even if this was not planned.
Precompiled objects, such as stored procedures, can return any new columns if they use
the %ROWTYPE attribute. Otherwise, a precompiled object may not return any new
columns.

Oracle also allows multiple actions, such as ADD or MODIFY, to multiple columns to be performed by enclosing the
actions within parentheses. For example, the following command adds several columns to a table with a single
statement:

ALTER TABLE titles

ADD (subtitles VARCHAR2(32) NULL,

 year_of_copyright INT,

 date_of_origin DATE);

PostgreSQL

PostgreSQL supports the ANSI standards for CREATE and ALTER TABLE with a couple of extensions that enable you to
quickly build a new table from existing table definitions. Following is the syntax for CREATE TABLE:

CREATE [LOCAL][[TEMP]ORARY TABLE table_name

(column_name datatype attributes [,...]

| CONSTRAINT constraint_name [{NULL | NOT NULL}]

 {[UNIQUE] | [PRIMARY KEY (column_name [,...])] | [CHECK (expression)]

 | REFERENCES reference_table (reference_column [,...])

 [MATCH {FULL | PARTIAL | default}]

 [ON {UPDATE | DELETE}

 {CASCADE | NO ACTION | RESTRICT | SET NULL | SET DEFAULT value}]

 [[NOT] DEFERRABLE] [INITIALLY {DEFERRED | IMMEDIATE}] } [,...]

| [table_constraint][,...]

[WITH[OUT] OIDE]

[INHERITS (inherited_table [,...])]

[ON COMMIT {DELETE | PRESERVE} ROWS]

[AS select_statement]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[AS select_statement]

The PostgreSQL syntax for ALTER TABLE is:

ALTER TABLE [ONLY] table_name [*]

[ADD [COLUMN] column_name datatype attributes [...]]

| [ALTER [COLUMN] column_name

 {SET DEFAULT value | DROP DEFAULT | SET STATISTICS int}]

| [RENAME [COLUMN] column_name TO new_column_name]

| [RENAME TO new_table_name]

| [ADD table_constraint]

| [DROP CONSTRAINT constraint_name RESTRICT]

| [OWNER TO new_owner]

The parameters are as follows:

REFERENCES...MATCH...ON{UPDATE | DELETE} ...

Checks a value inserted into the column against the values of a column in another table. It also can be used as
part of a FOREIGN KEY declaration. The MATCH options are FULL, PARTIAL, and the default where MATCH has
no other keyword. Full match forces all columns of a multicolumn foreign key either to be NULL or to contain a
valid value. The default allows mixed nulls and values. Partial matching is a valid syntax, but is not supported.
The REFERENCES clause also allows several different behaviors to be declared for ON DELETE and/or ON
UPDATE referential integrity as follows:

NO ACTION

Produces an error when the foreign key is violated (the default).

RESTRICT

A synonym for NO ACTION.

CASCADE

Sets the value of the referencing column to the value of the referenced column.

SET NULL

Sets the referencing column value to NULL.

SET DEFAULT value

Sets the referencing column to its declared default value or NULL, if no default value exists.

NOT DEFERRABLE [INITIALLY {DEFERRED | IMMEDIATE}]

The DEFERRABLE option of the REFERENCES clause tells PostgreSQL to defer evaluation of all
constraints to the end of a transaction. NOT DEFERRABLE is the default behavior for the REFERENCES
clause. Similar to the DEFERRABLE clause is the INITIALLY clause. Specifying INITIALLY DEFERRED
checks constraints at the end of a transaction; INITIALLY IMMEDIATE checks constraints after each
statement (the default).

FOREIGN KEY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Can be declared only as a table-level constraint and not as a column-level constraint. All options for the
REFERENCES clause are supported as part of the FOREIGN KEYS clause. The syntax follows:

[FOREIGN KEY (column_name [,...]) REFERENCES...]

WITH[OUT] OIDS

Specifies that rows of the new table should have automatically assigned object IDs (WITH OIDS) or not
(WITHOUT OIDS). The default is WITH OIDS. OIDs are assigned based on a 32-bit counter. Once the counter is
surpassed, the OID numbers cycle over and uniqueness can no longer be guaranteed. We recommend that you
add a unique index to any OID columns you specify to avoid an error with duplicate OIDs on very large tables. A
table with an inherited structure receives the OID setting of its parent table.

INHERITS inherited_table

Specifies a table or tables from which the table you are creating inherits all columns. The newly created table
also inherits functions attached to tables higher in the hierarchy. If any inherited column appears more than
once, the statement fails.

ON COMMIT {DELETE | PRESERVE} ROWS

Used only with temporary tables. This clause controls the behavior of the temporary table after records are
committed to the table. ON COMMIT DELETE ROWS clears the temporary table of all rows after each commit.
This is the default if the ON COMMIT clause is omitted. ON COMMIT PRESERVE ROWS saves the rows in the
temporary table after the transaction has committed.

AS select_statement

Enables you to create and populate a table with data from a valid SELECT statement. The column names and
datatypes do not need to be defined, since they are inherited from the query. The CREATE TABLE...AS
statement has similar functionality to SELECT...INTO, but is more readable.

ONLY

Specifies that only the named table is affected by the ALTER TABLE statement and not any parent or subtables
in a table hierarchy.

OWNER TO new_owner

Changes the owner of the table to the user identified by new_owner.

A PostgreSQL table cannot have more than 1,600 columns. However, you should limit the number of columns to well
below 1,600 for performance reasons. For example:

CREATE TABLE distributors

 (name VARCHAR(40) DEFAULT 'Thomas Nash Distributors',

 dist_id INTEGER DEFAULT NEXTVAL('dist_serial'),

 modtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP);

Unique to PostgreSQL is the ability to create column-level constraints with multiple
columns. Since PostgreSQL also supports standard table-level constraints, the ANSI-
standard approach is still the recommended approach.

PostgreSQL's implementation of ALTER TABLE allows the addition of extra columns using the ADD keyword. Existing
columns may have new default values assigned to them using ALTER COLUMN...SET DEFAULT, while ALTER
COLUMN...DROP DEFAULT allows the complete erasure of a column-based default. In addition, new defaults may be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COLUMN...DROP DEFAULT allows the complete erasure of a column-based default. In addition, new defaults may be
added to columns using the ALTER clause, but only newly inserted rows will be affected by such new default values.
RENAME allows new names for existing columns and tables.

SQL Server

SQL Server offers a plethora of options when defining or altering a table, its columns, and its table-level constraints. Its
CREATE TABLE syntax is:

CREATE TABLE table_name

({column_name datatype [[DEFAULT default_value]

 | {IDENTITY [(seed,increment) [NOT FOR REPLICATION]]]

 [ROWGIDCOL][NULL | NOT NULL]

 | [{PRIMARY KEY | UNIQUE}

 [CLUSTERED | NONCLUSTERED]

 [WITH FILLFACTOR = int] [ON {filegroup | DEFAULT}]]

 | [[FOREIGN KEY]

 REFERENCES reference_table[(reference_column[,...])]

 [ON {DELETE | UPDATE} {CASCADE | NO ACTION}]

 [NOT FOR REPLICATION]

 | [CHECK [NOT FOR REPLICATION] (expression)

 | [COLLATE collation_name]

| column_name AS computed_column_expression }

[,...]

| [table_constraint] [,...])

[ON {filegroup | DEFAULT}]

[TEXTIMAGE_ON {filegroup | DEFAULT}]

The SQL Server version of ALTER TABLE is:

ALTER TABLE table_name

[ALTER COLUMN column_name new_datatype attributes {ADD | DROP} ROWGUIDCOL]

| [ADD [COLUMN] column_name datatype attributes][,...]

| [WITH CHECK | WITH NOCHECK] ADD table_constraint][,...]

| [DROP { [CONSTRAINT] constraint_name | COLUMN column_name }] [,...]

| [{ CHECK | NOCHECK } CONSTRAINT { ALL | constraint_name [,...] }]

| [{ ENABLE | DISABLE } TRIGGER { ALL | trigger_name [,...] }]

The parameters are as follows:

IDENTITY [(seed, increment)]

Creates and populates the column with a monotonically increasing number when applied to an integer column.
The IDENTITY starts counting at the value of seed and increases by the value of increment. When either are
omitted, the default is 1.

NOT FOR REPLICATION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that the values of an IDENTITY or FOREIGN KEY are not replicated to subscribing servers. This helps in
situations in which different servers require the same table structures, but not the exact same data.

ROWGUIDCOL

Identifies a column as a global unique identifier, which ensures no two values are ever repeated across any
number of servers. Only one such column may be identified per table. It does not, however, create the unique
values itself. They must be inserted using the NEWID function.

DEFAULT

Applies to any column except those with a TIMESTAMP datatype or an IDENTITY property. The DEFAULT must
be a constant value such as a character string or a number, and a system function such as GETDATE() or
NULL.

PRIMARY KEY

Defines a primary key constraint for the table. The primary key declaration differs from the ANSI standard by
allowing you to assign the clustered or nonclustered attributes on the primary key index, as well as a starting
fillfactor. (Refer to the CREATE/ALTER INDEX Statement for more information.) The attributes of a primary key
include:

CLUSTERED

Declares that the column or columns of the primary key set the physical sort order of the records in the
table. CLUSTERED is the default when the clustered or nonclustered keywords are omitted.

NONCLUSTERED

Declares that the primary key index maintains pointers to all of the records of the table.

WITH FILLFACTOR = int

Declares that a percentage of space, int, should remain free on each data page when the table is
created. SQL Server does not maintain FILLFACTOR over time. You should rebuild the index on a
regular basis.

ON {filegroup | DEFAULT}

Specifies that the primary key is located either on the pre-existing, named filegroup or is assigned to
the DEFAULT filegroup.

FOREIGN KEY

Checks values as they are inserted into the table against a column in another table in order to maintain
referential integrity. Foreign keys are described in detail in Chapter 2. A foreign key can only reference columns
that are defined as a PRIMARY KEY or UNIQUE index on the referencing table. A referential action may be
specified to take place on the reference_table when the record is deleted or updated, according to the following:

ON {DELETE | UPDATE}

Specifies that an action needs to happen in the local table when either (or both) an UPDATE or DELETE
occur on the referenced table.

CASCADE

Specifies that any DELETE or UPDATE also takes place on the referring table to any records dependent
on the value of the FOREIGN KEY.

NO ACTION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that no action occur on the referring table when a record on the current table is deleted or
updated.

NOT FOR REPLICATION

Specifies that an IDENTITY property should not be enforced when the data is replicated from another
database. This ensures that data from the published server are not assigned new identity values.

CHECK

Ensures that a value inserted into the specified column of the table is a valid value based on the CHECK
expression. For example, the following shows a table with two column-level CHECK constraints.

CREATE TABLE people

 (people_id CHAR(4)

 CONSTRAINT pk_dist_id PRIMARY KEY CLUSTERED

 CONSTRAINT ck_dist_id CHECK (dist_id LIKE '

 [A-Z][A-Z][A-Z][A-Z]'),

 people_name VARCHAR(40) NULL,

 people_addr1 VARCHAR(40) NULL,

 people_addr2 VARCHAR(40) NULL,

 city VARCHAR(20) NULL,

 state CHAR(2) NULL

 CONSTRAINT def_st DEFAULT ("CA")

 CONSTRAINT chk_st REFERENCES states(state_ID),

 zip CHAR(5) NULL

 CONSTRAINT ck_dist_zip

 CHECK(zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),

 phone CHAR(12) NULL,

 sales_rep empid NOT NULL DEFAULT USER)

GO

The CHECK constraint on the people_id ensures an all-alphabetic ID, while the one on zip ensures an all-numeric
value. The REFERENCES constraint on state performs a look-up on the states table. The REFERENCES constraint is
essentially the same as a CHECK constraint, except that it derives its list of acceptable values from the values stored in
another column. This example illustrates how column-level constraints are named using the CONSTRAINT
constraint_name syntax.

COLLATE

Allows programmers to change, on a column-by-column basis, the sort order and character set that is used by
the column.

TEXTIMAGE_ON {filegroup | DEFAULT}

Controls the placement of text, ntext, and image columns allowing you to place LOB data on the pre-existing
filegroup of your choice. When omitted, these columns are stored in the default filegroup with all other tables
and database objects.

WITH [NO]CHECK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells SQL Server whether the data in the table should be validated against any newly added constraints or keys.
When constraints are added using WITH NOCHECK, the query optimizer ignores them until they are enabled via
ALTER TABLE table_name CHECK CONSTRAINT ALL. When constraints are added using WITH CHECK, the
constraints are checked immediately against all data already in the table.

[NO]CHECK CONSTRAINT

Enables an existing constraint with CHECK CONSTRAINT or disables one with NOCHECK CONSTRAINT.

{ENABLE | DISABLE} TRIGGER { ALL | trigger_name [,...] }

Enables or disables the specified trigger or triggers, respectively. All triggers on the table may be enabled or
disabled by substituting the keyword ALL for the table name, as in ALTER TABLE employee DISABLE TRIGGER
ALL. You may, alternately, disable or enable a single trigger_name or more than one trigger by placing each
trigger_name in a comma-delimited list.

SQL Server allows any column-level constraint to be named by specifying CONSTRAINT constraint_name..., and then the
text of the constraint. Several constraints may be applied to a single column, as long as they are not mutually exclusive
(for example, PRIMARY KEY and NULL).

SQL Server also allows a local temporary table to be created, but not using ANSI syntax. A local temporary table, which
is stored in the tempdb database, requires a prefix of a single pound sign (#) to the name of the table. The local
temporary table is usable by the person or process that created it, and is deleted when the person logs out or the
process terminates. A global temporary table, which is usable to all people and processes that are currently logged in,
can be established by prefixing two pound signs (##) to the name of the table. The global temporary table is deleted
when its process terminates or its creator logs out.

SQL Server also allows the creation of tables with columns that contain a computed value. Such a column does not
actually contain data. Instead, it is a virtual column containing an expression using other columns already in the table.
For example, a computed column could have an expression, such as order_cost AS (price * qty). Computed columns also
can be constants, functions, variables, noncomputed columns, or any of these combined with each other using
operators.

Any of the column-level constraints shown earlier also may be declared at the table level. That is, PRIMARY KEY
constraints, FOREIGN KEY constraints, CHECK constraints, and others may be declared after all the columns have been
defined in the CREATE TABLE statement. This is very useful for constraints that cover more than one column. For
example, a column-level UNIQUE constraint can be applied only to that column. However, declaring the constraint at
the table level allows it to span several columns. Here is an example of both column-level and table-level constraints:

-- Creating a column-level constraint

CREATE TABLE favorite_books

 (isbn CHAR(100) PRIMARY KEY NONCLUSTERED,

 book_name VARCHAR(40) UNIQUE,

 category VARCHAR(40) NULL,

 subcategory VARCHAR(40) NULL,

 pub_date DATETIME NOT NULL,

 purchase_date DATETIME NOT NULL)

GO

-- Creating a table-level constraint

CREATE TABLE favorite_books

 (isbn CHAR(100) NOT NULL,

 book_name VARCHAR(40) NOT NULL,

 category VARCHAR(40) NULL,

 subcategory VARCHAR(40) NULL,

 pub_date DATETIME NOT NULL,

 purchase_date DATETIME NOT NULL,

 CONSTRAINT pk_book_id PRIMARY KEY NONCLUSTERED (isbn)

 WITH FILLFACTOR=70,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WITH FILLFACTOR=70,

 CONSTRAINT unq_book UNIQUE CLUSTERED (book_name,pub_date))

GO

These two commands provide nearly the same results, except that the table-level UNIQUE constraint has two columns,
whereas only one column is included in the column-level UNIQUE constraint.

The following example adds a new CHECK constraint to a table, but does not check to ensure that the existing values in
the table pass the constraint:

ALTER TABLE favorite_book WITH NOCHECK

ADD CONSTRAINT extra_check CHECK (ISBN > 1)

GO

In this example, we further add a new column with an assigned DEFAULT value that is placed in each existing record in
the table:

ALTER TABLE favorite_book ADD reprint_nbr INT NULL

CONSTRAINT add_reprint_nbr DEFAULT 1 WITH VALUES

GO

-- Now, disable the constraint

ALTER TABLE favorite_book NOCHECK CONSTRAINT add_reprint_nbr

GO

See Also

CREATE SCHEMA
DROP

CREATE/ALTER TRIGGER Statement

A trigger is a special kind of stored procedure that fires automatically (hence the term "trigger") when a specific data-
modification statement is executed against a table. The trigger is directly associated with the table and is considered a
dependent object. For example, you might want all of the part_numbers in the sales table to be updated when a
part_number is changed in the products table, thus ensuring that part numbers are always in sync.

ALTER TRIGGER is not an ANSI-supported statement.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server Supported, with variations

SQL2003 Syntax

CREATE TRIGGER trigger_name

{BEFORE | AFTER} {DELETE | INSERT | UPDATE [OF column [,...]}

ON table_name

[REFERENCING {OLD {[ROW] | TABLE} [AS] old_name | NEW

{ROW | TABLE} [AS] new_name}] [FOR EACH { ROW | STATEMENT }]

[WHEN (conditions)]

[BEGIN ATOMIC]

code_block

[END]

Keywords

CREATE TRIGGER trigger_name

Creates a trigger of trigger_name and associates it with a specific table.

BEFORE | AFTER

Declares that the trigger logic is fired either BEFORE or AFTER the data manipulation operation that invoked the
trigger. BEFORE triggers perform their operations before the INSERT, UPDATE, or DELETE operation occurs,
allowing you to do dramatic things like circumvent the data manipulation operation altogether. AFTER triggers
fire after the data manipulation operation has completed, but are useful for after-the-fact operations like
recalculating running totals.

DELETE | INSERT | UPDATE [OF column [,...]]

Defines the data manipulation operation that causes the trigger to fire: DELETE statements, INSERT
statements, or UPDATE statements. You may optionally chose which columns will trigger an update trigger
using UPDATE OF column [,...]. If an update occurs on any columns not in the column list, the trigger will not
fire.

ON table_name

Declares the pre-existing table that the trigger is dependent on.

REFERENCING {OLD {[ROW] | TABLE} [AS] old_name | NEW {ROW | TABLE} [AS] new_name}

Enables aliasing for the old or new ROW or TABLE acted upon by the trigger. Although the syntax shows the
options as exclusive, you may have up to four aliasing references: one for old row, one for old table, one for
new row, and one for new table. The alias OLD refers to the data contained in the table or row before the data
manipulation operation that fired the trigger, while the alias NEW refers to the data that would be contained in
the table or row after the data manipulation operation that fired the trigger. Note that the syntax indicates that
ROW is optional, but TABLE is not. (That is, OLD ROW AS is the same as OLD AS, but for TABLE, the only valid
option is OLD TABLE AS.) INSERT triggers do not have an OLD context, while DELETE triggers do not have a
NEW context. The keyword AS is noise and may be omitted. If the REFERENCING clause specifies either OLD
ROW or NEW ROW, then the FOR EACH ROW clause is required.

FOR EACH { ROW | STATEMENT }

Tells the database to apply the trigger for each row in the table that has changed (ROW) or for each SQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells the database to apply the trigger for each row in the table that has changed (ROW) or for each SQL
statement issued against the table (STATEMENT). For example, a single UPDATE statement will update the
salaries of 100 employees. If you specify FOR EACH ROW, the trigger will execute 100 times. If you specify FOR
EACH STATEMENT, the trigger will execute only once.

WHEN (conditions)

Allows you to define additional criteria for a trigger. For example, you might have a trigger called DELETE
employee, which will fire whenever an employee is deleted. When a trigger fires, if the search conditions
contained in the WHEN clause evaluate to TRUE, the trigger action will fire. Otherwise, the trigger will not fire.

BEGIN ATOMIC | code_block | END

The ANSI standard requires that the code_block should contain only one SQL statement or, for multiple SQL
statements, put them in a BEGIN and END block.

Rules at a Glance

Triggers, by default, fire once at the statement level. That is, a single INSERT statement might insert 500 rows into a
table, but an insert trigger on that table fires only one time. Some vendors allow a trigger to fire for each row of the
data-modification operation. So, a statement that inserts 500 rows into a table that has a row-level insert trigger fires
500 times, once for each inserted row.

In addition to being associated with a specific data-modification statement (INSERT, UPDATE, or DELETE) on a given
table, triggers are associated with a specific time of firing. In general, triggers can fire BEFORE the data-modification
statement is processed, AFTER it is processed, or (when supported by the vendor) INSTEAD OF processing the
statement. Triggers that fire before or instead of the data-modification statement do not see the changes that the
statement renders, while those that fire afterwards can see and act upon the changes that the data-modification
statement renders.

Triggers make use of two pseudotables. They are pseudotables in the sense that they are not declared with a CREATE
TABLE statement, but they exist logically on the database. The pseudotables have different names on the different
platforms, but we'll call them Before and After here. They are structured exactly the same as the table a trigger is
associated with. However, they contain snapshots of the table's data. The Before table contains a snapshot of all the
records in the table before the trigger fired, while the After table contains a snapshot of all the records in the table
after the event occurred that fired the trigger. You can then use comparison operations to compare the data in the table
before and after the event fired the trigger to determine exactly what you want to happen.

Here is an Oracle BEFORE trigger that uses the OLD and NEW pseudotables to compare values. (By way of comparison,
SQL Server uses the DELETED and INSERTED pseudotables in the same way, while DB2 requires that you provide a
REFERENCING clause to give names to the pseudotables.) This trigger creates an audit record before changing an
employee's pay record:

CREATE TRIGGER if_emp_changes

BEFORE DELETE OR UPDATE ON employee

FOR EACH ROW

WHEN (new.emp_salary <> old.emp_salary)

BEGIN

 INSERT INTO employee_audit

 VALUES ('old', :old.emp_id, :old.emp_salary, :old.emp_ssn);

END;

You can also take advantage of capabilities within each database platform to make your triggers more powerful and
easier to program. For example, Oracle has a special IF...THEN clause for use just in triggers. This IF...THEN clause
takes the form: IF DELETING THEN, IF INSERTING THEN, or IF UPDATING THEN. The following example builds an
Oracle DELETE and UPDATE trigger that uses the IF DELETING THEN clauses:

CREATE TRIGGER if_emp_changes

BEFORE DELETE OR UPDATE ON employee

FOR EACH ROW

BEGIN

 IF DELETING THEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IF DELETING THEN

 INSERT INTO employee_audit

 VALUES ('DELETED', :old.emp_id, :old.emp_salary, :old.emp_ssn);

 ELSE

 INSERT INTO employee_audit

 VALUES ('UPDATED', :old.emp_id, :new.emp_salary, :old.emp_ssn);

 END IF;

END;

This SQL Server example adds a new table called contractor to the database. All records in the employee table that
indicate that the employee is a contractor were moved into the contractor table. Now all new employees inserted into
the employee table will go into the contractor table instead through an INSTEAD OF INSERT trigger:

CREATE TRIGGER if_emp_is_contractor

INSTEAD OF INSERT ON employee

BEGIN

 INSERT INTO contractor

 SELECT * FROM inserted WHERE status = 'CON'

 INSERT INTO employee

 SELECT * FROM inserted WHERE status = 'FTE'

END

GO

Adding triggers to a table that already has data in it does not cause the triggers to fire. A trigger will fire only for data-
modification statements declared in the trigger definition that occur after the trigger is created.

A trigger generally ignores structural changes to tables, such as an added column or an altered datatype on an existing
column, after the trigger has been created unless a table modification directly interferes with the operation of the
trigger. For example, adding a new column to a table will result in any existing trigger ignoring the new column, except
for UPDATE triggers. On the other hand, removing a column from a table that is used by a trigger will cause the trigger
to fail every time it executes.

Programming Tips and Gotchas

One of the key programming issues associated with triggers is the inappropriate and uncontrolled use of nested triggers
and recursive triggers. A nested trigger is a trigger that invokes a data-manipulation operation that causes other
triggers to fire. For example, assume we have three tables, T1, T2, and T3. Table T1 has a BEFORE INSERT trigger
that inserts a record into table T2. Table T2 also has a BEFORE INSERT trigger that inserts a record into table T3.
Although this is not necessarily a bad thing if your logic is well considered and fully thought out, it does introduce two
problems. First, an insert into table T1 requires many more I/O operations and transactions than a simple INSERT
statement against table T1. Second, you can get yourself into hot water if, in fact, table T3 performs an INSERT
operation against table T1. In a case like that, you may have a looping trigger process that can consume all available
disk space and even shut down the server.

Recursive triggers are triggers that can fire themselves; for example an INSERT trigger that performs an INSERT
against its own base table. If the procedural logic within the code_body is not properly constructed, you can cause a
looping trigger error. However, recursive triggers often require setting a special configuration flag before they can be
used on the various database platforms.

DB2

DB2 supports a superset of the ANSI SQL standard for the CREATE TRIGGER statement. It does not support an ALTER
TRIGGER statement. The CREATE TRIGGER syntax is:

CREATE TRIGGER trigger_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TRIGGER trigger_name

{NO CASCADE BEFORE | AFTER | INSTEAD OF}

{[DELETE] | [INSERT] | [UPDATE [OF (column [,...])]}

ON table_name

[REFERENCING

 {OLD[_TABLE] [AS] old_name | NEW[_TABLE]

 [AS] new_name} DEFAULTS NULL]

[FOR EACH { ROW | STATEMENT }]

MODE DB2SQL

[WHEN (conditions)]

code_block

where:

NO CASCADE BEFORE

Declares that the trigger action is applied before the data-modification operation is applied to the table. This
clause also declares that the trigger action will not cause any other triggers to fire.

ON table_name

Specifies the pre-existing table or view that the trigger is associated with. Triggers can be declared on regular
tables, but not on temporary tables, nicknames, catalog tables, or materialized query tables. When creating
triggers on a view, only INSTEAD OF triggers are allowed. The view must be a non-typed view that does not use
the WITH CHECK OPTION clause. The data-modification operation applied to the view should be translated
against the base table to determine whether it will fire the trigger or not.

OLD[_TABLE] [AS] old_name | NEW[_TABLE] [AS] new_name

Defines the alias for the ANSI before and after pseudotables using OLD_TABLE and NEW_TABLE, respectively. If
you leave off the _TABLE keyword, then DB2 assigns the trigger operation as row-level, and allows you to
access the row (singular) data prior to triggering the SQL operation. Adding in the _TABLE keyword declares
that the trigger operation allows you to reference the set (plural) of row data prior to triggering the SQL
operation. OLD and OLD_TABLE may only be used on DELETE or UPDATE triggers. Conversely, NEW and
NEW_TABLE can only be used on INSERT and UPDATE triggers. OLD and NEW may only be specified once each.
OLD_ TABLE and NEW_TABLE may only be specified once each and not on NO CASCADE BEFORE triggers.

DEFAULTS

Inserts default values where they have been created.

FOR EACH { ROW | STATEMENT }

Specifies that the trigger action applies either at the row level or the statement level. The FOR EACH
STATEMENT clause is only allowed on AFTER triggers.

MODE DB2SQL

Declares that the mode of the trigger is DB2 SQL, the only mode currently supported.

WHEN (conditions)

Meets the ANSI SQL standard with the exception that this clause is not allowed on DB2 INSTEAD OF triggers.

DB2 does not prevent a new trigger from being created that has the same definition as an older trigger. Thus, it's
possible to have two (or more) AFTER DELETE triggers on a single table. In a situation like this, DB2 will always fire the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

possible to have two (or more) AFTER DELETE triggers on a single table. In a situation like this, DB2 will always fire the
triggers in the order they were created.

Be careful declaring a BEFORE DELETE trigger on a table with a self-referencing constraint and a delete rule of
CASCADE. Such a trigger may produce results that you did not expect!

DB2 allows the COMMENT ON object_type statement, so that you can provide extra
commentary on any supported DB2 object. For example, you can issue the COMMENT ON
TRIGGER trigger_name statement to add comments on any trigger you add to the database.
You can use this on tables, views, etc.

DB2 does not specifically drop the triggers associated with a table or view when the table or view itself is dropped.
Consequently, you should first issue a DROP TRIGGER statement followed by a DROP TABLE statement to avoid leaving
orphaned triggers behind. Conversely, triggers are not reinstated if a table is dropped and then recreated. The triggers
should be recreated as well.

BEFORE and AFTER triggers are allowed on typed tables at any level of a typed-table hierarchy. Triggers may activate
on rows of subtables. If a SQL statement activates multiple triggers, the triggers will be executed in their creation
order, even if they are attached to different tables in the typed-table hierarchy.

MySQL

Not supported.

Oracle

Oracle supports the ANSI standard for CREATE TRIGGER, with several additions and variations:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF}

{ {[object_event] [database_event] [...] ON {DATABASE | schema.SCHEMA} } |

 {[DELETE] [OR] [INSERT] [OR] [UPDATE [OF column [,...]]] [...]}

 ON {table_name | [NESTED TABLE column_name OF] view_name}

 [REFERENCING {[OLD [AS] old_name] [NEW [AS] new_name]

 [PARENT [AS] parent_name]}

 [FOR EACH ROW] }

[WHEN (conditions)]

code_block

The syntax for ALTER TRIGGER, which allows you to rename, enable, or disable a trigger without dropping and
recreating it, is shown below:

ALTER TRIGGER trigger_name

{ {ENABLE | DISABLE} | RENAME TO new_name |

 COMPILE [compiler_directives] [DEBUG] [REUSE SETTINGS]}

where:

OR REPLACE

Recreates an existing trigger by assigning a new definition to an existing trigger of trigger_name.

object_event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to the standard data-modification events, Oracle allows triggers to fire based on object events.
object_event operations may be paired with BEFORE and AFTER keywords. An object_event fires the trigger
whenever such an event occurs, according to the following keywords:

ALTER

Fires whenever an ALTER statement (except ALTER DATABASE) is issued.

ANALYZE

Fires whenever Oracle validates the structure of a database object, or collects or deletes statistics on an
index.

ASSOCIATE STATISTICS

Fires whenever Oracle associates a statistics type with a database object.

AUDIT

Fires whenever Oracle tracks a SQL statement or operation against a schema object.

COMMENT

Fires whenever an Oracle comment is added in the data dictionary to a database object.

DDL

Fires whenever Oracle encounters any object_event in this list.

DISASSOCIATE STATISTICS

Fires whenever Oracle disassociates a statistics type from a database object.

DROP

Fires whenever a DROP statement erases a database object from the data dictionary.

GRANT

Fires whenever a user grants privileges or roles to another user or role.

NOAUDIT

Fires whenever the NOAUDIT statement causes Oracle to stop tracking SQL statements or operations
against schema objects.

RENAME

Fires whenever the RENAME statement changes the name of a database object.

REVOKE

Fires whenever a user revokes privileges or roles from another user or role.

TRUNCATE

Fires whenever a TRUNCATE statement is issued against a table or cluster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fires whenever a TRUNCATE statement is issued against a table or cluster.

database_event

In addition to the standard data-modification events, Oracle allows triggers to fire based on database events.
Database_event operations may be paired with BEFORE and AFTER keywords. The list of allowable database_event
keywords is:

LOGON

Fires whenever a client application logs on to the database. Valid for AFTER triggers only.

LOGOFF

Fires whenever a client application logs off of the database. Valid for BEFORE triggers only.

SERVERERROR

Fires whenever a server error message is logged. Valid for AFTER triggers only.

SHUTDOWN

Fires whenever an instance of the database is shut down. Valid for BEFORE triggers only with the ON
DATABASE clause only.

STARTUP

Fires whenever an instance of the database is opened. Valid for AFTER triggers with the ON DATABASE
clause.

SUSPEND

Fires whenever a server error causes a transaction to suspend. Valid for AFTER triggers only.

ON {DATABASE | schema.SCHEMA}

Declares that the trigger fires whenever any database user invokes a triggering event with ON DATABASE. The
trigger then fires for events occurring anywhere in the entire database. Otherwise, ON schema.SCHEMA declares
that the trigger fires whenever a user connected as schema invokes a triggering event. The trigger then fires for
events occurring anywhere in the current schema.

ON [NESTED TABLE column_name OF] view_name

Declares that the trigger fires only if the data-manipulation operation applies to the column(s) of the view called
view_name. The ON NESTED TABLE clause is compatible only with INSTEAD OF triggers.

REFERENCING PARENT [AS] parent_name

Defines the alias for the current row of the parent table (i.e., supertable). Otherwise, identical to the ANSI
standard.

ENABLE

Enables a deactivated trigger when used with ALTER TRIGGER. You may alternately use the statement ALTER
TABLE table_name ENABLE ALL TRIGGERS.

DISABLE

Disables an activated trigger when used with ALTER TRIGGER. You may alternately use the statement ALTER
TABLE table_name DISABLE ALL TRIGGERS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TABLE table_name DISABLE ALL TRIGGERS.

RENAME TO new_name

Renames the trigger to new_name, though the state of the trigger remains unchanged when used with ALTER
TRIGGER.

COMPILE [DEBUG] [REUSE SETTINGS]

Compiles a trigger, whether valid or invalid, and all the objects that the trigger depends on. If any the objects
are invalid, then the trigger is invalid. If all of the objects are valid, including the code_body of the trigger, then
the trigger becomes valid. The subclauses of the COMPILE clause are:

DEBUG

Tells the PL/SQL compiler to generate and store the extra information for use by the PL/SQL debugger.

REUSE SETTINGS

Tells Oracle to retain all compiler switch settings, which can save significant time during the compile
process.

compiler_directives

Defines a special value for the PL/SQL compiler in the format: directive = 'value'. The directives are:
PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and
NLS_LENGTH_SEMANTICS. They may each specify a value once in the statement. The directive is valid only for
the unit being compiled.

When referencing values in the OLD and NEW pseudotables, the values must be prefaced with a colon (:), except in the
trigger's WHEN clause, where no colons are used. In this example, we'll call a procedure in the code_body and use both
:OLD and :NEW values as arguments:

CREATE TRIGGER scott.sales_check

BEFORE INSERT OR UPDATE OF ord_id, qty ON scott.sales

 FOR EACH ROW

 WHEN (new.qty > 10)

 CALL check_inventory(:new.ord_id, :new.qty, :old.qty);

Multiple trigger types may be combined into a single trigger command if they are of the same level (row or statement)
and they are on the same table. When triggers are combined in a single statement, the clauses IF INSERTING THEN, IF
UPDATING THEN, and IF DELETING THEN may be used in the PL/SQL block to break the code logic into distinct
segments. An ELSE clause also can be used in this structure.

Following is an example of a database_event-style trigger:

CREATE TRIGGER track_errors

AFTER SERVERERROR ON DATABASE

BEGIN

 IF (IS_SERVERERROR (04030))

 THEN INSERT INTO errors ('Memory error');

 ELSE (IS_SERVERERROR (01403))

 THEN INSERT INTO errors ('Data not found');

 END IF;

END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In another example, we can create a trigger that is SCHEMA-wide in scope:

CREATE OR REPLACE TRIGGER create_trigger

AFTER CREATE ON scott.SCHEMA

BEGIN

 RAISE_APPLICATION_ERROR (num => -20000, msg =>

 'Scott created an object');

END;

PostgreSQL

PostgreSQL's implementation of CREATE TRIGGER offers a subset of features found in the ANSI standard. On
PostgreSQL, a trigger may fire BEFORE a data-modification operation is attempted on a record and before any
constraints are fired or it may fire AFTER a data-manipulation operation fires (and after constraints have been checked),
making all operations involved in the transaction visible to the trigger. Finally, the trigger may fire INSTEAD OF the
data-modification operation and completely replace the INSERT, UPDATE, or DELETE statement with some other
behavior. The CREATE TRIGGER syntax is:

CREATE TRIGGER trigger_name

{ BEFORE | AFTER }

{ {[DELETE] [OR | ,] [INSERT] [OR | ,] [UPDATE]} [OR ...] }

ON table_name

FOR EACH { ROW | STATEMENT }

EXECUTE PROCEDURE function_name (parameters)

The parameters are:

OR

Declares an additional trigger action. The OR keyword is a synonym for the comma delimiter.

FOR EACH ROW

Explicitly declares that the trigger acts on the row level. This is also the default. Although PostgreSQL does not
reject the STATEMENT keyword, it does not enforce statement-level triggers.

EXECUTE PROCEDURE function_name (parameters)

Executes a previously defined function (created using CREATE FUNCTION) rather than a block of procedural
code. (PostgreSQL does not have its own procedural language.)

The following is an example of a PostgreSQL BEFORE trigger that checks at a row level to ensure that the specified
distributor code exists in the distributors table before inserting or updating a row in the sales table:

CREATE TRIGGER if_dist_exists

BEFORE INSERT OR UPDATE ON sales

FOR EACH ROW

EXECUTE PROCEDURE check_primary_key

 ('dist_id', 'distributors', 'dist_id');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEFORE and AFTER triggers are supported by the ANSI standard. INSTEAD OF triggers on PostgreSQL completely skip
the data-modification operation that triggered them in favor of code that you substitute for the data-modification
operation.

SQL Server

SQL Server supports the basics of the ANSI standard with the addition of the INSTEAD OF trigger type and a column
change check. It does not support the REFERENCING or WHEN clauses. Its syntax is:

{CREATE | ALTER} TRIGGER trigger_name ON table_name

[WITH ENCRYPTION]

{FOR | AFTER | INSTEAD OF} {[DELETE] [,] [INSERT] [,] [UPDATE]}

[WITH APPEND]

[NOT FOR REPLICATION]

AS

 [IF UPDATE(column) [{AND | OR} UPDATE(column)][...]]

 code_block

where:

{CREATE | ALTER} TRIGGER trigger_name

Creates a new trigger of trigger_name or alters an existing trigger of trigger_name by adding or changing trigger
properties or the trigger code_block. When altering an existing trigger, the permissions and dependencies of the
existing trigger are maintained.

ON table_name

Declares the table or view that the trigger is dependent on. Views may have INSTEAD OF triggers defined on
them, as long as they are updateable and do not have the WITH CHECK clause on them.

WITH ENCRYPTION

Encrypts the text of the CREATE TRIGGER statement as shown in the syscomments table. This option is useful
to protect important intellectual property. WITH ENCRYPTION prevents the trigger from use in a SQL Server
replication scheme.

FOR | AFTER | INSTEAD OF

Tells SQL Server when the trigger should fire. (FOR and AFTER are synonyms.) AFTER specifies that the trigger
fire only after the triggering data-modification statement (and any cascading actions and constraint checks)
have completed successfully. The INSTEAD OF trigger is similar to the ANSI BEFORE trigger in that the code of
the trigger may completely replace the data-modification operation. It specifies that the trigger is executed
instead of the data-modification statement that fired the trigger. INSTEAD OF DELETE triggers cannot be used
when there is a cascading action on the delete. Only INSTEAD OF triggers can access TEXT, NTEXT, or IMAGE
columns.

WITH APPEND

Adds an additional trigger of an existing type to a table or view. This clause is supported for backward
compatibility with earlier versions of the product and can be used only with FOR triggers.

NOT FOR REPLICATION

Prevents data-manipulation operations invoked through SQL Server's built-in replication engine from firing the
trigger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IF UPDATE(column) [{AND | OR} UPDATE(column)][...]

Allows you to chose the specific columns that fire the trigger. A column-specific trigger fires only on UPDATE
and INSERT operations, but not on DELETE operations. If an UPDATE or INSERT occurs on any columns not in
the column list, the trigger will not fire.

SQL Server allows multiple triggers for a given data-manipulation operation on a table or view. Thus, three UPDATE
triggers are possible on a single table. Multiple AFTER triggers are possible on a given table. Their specific order is
undefined, though the first and last triggers can be explicitly declared using the sp_settriggerorder system stored
procedure. Only one INSTEAD OF trigger is possible per INSERT, UPDATE, or DELETE statement on a given table.

In SQL Server, any combination of triggers is made possible in a single trigger definition statement by separating each
option with a comma. (When doing so, the same code fires for each statement in the combination definition.)

SQL Server implicitly fires in the FOR EACH STATEMENT style of the ANSI standard.

SQL Server instantiates two important pseudotables when a trigger is fired: deleted and inserted. They are equivalent
to the before and after pseudotables, respectively, described earlier in the ANSI Rules at a Glance section. These
tables are identical in structure to the table on which the triggers are defined, except that they contain the old data
before the data-modification statement fired (deleted) and the new values of the table after the data-modification
statement fired (inserted).

The AS IF UPDATE(column) clause tests specifically for INSERT or UPDATE actions on a given column or columns, in the
way the ANSI statement uses the UPDATE(column) syntax. Specify multiple columns by adding separate UPDATE(column)
clauses after the first. Follow the AS IF UPDATE(column) clause with a Transact-SQL BEGIN...END block to allow the
trigger to fire multiple Transact-SQL operations. This clause is functionally equivalent to the IF...THEN...ELSE operation.

In addition to intercepting data modification statements as shown in the ANSI SQL example, SQL Server allows you to
perform other sorts of actions when a data modification operation occurs. In the following example, we've decided that
the table sales_archive_2002 is off limits and that anyone who attempts to alter data in these tables is to be notified
of that restriction:

CREATE TRIGGER archive_trigger

ON sales_archive_2002

FOR INSERT, UPDATE

AS RAISERROR (50009, 16, 10, 'No changes allowed to this table')

GO

SQL Server does not allow the following statements within the Transact-SQL code_block of a trigger: ALTER, CREATE,
DROP, DENY, GRANT, REVOKE, LOAD, RESTORE, RECONFIGURE, or TRUNCATE. In addition, it does not allow any DISK
statements or the UPDATE STATISTICS command.

SQL Server also allows triggers to fire recursively using the recursive triggers setting of the sp_dboption system
stored procedure. Recursive triggers, by their own action, cause themselves to fire again. For example, if an INSERT
trigger on table T1 performs an INSERT operation on table T1, it might perform a recursive operation. Since recursive
triggers can be dangerous, this functionality is disabled by default.

Similarly, SQL Server allows nested triggers up to 32 levels deep. If any one of the nested triggers performs a
ROLLBACK operation, no further triggers execute. An example of nested triggers is a trigger on table T1 firing an
operation against table T2, which also has a trigger that fires an operation against table T3. The triggers cancel if an
infinite loop is encountered. Nested triggers are enabled with the nested triggers setting of the system stored procedure
sp_configure. If nested triggers are disabled, recursive triggers are disabled as well, despite the recursive triggers
setting of sp_dboption.

In the following example, we want to reroute the user activity that occurs on the people table, especially update
transactions, so that changes to records in the people table are instead written to the people_reroute table. (A more
elaborate version of the people table is shown in SQL Server in the CREATE/ALTER TABLE Statement section.) Our
update trigger will record any changes to columns 2, 3, or 4 of the people table and write it to the people_reroute
table. The trigger will also record which user issued the update transaction and the time of the transaction:

CREATE TABLE people

 (people_id CHAR(4),

 people_name VARCHAR(40),

 people_addr VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2),

 zip CHAR(5),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 phone CHAR(12),

 sales_rep empid NOT NULL)

GO

CREATE TABLE people_reroute

 (reroute_log_id UNIQUEIDENTIFIER DEFAULT NEWID(),

 reroute_log_type CHAR (3) NOT NULL,

 reroute_people_id CHAR(4),

 reroute_people_name VARCHAR(40),

 reroute_people_addr VARCHAR(40),

 reroute_city VARCHAR(20),

 reroute_state CHAR(2),

 reroute_zip CHAR(5),

 reroute_phone CHAR(12),

 reroute_sales_rep empidNOT NULL,

 reroute_user sysname DEFAULT SUSER_SNAME(),

 reroute_changed datetime DEFAULT GETDATE())

GO

CREATE TRIGGER update_person_data

ON people

FOR update AS

IF (COLUMNS_UPDATED(people_name)

 OR COLUMNS_UPDATEE(people_addr)

 OR COLUMNS_UPDATED(city))

BEGIN

-- Audit OLD record.

 INSERT INTO people_reroute (reroute_log_type, reroute_people_id,

 reroute_people_name, reroute_people_addr, reroute_city)

 SELECT 'old', d.people_id, d.people_name, d.people_addr, d.city

 FROM deleted AS d

-- Audit NEW record.

 INSERT INTO people_reroute (reroute_log_type, reroute_people_id,

 reroute_people_name, reroute_people_addr, reroute_city)

 SELECT 'new', n.people_id, n.people_name, n.people_addr, n.city

 FROM inserted AS n

END

GO

Note that SQL Server CREATE statements allow deferred name resolution, meaning that a command is processed even
if it refers to a database object that does not yet exist in the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

CREATE?ALTER FUNCTION/PROCEDURE
DELETE
DROP
INSERT
UPDATE

CREATE/ALTER TYPE Statement

The CREATE TYPE statement allows you to create a user-defined type (UDT); that is, a user-defined datatype or "class"
in object-oriented terms. UDTs extend SQL capabilities into the realm of object-oriented programming by allowing
inheritance and other object-oriented features. You can also create something called typed tables with the CREATE
TABLE statement using a previously created type made with the CREATE TYPE statement. Typed tables are based on
UDTs and are equivalent to "instantiated classes" from object-oriented programming.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with variations

SQL Server Not supported

SQL2003 Syntax

CREATE TYPE type_name

[UNDER supertype_name]

[AS [new_udt_name] datatype [attribute] [,...]

 {[REFERENCES ARE [NOT] CHECKED

 [ON DELETE

 {NO ACTION | CASCADE | RESTRICT | SET NULL | SET DEFAULT}]] |

 [DEFAULT value] |

 [COLLATE collation_name] }]

 [[NOT] INSTANTIABLE]

 [[NOT] FINAL]

[REF IS SYTEM GENERATED |

 REF USING datatype

 [CAST {(SOURCE AS REF) | (REF AS SOURCE) WITH identifier}] |

 REF new_udt_name [,...] }]

[CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH identifier]

[method_definition [,...]]

The syntax below alters an existing user-defined datatype:

ALTER TYPE type_name {ADD ATTRIBUTE type_definition |

 DROP ATTRIBUTE type_name}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DROP ATTRIBUTE type_name}

Keywords

{CREATE | ALTER} TYPE type_name

Creates a new type or alters an existing type of type_name.

UNDER supertype_name

Creates a subtype that is dependent upon a single, pre-existing, named supertype. (A UDT can be a supertype
if it is defined as NOT FINAL.)

AS [new_udt_name] datatype [attribute] [,...]

Defines attributes of the type as if they were column declarations in a CREATE TABLE statement without
constraints. You should either define the UDT attribute on an existing datatype, like VARCHAR(10), or on
another, previously created UDT or even on a user-defined domain. Defining a UDT using a predefined datatype
(e.g., CREATE TYPE my_type AS INT) creates a distinct type, while a UDT defined with an attribute definition is a
structured type. The allowable attributes for a structured type are below:

ON DELETE NO ACTION

Produces an error when the foreign key is violated (the default).

ON DELETE RESTRICT

A synonym for NO ACTION.

ON DELETE CASCADE

Sets the value of the referencing column to the value of the referenced column.

ON DELETE SET NULL

Sets the referencing column value to NULL.

ON DELETE SET DEFAULT value

Defines a default value for the UDT when no value is supplied by the user. Follows the rules of a
DEFAULT in the CREATE/ALTER TABLE Statement section.

COLLATE collation_name

Assigns a collation — that is, a sort order — for the UDT. When omitted, the collation of the database
where the UDT was created applies. Follows the rules of a COLLATION in the CREATE/ALTER TABLE
Statement section.

[NOT] INSTANTIABLE

Defines the UDT such that it can be instantiated. INSTANTIABLE is required for typed tables, but not standard
UDTs.

[NOT] FINAL

Required for all UDTs. FINAL means the UDT may have no subtypes. NOT FINAL means the UDT may have
subtypes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subtypes.

REF

Defines either a system-generated or user-generated reference specification — that is, a sort of unique
identifier that acts as a pointer that another type may reference. By referencing a pre-existing type using its
reference specification, new types may inherit properties of pre-existing types. There are three ways to tell the
DBMS how the typed table's reference column gets its values (i.e., its reference specification):

new_udt_name [,...]

Declares the reference specification is provided by another pre-existing UDT called new_udt_name.

IS SYTEM GENERATED

Declares the reference specification is system-generated. (Think of an automatically incrementing
column.) This is the default when the REF clause is omitted.

USING datatype [CAST {(SOURCE AS REF) | (REF AS SOURCE) WITH identifier]

Declares that the user defines the reference specification. You do this by using a predefined datatype
and optionally casting the value. You can CAST (SOURCE AS REF) WITH identifier to cast the value with
the specified datatype to the reference type of the structured type. You can CAST (REF AS SOURCE)
WITH identifier to cast the value for the structured type to the datatype. The WITH clause allows you to
declare an additional identifier for the cast datatype.

CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH identifier method_definition [,...]

Defines one or more pre-existing methods for the UDT. A method is merely a specialized user-defined function
and is created using the CREATE METHOD statement (see CREATE FUNCTION). The method_definition clause is
not needed for structured types since their method(s) are implicitly created. The default characteristics of a
method are LANGUAGE SQL, PARAMETER STYLE SQL, NOT DETERMINISTIC, CONTAINS SQL, and RETURN NULL
ON NULL INPUT.

ADD ATTRIBUTE type_definition

Adds an additional attribute to an existing UDT, using the format described earlier under the AS clause.
Available via the ALTER TYPE statement.

DROP ATTRIBUTE type_name

Drops an attribute from an existing UDT. Available via the ALTER TYPE statement.

Rules at a Glance

You are able to create user-defined types (UDTs) as a way to further ensure data integrity in your database and to ease
the work involved in doing so. An important concept of UDTs is that they allow you to easily create subtypes. Subtypes
are UDTs built upon other UDTs (the supertype). Subtypes inherit the characteristics of their supertypes. The UDT that
subtypes are dependent on is called a parent type or supertype.

Assume, for example, that you want to define a general UDT for phone numbers called phone_nbr. You could then
easily build new subtypes of phone_nbr called home_phone, work_phone, cell_phone, pager_phone, etc. Each of
the subtypes could then inherit the general characteristics of the parent type, but then have characteristics of their
own. In the following example, we create a general root UDT called money and then several subtypes:

CREATE TYPE money (phone_number DECIMAL (10,2))

 NOT FINAL;

CREATE TYPE dollar UNDER money AS DECIMAL(10,2)

 (conversion_rate DECIMAL(10,2)) NOT FINAL;

CREATE TYPE euro UNDER money AS DECIMAL(10,2)

 (dollar_conversion_rate DECIMAL(10,2)) NOT FINAL;

CREATE TYPE pound UNDER euro

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TYPE pound UNDER euro

 (euro_conversion_rate DECIMAL(10,2)) FINAL;

Programming Tips and Gotchas

The biggest programming gotcha for user-defined types is that they are simply seldom used or well understood by most
database developers and database administrators. Consequently, they can be problematic due to simple ignorance.
They offer, however, a consistent and labor-saving approach for representing commonly reused conceptual elements in
a database, such as address (e.g., street1, street2, city, state, postal code).

DB2

DB2 supports most elements of the ANSI standard with a few specific enhancements. The CREATE TYPE syntax is:

CREATE [DISTINCT] TYPE type_name

[UNDER supertype_name]

[AS [new_udt_name] datatype

[WITH COMPARISONS]

[[NOT] INSTANTIABLE] [INLINE LENGTH int] [WITHOUT COMPARISONS]

 [NOT FINAL] MODE DB2SQL

[REF USING datatype] [CAST {(SOURCE AS REF) | (REF AS SOURCE)}

 WITH identifier }]

[[OVERRIDING] METHOD method_definition [,...]]

The syntax below alters an existing user-defined datatype on DB2:

ALTER TYPE type_name {ADD ATTRIBUTE type_definition |

 DROP ATTRIBUTE type_name [RESTRICT] |

 ADD METHOD method_definition |

 ALTER METHOD method_name [[NOT] FENCED] [[NOT] THREADSAFE] |

 DROP METHOD method_name [RESTRICT] }

The parameters are:

DISTINCT

Defines a distinct type. A distinct type is always sourced from one of the existing datatypes that ships with DB2.
CREATE DISTINCT TYPE generates one or more function to cast between the distinct type and its source type.

WITH COMPARISONS

Generates support for the comparison operators (=, <>, <, <=, >, and >=) for use with a distinct type. This
clause is used only with CREATE DISTINCT TYPE. Even when creating a distinct type, WITH COMPARISONS
should not be used if the source datatype is BLOB, CLOB, DBCLOB, LONG VARCHAR, LONG VARGRAPHIC, or
DATALINK.

INLINE LENGTH int

Defines the maximum length in bytes, int, of a structured type column. When omitted, DB2 calculates the
maximum length itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WITHOUT COMPARISONS

Declares that there are no comparison functions supported for the structure type.

MODE DB2SQL

This is a required clause needed to maintain ANSI compliance.

OVERRIDING

Declares that the method of a subtype overrides a method of the same name on the supertype. This allows
easy reimplementation of methods in subtypes.

METHOD method_definition [,...]

DB2 supports a number of SQL routine characteristics and external routine characteristics on the
method_definition. In short, you must define a method in the CREATE/ALTER TYPE statement, but then you must
also define the implementation of the method using CREATE METHOD. Creating methods are explained in
CREATE/ALTER FUNCTION/PROCEDURE Statements.

ADD METHOD method_definition

Adds a new method, method_definition, to the existing type, type_name. However, the method is not usable until a
CREATE METHOD statement defines the implementation of the method.

ALTER METHOD method_name

Alters a method, but the method must not be LANGUAGE SQL.

[NOT] FENCED

Declares whether the method is safe to run in the database's operating system process (NOT FENCED) or not
(FENCED). NOT FENCED methods can introduce integrity problems when not adequately set up to prevent
errors. This clause is incompatible with NOT THREADSAFE.

[NOT] THREADSAFE

Declares whether the method is safe to run in the same process as other routines (THREADSAFE) or not (NOT
THREADSAFE).

DROP METHOD method_name

Drops an existing method of method_name.

RESTRICT

Disallows an attribute or method from being dropped when the type, type_name, is used in other existing
objects, such as a table, view, column, index extension, etc.

In this example, we create a supertype for employee and a subtype for manager:

CREATE TYPE employee AS

 (last_name VARCHAR(32),

 emp_id INT,

 dept REF(dept),

 salary DECIMAL(10,2))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 salary DECIMAL(10,2))

MODE DB2SQL;

CREATE TYPE manager UNDER emp AS

 (bonus DECIMAL(10,2))

MODE DB2SQL;

The following example shows a more elaborate type hierarchy for addresses:

CREATE TYPE address_type AS

 (street1 VARCHAR(30),

 street2 VARCHAR(30),

 city VARCHAR(30),

 state VARCHAR(10),

 locality_code CHAR(15))

NOT FINAL

MODE DB2SQL

 METHOD SAMEZIP (addr address_type)

 RETURNS INTEGER

 LANGUAGE SQL

 DETERMINISTIC

 CONTAINS SQL

 NO EXTERNAL ACTION

 METHOD DISTANCE (address_type)

 RETURNS FLOAT

 LANGUAGE C

 DETERMINISTIC

 PARAMETER STYLE SQL

 NO SQL

 NO EXTERNAL ACTION

CREATE TYPE spain_address_type UNDER address_type AS

 (family_name VARCHAR(30))

NOT FINAL

MODE DB2SQL

CREATE TYPE usa_address_type UNDER address_type AS

 (zip VARCHAR(10))

NOT FINAL

MODE DB2SQL

In the above example, we created a type called address_type with two subtypes: spain_address_type and
usa_address_type.

The example that follows shows how to create a distinct type in DB2 used to identify an employee mailstop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example that follows shows how to create a distinct type in DB2 used to identify an employee mailstop.

CREATE DISTINCT TYPE mailstop AS CHAR(5)

WITH COMPARISONS;

In essence, the type mailstop now functions like a regular datatype and may be used to create columns in tables,
variables in stored procedures, etc. The WITH COMPARISONS clause tells DB2 to create the standard pre-existing
system operators for use with the distinct type. Specific functions, such as AVG, MIN, or LENGTH, may not work unless
the CREATE FUNCTION statement is used to register the function for the distinct type.

MySQL

Not supported.

Oracle

Oracle has CREATE TYPE and ALTER TYPE statements, but they are not ANSI standard. Instead of a single CREATE TYPE
statement, Oracle uses CREATE TYPE BODY to define the code that makes up the UDT, while CREATE TYPE defines the
argument specification for the type. The syntax for CREATE TYPE is:

CREATE [OR REPLACE] TYPE type_name

[AUTHID {DEFINER | CURRENT_USER}]

{ [UNDER supertype_name] |

 {AS | IS} [OID 'object_identifier']

 {OBJECT | TABLE OF datatype | VARRAY (limit) OF datatype}] }

 EXTERNAL NAME java_ext_name LANGUAGE JAVA USING data_definition

 { [(attribute datatype [,...] [EXTERNAL NAME 'name'] |

 [[NOT] OVERRIDING] [[NOT] FINAL] [[NOT] INSTANTIABLE]

 [{ {MEMBER | STATIC}

 {function_based | procedure_based} | constructor_clause |

 map_clause } [...]]

 [pragma_clause]] }

Once the type has been declared, you encapsulate all of the UDT logic in the type body declaration. The type_name for
both the CREATE TYPE and CREATE TYPE BODY should be identical. The syntax for the type body is shown below:

CREATE [OR REPLACE] TYPE BODY type_name

{AS | IS}

{{MEMBER | STATIC}

{function_based | procedure_based | constructor_clause}}[...]

[map_clause]

Oracle's implementation of ALTER TYPE enables you to drop or add attributes and methods from the type:

ALTER TYPE type_name

 {COMPILE [DEBUG] [{SPECIFICATION | BODY}]

 [compiler_directives] [REUSE SETTINGS] |

 REPLACE [AUTHID {DEFINER | CURRENT_USER}] AS OBJECT

 (attribute datatype [,...] [element_definition [,...]]) |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (attribute datatype [,...] [element_definition [,...]]) |

 [[NOT] OVERRIDING] [[NOT] FINAL] [[NOT] INSTANTIABLE]

 { {ADD | DROP} { {MAP | ORDER} MEMBER FUNCTION function_name

 (parameter datatype [,...]) } |

 { {MEMBER | STATIC} {function_based | procedure_based} |

 constructor_clause | map_clause } [...] |

 {ADD | DROP | MODIFY} ATTRIBUTE (attribute [datatype] [,...]) |

 MODIFY {LIMIT int | ELEMENT TYPE datatype} }

[{INVALIDATE |

 CASCADE [{ [NOT] INCLUDING TABLE DATA | CONVERT TO SUBSTITUTABLE}]

 [FORCE] [EXCEPTIONS INTO table_name] }]

Parameters for the three statements are as follows:

OR REPLACE

Recreates the UDT if it already exists. Objects that depend on the type are marked as DISABLE after you
recreate the type.

AUTHID {DEFINER | CURRENT_USER}

Determines what user permissions any member functions or procedures are executed under and how external
name references are resolved. (Note that subtypes inherit the permission style of their supertype.) This clause
can only be used with an OBJECT type, not with a VARRAY type or nested table type, according to the following
keywords:

DEFINER

Executes functions or procedures under the privileges of the user who created the UDT. Also specifies
that unqualified object names (object names without a schema definition) in SQL statements are
resolved to the schema where the member functions or procedures reside.

CURRENT_USER

Executes functions or procedures under the privileges of the user who invoked the UDT. Also specifies
that unqualified object names in SQL statements are resolved to the schema of the user who invoked
the UDT.

UNDER supertype_name

Declares that the UDT is a subtype of another, pre-existing UDT. The supertype UDT must be created with the
AS OBJECT clause. A subtype will inherit the properties of the supertype, though you should override or add
new properties to differentiate it from the supertype.

OID 'object_identifier'

Declares an equivalent identical object, of name 'object_identifier', in more than one database. This clause is most
commonly used by those developing Oracle Data Cartridges and is seldom used in standard SQL statement
development.

AS OBJECT

Creates the UDT as a root object type, the top level object in a UDT hierarchy of objects.

AS TABLE OF datatype

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AS TABLE OF datatype

Creates a named nested table type of a UDT called datatype. The datatype cannot be an NCLOB, but CLOB or
BLOB are acceptable. If the datatype is an object type, then the columns of the nested table must match the
name and attributes of the object type.

AS VARRAY (limit) OF datatype

Creates the UDT as an ordered set of elements, all of the same datatype. The limit is an integer of zero or more.
The type name must be a built-in datatype, a REF, or an object type. The VARRAY cannot contain LOB or
XMLType datatypes.

EXTERNAL NAME java_ext_name LANGUAGE JAVA USING data_definition

Maps a Java class to a SQL UDT by specifying the name of a public Java external class, java_ext_name. Once
defined, all objects in a Java class must be Java objects. The data_definition may be SQLData, CustomDatum, or
OraData as defined in the "Oracle9i JDBC Developers Guide." You can map many Java object types to the same
class, but there are two restrictions. First, do not map to the same class two or more subtypes of a common
datatype. Second, subtypes must be mapped to an immediate subclass of the class that their supertype is
mapped to.

datatype

Declares the attributes and datatypes used by the UDT. Oracle does not allow ROWID, LONG, LONG ROW, or
UROWID. Nested tables and varrays do not allow attributes of AnyType, AnyData, or AnyDataSet.

EXTERNAL NAME 'name' [NOT] OVERRIDING

Declares that this method overrides a MEMBER method defined in the supertype (OVERRIDING) or not (NOT
OVERRIDING), the default. This clause is valid only for MEMBER clauses.

MEMBER | STATIC

Describes the way in which subprograms are associated with the UDT as attributes. MEMBER has an implicit first
argument referenced as SELF, as in object_expression.method(). STATIC has no implicit arguments, as in
type_name.method(). The following basis are allowed to call subprograms:

function_based

Declares a subprogram that is function-based using the syntax:

FUNCTION function_name (parameter datatype [,...])

return_clause |java_object_clause}

The function_name cannot be the name of any existing attribute, include those inherited from
supertypes. This clause allows you to define the PL/SQL function-based UDT body without
resorting to the CREATE TYPE BODY statement. The return_clause and java_object_clause are
defined in the following text.

procedure_based

Declares a subprogram that is function-based using the syntax:

PROCEDURE procedure_name (parameter datatype [,...])

{AS | IS} LANGUAGE {java_call_spec | c_call_spec}

Refer to the entry on java and c_call_spec later in this list. This clause allows you to define the PL/SQL
procedure-based UDT body without resorting to the CREATE TYPE BODY statement. The procedure_name
cannot be the name of any existing attribute, include those inherited from supertypes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cannot be the name of any existing attribute, include those inherited from supertypes.

constructor_clause

Declares one or more constructor specifications using the syntax:

[FINAL] [INSTANTIABLE] CONSTRUCTOR FUNCTION datatype

 [([SELF IN OUT datatype ,] {parameter datatype [,...])]

RETURN SELF AS RESULT

 [{AS | IS} LANGUAGE {java_call_spec | c_call_spec}

A constructor specification is a function that returns an initialized instance of a UDT. Constructor
specifications are always FINAL, INSTANTIABLE, and SELF IN OUT, so these keywords are not required.
The java_call_spec and c_call_spec subclauses may be replaced with a PL/SQL code block in the CREATE
TYPE BODY statement. (Refer to the entries on java_call_spec and c_call_spec later in this list.)

map_clause

Declares the mapping or ordering of a supertype using the syntax:

{MAP | ORDER} MEMBER function_based

Refer to the entry on function_based earlier in this list. MAP uses more efficient algorithms for object comparison
and is best in situations when performing extensive sorting or hash joins. MAP MEMBER specifies the relative
position of a given instance in the ordering of all instances of the UDT. ORDER MEMBER specifies the explicit
position of an instance and references a function_based subprogram that returns a NUMBER datatype value.

return_clause

Declares the datatype return format of the SQL UDT using the syntax:

 RETURN datatype [{AS | IS} LANGUAGE {java_call_spec |

 c_call_spec}.

java_object_clause

Declares the return format of the Java UDT using the syntax:

RETURN {datatype | SELF AS RESULT} EXTERNAL [VARIABLE] NAME

 'java_name'

If you use the EXTERNAL clause, the value of the public Java method must be compatible with the SQL returned
value.

pragma_clause

Declares a pragma restriction (that is, an Oracle precompiler directive) for the type using the syntax:

PRAGMA RESTRICT REFERENCES ({DEFAULT | method_name} ,

{RNDS | WNDS |RNPS | WNPS | TRUST}[,...])

This feature is deprecated and should be avoided. It is intended to control how UDTs read and write database
tables and variables. The parameters in the PRAGMA syntax are:

DEFAULT

Applies the pragma to all methods in the type that don't have another pragma in place.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Applies the pragma to all methods in the type that don't have another pragma in place.

method_name

Identifies the exact method to which to apply the pragma.

RNDS

Reads no database state — no database reads allowed.

WNDS

Writes no database state — no database writes allowed.

RNPS

Reads no package state — no package reads allowed.

WNPS

Writes no package state — no package writes allowed.

TRUST

States that the restrictions of the pragma are assumed but not enforced.

java_call_spec

Identifies the Java implementation of a method using the syntax JAVA NAME 'string'. This clause allows
you to define the Java UDT body without resorting to the CREATE TYPE BODY statement.

c_call_spec

Declares a C language call specification using the syntax:

C [NAME name] LIBRARY lib_name [AGENT IN (argument)]

[WITH CONTEXT] [PARAMETERS (parameter [,...]]

This clause allows you to define the C UDT body without resorting to the CREATE TYPE BODY statement.

COMPILE

Compiles the object type specification and body. This is the default when neither a SPECIFICATION clause nor a
BODY clause are defined.

compiler_directives

Defines a special value for the PL/SQL compiler in the format: directive = 'value'. The directives are:
PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and
NLS_LENGTH_SEMANTICS. They may each specify a value once in the statement. The directive is valid only for
the unit being compiled.

DEBUG

Generates and stores additional codes for the PL/SQL debugger. Do not specify both DEBUG and the
compiler_directive PLSQL_DEBUG.

SPECIFICATION | BODY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chooses whether to recompile the SPECIFICATION of the object type (created by the CREATE TYPE statement)
or the BODY (created by the CREATE TYPE BODY statement).

compiler_directives

Defines a special value for the PL/SQL compiler in the format: directive = 'value'. The directives are:
PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and
NLS_LENGTH_SEMANTICS. They may each specify a value once in the statement. The directive is valid only for
the unit being compiled.

REUSE SETTINGS

Retains the original value for the compiler_directives mentioned earlier.

REPLACE AS OBJECT

Adds new member subtypes to the specification. This clause is valid only for object types.

[NOT] OVERRIDING

Indicates the method overrides a MEMBER method defined in the supertype. This clause is only valid with
MEMBER methods and is required for methods that define (or redefine using ALTER) a supertype method. NOT
OVERRIDING is the default if this clause is omitted.

ADD

Adds a new MEMBER function, function- or procedure-based subprogram, or attribute to the UDT.

DROP

Drops an existing MEMBER function, function- or procedure-based subprogram, or attribute from the UDT.

MODIFY

Alters the properties of an existing attribute of the UDT.

MODIFY LIMIT int

Increases the number of elements in a VARRAY collection type up to int, as long as int is greater than the
current number of elements in the VARRAY. It is not valid for nested tables.

MODIFY ELEMENT TYPE datatype

Increases the precision, size, or length of a scalar datatype of a VARRAY or nested table. This clause is valid for
any non-object collection type. If the collection is a NUMBER, you may increase its precision or scale. If the
collection is RAW, you may increase its maximum size. If the collection is VARCHAR2 or NVARCHAR2, you may
increase its maximum length.

INVALIDATE

Invalidates all dependent objects without checks.

CASCADE

Cascades the change to all subtypes and tables. By default, the action will be rolled back if any errors are
encountered in the dependent types or tables.

[NOT] INCLUDING TABLE DATA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converts data stored in the UDT columns to the most recent version of the column's type (INCLUDING TABLE
DATA), the default, or not (NOT INCLUDING TABLE DATA). When NOT, Oracle checks the metadata, but does
not check or update the dependent table data.

CONVERT TO SUBSTITUTABLE

Used when changing a type from FINAL to NOT FINAL. The altered type then can be used in substitutable tables
and columns, as well as in subtypes, instances of dependent tables, and columns.

FORCE

Causes the CASCADE operation to go forward, ignoring any errors found in dependent subtypes and tables. All
errors are logged to a previously created EXCEPTIONS table.

EXCEPTIONS INTO table_name

Logs all error data to a table previously created using the system package called
DBMS_UTILITY.CREATE_ALTER_TYPE_ERROR_TABLE.

In this example, we create a Java SQLJ object type called address_type:

CREATE TYPE address_type AS OBJECT

 EXTERNAL NAME 'scott.address' LANGUAGE JAVA

 USING SQLDATA (street1 VARCHAR(30) EXTERNAL NAME 'str1',

 street2 VARCHAR(30) EXTERNAL NAME 'str2',

 city VARCHAR(30) EXTERNAL NAME 'city',

 state CHAR(2) EXTERNAL NAME 'st',

 locality_code CHAR(15) EXTERNAL NAME 'lc',

 STATIC FUNCTION square_feet RETURN NUMBER

 EXTERNAL VARIABLE NAME 'square_feet',

 STATIC FUNCTION create_addr (str VARCHAR,

 City VARCHAR, state VARCHAR, zip NUMBER)

 RETURN address_type

 EXTERNAL NAME 'create (java.lang.String,

 java.lang.String, java.lang.String, int)

 return scott.address',

 MEMBER FUNCTION rtrims RETURN SELF AS RESULT

 EXTERNAL NAME 'rtrim_spaces () return scott.address')

NOT FINAL;

We could create a UDT using a VARRAY type with four elements:

CREATE TYPE employee_phone_numbers AS VARRAY(4) OF CHAR(14);

In the following example, we alter the address_type that we created earlier by adding a VARRAY called
phone_varray:

ALTER TYPE address_type

 ADD ATTRIBUTE (phone phone_varray) CASCADE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ADD ATTRIBUTE (phone phone_varray) CASCADE;

In this last example, we'll create a supertype and subtype called menu_item_type and entry_type, respectively:

CREATE OR REPLACE TYPE menu_item_type AS OBJECT

(id INTEGER, title VARCHAR2(500),

 NOT INSTANTIABLE

 MEMBER FUNCTION fresh_today

 RETURN BOOLEAN)

NOT INSTANTIABLE

NOT FINAL;

In the above example, we created a type specification (but not the type body) that defines items that may appear on a
menu at a café. Included with the type specification is a subprogram method called fresh_today, a Boolean indicator
that tells whether the menu item is made fresh that day. The NOT FINAL clause that appears at the end of the code
tells Oracle that this type may serve as the supertype (or base type) to other subtypes that we might derive from it. So
now, let's create the entre_type:

CREATE OR REPLACE TYPE entry_type UNDER menu_item_type

(entre_id INTEGER, desc_of_entre VARCHAR2(500),

 OVERRIDING MEMBER FUNCTIOIN fresh_today

 RETURN BOOLEAN)

NOT FINAL;

PostgreSQL

PostgreSQL supports a CREATE TYPE statement used to create a new datatype, but does not support an ALTER TYPE
statement. PostgreSQL's implementation of the CREATE TYPE statement is nonstandard:

CREATE TYPE type_name

 (INPUT = input_function_name,

 OUTPUT = output_function_name,

 INTERNALLENGTH = { int | VARIABLE }

[, DEFAULT = value]

[, ELEMENT = array_element_datatype]

[, DELIMITER = delimiter_character]

 [, PASSEDBYVALUE]

[, ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}]

[, STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}])

The parameters are as follows:

CREATE TYPE type_name

Creates a new user-defined datatype called type_name. The name may not exceed 30 characters in length nor
begin with an underscore.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

begin with an underscore.

INPUT = input_function_name

Declares the name of a previously created function that converts external argument values into a form usable
by the type's internal form.

OUTPUT = output_function_name

Declares the name of a previously created function that converts internal output values to a display format.

INTERNALLENGTH = { int | VARIABLE }

Specifies a numeric value, int, for the internal length of the new type, if the datatype is fixed length. The
keyword VARIABLE declares that the internal length is variable. The default is VARIABLE.

DEFAULT = value

Defines a value for type when it defaults.

ELEMENT = array_element_datatype

Declares that the datatype is an array and that array_element_datatype is the datatype of the array elements. For
example, an array containing integer values would be ELEMENT = INT4. In general, you should allow the
array_element_datatype value to default. The only time you might want to override the default is when creating a
fixed-length UDT composed of an array of multiple identical elements that need to be directly accessible by
subscripting.

DELIMITER = delimiter_character

Declares a character used as a delimiter between output values of an array produced by the type. Only used
with the ELEMENT clause. The default is a comma.

PASSEDBYVALUE

Specifies that the values of the datatype are passed by value and not by reference. The optional clause cannot
be used for types whose value is longer than the DATUM datatype (4 bytes on most operating systems, 8 bytes
on a few others).

ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}

Defines a storage alignment for the type. Four datatypes are allowed, with each one equating to a specific
boundary. CHAR equals a 1-byte boundary. INT2 equals a 2-byte boundary. INT4 equals a 4-byte boundary
(the requirement for a variable-length UDT on PostgreSQL). DOUBLE equals an 8-byte boundary.

STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}

Defines a storage technique for variable-length UDTs. (PLAIN is required for fixed-length UDTs.) Four types are
allowed:

PLAIN

Stores the UDT in-line, when declared as the datatype of a column in a table, and uncompressed.

EXTERNAL

Stores the UDT outside of the table without trying to compress it first.

EXTENDED

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores the UDT as a compressed value if it fits inside of the table. If it is still too long, PostgreSQL will
save the UDT outside of the table.

MAIN

Stores the UDT as a compressed value within the table. There are situations where PostgreSQL cannot
save the UDT within the table because it is just too large. The MAIN storage parameter puts the highest
emphasis on storing UDTs with all other table data.

When you create a new datatype in PostgreSQL, it is available only in the current database. The user who created the
datatype is the owner.

In order to create a new datatype, you must create at least two functions before defining the type (see CREATE/ALTER
FUNCTION/PROCEDURE Statements"). In summary, you must create an INPUT function that provides the type with
external values that can be used by the operators and functions defined for the type. You must also create an OUTPUT
function that renders a usable external representation of the datatype. There are some additional requirements when
creating the input and output functions:

The input function should either take one argument of type OPAQUE or take three arguments of OPAQUE, OID,
and INT4. In the latter case, OPAQUE is the input text of a C string, OID is the element type for array types,
and the INT4 (if known) is the typemod of the destination column.

The output function should either take one argument of type OPAQUE or take two arguments of OPAQUE and
OID. In the latter case, OPAQUE is the datatype itself and the OID is the element type for array types, if
needed.

For example, we can create a UDT called floorplan and use it to define a column in two tables, one called house and
one called condo:

CREATE TYPE floorplan

 (INTERNALLENGTH=12, INPUT=squarefoot_calc_proc,

 OUTPUT=out_floorplan_proc);

CREATE TABLE house

 (house_plan_id int4,

 size floorplan,

 descrip varchar(30));

CREATE TABLE condo

 (condo_plan_id INT4,

 size floorplan,

 descrip varchar(30)

 location_id varchar(7));

SQL Server

Not supported. New datatypes can be added to SQL Server using the non-ANSI system stored procedure sp_addtype.

See Also

CREATE/ALTER FUNCTION/PROCEDURE
DROP

CREATE/ALTER VIEW Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This statement creates a view, also known as a virtual table. A view acts just like a table but is actually defined as a
query. When a view is referenced in a statement, the result set of the query becomes the content of the view for the
duration of that statement. Almost any valid SELECT statement can define the contents of a view, though some
platforms restrict the certain clauses of the SELECT statement and certain set operators.

In some cases, views can be updated, causing the view changes to be translated to the underlying data in the base
tables. Some database platforms support a materialized view; that is, a physically created table that is defined with a
query just like a view.

ALTER VIEW is not an ANSI-supported statement.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

CREATE [RECURSIVE] VIEW view_name {[(column [,...])] |

[OF udt_name [UNDER supertype_name

 [REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}]

 [column_name WITH OPTIONS SCOPE table_name]] }

AS

select_statement [WITH [CASCADED | LOCAL] CHECK OPTION]

Keywords

CREATE VIEW view_name

Creates a new view using the supplied name.

RECURSIVE

Creates a view that derives values from itself. It must have a column clause and may not use the WITH clause.

[(column [,...])]

Names all of the columns in the view. The number of columns declared here must match the number of
columns generated by the select_statement. When omitted, the columns assume the names of the columns that
they come from. This clause is required when one or more of the columns is derived and does not have a base
table column to reference.

OF udt_name [UNDER supertype_name]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defines the view on a UDT rather than on the column clause. The typed view is created using each attribute of
the type as a column in the view. Use the UNDER clause to define a view on a subtype.

REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}

Defines the object-ID column for the view.

column_name WITH OPTIONS SCOPE table_name

Provides scoping for a reference column in the view. (Since the columns are derived from the type, there is no
column list. Therefore, to specify column options, you must use "column_name WITH OPTIONS...".)

AS select_statement

Defines the exact SELECT statement that provides the data of the view.

[WITH [CASCADED | LOCAL] CHECK OPTION]

Used only on views that allow updates to their base table. It ensures that only data that may be read by the
view may be inserted, updated, or deleted by the view. For example, if a view of employees showed salaried
employees but not hourly employees, it would be impossible to insert, update, or delete hourly employees
through that view. The CASCADED and LOCAL options of the CHECK OPTION clause are used for nested views.
CASCADED performs the check option for the current view and all views it is built on top of. LOCAL performs
the check option only for the current view, even when it is built upon other views.

Rules at a Glance

Views are usually as effective as the queries upon which they are based. That is why it is important to be sure that the
defining SELECT statement is speedy and well-written. The simplest view is based on the entire contents of a single
table:

CREATE VIEW employees

AS

SELECT *

FROM employee_tbl;

A column list also may be specified after the view name. The optional column list contains aliases serving as names for
each element in the result set of the SELECT statement. If you use a column list, then you must provide a name for
every column returned by the SELECT statement. If you don't use a column list, then the columns of the view will be
named whatever the columns in the SELECT statement are called. You will sometimes see complex SELECT statements
within a view that make heavy use of AS clauses for all columns, because that allows the developer of the view to put
meaningful names on the columns without including a column list.

The ANSI standard defines that you must use a column list or an AS clause. However, some vendors allow more
flexibility, so follow these rules for when to use an AS clause:

When the SELECT statement contains calculated columns, such as (salary * 1.04)

When the SELECT statement contains fully qualified column names, such as pubs.scott.employee

When the SELECT statement contains more than one column of the same name (though with separate schema
or database prefixes)

For example, the following two view declarations have the same functional result:

-- using a column-list

CREATE VIEW title_and_authors

 (title, author_order, author, price, avg_monthly_sales,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (title, author_order, author, price, avg_monthly_sales,

 publisher)

AS

SELECT t.title, ta.au_ord, a.au_lname, t.price, (t.ytd_sales / 12),

 t.pub_id

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

JOIN titles AS t ON t.title_id = ta.title_id

WHERE t.advance > 0;

-- using the AS clause with each column

CREATE VIEW title_and_authors

AS

SELECT t.title AS title, ta.au_ord AS author_order,

 a.au_lname AS author, t.price AS price,

 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

JOIN titles AS t ON t.title_id = ta.title_id

WHERE t.advance > 0

You can alternately change the title of columns using the column list. In this case, we'll change avg_monthly_sales to
avg_sales. Note that the code overrides the default column names provided by the AS clauses (in bold):

CREATE VIEW title_and_authors

 (title, author_order, author, price, avg_sales, publisher)

AS

SELECT t.title AS title, ta.au_ord AS author_order,

 a.au_lname AS author, t.price AS price,

 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

JOIN titles AS t ON t.title_id = ta.title_id

WHERE t.advance > 0;

ANSI standard view can update the base table(s) it is based upon if it meets the following conditions:

The view does not have UNION, EXCEPT, or INTERSECT operators.

The defining SELECT statement does not contain GROUP BY or HAVING clauses.

The defining SELECT statement does not contain any reference to non-ANSI pseudo-columns such as ROWNUM
or ROWGUIDCOL.

The defining SELECT statement does not contain the DISTINCT clause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The defining SELECT statement does not contain the DISTINCT clause.

The view is not materialized.

This example shows a view named california_authors that allows data modifications to apply only to authors within
the state of California:

CREATE VIEW california_authors

AS

SELECT au_lname, au_fname, city, state

FROM authors

WHERE state = 'CA'

WITH LOCAL CHECK OPTION

The view shown in this example would accept INSERT, DELETE, and UPDATE statements against the base table, but still
maintain that all inserted, updated, or deleted records contain a state of 'CA' using the WITH ... CHECK clause.

The most important rule to remember when updating a base table through a view is that all columns in a table that are
defined as NOT NULL must receive a not null value when receiving a new or changed value. You can do this explicitly by
directly inserting or updating a not null value into the column or by relying on a default value. In addition, views do not
lift constraints on the base table. Thus, the values being inserted or updated into the base table must meet all the
constraints placed on it by unique indexes, primary keys, CHECK constraints, etc.

Programming Tips and Gotchas

Views also can be built upon other views, but this is inadvisable and usually considered bad practice. Depending on the
platform, such a view may take longer to compile, but may offer the same performance as a transaction against the
base table(s). On other platforms, where each view is dynamically created as it is invoked, nested views may take a
long time to return a result set because each level of nesting means another query must be processed before a result
set is returned to the user. So in this worst case scenario, a three-level nested view must make three correlated query
calls before it can return results to the user.

Although materialized views are defined like views, they take up space more like tables. Ensure that you have enough
space available for the creation of materialized views.

DB2

DB2 supports a number of extensions to the ANSI standard CREATE VIEW statement:

CREATE VIEW view_name

{ [(column [,...])] | [OF type_name MODE DB2SQL

 { (REF IS objectid_column_name USER GENERATED

 [UNCHECKED] [, with_options]) |

 UNDER parent_view_name INHERIT SELECT PRIVILEGES

 [(with_options)] }

AS

[WITH common_table_expression [, ...]]

(select_statement)

[WITH {CASCADE | LOCAL} CHECK OPTION]

The ALTER VIEW syntax is:

ALTER VIEW view_name

ALTER [COLUMN] column_name ADD SCOPE type_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Parameters for both statements are as follows:

OF type_name MODE DB2SQL

Declares that the columns of the view are derived from attributes of a structured type called type_name. MODE
DB2SQL indicates the type is DB2's version of a typed view.

REF IS objectid_column_name USER GENERATED

Declares that the object identifier column appears as the first column in the view. That first column in the
SELECT clause of the view must be a REF type. In this case, the objectID is required on the topmost (i.e., root)
view of a view hierarchy. The root view must be a typed view containing the OF clause that is not a subview.
The USER GENERATED clause specifies that the first value of the objectID must be provided by the user. From
then on, the value is maintained by the system.

UNCHECKED

Declares that the user is certain that all values in first column of the SELECT clause are unique and are not null.
Uniqueness may be enforced by a primary key, unique key, unique index, OID-column definition, or an external
method. This setting is usually optional, but is required for views in a typed hierarchy.

UNDER parent_view_name INHERIT SELECT PRIVILEGES

Declares that the view is a subview of the previously declared view parent_view_name. The child and parent views
must be in the same schema. The parent view must have been declared with the REF clause and must be
sourced from a structured type. The parent view named cannot have any subviews of the same structured type
as the view being created. The INHERIT SELECT PRIVILEGES clause entitles any user or role with SELECT
privileges on the parent view to also have SELECT privileges on all subviews.

with_options

Declares additional options for specific columns of the view. Multiple options are allowed by placing a comma
between each option. The full syntax of the with_options clause is:

{column_name WITH OPTIONS {READ ONLY | SCOPE typed_name} [,...] } [,...]

The parameters are:

READ ONLY

Specifies that a column is read-only.

SCOPE type_name

Specifies the scope of a reference type column where type_name is the name of the typed table or view. A scope
is required for any column serving as the left operand of a dereference operator or as the argument of the
DEREF function.

WITH common_table_expression

Associates a common table expression with the SELECT statement of the view. This clause is incompatible with
typed views.

WITH {CASCADE | LOCAL} CHECK OPTION

Declares that any rows inserted or updated through the view must conform to the definition of the view. Any
row that couldn't also be returned by the view cannot, therefore, be inserted or updated through it. When
omitted, no checking of inserted or updated data is done beyond the constraints that exist on the source table.
WITH CHECK OPTION is not allowed for read-only views, views with an INSTEAD OF trigger, or views that
reference a nicknamed source, NODENUMBER or PARTITION functions, non-deterministic functions, or functions
with external actions. The following WITH CHECK OPTION options are available:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with external actions. The following WITH CHECK OPTION options are available:

CASCADE

Causes the search conditions of the current view to inherit the search conditions of any updateable view
that the current view is based on. With this option, the current view has its own WHERE clause implicitly
appended with an AND keyword to the WHERE clause of the view it depends on.

LOCAL

Applies the search conditions of the current view to any views that depend on it.

ALTER [COLUMN] column_name ADD SCOPE type_name

Allows you to add scope characteristics to an existing view.

The SELECT statement of a view should be a standard SELECT statement and cannot contain any of the following:

Temporary tables

Parameter markers

Referenced host variables

You can get around the limitation on parameterized views by making a user-defined function based on a SQL table.

A typed view or subview must follow some specific rules:

The SELECT statement of the view cannot reference DBPARTITIONNUM or HASHEDVALUE functions, functions
with external actions, or any non-deterministic function.

The view can contain a single SELECT statement. More SELECT statements can be added by using a UNION ALL
clause between each one. (DB2 refers to a query with multiple SELECT statements as having multiple
branches.)

Branches should not cross hierarchies.

Branches of a typed view should not contain GROUP BY or HAVING clauses.

The root view should contain the UNCHECKED clause if it contains branches.

The following is an example including types, a typed table, and a view hierarchy, built around people_type and
emp_type:

CREATE TYPE people_type

 AS (name VARCHAR(20), address VARCHAR(100))

 MODE DB2SQL

 CAST (SOURCE AS REF) WITH people_func;

CREATE TYPE emp_type

 UNDER people_type

 AS (title VARCHAR(20), salary DECIMAL(8,2))

 MODE DB2SQL

 CAST (SOURCE AS REF) WITH emp_func;

CREATE TABLE people

 OF people_type

 (REF IS people_oid USER GENERATED);

INSERT INTO people (people_oid, name, address)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSERT INTO people (people_oid, name, address)

 VALUES (people_func('0'), 'Sammy', '123 Lane');

CREATE TABLE emp

 OF emp_type

 UNDER people INHERIT SELECT PRIVILEGES;

INSERT INTO emp (people_oid, name, address, title, salary)

 VALUES (emp_func('1'), 'Josh', '123 Street', 'Director', 1000);

CREATE VIEW people_view

 OF people_type

 MODE DB2SQL

 (REF IS people_view_oid USER GENERATED)

 AS SELECT people_func (VARCHAR(people_oid)), name, address

 FROM ONLY (people);

CREATE VIEW emp_view

 OF emp_type

 MODE DB2SQL

 UNDER people_view INHERIT SELECT PRIVILEGES

 AS SELECT emp_func (VARCHAR(people_oid)), name,

 address, title, salary

 FROM emp;

SELECT *

 FROM people_view;

PEOPLE_VIEW_OID NAME ADDRESS

--------------- ----- ---------------

x'30' Sammy 123 Lane

x'31' Josh 123 Street

SELECT *

 FROM emp_view;

PEOPLE_VIEW_OID NAME ADDRESS TITLE SALARY

--------------- ---- ---------------- -------------------- ----------

x'31' Josh 123 Street Director 1000.00

The WITH CHECK OPTION clause can be tricky because you are, in effect, telling the views to combine WHERE clauses
either from upward in the dependency chain (via CASCADE) or downward in the dependency chain (via LOCAL).
Consider the following:

V1 sourced from table T
V2 sourced from V1 WITH check_opn CHECK OPTION
V3 sourced from V2
V4 sourced from V3 WITH check_opn CHECK OPTION
V5 sourced from V4

The following table shows the search conditions against which inserted or updated rows are checked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following table shows the search conditions against which inserted or updated rows are checked.

Note that if you create a view (or any other object, for that matter) with a schema name
that does not already exist in the database, DB2 will implicitly create a schema of that
name.

MySQL

Not supported.

Oracle

Oracle supports extensions to the ANSI standard to create object-oriented views, XMLType views, and views that
support LOB and object types:

CREATE [OR REPLACE] [[NO] FORCE] VIEW view_name

 {[(column [,...]) [constraint_clause] |

 [OF type_name {UNDER parent_view |

 WITH OBJECT IDENTIFIER {DEFAULT | (attribute [,...]) }

 [(constraint_clause)]] |

 [OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT

 {element | xml_schema_url # element}]

 WITH OBJECT IDENTIFIER {DEFAULT | (attribute [,...]}]

AS

(select statement)

[WITH [READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]]]

Oracle's implementation of the ALTER VIEW statement supports added capabilities, such as adding, dropping, or
modifying constraints associated with the view. In addition, the ALTER VIEW statement will explicitly recompile a view
that is invalid, enabling you to locate recompile errors before runtime. This recompiling feature enables you to
determine if a change in a base table negatively impacts any dependent views:

ALTER VIEW view_name

 {ADD constraint_clause |

 MODIFY CONSTRAINT constraint_clause [NO]RELY] |

 DROP {PRIMARY KEY | CONSTRAINT constraint_clause |

 UNIQUE (column [,...])} }

COMPILE

The parameters are:

OR REPLACE

Replaces any existing view of the same view_name with the new view.

[NO] FORCE

The FORCE clause creates the view regardless of whether the base tables exist or the user creating the view
has privileges to the base tables, views, or functions defined in the view. The FORCE clause also creates the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

has privileges to the base tables, views, or functions defined in the view. The FORCE clause also creates the
view regardless of errors that occur during view creation. The NO FORCE clause creates the view only if the
base tables and proper privileges are in place.

constraint_clause

Allows you to specify constraints (see CREATE TABLE) on views for CREATE VIEW. Using ALTER VIEW, this
clause also allows you to affect a named, pre-existing constraint. You can define the constraint at the view
level, similar to a table-level view, or at the column or attribute level. Note that although Oracle allows you to
define constraints on a view, it doesn't yet enforce them. Oracle supports constraints on a view in DISABLE and
NOVALIDATE modes.

OF type_name

Declares that the view is an object view of type_name. The columns of the view correspond directly to the
attributes returned by type_name, where type_name is a previously declared type (see CREATE TYPE). You do not
specify column names for object and XMLType views.

UNDER parent_view

Specifies a subview based on a pre-existing parent_view. The subview must be in the same schema as the parent
view, the type_name must be an immediate subtype of the parent_view, and one subview is allowed.

WITH OBJECT IDENTIFIER {DEFAULT | (attribute [,...]) }

Defines the root object view as well as any attribute of the object type used to identify each row of the object
view. The attributes usually correspond to the primary key columns of the base table and must uniquely identify
each row of the view. This clause is incompatible with subviews and dereferenced or pinned REF keys. The
DEFAULT keyword uses the implicit object identifier of the base object table or view.

OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT {element | xml_schema_url # element] WITH OBJECT IDENTIFIER
(attribute [,...])

Specifies that the view will return XMLType instances. Specifying the optional xml_schema_url as a pre-registered
XMLSchema and element name further constrains the returned XML as an element in that XMLSchema. The
WITH OBJECT IDENTIFIER clause specifies the identifier that uniquely identifies each row of the XMLType view.
One or more attributes may use non-aggregate functions like extractValue() to obtain the identifiers from the
resultant XMLType.

WITH READ ONLY

Ensures the view is used only to retrieve data and not to modify it.

WITH CHECK OPTION [CONSTRAINT constraint_name]

Forces the view to accept only inserted and updated data that can be returned by the view's SELECT statement.
Alternately, you can specify a single CHECK OPTION constraint_name that exists on the base table that you want
to enforce. If the constraint is not named, Oracle names the constraint SYS_Cn, where n is an integer.

ADD constraint_clause

Adds a new constraint to the view. Oracle supports constraints only in DISABLE and NOVALIDATE mode.

MODIFY CONSTRAINT constraint_clause [NO]RELY

Changes the RELY or NORELY setting of an existing view constraint. (RELY and NORELY are explained under
CREATE TABLE.)

DROP {PRIMARY KEY | CONSTRAINT constraint_clause | UNIQUE (column [,...])}

Drops an existing constraint on a view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COMPILE

Recompiles the view.

Any dblinks in the view's SELECT statement must be declared using the CREATE DATABASE LINK...CONNECT TO
statement. Views containing flashback queries will have their AS OF clause evaluated at each invocation of the view, not
when the view is compiled.

In this example, we create a view that has an added constraint:

CREATE VIEW california_authors (last_name, first_name,

 author_ID UNIQU RELY DISABLE NOVALIDATE,

 CONSTAINT id_pk PRIMARY KEY (au_id) RELY DISABLE NOVALIDATE)

AS

SELECT au_lname, au_fname, au_id

FROM authors

WHERE state = 'CA';

We might also wish to create an object view on an Oracle database and schema. This example creates the type and the
object view:

CREATE TYPE inventory_type AS OBJECT

(title_id NUM(6),

 warehouse wrhs_typ,

 qty NUM(8));

CREATE VIEW inventories OF inventory_type

WITH OBJECT IDENTIFIER (title_id)

AS

SELECT i.title_id, wrhs_typ(w.wrhs_id, w.wrhs_name,

 w.location_id), i.qty

FROM inventories i

JOIN warehouses w ON i.wrhs_id = w.wrhs_id;

You could recompile the inventory_type view like this:

ALTER VIEW inventory_type COMPILE:

An updateable view in Oracle cannot contain any of the following:

The DISTINCT clause

UNION, INTERSECT, or MINUS

Joins that cause inserted or updated data to affect more than one table

Aggregate or analytic functions

GROUP BY, ORDER BY, CONNECT BY, or START WITH clauses

Subqueries or collection expressions in the SELECT item list (Subqueries are acceptable in the SELECT
statement's WHERE clause.)

Update pseudocolumns or expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Update pseudocolumns or expressions

There are some restrictions on how subviews and materialized views can be defined in Oracle:

The subview must use aliases for ROWID, ROWNUM, or LEVEL pseudocolumns.

The subview cannot query CURRVAL or NEXTVAL pseudocolumns.

The subview cannot contain the SAMPLE clause.

The subview evaluates all columns of a SELECT * FROM... statement at compile time. Thus, any new columns
added to the base table will not be retrieved by the subview until the view is recompiled.

Note that older versions of Oracle supported partitioned views. This feature has been deprecated. You should use
explicitly declared partitions instead.

PostgreSQL

PostgreSQL supports a no-frills subset of the ANSI standard:

CREATE VIEW view_name [(column [,...])]

AS select_statement

PostgreSQL's CREATE VIEW does not support some of the more complex options that other vendors do. However, it
does allow views to be built on tables and other defined class objects. PostgreSQL views are built only upon other
tables, not upon other views. PostgreSQL views are always read-only and cannot be used to perform data modifications
on the underlying base tables.

SQL Server

SQL Server supports some extensions to the ANSI standard, but does not offer object views or subviews:

CREATE VIEW view_name [(column [,...])]

[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA} [,...]]

AS

select_statement

[WITH CHECK OPTION]

SQL Server's implementation of ALTER VIEW allows you to change an existing view without affecting the permissions or
dependent objects of the view:

ALTER VIEW view_name [(column [,...])]

[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA} [,...]]

AS

select_statement

[WITH CHECK OPTION]

The parameters are as follows:

ENCRYPTION

Encrypts the text of the view in the syscomments table. This option is usually invoked by software vendors
who want to protect their intellectual capital.

SCHEMABINDING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SCHEMABINDING

Binds the view to a specific schema, meaning that all objects in the view must be referenced by their full name
(both owner and object name). The view and any tables referenced in the view SELECT clause must be fully
qualified, as in pubs.scott.employee. Views created with SCHEMABINDING (and tables referenced by these
views) must have the schema binding dropped (via ALTER VIEW) before they may be dropped or altered.

VIEW_METADATA

Specifies that SQL Server return metadata about the view (rather than the base table) to calls made from
DBLIB or OLEDB APIs. Views created or altered with VIEW_METADATA enable their columns to be updated by
INSERT and UPDATE INSTEAD OF triggers.

WITH CHECK OPTION

Forces the view to accept only inserted and updated data that can be returned by the view's SELECT statement.

The SELECT clause of a SQL Server view cannot:

Have the COMPUTE, COMPUTE BY, INTO, or ORDER BY clauses (ORDER BY is allowed if you use SELECT TOP)

Reference a temporary table

Reference a table variable

Reference more than 1,024 columns, including those referenced by subqueries

Here, we define a SQL Server view with both ENCRYPTION and CHECK OPTION:

CREATE VIEW california_authors (last_name, first_name, author_id)

WITH ENCRYPTION

AS

 SELECT au_lname, au_fname, au_id

 FROM authors

 WHERE state = 'CA'

WITH CHECK OPTION

GO

SQL Server allows multiple SELECT statements in a view, as long as they are linked with UNION or UNION ALL clauses.
SQL Server also allows functions and hints in the SELECT statement of a view. A SQL Server view is updateable if all of
the items in the following list are true.

The SELECT statement has no aggregate functions

The SELECT statement does not contain TOP, GROUP BY, DISTINCT, or UNION

The SELECT statement has no derived columns (see SUBQUERY)

The FROM clause of the SELECT statement references at least one table

SQL Server allows indexes to be created on views (see CREATE INDEX). By creating a unique, clustered index on a
view, you cause SQL Server to store a physical copy of the view on the database. Changes to the base table are
automatically updated in the indexed view. Indexed views consume extra disk space, but provide a boost in
performance. Indexed views must be built using the SCHEMABINDING clause.

SQL Server also allows the creation of local partitioned views and distributed partitioned views. A local partitioned view
is a partitioned view where all views are present on the same SQL Server. A distributed partitioned view is a partitioned
view where one or more views are located on remote servers.

Partitioned views must very clearly derive their data from different sources, with each distinct data source joined with a
UNION ALL statement to the next. Furthermore, all columns of the partitioned views should be selected and identical.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UNION ALL statement to the next. Furthermore, all columns of the partitioned views should be selected and identical.
(The idea is that you have split the data out logically by means of a frontend application. SQL Server then recombines
the data through the partitioned view.) This example shows how the data in the view comes from three separate SQL
Servers:

CREATE VIEW customers

AS

--Select from a local table on server 'New_York'

SELECT *

FROM sales_archive.dbo.customers_A

UNION ALL

SELECT *

FROM houston.sales_archive.dbo.customers_K

UNION ALL

SELECT *

FROM los_angeles.sales_archive.dbo.customers_S

Note that each remote server (New_York, houston, and los_angeles) has to be defined as a remote server on all of the
SQL Servers using the distributed partitioned view. Partitioned views can greatly boost performance because they can
split I/O and user loads across many machines. But they are also difficult to plan, create, and maintain. Be sure to read
the vendor documentation for complete details about all the permutations available with partitioned views.

When altering an existing view, SQL Server acquires and holds an exclusive schema lock on the view until the alteration
is finished. ALTER VIEW drops any indexes that might be associated with a view. You must manually recreate them
using CREATE INDEX.

See Also

CREATE/ALTER TABLE
DROP
SELECT
SUBQUERY

DECLARE CURSOR Command

The DECLARE command is one of four commands used in cursor processing, along with FETCH, OPEN, and CLOSE.
Cursors allow you to process queries one row at a time, rather than in a complete set. The DECLARE CURSOR command
specifies the exact records to be retrieved and manipulated one row at a time from a specific table or view.

In other words, cursors are especially important for relational databases because databases are set-based, while most
client-centric programming languages are row-based. This is important for two reasons. First, cursors allow
programmers to program using methodologies supported by their favorite row-based programming language. Second,
cursors run counter to the default behavior of some relational database platforms, which operate on a set of records
and, on those specific platforms, may be noticeably slower than standard set-based operations.

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

SQL2003 Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

DECLARE cursor_name [{SENSITIVE | INSENSITIVE | ASENSITIVE}]

[[NO] SCROLL] CURSOR [{WITH | WITHOUT} HOLD]

 [{WITH | WITHOUT} RETURN}]

FOR select_statement

[FOR {READ ONLY | UPDATE [OF column [,...]]}]

Keywords

DECLARE cursor_name

Gives the cursor a unique name in the context in which it is defined — for example, in the database or schema
where it is created. The name must be unique, meaning that no other cursors may share the same name.

SENSITIVE | INSENSITIVE | ASENSITIVE

Defines the manner in which the cursor interacts with the source table and the result set retrieved by the cursor
query, where:

SENSITIVE

Tells the database to operate directly against the result set, such that the cursor will see changes to its
result set as it moves through the records.

INSENSITIVE

Tells the database to create a temporary but separate copy of the result set, so that all changes made
against the result set by other operations are invisible to the cursor.

ASENSITIVE

Allows the database implementation to determine whether to make a copy of the result set.
ASENSITIVE is the SQL2003 default.

[NO] SCROLL

Tells the database not to enforce processing one row at a time, using FETCH NEXT, but that all forms of the
FETCH clause are allowed against the result set. NO SCROLL enforces processing one row at a time.

{WITH | WITHOUT} HOLD

Tells the cursor to remain open when a transaction encounters the COMMIT statement. Conversely, WITHOUT
HOLD tells the cursor to close when the transaction encounters a COMMIT statement. (A cursor that uses WITH
HOLD can only be and is always closed with a ROLLBACK statement or a CLOSE CURSOR statement.)

{WITH | WITHOUT} RETURN

Used only in a stored procedure, the WITH RETURN clause tells the database to return the result set, if it is still
open, when the stored procedure terminates. With the WITHOUT RETURN clause, which is the default behavior,
all open cursors are implicitly closed when the stored procedure terminates.

FOR select_statement

Defines the underlying SELECT statement that determines the rows in the result set of the cursor. As with a
regular SELECT statement, the results of the query may be sorted according to an ORDER BY clause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

regular SELECT statement, the results of the query may be sorted according to an ORDER BY clause.

FOR {READ ONLY | UPDATE [OF column [,...]] }

Specifies that the cursor is not updateable in any way, using FOR READ ONLY. This is the default when the
cursor is defined with SCROLL or INSENSITIVE properties or the query contains an ORDER BY clause or is
against an non-updateable table. Alternately, you can specify FOR UPDATE OF column1, column2 [,...], defining
the columns where you want to execute UPDATE statements. You can leave off a column list on the FOR
UPDATE OF to include all columns in the cursor.

Rules at a Glance

The DECLARE CURSOR command enables the retrieval and manipulation of records from a table one row at a time. This
provides row-by-row processing, rather than the traditional set processing offered by SQL.

At the highest level, these steps are followed when working with a cursor:

Create a cursor using DECLARE.

Open the cursor using OPEN.

Operate against the cursor using FETCH.

Dismiss the cursor using CLOSE.

The DECLARE CURSOR command works by specifying a SELECT statement. Each row returned by the SELECT statement
may be individually retrieved and manipulated. In this Oracle example, the cursor is declared in the declaration block
along with some other variables. The cursor is then opened, fetched against, and then closed in the BEGIN...END block
that follows:

DECLARE

 CURSOR title_price_cursor IS

 SELECT title, price

 FROM titles

 WHERE price IS NOT NULL;

 title_price_val title_price_cursor%ROWTYPE;

 new_price NUMBER(10,2);

BEGIN

 OPEN title_price_cursor;

 FETCH title_price_cursor INTO title_price_val;

 new_price := "title_price_val.price" * 1.25

 INSERT INTO new_title_price

 VALUES (title_price_val.title, new_price)

 CLOSE title_price_cursor;

END;

Because this example uses PL/SQL, much of the code is beyond the scope of this book. However, the DECLARE block
clearly shows that the cursor is declared. In the PL/SQL execution block, the cursor is initialized with the OPEN
command, values are retrieved with the FETCH command, and the cursor finally is terminated with the CLOSE
command.

The SELECT statement is the heart of your cursor, so it is a good idea to test it thoroughly before embedding it in the
DECLARE CURSOR statement. The SELECT statement may operate against a base table or a view. For that matter,
read-only cursors may operate against non-updateable views. The SELECT statement can have subclauses like ORDER
BY, GROUP BY, and HAVING if it is not updating the base table. If the cursor is FOR UPDATE, then it is a good idea to
exclude these clauses from the SELECT statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exclude these clauses from the SELECT statement.

Local cursors are sometimes used as output parameters of stored procedures. Thus, a stored procedure could define
and populate a cursor and pass that cursor to a calling batch or stored procedure.

In this simple DB2 example, we'll declare a cursor that looks at department numbers, names, and manager numbers
for all departments in the admin_group 'X01':

EXEC SQL

DECLARE dept_cursor CURSOR

FOR SELECT dept_nbr, dept_name, mgr_nbr

 FROM department

 WHERE admin_group = 'X01'

 ORDER BY dept_name ASC, dept_nbr DESC, mgr_nbr DESC;

In this next example from Microsoft SQL Server, a cursor from the publishers table is declared and opened. The cursor
takes the first record from publishers that matches the SELECT statement and inserts it into another table; it then
moves to the next record and the next, until all records are processed. Finally, the cursor is closed and deallocated
(DEALLOCATE is used only with Microsoft SQL Server):

DECLARE @publisher_name VARCHAR(20)

DECLARE pub_cursor CURSOR

FOR SELECT pub_name FROM publishers

 WHERE country <> 'USA'

OPEN pub_cursor

FETCH NEXT FROM pub_cursor INTO @publisher_name

WHILE @@FETCH_STATUS = 0

BEGIN

 INSERT INTO foreign_publishers VALUES(@publisher_name)

END

CLOSE pub_cursor

DEALLOCATE pub_cursor

In this example, you see how the cursor moves through a set of records. (The example was intended only to
demonstrate this concept, since there is actually a better way to accomplish the same task, namely an
INSERT...SELECT statement.)

Programming Tips and Gotchas

Most platforms do not support dynamically executed cursors. Rather, cursors are embedded within an application
program, stored procedure, user-defined function, etc. In other words, the various statements for creating and using a
cursor are usually used only in the context of a stored procedure or other database-programming object, not in a
straight SQL script.

For ease of programming and migration, don't use the SCROLL clause or the various sensitivity keywords. Some
platforms support only forward-scrolling cursors, so you can avoid headaches later by just sticking to the simplest form
of cursor.

Cursors behave differently on the various database platforms when crossing a transaction boundary — for example,
when a set of transactions is rolled back in the midst of a cursor. Be sure to get familiar with exactly how each database
platform behaves in these circumstances.

MySQL does not support server-side cursors in the ANSI SQL style, but does support extensive C-programming
extensions that provide the same functionality.

DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2 supports the basic DECLARE CURSOR statement along with some variations on the WITH HOLD and WITH RETURN
clauses, as in the following example:

DECLARE cursor_name CURSOR

[WITH HOLD] [WITH RETURN [{TO CALLER | TO CLIENT}]]

FOR select_statement

where:

WITH RETURN [{TO CALLER | TO CLIENT}]

Used only in a stored procedure, the WITH RETURN clause tells the database to return the result set, if it is still
open, when the stored procedure terminates. (DB2 will accept WITH RETURN on cursors outside of a stored
procedure, but it has no effect.) It has these options:

TO CALLER

Returns the result set to the caller, such as another stored procedure or process on the database
server. It will also return the result set to a client, if that is what called the stored procedure. This is the
default behavior for cursors embedded in DB2 external stored procedures.

TO CLIENT

Returns the result set to the client application, bypassing any intermediate processes such as nested
stored procedures. This clause cannot be used to return result sets to functions or methods.

FOR select_statement

Defines the underlying SELECT statement that determines the rows in the result set of the cursor. The SELECT
statement cannot include parameters, but can include host variables, as long as they have been declared before
the cursor. You may also use a prepared SELECT statement as the select_statement, using the DB2 PREPARE
command.

DB2 provides syntax to explicitly declare a cursor as read-only or updateable as part of the SELECT statement rather
than as part of the DECLARE CURSOR statement.

When not specified, the updateability of a cursor is implicitly determined according to a variety of rules that improve
locking. First of all, a cursor is assumed to be read-only if it is not deleteable. A DB2 cursor is deleteable when it has
the FOR UPDATE clause plus:

The FROM clause of the SELECT statement references only one base table or deleteable view.

The SELECT statement does not contain a VALUES clause, a DISTINCT clause, a GROUP BY clause, a HAVING
clause, an ORDER BY clause, a FOR READ ONLY clause, or UNION, EXCEPT, or INTERSECT clauses.

The SELECT statement is free of column functions in the select item list.

The columns of a DB2 cursor are updateable when it meets the requirements to be deleteable plus:

The columns are resolved to columns in the base table or view.

The LANGLEVEL bind option is MIA, SQL92E, or the columns are referenced in the FOR UPDATE clause of the
select_statement.

A DB2 cursor may also be updateable if it is statically defined or has the SQL-standard
bind option (MIA) applied to LANGLEVEL. The LANGLEVEL setting MIA indicates that the
cursor runs under SQL92 rules. The setting SQL92E indicates that the cursor runs under
the SQL92 entry-level rules. And the setting SAA1 indicates that the cursor runs under the
DB2 common (old) rules. LANGLEVEL is assigned using the DB2 PREP command.

DB2 also allows cursors to be ambiguous. An ambiguous cursor is considered updateable
unless the BLOCKING bind option is ALL, whence it is considered read-only. A cursor is
ambiguous when all these conditions are true:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ambiguous when all these conditions are true:

The select_statement doesn't include a FOR READ ONLY or FOR UPDATE clause.

The language level setting (LANGLEVEL) is set to the value SAA1.

The select_statement is dynamically prepared.

The cursor is otherwise deleteable.

There are a couple things to be careful of with DB2 cursors:

System function values, such as those returned by CURRENT DATE, CURRENT
TIME, or CURRENT TIMESTAMP, are determined when a cursor is opened and not
when the FETCH statement is executed. Therefore, any of these values would be
identical for every record in the result set, since the values are determined once
when the cursor is opened.

If a LANGUAGE other than SQL (such as Java) is used for the stored procedure,
the default behavior is WITH RETURN TO CALLER.

MySQL

Not supported.

Oracle

Oracle has a rather interesting implementation of cursors. In reality, all Oracle data modification statements (INSERT,
UPDATE, DELETE, and SELECT) implicitly open a cursor. For example, a C program accessing Oracle would not need to
issue a DECLARE CURSOR statement to retrieve data on a record-by-record basis because that is the implicit behavior
of Oracle. Because of this behavior, DECLARE CURSOR is something you use only in PL/SQL constructs, like stored
procedures, and not something you would use in a script that is purely SQL.

Since cursors can only be used in stored procedures and user-defined functions on Oracle,
they are documented in the Oracle PL/SQL reference material, not in the SQL reference
material.

Oracle utilizes a variation of the DECLARE CURSOR statement that supports parameterized inputs, as in the following
syntax:

DECLARE CURSOR cursor_name [(parameter datatype [,...])]

IS select_statement

[FOR UPDATE [OF column_name [,...]]}]

where:

parameter datatype [,...]IS select_statement

Defines the select_statement used to retrieve the cursor result set. It serves the same purpose as the ANSI
SQL2003 FOR select_statement clause.

FOR UPDATE [OF column_name]

Defines the cursor or specific columns of the cursor as updateable. Otherwise, the cursor is assumed to be
read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

read-only.

In Oracle, variables are not allowed in the WHERE clause of the SELECT statement unless they are first declared as
variables. The parameters are not assigned at the DECLARE; instead, they are assigned values at the OPEN command.
This is important since any system function will return an identical value for all rows in the cursor result set.

PostgreSQL

PostgreSQL does not support the WITH clauses. It does allow you to return result sets in BINARY rather than text
format. Although the compiler will not cause errors with many of the ANSI keywords, PostgreSQL's implementation of
DECLARE CURSOR is more limited than it might first appear:

DECLARE cursor_name [BINARY] [INSENSITIVE] [SCROLL] CURSOR

FOR select_statement

[FOR {READ ONLY | UPDATE [OF column_name [,...]]}]

where:

BINARY

Forces the cursor to retrieve binary-formatted data rather than text-formatted data.

INSENSITIVE

Indicates that data retrieved by the cursor is unaffected by updates from other processes or cursors. However,
this is PostgreSQL's default behavior, so adding or leaving this keyword off has no effect.

SCROLL

Allows multiple rows to be retrieved by a single FETCH operation. However, this is PostgreSQL's default
behavior, so adding or leaving off this keyword has no effect.

FOR {READ-ONLY | UPDATE}

Indicates that a cursor is opened using read-only mode or updateable mode, respectively. However, PostgreSQL
only supports read-only cursors. That means that the FOR READ-ONLY clause has no effect, while the FOR
UPDATE (column_name) clause produces an informational error message.

PostgreSQL closes any existing cursor when a newly declared cursor is created with the same name. Binary cursors
tend to be faster because PostgreSQL stores data as binary on the backend. However, user applications are only text
aware. Therefore, you would have to build in binary handling for any BINARY cursors.

PostgreSQL allows cursors only within a transaction. You should enclose a cursor within a BEGIN and COMMIT or
ROLLBACK transaction block.

PostgreSQL does not support an explicit OPEN cursor statement. Cursors are considered open when they are declared.
So to declare and open a cursor in PostgreSQL, you could use code like this:

DECLARE pub_cursor CURSOR

FOR SELECT pub_name FROM publishers

 WHERE country <> 'USA';

SQL Server

SQL Server supports the ANSI standard, as well as a good many extensions that provide flexibility in how a cursor
scrolls through a result set and manipulates data, as in the following syntax:

DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR

 [LOCAL | GLOBAL] [FORWARD_ONLY | SCROLL]

 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]

 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]

 [TYPE_WARNING]

FOR select_statement

[FOR {READ ONLY | UPDATE [OF column_name [,...]]}]

The parameters are as follows:

LOCAL | GLOBAL

Scopes the cursor for either the local Transact-SQL batch or makes the cursor available to all Transact-SQL
batches issued by the current session via OPEN and FETCH statements, respectively. A global cursor name can
be referenced by any stored procedure, function, or Transact-SQL batch executed in the current session. A
global cursor is implicitly deallocated at disconnect, but a local cursor must be manually deallocated. The LOCAL
and GLOBAL keywords are optional. The default behavior, if neither is specified, is defined by the default to local
database property.

INSENSITIVE | FORWARD_ONLY | SCROLL

Determines how the cursor will move through the result set, with three options:

INSENSITIVE

Creates the result set as a table in TEMPDB. Changes to the base table are not reflected in the cursor
result set. Not compatible with SQL Server extensions to the DECLARE CURSOR command like LOCAL,
GLOBAL, STATIC, KEYSET, DYNAMIC, FAST_FORWARD, etc. Can only be used in a SQL92-style
DECLARE CURSOR statement, such as DECLARE sample CURSOR INSENSITIVE FOR select_statement FOR
UPDATE.

FORWARD_ONLY

Indicates that the cursor must scroll from the first to the last record in the result set and that FETCH
NEXT is the only supported form of the FETCH statement. The cursor is assumed to be DYNAMIC unless
STATIC or KEYSET are used. FAST_FORWARD is mutually exclusive of FORWARD_ONLY.

SCROLL

Enables all FETCH options (ABSOLUTE, FIRST, LAST, NEXT, PRIOR, and RELATIVE). Otherwise, only FETCH
NEXT is available. If DYNAMIC, STATIC, or KEYSET are used, the cursor defaults to SCROLL behavior.
FAST_FORWARD is mutually exclusive of SCROLL.

STATIC | KEYSET | DYNAMIC | FAST_FORWARD

Determines how records are manipulated in the result set. These settings are incompatible with the FOR READ
ONLY and FOR UPDATE clauses. There are four options:

STATIC

Makes a temporary copy of the result set data and stores it in tempdb. Modifications made to the source
table or view do not show up when processing the cursor. STATIC cursors cannot modify data in the
source table or view.

KEYSET

Makes a temporary copy of the result set with membership and fixed row order (also known as a
keyset) in tempdb. The keyset correlates the data in the cursor result set to the base table or view such

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

keyset) in tempdb. The keyset correlates the data in the cursor result set to the base table or view such
that the cursor can see changes made to the underlying data. Rows that have been deleted or updated
show an @@FETCH_STATUS of -2 (unless the update was done using UPDATE...WHERE CURRENT OF,
in which case they are fully visible), while rows inserted by other users are not visible at all.

DYNAMIC

Determines the records in the cursor result set as each FETCH operation is executed. Thus, DYNAMIC
cursors see all changes made to the base table or view, even those by other users. Because the result
set may be in constant flux, DYNAMIC cursors do not support FETCH ABSOLUTE.

FAST_FORWARD

Creates a FORWARD_ONLY, READ_ONLY cursor that quickly reads through the entire cursor result set
at one time.

READ_ONLY | SCROLL_LOCKS | OPTIMISTIC

Determines concurrency and positional update behavior for the cursor. These settings are incompatible with
FOR READ ONLY and FOR UPDATE. The allowable parameters include:

READ_ONLY

Prevents updates to the cursor and disallows the cursor from being referenced in UPDATE or DELETE
statements that contain WHERE CURRENT OF.

SCROLL_LOCKS

Ensures that positional updates and deletes succeed by locking the cursor result set rows as they are read into
the cursor. The locks are held until the cursor is closed and deallocated. SCROLL_LOCKS is mutually exclusive
of FAST_FORWARD.

OPTIMISTIC

Ensures that positional updates and deletes succeed unless the row benig updated or deleted in the cursor
result set has changed since it was read into the cursor. SQL Server accomplishes this by comparing a
timestamp, or a checksum value when no timestamp exists, on the columns. It does not lock the rows in the
cursor result set. OPTIMISTIC is mutually exclusive of FAST_FORWARD.

TYPE_WARNING

Warns the user when the cursor is implicitly converted from one type to another — for example from SCROLL to
FORWARD_ONLY.

FOR {READ ONLY |

Identifies the cursor as read only using the ANSI standard syntax. This keyword is not compatible with the other
type identifiers shown previously. It should only be used with INSENSITIVE, FORWARD_ONLY, and SCROLL.

FOR UPDATE [OF column_name [,...]]}

Allows updates to columns in the cursor using UPDATE and DELETE statements with the WHERE CURRENT OF
clause. If FOR UPDATE is used without a column list, then all columns in the cursor are updateable. Otherwise,
only those columns listed are updateable.

Microsoft SQL Server allows two basic forms of syntax for the DECLARE CURSOR
statement. The syntax forms are not compatible! The basic forms of syntax are SQL92
compatible and Transact-SQL extensions. You cannot mix keywords of the two forms
together.

The SQL-92 compatibility syntax for DECLARE CURSOR is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SQL-92 compatibility syntax for DECLARE CURSOR is:

DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR

FOR select_statement

[FOR { READ ONLY | UPDATE [OF column_name [,...]] }]

While the Transact-SQL extensioned syntax for DECLARE CURSOR is:

DECLARE cursor_name CURSOR

[LOCAL | GLOBAL] [FORWARD_ONLY | SCROLL]

[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]

[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]

[TYPE_WARNING]

FOR select_statement

[FOR UPDATE [OF column_name [,...]]]

The SQL92 compatability syntax is supported to enable your code to be more transportable. The Transact-SQL
extensions syntax enables you to define cursors using the same cursor types that are available in popular database
APIs like ODBC, OLE-DB, and ADO, but may only be used in SQL Server stored procedures, user-defined functions,
triggers, and ad hoc queries.

If you do define a Transact-SQL extension cursor but do not define concurrency behavior using the OPTIMISTIC,
READ_ONLY, or SCROLL_LOCKS keywords, then:

The cursor defaults to READ-ONLY if the cursor is defined as FAST_FORWARD, STATIC, or the user has
insufficient privileges to update the base table or view.

The cursor defaults to OPTIMISTIC if the cursor has been defined as DYNAMIC or KEYSET.

Note that variables may be used in the select_statement of a SQL Server cursor, but the variables are evaluated when the
cursor is declared. Thus, a cursor containing the column based on the system function GETDATE() will have the same
date and time for every record in the cursor result set.

In the following SQL Server example, we use a KEYSET cursor to change blank spaces to dashes in the phone column
of the authors table:

SET NOCOUNT ON

DECLARE author_name_cursor CURSOR LOCAL KEYSET TYPE_WARNING

 FOR SELECT au_fname FROM pubs.dbo.authors

DECLARE @name varchar(40)

OPEN author_name_cursor

FETCH NEXT FROM author_name_cursor INTO @name

WHILE (@@fetch_status <> -1)

BEGIN

-- @@fetch_status checks for 'record not found' conditions and errors

 IF (@@fetch_status <> -2)

 BEGIN

 PRINT 'updating record for ' + @name

 UPDATE pubs.dbo.authors

 SET phone = replace(phone, ' ', '-')

 WHERE CURRENT OF author_name_cursor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE CURRENT OF author_name_cursor

 END

 FETCH NEXT FROM author_name_cursor INTO @name

END

CLOSE author_name_cursor

DEALLOCATE author_name_cursor

GO

See Also

CLOSE CURSOR
FETCH
OPEN

DELETE Statement

The DELETE statement erases records from a specified table or tables. DELETE statements acting against tables are
sometimes called search deletes. The DELETE statement may also be used in conjunction with a cursor. DELETE
statements acting upon the rows of a cursor are sometimes called positional deletes.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Supported, with limitations

SQL2003 Syntax

DELETE FROM { table_name | ONLY (table_name) }

[{ WHERE search_condition | WHERE CURRENT OF cursor_name }]

Keywords

FROM table_name

Identifies the table, called table_name, from which rows will be deleted. The table_name assumes the current
schema if one is not specified. You may alternately specify a single table view name. FROM is mandatory,
except in the DELETE...WHERE CURRENT OF statement. When not using the ONLY clause, do not enclose the
table_name in parentheses.

ONLY (table_name)

Restricts cascading of the deleted records to any subtables of the target table or view. ONLY effects only typed
(object-oriented) tables and views. If used with a non-typed table or view, it is ignored and does not cause an
error. If ONLY is used, you must enclose the table_name in parentheses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

error. If ONLY is used, you must enclose the table_name in parentheses.

WHERE search_condition

Defines search criteria for the DELETE statement using one or more search_condition clauses to ensure that only
the target rows are deleted. Any legal WHERE clause is acceptable. Typically, these criteria are evaluated
against each row of the table before the deletion occurs.

WHERE CURRENT OF cursor_name

Restricts the DELETE statement to the current row of a defined and opened cursor called cursor_name.

Rules at a Glance

The DELETE statement erases rows from a table or view. Space released by erased rows will be returned to the
database where the table is located, though it may not happen immediately.

A simple DELETE statement that erases all records in a given table has no WHERE clause, as in the following:

DELETE FROM sales;

You can use any valid WHERE clause to filter records that you do not want to delete. All three of the following examples
show valid DELETE statements, and since all are search deletes, they all include the FROM clause:

DELETE FROM sales

WHERE qty IS NULL;

DELETE FROM suppliers

WHERE supplierid = 17

 OR companyname = 'Tokyo Traders';

DELETE FROM distributors

WHERE postalcode IN

 (SELECT territorydescription FROM territories);

In some cases, you may wish to delete a specific row that is being processed by a declared and open cursor:

DELETE titles WHERE CURRENT OF title_cursor;

The above query assumes that you have declared and opened a cursor named title_cursor. Whichever row the cursor
is on will be deleted when the command, shown above, is executed. Note that in the positional delete shown earlier, the
FROM clause is not required.

Programming Tips and Gotchas

It is rare to issue a DELETE statement without a WHERE clause, because this results in deleting all rows from the
affected table. You should first issue a SELECT statement with the same WHERE clause you intend to use on the DELETE
statement. That way you can be sure exactly which records will be deleted.

If it becomes necessary to remove all the rows in a table, you should consider using the non-ANSI TRUNCATE TABLE
statement. In those databases that support the command, TRUNCATE TABLE is usually a faster method to physically
remove all rows. TRUNCATE TABLE is faster than DELETE because the deletion of individual records is not logged. On
some platforms, this makes rollback of a TRUNCATE statement impossible. The reduction of logging overhead saves
considerable time when erasing a large number of records. On some database platforms, all foreign keys on the table
must be dropped before issuing a TRUNCATE statement.

DB2

DB2 supports the ANSI standard, with the addition of transaction isolation control and the ability to assign an alias to
the table from which records will be deleted, as in the following:

DELETE FROM { table_name | ONLY (table_name) } [AS alias]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DELETE FROM { table_name | ONLY (table_name) } [AS alias]

[WHERE {search_conditions | CURRENT OF cursor_name}]

[WITH { RR | RS | CS | UR }]

The parameters are:

AS alias

Allows the target table_name to use an alias. This is especially useful for correlated subqueries. (Note that DB2
has a special object called an alias that may be created with the DB2 CREATE ALIAS statement. In this case, the
term "alias" represents what the ANSI SQL standard calls a correlation name, something akin to a simple
nickname for the table or view.)

WITH {RR | RS | CS | UR}

Controls transaction isolation level for the update statement. RR is repeatable read, RS is read stability, CS is
cursor stability, and UR is uncommitted read. See the SET TRANSACTION Statement section for full details on
these transaction isolation levels.

On DB2, the target may be a table, updateable view, or nickname. As the ANSI standard dictates, rows will be deleted
from any subtables of the target table unless you use the ONLY keyword. If ONLY is used, you must enclose the
table_name in parentheses.

If you use ONLY in combination with WHERE CURRENT OF, then the SELECT statement that defined the cursor must use
the FROM ONLY clause as well. For example:

DECLARE CURSOR emp_cursor FOR

 SELECT name, address

 FROM ONLY (employee);

DELETE FROM ONLY (employee)

 WHERE CURRENT OF emp_cursor;

The previous code assumes that employee is the base table, with subtables below it. The cursor will only select rows
that are contained in employee and not the other types contained in the subtables (e.g., parttime, salaried,
student). Similarly, deletes will only take place at this level of the hierarchy as well.

MySQL

MySQL allows a number of extensions over the ANSI standard, but does not support the WHERE CURRENT OF clause,
as in the following:

DELETE [LOW_PRIORITY] [QUICK] [table_name[.*] [,...]]

{FROM table_name[.*] [,...] | [USING table_name[.*] [,...]] }

[WHERE search_condition]

[ORDER BY clause]

[LIMIT nbr_of_rows]

The parameters are:

LOW PRIORITY

Delays the execution of DELETE until no other clients are reading from the table.

QUICK

Prevents the storage engine from merging index leaves during the delete operation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prevents the storage engine from merging index leaves during the delete operation.

DELETE table_name [,...]

Enables you to delete from more than one table at a time. Tables listed before the FROM clause, assuming one
or more tables appear in the FROM clause, will be the target of the delete operation. If more than one table
appears before the FROM clause, then all matching records in all tables will be deleted.

FROM table_name[.*]

Specifies the table or tables where records will be deleted. (The .* clause is an option to improve compatibility
with MS-Access.) If tables are listed before the FROM clause, then the table or tables in the FROM clause are
assumed to be used to support a join or lookup operation.

USING table_name[.*] [,...]

Substitute the table or tables before the FROM clause with those after the FROM clause.

ORDER BY clause

Specifies the order that rows will be deleted in. This is useful only in conjunction with LIMIT.

LIMIT nbr_of_row

MySQL also can place an arbitrary cap on the number of records deleted before control is passed back to the
client using the LIMIT nbr_of_rows clause.

MySQL allows deletion from more than one table at a time. For example, the following two DELETE statements are
functionally equivalent:

DELETE orders FROM customers, orders

WHERE customers.customerid = orders.customerid

 AND orders.orderdate BETWEEN '19950101' AND '19951231'

DELETE FROM orders USING customers, orders

WHERE customers.customerid = orders.customerid

 AND orders.orderdate BETWEEN '19950101' AND '19951231'

In the examples above, we delete all orders made by customers during the year 1995. Note that you cannot use ORDER
BY or LIMIT clauses in a multitable delete like those shown above.

You can also delete records in orderly batches using the ORDER BY clause in conjunction with the LIMIT clause:

DELETE FROM sales

WHERE customerid = 'TORTU

ORDER BY customerid

LIMIT 5

MySQL exhibits several behaviors that speed up the delete operation. For example, MySQL returns the number of
records deleted when it completes the operation. However, MySQL will return zero as the number of deleted records
when you delete all records from a table because it is faster for MySQL to return zero than to count the rows deleted. In
AUTOCOMMIT mode, MySQL will even substitute a TRUNCATE statement for a DELETE statement without a WHERE
clause because TRUNCATE is faster.

Note that the speed of a MySQL delete operation is directly related to the number of indexes on the table and the
available index cache. You can speed up delete operations by executing the command against tables with few or no
indexes or by increasing the size of the index cache.

Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle allows you to delete rows from tables, views, materialized views, nested subqueries, and partitioned views and
tables, as follows:

DELETE [FROM]

 {table_name | ONLY (table_name)} [alias]

 [{PARTITION (partition_name) |

 SUBPARTITION (subpartition_name)}] |

 (subquery [WITH {READ ONLY |

 CHECK OPTION [CONSTRAINT constraint_name]}]) |

 TABLE (collection_expression) [(+)] }

[WHERE search_condition]

[RETURNING expression [,...] INTO variable [,...]]

The parameters are:

table_name [alias]

Specifies the table, view, materialized view, or partitioned table or view where records will be deleted. You may
optionally prepend a schema identifier to the table_name or append a database link. Otherwise, Oracle will
assume the user's default schema and the local database server. You may optionally apply an alias to the
table_name. The alias is required if the target table references an object type attribute or method.

PARTITION partition_name

Applies the delete operation to the named partition, rather than to the entire table You are not required to
name a partition when deleting from a partitioned table, but it can, in many cases, help reduce the complexity
of the WHERE clause.

SUBPARTITION subpartition_name

Applies to a named subpartition, rather than to the entire table.

(subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name] }])

Specifies that the target for deletion is a nested subquery, not a table, view, or other database object. The
parameters of this clause are:

subquery

Describes the SELECT statement that makes up the subquery. The subquery can be any standard
subquery, though it may not contain an ORDER BY clause.

WITH READ ONLY

Specifies that the subquery cannot be updated.

WITH CHECK OPTION

Tells Oracle to abort any changes to the deleted table that would not appear in the result set of the
subquery.

CONSTRAINT constraint_name

Tells Oracle to further restrict changes based upon a specific constraint identified by constraint_name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells Oracle to further restrict changes based upon a specific constraint identified by constraint_name.

TABLE (collection_expression) [(+)]

Informs Oracle that the collection_expression should be treated like a table though it may, in fact, be a subquery,
a function, or some other collection constructor. In any case, the value returned by the collection_expression must
be a nested table or VARRAY.

RETURNING expression

Retrieves the rows affected by the command, where DELETE normally only shows the number of rows deleted.
The RETURNING clause can be used when the target is a table, a materialized view, or a view with a single base
table. When used for single-row deletes, the RETURNING clause stores values from the row deleted by the
statement, defined by expression, into PL/SQL variables and bind variables. When used for a multirow delete, the
RETURNING clause stores the values of the deleted rows, defined by expression, into bind arrays.

INTO variable

Specifies the variables into which the values returned as a result of the RETURNING clause are stored. There
must be a corresponding variable for every expression in the RETURNING clause.

When you execute a DELETE statement, Oracle releases space from the target table (or the base table of a target view)
back to the table or index that owned the data.

When deleting from a view, the view cannot contain a set operator, the DISTINCT keyword, joins, an aggregate
function, an analytic function, a subquery in the SELECT list, a collection expression in the SELECT list, a GROUP BY
clause, an ORDER BY clause, a CONNECT BY clause, or a START WITH clause.

Here's an example where we delete records from a remote server:

DELETE FROM scott.sales@chicago;

In the following query, we delete from a derived table that is a collection expression:

DELETE TABLE(SELECT contactname FROM customers

 c WHERE c.customerid = 'BOTTM') s

WHERE s.region IS NULL OR s.country = 'MEXICO';

Here's an example where we delete from a partition:

DELETE FROM sales PARTITION (sales_q3_1997)

WHERE qty > 10000;

Finally, in the example below, we use the RETURNING clause to look at the values that are deleted:

DELETE FROM employee

WHERE job_id = 13

 AND hire_date + TO_YMINTERVAL('01-06') =< SYSDATE;

RETURNING job_lvl

INTO :int01;

The previous example deletes records from the employee table and returns the job_lvl values into the predefined
:into1 variable.

PostgreSQL

PostgreSQL uses the DELETE command to remove rows and any defined subclasses from the table. It is otherwise
identical to the ANSI standard, as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

identical to the ANSI standard, as follows:

DELETE [FROM] [ONLY] table_name

[WHERE search_condition | WHERE CURRENT OF cursor_name]

When deleting rows from only the table specified, use the optional ONLY clause. Otherwise, PostgreSQL will also delete
records from any explicitly defined subtable.

To delete all records from the titles table:

DELETE titles

To delete all records in the authors table where the last name starts with "Mc":

DELETE FROM authors

WHERE au_lname LIKE 'Mc%'

To delete all titles with an old ID number:

DELETE titles WHERE title_id >= 40

To delete all titles that have no sales:

DELETE titles WHERE ytd_sales IS NULL

To delete all records in one table based on the results of a subquery against another table (in this case, the records that
have a match concerning "computers" in the titles table are erased from the titleauthor table):

DELETE FROM titleauthor

WHERE title_id IN

 (SELECT title_id

 FROM titles

 WHERE title LIKE '%computers%')

DISCONNECT

SQL Server

Microsoft SQL Server allows records to be deleted both from tables and from views that describe a single table. SQL
Server also allows a second FROM clause to allow JOIN constructs, as in the following example:

DELETE [TOP number [PERCENT]] [FROM] table_name [[AS] alias]

[FROM table_source [,...]]

[[{INNER | CROSS | [{LEFT | RIGHT | FULL] OUTER}]

 JOIN joined_table ON condition][,...]

[WHERE search_condition | WHERE CURRENT OF [GLOBAL] cursor_name]

[OPTION (query_hint[,...n])]

The syntax elements are as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DELETE table_name

Allows the deletion of records from the named table or view filtered by the WHERE clause. You can delete
records from a view providing the view is based on one table and contains no aggregate functions and no
derived columns. If you leave off the server name, database name, or schema name when naming the table or
view, SQL Server assumes the current context. An OPENDATASOURCE or OPENQUERY function, as described in
the SELECT Statement section may be referenced instead of a table or view.

TOP number [PERCENT]

Specifies that only the number of rows are deleted by the statement. If PERCENT is specified, only the first
number percent of the rows are retrieved. If the number is an expression, such as a variable, it must be enclosed
in parentheses. The expression should be of FLOAT datatype with a range of 0 to 100 when using PERCENT.
When not using PERCENT, the expression should by of BIGINT datatype.

FROM table_source

Names an additional FROM clause that correlates records from the table in the first FROM clause using a JOIN
rather than forcing you to use a correlated subquery. One or more tables may be listed in the second FROM
clause.

[{INNER | CROSS | [{LEFT | RIGHT | FULL] OUTER}] JOIN joined_table ON condition][,...]

Specifies one or more JOIN clauses, in conjunction with the second FROM clause. You may use any of the join
types that SQL Server supports. Refer to the JOIN Subclause and SELECT Statement sections for more
information.

GLOBAL cursor_name

Specifies that the delete operation should occur on the current row of an open global cursor. This clause is
otherwise the same as the standard for WHERE CURRENT OF.

OPTION (hint [,...])

Replaces elements of the default query plan with your own. Because the optimizer usually picks the best query
plan for any query, we strongly discourage you from placing optimizer hints into your queries.

The primary addition to DELETE that SQL Server offers over and above the ANSI standard is a second FROM clause. The
second FROM allows the use of the JOIN statement and makes it quite easy to delete rows from the table in the first
FROM by correlating rows of a table declared in the second FROM. For example, you can use a rather complex subquery
to erase all the sales records of computer books with this command:

DELETE sales

WHERE title_id IN

 (SELECT title_id

 FROM titles

 WHERE type = 'computer')

But SQL Server allows a more elegant construction using a second FROM clause and a JOIN clause:

DELETE s

FROM sales AS s

INNER JOIN titles AS t ON s.title_id = t.title_id

 AND type = 'computer'

The following example deletes all rows with an order_date of 2003 or earlier in batches of 2,500:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example deletes all rows with an order_date of 2003 or earlier in batches of 2,500:

WHILE 1 = 1

BEGIN

 DELETE TOP (2500)

 FROM sales_history WHERE order_date <= '20030101'

 IF @@rowcount < 2500 BREAK

END

The TOP clause should be used in favor of the old SET ROWCOUNT statement because the TOP clause is open to many
more query optimization algorithms. (Prior to SQL Server 2005, the SET ROWCOUNT statement was often used with
data modification transactions to process large numbers of rows in batches, thus preventing the transaction log from
filling up and ensuring that row locks would not escalate to a full table lock.)

See Also

INSERT
SELECT
TRUNCATE TABLE
UPDATE

DISCONNECT Statement

The DISCONNECT statement terminates one or more connections created between the current SQL process and the
database server.

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Not supported

SQL Server Supported, with limitations

SQL2003 Syntax

DISCONNECT {CURRENT | ALL | connection_name | DEFAULT}

Keywords

CURRENT

Closes the currently active user connection.

ALL

Closes all open connections for the current user.

Rules at a Glance

DISCONNECT is used to disconnect a named SQL session (connection_name), the CURRENT connection, the DEFAULT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DISCONNECT is used to disconnect a named SQL session (connection_name), the CURRENT connection, the DEFAULT
connection, or ALL connections held by the user. For example, we can disconnect a single session called new_york:

DISCONNECT new_york

In the next example, we might want to disconnect all currently open sessions for the current user process:

DISCONNECT ALL

Programming Tips and Gotchas

DISCONNECT is not universally supported across platforms. Do not build cross-platform applications based on
DISCONNECT unless you've made provisions to disconnect SQL sessions using each platform's preferred disconnection
methodology.

DB2

DB2 supports the ANSI standard for DISCONNECT in embedded SQL only. DISCONNECT can drop one or more
connections only after a commit or rollback operation succeeds for the sessions to be dropped. You can also use the
RELEASE statement to place a connection in a disconnect-pending condition.

MySQL

Not supported.

Oracle

Oracle allows DISCONNECT only in its ad hoc query tool, SQL*Plus, using this syntax:

DISC[ONNECT]

In this usage, the command ends the current session with the database server but otherwise allows work in SQL*Plus
to continue. For example, a programmer can continue to edit the buffer, save run files, and so on. However, you must
establish a new connection to issue any SQL commands. Exiting SQL*Plus and returning to the filesystem requires the
EXIT or QUIT commands. For example, to end the current connection with an Oracle server:

DISCONNECT;

PostgreSQL

Not supported. Instead, every programming interface supports a disconnect operation; for example, SPI_FINISH is
available under the Server Programming Interface, and PG_CONNECT is available under the PL/TCL programming
package.

SQL Server

Microsoft SQL Server supports the ANSI syntax for DISCONNECT in Embedded-SQL (ESQL) only, not within its ad hoc
querying tool, SQL Query Analyzer. To disconnect cleanly from Microsoft SQL Server in an ESQL program, use the
DISCONNECT ALL statement.

See Also

CONNECT

DROP Statements

All of the database objects created with CREATE statements may be destroyed using complementary DROP statements.
On some platforms, a ROLLBACK statement after a DROP statement will recover the dropped object. However, on other

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On some platforms, a ROLLBACK statement after a DROP statement will recover the dropped object. However, on other
database platforms, the DROP statement is irreversible and permanent, so it is advisable to use the command with
care.

Platform Command

DB2 Supported, with variations

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

SQL2003 Syntax

Currently, the SQL2003 standard supports the ability to drop a lot of object types that are largely unsupported by most
vendors. The ANSI SQL2003 syntax follows this format:

DROP {object_type} object_name {RESTRICT | CASCADE}

Keywords

DROP object_type object_name

Irreversibly and permanently destroys the specified object, called object_name, of the type identified. The
object_name does not need a schema identifier, but the current schema is then assumed. ANSI SQL2003
supports a long list of object types, each created with their own corresponding CREATE statement. CREATE
statements covered in this book with corresponding DROP statements include:

DOMAIN SCHEMA

FUNCTION TABLE

METHOD TRIGGER

PROCEDURE TYPE

ROLE VIEW

RESTRICT | CASCADE

Prevents the DROP from taking place if any dependent objects exist (RESTRICT), or causes all dependent
objects to also be dropped (CASCADE). This clause is not allowed with some forms of DROP, like DROP
TRIGGER, but is mandatory for others, like DROP SCHEMA. To further explain, DROP SCHEMA RESTRICT will
only drop an empty schema. Otherwise, if the schema contains objects, the operation will be prevented. In
contrast, DROP SCHEMA CASCADE will drop a schema and all objects contained therein.

Rules at a Glance

For rules about the creation or modification of each of the object types, refer to the corresponding CREATE/ALTER
statements.

The DROP statement destroys a pre-existing object. The object is permanently destroyed, and all users who had access
to the object immediately lose the ability to access the object.

The object may be qualified — that is, you may fully specify the schema where the dropped object is located. For
example:

DROP TABLE scott.sales_2004 CASCADE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP TABLE scott.sales_2004 CASCADE;

The above statement would not only drop the table scott.sales_2004, but also any views, triggers, or constraints built
on it. On the other hand, a DROP statement may include an unqualified object name, and then the current schema
context is assumed. For example:

DROP TRIGGER before_ins_emp;

DROP ROLE sales_mgr;

Although not required by the SQL2003 standard, most implementations cause the DROP command to fail if the
database object is in use by another user.

Programming Tips and Gotchas

DROP will only work when it is issued against a pre-existing object of the appropriate type where the user has
appropriate permissions, usually the DROP TABLE permission. (Refer to the GRANT Statement section for more
information.) The SQL standard requires only that the owner of an object may drop it, but most database platforms
allow variations on that requirement. For example, the database superuser can usually drop any object on the database
server.

With some vendors, the DROP command fails if the database object has extended properties. For example, Microsoft
SQL Server will not drop a table that is replicated unless you first remove the table from replication.

It is important to be aware that most vendors do not notify you if the DROP command
creates a dependency problem. Thus, if a table that is used by a few views and by stored
procedures elsewhere in the database is dropped, no warning is issued. Those other
objects simply return failures when they are accessed. To prevent this problem, you may
wish to use the RESTRICT syntax where it is available.

You may have noticed that the ANSI standard does not support certain common DROP commands like DROP DATABASE
and DROP INDEX, even though every vendor covered in this book (and just about every one in the market) supports
these commands. The exact syntax for each of these commands is covered in the platform-specific sections below.

DB2

DB2 does not support the CASCADE option. It supports many of the ANSI object types in addition to many of its own
object types, as follows:

DROP {BUFFERPOOL | EVENT MONITOR | [SPECIFIC] FUNCTION |

 FUNCTION MAPPING | INDEX | INDEX EXTENSION |

 [SPECIFIC] METHOD | NICKNAME | DATABASE PARTITION GROUP |

 PACKAGE | [SPECIFIC] PROCEDURE | SCHEMA | SEQUENCE | SERVER |

 TABLE [HIERARCHY] | TABLESPACE[S] | TRANSFORM[S]

 [{ALL | group_name}] FOR | TRIGGER | [DISTINCT] TYPE |

 TYPE MAPPING | USER MAPPING FOR {authorization_name | USER} SERVER |

 VIEW [HIERARCHY] | WRAPPER } object_name [RESTRICT]

The rules for DB2's DROP statements are less consistent than the ANSI standard's rules, so the full syntax of each
DROP variant is shown below:

BUFFERPOOL bufferpool_name

Drops the named bufferpool as long as no tablespaces are assigned to it. Memory is recovered immediately, but
disk space may be recovered at the next connection to the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EVENT MONITOR event_monitor_name

Drops the named event monitor as long as the event monitor is not set ON.

[SPECIFIC] FUNCTION function_name [(datatype [,...])] [RESTRICT]

Drops the named user-defined function. DB2 allows multiple functions of the same name. To drop these, use
the syntax DROP FUNCTION function_name (data type [,...]), providing data type identifiers sufficient to uniquely
identify the user-defined function. Use the optional SPECIFIC keyword to identify functions by the unique name
assigned to each at creation time. You may drop a function while it is in use without causing the user to
experience a failure (until they try to access it later). However, you cannot drop a function that is a component
of a package, triggers, views, etc. Here are examples of all three syntaxes:

DROP FUNCTION sales_summary_1992

DROP FUNCTION sales_summary (int, float)

DROP SPECIFIC FUNCTION products.inventory_level

FUNCTION MAPPING function_mapping_name

Drops the named function mapping.

INDEX [EXTENSION] index_name [RESTRICT]

Drops the named index or, optionally, an index extension, as long as it is not a primary key or unique
constraint. You should use ALTER TABLE to drop a primary key or unique constraint. RESTRICT is mandatory
when dropping an index extension.

[SPECIFIC] METHOD method_name [(datatype [,...])]

[FOR type_name][RESTRICT]

Drops the named method body or specific method body, except those implicitly created by CREATE TYPE. The
method specification remains as part of the definition of the subject type, unless removed with ALTER TYPE
DROP METHOD. You may alternately use the syntax DROP METHOD method_body_name (data type1 [,...]) to
further identify the method via datatypes. The FOR type_name clause must be specified when SPECIFIC is not
specified in order to name the type where the method will be dropped. All dependencies on a method must be
dropped before the method can be dropped.

NICKNAME nickname

Drops the named nickname. Certain other dependent objects are also dropped, including materialized query
tables, index specifications, views (not dropped but marked inoperable), and packages (not dropped but marked
inoperable).

DATABASE PARTITION GROUP db_prtn_name

Drops the named database partition group, and all tablespaces and subordinant objects defined under it (such
as tables, packages, constraints, etc.) are dropped or marked inoperable. You should drop any tablespaces from
the database partition group first. For example:

DROP TABLESPACE sales_2004

DROP TABLESPACE sales_2003

DROP DATABASE PARTITION GROUP sales_archive_0304

PACKAGE package_name [VERSION version_id]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Drops the named package of schema_name.package_id. You may also optionally add the clause VERSION version_id
after the package_id to further identify the package.

[SPECIFIC] PROCEDURE procedure_name [(datatype1 [,...])] [RESTRICT]

Drops the named procedure or specific procedure. DB2 allows multiple procedures with the same name, each
distinguished by their different datatype usage. You may alternately identify the procedure to drop via the
syntax DROP PROCEDURE procedure_name (datatype [,...]) syntax.

SCHEMA schema_name RESTRICT

Drops the named schema. The RESTRICT keyword requires that the schema be empty before it can be dropped.

SEQUENCE sequence_name [RESTRICT]

Drops the named sequence from the server. However, you cannot drop a sequence created for an IDENTITY
column using the DROP SEQUENCE statement.

SERVER server_name

Drops the definition of a named data source from the catalog as well as all nicknames for objects residing on
the remote server. In addition, index specifications, user-defined functions, user-defined type mappings, and
user mappings dependent on the remote server are dropped. Packages and function mappings dependent on
the remote server are invalidated.

TABLE [HIERARCHY] table_name

Drops the named base table, declared temporary table, materialized query table, or staging table from the
server. Indexes, constraints, materialized query tables, and staging tables that reference a dropped table are
also dropped. Subtables of a typed table are not automatically dropped and must be dropped before the parent
table can be dropped. Views, packages, and triggers that reference the dropped table are rendered inoperable.
Any DATALINK columns are unlinked, though asynchronously. The HIERARCHY option is used to drop a named
type table hierarchy (i.e., both the parent table and all of its subtables). In this syntax, the object_name is the
name of the root table in the typed table hierarchy. A table cannot be dropped if it has the RESTRICT ON DROP
attribute.

TABLESPACE[S] tablespace_name [,...]

Drops one or more named tablespaces and all objects from those tablespaces, unless a table stored in the
tablespace spans the tablespace to be dropped and at least one of the tablespaces spanned, or the table has
the RESTRICT ON DROP property. The TABLESPACE keyword and the TABLESPACES keyword are synonyms.

TRANSFORM[S] {ALL | group_name} FOR type_name

Drops all transform groups for a user-defined datatype using the syntax DROP TRANSFORM ALL FOR
datatype_name. Note that only the transform group and not the user-defined datatype are dropped. Alternately,
use the syntax DROP TRANSFORM transform_group_name FOR datatype_name to drop a single transform group
from a user-defined datatype. For example:

DROP TRANSFORM sales_calcs FOR orders

TRIGGER trigger_name

Drops the named trigger. This may also cause certain packages to be marked invalid.

[DISTINCT] TYPE type_name [RESTRICT]

Drops the named user-defined type or, with the optional DISTINCT keyword, drops the named distinct type.
Using the optional RESTRICT keyword prevents the type from being dropped, if the type has any dependency
such as being used in a table definition or in a view, has subtypes, etc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TYPE MAPPING type_mapping_name

Drops the named user-defined type mapping, though no other subordinant objects are dropped.

USER MAPPING FOR {user_name | USER} SERVER server_name

Drops the user mapping to a federated server for a named user. If no server is specified, all user mappings are
dropped for the named user. For example, the user Dylan no longer needs the oracle50 data source:

DROP USER MAPPING FOR dylan SERVER oracle50

VIEW [HIERARCHY] view_name

Drops the named view from the schema. If the view is a parent object, then all subviews must be dropped
before the parent view. Other objects that directly or indirectly depend on the view, such as triggers or
materialized query tables, are marked inoperable. The optional HIERARCHY keyword tells DB2 to drop a parent
typed view and all of its subviews.

WRAPPER wrapper_name

Drops the named wrapper as well as any server definitions, user-defined function mappings, and user-defined
datatype mappings. This can cause a cascading action when dropping a server definition because objects
dependent on the server definition (things like user mappings and nicknames) are also dropped. If the server
definition results in a nickname being dropped, then objects dependent on the nickname (like views or
packages) become inoperable.

RESTRICT

Optionally allowed on FUNCTION, SPECIFIC FUNCTION, METHOD, SPECIFIC METHOD, PROCEDURE, SPECIFIC
PROCEDURE, SEQUENCE, TYPE, and DISTINCT TYPE. Mandatory for INDEX EXTENSION and SCHEMA. Like the
ANSI standard, RESTRICT prevents the object from being dropped if a dependant object exists. The RESTRICT
behavior is the default.

If you do not specify a schema along with the object name when performing a drop, DB2 will assume the current
schema in dynamic SQL statements. DB2 will apply the QUALIFIER precompile/bind option for static SQL statements.

MySQL

MySQL supports a very limited number of objects via the CREATE/ALTER statement. Consequently, the syntax for DROP
is also limited, as in the following:

DROP { DATABASE | [TEMPORARY] TABLE | INDEX } object_name [,...]

 [ON table_name]

[IF EXISTS] object_name [,...] [RESTRICT |CASCADE]

The syntax elements are:

DATABASE database_name

Drops the named database, including all the objects it contains, such as tables and indexes. The DROP
DATABASE command removes all database and table files from the filesystem, as well as two-digit
subdirectories. MySQL will return a message showing how many files were erased from the database directory.
(Files of these extentions are erased: .BAK, .DAT, .frm, .HSH, .ISD, .ISM, .MRG, .MYD, .MYI, .dm, and .fm.) If
the database is linked, both the link and the database are erased. You may only drop one database at a time.
RESTRICT and CASCADE are not valid on DROP DATABASE.

[TEMPORARY] TABLE table_name [,...]

Drops one or more named tables, with table names separated from each other by commas. MySQL erases each
table's definition and deletes the three table files from the filesystem (.frm, .MYD, and .MYI). Issuing this
command causes MySQL to commit all active transactions. The TEMPORARY keyword drops only temporary
tables without committing running transactions or checking access rights.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tables without committing running transactions or checking access rights.

INDEX index_name ON table_name

Drops the named index from the named table on Version 3.22 or later. This command doesn't do anything on
versions earlier than 3.22, but on 3.22 it actually executes an ALTER TABLE...DROP INDEX command behind
the scenes. You cannot use RESTRICT, CASCADE, or IF EXISTS with a DROP INDEX statement.

RESTRICT | CASCADE

Acts as noise. These keywords do not generate an error by MySQL, nor do they do anything.

IF EXISTS

Prevents an error message when attempting to drop an object that does not exist. Usable in MySQL Version
3.22 or later.

MySQL supports only the ability to drop a database, a table (or tables), or an index from a table. Although the DROP
statement will not fail with the RESTRICT and CASCADE optional keywords, they also don't do anything. You can use
the IF EXISTS clause to prevent MySQL from returning an error message by trying to delete an object that doesn't
exist.

Oracle

Oracle supports most of the ANSI keywords for the DROP statements, as well as many additional keywords
corresponding to objects uniquely supported by Oracle, as follows:

DROP {CLUSTER | CONTEXT | DATABASE | DATABASE LINK | DIMENSION |

 DIRECTORY | FUNCTION | INDEX | INDEXTYPE | JAVA |

 LIBRARY | MATERIALIZED VIEW | MATERIALIZED VIEW LOG |

 OPERATOR | OUTLINE | PACKAGE | PROCEDURE | PROFILE |

 ROLE | ROLLBACK SEGMENT | SEQUENCE | SYNONYM | TABLE |

 TABLESPACE | TRIGGER | TYPE | TYPE BODY | USER | VIEW }

 object_name

The rules for Oracle DROP statements are less consistent than the ANSI standard's rules, so the full syntax of each
DROP variant is shown below:

CLUSTER cluster_name [INCLUDING TABLES [CASCADE CONSTRAINTS]]

Drops the named cluster from the database. (Note that this drops a cluster; it does not uncluster a specific
table from a cluster.) INCLUDING TABLES drops all tables that belong to the cluster. CASCADE CONSTRAINTS
drops all referential integrity constraints that refer to the tables in the cluster. DROP CLUSTER will fail without
CASCADE CONSTRAINTS when tables outside of the cluster have constraints (like a primary or foreign key) that
refer to tables in the cluster. For example:

DROP CLUSTER hr INCLUDE TABLES CASCADE CONSTRAINTS;

CONTEXT namespace

Drops the named context from the database. Users currently in the namespace are unaffected, but will be
unable to access the context when they next attempt to use that context. For example:

DROP CONTEXT hr_context

DATABASE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DATABASE

Drops a database from the Oracle server.

[PUBLIC] DATABASE LINK database_link_name

Drops the named database link from the database. You must include the PUBLIC keyword to drop a public
database link. Note that the database link cannot be schema qualified. For example, to drop the database link
called hq.southeast.tenn:

DROP DATABASE LINK hq.southeast.tenn;

DIMENSION dimension_name

Drops the named dimension. This does not invalidate materialized views built on the dimension, though they
may execute more slowly and query requests may be rewritten.

DIRECTORY directory_name

Drops the named directory object from the database. This should not be used on directories containing files
accessed by PL/SQL or OCI programs. For example, you could drop the image_files directory:

DROP DIRECTORY image_files;

FUNCTION function_name

Drops the named function, as long as it is not a component of a package. If you want to drop a function from a
package, use the CREATE PACKAGE...OR REPLACE statement to redefine the package without the function you
want to be rid of. Any local objects that depend on or call the function are invalidated and any statistical types
associated with the function are disassociated.

INDEX index_name [FORCE]

Drops a named index or domain index from the database. Dropping an index invalidates all objects that depend
on the parent table, including views, packages, functions, and stored procedures. Dropping an index invalidates
cursors and execution plans that use the index, and will force a hard parse of the affected SQL statements when
they are next executed.

Non-IOT indexes are secondary objects and can be dropped and recreated without any loss of user data. IOTs, because
they combine both table and index data in the same structure, cannot be dropped and recreated in this manner. IOTs
should be dropped using the DROP TABLE syntax.

When you drop a partitioned index, all partitions are dropped. When you drop a composite-partitioned index, all index
partitions and subpartitions are dropped. When you drop a domain index, any statistics associated with the domain
index are removed and any statistic types are disassociated. The optional keyword FORCE applies only when dropping
domain indexes. FORCE allows you to drop a domain index marked IN PROGRESS, or to drop a domain index when its
indextype routine invocation returns an error. For example:

DROP INDEX ndx_sales_salesperson_quota;

INDEXTYPE indextype_name [FORCE]

Drops the named indextype along with any associated statistic types. Oracle also drops any statistics collected
with the statistics type. The optional keyword FORCE drops the indextype even when it is currently referenced by
one or more domain indexes and marks the applicable domain indexes as INVALID. If you do not use FORCE on
an indextype that is referenced by one or more domain indexes, the statement will fail. For example:

DROP INDEXTYPE imageindextype FORCE;

JAVA {SOURCE | CLASS | RESOURCE} "java_object_name"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JAVA {SOURCE | CLASS | RESOURCE} "java_object_name"

Drops the named Java source, Java class, or Java resource schema object. SOURCE drops the named Java
source schema object and all Java class schema objects derived from it. CLASS drops the named Java class
schema object. RESOURCE drops the named Java resource schema object. For example, to drop the Java
source MyJavaSource and all dependent schema objects:

DROP JAVA SOURCE "MyJavaSource";

LIBRARY library_name

Drops the named external procedure library.

{MATERIALIZED VIEW | SNAPSHOT} mview_name

Drops the named materialized view. You can use the keyword SNAPSHOT as an alternative to MATERIALIZED
VIEW for backward compatibility. You must have privileges to drop the table plus views and indexes that make
up the materialized view. Note that if you drop a parent table, any materialized views built upon it are not
automatically dropped. But Oracle will return an error when a refresh is attempted on a materialized view
whose parent table has been dropped. For example, we can drop a materialized view called
salespeople_at_quota:

DROP MATERIALIZED VIEW salespeople_at_quota;

{MATERIALIZED VIEW | SNAPSHOT} LOG ON parent_table_name

Drops the named materialized view log that resides on the parent table (also known as the master table). You
can use the statement DROP SNAPSHOT as an alternative to DROP MATERIALIZED VIEW for backward
compatibility. RowID, primary key, and subquery materialized views can no longer be fast refreshed after the
materialized view log has been dropped.

OPERATOR operator_name FORCE

Drops the named user-defined operator from the database. The optional keyword FORCE allows you to drop the
operator even if it is referenced by other schema objects such as triggers, packages, user-defined functions,
and so forth. In that case, the dependent objects become invalid. Dropping a user-defined operator with
dependents without the FORCE keyword will result in an error.

OUTLINE outline_name

Drops the named stored outline from the database. The optimizer will generate new query plans for any SQL
statements that used the stored outline after it is dropped.

PACKAGE [BODY] package_name

Drops the named package body and specification. The optional keyword BODY drops only the body of the
package, but leaves the specification unaltered. This option is useful if you do not want to invalidate dependent
objects, though you cannot call any components of the package until the package body is recreated. Otherwise,
if you drop both body and specification, Oracle invalidates all dependent objects. (Note that if you want to drop
a single object from a package, you should use the statement CREATE PACKAGE [BODY]...OR REPLACE.) The
following examples drop first the package body and specification of the sales_quota_calc package, and then
drop only the body of the regional_sales_calc package:

DROP PACKAGE sales_quota_calc;

DROP PACKAGE BODY regional_sales_calc;

PROCEDURE procedure_name

Drops the named stored procedure. Any dependent objects are invalidated when you drop a stored procedure.
Dependent objects will fail with an error if they are accessed before you recreate the stored procedure. If you
recreate the stored procedure, and a dependent object is accessed, the dependent object will be recompiled.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

recreate the stored procedure, and a dependent object is accessed, the dependent object will be recompiled.

PROFILE profile_name [CASCADE]

Drops the named profile. The optional keyword CASCADE removes the profile from any users who were granted
the profile. CASCADE is only required if the profile has been granted to one or more users. Users who no longer
have a profile are then assigned the DEFAULT password. For example, the following statement drops the
web_user profile and removes it from all users:

DROP PROFILE web_user CASCADE;

ROLE role_name

Drops the named role, removes it from the database, and revokes it from all users and roles where it has been
granted. No new sessions can use the role, but sessions that are currently running under the role are not
affected. For example, the following statement drops the sales_mgr role:

DROP ROLE sales_mgr:

ROLLBACK SEGMENT rbseg_name

Drops the named rollback segment and returns its space to the tablespace where the rollback segment was
assigned. The rollback segment must be on-line and may not be the SYSTEM rollback segment. (Note that in
Automatic Undo Management mode, you can only drop rollback segments. You cannot create or alter them.) For
example, the following statement drops the rollback segment named rbseg_sales_tblspc:

DROP ROLLBACK SEGMENT rbseg_sales_tblspc;

SEQUENCE sequence_name

Drops the named sequence. (Note that the only way to restart a sequence is to drop it and recreate it.)

[PUBLIC] SYNONYM synonym_name [FORCE]

Drops the named private or PUBLIC synonym. (Note that the only way to redefine a synonym is to drop it and
recreate it.) You cannot specify a schema when dropping a PUBLIC synonym. Materialized views become invalid
when you drop their synonym. The optional keyword FORCE allows you to drop a synonym even if it has
dependent tables or user-defined types. Otherwise, you cannot drop a synonym with dependent tables or user-
defined types. Oracle discourages the use of FORCE. For example, you could drop the public synonym called
users:

DROP PUBLIC SYNONYM users;

TABLE table_name [CASCADE CONSTRAINTS] [PURGE]

Drops the named table, erases all of its data, drops all indexes and triggers built from the table (even those in
other schemas), and invalidates all permissions and all dependent objects (like views, stored procedures, etc.).
On partitioned tables, Oracle drops all their partitions (and subpartitions). On index-organized tables, Oracle
drops all dependent mapping tables. Statistic types associated with a dropped table are disassociated.
Materialized view logs built on a table are also dropped when the table is dropped.

The DROP TABLE statement is effective for standard tables, index-organized tables, and object tables. The table being
dropped is only moved to the recycling bin, unless you add the optional keyword PURGE, which tells Oracle to
immediate free all space consumed by the table. (Oracle also supports a non-ANSI SQL command called PURGE that
lets you remove tables from the recycling bin outside of the DROP TABLE statement.) DROP TABLE erases only the
metadata of an external table. You must use an external operating system command to drop the file associated with an
external table and reclaim its space.

Use the optional CASCADE CONSTRAINTS clause to drop all referential integrity constraints elsewhere in the database
that depend on the primary or unique key of the dropped table. You cannot drop a table with dependent referential
integrity constraints without using the CASCADE CONSTRAINTS clause. The following example drops the job_desc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integrity constraints without using the CASCADE CONSTRAINTS clause. The following example drops the job_desc
table in the emp schema, then drops the job table and all referential integrity constraints that depend on the primary
key and unique key of the job table:

DROP TABLE emp.job_desc;

DROP TABLE job CASCADE CONSTRAINTS;

TABLESPACE tablespace_name [INCLUDING CONTENTS [AND DATAFILES] [CASCADE CONSTRAINTS]

Drops the named tablespace (preferably when it is offline), deleting all datafiles and tempfiles. Oracle-managed
datafiles and tempfiles in the tablespace are deleted from the filesystem, but datafiles and tempfiles managed
by the OS can also be deleted by including the optional clause INCLUDING CONTENTS AND DATAFILES. Note
that you cannot drop a tablespace when it contains a domain index, objects created by a domain index, data
needed to roll back uncommitted transactions, or the SYSTEM tablespace. The optional clause INCLUDING
CONTENTS drops all contents of the tablespace, and is required for any tablespace that contains database
objects. The optional clause AND DATAFILES also drops associated operating system files. The optional clause
CASCADE CONSTRAINTS drops all external referential integrity constraints that depend on the primary or
unique keys of tables within the tablespace and is required when such dependencies exist. The first of the
following examples drops the tablespace sales_tblspc and all dependent referential integrity constraints, while
the second example drops the tablespace sales_images_tblspc and all associated operating system files:

DROP TABLESPACE sales_tblspc

 INCLUDING CONTENTS CASCADE CONSTRAINTS;

DROP TABLESPACE sales_image_tblspc

 INCLUDING CONTENTS AND DATAFILES;

TRIGGER trigger_name

Drops the named trigger from the database.

TYPE [BODY] type_name [{FORCE | VALIDATE}]

Drops the specification and body of the named object type, nested table type, or VARRAY, as long as they have
no type or table dependencies. You must use the optional FORCE keyword to drop a supertype, a type with an
associated statistics type, or a type with any sort of dependencies. All subtypes and statistic types are then
invalidated. Oracle will also drop any public synonyms associated with a dropped type. The optional BODY
keyword tells Oracle to drop only the body of the type while keeping its specification intact. Use the optional
VALIDATE keyword when dropping subtypes to check for stored instances of the named type in any of its
supertypes. Oracle then performs the drop only if no stored instances are found. For example:

DROP TYPE salesperson_type;

USER user_name [CASCADE]

Drops the named user from the database. By default, Oracle will not drop a user whose schema still owns
objects. The optional keyword CASCADE tells Oracle to also remove all of the user's objects, as well as
applicable dependent objects. Oracle does not drop objects from other users' schemas that reference those in
the dropped schema, though it does invalidate them. For example, the following statement drops the user cody
and all of his objects:

DROP USER cody CASCADE;

VIEW view_name [CASCADE CONSTRAINTS]

Drops the named view and marks as invalid any views, subviews, synonyms, or materialized views that refer to
the dropped view. Use the optional clause CASCADE CONSTRAINTS to drop all referential integrity constraints
that depend on the view. Otherwise, the DROP statement will fail if dependent referential integrity constraints
exist. For example, the following statement drops the active_employees view in the hr schema:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exist. For example, the following statement drops the active_employees view in the hr schema:

DROP VIEW hr.active_employees;

In all of the syntax shown above, object_name can be replaced with [schema_name.]object_name. If you leave off the
schema name, the default schema of the user session is assumed. Thus, the following DROP statement drops the
specified view from the sales_archive schema:

DROP VIEW sales_archive.sales_1994;

However, if your personal schema is scott, then the following command is assumed to be against scott.sales_1994:

DROP VIEW sales_1994;

PostgreSQL

PosgreSQL does not support the RESTRICT or CASCADE optional keywords supported by the ANSI standard. It supports
a wide variety of DROP variants, as follows:

DROP { AGGEGATE | DATABASE | FUNCTION | GROUP | INDEX |

 LANGUAGE | OPERATOR |RULE | SEQUENCE | TABLE | TRIGGER |

 TYPE | USER | VIEW } object_name

Following is the full syntax for each variant:

AGGEGATE aggregate_name ({datatype | *})

Drops the user-defined aggregate function. The value for datatype is the datatype of the existing aggregate
function, but you may substitute an asterisk (*) to match any input datatype. For example, we can drop an
aggregate function called sales_avg we made using PostgreSQL's CREATE AGGREGATE statement:

DROP AGGREGATE sales_avg(int4);

DATABASE database_name

Drops the named database and erases the operating system directory containing all of the database's data. This
command can only be executed by the database owner while connected to a database other than the target
database. For example, we can drop the sales_archive database:

DROP DATABASE sales_archive;

FUNCTION function_name ([datatype1 [,...])

Drops the named user-defined function. Since PostgreSQL allows multiple functions of the same name
distinguished only by the various input parameters they require, you must specify one or more datatypes to
uniquely identify the user-defined function you wish to drop. PostgreSQL does not perform any kind of
dependency checks on other objects that might reference a dropped user-defined function. (They will fail when
invoked against an object that no longer exists.) For example:

DROP FUNCTION median_distribution (int, int, int, int);

GROUP group_name

Drops the named group, though it does not affect users who were in the group. This is similar to DROP ROLE on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Drops the named group, though it does not affect users who were in the group. This is similar to DROP ROLE on
other database platforms.

INDEX index_name [,...]

Drops one or more named indexes that you own. For example:

DROP INDEX ndx_titles, ndx_authors;

[PROCEDURAL] LANGUAGE language_named

Drops the named user-defined procedural language. You can optionally enclose the name in single quotes. Note
that PostgreSQL does not check to see if any user-defined functions or triggers written in the named language
still exist in the database. For example:

DROP LANGUAGE php;

OPERATOR operator_id ({left_datatype | NONE }, {right_datatype | NONE })

Drops a named user-defined operator where the value of left_datatype is the operator's left argument and
right_datatype is the operator's right argument. NONE may be substituted for either argument when there is no
argument in that position. (PostgreSQL does not check for any dependent access methods or operator classes
that rely on the dropped operator. You should check for them and drop them manually to avoid errors when
they are invoked.) For example, the first of the following statements drops the power operator, and the second
drops the unary negation operator:

DROP OPERATOR ^ (int4, int4);

DROP OPERATOR ! (NONE, bool);

RULE rule_name [,...]

Drops one or more named rules from the database. PostgreSQL then immediately stops enforcing the rules and
erases historical data about the rules. For example:

DROP RULE phone_rule;

SEQUENCE seq_name [,...]

Drops one or more named sequences from the database. Since the current version of PostgreSQL treats
sequences as special tables, the DROP SEQUENCE statement works very much like the DROP TABLE statement.

TABLE table_name [,...]

Drops one or more existing tables from the database, as well as any indexes or triggers specified for the table.
For example, you can drop more than one table in a single statement:

DROP TABLE authors, titles;

TRIGGER trigger_name ON table_name

Drops the named trigger from the database. Since PostgreSQL requires that trigger names be unique only on
the table they are attached to, it is possible to have many triggers called, say, insert_trigger or
delete_trigger, each on a different table. For example:

DROP TRIGGER insert_trigger ON authors;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP TRIGGER insert_trigger ON authors;

TYPE type_name [,...]

Drops one or more pre-existing user-defined types from the database. PostgreSQL does not check to see what
impact the DROP TYPE command might have on any dependent objects like functions, aggregates, or tables.
You must check dependent objects manually. (Do not remove any of the built-in types that ship with
PostgreSQL!) Note that PostgreSQL's implementation of types differs from the ANSI standard. Refer to the
CREATE/ALTER TYPE Statement section for more information.

USER user_name

Drops the named user from the current database. This command does not drop any objects owned by the user,
such as tables or views, but will fail if the user owns any databases. For example:

DROP USER emily;

VIEW view_name [,...]

Drops one or more pre-existing views from the database.

Note that PostgreSQL drop operations do not allow you to specify the target database where the operation will take
place (except for DROP DATABASE). Therefore, you should execute any drop operation from the database where the
object you want to drop is located.

SQL Server

SQL Server supports several standard variants of the DROP statement. SQL Server's main difference compared to the
ANSI DROP statement is the ability to drop multiple objects with a single statement:

DROP { DATABASE | DEFAULT | FUNCTION | INDEX | PROCEDURE |

 RULE | STATISTICS | TABLE | TRIGGER | TYPE | VIEW } object_name

Following is the full syntax for each variant:

DATABASE database_name [,...]

Drops the named database(s) and erases all disk files used by the database(s). This command may only be
issued from the master database. Replicated databases must be removed from their replication schemes
before they can be dropped, as must log shpping databases. You cannot drop a database while it is in use, nor
can you drop system databases (master, model, msdb, or tempdb). For example, we can drop the
northwind and pubs databases with one command:

DROP DATABASE northwind, pubs

GO

DEFAULT default_name [,...]

Drops one or more user-defined defaults from the current database. Note that this does not drop DEFAULT
constraints, only user-defined defaults created with the CREATE DEFAULT statement. (You can drop default
constraints using the statement ALTER TABLE...DROP CONSTRAINT.) When dropping a default from a column,
null values will be inserted into columns that accept null. Otherwise, if a column does not accept nulls, an error
is raised and no values are entered into the column. If a column or user-defined datatype being dropped is
bound, then you must first unbind it using the SQL Server system stored procedure sp_unbindefault. In the
following two examples, we first drop a user-defined default and then unbind and drop the user-defined default:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following two examples, we first drop a user-defined default and then unbind and drop the user-defined default:

DROP DEFAULT sales_date_default

GO

EXEC sp_unbindefault

'sales.ord_date'

DROP DEFAULT order_date_default

GO

FUNCTION [schema.]function_name [,...]

Drops one or more user-defined functions from the current database.

INDEX table_or_view_name.index_name [,...]

Drops one or more indexes from tables or indexed views in the current database and returns space to the
database. This statement should not be used to drop a PRIMARY KEY or UNIQUE constraint. Instead, drop these
constraints using the ALTER TABLE...DROP CONSTRAINT statement. When dropping a clustered index from a
table, all non-clustered indexes are rebuilt. When dropping a clustered index from a view, all non-clustered
indexes are dropped.

PROCEDURE procedure_name [,...]

Drops one or more stored procedures from the current database. SQL Server allows multiple versions of a
single procedure via a version number, but these versions cannot be dropped individually. You must drop all
versions of a stored procedure at once. System procedures (those with an sp_ prefix) are dropped from the
master database if they are not found in the current user database. For example:

DROP PROCEDURE calc_sales_quota

GO

RULE rule_name [,...]

Drops one or more user-defined rules from the current database. Existing data in columns governed by a rule
are not checked when the rule is dropped. You may need to unbind the rule first using the SQL Server system
stored procedure sp_unbindefault. In the following two examples, we first drop a user-defined rule, and then
unbind and drop the user-defined rule:

DROP RULE phone_rule

GO

EXEC sp_unbindrule 'authors.phone'

DROP RULE phone_rule

GO

STATISTICS table_or_view_name.statistics_name [,...]

Drops statistics on one or more collections from a table or indexed view in the current database. Dropping
statistics can have a big impact on query performance, since they help the query optimizer choose the best
query plan. (Statistics are created with the CREATE INDEX and CREATE STATISTICS statements. You can
update statistics with the UPDATE STATISTICS statement or retrieve information about them with the statement
DBCC SHOW_STATISTICS.) For example, we'll create statistics on two columns in two separate tables and then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBCC SHOW_STATISTICS.) For example, we'll create statistics on two columns in two separate tables and then
drop the statistics:

CREATE STATISTICS title_stats ON sales (title_id, ord_num)

 WITH SAMPLE 30 PERCENT

GO

CREATE STATISTICS zip_stats ON stores (zip)

 WITH FULLSCAN

GO

DROP STATISTICS sales.title_stats, stores.zip_stats

GO

TABLE table_name

Drops a named table and all data, permissions, indexes, triggers, and constraints specific to that table. (The
table_name may be a fully qualified table name like pubs.dbo.sales or a simple table name, like sales, if the
current database and owner are correct.) Views, functions, and stored procedures that reference the table are
not dropped or marked as invalid, but will return an error when their procedural code encounters the missing
table. Be sure to drop these yourself! You cannot drop a table referenced by a FOREIGN KEY constraint without
first dropping the constraint. Similarly, you cannot drop a table used in replication without first removing it from
the replication scheme. Any user-defined rules or defaults are unbound when the table is dropped. They must
be rebound if the table is recreated.

TRIGGER trigger_name [,...]

Drops one or more triggers from the current database.

TYPE type_name [,...]

Drops one or more user-defined types from the current database.

VIEW view_name [,...]

Drops one or more views from the database, including indexed views, and returns all space to the database.

See Also

CALL
CONSTRAINTS
CREATE/ALTER FUNCTION/PROCEDURE/METHOD
CREATE SCHEMA
CREATE/ALTER TABLE
CREATE/ALTER VIEW
DELETE
DROP
GRANT
INSERT
RETURN
SELECT
SUBQUERY
UPDATE

EXCEPT Set Operator

The EXCEPT set operator retrieves the result sets of two or more queries including all the records retrieved by the first
query that are not also found in subsequent queries. Whereas JOIN clauses are used to return the rows of two or more
queries that are in common, EXCEPT is used to filter out the records that are present in only one of multiple, but
similar, tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

similar, tables.

EXCEPT is in a class of keywords called a set operator. Other set operators include INTERSECT and UNION. (MINUS is
Oracle's equivilent to the EXCEPT keyword. EXCEPT is the ANSI standard.) All set operators are used to simultaneously
manipulate the result set of two or more queries, hence the term "set operators."

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported,with limitations

PostgreSQL Supported, with limitations

SQL Server Not supported

SQL2003 Syntax

There are technically no limits to the number of queries that you may combine with the EXCEPT operator. The general
syntax is:

{SELECT statement1 | VALUES (expr1 [,...]) }

EXCEPT [ALL | DISTINCT]

[CORRESPONDING [BY (column1, column2, ...)]]

{SELECT statement2 | VALUES (expr2 [,...]) }

EXCEPT [ALL | DISTINCT]

[CORRESPONDING [BY (column1, column2, ...)]]

...

Keywords

VALUES (expr1 [,...])

Generates a derived result set with explicitly declared values as expression1, expression2, etc. It is essentially a
SELECT statement result set without the SELECT...FROM syntax. This is known as a row constructor, since the
rows of the result set are manually constructed. According to the ANSI standard, mutliple, hand-coded rows in a
row constructor must be enclosed in parentheses and separated by commas.

EXCEPT

Determines which rows will be excluded from the single result set.

ALL

Considers duplicate rows from all result sets.

DISTINCT

Drops duplicate rows from all result sets prior to the EXCEPT comparison. Columns containing a NULL value are
considered duplicates. (If neither ALL nor DISTINCT are used, DISTINCT behavior is the default.)

CORRESPONDING [BY] (column1, column2, ...)

Specifies that only columns with the listed names are returned, even if one or both queries use the asterisk
shortcut.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rules at a Glance

There is only one significant rule to remember when using EXCEPT:

The order, number, and datatypes of columns should be of the same category in all queries

The datatypes do not have to be identical, but they must be compatible. For example, CHAR and VARCHAR are
compatible datatypes. By default, the result set will default to the largest datatype size of each column in each ordinal
position. For example, a query retrieving from columns containing a VARCHAR(10) and a VARCHAR(15) column will use
the VARCHAR(15) datatype and size.

Programming Tips and Gotchas

None of the platforms support the CORRESPONDING [BY column1, column2, ...] clause.

On platforms that do not support EXCEPT, you might substitute a NOT IN subquery.
However, NOT IN subqueries have different NULL handling and, on some database
platforms, produce different result sets.

According to the ANSI standard, the UNION and EXCEPT set operators evaluate with equal precedence. However, the
INTERSECT set operator evaluates first before the other set operators. We recommend that you explicitly control the
precedence of set operators, using parentheses as a general best practice.

According to the ANSI standard, only one ORDER BY clause is allowed in the entire query. Include it at the end of the
last SELECT statement. In order to avoid column and table ambiguity, be sure to alias each column for each table with
the same respective alias. For example:

SELECT au_lname AS 'lastname', au_fname AS 'firstname'

FROM authors

EXCEPT

SELECT emp_lname AS 'lastname', emp_fname AS 'firstname'

FROM employees

ORDER BY lastname, firstname

Also, while each of your column lists may list columns with correspondingly compatible datatypes, there may be some
variation in behavior across the DBMS platforms with regard to varying length of the columns. For example, if the
au_lname column in the previous example's first query is markedly longer than the emp_lname column in the second
query, each platform may apply different rules as to which length is used for the final result. In general, though, the
platforms will choose the longer (and less restrictive) column size for use in the result set.

Each DBMS may apply its own rules as to which column name is used if the names vary across column lists. In general,
the column names of the first query are used.

DB2

DB2 supports the EXCEPT and EXCEPT ALL keywords of the ANSI standard, plus the VALUES extension:

{ SELECT statement1 | VALUES (expression1, expression2 [,...]) }

EXCEPT [ALL]

{ SELECT statement2 | VALUES (expression1, expression2 [,...]) }

EXCEPT [ALL]

...

where:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where:

VALUES

Allows you to specify one or more hand-coded rows to include in the final result set. (This is known as a row
constructor.) The VALUES clause must specify the exact same number of columns as the queries in the EXCEPT.

Although EXCEPT DISTINCT is not supported, EXCEPT is the functional equivalent. The CORRESPONDING clause is not
supported. In addition, the datatypes LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, and the
structured types are not usable with EXCEPT, but are useable with EXCEPT ALL.

When the result set has the same column name for a given column across all SELECT statements, then that name is
used as the final column name returned by the statement. If, however, the given column is named differently in
different SELECT statements, then you must rename the column in each query using the same AS alias_name.

If multiple set operations are used in a single query, those enclosed in parentheses are evaluated first. Then, the
queries are evaluated in left-to-right order. However, all INTERSECT operations are performed before any UNION and
EXCEPT operations.

For example:

(SELECT empno

 FROM employee

 WHERE workdept LIKE 'E%'

 EXCEPT

 SELECT empno

 FROM emp_act

 WHERE projno IN ('IF1000', 'IF2000', 'AD3110'))

UNION

VALUES ('AA0001'), ('AB0002'), ('AC0003')

The example above retrieves all IDs for all employees from the employee table who are in any department that starts
with "E," then it excludes any employee IDs from the employee accounts (emp_act) table representing employees
working in the projects IF1000, IF200', and AD3110. Finally, it adds in three extra employee IDs — AA0001,
AB0002, and AC0003 using the UNION set operator.

MySQL

EXCEPT is not supported in MySQL. However, you can use the NOT IN or NOT EXISTS operations as alternatives.

Oracle

Oracle does not support the EXCEPT set operator. However, it has an alternative set operator, MINUS, with identical
functionality.

<SELECT statement1>

MINUS

<SELECT statement2>

MINUS

...

MINUS DISTINCT and MINUS ALL are not supported. MINUS is the functional equivalent of MINUS DISTINCT. Oracle
does not support MINUS on queries under the following circumstances:

Queries containing columns of LONG, BLOB, CLOB, BFILE, or VARRAY datatypes

Queries containing the FOR UPDATE clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queries containing the FOR UPDATE clause

Queries containing TABLE collection expressions

If the first query in a set operation contains any expressions in the select item list, then include AS clauses to associate
aliases with those expressions. Also, only the last query in the set operation may contain an ORDER BY clause.

For example, you could generate a list of all store IDs that do not have any records in the sales table:

SELECT stor_id FROM stores

MINUS

SELECT stor_id FROM sales

The MINUS command is functionally similar to a NOT IN query. The following query would retrieve the same results as
the earlier query:

SELECT stor_id FROM stores

WHERE stor_id NOT IN

 (SELECT stor_id FROM sales)

PostgreSQL

PostgreSQL supports the EXCEPT and EXCEPT ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

EXCEPT [ALL]

<SELECT statement2>

EXCEPT [ALL]

...

PostgreSQL does not support EXCEPT or EXCEPT ALL on queries with a FOR UPDATE clause. PostgreSQL does not
support the CORRESPONDING clause. EXCEPT DISTINCT is not supported, but EXCEPT is the functional equivalent.

The first query in the set operation may not contain an ORDER BY clause or a LIMIT clause. Subsequent queries in the
EXCEPT or EXCEPT ALL set operation may contain these clauses, but such queries must be enclosed in parentheses.
Otherwise, the right-most occurence of ORDER BY or LIMIT will be applied to the entire set operation.

PostgreSQL evaluates SELECT statements in a multi-EXCEPT statement from top to bottom unless you use parentheses
to change the evaluation hierarchy of the statements.

Normally, duplicate rows are eliminated from the two result sets, unless you add the ALL keyword. For example, you
could find all titles in the authors table that have no records in the sales table:

SELECT title_id

FROM authors

EXCEPT ALL

SELECT title_id

FROM sales;

SQL Server

EXCEPT is not supported. However, you can use NOT IN or NOT EXISTS operations in conjunction with a correlated
subquery as alternatives. The following queries are examples of how you can achieve EXCEPT functionality using NOT
EXISTS and NOT IN:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXISTS and NOT IN:

SELECT DISTINCT a.city

FROM pubs..authors AS a

WHERE NOT EXISTS

 (SELECT *

 FROM pubs..publishers AS p

 WHERE a.city = p.city)

SELECT DISTINCT a.city

FROM pubs..authors AS a

WHERE a.city NOT IN

 (SELECT p.city

 FROM pubs..publishers AS p

 WHERE p.city IS NOT NULL)

In general, NOT EXISTS is faster than NOT IN. In addition, there is a subtle issue with NULLs that differentiates the IN
and NOT IN operators and the EXISTS and NOT EXISTS set operator. In order to get around this different handling of
NULLs, simply add the IS NOT NULL clause to the WHERE clause, as we have in the preceding example.

See Also

INTERSECT
SELECT
UNION

EXISTS Operator

The EXISTS operator tests a subquery for the existence of rows.

Platform Command

DB2 Supported

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL2003 Syntax

SELECT ...

WHERE [NOT] EXISTS (subquery)

The parameters and keywords are as follows:

WHERE [NOT] EXISTS

Tests the subquery for the existence of one or more rows. If even one row satisfies the subquery clause, it
returns a Boolean TRUE value. The optional NOT keyword returns a Boolean TRUE value when the subquery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

returns a Boolean TRUE value. The optional NOT keyword returns a Boolean TRUE value when the subquery
returns no matching rows.

subquery

Retrieves a result set based on a fully formed subquery.

Rules at a Glance

The EXISTS operator checks a subquery for the existence of one or more records against the records in the parent
query.

For example, we want to see if we have any jobs where no employee is filling the position:

SELECT *

FROM jobs

WHERE NOT EXISTS

 (SELECT * FROM employee

 WHERE jobs.job_id = employye.job_id)

This example tests for the absence of records in the subquery using the optional NOT keyword. The next example looks
for specific records in the subquery to retrieve the main result set:

SELECT au_lname

FROM authors

WHERE EXISTS

 (SELECT *

 FROM publishers

 WHERE authors.city = publishers.city)

This query returns the last name of authors who live in the same city as their publishers. Note that the asterisk in the
subquery is acceptable, since the subquery only needs to return a single record to provide a Boolean TRUE value.
Columns are irrelevant in these cases. The first example selects only a single column. The key point is whether a row
exists.

Programming Tips and Gotchas

EXISTS, in many queries, does the same thing as ANY. EXISTS is usually most effective with correlated subqueries.

EXISTS is symantically equivalent to the ANY operator.

The EXISTS subquery usually searches for only one of two things. Your first option is to use the asterisk wildcard (e.g.,
SELECT * FROM...) so that you are not retrieving any specific column or value. In this case, the asterisk means "any
column." The second option is to select only a single column in the subquery (e.g., SELECT au_id FROM...). Some
individual database platforms allow a subquery against more than one column (e.g., SELECT au_id, au_lname FROM...).
However, this feature is rare and should be avoided on code that needs to be transportable across platforms.

Platform Differences

All of the platforms support EXISTS in the manner described above.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

ALL/ANY/SOME
SELECT
WHERE

FETCH Statement

The FETCH statement is one of four commands used in cursor processing, along with DECLARE, OPEN, and CLOSE.
Cursors allow you to process queries one row at a time, rather than as a complete set. FETCH positions a cursor on a
specific row and retrieves that row from the result set.

Cursors are especially important in relational databases because they are set-based, while most client-centric
programming languages are row-based. So cursors allow you to perform operations a single row at a time, to better fit
what a client program can do, rather than operate on a whole set of records at once.

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

FETCH [{ NEXT | PRIOR | FIRST | LAST |

 { ABSOLUTE | RELATIVE int } }

 FROM] cursor_name

[INTO variable1 [, ...]]

Keywords

NEXT

Tells the cursor to return the record immediately following the current row, and increments the current row to
the row returned. FETCH NEXT is the default behavior for FETCH. It retrieves the first record if FETCH is
performed as the first fetch against a cursor.

PRIOR

Tells the cursor to return the record immediately preceding the current row and decrements the current row to
the row returned. FETCH PRIOR does not retrieve a record if it is performed as the first fetch against the cursor.

FIRST

Tells the cursor to return the first record in the cursor, making it the current row.

LAST

Tells the cursor to return the last record in the cursor, making it the current row.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ABSOLUTE int

Tells the cursor to return the int record from the cursor record set counting from the top (if int is a positive
integer), or the int record counting from the bottom (if int is a negative integer), making the returned record the
new current record of the cursor. If int is 0, no rows are returned. If the value of int moves the cursor past the
end of the cursor result set, then the cursor is positioned after the last row (for a positive int) or before the first
row (for a negative int).

RELATIVE int

Tells the cursor to return the record int rows after the current record (if int is positive) or int rows before the
current record (if int is negative), making the returned record the new current row of the cursor. If int is 0, the
current row is returned. If the value of int moves the cursor past the end of the cursor result set, then the
cursor is positioned after the last row (for a positive int) or before the first row (for a negative int).

[FROM] cursor_name

Tells the name of the OPEN cursor where you want to retrieve rows. The cursor must be previously created and
instantiated using the DECLARE and OPEN clauses. FROM is optional, but encouraged.

INTO variable1[, ...]

Stores data from each column in the open cursor into a local variable. Each column in the cursor must have a
corresponding variable of a matching datatype in the INTO clause. Each column value is directly related to the
variables in ordinal positions.

Rules at a Glance

At the highest level, a cursor must be:

1. Created using DECLARE

2. Opened using OPEN

3. Operated against using FETCH

4. Dismissed using CLOSE

By following these steps, you create a result set similar to that of a SELECT statement, except that you can operate
against each individual row within the result set separately. For example, assume you've created and opened a cursor
on a DB2 database called employee_cursor containing three columns:

DECLARE employee_cursor CURSOR FOR

SELECT lname, fname, emp_id

FROM employee

WHERE hire_date >= '2005-02-15';

OPEN employee_cursor;

You can now retrieve values from the cursor using FETCH:

FETCH FROM employee_cursor

INTO :emp_last_name, :emp_first_name, :emp_id

The FETCH statement allows you to position the current row within the cursor. Since you have not yet accessed the
cursor in this example, you will be given the first record in the result set. You can then use any procedural code you
want to operate against the values in that row.

Each database platform has its own rules about how variables are used. For example, DB2
requires a colon as a prefix on each variable, as shown in the earlier example; SQL Server
requires an at sign (@), PostgreSQL and Oracle have no prefix, and so forth. Meanwhile,
the SQL standard says that a colon prefix is necessary for languages that are embedded,
like C or COBOL, but no prefix is needed for procedural SQL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A cursor rests either directly on a row, before the first row, or after the last row. When a cursor is resting directly in a
row, then that row is known as the current row. You can use cursors to position an UPDATE or DELETE statement in the
current row using the WHERE CURRENT OF clause.

It is important to remember that a cursor result set does not wrap around. Thus if you have a result set containing 10
records and tell the cursor to move forward 12 records, it will not wrap back around to the beginning and continue its
count from there. Instead, the default cursor behavior is to stop after the last record in the result set when scrolling
forward, and to stop before the first record when scrolling back. For example, on SQL Server:

FETCH RELATIVE 12 FROM employee_cursor

INTO @emp_last_name, @emp_first_name, @emp_id

When fetching values from the database into variables, make sure that the datatypes and number of columns and the
variables match. Otherwise, you'll get an error. For example:

FETCH PRIOR FROM employee_cursor

INTO @emp_last_name, @emp_id

The above example will fail since the employee_cursor contains three columns while the fetch operation has only two
variables.

Programming Tips and Gotchas

The most common errors encountered with the FETCH statement are a mismatch of variables to the values in the
cursor, whether that is in the exact number, order, or datatype. So take a little time to make sure you remember
exactly what values are in the cursor and what their datatypes are.

Typically, the database will lock at least the current row and possibly all rows held by the cursor. According to the ANSI
standard, cursor locks are not held through ROLLBACK or COMMIT operations, although this varies from platform to
platform.

Although the FETCH statement is detailed in isolation here, it should always be managed as a group with the DECLARE,
OPEN, and CLOSE statements. For example, every time you open a cursor, the server consumes memory. If you forget
to close your cursors, you could create memory management problems. So make sure that every declared and opened
cursor is eventually closed.

Cursors are also often used in stored procedures or batches of procedural code. The reason for this is because
sometimes you need to perform actions on individual rows rather than on entire sets of data at a time. But because
cursors operate on individual rows and not sets of data, they are often much slower than other means of accessing your
data. Just make sure that you perform strong analysis on your approach. Many challenges, such as a convoluted
DELETE operation or a very complex UPDATE, can be solved by using clever WHERE and JOIN clauses instead of
cursors.

DB2

DB2 cursors are implicitly forward-only cursors that always scroll forward one record at a time. A DB2 cursor, when
compared to the ANSI standard, is essentially a FETCH NEXT 1 cursor. DB2 does not support keywords like PRIOR,
ABSOLUTE, and RELATIVE. DB2 FETCH syntax is:

FETCH [FROM] cursor_name

{ [INTO variable1 [, ...]] |

 [USING DESCRIPTOR descriptor_name] }

where:

USING DESCRIPTOR descriptor_name

Identifies a previously created SQLDA (SQL Descriptor Area) called descriptor_name to contain zero or more of
the retrieved values from the FETCH statement.

When saving fetched values INTO variables, DB2 allows LOB values to be inserted into regular host variables such as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When saving fetched values INTO variables, DB2 allows LOB values to be inserted into regular host variables such as
VARCHAR (when they are big enough to hold the value), locator variables, or file-reference variables.

When saving fetched values with the USING DESCRIPTOR clause, you should remember several rules about descriptor
areas:

SQLN indicates the number of SQLVAR occurrences in the SQLDA.

SQLDABC indicates the number of bytes of storage allocated in the SQLDA.

SQLD indicates the number of variables used in the SQLDA when processing the statement. SQLD must be set
to a value greater than or equal to zero and less than or equal to SQLN.

SQLVAR indicates the attributes of the variables. The descriptor needs enough storage to hold all SQLVAR
occurrences. Use this formula to calculate the size of SQLDABC: it must be greater than or equal to 16 + SQLN*
(n), where n is the length of SQLVAR occurrences.

When LOB or structured type result columns must be accommodated, use two SQLVAR entries for every select
item (or column returned from the result table).

For example, the following FETCH statement uses an SQLDA:

FETCH employee_cursor USING DESCRIPTOR :sqlda2

In the above example, the descriptor :sqlda2 and the cursor employee_cursor must already exist.

MySQL

Not supported.

Oracle

Oracle cursors are implicitly forward-only cursors that always scroll forward one record at a time. An Oracle cursor,
when compared to the ANSI standard, is essentially a FETCH NEXT 1 cursor. Oracle cursors must either insert the
retrieved values into matching variables, or use the BULK COLLECT clause to insert all of the records of the result set
into an array. Oracle does not support keywords like PRIOR, ABSOLUTE, and RELATIVE. However, Oracle does support
both forward-only and scrollable cursors in the database via the Oracle Call Interface (OCI). OCI also supports features
like PRIOR, ABSOLUTE, and RELATIVE for read-only cursors whose result set is based on a read consistent snapshot.

Oracle's FETCH syntax is:

FETCH cursor_name

{ INTO variable_name1 [,...] | BULK COLLECT INTO

 [collection_name [,...] [LIMIT int] }

where:

BULK COLLECT INTO collection_name

Retrieves the entire rowset, or a specified number of rows (see LIMIT), into a client-side array or collection
variable named collection_name.

LIMIT int

Limits the number of records fetched from the database when using the BULK statement. The int value is a
nonzero integer (or a variable representing an integer value).

Oracle supports dynamic SQL-based cursors whose text can be built at runtime. Oracle also supports cursor_names that
may be any allowable variable, parameter, or host-array type. In fact, you may also use user-defined or %ROWTYPE
record variables for the INTO clause as well. This allows you to construct flexible, dynamic cursors in a template-like
structure.

For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example:

DECLARE

 TYPE namelist IS TABLE OF employee.lname%TYPE;

 names namelist;

 CURSOR employee_cursor IS SELECT lname FROM employee;

BEGIN

 OPEN employee_cursor;

 FETCH employee_cursor BULK COLLECT INTO names;

 ...

 CLOSE employee_cursor;

END;

Oracle FETCH often is paired with a PL/SQL FOR loop (or other kind of loop) to cycle through all the rows in the cursor.
You should use the cursor attributes %FOUND or %NOTFOUND to detect the end of the rowset. For example:

DECLARE

 TYPE employee_cursor IS REF CURSOR RETURN employee%ROWTYPE;

 employee_cursor EmpCurTyp;

 employee_rec employee%ROWTYPE;

BEGIN

 LOOP

 FETCH employee _cursor INTO employee_rec;

 EXIT WHEN employee _cursor%NOTFOUND;

 ...

 END LOOP;

CLOSE employee_cursor;

END;

This example uses a standard PL/SQL loop with an EXIT clause to end the loop when there are no more rows in the
cursor to process.

PostgreSQL

PostgreSQL supports both forward and backward scrolling cursors. It covers the ANSI standard except ABSOLUTE,
FIRST, or LAST. The syntax for FETCH in PostgreSQL is:

FETCH { [FORWARD | BACKWARD | ABSOLUTE | RELATIVE] }

 { [int | ALL | NEXT | PRIOR] }

{ IN | FROM } cursor_name

[INTO :variable1 [,...]]

where:

FORWARD

Tells PostgreSQL that the cursor scrolls forward. This is the default if no other mode is defined.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells PostgreSQL that the cursor scrolls forward. This is the default if no other mode is defined.

BACKWARD

Tells PostgreSQL that the cursor scrolls backward.

ABSOLUTE

Allowed as a keyword, but not supported in functionality.

RELATIVE

Allowed as a keyword, but not supported in functionality.

int

A signed integer that indicates how many records to scroll forward (if positive) or backward (if negative).

ALL

Retrieves all records remaining in the cursor.

NEXT

Retrieves the next single record.

PRIOR

Retrieves the previous single record.

IN | FROM cursor_name

Defines the previously declared and opened cursor where data is retrieved.

INTO variable

Assigns a cursor value to a specific variable. As with ANSI cursors, the values retrieved by the cursor and the
variables must match in number and datatype.

PostgreSQL cursors must be used with transactions explicitly declared using BEGIN, and must be closed with COMMIT
or ROLLBACK.

The following PostgreSQL statement retrieves five records from the employee table and displays them:

FETCH FORWARD 5 IN employee_cursor;

It is important to note that PostgreSQL also supports a separate command, MOVE, to move to a specific cursor position.
It differs from FETCH only by not returning values into variables:

MOVE { [FORWARD | BACKWARD | ABSOLUTE | RELATIVE] }

 { [int | ALL | NEXT | PRIOR] }

{ IN | FROM } cursor_name

For example, the following code declares a cursor, skips forward five records, and then returns the values in the sixth
record:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

record:

BEGIN WORK;

 DECLARE employee_cursor CURSOR FOR SELECT * FROM employee;

 MOVE FORWARD 5 IN employee_cursor;

 FETCH 1 IN employee_cursor;

 CLOSE employee_cursor;

COMMIT WORK;

The above code will return a single row from the employee_cursor result set.

SQL Server

SQL Server supports a variation of FETCH that is very close to the ANSI standard:

FETCH [{ NEXT | PRIOR | FIRST | LAST |

 { ABSOLUTE | RELATIVE int } }

 [FROM] [GLOBAL] cursor_name

[INTO @variable1 [, ...]]

The differences between SQL Server's implementation and the ANSI standard are very small. First, SQL Server allows
you to use variables in place of the int and cursor_name values. Second, SQL Server allows the declaration and use of
GLOBAL cursors that can be accessed by any user or session, not just the one that created it.

There are some rules that apply to how you use the FETCH command based upon how you issued the DECLARE
CURSOR command:

When you declare a SCROLL SQL-92 cursor, all FETCH options are supported. In all other SQL-92 cursors, only
NEXT is the only option supported. (There is also an alternate Transact-SQL style DECLARE CURSOR
statement.)

DYNAMIC SCROLL cursors support all FETCH options except ABSOLUTE.

FORWARD-ONLY and FAST_FORWARD only support FETCH NEXT.

KETSET, STATIC, and SCROLL cursors (and DYNAMIC, FORWARD-ONLY, and FAST_FORWARD are not defined),
all FETCH options are supported.

SQL Server also requires a DEALLOCATE statement, in addition to CLOSE, to release
memory consumed by a cursor.

Here's a full example that goes from declaring and opening a cursor to initiating several fetches and then finally closing
and deallocating the cursor:

DECLARE @vc_lname VARCHAR(30), @vc_fname VARCHAR(30), @i_emp_id CHAR(5)

DECLARE employee_cursor SCROLL CURSOR FOR

 SELECT lname, fname, emp_id

 FROM employee

 WHERE hire_date <= 'FEB-14-2004'

OPEN employee_cursor

-- Fetch the last row in the cursor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- Fetch the last row in the cursor.

FETCH LAST FROM employee_cursor

-- Fetch the row immediately prior to the current row in the cursor.

FETCH PRIOR FROM employee_cursor

-- Fetch the fifth row in the cursor.

FETCH ABSOLUTE 5 FROM employee_cursor

-- Fetch the row that is two rows after the current row.

FETCH RELATIVE 2 FROM employee_cursor

-- Fetch values eight rows prior to the current row into variables.

FETCH RELATIVE -8 FROM employee_cursor

INTO @vc_lname, @vc_fname, @i_emp_id

CLOSE employee_cursor

DEALLOCATE employee_cursor

GO

Remember that in SQL Server you must not only CLOSE the cursor, but you must also DEALLOCATE it. In some rare
cases, you might wish to reopen a closed cursor. You can reuse any cursor that you have closed but not deallocated.
The cursor is permanently destroyed only when it is deallocated.

See Also

CLOSE
DECLARE CURSOR
OPEN

GRANT Statement

The GRANT statement assigns privileges to users and roles, which allows them to access and use database objects (that
is, object privileges).

In addition, most database platforms use the GRANT statement to authorize users and roles to create database objects
and execute stored procedures, functions, and so on (particularly usage privileges).

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

The SQL2003 syntax for GRANT includes only the assignment of object privileges and roles to a specific user:

GRANT { {object privilege [,...] | role [,...]} }

[ON database_object_name]

[TO grantee [,...]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[TO grantee [,...]]

[WITH HIERARCHY OPTION] [WITH GRANT OPTION] [WITH ADMIN OPTION]

[FROM { CURRENT_USER | CURRENT_ROLE }]

Keywords

object privilege

Grants one or more privileges for a SQL statement. Multiple privileges may be granted at one time, as long as
commas separate them. Do not combine ALL PRIVILEGES with other privileges, but the remainder may be
combined in any order. Valid privileges are:

ALL PRIVILEGES

Indicates a shorthand for every privilege the grantor has available to grant. Grants all privileges
currently assigned to the grantor to the named users and/or for the specified database objects. This is
generally not a recommended approach, since it can encourage sloppy permissioning.

EXECUTE

Grants the privileges to execute any ANSI SQL routine. An ANSI routine is any stored procedure, user-
defined function, or user-defined method.

{SELECT | INSERT | UPDATE | DELETE}

Grants the specific privilege for a given user on the specified database object, such as a table or view.
You may add a parenthetical list of the columns of a given table on which the privilege will be granted
(except for the DELETE statement).

REFERENCES

Grants the privilege to use the column(s) in any constraint or assertion, not just a foreign key. The
REFERENCES clause also allows you to define column-specific details (by including a parenthetical,
comma-delimited list) for statements like INSERT, SELECT, and so on. Finally, REFERENCES grants the
privilege to create or drop foreign key constraints referencing the database object as a parent object.

TRIGGER

Grants the privilege of creating a trigger to operate on a specific table and its columns.

UNDER

Grants the privilege to create subtypes or typed tables.

USAGE

Grants privileges to use a domain, user-defined type, character set, collation, sequence, or translation.

role

Grants a specific, predefined role from the named grantee identified in the FROM clause. For example, the
database administrator might want to create a role called Reporter that has read-only access to several tables.
By granting this role to a user, that user then receives all of the read-only permissions granted to the Reporter
role. Users can have a role assigned to them and receive all of the permissions already assigned to that role.

ON database_object_name

Grants privileges on the specified, predefined database object identified by database_object_name, which may be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Grants privileges on the specified, predefined database object identified by database_object_name, which may be
one of the following:

{[TABLE] object_name | DOMAIN object_name |

 COLLATION object_name | CHARACTER SET object_name |

 TRANSLATION object_name | SPECIFIC ROUTINE routine_name}

TO grantee

Assignes the privilege to the named user(s) or role(s), designated as grantee. You can assign privileges to
multiple users and/or roles, as long as commas separate them. Alternately, privileges may be granted to
PUBLIC, meaning that all users (including those that will be created in the future) have the specified privileges.

WITH HIERARCHY OPTION

Bestows the WITH HIERARCHY OPTION privilege, enabling the grantee to SELECT not only from the named
table, but also from all of its subtables. This applies to privilege grants only.

WITH GRANT OPTION

Enables the grantee to further grant the privileges to other users. This applies to privilege grants only.

WITH ADMIN OPTION

Bestows the ability to assign a role. The ability to assign role responsibilities is separate from the ability to grant
privileges to other users or roles.

FROM { CURRENT_USER | CURRENT_ROLE}

Names the user who is granting the specified privilege(s), either the CURRENT_USER or the CURRENT_ROLE.
This clause is optional and assumes the current user context.

Rules at a Glance

You may grant many privileges on a single object with one statement, but do not mix the ALL PRIVILEGES privilege
with the individual SQL statement keywords in a single GRANT statement. You can grant a specific privilege on a
specific database object to a single user using:

GRANT privilege_name ON object_name TO grantee_name

For example:

GRANT SELECT ON employee TO Dylan;

You can grant a specific privilege on a specific object to all users via the PUBLIC user. When a grant is issued to
PUBLIC, that means everyone has permission to the object without the need for a grant specifically to the object. For
example:

GRANT SELECT ON employee TO PUBLIC;

When granting privileges to multiple grantees, simply place a comma between each:

GRANT SELECT ON employee TO Dylan, Matt

The previous example shows that you may grant privileges to multiple users, in this case Dylan and Matt, and to the
PUBLIC user in a single GRANT statement. When granting privileges on a table, the privileges may extend to the column
level by showing a list of columns enclosed in parentheses after the table name. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

level by showing a list of columns enclosed in parentheses after the table name. For example:

GRANT SELECT ON employee(emp_id, emp_fname, emp_lname, job_id)

TO Dylan, Matt

The previous example shows that Dylan and Matt now have select privileges on several columns of the employee
table.

Programming Tips and Gotchas

Depending on the specific database implementation, views may or may not have independent access privileges from
their base tables.

Note that all of the optional WITH clauses control extensions to the base privilege(s) granted in the statement. Thus,
the following command grants the privilege to SELECT records from the employee table:

GRANT SELECT ON employee TO Dylan;

but the following command grants the privilege to SELECT records from the employee table and also to grant that
SELECT privilege to other users.

GRANT SELECT ON employee TO Dylan

WITH GRANT OPTION;

Similarly, you can use the REVOKE statement to revoke only the WITH GRANT OPTION, the individual SELECT privilege,
or both.

Most of the platforms isolate privileges at the user and role level. Thus, an individual user who is a member of two roles
may have an individual set of permissions four times — once for themselves, once for PUBLIC, and once with each of
the roles for which they have permission. In this situation, you should be very careful. In order to remove a specific
privilege completely from such a user, you have to revoke the user's privileges directly, and then in both roles.

DB2

DB2 offers many options in its implementation of the GRANT command. It is important to note that privileges on
database objects (such as SELECT privileges on a specific table) are handled by the command, as are a variety of other
privileges:

GRANT { [database_privilege [,...] ON DATABASE] |

 [CONTROL ON INDEX index_name] |

 [{BIND | CONTROL | EXECUTE} ON PACKAGE package_name] |

 [EXECUTE ON [SPECIFIC] {FUNCTION | METHOD {* | FOR} | PROCEDURE}

 object_name] |

 [{ALTERIN | CREATEIN | DROPIN} ON SCHEMA schema_name] |

 [ON SEQUENCE sequence_name] |

 [PASSTHRU ON SERVER server_name] |

 [object_privilege [,...] ON [TABLE] object_name] }

TO [{USER |GROUP}]

 { grantee_name [,...] | group_name [,...] | PUBLIC }]

[WITH GRANT OPTION] | [USE OF TABLESPACE tablespace_name]

The parameters are as follows:

database_privileges

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

database_privileges

Grants one or more privileges that apply to the entire database, rather than to a single object. The database
privileges are:

BINDADD

Grants the authority to create packages. The user who creates a package always has the CONTROL
privilege on that package even when BINDADD is revoked at a later date.

CONNECT

Grants the authority to access the specified database.

CREATETAB

Grants the authority to create a base table. The user who created the base table always has the
CONTROL privilege on the table even if CREATETAB is revoked at a later date.

CREATE_EXTERNAL_ROUTINE

Grants the privilege to register external routines. This is somewhat dangerous since external threads
can have adverse side effects. The routine will continue to exist once created, even if the
CREATE_EXTERNAL_ROUTINE privilege is revoked for the user. (For more information, check on the
THREADSAFE clause of the CREATE or ALTER routine statements in the DB2 documentation.)

CREATE_NOT_FENCED_ROUTINE

Grants the authority to create routines that are not fenced into a specific user process. That is, the
routines may execute within the database manager's process. CREATE_NOT_FENCED_ROUTINE is a
superset of CREATE_EXTERNAL_ROUTINE. Consequently, you automatically are granted the latter
privilege when assigned the former. Read the description of CREATE_EXTERNAL_ROUTINE for more
information.

DBADM

Grants superuser authority, including the ability to create any object, and including all privileges against
all objects in the database, even the ability to grant those privileges to other users.

IMPLICIT_SCHEMA

Grants the authority to create a schema implicitly, though this privilege does not impact the ability to
create a schema or any objects within a schema explicitly.

LOAD

Grants the authority to explicitly LOAD the specified database. SYSADM and DBADM, who automatically
possess this privilege, need no other explicitly granted privileges to load a database. But other users
with LOAD privilege must have, at a minimum, INSERT privileges on tables they wish to load.

QUIESCE_CONNECT

Grants the privilege to access the specified database while it is quiesced.

CONTROL ON INDEX index_name

Grants the privilege to drop an index, once created, of the specified index_name. This is the explicit CONTROL
privilege for indexes. It is automatically granted to the creator of any index.

{BIND | CONTROL | EXECUTE} ON PACKAGE package_name

Grants the privileges associated with packages. Note that RUN and PROGRAM are acceptable synonyms for
EXECUTE and PACKAGE, respectively. The package privileges are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXECUTE and PACKAGE, respectively. The package privileges are:

BIND

Grants the authority to bind or rebind the specified package. Since any SQL statements in the package
are checked at bind time, the user must also have statement permissions on each object referenced by
the package.

CONTROL

Grants the authority to rebind, drop, or execute the specified package, as well as to grant BIND and
EXECUTE privileges to other users. Users granted the CONTROL privilege automatically receive BIND
and EXECUTE as well. CONTROL is automatically granted to the creator of a package.

EXECUTE

Grants the authority to execute the specified package.

EXECUTE ON [SPECIFIC] {FUNCTION | METHOD {* | FOR} | PROCEDURE} object_name

Grants privileges on an ANSI routine (i.e., user-defined function, user-defined method, or stored procedure).
The elements of this clause are as follows:

FUNCTION [schema.]function_name

Specifies that the user is granted execution privileges on a specific function. A SPECIFIC function name
may be specified. DB2 also supports functions without names. In this case, FUNCTION [(param [,...])]
should be used, including any and all parameters of the function. If schema is not included, the current
schema is assumed. You may substitute an asterisk (*) for a specific function name to grant a user the
execution privilege on all functions in the current or specified schema.

METHOD { * | FOR type_name}

Specifies that the user is granted rights to execute all methods of type_name, even those that have not
yet been created. The optional FOR type_name clause names the type where the specified method is
found. A SPECIFIC method name may be specified. DB2 also supports methods without names. In this
case, METHOD [(param [,...])] should be used, including any and all parameters of the function.
Alternately, the asterisk (*) can be used to specify that all types in the schema are granted to the user.

PROCEDURE [schema.]procedure_name

Specifies that the user be granted execute privileges on all stored procedures in the specified schema,
even those created in the future. If schema is not included, the current schema is assumed. You may
substitute an asterisk (*) for a specific stored procedure name to grant a user the execution privilege
on all stored procedures in the current or specified schema.

{ALTERIN | CREATEIN | DROPIN} ON SCHEMA schema_name

Grants privileges associated with manipulating a schema (that is, a user-owned set of objects). Only users with
SYSADM, DBADM, or WITH GRANT OPTION permissions for all privileges for the specified schema may issue this
command. The elements are as follows:

ALTERIN

Grants the authority to alter or comment on objects in a schema defined by ON SCHEMA schema_name.

CREATEIN

Grants the authority to create objects in a schema defined by ON SCHEMA schema_name.

DROPIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Grants the authority to drop objects in the schema defined by ON SCHEMA schema_name.

{ALTER | USAGE} ON SEQUENCE sequence_name TO PUBLIC

Grants privileges on a sequence in an explicit or current schema (USAGE) or the privilege to execute the ALTER
SEQUENCE statement (ALTER).

PASSTHRU ON SERVER server_name

Grants the privilege to access an external data source named server_name using pass-through mode.

object_privilege

Represents privileges for a variety of statements on tables, views, and nicknamed tables or views. Object
privileges may be combined in any order:

ALL [PRIVILEGES]

Provides a shorthand for every privilege the grantor has available to grant. The PRIVILEGES keyword is
optional. It grants all privileges currently assigned to the granting user for the specified database
objects, including SELECT, INSERT, UPDATE, and DELETE privileges. With ALL, you have privileges to
add columns to a table, create or drop primary keys or unique constraints, create or drop foreign keys,
create or drop check constraints, create triggers on a table, add or change comments on a table,
change a nicknamed column name or datatype, or add, rest, or drop a nicknamed column name.
However, granting ALL is generally not a good approach since it can encourage sloppy coding.

ALTER

The privilege to add or alter columns, constraints, comments, or triggers on a specified table or view.
ALTER also permits the use of nicknames on column names or datatypes or to change a column option
for a nickname.

CONTROL

Grants a large number of privileges to the specific user or role (or PUBLIC) for the specified object.
When you grant CONTROL on a table, that includes the privileges for ALTER, DELETE, INSERT, INDEX,
REFERENCES, SELECT, and UPDATE. When you grant CONTROL on a view, that includes DELETE,
INSERT, SELECT, and UPDATE. On nicknames, CONTROL includes ALTER, INDEX, and REFERENCES.

The grantee has the ability to grant these aforementioned privileges to others, who may drop the
specified table, view, or nickname. They may execute the RUNSTATS utility on tables and indexes, as
well as execute the SET INTEGRITY command on tables, materialized views, and staging tables.

INDEX

The ability to create an index against a table, or to create an index specification on a nickname. (The
creator of an index retains CONTROL privileges on the indexes they create, even if the INDEX privilege
is later revoked.)

{SELECT | INSERT | UPDATE | DELETE}

Grants the specific privilege to a given user for the specified database object, such as a table or view. In
some cases, these privileges also extend to utilities with similar behavior. For example, the INDEX
privilege also includes the use of the IMPORT utility. You may add a parenthetical list of the columns on
a given table where the privilege is granted. The UPDATE privilege may be assigned down to the column
level by including a parentheses-encapsulated list of column or columns made available to the user.

REFERENCES

Grants the privilege to create or drop foreign key constraints referencing the database object as a
parent object. The REFERENCES privilege may be assigned down to the column level by including a
parentheses-encapsulated list of column or columns made available to the grantee.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TO { [USER | GROUP]} grantee_name

Names the user or users who will gain the specified privilege or privileges. When both a user and group
exist with the same name, use the optional USER or GROUP keywords to control whether the privileges
are granted to the user or to the group. PUBLIC may also be used to grant privileges to the PUBLIC
role. Multiple grantees can be listed; separate them with a comma between each.

WITH GRANT OPTION

Entitles the grantee to assign the granted privilege(s) to other users.

USE OF TABLESPACE tablespace_name

Grants the privilege of specifying or defaulting new tables to the specified tablespace_name. In effect, it enables
the USE privilege on that tablespace.

In situations when a group and a user of the same name exist, you must use either GROUP or KEYWORD to inform DB2
whether you want the privileges assigned to the group or to the user. If you do not, DB2 will return an error and abort
the GRANT statement. For example, to grant CONNECT and BINDADD permissions to the user emily and the group
datareaders:

GRANT CONNECT, BINDADD ON DATABASE TO USER emily,

 GROUP datareaders

To give the user Dylan, and all users who are members of the Admin role, control over a specific index:

GRANT CONTROL ON INDEX emp_ndx TO dylan, admin;

You can give a user rights on a package to execute it and bind (or rebind it), without the privilege to drop it (via
CONTROL) as follows:

GRANT BIND, EXECUTE ON PACKAGE d02.sales_processing

 TO USER dylan

The following example grants a user a variety of privileges on the sales table, as well as the privilege to pass those
privileges on to other users:

GRANT DELETE, INSERT, SELECT, UPDATE ON sales TO USER sam

WITH GRANT OPTION

Similarly, you can give another user privileges on a specific object (a view in this case) that includes only specific
columns in the object:

GRANT UPDATE (sales_qty, sales_discount) ON sales TO USER jake

DB2 also has privileges at the instance level that aren't managed with the GRANT
statement. Most importantly, there are three database manager configuration parameters
(SYSADM_GRP, SYSCTRL_GRP, and SYSMAINT_GRP) that control administrative rights to
the instance. You control these privileges using the DB2 UPDATE DATABASE MANAGER
CONFIGURATION statement. For example:

ATTACH DB2;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ATTACH DB2;

UPDATE DATABASE MANAGER CONFIGURATION

 USING

 sysadm_group 'DB2GRP'

 IMMEDIATE;

DETACH;

MySQL

MySQL provides additional access privileges, primarily relating to object manipulation within a database. GRANT in
MySQL is available from Version 3.22.11 and on. The syntax is as follows:

GRANT [{ ALL [PRIVILEGES] |

 {SELECT | INSERT | UPDATE} [(column_name [,...])] | DELETE |

 REFERENCES [(column_name [,...])] } |

[USAGE] | [{ALTER | CREATE | DROP}] | [FILE] | [INDEX] | [PROCESS] |

 [RELOAD] | [SHUTDOWN] | [CREATE TEMPORARY TABLES] | [LOCK TABLES] |

 [REPLICATION CLIENT] | [REPLICATION SLAVE] | [SHOW DATABASES] |

 [SUPER] }[,...]

ON {table_name | * | *.* | database_name.*}

{TO grantee_name [IDENTIFIED BY 'password']} [,...]

[WITH GRANT OPTION]

where:

ALL [PRIVILEGES]

Grants a user all applicable privileges that apply at the current level on one or more objects in the database,
with the exception of WITH GRANT OPTION. For example, GRANT ALL ON *.* grants all privledges, except
WITH GRANT OPTION, globally.

SELECT | INSERT | UPDATE | DELETE

Grants the ability to read, write, modify, and erase data from tables (and possibly from specific columns of a
table), respectively. Column-level permissions are allowed on SELECT, INSERT, and UPDATE, but not DELETE.
Granting column-level permissions can slow down MySQL somewhat, since more permission checking is
required.

REFERENCES

Remains unimplemented.

USAGE

Creates a "no privilege" user account for use in creating a user that has no privileges.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a "no privilege" user account for use in creating a user that has no privileges.

ALTER | CREATE | DROP

Grants the ability to alter, drop, or create tables and other database objects. When using the CREATE syntax,
you are not required to specify an ON clause to identify a specific table.

FILE

Grants the ability to load data from, or write data to, files using the SELECT INTO and LOAD DATA commands.

INDEX

Grants the ability to create or drop indexes.

PROCESS

Grants the ability to view running processes using SHOW FULL PROCESSLIST.

RELOAD

Grants the ability to invoke the FLUSH and RESET commands.

SHUTDOWN

Grants usage of the mysqladmin shutdown command to kill the server process.

CREATE TEMPORARY TABLES

Grants the ability to create temporary tables.

LOCK TABLES

Grants the use of the MySQL command LOCK TABLES on tables where the user has SELECT privileges.

REPLICATION CLIENT

Grants a user the privilege to see metadata about replication slaves and masters.

REPLICATION SLAVE

Grants a replication slave the right to read binlogs from a replication master.

SHOW DATABASES

Grants the user the privilege to execute the MySQL command SHOW DATABASES.

SUPER

Grants the user the privilege of one connection even if the max_connections threshold is reached. Users with
SUPER privileges can also execute important MySQL commands like CHANGE MASTER, KILL, mysqladmin debug,
PURGE [MASTER] LOGS, and SET GLOBAL.

ON {table_name | * | *.* | database_name.*}

Grants privileges from the specified table_name, from all tables within the current database using an asterisk (*),
from all tables in all databases with *.*, or from all tables in the specified database_name with database_name.*.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TO grantee_name [IDENTIFIED BY 'password'] [,...]

Names the user or users who will gain the specified privilege. You may enter multiple users separated by
commas. When granting privileges to a new user, you may also optionally set the new password for the new
named user at the same time using the IDENTIFIED BY clause.

WITH GRANT OPTION

Entitles the grantee to assign the granted privilege to other users.

Since MySQL is focused on speed, you can implement server-wide features that provide high-speed performance. For
example, you can enable the SKIP_GRANT_TABLES startup option to disable checks for privileges. This can speed up
queries, but obviously no permission checking is done. This means that all users have full access to all resources in the
database.

The following are access privileges that are usable with tables: SELECT, INSERT, UPDATE, DELETE, CREATE, DROP,
GRANT, INDEX, and ALTER. At the column level, you can apply INSERT, UPDATE, and SELECT.

In any situation, the host, table, database, and column names may each be up to 60 characters in size. The username
(a.k.a. the grantee_name) may be up to 16 characters.

MySQL also supports the possibility of granting rights to a specific user on a specific host if the grantee_name is in the
form USER@HOST. Wildcards can be included in the hostname of a grantee_name to provide the access privilege to a
large number of users at one time. Also, a missing hostname is the same as the "%" wildcard. For example:

GRANT SELECT ON employee TO katie@% IDENTIFIED BY 'audi',

 annalynn IDENTIFIED BY 'cadillac',

 cody@us% IDENTIFIED BY 'bmw';

The preceding GRANT statement grants read privileges on the employee table to the user katie explicitly at any
hostname. Similarly, the GRANT statements grants read privileges to the user annalynn implicitly at any hostname.
And finally, the GRANT statement grants read privileges to the user cody explicitly at any hostname starting with "US".

The grantee_name must be 16 or fewer characters. When specifying the user, password protection may be enforced by
including the IDENTIFIED BY clause.

The following example grants permissions to three users with passwords:

GRANT SELECT ON employee TO dylan IDENTIFIED BY 'porsche',

 kelly IDENTIFIED BY 'mercedes',

 emily IDENTIFIED BY 'saab';

In MySQL, if you grant permissions to a user that doesn't exist, it creates that user. The two statements that follow
create a user and password with global privileges and another user that has no privileges (the USAGE privilege):

GRANT SELECT ON *.* TO tony IDENTIFIED BY 'humbolt';

GRANT USAGE ON sales.* TO alicia IDENTIFIED BY 'dakota';

Failing to include the IDENTIFIED BY clause on a GRANT statement that creates a new
user will create a user without a password. This practice is insecure and dangerous.

If you do create a new user using the GRANT command, and you forget to specify a password, you can, and probably
should, set a password using the SET PASSWORD command.

MySQL also allows you to issue grants on remote hosts, specified with @hostname, and include the wildcard character
percent (%). For example, the following grant provides all permissions on all tables of the current database across all
hosts in the notforprofit.org domain to the user annalynn:

GRANT ALL ON * TO annalynn@'%.notforprofit.org';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GRANT ALL ON * TO annalynn@'%.notforprofit.org';

Privileges are written directly to system tables at four different levels:

Global level

Global privileges apply to all databases on a given server and are stored in the mysql.user system table.

Database level

Database privileges apply to all tables in a given database and are stored in the mysql.db system table.

Table level

Table privileges apply to all columns in a given table and are stored in the mysql.tables_priv system table.

Column level

Column privileges apply to single columns in a given table and are stored in the mysql.columns_priv system
table.

Because of the usage and system tables involved, you may grant redundant permissions at different levels. For
example, you could grant a user SELECT privileges on a specific table, and then grant global SELECT privileges on that
same table to all users of the database. You would then have to revoke those privileges separately to ensure the user
no longer had the privilege of SELECTing from the table.

The system tables are also somewhat unprotected, so it is possible to change permissions by issuing INSERT, UPDATE,
and DELETE statements against the tables rather than by using GRANT or REVOKE. Normally, all privileges are read into
memory when MySQL starts. Database, table, and column privileges issued by a GRANT statement are available
immediately and take effect right away. User privileges issued by a GRANT statement are noticed immediately and take
effect the next time the user connects. If you directly modify permissions in the system tables, none of the changes are
noticed until you restart MySQL, or until you issue a FLUSH PRIVILEGES command.

Oracle

Oracle's implementation of the GRANT statement supports an enormous number of variations and permutations. The
syntax is as follows:

GRANT { [object_privilege] [,...] |

 [system_privilege] [,...] |

 [role] [,...] }

[ON { [schema_name.][object] [,...] |

 [DIRECTORY directory_object_name] |

 [JAVA [{ SOURCE | RESOURCE }] [schema_name.][object] }

TO {{grantee_name [,...] | role_name [,...] | PUBLIC}

 [WITH { GRANT | HIERARCY } OPTION]

[IDENTIFIED BY password][WITH ADMIN OPTION];

You can grant multiple privileges with a single invocation of the command, but they must all be of the same type
(object, system, or role).

For example, you could grant a user three object privileges on a single table in one GRANT statement, and then issue a
separate grant of two system privileges to a role, and yet a third grant of several roles to a user, but not all of them in
one GRANT statement.

Following are the parameters to Oracle's GRANT statement:

object_privilege

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Grants the specified privileges to the specified grantee_name or role on the named schema object (for example, a
table or view). You may combine several object privileges, schema objects, or grantees in a single statement.
However, you may not grant system privileges or roles in the same statement as object privileges. The object
privileges are:

ALL [PRIVILEGES]

Grants all available privileges on a named schema object and is available for use on tables.

ALTER

Grants the privilege to change an existing table using the ALTER TABLE statement, and is available for
use on tables and sequences.

DEBUG

Grants access to a table through a debugger. The access granted applies to any triggers on the table or
to information on SQL that directly references the table and is available for use on tables, views,
procedures, functions, packages, Java objects, and types.

EXECUTE

Grants the privilege to execute a stored procedure, user-defined function, or a package, and is available
for use on procedures, functions, packages, Java objects, libraries, types, indextypes, and user-defined
operators.

INDEX

Grants the privilege to create indexes on a table.

{ ON COMMIT REFRESH | QUERY REWRITE }

Grants the privilege to create a refresh-on-commit materialized view or to create a materialized view for
query rewrite on the specified table. It is available for materialized views only.

{ READ | WRITE }

Grants the privilege to read and write files against a named directory including full path name of the
operating system directory. Since Oracle has the ability to store files outside of the database, the Oracle
server process must run under a user context with privileges on the applicable directories. You can
enable Oracle to enforce security on individual users via this security mechanism. Note that WRITE is
only useful in connection with an external table, such as a logfile or an error file.

REFERENCES

Grants the privilege to define referential integrity constraints, and is available for use on tables.

{SELECT | INSERT | DELETE | UPDATE}

Grants the privilege to execute each of the respective SQL commands against the named schema object
and is available for use on tables, views, sequences (SELECT only), and materialized views (SELECT
only). Note that you must grant SELECT privileges to a user or role that requires DELETE privileges. You
can grant column-level privileges, as a parentheses-encapsulated list following the object name, only
when granting INSERT, REFERENCES, or UPDATE object privileges on a table or view.

UNDER

Grants the privilege to create a subview under the named view and is available for use on views and
types only.

system_privilege

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

system_privilege

Grants the specified Oracle system privilege to one or more users or roles. For example, you could grant the
CREATE TRIGGER privilege or the ALTER USER privilege. In each case, issuing a grant for a system privilege
empowers the user or role to execute the command of the same name. Refer to Table 3-2 later in this section
for a full list of system privileges.

role

Grants a role to the user or to another role. In addition to user-defined roles, there are a number of system
roles that come predefined with Oracle:

CONNECT, RESOURCE, and DBA

Provided for backward compatibility with older versions of Oracle. Do not use these roles in current or
newer versions of Oracle since they may be dropped in the future.

DELETE_CATALOG_ROLE, EXECUTE_CATALOG_ROLE, and SELECT_CATALOG_ROLE

Grant members of these roles the privilege deleting, executing, and selecting from data dictionary views
and packages.

EXP_FULL_DATABASE and IMP_FULL_DATABASE

Grant members of these roles the privilege of executing the import and export utilities.

AQ_USER_ROLE and AC_ADMINISTRATOR_ROLE

Grant members of these roles the privilege to use or administrate Oracle's Advanced Queuing
functionality.

SNMPAGENT

Assigned only to Oracle Enterprise Manager and Intelligent Agent.

RECOVERY_CATALOG_OWNER

Grants the privilege to create users who own their own recovery catalog.

HS_ADMIN_ROLE

Grants the privilege to access areas of the data dictionary used to support Oracle's heterogeneous
services feature

ON schema_name

Grants the named privilege to a user or role on an object in the schema. Database objects include tables, views,
sequences, stored procedures, user-defined functions, packages, materialized views, user-defined types,
libraries, indextypes, user-defined operators, or a synonym for any of these. If you do not include the schema
name, Oracle assumes the schema of the current user.

Oracle also supports two additional keywords for special cases:

DIRECTORY

Grants privileges on a directory object, which is an Oracle object corresponding to a filesystem directory.

JAVA

Grants privileges on a Java SOURCE or a RESOURCE schema object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TO {grantee_name | role_name | PUBLIC} [WITH { GRANT | HIERARCY } OPTION]

Names the user or role who will get the specified privilege. PUBLIC may also be used to revoke privileges
granted to the PUBLIC role. Multiple grantees can be listed with a comma between each, as in the following:

WITH GRANT OPTION

Enables the grantee to grant the specific privilege(s) to other users or to PUBLIC, but not to roles.

WITH HIERARCHY OPTION

Enables the grantee to receive privileges on all sub-objects when granted privileges on a parent object.
This includes sub-objects created in the future. You can use this option only when granting the SELECT
object privilege.

IDENTIFIED BY password [WITH ADMIN OPTION]

Establishes or changes a password that the grantee must use to enable a role being granted.

WITH ADMIN OPTION

Enables the grantee to exercise control over a role that you are granting to that grantee. First, this
clause enables the grantee to grant and revoke the role to and from other users or non-GLOBAL roles.
It further allows the grantee to drop the role, or to change the authorization needed to access a role.

Grants to users take effect right away. Grants to roles take effect right away, assuming the roles are enabled.
Otherwise, a grant to a role takes effect as the role is enabled. Note that you can grant roles to users and to other roles
(including PUBLIC). For example:

GRANT sales_reader TO sales_manager;

To grant privileges on a view, you must have the specific privilege and the WITH GRANT OPTION on all of the base
tables for the view.

Any time you want a privilege available to all users, simply grant it to PUBLIC:

GRANT SELECT ON work_schedule TO public;

However, there are some restrictions when granting system privileges and roles:

A privilege or role should not appear more than once in the GRANT statement.

Roles cannot be granted to themselves.

Roles cannot be granted recursively. That is, you couldn't grant the role sales_reader to sales_manager and
then grant sales_manager to sales_reader.

You can grant multiple privileges of the same type in a single statement. However, the grants must be on the same
type of objects:

GRANT UPDATE (emp_id, job_id), REFERENCES (emp_id),

ON employees

TO sales_manager;

As an aside, granting any of the object permissions on a table allows the user (or role) to lock the table in any lock
mode using Oracle's LOCK TABLE statement.

Nearly every supported Oracle feature or command is assignable with a GRANT command (as shown in Table 3-2).
Privileges can be granted not only on database objects (such as tables and views) and system commands (such as
CREATE ANY TABLE), but also on schema objects (such as DIRECTORY, JAVA SOURCE, and RESOURCE).

The ANY option, shown in Table 3-2, grants the privilege to execute a given statement against objects of a specific type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ANY option, shown in Table 3-2, grants the privilege to execute a given statement against objects of a specific type
owned by any user within the schema. Without the ANY option, the user can only execute the statement against objects
in their own schema. A more complete list of Oracle system privileges is shown in Table 3-2.

Table 3-2. Oracle system privileges
Options Description

CREATE
CLUSTER Grants privilege to create a cluster in the grantee's own schema.

{CREATE |
ALTER | DROP}
ANY CLUSTER

Grants privilege to create, alter, or drop a cluster in any schema, respectively.

{CREATE |
DROP} ANY
CONTEXT

Grants privilege to create or drop any context namespace, respectively.

ALTER
DATABASE Grants privilege to alter the database.

ALTER SYSTEM Grants privilege to issue ALTER SYSTEM statements.

AUDIT SYSTEM Grants privilege to issue AUDIT sql_statements statements.

CREATE
DATABASE
LINK

Grants privilege to create private database links in grantee's own schema.

CREATE PUBLIC
DATABASE
LINK

Grants privilege to create public database links.

DROP PUBLIC
DATABASE
LINK

Grants privilege to drop public database links.

DEBUG
CONNECT
SESSION

Grants privilege to connect the current session to the Java Debug Wire Protocol (JDWP) debugger.

DEBUG ANY
PROCEDURE

Grants the privilege to debug all PL/SQL objects in the database, similar to granting DEBUG on all
procedures, functions, and packages.

CREATE
DIMENSION Grants privilege to create dimensions in the grantee's own schema.

{CREATE |
ALTER | DROP
} ANY
DIMENSION

Grants privilege to create, alter, or drop dimensions in any schema.

{CREATE |
DROP} ANY
DIRECTORY

Grants privilege to create or drop directory database objects.

CREATE ROLE Grants the privilege to create a database role.

GRANT ANY
ROLE Grants the privilege to grant a role to other users.

CREATE
INDEXTYPE Grants privilege to create an indextype in the grantee's own schema.

{CREATE |
DROP |
EXECUTE } ANY
INDEXTYPE

Grants privilege to create, alter, drop, or execute an indextype in any schema.

{CREATE |
ALTER | DROP}
ANY INDEX

Grants privilege to create, alter, or drop an index in any schema or an index on any table in any
schema.

{CREATE |
DROP} ANY
LIBRARY

Grants privilege to create or drop external procedure/function libraries in any schema.

CREATE
MATERIALIZED
VIEW

Grants privilege to create a materialized view in the grantee's own schema.

{CREATE |
ALTER | DROP}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALTER | DROP}
ANY
MATERIALIZED
VIEW

Grants privilege to create, alter, or drop materialized views in any schema.

GLOBAL QUERY
REWRITE

Enables rewrite using a materialized view, or creates a function-based index, when materialized
view or index reference tables or views are in any schema.

QUERY
REWRITE

Enables rewrite using a materialized view, or creates a function-based index, when that materialized
view or index references tables and views that are in the grantee's own schema.

ON COMMIT
REFRESH

Creates a refresh-on-commit materialized view on any table in the database or alters any refresh-
on-demand materialized view into a refresh-on-commit materialized view.

FLASHBACK
ANY TABLE

Grants the privilege to issue a SQL flashback query on any table, view, or materialized view in any
schema. This privilege is not required for DBMS_FLASHBACK procedures.

CREATE
OPERATOR Grants privilege to create an operator and its bindings in the grantee's own schema.

{CREATE |
DROP |
EXECUTE} ANY
OPERATOR

Grants privilege to create, drop, or execute an operator and its bindings in any schema.

{CREATE |
DROP | ALTER}
ANY OUTLINE

Grants privilege to create, alter, or drop outlines that can be used in any schema that uses outlines.

SELECT ANY
OUTLINE Grants the privilege to clone private outlines from public ones.

CREATE
PROCEDURE Grants privilege to create stored procedures, functions, and packages in grantee's own schema.

{CREATE |
ALTER | DROP |
EXECUTE} ANY
PROCEDURE

Grants privilege to create, alter, drop, or execute stored procedures, functions, and packages in any
schema.

{CREATE |
ALTER | DROP}
PROFILE

Grants privilege to create, alter, or drop profiles.

ALTER
RESOURCE
COST

Sets costs for session resources.

{ALTER |
DROP} ANY
ROLE

Grants privilege to create, alter, drop, or grant roles in the database.

{CREATE |
ALTER | DROP}
ROLLBACK
SEGMENT

Grants privilege to create, alter, or drop rollback segments.

CREATE
SEQUENCE Grants privilege to create sequences in grantee's own schema.

{CREATE |
ALTER | DROP |
SELECT} ANY
SEQUENCE

Grants privilege to create, alter, drop, or select sequence in any schema in the database.

CREATE
SESSION Grants privilege to connect to the database.

ALTER
SESSION Grants privilege to issue ALTER SESSION statements.

RESTRICTED
SESSION Logs on after the instance is started using the SQL*Plus STARTUP RESTRICT statement.

CREATE
SNAPSHOT Grants privilege to create snapshots in grantee's own schema.

{CREATE |
ALTER | DROP}
ANY SNAPSHOT

Grants privilege to create, alter, or drop snapshots (a.k.a. materialized views) in any schema.

CREATE
SYNONYM Grants privilege to create synonyms in grantee's own schema.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{CREATE |
DROP} ANY
SYNONYM

Grants privilege to create or drop private synonyms in any schema.

{CREATE |
DROP} PUBLIC
SYNONYM

Grants privilege to create or drop public synonyms.

CREATE ANY
TABLE

Grants privilege to create tables in any schema. The owner of the schema containing the table must
have a space quota on the tablespace to contain the table.

ALTER ANY
TABLE Grants privilege to alter any table or view in the schema.

BACKUP ANY
TABLE Uses the export utility to incrementally export objects from the schema of other users.

DELETE ANY
TABLE Deletes rows from tables, table partitions, or views in any schema.

DROP ANY
TABLE Grants privilege to drop or truncate tables or table partitions in any schema.

INSERT ANY
TABLE Grants privilege to insert rows into tables and views in any schema.

LOCK ANY
TABLE Grants privilege to lock tables and views in any schema.

UPDATE ANY
TABLE Grants privilege to update rows in tables and views in any schema.

SELECT ANY
TABLE Grants privilege to queries tables, views, or snapshots in any schema.

{CREATE |
ALTER | DROP}
TABLESPACE

Grants privilege to create, alter, or drop tablespaces.

MANAGE
TABLESPACE Grants privilege to take tablespaces offline and online, and begins and ends tablespace backups.

UNLIMITED
TABLESPACE

Grants privilege to use an unlimited amount of any tablespace. This privilege overrides any specific
quotas assigned. If you revoke this privilege from a user, the user's schema objects remain, but
further tablespace allocation is denied unless authorized by specific tablespace quotas. You cannot
grant this system privilege to roles.

CREATE
TRIGGER Grants privilege to create a database trigger in grantee's own schema.

{CREATE |
DROP} ANY
TRIGGER

Grants privilege to create or drop database triggers in any schema.

ALTER ANY
TRIGGER Grants privilege to enable, disable, or compile database triggers in any schema.

ADMINISTER
DATABASE
TRIGGER

Grants privilege to create a trigger on DATABASE. (You also must have the CREATE TRIGGER or
CREATE ANY TRIGGER privilege.)

CREATE TYPE Grants privilege to create object types and object-type bodies in grantee's own schema.

{CREATE |
ALTER | DROP}
ANY TYPE

Grants privilege to create, alter, or drop object types and object-type bodies in any schema.

EXECUTE ANY
TYPE

Uses and references object types and collection types in any schema, and invokes methods of an
object type in any schema if you make the grant to a specific user. If you grant EXECUTE ANY TYPE
to a role, users holding the enabled role will not be able to invoke methods of an object type in any
schema.

UNDER ANY
TYPE Creates subtypes under any parent object type, such as a table or view.

CREATE USER

Grants privilege to create users. This privilege also allows the creator to:

Assign quotas on any tablespace

Set default and temporary tablespaces

Assign a profile as part of a CREATE USER statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assign a profile as part of a CREATE USER statement

ALTER USER

Grants the privilege to alter any user. This privilege authorizes the grantee to:

Change another user's password or authentication method

Assign quotas on any tablespace

Set default and temporary tablespaces

Assign a profile and default roles

BECOME USER Grants privilege to become another user (required by any user performing a full database import).

DROP USER Grants privilege to drop users.

CREATE VIEW Grants privilege to create views in grantee's own schema.

{CREATE |
DROP} ANY
VIEW

Grants privilege to create or drop views in any schema.

UNDER ANY
VIEW Creates subview under any parent view.

ANALYZE ANY Analyzes any table, cluster, or index in any schema.

AUDIT ANY Audits any object in any schema using AUDIT schema_objects statements.

COMMENT ANY
TABLE Allows comments on any table, view, or column in any schema.

EXEMPT
ACCESS
POLICY

Circumvents fine-grained access control. Generally, this is ill-advised since the user can then bypass
any application-driven security policies.

FORCE ANY
TRANSACTION

Forces the commit or rollback of any in-doubt distributed transaction in the local database and
induces the failure of a distributed transaction.

FORCE
TRANSACTION

Forces the commit or rollback of grantee's own in-doubt distributed transactions in the local
database.

GRANT ANY
PRIVILEGE Grants any system privilege.

GRANT ANY
OBJECT
PRIVILEGE

Grants any object privilege available.

RESUMABLE Enables resumable space allocations.

SELECT ANY
DICTIONARY Allows the user to query any data dictionary object in the SYS schema.

SYSDBA

Provides the user with RESTRICTED SESSION permission as well as authorizes the user to:

Perform STARTUP and SHUTDOWN operations

ALTER DATABASE

Open, mount, back up, or change character set

CREATE DATABASE

ARCHIVELOG and RECOVERY

SYSOPER

Provides the user with RESTRICTED SESSION permission as well as authorizes the user to:

Performs STARTUP and SHUTDOWN operations

ALTER DATABASE, OPEN/MOUNT/BACKUP

ARCHIVELOG and RECOVERY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Any of the privileges shown in Table 3-2 containing the ANY keyword have special meaning. In effect, ANY gives a user
the privilege to execute the specified command or operation in any schema. If you want to include all user schemas,
but exclude the SYS system schema, keep the O7_DICTIONARY_ACCESSIBILITY initialization parameter at its default
value of FALSE.

PostgreSQL

PostgreSQL supports a subset of the ANSI GRANT commands supporting object privileges against database objects such
as tables. It does not support any of the WITH options available under the ANSI standard nor specialty features like
USAGE and UNDER. PostgreSQL's GRANT syntax is as follows:

GRANT { ALL [PRIVILEGES]

| SELECT

| INSERT

| DELETE

| UPDATE

| RULE

| REFERENCES

| TRIGGERS

| USAGE } [,...]

ON [TABLE] { object_name } [,...]

TO {grantee_name | GROUP group_name | PUBLIC } [,...]

where:

ALL [PRIVILEGES]

Grants all privileges the grantor has available to grant. Using ALL is generally not a recommended approach,
since it can encourage sloppy permissioning.

{SELECT | INSERT | DELETE | UPDATE}

Grants the specific privilege to a given user on the specified database object, such as a table or view. For
column-level privileges, you may add a parenthetical list of the columns of a given table. The permission then
applies only to the columns of the table that are named.

RULE

Grants the privilege to create or drop a rule on a table or view.

REFERENCES

Grants the privilege to create or drop foreign key constraints referencing the database object as a parent
object.

TRIGGERS

Grants the privilege of creating a trigger to operate on a specific table and its columns.

USAGE

Grants privileges to use these objects: CHARACTER SET, COLLATION, TRANSLATION, and DOMAIN (user-
defined datatype).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON [TABLE] object_name

Specifies the object to which permissions are granted. The optional TABLE keyword is noise. You may grant
permissions on more than one object at a time by specifying a comma-delimited list of object names.

TO {grantee_name | GROUP group_name | PUBLIC } [,...]

Names the user or role, or multiples thereof, that receive the specified privileges. In PostgreSQL, PUBLIC is a
synonym for all users. PostgreSQL allows permissions to be assigned to a GROUP (essentially a role), provided
it is a valid, pre-existing group_name.

Multiple privileges may be granted at one time, as long as commas separate them. Do not combine ALL [PRIVILEGES]
with other privileges, but the remainder may be combined in any order.

PostgreSQL does not support the WITH clauses or column-level permissions. Currently, if you want column-level
permissions, you must set those up using a view showing only the columns of a table that you want a user to access.

Under PostgreSQL, the creator of an object has all privileges on the object, though they may revoke their own
privileges on an object. However, the privilege for the creator of an object to assign privileges on that object cannot be
revoked. Similarly, the right to drop an object is permanently assigned to the creator of the object, and cannot be
revoked. Users other than the creator of an object do not have permissions on an object until specifically granted.

PostgreSQL's implementation of GRANT behaves as if WITH GRANT OPTION is always enabled. Any user granted
privilege to a table is able to grant their privileges to other users.

PostgreSQL's support for the GRANT statement is elementary. In the following examples, INSERT privileges are granted
on the publishers table to the PUBLIC role and SELECT and UPDATE privileges are granted on the sales table to the
users Emily and Dylan:

GRANT INSERT ON publishers TO PUBLIC;

GRANT SELECT, UPDATE ON sales TO emily, dylan;

SQL Server

SQL Server's implementation of GRANT offers few variations from the ANSI standard. It does not support the ANSI
standard's FROM clause, nor the HIERARCHY or ADMIN options. But it does offer the ability to grant specific system
privileges and to grant them under another user's security context. The syntax is as follows:

GRANT { [object_privilege] [,...] |

 [system_privilege] }

[ON { [object] [(column [,...])]]

TO {grantee_name [,...] | role [,...] | PUBLIC | GUEST }

[WITH GRANT OPTION]

[AS {group | role}]

where:

object_privileges

Grants privileges for a variety of operations, which may all be combined (with the exception of the ALL
[PRIVILEGES] privilege) in any order, as follows:

ALL [PRIVILEGES]

Grants all privileges currently assigned to the named users and/or for the specified database objects. This is
generally not a recommended approach since it can encourage sloppy programming. ALL can only be used by
members of the SYSADMIN and DB_OWNER system roles, or by the object owner.

{SELECT | INSERT | DELETE | UPDATE}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Grants the specific privilege to a given user on the specified database object, such as a table or view. For
column-level privileges, add a parenthetical list of columns of the table. The privileges will then be assigned only
for the named columns.

REFERENCES

Grants the privilege to create or drop foreign key constraints referencing the database object as a parent
object.

EXECUTE

Grants the privilege to execute a stored procedure, user-defined function, or extended stored procedure.

system_privileges

Grants one of the following privileges, each giving the ability to execute the corresponding statement:

CREATE DATABASE
CREATE DEFAULT
CREATE FUNCTION
CREATE PROCEDURE
CREATE RULE
CREATE TABLE
CREATE VIEW
BACKUP DATABASE
BACKUP LOG

The privilege to issue a CREATE statement also implies the privilege to issue the equivalent ALTER or DROP statement.

ON { [object] [(column [,...])]

Specifies the object for which a privilege is granted. This clause is not required when granting system privileges.
If the object is a table or view, you may optionally grant privileges on specific columns. You may grant SELECT,
INSERT, UPDATE, DELETE, and REFERENCES privileges on a table or view. You may grant only SELECT and
UPDATE privileges on the columns of a table, view, or a user-defined function. You may grant EXECUTE
privileges on a stored procedure or extended stored procedure. You may also grant REFERENCES privileges on
user-defined functions. REFERENCES privileges are also required on functions or views created using the WITH
SCHEMABINDING clause.

TO {grantee_name [,...] | role [,...] | PUBLIC | GUEST }

Names the user or role who will gain the privilege being granted. Multiple grantees can be listed in a comma-
separated list. Use the keyword PUBLIC to grant privileges to the PUBLIC role, a role that implicitly includes all
users. SQL Server also supports the role known as GUEST, a role used by all users who do not have any other
user account in the database. Because SQL Server allows two different security models (one based on the
database and one based on the Windows operating system), you may be granting privileges to a SQL Server
user, a Windows user, a Windows group, or a SQL Server database role. The grantee name may be any of
these.

WITH GRANT OPTION

Enables the grantee to further grant the given permission to other users or roles. You may use WITH GRANT
OPTION only when granting object permissions.

AS {group | role}

Specifies an alternative user or group that has the authority in the current database to execute the GRANT
command. You can use the AS clause to grant privileges as if the granting session is part of a different group or
role context from the current one.

Privileges may not be granted in any database other than the current database, nor may privileges be granted in more
than one database at a time.

SQL Server has a somewhat different security model than the other platforms described
here (and somewhat different from the ANSI standard). As with the ANSI standard, SQL
Server uses the GRANT command to assign specific privileges to a user or role, and the
REVOKE command to remove those permissions. SQL Server augments these commands
with the DENY command, using essentially the same syntax as REVOKE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with the DENY command, using essentially the same syntax as REVOKE.

DENY, under SQL Server, allows DBAs to declare certain privileges as strictly off-limits to a
user or role. Any privileges that have been denied must be revoked before they can be
granted. As such, DENY takes precedence over GRANT and REVOKE. DENY can be used to
effectively take away any permission from an individual that might otherwise inherit
permissions from membership in any Windows groups or SQL Server database roles.

SQL Server applies precedence to permissions. Thus, if a user has a privilege granted at the user level, but the
permission is revoked at the group level (when the user is a member of a group), the permission is revoked at both
levels.

SQL Server also contains a number of fixed system roles with preset privileges on both objects and commands. The
SQL Server system roles are:

SYSADMIN

Can perform any activity on the server and has access to all objects.

SERVERADMIN

Can set server configuration options as well as shut down and restart the server.

SETUPADMIN

Can start up procedures and linked servers.

SECURITYADMIN

Can read error logs, change passwords, administrate logins, and grant CREATE DATABASE permissions.

PROCESSADMIN

Can administrate processes running on the SQL Server.

DBCREATOR

Can create, alter, and drop databases.

DISKADMIN

Can administrate disks and files.

BULKADMIN

Can perform BCP operations and execute the BULK INSERT statement (and regular INSERT statement) against
tables in the database.

The SYSADMIN system role can grant any permission in any database on the server. Members of the DB_OWNER and
DB_SECURITYADMIN system roles can grant any permission on any statement or object in databases they own.
Members of the DB_DDLADMIN system role, the SYSADMIN system role, and the database owner may grant system
privileges.

Members of the system roles may add other logins or users to their roles, but not via a GRANT statement. Instead, to
add a user to a system role, you must use a SQL Server system stored procedure called sp_addsrvrolemember.

In addition to the server-wide system roles, there are a number of database-wide system roles. That is, the previous
system roles have privileges that span every database on the server, whereas the following system roles exist in every
database and have privileges within the scope of a specific database, as follows:

DB_OWNER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Can perform all the functions of the other database system roles, plus perform other maintenance and
configuration tasks for the database.

DB_ACCESSADMIN

Can add or remove Windows and SQL Server users and groups to the database.

DB_DATAREADER

Can read data from all user tables in the database.

DB_DATAWRITER

Can read, add, change, or delete data from all user tables in the database.

DB_DDLADMIN

Can add, change, and drop objects in the database, as well as run all DDL statements.

DB_SECURITYADMIN

Can administrate SQL Server roles and users as well as statement and object permissions throughout the
database.

DB_BACKUPOPERATOR

Can perform backups of the database.

DB_DENYDATAREADER

Denies permission to read data in the database.

DB_DENYDATAWRITER

Denies permission to change data in the database.

Like the server-wide system roles, database-wide system roles cannot be granted to a user via the GRANT statement.
Instead, you must use a SQL Server system stored procedure called sp_addrolemember.

In the following example, the CREATE DATABASE and CREATE TABLE system privileges are granted to the users emily
and sarah. Next, numerous permissions are granted on the titles table to the editors group. The editors are then able
to grant permission to others:

GRANT CREATE DATABASE, CREATE TABLE TO emily, sarah

GO

GRANT SELECT, INSERT, UPDATE, DELETE ON titles

TO editors

WITH GRANT OPTION

GO

The following example grants permissions to the database user sam and the Windows user jacob:

GRANT CREATE TABLE TO sam, [corporate\jacob]

GO

The following example shows how to grant permissions using the optional AS keyword. In this example, the user emily

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example shows how to grant permissions using the optional AS keyword. In this example, the user emily
owns the sales_detail table and she grants SELECT privileges to the sales_manager role. The user kelly, who is a
member of the sales_manager role, wants to grant SELECT privileges to sam, but cannot because the permissions
were granted to the sales_manager role and not to her explicitly. kelly can use the AS clause to get around this
hurdle:

-- Initial grant

GRANT SELECT ON sales_detail TO sales_manager

WITH GRANT OPTION

GO

-- Kelly passes the privilege to Sam as a member of the

 sale_manager role

GRANT SELECT ON sales_detail TO sam AS sales_manager

GO

See Also

REVOKE

IN Operator

The IN operator provides a way to delineate a list of values, either explicity listed or from a subquery, and compare a
value against that list in a WHERE or HAVING clause. In other words, it gives you a way to say "Is value A in this list of
values?"

Platform Command

DB2 Supported

MySQL Supported

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Supported

SQL2003 Syntax

{WHERE | HAVING | {AND | OR} }

 value [NOT] IN ({comp_value1, comp_value2 [,...] | subquery })

Keywords

{WHERE | HAVING | {AND | OR} } value

Permitted under either the WHERE or HAVING clauses. The IN comparison may also be a part of a AND or OR
clause in a multicondition WHERE or HAVING clause. value may be of any datatype, but is usually the name of a
column of the table referenced by the transaction, or perhaps a host variable when used programmatically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOT

Optionally tells the database to look for a result set that contains values that are not in the list.

IN ({comp_value1, comp_value2 [,...] | subquery })

Defines the list of comparative values (hence, comp_value) to compare against. Each comp_value must be of the
same or compatible datatype as the initial value. They are also governed by standard datatype rules. For
example, string values must be delimited by quotes, while integer values need none. As an alternative to listing
specific values, you may use parentheses to enclose a subquery that returns one or more values of a
compatible datatype.

In the following example, generated on SQL Server, we look for all employees in the employee table of the HR
database who have a home state of Georgia, Tennessee, Alabama, or Kentucky:

SELECT *

FROM hr..employee

WHERE home_state IN ('AL','GA','TN','KY')

Similarly, we can look for all employees in the HR database who are authors in the PUBS database:

SELECT *

FROM hr..employee

WHERE emp_id IN (SELECT au_id FROM pubs..authors)

You can also use the NOT keyword to return a result set based upon the absense of a value. In the following case, the
company headquarters is located in New York, and many workers commute in from neighboring states. We want to see
all such workers:

SELECT *

FROM hr..employee

WHERE home_state

 NOT IN ('NY','NJ','MA','CT','RI','DE','NH')

Note that Oracle, while fully supporting the ANSI functionality, extends the functionality of
the IN operator by allowing multiple argument matches. For example, the following
SELECT...WHERE ...IN statement is acceptable on Oracle:

SELECT *

FROM hr..employee e

WHERE (e.emp_id, e.emp_dept) IN

((242, 'sales'), (442, 'mfg'), (747, 'mkt))

See Also

ALL/ANY/SOME
BETWEEN
EXISTS
LIKE
SELECT
SOME/ANY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSERT Statement

The INSERT statement adds rows of data to a table or view.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Supported, with variations

The INSERT statement allows rows to be written to a table through one of several methods:

The first method is to insert one or more rows using the DEFAULT values specified for a column via the CREATE
TABLE or ALTER TABLE statements.

The second and most common method is to declare the actual values to be inserted into each column of the
record.

The third method, which populates a table with many records at a time, is to insert the result set of a SELECT
statement.

SQL2003 Syntax

INSERT INTO [ONLY] {table_name | view_name} [(column1 [,...])]

[OVERRIDE {SYSTEM | USER} VALUES]

{DEFAULT VALUES | VALUES (value1 [,...]) | SELECT_statement }

Keywords

[ONLY]

Used on typed tables only, this optional keyword ensures that the values inserted into table_name do not insert
into any subtables.

{table_name | view_name} [(column1 [,...])]

Declares the updateable target table or view into which the records will be inserted. You must have INSERT
privileges on the table or, at a minimum, on the columns that will receive the inserted values. If no schema
information is included, as in scott.employee, then the current schema and user context are assumed. You
may optionally include a list of the columns in the target table or view that will receive data.

OVERRIDE {SYSTEM | USER} VALUES

Requires the SYSTEM keyword when inserting a literal value into a column that would otherwise be given a
system-generated value, such as autogenerated sequence number. The OVERRIDE USER VALUES clause does
the converse, by inserting system-supplied values even if a user has provided literal values to insert.

DEFAULT VALUES

Inserts all values declared via the DEFAULT column characteristic on the target table where they exist, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inserts all values declared via the DEFAULT column characteristic on the target table where they exist, and
NULLs where they do not exist. (Of course, the DEFAULT column characteristic can specify NULL as a value
too.) This operation inserts a single record. It might encounter an error depending on how the PRIMARY KEY
constraint or UNIQUE constraint is constructed on the target table, assuming such constraints exist.

VALUES (value1 [,...])

Specifies the actual values to be inserted into the target table. The number of values must match the exact
number of columns in the column list. Furthermore, the values must be datatype- and size-compatible with the
columns of the target table. Each value in the value list corresponds to the column with the same ordinal
number in the column list. Thus, the first column will get its data from the first value, the second column from
the second value, and so on until all columns are satisfied. You may also optionally use the keywords DEFAULT
to insert a column's default value and NULL to insert a null value.

SELECT_statement

Inserts rows retrieved via the SELECT statement into the target table or target view. The values retrieved by
the fully formed SELECT statement's select item list correspond directly to the columns of the column list. The
target table or view may not be referenced in the SELECT statement's FROM or JOIN clauses.

Rules at a Glance

You may insert values into tables and into views built upon a single source table. The INSERT . . . VALUES statement
adds a single row of data to a table using literal values supplied in the statement. In the following example, a new row
in the authors table is inserted for the author Jessica Rabbit:

INSERT INTO authors (au_id, au_lname, au_fname, phone,

 address, city, state, zip, contract)

VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT,

 '1717 Main St', NULL, 'CA', '90675', 1)

Every column in the table is assigned a specific, literal value except the phone column, which is assigned the default
value (as defined during the CREATE TABLE or ALTER TABLE statement), and the city column, which is set to NULL.

An important concept to remember is that you may skip columns in the table and set them to NULL, assuming they
allow NULL values. Inserts that leave some columns NULL are called partial INSERTs. Here is a partial INSERT that
performs the same work as the preceding example:

INSERT INTO authors (au_id, au_lname, au_fname, phone, contract)

VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT, 1)

The INSERT statement, combined with a nested SELECT statement, allows a table to be quickly populated with one or
more rows from the result set of the SELECT statement. When using INSERT . . . SELECT between a target table and a
source table, it is important to ensure that the datatypes returned by the SELECT statement are compatible with the
datatypes in the target table. For example, to load data from the sales table into the new_sales table:

INSERT INTO sales (stor_id, ord_num, ord_date, qty, payterms,

 title_id)

SELECT

 CAST(store_nbr AS CHAR(4)),

 CAST(order_nbr AS VARCHAR(20)),

 order_date,

 quantity,

 SUBSTRING(payment_terms,1,12),

 CAST(title_nbr AS CHAR(1))

FROM new_sales

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM new_sales

WHERE order_date >= 01-JAN-2005

-- retrieve only the newer records

You must specify the columns in the table that receive data by enclosing their names in parentheses, in a comma-
delimited list. This column_list can be omitted, but all columns that are defined for the table are then assumed, in
their ordinal position. Any column with an omitted value will be assigned its default value (according to any DEFAULT
column setting on the table) or, if no DEFAULT column setting exists, NULL. The columns in the column list may be in
any order, but you may not repeat any column in the list. Furthermore, the columns and their corresponding value
entries must agree in terms of datatype and size.

The first of the following two examples leaves off the column list, while the second uses only DEFAULT values:

INSERT INTO authors

VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT,

 '1717 Main St', NULL, 'CA', '90675', 1)

INSERT INTO temp_details

DEFAULT VALUES

The first statement would succeed only as long as all the values in the value list correspond correctly with the datatypes
and size limitations of the columns of the target table. Any inconsistencies would generate an error. The second
statement would succeed only as long as defaults were declared for the columns of the target table, or those columns
allowed NULL values.

Executing an INSERT statement without a column list is a "worst practice," since the
statement may fail if the target table ever changes.

Programming Tips and Gotchas

INSERT statements will always fail under the following circumstances:

When a datatype mismatch occurs between a column and its value

When a column is defined as not NULL and the insertion value is NULL

When a duplicate value is inserted into a UNIQUE or PRIMARY KEY constraint

When the inserted values do not meet the requirements of a CHECK constraint

When an inserted value is constrained by a FOREIGN KEY constraint because the value is not derived from the
declared primary key of another table

The most common error encountered when executing INSERT statements is a mismatch between the number of
columns and the number of values. Accidentally leave out a value that corresponds to a column, and you are likely to
encounter an error that will cause the statement to fail.

INSERT statements also fail when an inserted value is of a datatype that is a mismatch with the column of the target
table. For example, an attempt to insert a string like "Hello world" into an integer column would fail. On the other hand,
some database platforms automatically and implicitly convert certain datatypes. For example, SQL Server will
automatically convert a date value to a character string for insertion into a VARCHAR column.

Another common problem encountered with the INSERT statement is a size mismatch between a value and its target
column. For example, inserting a long string into a CHAR(5) target column, or inserting a very large integer into a
TINYINT column, can cause problems. Depending on the platform you are using, the size mismatch may cause an
outright error and rollback of the transaction or the database server may simply trim the extra data. Either result is
undesirable. Similarly, a problem can arise when an INSERT statement attempts to insert a NULL value into a target
column that does not accept NULL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

column that does not accept NULL.

Most problems with INSERT statements occur because the programmer does not know the
target table very well. Make sure you understand the target table or view before writing
elaborate INSERT statements.

DB2

DB2 supports the ANSI standard form of INSERT, with the exception of the OVERRIDE clause, and includes some added
syntax to control transaction isolation settings:

INSERT INTO table_name [(column1 [,...])]

{VALUES | VALUES (value1 [,...]) | SELECT_statement }

[WITH { RR | RS | CS | UR }

where:

INSERT INTO table_name [(column1 [,...])]

Identifies the target table, view, or nickname on the DB2 server. The target table or view may be a standard or
typed table or view. The view may be based on a SELECT statement containing a UNION ALL clause, as long as
the inserted row matches the check constraint(s) of exactly one table.

WITH

Controls transaction isolation level for the update statement. RR is repeatable read, RS is read stability, CS is
cursor stability, and UR is uncommitted read. See SET TRANSACTION ISOLATION LEVEL for full details on ANSI
transaction isolation levels.

DB2 strictly enforces these rules:

Values inserted must be compatible with the column datatype

Integer and string values must not exceed the storage capability of the target column

Inserted values must pass any check or unique constraints

Values inserted into a foreign key column must exist in a corresponding primary key elsewhere in the database

DB2 supports identity columns; that is, columns that automatically generate a monotonically increasing value. When
inserting into an identity column, DB2 generates a new value for the identity column. Identity columns are defined as
either GENERATED ALWAYS or GENERATED BY DEFAULT upon creation. If defined as GENERATED ALWAYS, you should
not specify a value for the column — leave it to default. If defined as GENERATED BY DEFAULT, you may insert your
own value (explicitly or via a subquery), or you can allow DB2 to generate the value for you. In the following examples,
assume the emp_id column is an identity column with the GENERATED ALWAYS property:

INSERT INTO employee (emp_id, emp_lname, emp_fname)

VALUES (DEFAULT, :var_lname, :var_fname)

INSERT INTO employee (emp_lname, emp_fname)

VALUES (:var_lname, :var_fname)

Both of the example statements shown above will work without error.

MySQL

MySQL supports several INSERT syntax options that engender MySQL's reputation for high speed:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL supports several INSERT syntax options that engender MySQL's reputation for high speed:

INSERT [LOW_PRIORITY | DELAYED] [IGNORE]

[INTO] [[database_name.]owner.] table_name [(column1 [,...])]

{VALUES (value1 [,...]) | SELECT_statement |

 SET column1=value1, column2=value2 [,...]}

where:

LOW_PRIORITY

Defers the execution of INSERT until no other clients are reading from the table. This could result in a long wait.
LOW_PRIORITY should not be used with MyISAM tables because it disables concurrent inserts.

DELAYED

Allows the client to continue at once, even if the INSERT has not yet completed.

IGNORE

Tells MySQL not to attempt to insert records that would duplicate a value in a primary key or unique key;
otherwise, without this clause, the INSERT fails when such duplication occurs. If a duplicate is encountered
while the IGNORE clause is in use, the duplicate records are ignored while all the other records are inserted.

SET column=value

An alternate syntax that allows you to specify values for target columns by name.

MySQL does not support the ANSI standard DEFAULT VALUES and OVERRIDE clauses.

MySQL trims any portion of a value that has a size or datatype mismatch. Thus, inserting "10.23 X" into a decimal
datatype column will cause "...X" to be trimmed from the inserted value. If you attempt to insert a numeric value into a
column that is beyond the range of the column, MySQL will trim the value. Inserting an illegal time or date value in a
column will result in a zero value for the target column. Inserting the string "Hello World" into a CHAR(5) column will
result in the value being trimmed to just the five characters in "Hello". This string trimming feature applies to CHAR,
VARCHAR, TEXT, and BLOB columns.

Oracle

Oracle's implementation of the INSERT statement allows data insertion into a given table, view, partition, subpartition,
or object table. It also supports additional extensions such as inserting records into many tables at once and conditional
inserts. The syntax is:

-- standard INSERT statement

INSERT [INTO] {table_name [[SUB]PARTITION (prtn_name)] |

 (subquery) [WITH {READ ONLY | CHECK OPTION

 [CONSTRAINT constr_name] }] |

 TABLE (collection) [(+)] } [alias]

 [(column1 [,...])]

{VALUES (value1[,...]) [RETURNING expression1 [,...]

 INTO variable1 [,...]] |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INTO variable1 [,...]] |

 SELECT_statement [WITH {READ ONLY |

 CHECK OPTION [CONSTRAINT constr_name]} }

-- conditional INSERT statement

INSERT {[ALL | FIRST]} WHEN condition

 THEN standard_insert_statement

ELSE standard_insert_statement

where:

INSERT [INTO]

Inserts one or more rows into a single table, view, materialized view, or subquery. The INTO keyword is
optional. You insert a single row using the VALUES clause and many rows using a subquery.

table_name [[SUB]PARTITION (prtn_name)]

Identifies the target into which you will insert data. The target may be a table, view, materialized view, or a
subquery. To enable you to fully qualify the target, table_name can expand to [schema.]table_name[@db_link].

You may optionally identify the schema and remote address (via @db_link) of the target, but the current schema and
local database are assumed if you do not otherwise specify. You may optionally identify the PARTITION or
SUBPARTITION, through the prtn_name parameter, into which the record(s) will be inserted, as long as the target is not
an object table or object view.

subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constr_name] }]

Instructs Oracle to insert records into the base table or tables of the subquery, where the subquery is a normally
formed SELECT statement. Essentially, you're using a subquery to construct a view on-the-fly, and the effect is
the same as inserting into a view. This is your primary means for inserting values into multiple tables at one
time. All of the columns defined by the subquery, across all tables, must have a corresponding value to insert or
else a failure will occur. Multitable inserts must use the subquery format. The following options apply to when
using subqueries:

WITH READ ONLY

Indicates the subqueried table or view cannot be updated until the statement completes.

WITH CHECK OPTION [CONSTRAINT constr_name]

Indicates that you cannot insert rows into the table or view that would not pass the constr_name check
constraint.

TABLE (collection) [(+)] } [alias]

Tells Oracle that the collection should be treated like a standard target (i.e., a table or view), whether it be a
subquery, a column, a function, or a collection constructor. In any event, the table collection must return a
nested table or VARRAY set of values. Since constructions can be very long, you can provide an optional alias.
Aliases are not allowed in multitable insert operations.

[(column1 [,...])

Specifies the target columns into which data will be inserted. If you leave off the columns, Oracle assumes that
the VALUES clause or columns of the subquery will perfectly match the columns of the target. Oracle will return
an error if you do not insert a value for any columns marked as NOT NULL that do not have a defined, default
value.

VALUES (value1[,...]) [RETURNING expression1 [,...] INTO variable1 [,...]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inserts values into the target table or tables. As with the ANSI standard, there must be a matching value for
every column, though the value can be DEFAULT, or, if the column accepts nulls, the value can be the literal
NULL. DEFAULT is not allowed when inserting into a view. On multitable insert operations, the VALUES clause
must return a corresponding value for every item in the select list of the subquery. The syntax is as follows:

RETURNING expression1

Retrieves the rows inserted by the operation. The expression returned by the statement is often a value
being inserted, but could be another value. For example, you might use the returning clause to find the
value of an automatically generated primary key. Single row operations store the results into host
variables or PL/SQL variables, while multirow operations store them in bind arrays. You can use
RETURNING against tables, views with a single base table, and materialized views. The RETURNING
clause is not allowed with multitable insert operations.

INTO variable1

Specifies the variables that will hold the values returned as a result of the RETURNING clause. You must
declare a corresponding host variable or PL/SQL variable for each expression in the RETURNING clause.
You cannot use the INTO clause to hold a LONG datatype, with remote objects, on views that have
INSTEAD OF triggers, or with parallel INSERT, UPDATE, or DELETE statements.

ALL

Performs a multitable INSERT statement. ALL is used only with the subquery format. Without a WHEN clause,
ALL unconditionally inserts all the data retrieved by the subquery into the tables defined. ALL, with a WHEN
clause, performs conditional insert operations that tell Oracle to evaluate all WHEN clauses regardless of the
results of any other WHEN operation. Each time a WHEN clause evaluates as TRUE, Oracle executes the
corresponding INTO clause. Multitable inserts are not parallelized on index-organized tables or bitmap indexed
tables. They are not allowed at all when:

The target is a view or materialized view

The target is a remote table

The INSERT command uses a table collection expression

The table needs more than 999 total target columns

The subquery uses a sequence

FIRST

Tells Oracle to evaluate the WHEN clauses in order and, when it finds the first TRUE expression, execute the
corresponding INTO clause and skip all other WHEN clauses.

WHEN condition THEN standard_insert_statement

Sets a condition and, when the condition is TRUE, executes the THEN insert clause. The value of condition is
evaluated for each column returned in the result set of the subquery. Up to 127 WHEN clauses are allowed.

ELSE standard_insert_statement

Executes when no WHEN clause evaluates as TRUE.

Oracle allows the standard INSERT operations as described under the ANSI implementation, such as INSERT...SELECT
and INSERT...VALUES. But it has a great many special variations.

When inserting into tables that have assigned sequences, but sure to use the sequence_name.nextval function call to
insert the next logical number in the sequence. For example, assume you want to use the authors_seq sequence to
set the value of au_id when inserting a new row into the authors table:

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES (authors_seq.nextval, 'Rabbit', 'Jessica', 1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VALUES (authors_seq.nextval, 'Rabbit', 'Jessica', 1)

When retrieving values during an INSERT operation, check for a one-for-one match between the expressions in the
RETURNING clause and the variables of the INTO clause. The expressions returned by the clause do not necessarily
have to be those mentioned in the VALUES clause. For example, the following INSERT statement places a record into
the sales table, but places a completely distinct value into a bind variable:

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1)

RETURNING hire_date INTO :temp_hr_dt;

Notice that the RETURNING clause returns the hire_date even though hire_date is not one of the values listed in the
VALUES clause. (In this example, it is reasonable to assume a default value was established for the hire_date column.)

An unconditional multitable INSERT statement into a lookup table that contains a list of all the approved jobs in our
company looks like this:

INSERT ALL

 INTO jobs(job_id, job_desc, min_lvl, max_lvl)

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 INTO jobs(job_id+1, job_desc, min_lvl, max_lvl)

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 INTO jobs(job_id+2, job_desc, min_lvl, max_lvl)

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 INTO jobs(job_id+3, job_desc, min_lvl, max_lvl)

 VALUES(job_id, job_desc, min_lvl, max_lvl)

SELECT job_identifier, job_title, base_pay, max_pay

FROM job_descriptions

WHERE job_status = 'Active';

And just to make things more complex, Oracle allows multitable INSERT statements that are conditional:

INSERT ALL

 WHEN job_status = 'Active' INTO jobs

 WHEN job_status = 'Inactive' INTO jobs_old

 WHEN job_status = 'Terminated' INTO jobs_cancelled

 ELSE INTO jobs

SELECT job_identifier, job_title, base_pay, max_pay

FROM job_descriptions;

Note that in the above example, you would have to follow each INTO clause with a VALUES clause if you were skipping
NOT NULL columns in the target table. The following example shows this syntax:

INSERT FIRST

 WHEN job_status = 'Active'

 INTO jobs

 VALUES(job_id, job_desc, min_lvl, max_lvl)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 WHEN job_status = 'Inactive'

 INTO jobs_old

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 WHEN job_status = 'Terminated'

 INTO jobs_cancelled

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 WHEN job_status = 'Terminated'

 INTO jobs_outsourced

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 ELSE INTO jobs

 VALUES(job_id, job_desc, min_lvl, max_lvl)

SELECT job_identifier, job_title, base_pay, max_pay

FROM job_descriptions;

Notice that in the above example, the FIRST clause also tells Oracle to execute the first occurance of job_status =
'Terminated' by inserting the records into the jobs_cancelled table and skipping the jobs_outsourced INSERT operation.

Oracle allows you to insert data into a table, partition, or view (also known as the target) using a regular or direct-path
INSERT statement. Under a regular insert, Oracle maintains referential integrity and reuses free space in the target.
Under direct-path, Oracle appends data at the end of the target table without filling in any free space gaps elsewhere in
the table. This method bypasses the buffer cache and writes directly to the datafiles; hence the term "direct-path."

Oracle allows the use of hints to circumvent default query optimization for INSERT
statements. For example, you can use the APPEND hint to ensure that an INSERT uses a
direct-path insert. Refer to the platform documentation for more details on hints that are
usable with INSERT.

Direct-path enhances performance on long, multirecord insert operations. However, the following is a list of restrictions
that cause an INSERT statement to perform a regular INSERT, instead of direct-path:

Altering the data in the target with an UPDATE or DELETE statement before the INSERT statement in a single
transaction. (UPDATE and DELETE are allowed after the direct-path INSERT statement.)

The INSERT statement is or may become distributed.

The target contains a LOB or object datatype column.

The target has a clustered index or index-organized table.

The target has triggers or referential integrity constraints.

The target is replicated.

The ROW_LOCKING initialization parameter is set to INTENT.

In addition, Oracle will not allow you to query (e.g., using SELECT) a table later in the same transaction after you
perform a direct-path INSERT into that table until a COMMIT has been performed.

Oracle allows you to use parallel direct-path inserts into multiple tables, but you may only use subqueries to insert the
data into the tables, not a standard VALUES clause.

Inserting LOBs and BFILEs is tricky. You should initilize such values to NULL before
inserting. RAW columns are also tricky. If you insert a regular string into a RAW column,
all future queries against the column will be forced to use a table scan.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

all future queries against the column will be forced to use a table scan.

PostgreSQL

PostgreSQL supports the ANSI standard for the INSERT statement. It does not support the ANSI SQL clause OVERRIDE
SYSTEM GENERATED VALUES, but is otherwise identical in syntax and behavior. Refer to SQL2003 Syntax, earlier, for
the syntax and usage.

PostgreSQL attempts to perform automatic datatype coercion when the expressions in the
VALUE clause or the select item list of a subquery do not match the datatypes defined for
the target table or view.

SQL Server

SQL Server supports a few extensions to the ANSI standard for INSERT. It supports several rowset functions (explained
below), as well as the capability to insert the results from stored procedures and extended procedures directly into the
target table. SQL Server's syntax is:

INSERT [INTO] table_name [(column1 [,...])

{[DEFAULT] VALUES |

VALUES (variable1 [,...]) |

SELECT_statement |

EXEC[UTE] proc_name { [[@param =] value {[OUTPUT]} [,...]] }

where:

INSERT INTO table_name

Tells SQL Server that the target is either a table, a view, or a rowset function. When inserting into a view, an
INSERT cannot affect more than one of the base tables in the view, if there are more than one. Rowset
functions allow SQL Server to source data from special or external data sources such as XML streams, full-text
search file structures (a special structure in SQL Server used to store things like MS Word documents and MS
PowerPoint slideshows within the database), or external data sources (like an MS-Excel spreadsheet). Examples
are shown later in this section. SQL Server currently supports the following rowset_functions for the INSERT
statement:

OPENQUERY

Executes a pass-through INSERT against a linked server. This is an effective means of performing a
nested INSERT against a data source that is external to SQL Server. The data source must first be
declared as a linked server.

OPENROWSET

Executes a pass-through INSERT statement against an external data source. This is similar to
OPENDATASOURCE, except that OPENDATASOURCE only opens the data source, it does not actually
pass through an INSERT statement. OPENROWSET is intended for occasional, ad hoc usage only.

column1 [,...]

Identifies one or more columns in the target table. The list must be enclosed in parentheses, and commas must
separate each item in the list. SQL Server automatically provides values for IDENTITY columns, TIMESTAMP
columns, and columns with DEFAULT constraints.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

columns, and columns with DEFAULT constraints.

DEFAULT

Tells the INSERT statement simply to create a new record using all of the default values specified for the target
table.

EXEC[UTE] proc_name { [[@param =] value {[OUTPUT]} [,...]] }

Tells SQL Server to execute a dynamic Transact-SQL statement, a stored procedure, a Remote Procedure Call
(RPC), or an extended stored procedure and store the results in a local table. Proc_name is the name of the
stored procedure you wish to execute. You may optionally include any of the parameters of the stored
procedure, as identified by @param (the at sign is required), assign a value to the parameter, and optionally
designate the parameter as an OUTPUT parameter. The columns returned by the result set must match the
datatype of the columns in the target table.

Although SQL Server automatically assigns values to IDENTITY columns and TIMESTAMP columns, it does not do so for
UNIQUEIDENTIFIER columns. With either of the former datatype columns, you may simply skip them in the columns and
values lists. However, you cannot do that with a UNIQUEIDENTIFIER column. You must use the NEWID() function to
obtain and insert a globally unique ID (GUID):

INSERT INTO guid_sample (global_ID, sample_text, sample_int)

VALUES (NEWID(), 'insert first record','10000')

GO

When migrating between platforms, remember that inserting an empty string ('') into a SQL Server TEXT or VARCHAR
column results in a zero-length string. This is not the same as a null value, as some platforms interpret it.

An example of the INSERT...EXEC statements, below, first creates a temporary table called #ins_exec_container.
Then, the INSERT operation retrieves a listing of the c:\temp directory and stores it in the temporary table, while the
second INSERT executes a dynamic SELECT statement:

CREATE TABLE #ins_exec_container (result_text

 VARCHAR(300) NULL)

GO

INSERT INTO #ins_exec_container

EXEC master..xp_cmdshell "dir c:\temp"

GO

INSERT INTO sales

EXECUTE ('SELECT * FROM sales_2002_Q4')

GO

This functionality can be very useful in stored procedures where you wish to build business logic using Transact-SQL
stored procedures, for example, to determine the state of objects in the database or outside of the database, and then
act on those results using Transact-SQL.

SQL Server allows the use of hints to circumvent default query optimization for INSERT
statements. This type of tuning is only recommended for the most advanced users. Refer
to the vendor documentation for more details on hints that are usable with INSERT.

INTERSECT Set Operator

The INTERSECT set operator retrieves the rows of two or more queries where the rows of the result sets are identical in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The INTERSECT set operator retrieves the rows of two or more queries where the rows of the result sets are identical in
both the first and second (and possibly more) queries. In some ways, INTERSECT is a lot like an INNER JOIN operation.

INTERSECT is in a class of keywords called set operators. Other set operators include EXCEPT and UNION. All set
operators are used to simultaneously manipulate the result set of two or more queries; hence the term "set operators."

Platform Command

DB2 Supported with limitations

MySQL Not supported

Oracle Supported with limitations

PostgreSQL Supported with limitations

SQL Server Not supported

SQL2003 Syntax

There is technically no limit to the number of queries that you may combine with the INTERSECT set operator. The
general syntax is:

<SELECT statement1>

INTERSECT [ALL | DISTINCT]

[CORRESPONDING [BY (column1, column2, ...)]]

<SELECT statement2>

INTERSECT [ALL | DISTINCT]

[CORRESPONDING [BY (column1, column2, ...)]]

...

Keywords

ALL

Includes duplicate rows from all result sets.

DISTINCT

Drops duplicate rows from all result sets prior to the INTERSECT comparison. Columns containing a NULL value
are considered duplicates. (If neither ALL nor DISTINCT are used, DISTINCT behavior is the default.)

CORRESPONDING

Specifies that only columns with the same name in both queries are returned, even though both queries use the
asterisk shortcut.

BY

Specifies that only the named columns are returned, even if more columns with corresponding names exist in
the queries. Must be used with the CORRESPONDING keyword.

Rules at a Glance

There is only one significant rule to remember when using INTERSECT:

The order and number of columns must be the same in all queries. The datatypes of corresponding
columns must also be compatible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

columns must also be compatible.

The datatypes do not have to be identical, but they should be compatible. For example, CHAR and VARCHAR are
compatible datatypes. By default, the result set will default to the largest of each column in each ordinal position.

Programming Tips and Gotchas

None of the platforms support the ANSI CORRESPONDING [BY column1, column2, ...] clause.

On platforms that do not support INTERSECT, substitute a query using FULL JOIN.

The ANSI standard evaluates INTERSECT as higher priority than other set operators, while some platforms vary in how
they evaluate set operator precedence. You can explicitly control the precedence of set operators using parentheses.
Otherwise, the DBMS might evaluate them from leftmost to rightmost expression or from first to last expression.

According to the standard, only one ORDER BY clause is allowed in the entire query. Include it at the end of the last
SELECT statement. In order to avoid column and table ambiguity, be sure to alias each column of each table with the
same respective alias. For example:

SELECT a.au_lname AS 'lastname', a.au_fname AS 'firstname'

FROM authors AS a

INTERSECT

SELECT e.emp_lname AS 'lastname', e.emp_fname AS 'firstname'

FROM employees AS e

ORDER BY lastname, firstname

Also, while your column datatypes may be compatible throughout the queries in the INTERSECT, there may be some
variation in behavior across the DBMS platforms with regard to varying length of the columns. For example, if the
au_lname column in the first query is markedly longer than the emp_lname column in the second query, each
platform may apply different rules as to which length is used for the final result. In general, though, the platforms will
choose the longer (and less restrictive) column size for use in the result set.

Each DBMS may apply its own rules as to which column name is used if the columns across the tables have different
names. In general, the column names from the first query are used.

DB2

DB2 supports the INTERSECT and INTERSECT ALL keywords of the ANSI standard, plus the VALUES extension:

{SELECT statement1 | VALUES (expr1 [,...]) }

INTERSECT [ALL]

[CORRESPONDING [BY (column1, column2, ...)]]

{SELECT statement2 | VALUES (expr2 [,...]) }

INTERSECT [ALL]

[CORRESPONDING [BY (column1, column2, ...)]]

...

Although ANSI's INTERSECT DISTINCT is not supported, INTERSECT is the functional equivalent. The CORRESPONDING
clause is not supported.

When using INTERSECT (but not INTERSECT ALL), the datatypes LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB,
DBCLOB, DATALINK and structured types are not usable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBCLOB, DATALINK and structured types are not usable.

When the same column name is used across queries, then that name is used in the final result set. If, however, the
queries use different names for a column, then DB2 generates a new column name for the final result. That column is
then unusable in the ORDER BY and FOR UPDATE clauses.

If multiple set operations are used in a single query, those enclosed in parentheses are evaluated first. Then, the
queries are evaluated in left-to-right order. However, all INTERSECT operations are performed before any UNION and
EXCEPT operations. For example:

SELECT empno

FROM employee

WHERE workdept LIKE 'E%'

INTERSECT

(SELECT empno

 FROM emp_act

 WHERE projno IN ('IF1000', 'IF2000', 'AD3110')

UNION

 VALUES ('AA0001'), ('AB0002'), ('AC0003'))

The example above retrieves all employee IDs from the employee table for employees who are in any department that
starts with "E." However, employee IDs are returned only if they also exist in the employee accounts table, named
emp_act, or have projects of IF1000, IF2000, or AD3110.

MySQL

Not supported.

Oracle

Oracle supports the INTERSECT and INTERSECT ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

INTERSECT

<SELECT statement2>

INTERSECT

...

Oracle does not support the CORRESPONDING clause. The INTERSECT DISTINCT is not supported, but INTERSECT is
the functional equivalent. Oracle does not support INTERSECT on queries under the following circumstances:

Queries with columns of LONG, BLOB, CLOB, BFILE, or VARRAY datatypes

Queries contain FOR UPDATE clause or TABLE collection expressions

If the first query in the set operation contains any expressions in the select item list, then include the AS keyword to
associate an alias with the column resulting from the expression. Also, only the first query in the set operation may
contain an ORDER BY clause.

For example, you could find all store IDs that also have sales:

SELECT stor_id FROM stores

INTERSECT

SELECT stor_id FROM sales

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostgreSQL

PostgreSQL supports the INTERSECT and INTERSECT ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

INTERSECT [ALL]

<SELECT statement2>

INTERSECT [ALL]

...

PostgreSQL does not support INTERSECT or INTERSECT ALL on queries with a FOR UPDATE clause. PostgreSQL does
not support the CORRESPONDING clause. The INTERSECT DISTINCT is not supported, but INTERSECT is the functional
equivalent.

The first query in the set operation may not contain an ORDER BY clause or a LIMIT clause. Subsequent queries in the
INTERSECT or INTERSECT ALL set operation may contain these clauses, but such queries must be enclosed in
parentheses. Otherwise, the rightmost occurance of ORDER BY or LIMIT will be assumed to apply to the entire set
operation. For example, you could find all authors who are also employees and whose last last name starts with "P":

SELECT a.au_lname

FROM authors AS a

WHERE a.au_lname LIKE 'P%'

INTERSECT

SELECT e.lname

FROM employee AS e

WHERE e.lname LIKE 'W%';

SQL Server

Not supported. However, you can use NOT IN or NOT EXISTS operations in conjunction with a correlated subquery as
alternatives. Refer to the EXCEPT Set Operator section for examples.

See also

EXCEPT
SELECT
UNION

IS Operator

The IS operator determines whether a value is NULL or not.

Platform Command

DB2 Supported

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

{WHERE | {AND | OR} } expression IS [NOT] NULL

Keywords

WHERE | {AND | OR} expression IS NULL

Returns a Boolean value of TRUE if the expression is NULL, and FALSE if the expression is not NULL. The expression
evaluated for NULL can be preceded by a the WHERE keyword or AND or OR keywords.

NOT

Inverses the predictate. The statement will instead return a Boolean TRUE if the value of expression is not NULL,
and FALSE if the value of expression is NULL.

Rules at a Glance

Because the value of NULL is unknown, you cannot use comparison expressions to determine if a value is NULL. For
example, the expressions X = NULL and X <> NULL cannot be resolved because no value can equal, or not equal, an
unknown.

Instead, you must use the IS NULL operator. Be sure that you do not put the word NULL within quote marks, because if
you do that, the DBMS will interpret the value as the word "NULL" and not the special value of NULL.

Programming Tips and Gotchas

Some platforms support the use of a comparison operator to determine if an expression is NULL. However, all platforms
covered by this book now support the ANSI IS [NOT] NULL syntax.

Sometimes, checking for NULL will make your WHERE clause only slightly more complex. For example, rather than a
simple predicate to test the value of stor_id:

SELECT stor_id, ord_date

FROM sales

WHERE stor_id IN (6630, 7708)

you need to add a second predicate to accomodate the possibility that stor_id might be NULL:

SELECT stor_id, ord_date

FROM sales

WHERE stor_id IN (6630, 7708)

 OR stor_id IS NULL

See Also

SELECT
WHERE

JOIN Subclause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JOIN subclause enables you to retrieve rows from two or more logically related tables. You are able to define many
different join conditions and types of joins, though the types of joins supported by the different platforms vary greatly.

Platform Command

DB2 Supported, with limitations

MySQL Supported, with variations

Oracle Supported

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

SQL2003 Syntax

FROM table [AS alias] {CROSS JOIN |

{ [NATURAL] [join_type] JOIN joined_table [AS alias]

 { ON join_condition1 [{AND|OR} join_condition2] [...]] |

 USING (column1 [,...]) } }

[...]

Keywords

FROM table

Defines the first table or view in the join.

NATURAL

Specifies that the join (either inner or outer) should be assumed on the tables using all columns of identical
name shared between the two tables. Consequently, you should not specify join conditions using the ON or
USING clauses. The query will fail if you issue a natural join on two tables that do not contain any columns with
the same name(s).

join_type JOIN joined_table

Specifies the type of JOIN and the second (and any subsequent) table in the join. You may also define an alias
on any of the joined_tables. The join types are:

CROSS JOIN

Specifies the complete cross product of two tables. For each record in the first table, all the records in
the second table are joined, creating a huge result set. This command has the same effect as leaving off
the join condition, and is also known as a "Cartesian Product." Cross joins are not advisable or
recommended.

[INNER] JOIN

Specifies that unmatched rows in either table of the join should be discarded. If no join type is explicitly
defined in the ANSI style, then this is the default.

LEFT [OUTER] JOIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that all records be returned from the table on the left side of the join statement. If a record
returned from the left table has no matching record in the table on the right side of the join, it is still
returned. Columns from the right table return NULL values when there is no matching row. It is a good
idea to configure all your outer joins as left outer joins, rather than mixing left and right outer joins,
wherever possible for consistency.

RIGHT [OUTER] JOIN

Specifies that all records be returned from the table on the right side of the join statement, even if the
table on the left has no matching record. Columns from the left table return NULL values when there is
no matching row.

FULL [OUTER] JOIN

Specifies that all rows from both tables be returned, regardless of whether a row from one table
matches a row in the other table. Any columns that have no value in the corresponding joined table are
assigned a NULL value.

UNION JOIN

Specifies that all the columns of both tables and every row of both table will be returned. Any columns
that have no value in the corresponding joined table are assigned a NULL value.

AS alias

Specifies an alias or shorthand for the joined table. The AS keyword is optional when specifying an alias.

ON join_condition

Joins together the rows of the table shown in the FROM clause to the rows of the table declared in the
JOIN clause. You may have multiple JOIN statements, all based on a common set of values. These
values are usually contained in columns of the same name and datatype appearing in both tables being
joined. These columns, or possibly a single column from each table, are called the join key or common
key. Most—but not all—of the time, the join key is the primary key of one table and a foreign key in
another table. As long as the data in the columns match, the join can be performed.

Joins can also be performed using the WHERE clause. This technique is sometimes called a
theta join.

Join_conditions are syntactically depicted in the following form (note that join types are intentionally excluded in this
example):

FROM table_name1

JOIN table_name2

 ON table_name1.column1 = table_name2.column2

 [{AND|OR} table_name1.column3 = table_name2.column4]

 [...]

JOIN table_name3

 ON table_name1.columnA = table_name3.columnA

 [{AND|OR} table_name1.column3 = table_name2.column4]

 [...]

[JOIN...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the AND operator and the OR operator to issue a JOIN with multiple conditions. It is also a good idea to use
brackets around each pair of joined tables if more than two tables are involved. This makes reading the query much
easier.

USING (column [,...])

Assumes an equality condition on one or more named columns that appear in both tables. The column (or
columns) must exist, as named, in both tables. Writing a USING clause is a little quicker than writing ...ON
table1.columnA = table2.columnA, but the results are functionally equivalent.

Rules at a Glance

Joins enable you to retrieve records from two (or more) logically related tables in a single result set. You can use an
ANSI JOIN (detailed here) to perform this operation, or something called a theta join. Theta joins, which use the
WHERE clause to establish the filtering criteria, are the "old" way to do join operations.

For example, you might have a table called employee that tracks information about everyone employed in your
company. The employee table, however, doesn't have extensive information about the job an employee holds.
Instead, the employee table holds only a job_id. All information about the job, such as description and title, are
stored in a table called job. Using a JOIN, you can easily return columns from both tables in a single set of records. The
following sample queries illustrate the difference between a theta and an ANSI JOIN:

/* Theta join */

SELECT emp_lname, emp_fname, job_title

FROM employee, jobs

WHERE employee.job_id = jobs. job_id;

/* ANSI join */

SELECT emp_lname, emp_fname, job_title

FROM employee

JOIN jobs ON employee.job_id = jobs.job_id;

Whenever you reference multiple columns in a single query, the columns must be unambiguous. In other words, the
columns must either be unique to each table, or they must be referenced with a table identifier. In the example above,
both tables have a job_id column, so references to job_id must be qualified with a table identifier. The columns in the
query that don't exist in both tables don't need to be qualified by table identifiers. However, queries like this are often
very hard to read. The following variation of the previous ANSI join is in better form, because it uses the short, and
easy to read, alias e to refer to the table:

SELECT e.emp_lname, e.emp_fname, j.job_title

FROM employee AS e

JOIN jobs AS j ON e.job_id = j.job_id;

Previous examples were limited to equi-joins — joins using equality and an equal sign (=). However, most other
comparison operators are allowed. You can perform joins on >, <, >=, <=, <> , and so forth.

You cannot join on large object binary datatypes (i.e., BLOB) or other large object datatypes (e.g., CLOB, NLOB, etc.).
Other datatypes are usually allowed in a join comparison.

Following are examples of each type of join:

CROSS JOIN

Following are some cross join eamples. The first is a theta join that simply leaves off the join conditions. The
second is written using the CROSS JOIN clause. The final query is similar in concept to the first, with a JOIN
clause that omits the join conditions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clause that omits the join conditions.

SELECT *

FROM employee, jobs;

SELECT *

FROM employee

CROSS JOIN jobs;

SELECT *

FROM employee

JOIN jobs;

INNER JOIN

Following is an inner join written using the newer syntax:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

INNER JOIN publishers AS p ON a.city = p.city

ORDER BY a.au_lname DESC

There are lots of authors in the authors table, but very few of them have a city that matches the city of the publishers
in the publishers table. For example, the above query executed in the pubs database on a SQL Server produces
results like the following:

first name last name publisher

--------------- -------------------- ------------------

Carson Cheryl Algodata Infosystems

Bennet Abraham Algodata Infosystems

The join is called an inner join because only those records that meet the join condition in both tables are said to be
"inside" the join. You could also issue the same query, on platforms that support it, by substituting the USING clause for
the ON clause:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

INNER JOIN publishers AS p USING (city)

ORDER BY a.au_lname DESC

The results for the above query would be the same.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LEFT [OUTER] JOIN

It is a good idea to configure all your outer joins as left outer joins, for greater consistency, rather than mixing
left and right outer joins.

In the following example, we can show a LEFT OUTER JOIN by asking for the publisher for each author (we could also
substitute the USING clause for the ON clause, as shown in the example for INNER JOIN shown earlier):

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

LEFT OUTER JOIN publishers AS p ON a.city = p.city

ORDER BY a.au_lname DESC

In the above example, every author will be returned along with the publisher's name, where there is a match, or a
NULL value, where there is no match. For example, in the SQL Server pubs database, the query above returns:

first name last name publisher

--------------- -------------------- ----------------

Yokomoto Akiko NULL

White Johnson NULL

Stringer Dirk NULL

Straight Dean NULL

...

All of the data is returned in the lefthand columns (those from the authors table) and any column on the righthand side
(those from the publishers table) that does not have a match returns a NULL value. The result set shows NULL values
where no data matches in the join.

RIGHT [OUTER] JOIN

RIGHT OUTER JOIN is essentially the same as a LEFT OUTER JOIN, except everything is weighted toward the
table on the right side of the query. For example, the following query executed in the pubs database on a SQL
Server:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

RIGHT OUTER JOIN publishers AS p ON a.city = p.city

ORDER BY a.au_lname DESC

returns the following result set:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

returns the following result set:

first name last name publisher

---------------- ---------------- ------------------------

Carson Cheryl Algodata Infosystems

Bennet Abraham Algodata Infosystems

NULL NULL New Moon Books

NULL NULL Binnet & Hardley

All of the data is returned on the righthand side of the query (hence the term "right outer join") and any columns from
the left-hand side that do not have a match return a NULL value. The result set shows NULL values where no data
matches in the join.

NATURAL [INNER | {LEFT | RIGHT}[OUTER]] JOIN

Natural joins are a substitute for the ON or USING clause, so do not use NATURAL with the ON or USING
clauses. For example:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

NATURAL RIGHT OUTER JOIN publishers AS p

ORDER BY a.au_lname DESC

The preceding query will work as the earlier examples, but only if both tables possess a column called city and that is
the only column that they hold in common. You could similarly perform any of the other types of joins (INNER, FULL,
OUTER) using the NATURAL prefix.

FULL [OUTER] JOIN

Specifies that all rows from either table be returned, regardless of matching records in the other table. The
result set shows NULL values, where no data matches in the join. Note that the OUTER keyword is optional. If
we take our earlier example query and render it as a FULL JOIN, it looks like this:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

FULL JOIN publishers AS p ON a.city = p.city

ORDER BY a.au_lname DESC

The result set returned by the query is actually the accumulation of the result sets of issuing separate INNER, LEFT, and
RIGHT join queries (some records have been excluded for brevity):

first name last name publisher

-------------------- -------------------- --------------------

Yokomoto Akiko NULL

White Johnson NULL

Stringer Dirk NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stringer Dirk NULL

...

Dull Ann NULL

del Castillo Innes NULL

DeFrance Michel NULL

Carson Cheryl Algodata Infosystems

Blotchet-Halls Reginald NULL

Bennet Abraham Algodata Infosystems

NULL NULL Binnet & Hardley

NULL NULL Five Lakes Publishin

NULL NULL New Moon Books

...

NULL NULL Scootney Books

NULL NULL Ramona Publishers

NULL NULL GGG&G

As you can see above, with the FULL JOIN you get some records with the NULLs on the right and data on the left (LEFT
JOIN), some with all data (INNER JOIN), and some with NULLs on the left and data on the right (RIGHT JOIN).

Programming Tips and Gotchas

If an explicit join_type is omitted, then an INNER JOIN is assumed. Note that there are many types of joins, each with
their own rules and behaviors, described in the "Rules at a Glance."

In general, you should favor the JOIN clause over the WHERE clause for describing join expressions. This not only keeps
your code cleaner, making it easy to differentiate join conditions from search conditions, but you also avoid the
possibility of buggy behavior resulting from some platform-specific implementations of outer joins specified using the
WHERE clause.

In general, we do not recommend the use of labor-saving keywords like NATURAL, since the subclause will not
automatically update itself when the structure of the underlying tables change. Consequently, statements using these
constructs may fail when a table change is introduced without also changing the query.

Not all join types are supported by all platforms, so refer to the sections below for full details on platform-specific join
support.

Joins involving more than two tables can be difficult. When joins involve three or more
tables, it is a good idea to think of the query as a series of two table joins.

DB2

DB2 supports INNER and OUTER joins using the ON condition clause. It does not support CROSS or NATURAL join
sytax, nor the USING clause. DB2's JOIN clause syntax is:

FROM table [AS alias]

{ {[INNER] | [{LEFT | RIGHT | FULL} [OUTER]]}

 JOIN joined_table [AS alias]

 { ON join_condition1 [{AND|OR} join_condition2] [...]] }

[...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[...]

Refer to the "Rules at a Glance" section for examples.

MySQL

MySQL supports most ANSI syntax, except that natural joins are only supported on outer joins, not on inner joins.
MySQL's JOIN syntax is:

FROM table [AS alias]

{[STRAIGHT_JOIN joined_table] |

{ {[INNER] | | [CROSS] |

 [NATURAL] [{LEFT | RIGHT | FULL} [OUTER]]}

 JOIN joined_table [AS alias]

 { ON join_condition1 [{AND|OR} join_condition2] [...]] |

 USING (column1 [,...]) } } }

[...]

where:

STRAIGHT_JOIN

Forces the optimizer to join tables in the exact order they appear in the FROM clause.

The STRAIGHT_JOIN keyword is functionally equivalent to JOIN, except that it forces the join order from left to right.
This option was supplied because MySQL might, rarely, join the tables in the wrong order.

Refer to the Rules at a Glance section for examples.

Oracle

Oracle fully supports the entire ANSI standard JOIN syntax. However, Oracle only began to support ANSI standard JOIN
syntax in Version 9. Consequently, any older Oracle SQL code exclusively uses WHERE clause joins. Oracle's old syntax
for outer theta joins included adding (+) to column names on the side opposite of the outer table. Oracle's old syntax
for outer joins comes from the fact that the table supplying the null value rows in effect has null value rows added to it.
Oracle represents this by appending the expression "(+)" to the column name on the opposite side of the direction of
the join.

For example, the following query does a RIGHT OUTER JOIN on the authors and publishers tables. The old Oracle
syntax looks like this:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors a, publishers p

WHERE a.city(+) = p.city

ORDER BY a.au_lname DESC

while the same query in the ANSI syntax would look like:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

while the same query in the ANSI syntax would look like:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

RIGHT OUTER JOIN publishers AS p ON a.city = p.city

ORDER BY a.au_lname DESC

Refer to the Rules at a Glance section for more JOIN examples.

Oracle is unique in offering partitioned outer joins, which are useful for filling gaps in result sets due to sparse data
storage. For example, assume we store production records in a manufacturing table keyed on day and product_id. The
table holds a row showing quantity produced for each product for any day on which it is made, but there are no rows
for the days it is not produced. This is considered sparse data, since a list of all rows will not show every day for every
product. For calculation and reporting purposes, it's very useful to create result sets where each product has a row for
every day, whether or not it was manufactured. Partition outer join makes it simple to do that, since it lets you define a
logical partition and apply an outer join to each partition value. Here is the manufacturing example, which does a
partitioned outer join with a times table to make sure each product_id has the full set of dates in a specified time
range:

SELECT times.time_id AS time, product_id AS id, quantity AS qty

FROM manufacturing

PARTITION BY (product_id)

RIGHT OUTER JOIN times

ON (manufacturing.time_id = times.time_id)

WHERE manufacturing.time_id

BETWEEN TO_DATE('01/10/05', 'DD/MM/YY')

 AND TO_DATE('06/10/05', 'DD/MM/YY')

ORDER BY 2, 1;

Following is the output from this query:

time id qty

--------- ------ ---

01-OCT-05 101 10

02-OCT-05 101

03-OCT-05 101

04-OCT-05 101 17

05-OCT-05 101 23

06-OCT-05 101

01-OCT-05 102

02-OCT-05 102

03-OCT-05 102 43

04-OCT-05 102 99

05-OCT-05 102

06-OCT-05 102 87

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

06-OCT-05 102 87

To get these results without using a partitioned outer join would require more complex and less efficient SQL.

PostgreSQL

PostgreSQL fully supports the ANSI standard. Refer to the Rules at a Glance section for examples.

SQL Server

SQL Server supports INNER, OUTER, and CROSS joins using the ON clause. SQL Server does not support NATURAL join
sytax, nor the USING clause. SQL Server's JOIN syntax is:

FROM table [AS alias]

{ {[INNER] | | [CROSS] | [{LEFT | RIGHT | FULL} [OUTER]]}

 JOIN joined_table [AS alias]

 { ON join_condition1 [{AND|OR}

 join_condition2] [...]] }

[...]

Refer to the Rules at a Glance section for examples.

See Also

SELECT
WHERE

LIKE Operator

The LIKE operator enables specified string patterns in SELECT, INSERT, UPDATE, and DELETE statements to be
matched, specifically in the WHERE clause. A specified pattern may include special wildcard characters. The specific
wildcards supported vary from platform to platform.

Platform Command

DB2 Supported

MySQL Supported, with variations

Oracle Supported

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

WHERE expression [NOT] LIKE string_pattern

 [ESCAPE escape_sequence]

Keywords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE expression LIKE

Returns a Boolean TRUE when the value of expression matches the string_pattern. The expression may be a
column, a constant, a host variable, a scalar function, or a concatenation of any of these. It should not be a
user-defined type, nor should it be certain types of LOBs.

NOT

Inverses the predictate. The statement returns a Boolean TRUE if the value of expression does not contain the
string_pattern, and FALSE if the value of expression contains the string_pattern.

ESCAPE escape_sequence

Allows you to search for the presence of characters that would normally be interpreted as wildcards.

Rules at a Glance

Matching string patterns is easy with LIKE, but there are a couple of simple rules to remember:

All characters, including trailing and leading spaces, are important.

Differing datatypes may be compared using LIKE, but they store string patterns differently. In particular, be
aware of the differences between CHAR, VARCHAR, and DATE datatypes.

Using LIKE may negate indexes or force the DBMS to use alternative, less optimal indexes than a straight
comparison operation.

The ANSI standard currently supports two wildcard operators that are supported by all of the platforms covered in this
book:

%

Matches any string.

_ (underscore)

Matches any single character.

The first query in the following example retrieves any city record with "ville" in its name. The second query returns
authors with a first name not like Sheryl or Cheryl (or Aheryl, Bheryl, Dheryl, 2heryl, and so forth).

SELECT * FROM authors

WHERE city LIKE '%ville%';

SELECT * FROM authors

WHERE au_fname NOT LIKE '_heryl';

Some of the platforms support additional wildcard symbols. These are described in the platform-specific sections that
follow.

Use of the ESCAPE clause allows you to look for wildcard characters in the strings stored in your database. Using this
mechanism, you designate a character as your escape character, typically a character that does not otherwise appear in
the pattern string. For example, you might designate the tilde (~) because you know it never appears in the pattern
string. Any wildcard character preceded by the escape sequence is then not treated as a wildcard, but rather as the
character itself. For example, to look through the comments column of the sales_detail table (on SQL Server) to see
whether any customers have mentioned a newly introduced discount:

SELECT ord_id, comment

FROM sales_detail

WHERE comment LIKE '%~%%' ESCAPE '~'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, the first and last % are interpreted as wildcards. But the second % character is interpreted as just that, a
% character, because it is preceded by the designated escape sequence.

Programming Tips and Gotchas

The usefulness of LIKE is based on the wildcard operators that it supports. LIKE returns a Boolean TRUE value when the
comparison finds one or more matching values.

The default case sensitivity of the DBMS is very important to the behavior of LIKE. For example, Microsoft SQL Server is
not case-sensitive by default (though it can be configured that way). Thus, Microsoft SQL Server will evaluate the
strings DAD and dad to be equal. Oracle, on the other hand, is case-sensitive. Thus, on Oracle, a comparison of DAD and
dad would show them to be unequal. Here's an example query to better illustrate this point:

SELECT *

FROM authors

WHERE lname LIKE 'LARS%'

This query on Microsoft SQL Server would find authors whose last names are stored as 'larson' or 'lars,' even though the
search was for uppercase 'LARS%'. Oracle would not find 'Larson' or 'Lars', because Oracle performs case-sensitive
comparisons.

DB2

DB2 supports the ANSI SQL2003 syntax for LIKE. It supports the percent (%) and underscore (_) wildcards. It
supports ESCAPE sequences.

DB2 is case sensitive, so its implementation of LIKE is completely case sensitive. You should use a function like UPPER
or TRANSLATE to ensure that differently cased values are always evaluated uniformly. In addition, DB2 will implicitly
convert the code page of either the string_pattern or the escape_sequence to that of the expression, as long as none of them
are defined as FOR BIT DATA.

MySQL

MySQL supports the ANSI syntax for LIKE. It supports the percent (%) and underscore (_) wildcards. It also supports
the ESCAPE clause.

MySQL also supports the special functions of REGEXP and RLIKE, plus NOT REGEXP and NOT RLIKE for the evaluation of
regular expressions. MySQL, after Version 3.23.4, is not case sensitive by default.

Oracle

Oracle supports the ANSI syntax for LIKE. It supports the percent (%) and underscore (_) wildcards. It supports
ESCAPE sequences. Oracle's LIKE syntax is as follows:

WHERE expression [NOT] {LIKE | LIKEC | LIKE2 |

 LIKE4} string_pattern

[ESCAPE escape_sequence]

The Oracle-specific syntax elements have the following meanings:

LIKEC

Uses UNICODE complete characters.

LIKE2

Uses UNICODE USC2 codepoints.

LIKE4

Uses UNICODE UCS4 codepoints.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Uses UNICODE UCS4 codepoints.

Since Oracle is case sensitive, you should enclose the expression, the string_pattern, or both, with the UPPER function.
That way, you are always comparing apples to apples.

PostgreSQL

PostgreSQL supports the ANSI syntax for LIKE. It supports the percent (%) and underscore (_) wildcards. It supports
ESCAPE sequences.

PostgreSQL is case sensitive by default. PostgreSQL provides the keyword ILIKE for case-insensitive pattern matching.
You can also use the operator ~~ as an equivalent to LIKE, and ~~* for ILIKE, as well as !~~ and !~~* for NOT LIKE
and NOT ILIKE, respectively. These are all extensions to the ANSI SQL2003 standard.

For example, the following queries are functionally the same:

SELECT * FROM authors

WHERE city LIKE '%ville';

SELECT * FROM authors

WHERE city ~~ '%ville';

Since these queries are in lowercase, you might run into a case-sensitivity problem. That is, the queries are looking for
a lowercase '%ville', but the table might contain uppercase (and unequal) values of 'BROWNSVILLE', 'NASHVILLE', and
'HUNTSVILLE'. You can get around this as shown below:

-- convert the values to upper case

SELECT * FROM authors

WHERE city LIKE UPPER('%ville');

-- perform the pattern match using case insensitivity

SELECT * FROM authors

WHERE city ~~* '%ville';

SELECT * FROM authors

WHERE city ILIKE '%ville';

Although beyond the scope of this text, you should be aware that PostgreSQL also supports POSIX regular expressions.
See the platform documentation for details.

SQL Server

SQL Server supports the ANSI syntax for LIKE. It supports ESCAPE sequences. It supports the following additional
wildcard operators:

[]

Matches any value in the specified set, as in [abc], or any range, as in [k-n].

[^]

Matches any characters not in the specified set or range.

Using SQL Server's additional wildcard operators, you have some added capabilities. For example, you can retrieve any
author with a last name like Carson, Carsen, Karson, or Karsen:

SELECT * FROM authors

WHERE au_lname LIKE '[CK]ars[eo]n'

Or you can retrieve any author with a last name that ends in "arson" or "arsen," but not Larsen or Larson:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Or you can retrieve any author with a last name that ends in "arson" or "arsen," but not Larsen or Larson:

SELECT * FROM authors

WHERE au_lname LIKE '[A-Z^L]ars[eo]n'

Remember that when performing string comparisons with LIKE, all characters in the
pattern string are significant, including all leading and trailing blank spaces.

See Also

SELECT, UPDATE, DELETE
WHERE

MERGE Statement

The MERGE statement is sort of like a CASE statement for DML operations. It combines UPDATE and INSERT statements
into a single atomic statement with either/or functionality.

Basically, MERGE examines the records of a source table and a target table. If the records exist in both the source and
target tables, based upon predefined conditions, then records in the target table are updated with the values of the
records in the source table. If records do not exist in the target table that do exist in the source table, then they are
inserted into the target table. The MERGE statement was added in the SQL2003 release of the ANSI standard.

Platform Command

DB2 Supported

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

MERGE INTO {object_name | subquery} [[AS] alias]

USING table_reference [[AS] alias]

ON search_condition

WHEN MATCHED

 THEN UPDATE SET column = { expression | DEFAULT } [, ...]

 WHEN NOT MATCHED

 THEN INSERT [(column [, ...])] VALUES (expression [, ...])

Keywords

MERGE INTO {object_name | subquery}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MERGE INTO {object_name | subquery}

Declares the target object of the merge operation. The target object may be a table or updateable view of
object_name, or the target object may be a nested table subquery rather than an explicitly declared table or
updateable view.

[AS] alias

Provides an optional alias for the target table.

USING table_reference

Declares the source table, view, or subquery of the merge operation.

ON search_condition

Specifies the condition or conditions on which a match between the source and target table are evaluated. The
syntax is essentially the same as the ON subclause of the JOIN clause. For example, when merging records
from the new_hire_emp table into the emp table the clause might look like ON emp.emp_id =
new_hire_emp.emp_id.

WHEN MATCHED THEN UPDATE SET column = { expression | DEFAULT } [, ...]

Declares that if a record from the source table has a matching record in the target table (based on the
search_condition), then one or more specified columns of the target table are updated with the indicated value of
expression.

WHEN NOT MATCHED THEN INSERT [(column [, ...])] VALUES (expression [, ...]

Declares that if a record from the source table does not have a matching record in the target table (based on
the search_condition), then a new record is inserted into the target table using one or more specified columns
using the value of expression.

Rules at a Glance

The rules for using MERGE are straightforward:

The WHEN MATCHED and WHEN NOT MATCHED clauses are required, but may not be specified more than once.

The target table can be a standard updateable table, an updateable view, or an updateable subquery.

If the table_reference is a subquery, enclose it in parentheses.

The search_condition clause should not contain any references to stored procedures or user-defined functions.

The search_condition clause may contain multiple elements using the AND or OR operators.

If the column list is omitted from the WHEN NOT MATCHED clause, then a column list of all the columns in the
target table, in ordinal position, is assumed.

Other important rules used by the MERGE statement are self-evident. For example, the columns referenced in
the WHEN MATCHED clause must be updateable.

Programming Tips and Gotchas

The MERGE statement has sometimes been nicknamed the "upsert" statement. That is because it allows, in a single
operation, a set of records to be either inserted into a table or, if they already exist, updated with new values.

The only tricky aspect of the MERGE statement is simply getting used to the idea of either/or processing of the INSERT
and UPDATE statements.

Assume that we have two tables. The EMP table contains all employees of the company who have successfully
completed the mandatory 90-day probationary period at the start of their employment. Employees in the EMP table can
also have several statuses, such as active, inactive, and terminated. Any new hire to the company is recorded in the
NEW_HIRE table. After 90 days, they are moved into the EMP table like all other regular employees. However, since

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NEW_HIRE table. After 90 days, they are moved into the EMP table like all other regular employees. However, since
our company hires college interns every summer, it's very likely that some of our new hires will actually have a record
in the EMP table from last year with a status of inactive. Using pseudocode, the business problem is summarized as:

For each record in the NEW_HIRE table

 Find the corresponding record in the EMP table

 If the record exists in the EMP table

 Update existing data in the EMP table

 Else

 Insert this record into the EMP table

 End If

End For

We could write a rather lengthy stored procedure that will examine all the records of the NEW_HIRE table and then
conditionally perform INSERT statements for the entirely new employees or UPDATE statements for the returning
college interns. But the following ANSI standard MERGE statement makes this process much easier:

MERGE INTO emp AS e

 USING (SELECT * FROM new_hire) AS n

 ON e.empno = n.empno

WHEN MATCHED THEN

 UPDATE SET

 e.ename = n.ename,

 e.sal = n.sal,

 e.mgr = n.mgr,

 e.deptno = n.deptno

WHEN NOT MATCHED THEN

 INSERT (e.empno, e.ename, e.sal, e.mgr, e.deptno)

 VALUES (n.empno, n.ename, n.sal, n.mgr, n.deptno);

As you can see, the MERGE statement is very useful for data loading operations.

DB2

DB2 supports the ANSI standard for the MERGE statement.

MySQL

Not supported.

Oracle

Oracle supports the MERGE statement with only the tiniest variations, which are almost entirely evident by comparing
the Oracle syntax diagram against the ANSI standard syntax diagram:

MERGE INTO [schema.] {object_name | subquery} [alias]

USING [schema.]table_reference [alias]

ON (search_condition)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON (search_condition)

WHEN MATCHED THEN

 UPDATE SET column = { expression | DEFAULT } [, ...]

WHEN NOT MATCHED THEN

 INSERT (column [, ...]) VALUES (expression [, ...]

The differences between the ANSI standard and Oracle's implementation include:

The Oracle implementation does not allow the AS keyword with assigning an alias to the target or source table.

Oracle requires parentheses around the search_condition clause.

The WHEN NOT MATCHED clause requires an insert column list, while the ANSI standard makes it optional.

Refer to the examples in the earlier "Rules at a Glance" and "Programming Tips and Gotchas" for more information.

PostgreSQL

Not supported.

SQL Server

Not supported.

See Also

INSERT
JOIN
SELECT
SUBQUERY
UPDATE

OPEN Statement

The OPEN statement is one of four commands used in cursor processing, along with DECLARE, FETCH, and CLOSE.
Cursors allow you to process queries one row at a time, rather than in a complete set. The OPEN statement opens a
pre-existing server cursor created with the DECLARE CURSOR statement.

Cursors are especially important on relational databases because databases are set-based, while most client-centric
programming languages are row-based. So cursors allow programmers and databases to perform operations a single
row at a time, while the default behavior of a relational database is to operate on a whole set of records.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

SQL Server Supported

SQL2003 Syntax

OPEN cursor_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OPEN cursor_name

Keywords

OPEN cursor_name

Identifies and opens the previously defined cursor created with the DECLARE CURSOR command.

Rules at a Glance

At the highest level, a cursor must be:

1. Created using DECLARE

2. Opened using OPEN

3. Operated against using FETCH

4. Dismissed using CLOSE

By following these steps, you create a result set similar to that of a SELECT statement, except that you can operate
against each individual row within the result set. For example, assume, on a DB2 database, that you've created a cursor
called employee_cursor, containing three columns:

DECLARE CURSOR employee_cursor FOR

SELECT lname, fname, emp_id

FROM employee

WHERE hire_date >= 'FEB-14-2004';

Having created the cursor, you can now open the cursor and fetch data from it into some host variables:

OPEN employee_cursor;

FETCH NEXT FROM employee_cursor

INTO :emp_last_name, :emp_first_name, :emp_id

The FETCH statement allows you to position the current row within the result set retrieved by the the cursor. If you
haven't accessed the cursor yet, you will be given the first record in the result set. You can then use any procedural
code you want to operate against the values in that row.

The following generic SQL example opens a cursor and fetches all the author firstname and author lastname values
from the authors table:

DECLARE employee_cursor CURSOR FOR

 SELECT au_lname, au_fname

 FROM pubs.dbo.authors

 WHERE lname LIKE 'K%'

OPEN employee_cursor

FETCH NEXT FROM employee_cursor

BEGIN

 FETCH NEXT FROM employee_Cursor

END

CLOSE employee_cursor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

The most common error encountered with the OPEN statement is failing to close the cursor properly. Although the
OPEN statement is detailed in isolation here, it should always be managed as a group with the DECLARE, FETCH, and
CLOSE statements. Although you will not get an error message for failing to close a cursor, the cursor may continue to
consume memory, locks, and other resources on the server as long as it is open. For example, if you forget to close
cursors, you could be creating a headache somewhat similar to a memory leak — each cursor consumes memory until it
is closed. Even if you no longer use a cursor, it is still taking up memory that the database server might otherwise be
using elsewhere. So take a little extra time to make sure that every declared and opened cursor is eventually closed.

Cursors are often used in stored procedures and in batches of procedural code. They are useful when you need to
perform actions on individual rows rather than on entire sets of data at a time. But because cursors operate on
individual rows and not on sets of data, they are often much slower than other means of accessing data. Just make sure
that you perform strong analysis on your approach. Many challenges, such as a convoluted DELETE operation or a very
complex UPDATE, can be solved by using clever WHERE and JOIN clauses instead of cursors.

DB2

DB2 supports the ANSI standard for OPEN with a couple of additions:

OPEN cursor_name [USING {variable_name1 [,...] | DESCRIPTOR descriptor_name}]

The DB2 specific syntax elements are:

USING {variable_name1 [,...] | DESCRIPTOR descriptor_name}

Supplies a list of variables for any parameters in the prepared SELECT statement. If the DECLARE CURSOR
statement used a prepared SELECT statement with variables, you cannot use the USING clause. (If you use
USING and there are no parameters, then USING is ignored.) The USING clause elements are as follows:

variable_name1 [,...]

Specifies a host variable or variables. As you would expect, each variable corresponds to a parameter of the
same ordinal position. DB2 locator variables and file reference variables are allowable, in addition to host
variables. Host variables are used for static SQL.

DESCRIPTOR descriptor_name

Identifies a descriptor area (SQLDA) containing a valid description of the dynamic SQL variable(s). Descriptor
variables are used for dynamic SQL.

For example, the following DB2 code declares several host (called hostvarxxx) and dynamic variables (defined with
the PREPARE statement), and then uses them in a cursor called dynamic_cursor:

EXEC SQL BEGIN DECLARE SECTION;

 static short hostvar_int;

 char hostvar_vchar64[65];

 char statement_str[200];

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE statement_name

 FROM :statement_str;

EXEC SQL DECLARE dynamic_cursor CURSOR

 FOR statement_name;

EXEC SQL OPEN dynamic_cursor

 USING :hostvar_int, :hostvar_vchar64;

MySQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL

Not supported.

Oracle

Oracle fully supports the ANSI standard. Plus, Oracle allows parameters to be passed directly into the cursor when it is
opened. Do this using the following format:

OPEN cursor_name parameter1 [,...]

PostgreSQL

PostgreSQL does not have an OPEN CURSOR statement. Instead, PostgreSQL implicitly opens a cursor when it is
created by the DECLARE statement.

SQL Server

In addition to the standard OPEN statement, SQL Server allows global cursors using the following syntax:

OPEN [GLOBAL] cursor_name

where:

cursor_name

Specifies the name of the cursor, or is a string variable containing the name of the cursor, created earlier with
the DECLARE CURSOR statement.

GLOBAL

Enables the cursor to be referenced by multiple users, even if they have not explicitly been assigned
permissions to the cursor. Otherwise, a local cursor is assumed.

SQL Server allows you to declare several different kinds of cursors. If a cursor is INSENSITIVE or STATIC, then the
OPEN statement creates a temporary table to hold the result set of the cursor. Similarly, if the declared cursor has the
KEYSET option, then a temporary table is automatically created to hold the keyset.

See Also

CLOSE CURSOR
DECLARE CURSOR
FETCH
SELECT

ORDER BY Clause

The ORDER BY clause specifies the sort order of the result set retrieved by a SELECT statement.

Platform Command

DB2 Supported, with limitations

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

ORDER BY {sort_expression [COLLATE collation_name]

 [ASC | DESC]} [,...]

Keywords

ORDER BY

Specifies the order in which rows should be returned by a query. You should not anticipate a specific ordering if
you exclude the ORDER BY clause, even if you specify a GROUP BY clause and it appears that a sort has been
done.

sort_expression

Specifies an item in the query that will help determine the order of the result set. You can have multiple
sort_expressions, and they are usually column names or column aliases from the query. However, they may also
be expressions like (salary * 1.02). SQL92 allowed the use of ordinal positions for sort_expressions. This
functionality has been deprecated, and should not be used in SQL2003 queries.

COLLATE collation_name

Overrides the default collation of the sort_expression, and applies the collation_name to the sort expression for the
purposes of the ORDER BY clause.

[ASC | DESC]

Specifies that the sort_expression should be returned in either ascending order (ASC) or descending order
(DESC).

Rules at a Glance

The ORDER BY clause should reference columns as they appear in the select item list of the SELECT statement,
preferably using their alias, if one exists. For example:

SELECT au_fname AS first_name, au_lname AS last_name

FROM authors

ORDER BY first_name, last_name

The ORDER BY clause uses a major-to-minor sort ordering. This means that the result set is ordered by the first column
referenced, equal values in the first column are then ordered by the second column, equal values in the second column
are then ordered by the third column, and so forth.

The individual aspects of a column's ordering — COLLATE and ASC/DESC — are independent of the other columns in the
ORDER BY clause. Thus, you could order a result set in ascending order by one column, and then flip the next column
and order it in descending order:

SELECT au_fname AS first_name, au_lname AS last_name

FROM authors

ORDER BY au_lname ASC, au_fname DESC

NULLs are always grouped together (i.e., considered equal) for the purposes of sorting. Depending on your platform,
NULLs will be clumped together at the top or at the bottom of the result set. The following query on SQL Server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NULLs will be clumped together at the top or at the bottom of the result set. The following query on SQL Server:

SELECT title, price

FROM titles

ORDER BY price, title

provides this result set (edited for brevity):

title price

-- -------

Net Etiquette NULL

The Psychology of Computer Cooking NULL

The Gourmet Microwave 2.9900

You Can Combat Computer Stress! 2.9900

Life Without Fear 7.0000

Onions, Leeks, and Garlic: Cooking Secrets of the Me 20.9500

Computer Phobic AND Non-Phobic Individuals: Behavior 21.5900

But Is It User Friendly? 22.9500

You can force NULLs to appear at the top or bottom of the result set using ASC or DESC. Of course, all the non-NULL
rows of the result set are also ordered in ascending or descending order too.

The ANSI standard for ORDER BY also supports the use of columns for the sort_expression that are not referenced in the
select item list. For example, the following query is valid under SQL2003:

SELECT title, price

FROM titles

ORDER BY title_id

Looking at the example above, you can see that although the query does not select title_id, column is the primary
sort_expression. The result set is returned in title_id order even though that column is not selected.

Programming Tips and Gotchas

When using set operators (UNION, EXCEPT, INTERSECT), only the last query may have an ORDER BY clause. You
should not use ORDER BY in subqueries of any type.

A number of behaviors that were supported in SQL92 are deprecated in SQL2003. You should avoid these usages:

References to table aliases

For example, ORDER BY e.emp_id should be changed to ORDER BY emp_id. If there is an ambiguous column
name, then use an alias to compensate.

References to ordinal position

Use explicitly defined column aliases to compensate.

You may sort not only on columns, but also on expressions involving columns or even literals:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You may sort not only on columns, but also on expressions involving columns or even literals:

SELECT SUBSTRING(title,1,55) AS title, (price * 1.15) as price

FROM titles

WHERE price BETWEEN 2 and 19

ORDER BY price, title

When sorting on expressions from the select item list, you should use aliases to make the ORDER BY sort_expression
column references easier!

DB2

DB2 supports the ANSI syntax, except for the COLLATE option. It also has the ORDER OF extension:

ORDER BY {ORDER OF table_name | sort_expression

 [{ASC | DESC}] }

where:

ORDER OF table_name

Tells DB2 to order the rows of a parent table as they are ordered in the subquery. To understand this concept
more fully, remember that DB2 supports ordering at the subquery level. However, the ordered subquery does
not return ordered result set unless the ORDER BY ORDER OF clause is used. The table_name must be the name
of a table referenced in the parent query. For example:

SELECT qty, price, order_nbr

FROM

 (SELECT order_nbr, qty, price FROM sales_Q1_2005

 UNION

 SELECT order_nbr, qty, price FROM sales_Q2_2005

 ORDER BY price, qty, order_nbr) AS ytd_sales

ORDER BY ORDER OF ytd_sales

DB2 still supports SQL92 functions, such as ordering by ordinal position. By default, DB2 sorts NULL values as higher
than all other values.

Another example of order subqueries follows. First, we will create a view called best that returns the top five best
selling books from the sales table, and then we will find the top five authors in order:

CREATE VIEW best(title) AS

 SELECT title FROM sales

 ORDER BY sold

 FETCH FIRST 5 ROWS ONLY

SELECT author

FROM best JOIN authors ON best.title = author.title

ORDER BY ORDER OF best

DB2 does not support ORDER BY on columns of the following datatypes: LONG VARCHAR, CLOB, LONG VARGRAPHIC,
DBCLOB, BLOB, and DATALINK. DB2 also does not support ordering by structure types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL

MySQL supports the ANSI standard, except for the COLLATE option.

You should not attempt to ORDER BY columns of the BLOB datatype because only the first bytes, defined by the
max_sort_length setting, are used in the sort. By default, MySQL sorts NULL values as lowest (first) for ASC order and
highest (last) for DESC order.

Oracle

Oracle supports the ANSI syntax, except for the COLLATE option. It also supports the SIBLINGS and NULLS {FIRST |
LAST} options. Oracle's ORDER BY syntax is:

ORDER [SIBLINGS] BY

 {sort_expression [ASC | DESC] [NULLS {FIRST | LAST}]} [,...]

where the Oracle-specific keywords are:

ORDER [SIBLINGS] BY sort_expression

Sorts the result set of the query in order of the sort_expressions. A sort_expression may be a column name, an
alias, an integer indicating a column's ordinal position, or another expression (e.g., salary * 1.02). The ORDER
SIBLINGS BY clause tells Oracle to preserve any ordering specified by a hierarchical query clause (CONNECT
BY), and to use the sort expression order for ordering of siblings in the hierarchy.

NULLS {FIRST | LAST}

NULLS FIRST and NULLS LAST specify that the records containing NULLs should appear either first or last,
respectively. By default, Oracle places NULLs last for ascending order sorts, and first for descending order sorts.

You can emulate the behavior of the COLLATE option for a single session by using the NLSSORT function with the
NLS_SORT parameter. You can explicitly emulate the behavior of the COLLATE option for all sessions on the server by
using the NLS_SORT initialization parameter or, implicitly, with the NLS_LANGUAGE initialization parameter.

Oracle continues to support deprecated SQL92 features such as sorting by ordinal position. You should not perform an
ORDER BY on any LOB column, nested table, or VARRAY.

PostgreSQL

PostgreSQL supports the ANSI SQL2003 standard, with the exception of the COLLATE option. It also supports the
USING extension:

ORDER BY {sort_expression1 [ASC | DESC | USING operator]} [,...]

where:

USING operator

Specifies a specific comparison operator. Thus, you may sort by >, <, =, >=, <=, and so forth. Ascending
order is the same as specifying USING <, while descending order is the same as USING >.

PostgreSQL sorts NULLs as the highest values. Thus, NULLs will appear at the end when sorting in ascending order, and
at the beginning when sorting in descending order.

SQL Server

SQL Server supports the ANSI standard including the COLLATE option. For example, the following query retrieves
author firstnames from the authors table in the SQL_Latin1 collation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

author firstnames from the authors table in the SQL_Latin1 collation:

SELECT au_fname

FROM authors

ORDER BY au_fname

COLLATE SQL_Latin1_general_cp1_ci_as

SQL Server continues to support the deprecated SQL92 features of the ORDER BY clause, including the ability to specify
ORDER BY columns by their ordinal positions.

By default, SQL Server sorts NULL values higher than all other values.

You should not use TEXT, IMAGE, or NTEXT columns as sort_expressions on SQL Server.

See Also

SELECT

RELEASE SAVEPOINT Statement

The RELEASE SAVEPOINT statement eliminates one or more previously created savepoints in the current transaction.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

RELEASE SAVEPOINT savepoint_name

Keywords

savepoint_name

Represents a named savepoint (or target specification) created earlier in the transaction with the SAVEPOINT
statement. The savepoint_name must be unique within the transaction.

Rules at a Glance

Use the RELEASE SAVEPOINT statement within a transaction to destroy a named savepoint. Any savepoints that were
created after the named savepoint will also be destroyed.

To illustrate the behavior of savepoints, the following example code inserts a few records, creates a savepoint named
first_savepoint, and then releases it:

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1);

SAVEPOINT first_savepoint;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SAVEPOINT first_savepoint;

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('277-27-2777', 'Fudd', 'E.P.', 1);

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('366-36-3636', 'Duck', 'P.J.', 1);

RELEASE SAVEPOINT first_savepoint;

COMMIT;

In this example, the first_savepoint savepoint is destroyed and then all three records are inserted into the authors
table.

In the next example, we perform the same action but with more savepoints:

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1);

SAVEPOINT first_savepoint;

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('277-27-2777', 'Fudd', 'E.P.', 1);

SAVEPOINT second_savepoint;

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('366-36-3636', 'Duck', 'P.J.', 1);

SAVEPOINT third_savepoint;

RELEASE SAVEPOINT second_savepoint;

COMMIT;

In the earlier example, when we release the savepoint called second_savepoint, the database actually releases
second_savepoint and third_savepoint, since third_savepoint was issued after second_savepoint.

Once released, a savepoint name can be reused.

Programming Tips and Gotchas

Issuing either a COMMIT or full ROLLBACK statement will destroy all open savepoints in a transaction. Issuing a
ROLLBACK TO SAVEPOINT statement returns the transaction to its state at the specified savepoint. Thus, any
savepoints declared afterwards are nullified.

DB2

DB2 supports the RELEASE SAVEPOINT statement fully with one optional keyword:

RELEASE [TO] SAVEPOINT savepoint_name

where:

TO

An optional noise word.

MySQL

Not supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Not supported.

Oracle

Not supported.

PostgreSQL

Not supported.

SQL Server

Not supported.

See Also

ROLLBACK
SAVEPOINT

RETURN Statement

The RETURN statement terminates processing within a SQL-invoked function (as opposed to a host-invoked function) or
stored procedure and returns the routine's result value.

Some vendors use RETURNS instead of RETURN (the SQL standard).

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported

PostgreSQL Supported, with limitations

SQL Server Supported

SQL2003 Syntax

RETURN return_parameter_value | NULL

Keywords

return_parameter_value

Represents a value returned by the routine code, and can be any sort of a wide variety of values.

NULL

Terminates the function without returning an actual value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Terminates the function without returning an actual value

Rules at a Glance

Use the RETURN statement within procedural code to terminate processing. For example, you might create a user-
defined function that takes a complex and often-used CASE expression and, when passed a parameter, returns a single,
easy-to-understand expression value.

Programming Tips and Gotchas

Although the RETURN statement is categorized as a separate command within SQL, it is deeply intertwined with the
CREATE FUNCTION and CREATE PROCEDURE statements. Consequently, the RETURN statement is almost always found
embedded in one of these other commands. Check each statement's section in this book, or your vendor
documentation, to get a more complete understanding of each platform's implementation of RETURN within the context
of each statement.

DB2

DB2 uses the RETURN statement to exit a routine and, in a procedure, return any integer value. In a user-defined
function, the RETURN statement returns the actual value that is calculated by the function. DB2 also allows query-based
results to be returned by the statement, as in the following:

RETURN [{expression | NULL | WITH table_name

 (column [,...]) [AS (select_statement)] }] select_statement

where:

expression

Returns a literal or variable to the client or calling program.

NULL

Returns a null value of the datatype defined in the return clause for the calling user-defined function or method.

WITH table_name (column [,...])

Acts as a common table expression (in other words, an ad hoc view) with each column keyword defining a
column of the subsequent select_statement.

AS (select_statement) select_statement

Specifies the record or records to be returned from the function executing the RETURN statement. The number
of columns in the record(s) retrieved by the second select_statement must match the number of columns in the
WITH clause. This clause is not allowed in stored procedures.

If RETURN is used in a procedure, the value of expression must be an integer, but not in a user-defined function. The
NULL and WITH columns AS select_statement clauses can be used with user-defined functions and methods, but not
stored procedures. Here's a simple example of RETURN:

BEGIN

...<some SQL code>...

GOTO ERROR_HANDLER

... <some SQL code>...

SUCCESS: RETURN 0

ERROR_HANDLER: RETURN -200

END

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you need to check the RETURN value of a stored procedure that is called by another stored procedure, use the GET
DIAGNOSTICS statement to find it. Refer to the DB2 documentation for more information on GET DIAGNOSTICS.

MySQL

Not supported. All procedural code in MySQL is written in C or C++. You can use C or C++ programming techniques to
return value(s) to the client.

Oracle

Oracle supports the ANSI standard syntax for RETURN, excluding the NULL keyword. (Oracle does support the return of
a NULL value, just not using the ANSI syntax.) Oracle allows the RETURN clause only in user-defined functions and
user-defined operators. The returned value cannot be a LONG, LONG RAW, or REF datatype in the CREATE OPERATOR
statement. PL/SQL user-defined functions fully support Boolean datatypes internally, but you cannot invoke a Boolean
UDF from a SQL statement. Therefore, just use INT (0 or 1) or VARCHAR2 ('TRUE' or 'FALSE') to hold Boolean values.

This example creates a function. The function returns the value that is stored in the proj_rev variable to the calling
session:

CREATE FUNCTION project_revenue (project IN varchar2)

RETURN NUMBER

AS

 proj_rev NUMBER(10,2);

BEGIN

 SELECT SUM(DECODE(action,'COMPLETED',amount,0) -

 SUM(DECODE(action,'STARTED',amount,0) +

 SUM(DECODE(action,'PAYMENT',amount,0)

 INTO proj_rev

 FROM construction_actions

 WHERE project_name = project;

 RETURN (proj_rev);

END;

PostgreSQL

PostgreSQL supports the ANSI standard syntax for RETURN, excluding the NULL keyword:

RETURNS return_parameter_value | NULL

PostgreSQL allows you to define user-defined functions using either SQL code or C/C++. (PostgreSQL does not
currently allow stored procedures, though you can duplicate their functionality with user-defined functions). For the
purposes of this discussion, we are only interested in SQL functions.

The output allowed by the return_parameter_value may be a base type, complex type, SETOF type, OPAQUE modifier, or
the same as the type of an existing column. The SETOF type modifier is used to return a set of items via the RETURNS
statement, rather than a single data value. The OPAQUE modifier indicates the RETURNS statement does not return a
value. OPAQUE can only be used within triggers.

SQL Server

SQL Server supports the RETURN statement with this syntax:

RETURN [return_integer_value]

The RETURN command is typically used in stored procedures or user-defined functions. The command causes an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The RETURN command is typically used in stored procedures or user-defined functions. The command causes an
immediate and complete exit from the program and, optionally, returns an integer value upon exit. SQL Server
procedures implicitly return a zero value if no RETURN clause is supplied in the procedure definition. Any commands
that follow the RETURN statement are ignored.

The RETURN statement in the following function returns an integer representing the calculated value:

CREATE FUNCTION metric_volume -

 Input dimensions in centimeters.

 (@length decimal(4,1),

 @width decimal(4,1),

 @height decimal(4,1))

RETURNS decimal(12,3) -- Cubic Centimeters.

AS

BEGIN

 RETURN (@length * @width * @height)

END

GO

REVOKE

This example creates a function that returns a calculated value, the metric volume of a space, to the calling session.

See Also

CREATE/ALTER FUNCTION PROCEDURE
CREATE/ALTER TRIGGER

REVOKE Statement

The REVOKE statement takes two main forms. The first form of the statement removes specific statement permissions
from a user, group, or role. The second form of the statement removes access permissions to specific database objects
or resources.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

The SQL2003 syntax for REVOKE takes this general form:

REVOKE { [special_options] | {privilege [,...] | role [,...]} }

ON database_object_name

FROM grantee_name [,...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM grantee_name [,...]

[GRANTED BY {CURRENT_USER | CURRENT_ROLE}]

{CASCADE | RESTRICT}

Keywords

special_options

Allows the use of one of three optional special_options:

GRANT OPTION FOR

Undoes the WITH GRANT OPTION privilege assigned to a user, meaning that the user can no longer
grant privileges to other users on the object but their own privileges on the object are still intact. (This
clause is valid to revoke a privilege, but not to revoke a role.) Refer to the GRANT Statement section for
more details.

HIERARCHY OPTION FOR

Undoes the WITH HIERARCHY OPTION privilege that allows a user to SELECT not only from the named
table, but also all of its subtables. (This clause is valid to revoke a privilege, but not to revoke a role.)

ADMIN OPTION FOR

Undoes the ability to grant a role to other users. (This clause is valid to revoke a privilege, but not to
revoke a role.)

privilege

Revokes privileges for a variety of statements, which may all be combined in any order:

ALL PRIVILEGES

Revokes all privileges currently assigned to the named users and/or for the specified database objects.
Generally not a recommended approach, since it can encourage sloppy coding.

EXECUTE

Revokes the privileges to execute a routine (i.e., a stored procedure, user-defined function, or method).

{SELECT | INSERT | UPDATE | DELETE}

Revokes the specific privilege for a given user on the specified database object, such as a table or view.
You may add a parenthetical list of the columns on a given table where the privilege will be revoked for
SELECT, INSERT, and UPDATE privileges.

REFERENCES

Revokes the user's privilege to create any constraints or assertions referencing the database object as a
parent object. You may add a parenthetical list of the columns on a given table where the privilege will
be revoked.

TRIGGER

Revokes the user's ability to create triggers on the specified tables. As a side effect of the revoke, any
triggers that depend on the privilege are also dropped.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UNDER

Revokes the privilege to create subtypes or typed tables.

USAGE

Revokes privileges to use a domain, user-defined type, character set, collation, or translation.

role

Revokes a specific, pre-defined role from the named grantee identified FROM clause. For example, the database
administrator might want to create a role called Reporter that has read-only access to several tables. When
the role is granted to the user, the user is able to do all of the actions the role may do. See the GRANT
Statement section for more details.

ON database_object_name

Revokes privileges on a specific, predefined database object identified by the database_object_name provided.
SQL2003 does not include support for system privileges but many implementations provide a variation of this
clause to revoke such privileges. (The ON subclause is not used at all when revoking system privileges or roles.)
The database_object_name may be one of the following:

{ [TABLE] object_name | DOMAIN object_name |

 COLLATION object_name |

 CHARACTER SET object_name | TRANSLATION object_name |

 TYPE object_name | [SPECIFIC] {ROUTINE | FUNCTION |

 PROCEDURE | METHOD}

 object_name }

FROM grantee_name

Names the user(s) or role(s) who will lose the specified privilege. The PUBLIC keyword may also be used to
revoke privileges granted to the PUBLIC global user list. Multiple grantees can be listed with a comma between
each.

FROM { CURRENT_USER | CURRENT_ROLE }

Optionally used to specify who granted the privilege to the user in the first place. For example, when using
...FROM CURRENT_USER, the privilege are revoked only if the current user granted the privilege. Otherwise, the
statement would fail. When omitted, CURRENT_USER is the default.

RESTRICT | CASCADE

Limits a revoke operation to only the specified privilege (RESTRICT) or causes the specified privilege and all
dependent privileges to be revoked (CASCADE), and possibly cause objects that depend on the privilege to be
dropped. Note that REVOKE...RESTRICT will fail if dependent privileges exist. The dependent privileges must be
revoked first.

Rules at a Glance

A specific privilege on a specific database object can be revoked for a single user using REVOKE privilege_name ON
object_name FROM grantee_name RESTRICT. A specific privilege on a specific object may be revoked from all users via the
PUBLIC global user list.

When revoking privileges from multiple grantees, simply place a comma between each. You may also revoke privileges
from one or more grantees and the PUBLIC role in a single REVOKE statement. (PUBLIC is described in detail under the
GRANT Statement section. When a grant is issued to PUBLIC, that means everyone has permissions to the object
without the need for a grant specifically to the object.)

When revoking privileges on a table, the privileges may extend to the column level by showing a list of columns
enclosed in parentheses after the table name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enclosed in parentheses after the table name.

Programming Tips and Gotchas

Most of the platforms isolate privileges at the user and role level. (Remember, a role is a group of privileges.) Thus, an
individual user who is assigned two roles may have an individual set of permissions three times. In this situation, you
would have to revoke the user's privileges directly and remove the user from both roles to completely negate their
permissions.

An important aspect about REVOKE (and its sister command GRANT) is that certain elements of the command are
geared toward object-level permissions, while other options of the command are more oriented toward roles or
administrative privileges. Generally, these operations are never combined. The differences in object-level permissions
and administrative privileges are fully explained under each database platform section below. For example, you might
want to revoke certain object-level privileges for a given role (salespeople) or individual user (e_fudd and
prince_edward):

REVOKE SELECT ON TABLE authors FROM salespeople RESTRICT;

REVOKE ALL PRIVILEGES ON TABLE sales FROM e_fudd,

 prince_edward CASCADE;

A lot of table-level privileges can even be assigned down to the column level. Those privileges can be revoked:

REVOKE INSERT(au_id, au_fname, au_lname)

 ON authors FROM e_fudd;

The special option clauses (GRANT OPTION, HIERARCHY OPTION, and ADMIN OPTION) all exist to allow you to revoke
the ability of users to pass privileges or roles on to other users. However, these clauses do not prevent the first group
of users themselves from exercising those privileges. For example, we no longer want anyone in the role manager to
grant their UPDATE privileges to other users:

REVOKE GRANT OPTION FOR UPDATE ON sales FROM manager CASCADE;

You can also remove role privileges from a user with the REVOKE command:

REVOKE manager FROM e_fudd CASCADE;

A common best practice is to keep REVOKE and GRANT statements as self-contained and logical as possible. Under this
practice, you should avoid using the CASCADE and ALL PRIVILEGES clauses because they perform work for you that
may not be immediately evident within the scope of the command.

DB2

DB2 offers a variety of additional options in its implementation of the REVOKE command:

REVOKE { [database_privileges [,...] ON DATABASE] |

[CONTROL ON INDEX index_name] |

[{BIND | CONTROL | EXECUTE} ON PACKAGE package_name] |

[{ALTERIN | CREATEIN | DROPIN} ON SCHEMA schema_name] |

 [PASSTHRU ON SERVER server_name] |

 [EXECUTE ON [SPECIFIC] {FUNCTION | PROCEDURE |

 METHOD} routine_name] |

 [object_privilege [,...] ON [TABLE] object_name] |

 [{ALTER | USAGE} ON SEQUENCE sequence_name] |

 [USE OF TABLESPACE tablespace_name] } }

[FROM [{USER |GROUP}] { grantee_name [,...] |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[FROM [{USER |GROUP}] { grantee_name [,...] |

 group_name [,...] | PUBLIC }]

[RESTRICT]

where:

database_privileges

Revokes one or more privileges that apply to the entire database. The database privileges are:

BINDADD

Grants the authority to create packages.

CONNECT

Grants the authority to access the database. When CONNECT is revoked, all other explicitly granted
privilege still exist, but are disabled until CONNECT privileges are regranted.

CREATETAB

Grants the authority to create tables.

CREATE_NOT_FENCED

Grants the authority to create functions that are not fenced into a specific user process; that is, they
may execute within the database manager's process.

DBADM

Grants the superuser authority, meaning the ability to create any object, fully access any object created
by other users, and grant those privileges to other users.

IMPLICIT_SCHEMA

Grants the authority to implicitly create a schema, though this privilege doesn't impact the ability to
explicitly create a schema or any objects within a schema.

LOAD

Grants the authority to explicitly LOAD a database.

CONTROL ON INDEX index_name

Revokes the privilege to drop an index, once created, of the specified index_name. If you leave off the FROM
clause, the current user context is assumed.

{ BIND | CONTROL | EXECUTE} ON PACKAGE package_name

Revokes the privileges associated with packages. Note that RUN and PROGRAM are acceptable synonyms for
EXECUTE and PACKAGE, respectively. If you leave off the FROM clause, the current user is assumed if all
privileges are user-level (GRANTEETYPE of U) or the current group is assumed if all the privileges are group-
level (GRANTEETYPE of G). If the privileges are a mix of user- and group-level, an error will result. The package
privileges are:

BIND

Grants the authority to bind or rebind the specified package. CONTROL privileges must also be revoked,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Grants the authority to bind or rebind the specified package. CONTROL privileges must also be revoked,
if the grantee has them, to properly remove BIND privileges.

CONTROL

Grants the authority to drop the specified package, as well as the authority to extend privileges to other
grantees.

EXECUTE

Grants the authority to execute a package. Like BIND, CONTROL privileges must also be revoked, if the
grantee has them, to properly remove EXECUTE privileges.

{ ALTERIN | CREATEIN | DROPIN } ON SCHEMA schema_name

Revokes the privileges associated with manipulating a schema (that is, a user-owned set of objects). Unlike
some of the other optional clauses of this DB2 command, the ON SCHEMA syntax requires the FROM clause.
Using this command does not supercede any specific privileges granted within a schema. Thus, you might
revoke privileges on a user or group using the ON SCHEMA clause but the user or group might still be able to do
any number of other activities within that schema because of other grant statements.

ALTERIN

Grants the authority to alter or comment on objects in a schema defined by ON SCHEMA schema_name.

CREATEIN

Grants the authority to create objects in a schema defined by ON SCHEMA schema_name.

DROPIN

Grants the authority to drop objects in the schema defined by ON SCHEMA schema_name.

PASSTHRU ON SERVER server_name

Revokes the privilege to access an external data source of server_name using pass-through mode.

EXECUTE ON

Revokes privileges on an ANSI routine (i.e., a user-defined function, user-defined method, or stored
procedure). The elements of this clause are as follows:

[SPECIFIC] FUNCTION function_name

Specifies that the user loses execution privileges on a specific function. A SPECIFIC function name may be
specified. DB2 also supports functions without names. In this case, FUNCTION [(param [,...])] should be used,
including any and all parameters of the function. If routine_name is not included, the current schema is assumed.
You may substitute an asterisk (*) for a specific function name to revoke from a user the execution privilege
on all functions in the current or specified schema.

PROCEDURE [schema.]procedure_name

Specifies that the user loses execute privileges on all stored procedures in the specified schema, even those
created in the future. If schema is not included, the current schema is assumed. You may substitute an asterisk (
*) for a specific stored procedure name to revoke the execution privilege from a user on all stored procedures
in the current or specified schema.

[SPECIFIC] METHOD method_name

Specifies that the user loses rights to execute all methods of routine_name, even those that have not yet been
created. A SPECIFIC method name may be specified. DB2 also supports methods without names. In this case,
METHOD [(param [,...])] can be used, including any and all parameters of the function. Alternately, the asterisk

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

METHOD [(param [,...])] can be used, including any and all parameters of the function. Alternately, the asterisk
(*) can be used to specify that all types in the schema are revoked from the user.

object_privilege

Revokes privileges for a variety of statements on tables, views, and nicknamed tables or views. These may be
combined in any order:

ALL [PRIVILEGES]

Revokes all privileges currently assigned to the named users and/or for the specified database objects
as a shorthand for every privilege the grantor has available to grant. The PRIVILEGES keyword is
optional. We do not recommended this approach since it can encourage sloppy programming.

ALTER

Revokes the privilege to add or alter columns, constraints, comments, or triggers on a specified table or
view and restricts the ability to change nicknamed column names or datatypes or to change a column
option for a nickname.

CONTROL

Revokes the ability to drop the table or view or execute a RUNSTATS utility against it.

INDEX

Revokes the ability to create an index against a table or an index specification on a nickname.

{SELECT | INSERT | UPDATE | DELETE}

Revokes the specific privilege for a given user on the specified database object, such as a table or view.
You may add a parenthetical list of the columns on a given table where the privilege will be revoked for
the SELECT, INSERT, and UPDATE statements.

REFERENCES

Revokes the user's privilege to create or drop referencing constraints (such as CHECK or FOREIGN KEY)
referencing the database object as a parent object.

{ALTER | USAGE} ON SEQUENCE sequence_name

Revokes privileges on a sequence in an explicit schema or the current schema (USAGE), or the privilege
to execute the ALTER SEQUENCE statement (ALTER).

USE OF TABLESPACE tablespace_name

Revokes the USE privilege on a tablespace. Note that the user might be able to continue to make tables
in the specified tablespace if rights on the tablespace are granted to PUBLIC, or if the user is in a group
(such as DBADM) that also has privileges in the specified tablespace.

FROM { [USER | GROUP]} grantee_name

Names the user or users who will lose the specified privilege. When both a user and group exist with the
same name, use the optional GROUP or USER keywords to control where the privileges will be dropped.
PUBLIC may also be used to revoke privileges granted to the PUBLIC role. Multiple grantees can be
listed with a comma between each.

RESTRICT

Identical to the ANSI usage, except that RESTRICT is required on SCHEMA and FUNCTION privileges.

DB2 supports a number of privileges, as described above, through a specific user. In the following example, the
user emily loses the create table (CREATETAB) privilege:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user emily loses the create table (CREATETAB) privilege:

REVOKE CREATETAB ON DATABASE FROM emily

This revokes the privilege of creating tables from user emily.

The following statement revokes the privilege of creating packages from the group student. The FROM GROUP
clause should always be used when a user and group exist with the same name.

REVOKE BINDADD ON DATABASE FROM GROUP student

The first command in the next example revokes the privilege to drop the index upkcl_auidind from the user
dylan and the group of users called editors, while the second command revokes the tablespace privileges of
the user sam.

REVOKE CONTROL ON INDEX upkcl_auidind

FROM USER dylan, GROUP editors

REVOKE USE OF TABLESPACE futures FROM USER sam

The next example revokes the ability to execute the package publications by both the group editors and the
user jake.

REVOKE EXECUTE

ON PACKAGE publications

FROM GROUP editors, USER jake

REVOKE CREATEIN ON SCHEMA pubs FROM anna

The next example revokes the ability of user anna to create new objects in the schema pubs, while the second
command revokes the privilege to pass through to data source east.

REVOKE PASSTHRU ON SERVER east FROM USER anna

Specific object-level privileges are also easy to grant and revoke. In some cases, you can issue the same
command in several ways, depending upon whether you include a lot of the optional keywords. For example,
the following two commands do the same thing:

REVOKE UPDATE ON employee FROM sam

REVOKE UPDATE ON TABLE employee FROM USER sam

In both of the examples above, the user sam loses the privilege to update the employee table. You can also
combine object-level privileges and users and/or groups in a single command. For example, the following
command revokes all the write privileges (INSERT, UDPATE, DELETE) from the users katie and jake, as well as
from the group editors:

REVOKE INSERT, UPDATE, DELETE ON employee FROM USER katie,

USER jake, GROUP editors

DB2 ships with the PUBLIC group, which includes all users. In addition, there are several levels of system
privileges on a DB2 installation whose privileges cannot be modified:

SYSADM

Issues system administration privileges (the highest level of authority). Users with this level have all
privileges in all databases.

DBADM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Issues database-wide privileges. Users with this level have all privileges in a specific database, though
they cannot execute operations that require administrative access to system resources (such as the
DB2 statement CREATE TABLESPACE).

SYSCTRL

Issues system control privileges without data access privileges. Users with this level have the ability to
create, modify, and drop databases and tablespaces, and are able to halt instances or databases.

SYSMAINT

Issues system control privileges without data access privileges (at a lower level than SYSCTRL). Users
with this level have the ability to update database configuration files, issue backups and restores, and
monitor a database.

Users can be granted and revoked these system-level privileges, but the privileges of the specific scope of each
system-level privilege (system-wide, database-wide, etc.) cannot be altered.

MySQL

The REVOKE statement rolls back permissions previously granted to one or more users. MySQL supports many of the
standard keywords of the ANSI standard. Notable exceptions for support include TRIGGER, EXECUTE, and UNDER.
MySQL also has a nice shortcut to allow global assignment or revocation of privileges. Please refer back to the ANSI
standard description for those elements of the command not described below:

REVOKE [{ ALL [PRIVILEGES] |

 {SELECT | INSERT | UPDATE} [(column_name [,...])] | DELETE |

 REFERENCES [(column_name [,...])] } |

[USAGE] | [{ALTER | CREATE | DROP}] | [FILE] | [INDEX] | [PROCESS] |

 [RELOAD] | [SHUTDOWN] | [CREATE TEMPORARY TABLES] | [LOCK TABLES] |

 [REPLICATION CLIENT] | [REPLICATION SLAVE] | [SHOW DATABASES] |

 [SUPER] }[,...]

ON {table_name | * | *.* | database_name.*}

FROM user_name [,...]

where:

ALL [PRIVILEGES]

Synonymous with ALL PRIVILEGES. On MySQL, this includes all privileges that apply at the level indicated by
the ON clause, except the GRANT OPTION. (This includes privileges like SELECT, INSERT, UPDATE, DELETE, and
others.)

SELECT | INSERT | UPDATE | DELETE

Revokes the ability to read, write, modify, and erase data from tables (and possibly from specific columns of a
table), respectively.

REFERENCES

Unimplemented.

USAGE

Revokes all of a user's privileges.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{ALTER | CREATE | DROP} ON table_name

Revokes the ability to alter, create, or drop tables and other database objects.

FILE

Revokes the ability to load data from or write data to files using the SELECT INTO and LOAD DATA commands.

INDEX

Revokes the ability to create or drop indexes.

PROCESS

Revokes the ability to view running processes using SHOW FULL PROCESSLIST.

RELOAD

Revokes the ability to invoke the FLUSH command.

SHUTDOWN

Revokes usage of the mysqladmin shutdown command to kill the server process.

CREATE TEMPORARY TABLES

Revokes the ability to create temporary tables.

LOCK TABLES

Revokes the use of the MySQL command LOCK TABLES on tables where the user has SELECT privileges.

REPLICATION CLIENT

Revokes the privilege to see metadata about replication slaves and masters.

REPLICATION SLAVE

Revokes the right to read binlogs of a replication master from a replication slave.

SHOW DATABASES

Revokes the privilege to execute the MySQL command SHOW DATABASES.

SUPER

Revokes the user privilege of opening one connection even if the max_connections threshold is reached. Also
revokes from the users the privileges to execute these MySQL commands: CHANGE MASTER, KILL, mysqladmin
debug, PURGE [MASTER] LOGS, and SET GLOBAL.

ON {table_name | * | *.*| database_name.*}

Removes privileges from the specified table_name, from all tables within the current database with * , from all
tables in the specified database_name with database_name.*, or from all tables in all databases with *.*

FROM

Removes the privileges of one or more users, separated by commas. Usernames may also include an
@host_name suffix, if you wish to restrict the revocation to a specific host computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

@host_name suffix, if you wish to restrict the revocation to a specific host computer.

REVOKE has size limitations. Usernames cannot be longer than 16 characters, while host, database, and database
object names can be up to 60 characters in size. Usernames may also be linked to a specific host. Refer to the GRANT
command for more details.

MySQL's implementation of REVOKE does not explicitly roll back permissions on objects
that are dropped. Thus, it is necessary to explicitly REVOKE permissions on a table, even if
the table is dropped. For example, let's say you drop a table without issuing a REVOKE on
the existing permissions. If you later recreate the table, all of the old permissions will still
be in place. Similarly, a user's privileges still persist in the database, even after the user
has been dropped.

It is also important to note that MySQL allows multiple levels of permissions. Thus, a user might have access to a table
from a table-level grant and have an additional set of permissions to the same table because they have been give
global database or server-wide permissions. This means you need to be careful when revoking permissions because
global level permissions might continue to provide permissions to a user when you thought you had revoked them!

The first command shown below revokes all privileges on the sales table for users emily and dylan, while the second
command revokes select privileges for the user kelly in the current database:

REVOKE ALL PRIVILEGES ON sales FROM emily, dylan;

REVOKE SELECT ON * FROM kelly;

The first command below removes kelly's ability to grant privileges to other users on the sales table, while the second
command removes privileges that the user sam has in the pubs database:

REVOKE GRANT OPTION ON sales FROM kelly;

REVOKE ALL ON pubs.* FROM sam;

Oracle

The REVOKE command not only immediately revokes object and system privileges, it also revokes a role from a user
(or a role from another role). Refer to the GRANT statement for more information on the specific object and system
privileges supported by the REVOKE command.

The two forms of the REVOKE command, REVOKE object_privilege and REVOKE
system_privilege, are mutually exclusive. Do not attempt to do both operations in a single
statement. Since the complete syntax for both forms of the command are extremely long,
refer to the GRANT Statement section for more details on the different object_privileges and
system_privileges.

Oracle provides an interesting twist on privileges. While other database platforms typically allow a user to have more
than one context for a set of privileges (based on the individual user and again for any groups that they are a member
of), Oracle takes this one step further. A user may also have many grantors who have given them permission on a
specific object. When this is the case, ALL grantors must revoke the privilege to effectively rid the user of the privilege.
If even one grantor doesn't do this, then the user still has the privilege. Use the following syntax with REVOKE:

REVOKE { [object_privilege] [,...]|

 [system_privilege] |

 [role] }

[ON { [schema_name.][object] |

 [DIRECTORY directory_object_name] |

 [JAVA [{ SOURCE | RESOURCE }] [schema_name.][object] }]

FROM {grantee_name [,...] | role_name [,...] | PUBLIC}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM {grantee_name [,...] | role_name [,...] | PUBLIC}

[CASCADE [CONSTRAINTS]] [FORCE];

where:

object_privilege

Revokes the specified privileges for a given user, grantee_name, or role against the named schema object, for
example, a table or view.

ALL [PRIVILEGES]

Revokes all granted privileges on a named schema object. Since ALL also includes the REFERENCES
privilege, you must include the CASCADE clause (see REFERENCES below).

ALTER

Revokes the privilege to change an existing table using the ALTER TABLE statement.

EXECUTE

Revokes the privilege to execute a stored procedure, user-defined function, or package.

INDEX

Revokes the privilege to create indexes on a table.

REFERENCES

Revokes the privilege to define referential integrity constraints. Requires that the CASCADE
CONSTRAINTS clause also be used.

{ SELECT | INSERT | DELETE | UPDATE}

Revokes the privilege to execute each of the respective SQL commands against the named schema
object. Note that DELETE privileges are dependent on SELECT privileges.

system_privilege

Revokes the specified Oracle system privilege from a given user, grantee_name, or role against the named
system privilege such as CREATE TRIGGER or ALTER USER. Do not use the ON clause with the REVOKE
system_privileges variation of the statement. Because there are so many and varied system privileges, please
refer to the section under Oracle's implementation in the GRANT Statement section for a full list of system
privileges.

role

Revokes a user from the named role or one role from another role.

ON

Revokes the named privilege for a given user or role from the named object. Objects include tables, views,
sequences, stored procedures, user-defined functions, packages, materialized views, user-defined types,
libraries, indextypes, user-defined operators, or a synonym for any of these. If you do not include the schema
name, Oracle assumes the schema of the current user. For example, you could revoke SELECT privileges for a
given user on the scott.authors table. Oracle also supports two additional keywords for special cases:

DIRECTORY directory_object_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Identifies a directory object from which the privileges are revoked.

JAVA [{ SOURCE | RESOURCE }] [schema_name.][object] }

Identifies a Java source or a resource schema object from which the privileges are revoked.

FROM {grantee_name | role_name | PUBLIC}

Names the user or role who will lose the specified privilege. PUBLIC may also be used to revoke privileges
granted to the PUBLIC role. Multiple grantees can be listed with a comma between each.

CASCADE [CONSTRAINTS]

Drops any referential integrity constraints that depend on the privilege being revoked in the first place. This
clause is needed only when the REFERENCES or ALL [PRIVILEGES] clauses are used.

[FORCE]

Required to revoke EXECUTE object privileges on user-defined type objects with type or table dependencies.

Oracle automatically cascades the revocation from the defined grantee_name to all users that received their privileges
from the grantee. In addition, any objects created by the grantee that depend on the privilege (such as stored
procedures, triggers, views, and packages that depend on a SELECT privilege against a certain table) will become
invalid.

Users who are granted the GRANT ANY ROLE system privilege may revoke any role. The REVOKE command can only
revoke privileges specifically granted with the GRANT command, not privileges available through roles or the operating
system. In a case like this, you must use the REVOKE command to drop the privilege from the role. All users assigned
to the role will then lose the privilege.

The following is an example of revoking a role from specific grantee and revoking a system privilege from a role:

REVOKE read-only FROM sarah;

REVOKE CREATE ANY SEQUENCE,

 CREATE ANY DIRECTORY FROM read_only;

Here's an example that revokes a REFERENCES privilege and cascades the revoked privileges:

REVOKE REFERENCES

ON pubs_new_york.emp

FROM dylan

CASCADE CONSTRAINTS;

The following example grants all privileges on a specific table, and then revokes a privilege:

GRANT ALL PRIVILEGES ON emp TO dylan;

REVOKE DELETE, UPDATE ON emp FROM dylan;

PostgreSQL

PostgreSQL offers base-level features of the REVOKE statement, primarily for revoking privileges on specific tables,
views, and sequences. It does not offer the ANSI standard special options like HIERARCY OPTION FOR or ADMIN
OPTION FOR. The syntax is as follows:

REVOKE { [GRANT OPTION FOR] |

privileges [,...] }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

privileges [,...] }

ON {object_name} [,...]

FROM {grantee_name [,...] | PUBLIC | GROUP group_name}

[{CASCADE | RESTRICT}]

where:

GRANT OPTION FOR

Revokes the privilege of a user to grant privileges to other users.

privileges

Revokes privileges for a variety of statements, which may be combined in any order:

ALL PRIVILEGES

A shorthand for every privilege the grantor has available to grant. Revokes all privileges currently
assigned to the named users and/or for the specified database objects. Generally not a recommended
approach, since it can encourage sloppy coding.

{SELECT | INSERT | DELETE | UPDATE}

Revokes the specific privilege for a given user on the specified database object, such as a table or view.
You may add a parenthetical list of the columns on a given table where the privilege will be revoked.

REFERENCES

Revokes the user's privilege to create or drop foreign key constraints that reference the database object
as a parent object.

RULE

Revokes the user's privilege to create or drop a rule on a table or view.

USAGE

Revokes privileges to use a domain, user-defined type, or character set, as opposed to the UNDER
privilege, which controls the ability to create these objects.

FROM grantee_name [,...] | PUBLIC | GROUP group_name

Names the user or role who will lose the specified privilege. PUBLIC may also be used to revoke privileges
granted to the PUBLIC role (a role that implicitly includes all users). Multiple grantees can be listed with a
comma between each.

CASCADE | RESTRICT

Limits a revoke operation to only the specified privilege (RESTRICT) or causes the specified privilege and all
dependent privileges to be revoked (CASCADE). Only used with the GRANT OPTION FOR clause.

PostgreSQL's implementation of REVOKE is relatively straightforward. The only issue to be aware of is that PostgreSQL
treats the term GROUP as a synonym for ROLE. For example, the following removes some privileges from the PUBLIC
group and from the READ-ONLY group:

REVOKE ALL PRIVILEGES ON employee FROM public;

REVOKE SELECT ON jobs FROM read-only;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REVOKE SELECT ON jobs FROM read-only;

PostgreSQL does not support privileges on individual columns within a table or view. In order to work around this
limitation, you can create a view with only the columns in question and GRANT or REVOKE privileges to and from that
view.

When revoking the GRANT OPTION FOR clause, you should pay extra attention to dependencies. If you revoke a user's
privilege with the RESTRICT keyword, the statement will fail if other users depend on the revokee. If you revoke a
user's privilege with the CASCADE keyword, the statement will revoke privileges not only for the revokee, but for all
users that depend on the revokee.

SQL Server

SQL Server implements the REVOKE statement as a means to undo any permission settings for a given user. This is
significant because SQL Server supports an extension statement called DENY which explicity disallows a user from a
specific resource. REVOKE, in SQL Server, can be used to undo permissions granted to a user with GRANT. If you want
to explicitly prevent a user from having a certain privilege, you must use the DENY statement.

SQL Server does not support the HIERARCHY OPTION and ADMIN OPTION clauses of the ANSI standard. Although the
ADMIN OPTION clause is not supported, a couple of administrative privileges (CREATE and BACKUP) are supported in
SQL Server's version of REVOKE. Use the following syntax:

REVOKE [GRANT OPTION FOR]

{ [object_privilege] [,...]|

 [system_privilege] }

[ON [object] [(column [,...])]]|

{TO | FROM} {grantee_name [,...] | role [,...] | PUBLIC | GUEST }

[CASCADE]

[AS {group_name | role_name}]

where:

GRANT OPTION FOR

Revokes the privilege of a user to grant a specific privilege to other users.

object_privilege

Revokes privileges for a variety of statements, which may be combined in any order:

ALL PRIVILEGES

Revokes all privileges currently assigned to the named users and/or for the specified database objects.
We do not recommend this approach, since it can encourage sloppy programming.

{SELECT | INSERT | DELETE | UPDATE}

Revokes the specific privilege for a given user on the specified database object, such as a table or view.
You may add a parenthetical list of the columns on a given table where the privilege will be revoked.

REFERENCES

Revokes the user's privilege to create or drop foreign key constraints that reference the database object
as a parent object.

RULE

Revokes the user's privilege to create or drop a rule on a table or view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Revokes the user's privilege to create or drop a rule on a table or view.

EXECUTE

Revokes privileges to execute a stored procedure, user-defined function, or extended stored procedure.

system_privilege

Revokes the privilege to execute any of the following statements: CREATE DATABASE, CREATE DEFAULT,
CREATE FUNCTION, CREATE PROCEDURE, CREATE RULE, CREATE TABLE, CREATE VIEW, BACKUP DATABASE,
and BACKUP LOG.

ON object [(column [,...])]

Removes the privilege for the user on the named object. If the object is a table or view, you may optionally
revoke privileges on specific columns. You may revoke SELECT, INSERT, UPDATE, DELETE, and REFERENCES
privileges on a table or view. You may revoke only SELECT and UPDATE privileges on the columns of a table or
view. You may revoke EXECUTE privileges on a stored procedure, user-defined function, or extended stored
procedure.

{TO | FROM} grantee_name | role | PUBLIC | GUEST

Names the user or role who will lose the specified privilege. PUBLIC may also be used to revoke privileges
granted to the PUBLIC role (a role that implicitly includes all users). Multiple grantees can be listed with a
comma between each. SQL Server also supports the role known as GUEST, an account used by all users who do
not have a user account in the database.

CASCADE

Revokes privileges on users who received their permissions under the WITH GRANT OPTION clause. Required
when using the GRANT OPTION FOR clause.

AS {group_name | role_name}

Defines the authority by which the privilege is revoked. In certain circumstances, a user may need to
temporarily assume the privileges of a group to revoke the specified privileges. To accommodate this scenario,
you can use the AS clause to assume the authority of a given group.

tHe two forms of the REVOKE command, REVOKE object_privilege and REVOKE system_privilege, are mutually exclusive.
Do not attempt to do both operations in a single statement. The key syntactical difference between them is that you
should not include the ON clause when revoking system privileges. For example, to drop a system privilege:

REVOKE CREATE DATABASE, BACKUP DATABASE FROM dylan, katie

If commands were granted to a user WITH GRANT OPTION enabled, the privilege should be revoked using both WITH
GRANT OPTION and CASCADE together. For example:

REVOKE GRANT OPTION FOR

SELECT, INSERT, UPDATE, DELETE ON titles

TO editors

CASCADE

GO

REVOKE can only be used in the current database. Consequently, the CURRENT_USER and CURRENT_ROLE options in
the ANSI variations are always implied. REVOKE also is used to disable any DENY settings.

SQL Server additionally supports the DENY statement. DENY is syntactically the same as
REVOKE. However, it is conceptually different in that REVOKE neutralizes a user's
privileges, while DENY explicitly prohibits a user's privileges. Use the DENY statement to
keep a user or role from accessing a privilege, even a privilege granted through a role or
an explicit permission.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You must use REVOKE to remove previously granted OR denied privileges. For example, the user kelly took an
extended leave of absence for maternity leave. During that time, her permissions on the employee table where denied.
Now that she's returned, we'll lift the denied privileges:

DENY ALL ON employee TO Kelly

GO

REVOKE ALL ON employee TO Kelly

GO

In this example, the REVOKE command did not remove her privileges; rather, it neutralized the DENY statement.

See Also

GRANT

ROLLBACK Statement

The ROLLBACK statement undoes a transaction to its beginning or to a previously declared SAVEPOINT. ROLLBACK also
closes any open cursors.

Platform Command

DB2 Supported

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Supported, with variations

SQL2003 Syntax

ROLLBACK [WORK]

[AND [NO] CHAIN]

[TO SAVEPOINT savepoint_name]

Keywords

WORK

An optional keyword, but basically just noise.

AND [NO] CHAIN

AND CHAIN tells the DBMS to end the current transaction, but to share the common transaction environment
(such as transaction isolation level) with the next transaction. AND NO CHAIN simply ends the transaction (and
is effectively the same as not including the clause at all).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is effectively the same as not including the clause at all).

TO SAVEPOINT savepoint_name

Allows the transaction to be rolled back to a named savepoint (that is, a partial rollback) rather than rolling
back the entire transaction. The savepoint_name may be a literal expression or a variable. If no savepoint of
savepoint_name is active, the statement will return an error. When the TO SAVEPOINT clause is omitted, all
cursors are closed. When the TO SAVEPOINT clause is included, only the cursors that were open within the
savepoint are closed.

In addition to undoing a single data-manipulation operation such as an INSERT, UPDATE, or DELETE statement (or a
batch of them), the ROLLBACK statement undoes transactions up to the last issued START TRANSACTION, SET
TRANSACTION, or SAVEPOINT statement.

Rules at a Glance

ROLLBACK is used to undo a transaction. It can be used to undo explicitly declared transactions that are started with a
START TRAN statement or implicitly with a transaction-initiating statement. It can also be used to undo implicit
transactions that are started without a START TRAN statement. ROLLBACK is mutually exclusive of the COMMIT
statement.

Most people associate commands like INSERT, UPDATE, and DELETE with the term "transaction." However, transactions
encompass a wide variety of commands. This list of commands varies from platform to platform, but generally includes
any command that alters data or database structures and is logged to the database logging mechanism. According to
the ANSI standard, all SQL statements can be undone with ROLLBACK.

Programming Tips and Gotchas

The most important gotcha to consider is that some database platforms perform automatic and implicit transations,
while others require explicit transactions. If you assume a platform uses one method of transactions over the other, you
may get bitten. Thus, when moving between database platforms, you should follow a standard, preset way of
addressing transactions. We recommend staying with explicit transactions using SET TRAN or START TRAN to begin a
transaction, and COMMIT or ROLLBACK to end a transaction.

DB2

DB2 supports the basic ANSI form of the statement. It does not support the [AND [NO] CHAIN] clause. (Also note that
DB2 does not support the START TRANSACTION statement, so all transactions in DB2 start implicitly.) DB2's ROLLBACK
syntax is as follows:

ROLLBACK [WORK] [TO SAVEPOINT savepoint_name]

A number of DB2 SET statements are not covered by transaction control and, thus, cannot be rolled back. These
include: SET CONNECTION, SET CURRENT DEFAULT TRANSFORM GROUP, SET CURRENT DEGREE, SET CURRENT
EXPLAIN MODE, SET CURRENT EXPLAIN SNAPSHOT, SET CURRENT PACKAGESET, SET CURRENT QUERY
OPTIMIZATION, SET CURRENT REFRESH AGE, SET EVENT MONITOR STATE, SET PASSTHRU, SET PATH, SET SCHEMA,
and SET SERVER OPTION.

DB2 issues an implicit rollback any time a unit of work terminates abnormally.

When a regular (non-savepoint) rollback occurs on DB2, all locks held by the unit of work are released, open cursors
are closed, LOB locators are freed, and in some cases, caching is impacted. When a rollback to savepoint occurs on
DB2, locks and LOB locators are preserved, and dynamically prepared SQL is still valid (though it will have to be parsed
again). Rollback to savepoint involving cursors is a bit more complicated. If a cursor depends on DDL in the savepoint,
it will be marked invalid. If a cursor is referenced in the savepoint but does not contain DDL used by the savepoint, the
cursor will remain open and the cursor pointer will be positioned before the next row. In all other cases, the cursor
remains unaffected.

MySQL

MySQL supports only the simplest rollback mechanism and, even then, you must declare any table you might issue a
ROLLBACK against to be transaction safe. (A transaction safe table is one declared with the InnoDB or BDB property.
Refer to CREATE TABLE for more information.)

ROLLBACK [TO SAVEPOINT savepoint_name]

MySQL allows you to issue transaction control statements like COMMIT or ROLLBACK against non-transaction safe
tables, but it will simply ignore them and autocommit as usual. In the case of ROLLBACK against a non-transaction safe
table, changes will not be rolled back.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

table, changes will not be rolled back.

MySQL, by default, runs in AUTOCOMMIT mode, causing all data modifications to automatically be written to disk. You
can set AUTOCOMMIT off by issuing the command SET AUTOCOMMIT=0. You can also control the autocommit behavior
on a statement-by-statement basis using the BEGIN or BEGIN WORK command:

BEGIN;

SELECT @A:=SUM(salary) FROM employee WHERE job_type=1;

BEGIN WORK;

UPDATE jobs SET summmary=@A WHERE job_type=1;

COMMIT;

MySQL automatically issues an implicit COMMIT upon the completion of any of these statements: ALTER TABLE, BEGIN,
CREATE INDEX, DROP DATABASE, DROP TABLE, RENAME TABLE, and TRUNCATE.

MySQL supports partial rollbacks using savepoints with Version 4.0.14.

Oracle

Oracle supports the ANSI standard form of the ROLLBACK statement with the addition of the FORCE clause:

ROLLBACK [WORK] {[TO [SAVEPOINT] savepoint_name] |

 [FORCE 'text']};

ROLLBACK clears all data modifications made to the current open transaction (or to a specific, existing savepoint). It
also releases all locks held by the transaction, erases all savepoints, undoes all the changes of the current transaction,
and ends the current transaction.

ROLLBACK ... TO SAVEPOINT rolls back just that portion of the transaction after the savepoint, erases all savepoints
that followed, and releases all table- and row-level locks taken after the savepoint. Refer to the SAVEPOINT Statement
section for more information.

Oracle's implementation closely follows the SQL standard with the exception of the FORCE option. ROLLBACK FORCE
rolls back an in-doubt, distributed transaction. You must have the FORCE TRANSACTION privilege to issue a
ROLLBACK...FORCE statement. FORCE cannot be used with TO [SAVEPOINT]. ROLLBACK...FORCE affects the
transaction named in 'text' and not the current transaction, where 'text' must be equal to the local or global transaction
ID of the transaction you want to rollback. (These transactions and their ID names are detailed in the Oracle system
view DBA_2PC_PENDING.)

For example, you might want to roll back your current transaction to the salary_adjustment savepoint. These two
commands are equivalent:

ROLLBACK WORK TO SAVEPOINT salary_adjustment;

ROLLBACK TO salary_adjustment;

In the following example, you roll back an in-doubt distributed transaction:

ROLLBACK FORCE '45.52.67'

PostgreSQL

PostgreSQL supports the basic form of ROLLBACK, but it does not support savepoints.

{ROLLBACK | ABORT} [WORK | TRANSACTION];

ROLLBACK clears all data modifications made to the current open transaction. It will return an error if no transaction is
currently open. PostgreSQL supports both the WORK option and the TRANSACTION option. It does not support rolling
back to a savepoint. PostgreSQL supports ABORT as a synonym of ROLLBACK.

SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

SQL Server supports both the WORK and TRAN keywords. The only difference between them is that the ROLLBACK
WORK statement doesn't allow rolling back of a named transaction or to a specific savepoint.

ROLLBACK { [WORK] | [TRAN[SACTION]

 [transaction_name | savepoint_name]] }

If ROLLBACK is issued alone without the WORK or TRAN keywords, it rolls back all current open transactions.
ROLLBACK normally frees locks, but it does not free locks when rolling back to a savepoint.

SQL Server allows you to name a specific transaction_name in addition to a specific savepoint_name. You may reference
them explicitly, or you may use variables within Transact-SQL.

ROLLBACK TRANSACTION, when issued in a trigger, undoes all data modifications, including those performed by the
trigger, up to the point of the ROLLBACK statement. Nested triggers are not executed if they follow a ROLLBACK within
a trigger; however, any statements within the trigger that follow the rollback are not impacted by the rollback.
ROLLBACK behaves similarly to COMMIT with regard to nesting, resetting the @@TRANCOUNT system variable to zero.
(Refer to the COMMIT Statement section for more information on transaction control within a SQL Server nested
trigger.)

Following is a Transact-SQL batch using COMMIT and ROLLBACK in Microsoft SQL Server. In the example, the code
inserts a record into the sales table. If the insertion fails, the transaction is rolled back; if the insertion succeeds, the
transaction is committed:

BEGIN TRAN -- initializes a transaction

-- the transaction itself

INSERT INTO sales

VALUES('7896','JR3435','Oct 28 1997',25,'Net 60','BU7832')

-- some error-handling in the event of a failure

IF @@ERROR <> 0

BEGIN

 -- raises an error in the event log and skips to the end

 RAISERROR 50000 'Insert of sales record failed'

 ROLLBACK WORK

 GOTO end_of_batch

END

-- the transaction is committed if no errors are detected

COMMIT TRAN

-- the GOTO label that enables the batch to skip to

-- the end without committing

end_of_batch:

GO

SAVEPOINT sales1

See Also

COMMIT
RELEASE SAVEPOINT
SAVEPOINT

SAVEPOINT Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This command breaks a transaction into logical breakpoints. Multiple savepoints may be specified within a single
transaction. The main benefit of the SAVEPOINT command is that transactions may be partially rolled back to a
savepoint marker using the ROLLBACK command.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

SQL Server Supported, with limitations

SQL2003 Syntax

SAVEPOINT savepoint_name

Keywords

SAVEPOINT savepoint_name

Establishes a savepoint named savepoint_name within the current transaction.

Some vendors allow duplicate savepoint names within a transaction, but this is not recommended by the ANSI
standard.

SQL2003 supports the statement RELEASE SAVEPOINT savepoint_name, enabling an existing savepoint to be eliminated.
Refer to the RELEASE SAVEPOINT Statement section for more information about eliminating an existing savepoint.

Rules at a Glance

Savepoints are established within the scope of the entire transaction in which they are defined. Savepoint names should
be unique within their scope. Furthermore, make sure you use BEGIN and COMMIT statements prudently, because
accidentally placing a BEGIN statement too early or a COMMIT statement too late can have a dramatic impact on the
way transactions are written to the database. Always make sure to provide easy-to-understand names for your
savepoints because you'll be referencing them later in your programs.

Programming Tips and Gotchas

Generally, reusing a savepoint name won't produce an error or warning. A duplicate savepoint name will render the
previous savepoint with the same name useless. So be careful when naming savepoints!

When a transaction is initiated, resources (namely, locks) are expended to ensure transactional consistency. Make sure
that your transaction runs to completion as quickly as possible so that the locks are released for others to use.

DB2

DB2 supports a more elaborate version of SAVEPOINT than is specified in the ANSI standard.

SAVEPOINT savepoint_name [UNIQUE]

ON ROLLBACK RETAIN CURSORS [ON ROLLBACK RETAIN LOCKS]

where:

SAVEPOINT savepoint_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SAVEPOINT savepoint_name

Establishes a savepoint named savepoint_name within the current transaction.

UNIQUE

Indicates that the savepoint is intended to be unique and that the savepoint name cannot be reused or
overwritten. (Supported only on DB2 for OS/390.)

ON ROLLBACK RETAIN CURSORS

Specifies that open cursors remain open when rolling back to the savepoint. (More details are given in the
ROLLBACK Statement section.)

ON ROLLBACK RETAIN LOCKS

Specifies that locks are retained when rolling back to the named savepoint. This behavior is the default when
the clause is omitted. (More details are given in the ROLLBACK Statement section.)

An important note about DB2 is that savepoints cannot be nested. An error will occur any time you issue a savepoint
where an active savepoint already exists.

DB2 implicitly releases any savepoints within the transaction if it is committed.

In the following example, we set the sales_processing savepoint without explicitly retaining locks:

SAVEPOINT sales_processing ON ROLLBACK RETAIN CURSORS;

However, since retaining locks is the default, the next example is essentially redundant:

SAVEPOINT sales_processing ON ROLLBACK RETAIN

CURSORS ON ROLLBACK RETAIN LOCKS;

MySQL

Not supported.

Oracle

Oracle fully supports the ANSI implementation.

SAVEPOINT savepoint_name

The following example performs several data modifications, and then rolls back to a savepoint:

INSERT INTO sales

VALUES('7896','JR3435','Oct 28 1997',25,'Net 60','BU7832');

SAVEPOINT after_insert;

UPDATE sales SET terms = 'Net 90'

WHERE sales_id = '7896';

SAVEPOINT after_update;

DELETE sales;

ROLLBACK TO after_insert;

PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostgreSQL

Not supported.

SQL Server

SQL Server does not support the SAVEPOINT command. Instead, it uses the SAVE command:

SAVE TRAN[SACTION] savepoint_name

In addition, rather than declaring the literal name of the savepoint, you can optionally reference a variable containing
the name of the savepoint. If you use a variable, it must be of the CHAR, VARCHAR, NCHAR, or NVARCHAR datatype.

SQL Server allows you to have many different named savepoints in a single transaction. However, be careful. Since SQL
Server supports multiple savepoints in a single transaction, it might appear that SQL Server fully supports nested
savepoints. In fact, it does not. Any time you issue a commit or savepoint in SQL Server, it only commits or rolls back
to the last open savepoint.

When the ROLLBACK TRAN savepoint_name command is executed, SQL Server rolls the transaction back to the specified
savepoint, then continues processing with the next valid Transact-SQL command following the ROLLBACK statement.
Finally, the transaction must ultimately be concluded with a COMMIT or a final ROLLBACK statement.

See Also

COMMIT
ROLLBACK

SELECT Statement

The SELECT statement retrieves rows, columns, and derived values from one or many tables of a database.

Platform Command

DB2
Supported, with variations

(ANSI joins supported)

MySQL
Supported, with variations

(ANSI joins partially supported)

Oracle
Supported, with variations

(ANSI joins supported)

PostgreSQL
Supported, with variations

(ANSI joins partially supported)

SQL Server
Supported, with variations

(ANSI joins supported)

SQL2003 Syntax

The full syntax of the SELECT statement is powerful and complex, but can be broken down into these main clauses:

SELECT [{ALL | DISTINCT}] select_item [AS alias] [,...]

FROM [ONLY | OUTER]

 {table_name [[AS] alias] | view_name [[AS] alias]} [,...]

[[join_type] JOIN join_condition]

[WHERE search_condition] [{AND | OR | NOT} search_condition [...]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[WHERE search_condition] [{AND | OR | NOT} search_condition [...]]

[GROUP BY group_by_expression{group_by_columns | ROLLUP group_by_columns |

 CUBE group_by_columns | GROUPING SETS (grouping_set_list) |

 () | grouping_set , grouping_set_list}

 [HAVING search_condition]]

[ORDER BY {order_expression [ASC | DESC]} [,...]]

Keywords

Each of the keywords shown below, except the select_item clause, is discussed in greater detail in the "Rules at a
Glance" section that follows:

[ALL | DISTINCT] select_item

Retrieves values that compose the query result set. Each select_item may be a literal, an aggregate or scalar
function, a mathematic calculation, a parameter or variable, or a subquery, but a select_item is most commonly
a column from a table or view. A comma must separate each item in a list of such items.

The schema or owner name should be prefixed to a column when extracted from a context outside of the current user.
If the table is owned by another user, then that user must be included in the column reference. For example, assume
the user jake needs to access data in the schema katie:

SELECT emp_id

FROM katie.employee;

You can use the asterisk (*) shorthand to retrieve all columns in every table or view shown in the FROM clause. It's a
good idea to use this shortcut on single-table queries only.

ALL, the default behavior, returns all records that meet the selection criteria. DISTINCT tells the database to filter out
any duplicate records, thus retrieving only one instance out of many identical records.

AS alias

Replaces a column heading (when in the select_item clause) or a table name or view name (when in the FROM
clause) with a shorter heading or name. This clause is especially useful for replacing cryptic or lengthy names
with short, easy to understand names or mnemonics, or when the column is only derived data so you don't end
up with a column called ORA000189x7/0.02. It is also very useful in self-joins and correlated subqueries
where a single query references the same table more than once. When multiple items appear in the select_item
clause or FROM clause, make sure to place the commas after an AS alias clauses. Be careful to always use an
alias uniformly once you introduce it into the query.

FROM table_name

Serves to list all tables and/or views from which the query retrieves data. Separate table and view names using
commas. The FROM clause also allows you to assign aliases to long table/or view names or subqueries using the
AS clause. Using shorter aliases instead of longer table or view names simplifies coding. (Of course, this might
thwart the DBA's carefully planned naming conventions, but the alias only lasts for the duration of the query.
Refer to the following section on "Rules at a Glance.") FROM clauses may contain a subquery (refer to the
SUBQUERY Substatement section).

ONLY

Specifies that only the rows of the named table or view, and no rows in subtables or subviews, will be retrieved
in the result set. When using ONLY, be sure to enclose the table_name or view_name within parentheses. ONLY is
ignored if the table or view has no subtables or subviews.

OUTER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that the rows of the named table or view, along with the rows and columns of any and all subtables or
subviews, will be retrieved in the result set. Columns of the subtables (or subviews) will be appended to the
right, in subtable hierarchy order according to depth of the subtable. In extensive hierarchies, subtables with
common parents are appended in creation order of their types. When using OUTER, be sure to enclose the
table_name or view_name within parentheses. OUTER is ignored if the table or view has no subtables or subviews.

JOIN join_condition

Joins together the result set of the table shown in the FROM clause to another table that shares a meaningful
relationship based on a common set of values. These values are usually contained in columns of the same name
and datatype that appear in both tables being joined. These columns, or possibly a single column from each
table, are called the join key or common key. Most—but not all—of the time, the join key is the primary key of
one table and a foreign key in another table. As long as the data in the columns match, the join can be
performed. (Note that joins can also be performed using the WHERE clause. This technique is sometimes called
a theta join.)

Join_conditions are most commonly depicted in the form:

JOIN table_name2 ON table_name1.column1 <comparison operator>

 table_name2.column2

JOIN table_name3 ON table_name1.columnA <comparison operator>

 table_name3.columnA

[...]

When the comparison_operator is the equal sign (=), a join is said to be an equijoin. However, the comparison operation
could be any acceptable comparison operation like <, >, <=, >=, or even <>.

Use the AND operator to issue a JOIN with multiple conditions. You can also use the OR operator to specify alternate
join conditions.

If an explicit join_type is omitted, then an INNER JOIN is assumed. Note that there are many types of joins, each with
their own rules and behaviors, described in the "Rules at a Glance" (and in more detail in the JOIN Subclause section).
Note that an alternate approach to the join condition, via the USING clause, exists:

USING (column_name [,...])

Acts as an alternative to the ON clause. Instead of describing the conditions of the join, simply provide a
column_name (or column names separated by commas) that appears in both tables. The database then evaluates
the join based on the column (or columns) of column_name that appear in both tables. (The column names must
be identical in both tables.) In the following example, the two queries produce identical results:

SELECT emp_id

FROM employee

LEFT JOIN sales USING (emp_id, region_id);

SELECT emp_id

FROM employee AS e

LEFT JOIN sales AS s

 ON e.emp_id = s.emp_id

 AND e.region_id = s.region_id;

WHERE search_condition

Filters unwanted data from the result set of the query, returning only those records that satisfy the search
conditions. A poorly written WHERE clause can ruin the performance of an otherwise useful SELECT statement,
so the nuances of the WHERE clause must be mastered thoroughly. Search_conditions are syntactically depicted in
the form:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the form:

WHERE [schema.[table_name.]]column operator value

WHERE clauses usually compare the values contained in a column of the table. The values of the column are compared
using an operator of some type (refer to Chapter 2 for more detail). For example, a column might equal (=) a given
value, be greater than (>) a given value, or be BETWEEN a range of values.

WHERE clauses may contain many search conditions concatenated together using the AND or OR Boolean operators.
Parentheses can be used to impact the order of precedence of the search conditions. WHERE clauses can contain
subqueries (refer to the SUBQUERY Substatement section).

GROUP BY group_by_expression

Used in queries that utilize aggregate functions such as AVG, COUNT, COUNT DISTINCT, MAX, MIN, and SUM to
group result sets into the categories you define in the group_by_expression. The group_by_expression of the GROUP
BY clause has an elaborate syntax of its own:

[GROUP BY group_by_expression

where group_by_expression is:

{ (grouping_column [,...]) | ROLLUP (grouping_column [,...]) |

 CUBE (grouping_column [,...]) | GROUPING SETS (grouping_set_list) |

 () | grouping_set , grouping_set_list}

Refer below to the subsection The GROUP BY clause in the "Rules at a Glance" section for examples and more
information on ROLLUP, CUBE, and GROUPING SETS.

HAVING search_condition

Adds search conditions on the results of the GROUP BY clause in a manner similar to the WHERE clause.
HAVING does not affect the rows used to calculate the aggregates. HAVING clauses may contain a subquery.
(Refer to the SUBQUERY Substatement section for more information).

ORDER BY order_expression [ASC | DESC]

Sorts the result set in either ascending (ASC) or descending (DESC) order using the order_expression specified.
The order_expression is a list of columns, separated by commas, that you want to sort by.

Rules at a Glance

Each clause of the SELECT statement has a specific use. Thus, it is possible to speak individually of the FROM clause,
the WHERE clause, the GROUP BY clause, and so forth. You can get more details and examples of SELECT statements
by looking up the entries for each clause of the statement. However, not every query needs every clause. At a
minimum, a query needs a SELECT item list and a FROM clause. Because the SELECT clause is so important and offers
so many options, we've divided "Rules at a Glance" into the following detailed subsections:

Aliases and WHERE clause joins

The JOIN clause

The WHERE clause

The GROUP BY clause

The HAVING clause

The ORDER BY clause

Aliases and WHERE clause joins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Aliases and WHERE clause joins

Columns may need to be prefixed with the database, schema, and table name, particularly when there may be the
same column name in one or more tables of the query. For example, (on an Oracle database) both the jobs table and
scott's employee table contain the job_id column. Note that the following examples join the employee and jobs
table using the WHERE clause:

SELECT scott.employee.emp_id,

 scott.employee.fname,

 scott.employee.lname,

 jobs.job_desc

FROM scott.employee,

 jobs

WHERE scott.employee.job_id = jobs.job_id

ORDER BY scott.employee.fname,

 scott.employee.lname

You can also use aliases to write a query more simply and easily:

SELECT e.emp_id,

 e.fname,

 e.lname,

 j.job_desc

FROM scott.employee AS e,

 jobs AS j

WHERE e.job_id = j.job_id

ORDER BY e.fname,

 e.lname

These two queries also illustrate some important rules about WHERE clause joins:

1. Use commas to separate multiple elements in a select_item list, tables in the FROM clause, and items in the
order_expression.

2. Use the AS clause to define aliases.

3. Use aliases consistently throughout the SELECT statement once you define them.

In general, you should favor the JOIN clause (explained in a moment) over the WHERE clause for describing join
expressions. This not only keeps your code cleaner, making it easy to differentiate join conditions from search
conditions, it also allows you to avoid the possibility of counter-intuitive behavior that results from using the WHERE
clause for outer joins in some implementations.

The JOIN clause

To perform the same query as in the previous example using an ANSI-style join, list the first table and the keyword
JOIN, followed by the table to be joined. Once the second table is typed in, type the keyword ON and the join condition
that would have been used in the old style query. The next example shows the query now in ANSI style.

SELECT e.emp_id, e.fname, e.lname, j.job_desc

FROM scott.employee AS e

JOIN jobs AS j ON e.job_id = j.job_id

ORDER BY e.fname, e.lname;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY e.fname, e.lname;

Alternately, you could use the USING clause. Instead of describing the conditions of the join, simply provide one or
more column_names (separated by commas) that appears in both of the joined tables. The database then evaluates the
join based on the column (or columns) of column_name that appear in both tables. (The column names must be identical
in both tables.) In the following example, the two queries produce identical results, one using the ON clause and one
using the USING clause:

SELECT emp_id

FROM employee

LEFT JOIN sales USING (emp_id, region_id);

SELECT emp_id

FROM employee AS e

LEFT JOIN sales AS s

 ON e.emp_id = s.emp_id

 AND e.region_id = s.region_id;

You can specifiy several different types of joins in ANSI style:

Cross join

Specifies the complete cross product of two tables. For each record in the first table, all the records in the
second table are joined, creating a potentially huge result set. (Of course, the result set would be small if both
tables had only four records each, but imagine if they had four million!) This command has the same effect as
leaving off the join condition and is also known as a "Cartesian Product." We do not recommend using cross
joins.

Inner join

Specifies that unmatched rows in either table of the join should be discarded. If no join type is explicitly defined
in the ANSI style, then this is the default.

Left [outer] join

Specifies that all records be returned from the table on the left side of the join statement. If a record returned
from the left table has no matching record in the table on the right side of the join, it is still returned. Columns
from the right table return NULL values. Many professionals recommend configuring outer joins as left joins
wherever possible for consistency.

Right [outer] join

Specifies that all records be returned from the table on the right side of the join statement, even if the table on
the left has no matching record. Columns from the left table return NULL values.

Full [outer] join

Specifies that all rows from either table be returned, regardless of matching records in the other table. The
result set shows NULL values where no matching data exists in the join.

Not all joins are supported by all platforms, so refer to the JOIN Subclause section for full
details on platform-specific join support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The WHERE clause

A poorly written WHERE clause can ruin an otherwise beautiful SELECT statement, so the nuances of the WHERE clause
must be mastered thoroughly. This is an example of a typical query and a multipart WHERE clause:

SELECT a.au_lname,

 a.au_fname,

 t2.title,

 t2.pubdate

FROM authors a

JOIN titleauthor t1 ON a.au_id = t1.au_id

JOIN titles t2 ON t1.title_id = t2.title_id

WHERE (t2.type = 'business' OR t2.type = 'popular_comp')

 AND t2.advance > 5500

ORDER BY t2.title

In examining this query, the parentheses impact the order of processing for the search conditions. Use parentheses to
move search conditions up or down in precedence just like you would in an algebra equation.

On some platforms, the database's default collation (also known as sort order) impacts
how the WHERE clause filters results for a query. For example, SQL Server is (by default)
dictionary-order and case-insensitive, making no differentiation between "Smith," "smith,"
and "SMITH." But Oracle uses dictionary-order and is case-sensitive, finding the values
"Smith," "smith," and "SMITH" to be unequal.

The WHERE clause offers many more specific capabilities than the preceding example illustrates. The list below
references some of the more common capabilities of the WHERE clause. Refer to the WHERE Clause section for full
details and examples.

NOT

Inverts a comparison operation using the syntax WHERE NOT expression. Thus, you might use WHERE NOT
LIKE... or WHERE NOT IN... in a query.

Comparison operators

Compare any set of values using the operations <, >, <>, >=, <=, and =. For example:

WHERE emp_id = '54123'

IS NULL or IS NOT NULL conditions

Search for any NULL or NOT NULL values using the syntax WHERE expression IS [NOT] NULL.

AND

Merges multiple conditions, returning only those records that meet all conditions, using the AND operator. The
maximum number of multiple conditions is determined by each platform. For example:

WHERE job_id = '12' AND job_status = 'active'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OR

Merges alternative conditions, returning records that meet any of the conditions, using the OR operator. For
example:

WHERE job_id = '13' OR job_status = 'active'

LIKE

Tells the query to use a pattern-matching string contained within quotation marks. The wildcard symbols
supported by each platform are detailed in the LIKE Operator section. All platforms support the percent sign
(%) for a wildcard symbol. For example, to find any phone number starting with the 415 area code:

WHERE phone LIKE '415%'

EXISTS

Used only with subqueries, EXISTS tests to see whether the subquery data exists. It is typically much faster
than WHERE IN subqueries. For example, the following query finds all authors who are also employees:

SELECT au_lname FROM authors WHERE EXISTS (SELECT last_name FROM employees)

BETWEEN

Performs a range check to see if a value is in between two values (inclusive of those two values). For example:

WHERE ytd_sales BETWEEN 4000 AND 9000.

IN

Performs a test to see if an expression matches any one value out of a list of values. The list may be literal, as
in WHERE state IN ('or', 'il','tn','ak'). The list of values may also be derived using a subquery:

WHERE state IN (SELECT state_abbr FROM territories).

SOME | ANY

Functions the same as the EXISTS operation, though with a slightly different syntax. For example, the following
query finds all authors who are also employees:

SELECT au_lname FROM authors WHERE au_lname = SOME(SELECT last_name FROM employees)

ALL

Performs a check to see if all records in the subquery match the evaluation criteria. It returns TRUE when the
subquery returns zero rows. For example:

WHERE city = ALL (SELECT city FROM employees WHERE emp_id = 54123)

The GROUP BY clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The GROUP BY clause

The GROUP BY clause (and the HAVING clause) is needed only in queries that utilize aggregate functions.

The GROUP BY clause is used to report an aggregated value for one or more rows returned by a SELECT statement
based on one or more non-aggregated columns called grouping columns. For example, here is a query that counts up
how many people we hired per year from the year 1999 to 2004:

SELECT hire_year, COUNT(emp_id) AS 'nbr_emps'

FROM employee

WHERE status = 'ACTIVE'

 AND hire_year BETWEEN 1999 AND 2004

GROUP BY hire_year;

The results are:

hire_year nbr_emps

--------- --------

1999 27

2000 17

2001 13

2002 19

2003 20

2004 32

Queries using aggregate functions provide many types of summary information. The most common aggregate functions
include:

AVG

Returns the average of all non-NULL values in the specified column(s).

AVG DISTINCT

Returns the average of all unique, non-NULL values in the specified column(s).

COUNT

Counts the occurrences of all non-NULL values in the specified column(s).

COUNT DISTINCT

Counts the occurrences of all unique, non-NULL values in the specified column(s).

COUNT(*)

Counts every record in the table.

MAX

Returns the highest non-NULL value in the specified column(s).

MIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MIN

Returns the lowest non-NULL value in the specified column(s).

SUM

Totals all non-NULL values in the specified column(s).

SUM DISTINCT

Totals all unique, non-NULL values in the specified column(s).

Some queries that use aggregates return a sole value. Single value aggregates are known as a scalar aggregates.
Scalar aggregates do not need a GROUP BY clause. For example:

--Query

SELECT AVG(price)

FROM titles

--Results

14.77

Queries that return both regular column values and aggregate function values are commonly called vector aggregates.
Vector aggregates use the GROUP BY clause and return one or many rows. There are a few rules to follow when using
GROUP BY:

Place GROUP BY in the proper clause order—after the WHERE clause and before the ORDER BY clause.

Include all non-aggregate columns in the GROUP BY clause.

Do not use a column alias in the GROUP BY clause, though table aliases are acceptable.

For example, let's suppose you need to know the total purchase amount of several purchases, with an Order_Details
table that looks like this:

OrderID ProductID UnitPrice Quantity

----------- ----------- ------------------- --------

10248 11 14.0000 12

10248 42 9.8000 10

10248 72 34.8000 5

10249 14 18.6000 9

10249 51 42.4000 40

10250 41 7.7000 10

10250 51 42.4000 35

10250 65 16.8000 15

...

The following example will give you the results:

SELECT OrderID, SUM(UnitPrice * Quantity) AS 'Order Amt'

FROM order_details

WHERE orderid IN (10248, 10249, 10250)

GROUP BY orderid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP BY orderid

The results are:

OrderID Order Amt

----------- ----------------

10248 440.0000

10249 1863.4000

10250 1813.0000

We could further refine the aggregations by using more than one grouping columns. Considering the following query
retrieving the average price of our products, grouped first by name and then by size:

SELECT name, size, AVG(unit_price) AS 'avg'

FROM product

GROUP BY name, size

The results are:

Name Size avg

------------ ------ -----------------------

Flux Capacitor small 900

P32 Space Modulator small 1400

Transmorgrifier medium 1400

Acme Rocket large 600

Land Speeder large 6500

In addition, the GROUP BY clause supports a number of very important subclauses:

GROUP BY [{ROLLUP | CUBE}] ([grouping_column [,...]]) [, grouping set list]

Groups the aggregate values of the result set by one or more grouping columns. (Without ROLLUP or CUBE, the
GROUP BY (grouping_column [,...]) clause is the most simplest and common form of the GROUP BY clause.)

ROLLUP

Produces subtotals for each set of grouping columns as a hierarchical result set. It adds subtotal and
grand total rows into the result sets in a hierarchical fashion. ROLLUP operations return one row per
grouping column where NULL appears in the grouping column to show the subtotaled or totaled
aggregate value (illustrated in a moment).

CUBE

Produces subtotals and cross-tabulated totals for all grouping columns. In a sense, the CUBE clause
enables you to quickly return multidimensional result sets from standard relational tables without a lot
of programmatic work. CUBE is especially useful when working with large amounts of data. Like
ROLLUP, CUBE provides subtotals of the grouping columns but it also includes subtotal rows for all
possible combinations of the grouping columns specified in the query.

GROUP BY GROUPING SETS [{ROLLUP | CUBE}] ([grouping_column [,...]]) [, grouping set list]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enables aggregated groups on several different sets of grouping columns within the same query. This is
especially useful when you want to return only a portion of an aggregated result set. The GROUPING SETS
clause also lets you select which grouping columns to compare, whereas CUBE returns all of the grouping
columns and ROLLUP returns a hierarchical subset of the grouping columns. As the syntax shows, the ANSI
standard also allows GROUPING SETS to be paired with ROLLUP or CUBE.

Consider the following clauses and the result sets they return, shown in Table 3-3.

Table 3-3. GROUP BY syntax variations
GROUP BY syntax Returns the following sets

GROUP BY (col_A, col_B, col_C) (col_A, col_B, col_C)

GROUP BY ROLLUP (col_A, col_B, col_C)

(col_A, col_B, col_C)

(col_A, col_B)

(col_A)

()

GROUP BY CUBE (col_A, col_B, col_C)

(col_A, col_B, col_C)

(col_A, col_B)

(col_A)

(col_B, col_C)

(col_B)

(col_C)

()

GROUP BY GROUPING SETS

((col_A, col_B),

(col_A, col_C), (col_C))

Subquery:

SELECT *

FROM stores

WHERE stor_id IN

 (SELECT stor_id FROM sales

 WHERE ord_date > '01-JAN-2004')

Each type of GROUP BY clause returns a different set of aggregated values and, in the case of ROLLUP and CUBE, totals
and subtotals.

The concepts of ROLLUP, CUBE, and GROUPING SETS are much more intuitive when explained by example. In the
following example, we query for data summarizing the number of sales_orders by order_year and by
order_quarter:

SELECT order_year AS year, order_quarter AS quarter,

 COUNT (*) AS orders

FROM order_details

WHERE order_year IN (2003, 2004)

GROUP BY ROLLUP (order_year, order_quarter)

ORDER BY order_year, order_quarter;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY order_year, order_quarter;

The results are:

year quarter orders

---- ------- ------

NULL NULL 648 -- the grand total

2003 NULL 380 -- the total for year 2003

2003 1 87

2003 2 77

2003 3 91

2003 4 125

2004 NULL 268 -- the total for year 2004

2004 1 139

2004 2 119

2004 3 10

Adding grouping columns to the query provides more details (and more subtotaling) in the result set. We'll modify the
previous example by adding a region to the query (but since the number of rows increases, we'll only look at the first
and second quarter):

SELECT order_year AS year, order_quarter AS quarter, region,

 COUNT (*) AS orders

FROM order_details

WHERE order_year IN (2003, 2004)

 AND order_quarter IN (1,2)

 AND region IN ('USA', 'CANADA')

GROUP BY ROLLUP (order_year, order_quarter)

ORDER BY order_year, order_quarter;

The results are:

year quarter region orders

---- ------- ------ ------

NULL NULL NULL 183 -- the grand total

2003 NULL NULL 68 -- the subtotal for year 2003

2003 1 NULL 36 -- the subtotal for all regions in q1 of 2003

2003 1 CANADA 3

2003 1 USA 33

2003 2 NULL 32 -- the subtotal for all regions in q2 of 2004

2003 2 CANADA 3

2003 2 USA 29

2004 NULL NULL 115 -- the subtotal for year 2004

2004 1 NULL 57 -- the subtotal for all regions in q1 of 2004

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2004 1 NULL 57 -- the subtotal for all regions in q1 of 2004

2004 1 CANADA 11

2004 1 USA 46

2004 2 NULL 58 -- the subtotal for all regions in q2 of 2004

2004 2 CANADA 4

2004 2 USA 54

The GROUP BY CUBE clause is useful for performing multidimensional analysis on aggregated data. Like GROUP BY
ROLLUP, it returns subtotals. But unlike GROUP BY ROLLUP, it returns subtotals combining all of the grouping columns
named in the query. (As you will see, it also has the potential to increase the number of rows returned in the result
set.)

In the following example, we query for data summarizing the number of sales_orders by order_year and by
order_quarter:

SELECT order_year AS year, order_quarter AS quarter,

 COUNT (*) AS orders

FROM order_details

WHERE order_year IN (2003, 2004)

GROUP BY CUBE (order_year, order_quarter)

ORDER BY order_year, order_quarter;

The results are:

year quarter orders

---- ------- ------

NULL NULL 648 -- the grand total

NULL 1 226 -- the subtotal for q1 of both years

NULL 2 196 -- the subtotal for q2 of both years

NULL 3 101 -- the subtotal for q3 of both years

NULL 4 125 -- the subtotal for q4 of both years

2003 NULL 380 -- the total for year 2003

2003 1 87

2003 2 77

2003 3 91

2003 4 125

2004 NULL 268 -- the total for year 2004

2004 1 139

2004 2 119

2004 3 10

The GROUP BY GROUPING SETS clause lets you aggregate on more than one group in a single query. For each group
set, the query returns subtotals with the grouping column marked as NULL. While the CUBE and ROLLUP clauses place
predefined subtotals into the result set, the GROUPING SETS clause allows you to control what subtotals to add to the
query. The GROUPING SETS clause does not return a grand total.

Using a similar example query to the ones shown with ROLLUP and CUBE, this time we chose to subtotal by year and
quarter and separately by year:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

quarter and separately by year:

SELECT order_year AS year, order_quarter AS quarter, COUNT (*) AS orders

FROM order_details

WHERE order_year IN (2003, 2004)

GROUP BY GROUPING SETS ((order_year, order_quarter), (order_year))

ORDER BY order_year, order_quarter;

The results are:

year quarter orders

---- ------- ------

2003 NULL 380 -- the total for year 2003

2003 1 87

2003 2 77

2003 3 91

2003 4 125

2004 NULL 268 -- the total for year 2004

2004 1 139

2004 2 119

2004 3 10

Another way to think of GROUPING SETS is to consider them to be like a UNION ALL of more than one GROUP BY query
that references different parts of the same data. You can tell the database to add subtotals to a GROUPING SET by
simply adding in the ROLLUP or CUBE clause according to how you would like subtotaling to occur.

GROUPING SETS can also be concatenated to concisely generate large combinations of groupings. Concatenated
GROUPING SETS yield the cross-product of groupings from each of the sets within a GROUPING SET list. Concatenated
GROUPING SETS are compatible with CUBE and ROLLUP. Concatenated GROUPING SETS, since they perform a cross-
product of all GROUPING SETS, will generate a very large number of final groupings from even a small number of
concatenated groupings.

Table 3-4. GROUP BY syntax variations
GROUP BY syntax Returns the following sets

GROUP BY (col_A, col_B, col_C) (col_A, col_B, col_C)

... ...

GROUP GY GROUPING SETS (col_A, col_B) (col_Y, col_Z)

(col_A, col_Y)

(col_A, col_Z)

(col_B, col_Y)

(col_B, col_Z)

In the example in Table 3-4, the concatenated GROUPING SETS yield a large number of final groupings. You can
imaging how large the result set would be if the concatenated GROUPING SETS contained a large number of groupings!
However, the information returned can be very valuable and hard to reproduce.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The HAVING clause

The HAVING clause adds search conditions on the result of the GROUP BY clause. HAVING works very much like the
WHERE clause, but applies to the GROUP BY clause. The HAVING clause supports all the same search conditions as the
WHERE clause shown earlier. For example, using the same query as before, we now want to find only those jobs that
have more than three people:

--Query

SELECT j.job_desc "Job Description",

 COUNT(e.job_id) "Nbr in Job"

FROM employee e

JOIN jobs j ON e.job_id = j.job_id

GROUP BY j.job_desc

HAVING COUNT(e.job_id) > 3

--Results

Job Description Nbr in Job

-- -----------

Acquisitions Manager 4

Managing Editor 4

Marketing Manager 4

Operations Manager 4

Productions Manager 4

Public Relations Manager 4

Publisher 7

Note that the ANSI standard does not require that an explicit GROUP BY clause appear with a HAVING clause. For
example, the following query against the employee table is valid because it has an implied GROUP BY clause:

SELECT COUNT(dept_nbr)

FROM employee

HAVING COUNT(dept_nbr) > 30;

Although the earlier code example is valid, this application for the HAVING clause is rather rare.

The ORDER BY clause

A result set can be sorted through the ORDER BY clause, in accordance with the database's sort order. Each column of
the result set may be sorted in either ascending (ASC) or descending (DESC) order. (Ascending order is the default.) If
no ORDER BY clause is specified, most implementations return the data according to the physical order of data within
the table or according to the order of an index utilized by the query. However, when no ORDER BY clause is specified,
there is no guarantee on the order of the result set. Following is an example of a SELECT statement with an ORDER BY
clause on SQL Server:

SELECT e.emp_id "Emp ID",

 e.fname "First",

 e.lname "Last",

 j.job_desc "Job Desc"

FROM employee e,

 jobs j

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 jobs j

WHERE e.job_id = j.job_id

 AND j.job_desc = 'Acquisitions Manager'

ORDER BY e.fname DESC,

 e.lname ASC

The results are:

Emp ID First Last Job Desc

--------- --------------- --------------- --------------------

MIR38834F Margaret Rancé Acquisitions Manager

MAS70474F Margaret Smith Acquisitions Manager

KJJ92907F Karla Jablonski Acquisitions Manager

GHT50241M Gary Thomas Acquisitions Manager

After the result set is pared down to meet the search conditions, the result set is sorted by the authors' first names in
descending order. Where the authors' first names are equal, the results are sorted in ascending order by last name.

You may write an ORDER BY clause using columns in the table that do not appear in the
select list. For example, you might query all emp_ids from the employee table, yet
ORDER BY the employee's first and last name.

Programming Tips and Gotchas

Once an alias has been assigned to a table or view in the FROM clause, use it exclusively for all other references to that
table or view within the query (in the WHERE clause, for example). Do not mix references to the full table name and the
alias within a single query. You should avoid mixed references for a couple of reasons. First, it is simply inconsistent and
makes code maintenance more difficult. Second, some database platforms return errors on SELECT statements
containing mixed references. (Refer to the SUBQUERY Substatement section for special instructions on aliasing within a
subquery.)

MySQL, PostgreSQL, and SQL Server support certain types of queries that do not need a FROM clause. Use these types
of queries with caution since the ANSI standard requires a FROM clause. Queries without a FROM clause must be
manually migrated to either the ANSI standard form or to a form that also works on the target database. Certain
platforms do not support the ANSI style JOIN clause. Refer to the entry for each clause to fully investigate the varying
degrees of support among the different database vendors for all the options of the SELECT command.

DB2

DB2 supports all of the typical clauses of the ANSI standard SELECT statement, such as WHERE, FROM, GROUP BY,
HAVING, and ORDER BY. DB2 supports all of the subclauses of the GROUP BY clause, including concatenated
GROUPING SETS. Plus, DB2 supplements the most common clauses with its own SELECT INTO clause and FETCH FIRST
clause:

SELECT { [ALL | DISTINCT] } select_item [AS alias] [,...]

[INTO host_variable [,...]]

FROM [ONLY | OUTER] {table_name | view_name | TABLE ({function_name |

 subquery}) [AS alias] [,...] }

[[join type] JOIN table2]

[WHERE search_condition] [{AND | OR | NOT} search_condition [,...]]

[GROUP BY group_by_expression [HAVING search_condition]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[GROUP BY group_by_expression [HAVING search_condition]]

[ORDER BY order_expression [ASC | DESC]]

[FETCH FIRST {n} {ROW | ROWS} ONLY]

where:

INTO host_variable [,...]

Assigns the values returned by the query to the host variable(s). An error will occur if the SELECT statement
returns more than one row in the result set. The values of each select_item are assigned in ordinal position to the
declared host_variables. A warning is given if there are fewer host variables than values returned by the SELECT
statement.

TABLE ({function_name | subquery})

Specifies that the query will return a function result set or the results of a fully declared subquery. When
making a table function call, the column names of the table function specified in the RETURNS clause of the
CREATE FUNCTION statement are analogous the columns of the table. Note that the function call, along with its
parameters and the subquery, must be enclosed in parentheses. For example, the following query takes data
from an international retail web site and returns the conversions between foreign currencies and the U.S. dollar:

SELECT column1

FROM TABLE (curr_conv(CURRENCY, CONVERSION_RATE)) AS data;

GROUP BY group_by_expression

DB2 fully supports the ANSI standard GROUP BY clause, including ROLLUP, CUBE, and GROUPING SETS.

FETCH FIRST {n} {ROW | ROWS} ONLY

Sets a maximum number of rows that will be retrieved by the query. This clause is used to tell the database
that you do not want more than n rows, where n is any positive integer of 1 or greater, regardless of how many
might be retrieved by the database. This can improve performance, since potentially large result sets may be
trimmed to a more manageable size.

DB2 supports four possible join types: INNER, LEFT OUTER, RIGHT OUTER, and FULL OUTER:

INNER JOIN

Retrieves those records of both table1 and table2 where there are matching values in both tables according to
the join condition. Note that the syntax FROM table1, table2 with join conditions in the WHERE clause is
semantically equivalent to an inner join.

LEFT [OUTER] JOIN

Retrieves all records in the leftmost table (i.e., table1) and matching records in the rightmost table (i.e., table2).
If there isn't a matching record in table2, NULL values are substituted for that table's columns. You can use this
type of join to retrieve all the records in a table even when there are no counterparts in the joined table. For
example:

SELECT j.job_id, e.lname

FROM jobs j

LEFT OUTER JOIN employee e ON j.job_id = e.job_id

ORDER BY j.job_id

RIGHT [OUTER] JOIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RIGHT [OUTER] JOIN

Retrieves all records in the rightmost table regardless of whether there is a matching record in the leftmost
table. A right join is the same as a left join, except that the optional table is on the left.

FULL [OUTER] JOIN

Specifies that all rows from both tables be returned, regardless of whether a row from one table
matches a row in the other table. Any columns that have no value in the corresponding joined table are
assigned a NULL value.

DB2 places some restrictions on using an ORDER BY clause or a FETCH FIRST clause in any SELECT statement
used in a subquery. First, a SELECT statement containing an ORDER BY clause or a FETCH FIRST clause must
always be enclosed in parentheses, even when used in a set operation. Second, a SELECT statement containing
an ORDER BY clause or a FETCH FIRST clause will return an error if it is the primary query of a view or a
materialized query table, since views and materialized query tables cannot be inherently ordered.

The FETCH FIRST clause can be used to do some interesting things beyond merely limiting the total number of
records returned by a result set. For example, the following query does not limit the total number of records
returned by the query; instead, it limits only the number of records used in the subquery. In this example, we
will return all the titles of the top 10 employees, based on their salaries:

SELECT jobs.job_desc

FROM jobs

WHERE jobs.job_desc IN

 (SELECT employee.job_desc

 FROM employee

 ORDER BY salary DESC

 FETCH FIRST 10 ROWS ONLY);

In the example above, only the first 10 rows of the employee table will be used, but the parent query might possibly
return any number of rows. Also remember that the ordering in the subquery has no impact on the ordering of the final
result set.

MySQL

MySQL's implementation of SELECT includes partial JOIN support, the INTO clause, the LIMIT clause, and the
PROCEDURE clause. MySQL does not support subqueries prior to Version 4.0.

SELECT [DISTINCT |

 DISTINCTROW | ALL]

 [STRAIGHT_JOIN][{SQL_SMALL_RESULT | SQL_BIG_RESULT}][SQL_BUFFER_RESULT]

 [HIGH_PRIORITY]

select_item AS alias [,...]

[INTO {OUTFILE | DUMPFILE} 'file_name' options]

[FROM table_name AS alias [,...]

 [{ USE INDEX (index1 [,...]) | IGNORE INDEX (index1 [,...]) }]

[join type][JOIN table2] [ON join_condition]

[WHERE search_condition]

[GROUP BY {unsigned_integer | column_name | formula}

 [ASC | DESC] [,...]]

[HAVING search_condition]

[ORDER BY {unsigned_integer | column_name | formula}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[ORDER BY {unsigned_integer | column_name | formula}

 [ASC | DESC] [,...]]

[LIMIT [[offset_position,] number_of_rows]]

[PROCEDURE procedure_name (param [,...])]

[{FOR UPDATE | LOCK IN SHARE MODE}] ;

where:

STRAIGHT_JOIN

Forces the optimizer to join tables in the exact order they appear in the FROM clause.

SQL_SMALL_RESULT | SQL_BIG_RESULT

Tells the optimizer to expect a small or large result set on a GROUP BY clause or a DISTINCT clause,
respectively. MySQL builds a temporary table when a query has a DISTINCT or GROUP BY clause, and these
optional clauses tell MySQL to build a fast temporary table in memory (for SQL_SMALL_RESULT) or a slower,
disk-based temporary table (for SQL_BIG_RESULT) to process the worktable.

SQL_BUFFER_RESULT

Forces the result set into a temporary table so that MySQL can free table locks earlier and speed the result set
to the client.

HIGH_PRIORITY

Gives the query a higher priority than statements that modify data within the table. This should be used only for
special, high-speed queries.

select_item

Retrieves the expressions or columns listed. Columns may be in the format [database_name.]
[table_name.]column_name. If the database or table names are left out, then MySQL assumes the current
database and table.

FROM ... USE INDEX | IGNORE INDEX

Indicates the table from which rows will be retrieved. The table may be described as [database_name.]
[table_name]. MySQL will treat the query as a join if more than one table appears in the FROM clause. The
optional FORCE INDEX and USE INDEX (index1, index2, ...), and IGNORE INDEX (index1, index2, ...) clauses
enable you to tell MySQL to use or ignore specific indexes on a table, respectively.

INTO {OUTFILE | DUMPFILE}'file_name'

Writes the result set of the query to a file named 'file_name' on the host filesystem with the OUTPUT option. The
file_name must not already exist. The DUMPFILE option writes a single continuous line of data without column
terminations, line terminations, or escape characters. This option is used mostly for BLOB files. Specific rules for
using this clause are detailed below.

LIMIT [[offset_position,] number_of_rows]

Constrains the number of rows returned by the query, starting at the offset_position and returning
number_of_rows. If only one integer is supplied, then the specified number of records is returned, and a default
offset (or starting position) of zero is assumed.

PROCEDURE procedure_name (param [,...])

Names a procedure that processes the data in the result set. The procedure is an external procedure, usually
C++, not an internal database stored procedure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C++, not an internal database stored procedure.

{FOR UPDATE | LOCK IN SHARE MODE}

Issues either a write lock on the rows returned by the query (FOR UPDATE) for its exclusive use (provided the
table is of InnoDB or BDB type) or issues read locks on the rows returned by the query (LOCK IN SHARE) such
that other users may see the rows, but may not modify them.

Keep a couple of rules in mind when using the INTO clause. First, the output file cannot already exist since overwrite
functionality is not supported. Second, any file created by the query will be readable by everyone that can connect to
the server. (When using SELECT...INTO OUTFILE, you can then turn around and use the MySQL command LOAD DATA
INFILE to quickly load the data.)

You can use the following options to better control the content of the output file when using SELECT...INTO OUTFILE:

ESCAPED BY

FIELDS TERMINATED BY

LINES TERMINATED BY

OPTIONALLY ENCLOSED BY

The following example illustrates the use of these optional commands via a MySQL query that returns a result set in a
comma-delimited output file:

SELECT job_id, emp_id, lname+fname

INTO OUTFILE "/tmp/employees.text"

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

LINES TERMINATED BY "\n"

FROM employee;

MySQL also allows SELECT statements without a FROM clause when performing simple arithmetic. For example, the
following queries are valid on MySQL:

SELECT 2 + 2;

SELECT 565 - 200;

SELECT (365 * 2) * 52;

MySQL is very fluid in the way it supports joins. You can use several different syntaxes to perform a join. For example,
you can explicitly declare a join in a query using the JOIN clause, but then show the join condition in the WHERE clause.
The other platforms force you to pick one method or the other and do not allow you to mix them in a single query.
However, we think it's bad practice to mix methods, so our examples use ANSI JOIN syntax.

MySQL supports the following types of JOIN syntax:

FROM table1, table2

FROM table1 {

 [CROSS] JOIN table2 |

 STRAIGHT_JOIN table2 |

 INNER JOIN table2 [{ON join_condition |

 USING (column_list)}] |

 LEFT [OUTER] JOIN table2 {ON join_condition |

 USING (column_list)} |

 NATURAL [LEFT [OUTER]] JOIN table2 |

 RIGHT [OUTER] JOIN table2 [{ON join_condition |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RIGHT [OUTER] JOIN table2 [{ON join_condition |

 USING (column_list)}]|

 NATURAL [RIGHT [OUTER]] JOIN table2 }

where:

[CROSS] JOIN table2

Retrieves all records from both table1 and table2. Refer to the JOIN Subclause section on "Joins" for more
information.

STRAIGHT_JOIN table2

Retrieves all records of both table1 and table2 as any other JOIN statement would, with some special behavior.
Normally, MySQL evaluates the table order of a join operation based on choices made by the query optimizer.
However, the optimizer can occasionally choose an ineffective table order. The STRAIGHT_JOIN keyword forces
the optimizer to evaluate the tables in the order listed in the query.

INNER JOIN

Retrieves those records of both table1 and table2 where there are matching values in both tables according to
the join condition. Note that the syntax FROM table1, table2 is semantically equivalent to an inner join. When
using FROM table1, table2, be sure include the join condition(s) in the WHERE clause.

NATURAL

Shortcuts the need to declare a join condition by assuming a USING clause that names all columns that exist in
both tables. (An example of the USING clause appears later.)

LEFT [OUTER] JOIN

Retrieves all records in the leftmost table (i.e., table1) and matching records in the rightmost table (i.e., table2).
If there isn't a matching record in table2, NULL values are substituted for that table's columns. You can use this
type of join to retrieve all records in a table even when there are no counterparts in the joined table.

RIGHT [OUTER] JOIN

Retrieves all records in the rightmost table regardless of whether there is a matching record in the leftmost
table. A RIGHT JOIN is nothing more than a LEFT JOIN written from the opposite direction. As a best practice,
write all outer join queries as either LEFT or RIGHT OUTER JOIN queries, but do not use both types, since they
require a shift in thinking to understand at first glance.

MySQL offers an interesting alternative to the ANSI SQL standard for querying tables — the HANDLER statement. The
HANDLER statement works a lot like SELECT, except that HANDLER provides very rapid data reads that circumvent the
SQL query engine in MySQL. However, since the HANDLER statement is not a SQL statement, refer to the MySQL
documentation for more information.

Oracle

Oracle allows a very large number of extensions to the ANSI SELECT statement. For example, since both nested tables
and partitioned tables are allowed in Oracle (see CREATE TABLE), the SELECT statement allows queries to those types
of structures.

[WITH query_name AS (subquery) [,...]]

SELECT { {[ALL | DISTINCT]} | [UNIQUE]} [optimizer_hints]

 select_item [AS alias] [,...]

[INTO {variable [,...] | record}]

FROM {[ONLY] {[schema.][table_name| view_name |

 materialized_view_name]}[@database_link]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 materialized_view_name]}[@database_link]

 [AS [OF] {SCN | TIMESTAMP} expression] |

 subquery [WITH

 {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}] |

 [[VERSIONS BETWEEN {SCN | TIMESTAMP} {exp | MINVALUE AND

 {exp | MAXVALUE}] AS OF {SCN | TIMESTAMP} expression] |

 TABLE (nested_table_column) [(+)]

 {[PARTITION (partition_name) |

 SUBPARTITION (subpartition_name)]}

 [SAMPLE [BLOCK] [sample_percentage] [SEED (seed_value)]} [AS alias]

 [,...]

[[join_type] JOIN join_condition [PARTITION BY expression [,...]]]

[WHERE search_condition]

 [{AND | OR} search_condition [,...]]

 [[START WITH value] CONNECT BY [PRIOR] condition]]

[GROUP BY group_by_expression [HAVING search_condition]]

[MODEL model_clause]

[ORDER [SIBLINGS] BY order_expression {[ASC | DESC]}

 {[NULLS FIRST | NULLS LAST]}]

[FOR UPDATE [OF [schema.][table.]column] [,...]

 {[NOWAIT | WAIT (integer)]}]

Unless otherwise noted, the clauses shown above follow the ANSI standard. Similarly, elements of the clauses are
identical to the ANSI standard unless otherwise noted. For example, Oracle's GROUP BY clause is nearly identical to the
ANSI standard, including its component elements like ROLLUP, CUBE, GROUPING SETS, concatenated GROUPING SETS,
and the HAVING clause.

WITH query_name AS (subquery) [,...]

References a named query. Oracle allows you to assign names to subqueries. You can then reference the
subquery in multiple places by specifying only its name. (Oracle optimizes this process by treating the subquery
as a nested table subquery or a temporary table.)

ALL | DISTINCT | UNIQUE

ALL and DISTINCT are identical to the ANSI ALL and DISTINCT clauses (see the ANSI SQL syntax earlier).
UNIQUE is a synonym for DISTINCT. DISTINCT cannot be used on LOB columns.

optimizer_hint

Overrides the default behavior of the query optimizer with user-specified behaviors. For example, hints can
force Oracle to use an index that it might not otherwise use or to avoid an index that it might otherwise use.
Refer to the vendor documentation for more information about optimizer hints.

select_item

May be an expression or a column from a named query, table, view, or materialized view in the format
[schema.][table_name.] column_name. If you omit the schema, Oracle assumes the context of the current schema.
Oracle also allows for named queries (explained under the WITH keyword above) that may be referenced much
like a nested table subquery (refer to the SUBQUERY Substatement section). Oracle refers to named queries as
subquery factoring. In addition to named queries, Oracle also supports subqueries and the asterisk (*),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subquery factoring. In addition to named queries, Oracle also supports subqueries and the asterisk (*),
shorthand for all columns, in the select_item list.

INTO {variable [, ...] | record}

Retrieves the result set values into PL/SQL variables or into a PL/SQL record.

FROM [ONLY]

Identifies the table, view, materialized view, partition, or subquery from which the result set is retrieved. The
ONLY keyword is optional and only applies to views belonging to a hierarchy. Use ONLY when you want to
retrieve records from a named view only, and not from any of its subviews.

AS [OF] {SCN | TIMESTAMP} expression

Implements SQL-driven flashback whereby system change numbers (or timestamps) are applied to each object
in the select_list. Records retrieved by the query are only those that existed at the specific system change
number (SCN) or time. (This feature can also be implemented at a session-level using the DBMS_FLASHBACK
built-in package.) SCN expression must equal a number while TIMESTAMP expression must equal a timestamp
value. Flashback queries cannot be used on linked servers.

subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}]

Mentioned separately because Oracle allows you extra ways to control a subquery. WITH READ ONLY indicates
that the target of the subquery cannot be updated. WITH CHECK OPTION indicates any update to the target of
the subquery must produce rows that would be included in the subquery. WITH CONSTRAINT creates a CHECK
OPTION constraint of constraint_name on the table. Note that WITH CHECK OPTION and WITH CONSTRAINT are
usually used in INSERT...SELECT statements.

VERSIONS BETWEEN {SCN | TIMESTAMP} {exp | MINVALUE AND {exp | MAXVALUE}] AS OF {SCN | TIMESTAMP}
expression]

Specifies a special kind of query using a flashback_query_clause to retrieve the history of changes made to data
from a table, view, or materialized view. The VERSIONS_XID pseudocolumn shows the identifier corresponding
to the transaction that made the change. A flashback_query_clause requires that you specify an SCN (system
change number) or a TIMESTAMP value for each object in the select_item list. (Implement SQL-driven session-
level flashback using the Oracle DBMS_FLASHBACK package.)

The optional subclause VERSIONS BETWEEN is used to retrieve multiple versions of the data specified, using either an
upper and lower boundary of an SCN (a number) or TIMESTAMP (a timestamp value), or by using the MINVALUE and
MAXVALUE keywords. Without this clause, only one past version of the data is returned. (Oracle also provides several
version query pseudocolumns for additional versioning information.)

The AS OF clause, discussed earlier in this list, determines the SCN or moment in time from which the database issues
the query when used with the VERSIONS clause.

You cannot use flashback queries with the VERSIONS clause against temporary tables, external tables, tables in a
cluster, or views.

TABLE

Required when querying a hierarchically declared nested table.

PARTITION

Restricts a query to the specified partition of the table. In essence, rows are retrieved only from the named
partition, not the entire table.

SUBPARTITION

Restricts a query to the specified subpartition of the table. I/O is reduced because the rows are retrieved only
from the named subpartition instead of the entire table.

SAMPLE [BLOCK] [sampling_percentage] [SEED (seed_value)]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells Oracle to select records from a random sampling of rows, as either a percentage of rows or blocks, within
the result set rather than from the entire table. BLOCK tells Oracle to use block sampling rather than row
sampling. The sampling percentage, telling Oracle the total block or row percentage to be included in the
sample, may be anywhere between .000001 and 99. The optional SEED clause is used to provide limited
repeatability. By specifying a seed value, Oracle will attempt to return the same sample from one execution of
the query to the next. The seed value can be between 0 and 4294967295. When SEED is omitted, the resulting
sample will change from one execution of the query to the next. Sampling may be used only on single-table
queries.

JOIN

Merges the result sets of two or more tables in a single query. Described in detail below.

PARTITION BY expression [,...]

Defines a special kind of query called a partitioned_outer_join that extends the conventional outer join syntax by
applying a right or left outer join to a partition of one or more rows specified by the expression. This is especially
useful for querying sparse data along a particular dimension of data thereby returning rows that otherwise
would be omitted from the result set. For an example, see the "Oracle" subsection under JOIN Subclause. The
PARTITION BY clause can be used on either side of an outer join, resulting in a UNION of the outer joins of each
of the partitions in the partitioned result set and the table on the other side of the join. (When this clause is
omitted, Oracle treats the entire result set as a single partition.) PARTITION BY is not allowed with FULL OUTER
JOIN.

WHERE ... [[START WITH value] CONNECT BY [PRIOR] condition]

Filters records returned in the result set. Oracle allows the use of hierarchical information within tables, whose
filtering can be controlled with the START WITH clause. START WITH identifies the rows that will serve as the
parent rows in the result set. CONNECT BY identifies the relationship condition between the parent rows and
their child rows. The PRIOR keyword is used to identify the parent rows instead of the child rows.

Hierarchical queries use the LEVEL pseudocolumn to identify the root node (1), the child nodes (2), the grandchild
nodes (3), and so forth. Other pseudocolumns available in hierarchical queries are CONNECT_BY_ISCYCLE and
CONNECT_BY_ISLEAF. Hierarchical queries are mutually exclusive of the ORDER BY and GROUP BY clauses. Do not use
those clauses in a query containing START WITH or CONNECT BY. You can order records from siblings of the same
parent table by using the ORDER SIBLINGS BY clause.

ORDER [SIBLINGS] BY order_expression {NULLS FIRST | NULLS LAST]}

Sorts the result set of the query in order of order_expression. The order_expression may be the column names,
their aliases, or integers indicating their ordinal position. The ORDER SIBLINGS BY clause is used when
querying hierarchical tables with the CONNECT BY clause. ORDER SIBLINGS BY tells Oracle to preserve any
ordering specified in the CONNECT BY clause and applies the ordering only to siblings (i.e., rows of equal level
in the hierarchy). NULLS FIRST and NULLS LAST specify that the records containing NULLs should appear either
first or last, respectively.

FOR UPDATE [OF [schema.]...

Locks the rows of the result set so that other users cannot lock or update them until you're finished with your
transaction. FOR UPDATE cannot be used in a subquery, in queries using DISTINCT or GROUP BY, or in queries
with set operators or aggregate functions. Child rows in a hierarchical table are not locked when issued against
the parent rows. The OF keyword is used to lock only the selected table or view. Otherwise, Oracle locks all the
tables or views referenced in the FROM clause. When using OF, the columns are not significant, though real
column names and not aliases must be used. The NOWAIT and WAIT keywords tell Oracle to either return
control immediately if a lock already exists or to wait integer seconds before returning control to you,
respectively. If neither NOWAIT nor WAIT is specified, Oracle waits until the rows become available.

Unlike some other database platforms, Oracle does not allow a SELECT statement without a FROM clause. The following
query, for example, is invalid:

SELECT 2 + 2;

In order to work around this, Oracle has provided a special-purpose table called dual. Any time you want to write a
query that does not retrieve data from a user-created table, such as to perform a calculation, use FROM dual. All of the
following queries are valid:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following queries are valid:

SELECT 2 + 2

FROM dual;

SELECT (((52-4) * 5) * 8)

FROM dual;

Oracle's implementation of SELECT is quite straightforward if you want to retrieve data from a table. For example,
Oracle allows the use of named queries. A named query is, in a sense, an alias to an entire query that can save you
time when writing a complex multi-subquery SELECT statement. For example:

WITH pub_costs AS

 (SELECT pub_id, SUM(job_lvl) dept_total

 FROM employees e

 GROUP BY pub_id),

avg_costs AS

 (SELECT SUM(dept_total)/COUNT(*) avg

 FROM employee)

SELECT * FROM pub_costs

WHERE dept_total > (SELECT avg FROM avg_cost)

ORDER BY department_name;

In this example, we create two named subqueries — pub_costs and avg_costs — which are later referenced in the
main query. The named queries are effectively the same as subqueries; however, subqueries must be written out in
their entirety each time they're used while named queries need not.

Oracle allows you to select rows from a single partition of a partitioned table (using the PARTITION clause) or to
retrieve only a statistical sampling of the rows, as a percentage of rows or blocks, of a results set using SAMPLE. For
example:

SELECT *

FROM sales PARTITION (sales_2004_q3) sales

WHERE sales.qty > 1000;

SELECT *

FROM sales SAMPLE (12);

Flashback queries are a feature of Oracle that enable retrieval of point-in-time result sets. For example, you could find
out what everyone's salary was yesterday before a big change was applied to the database:

SELECT job_lvl, lname, fname

FROM employee

 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY);

Another interesting Oracle extension of the standard query format is the hierarchic query. Hierarchic queries return the
results of queries against hierarchically designed tables in the order you define. For example, the following query
returns the names of the employees, their position in the hierarchy (represented by the position in the org_char
column), the employee ID, the manager ID, and their job ID:

SELECT LPAD(' ',2*(LEVEL-1)) || lname AS org_chart,

 emp_id, mgr_id, job_id

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 emp_id, mgr_id, job_id

FROM employee

START WITH job_id = 'Chief Executive Officer'

CONNECT BY PRIOR emp_id = mgr_id;

ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID

-------------- ----------- ---------- ------------------------

Cramer 101 100 Chief Executive Officer

 Devon 108 101 Business Operations Mgr

 Thomas 109 108 Acquisitions Manager

 Koskitalo 110 108 Productions Manager

 Tonini 111 108 Operations Manager

 Whalen 200 101 Admin Assistant

 Chang 203 101 Chief Financial Officer

 Gietz 206 203 Comptroller

Buchanan 102 101 VP Sales

 Callahan 103 102 Marketing Manager

In the previous query, the CONNECT BY clause defines the hierarchical relationship of the emp_id value as the parent
row equal to the mgr_id value in the child row, while the START WITH clause specifies where in the hierarchy the
result set should begin.

Oracle supports the following types of JOIN syntax (refer to the JOIN Subclause section for more details):

FROM table1 {

 CROSS JOIN table2 |

 INNER JOIN table2 [{ON join_condition |

 USING (column_list)}] |

 LEFT [OUTER] JOIN table2 [{ON join_condition

 | USING (column_list)}] |

 NATURAL [LEFT [OUTER]] JOIN table2 |

 RIGHT [OUTER] JOIN table2 [{ON join_condition

 | USING (column_list)}]|

 NATURAL [RIGHT [OUTER]] JOIN table2

 FULL [OUTER] JOIN table2 }

[CROSS] JOIN

Retrieves all records of both table1 and table2. This is syntactically the same as FROM table1, table2 with no join
conditions in the WHERE clause.

INNER JOIN

Retrieves those records of both table1 and table2 where there are matching values in both tables according to
the join condition. Note that the syntax FROM table1, table2 with join conditions in the WHERE clause is
semantically equivalent to an inner join.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

semantically equivalent to an inner join.

NATURAL

Shortcuts the need to declare a join condition by assuming a USING clause containing all columns that are in
common between the two joined tables. (Be careful if columns have the same name but not the same datatype
or the same sort of values!) LOB columns cannot be referenced in a natural join. Referencing a LOB or
collection column in a NATURAL JOIN will return an error.

LEFT [OUTER] JOIN

Retrieves all records in the leftmost table (i.e., table1) and matching records in the rightmost table (i.e., table2).
If there isn't a matching record in table2, NULL values are substituted for that table's columns. You can use this
type of join to retrieve all the records in a table, even when there are no counterparts in the joined table. For
example:

SELECT j.job_id, e.lname

FROM jobs j

LEFT OUTER JOIN employee e ON j.job_id = e.job_id

ORDER BY d.job_id

RIGHT [OUTER] JOIN

Retrieves all records in the rightmost table regardless of whether there is a matching record in the leftmost
table. A right join is the same as a left join, except that the optional table is on the left.

FULL [OUTER] JOIN

Specifies that all rows from both tables be returned, regardless of whether a row from one table matches a row
in the other table. Any columns that have no value in the corresponding joined table are assigned a NULL value.

ON join_condition

Declares the condition(s) that join the result set of two tables together. This takes the form of declaring the
columns in table1 and table2 that must match the join condition. When multiple columns must be compared, use
the AND clause.

USING (column_list)

Acts as an alternative to the ON clause. Instead of describing the conditions of the join, simply provide a column
name (or columns separated by commas) that appears in both tables. The column names must be identical in
both tables and cannot be prefixed with a table name or alias. USING cannot be used on LOB columns of any
type. The following two queries produce identical results. One is written with a USING clause and the other
specifies join conditions using ANSI syntax:

SELECT column1

FROM foo

LEFT JOIN poo USING (column1, column2);

SELECT column1

FROM foo

LEFT JOIN poo ON foo.column1 = poo.column1

AND foo.column2 = poo.column2;

Note that older Oracle syntax for joins centered around the WHERE clause and outer joins were described using a (+)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that older Oracle syntax for joins centered around the WHERE clause and outer joins were described using a (+)
marker. ANSI join syntax only became available with Oracle 9i Release 1. Therefore, you will often see existing code
using the old syntax. For example, the following query is semantically equivalent to the earlier example of a left outer
join.

SELECT j.job_id, e.lname

FROM jobs j, employee e

WHERE j.job_id = e.job_id (+)

ORDER BY d.job_id

This older syntax is sometimes problematic and more difficult to read. You are strongly advised to use the ANSI
standard syntax.

Partitioned outer joins

Partitioned outer joins are useful for retrieving sparse data that might otherwise not be easily seen in a result set. (The
ANSI standard describes partitioned outer joins, but Oracle is the first to support them.) For example, our product
table keeps track of all products we produce, while the manufacturing table shows when we produce them. Since
we're not continuously making every product at all times, the joined data between the two tables may be sparse at
times:

SELECT manufacturing.time_id AS time, product_name AS name,

 quantity AS qty

FROM product

PARTITION BY (product_name)

RIGHT OUTER JOIN times ON (manufacturing.time_id =

 product.time_id)

WHERE manufacturing.time_id

 BETWEEN TO_DATE('01/10/05', 'DD/MM/YY')

 AND TO_DATE('06/10/05', 'DD/MM/YY')

ORDER BY 2, 1;

returns the following:

time name qty

--------- ---------- ----------

01-OCT-05 flux capacitor 10

02-OCT-05 flux capacitor

03-OCT-05 flux capacitor

04-OCT-05 flux capacitor

05-OCT-05 flux capacitor

06-OCT-05 flux capacitor 10

06-OCT-05 flux capacitor 8

01-OCT-05 transmorgrifier 10

01-OCT-05 transmorgrifier 15

02-OCT-05 transmorgrifier

03-OCT-05 transmorgrifier

04-OCT-05 transmorgrifier 10

04-OCT-05 transmorgrifier 11

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

04-OCT-05 transmorgrifier 11

05-OCT-05 transmorgrifier

06-OCT-05 transmorgrifier

The example query and result set show that partitioned outer joins are useful for retrieving result sets that might
otherwise be hard to query due to sparse data.

Flashback queries

Oracle 10g also supports flashback queries — queries that keep track of previous values of the result requested by the
SELECT statement. In the following set of example code, we'll issue a regular query on a table, change the values in the
table with an UPDATE statement, and then query the flashback version of the data. First, the regular query:

SELECT salary FROM employees

WHERE last_name = 'McCreary';

The results are:

SALARY

3800

Now, we'll change the value in the employees table and query the table to confirm the current value:

UPDATE employees SET salary = 4000

WHERE last_name = 'McCreary ';

SELECT salary FROM employees

WHERE last_name = 'McCreary ';

The results are:

SALARY

4000

Finally, we'll perform a flashback query to see what the salary value was in the past:

SELECT salary FROM employees

AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY)

WHERE last_name = 'McCreary';

The results are:

SALARY

3800

If we wanted to be more elaborate, we could find out all of the values of salary for a given time period, say, the last

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If we wanted to be more elaborate, we could find out all of the values of salary for a given time period, say, the last
two days:

SELECT salary FROM employees

VERSIONS BETWEEN TIMESTAMP

 SYSTIMESTAMP - INTERVAL '1' MINUTE AND

 SYSTIMESTAMP - INTERVAL '2' DAY

WHERE last_name = 'McCreary';

The results are:

SALARY

4000

3800

The MODEL clause

Oracle Database 10g features a powerful new clause, called MODEL, which enables spreadsheet-like result sets from a
SELECT statement. The MODEL clause, in particular, is designed to alleviate the need for developers to extract data
from the database and put it into a spreadsheet, like Microsoft Excel, for further manipulation. It creates a
multidimensional array in which cells can be referenced by dimension values. For instance, you might dimension an
array on product and time, specifying column values that you wish to access via combinations of those two dimensions.
You can then write rules that are similar in concept to spreadsheet formulas, that are executed in order to change
values in your model, or that create new values, and perhaps even new rows, in your model.

Syntactically, the MODEL clause appears after the GROUP BY and HAVING clauses and before the ORDER BY clause.
The earlier syntax diagram for Oracle's SELECT statement shows the position of the clause, and the syntax details are
presented here:

MODEL model_clause

model_clause ::= [options] [return] [reference_models] main_model

options ::= [{IGNORE|KEEP} NAV] [UNIQUE {DIMENSION|SINGLE REFERENCE}]

return ::= RETURN {UPDATED|ALL} ROWS

reference_models ::= reference_model [reference_model...]

reference_model ::= REFERENCE model_name ON (subquery) model_columns

 [options]

model_columns ::= [partition [alias]]

 DIMENSION BY (column[, column...])

 MEASURES (column[, column...])

partition ::= PARTITION BY (column[, column...])

column ::= {column_name|expression} [AS alias]

main_model ::= [MAIN model_name] model_columns [options] rules

rules ::= [RULES [UPSERT|UPDATE] [{AUTOMATIC|SEQUENTIAL} ORDER]]

 [ITERATE (count) [UNTIL (termination_condition)]]

 (rule[, rule...])

rule ::= [UPSERT|UPDATE] cell_reference [ordering] = expression

cell_reference ::= measure[multi_column_for_loop|dimension_indexes]

multi_column_for_loop ::= FOR (dimension[, dimension...]) IN (dimension_values)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multi_column_for_loop ::= FOR (dimension[, dimension...]) IN (dimension_values)

dimension_values ::= ({subquery|dimension_value[, dimension_value...]})

dimension_value ::= (literal[, literal...])

dimension_indexes ::= index[, index...]

index ::= {condition|expression|single_column_for_loop}

single_column_for_loop ::= FOR dimension {in_for_options|like_for_options}

in_for_options ::= IN ({subquery|literal[, literal...]})

like_for_options ::= [LIKE pattern] FROM start_literal TO end_literal

 {INCREMENT|DECREMENT} diff_literal

ordering ::= ORDER BY (order_column[, order_column...])

order_column ::= {expression|alias} [ASC|DESC] [NULLS FIRST|NULLS_LAST]

The parameters of this MODEL clause are as follows:

{IGNORE|KEEP} NAV

Specifies whether null or absent values (NAV) are retained as nulls (KEEP), or whether they are replaced with
suitable defaults (IGNORE): zero for numeric types, 1-Jan-2000 for date types, an empty string for character
types, and null for anything else.

UNIQUE {DIMENSION|SINGLE REFERENCE}

Specifies the scope within which the database ensures that a given cell reference points to a unique data value.
Use DIMENSION to require that each possible cell reference, whether on the left or right side of a rule,
represent a single value. Use SINGLE REFERENCE to perform that check only for those cell references that
appear on the right-hand side of a rule.

RETURN {UPDATED|ALL} ROWS

Specifies whether all rows are returned from model processing, or whether only updated row are returned.

reference_model

Defines a reference model on which you cannot perform calculations, but containing values that you can
reference from within your main query.

model_name ON (subquery)

Specifies the name and rowsource for a reference model.

alias

Specifies an alias for a partition.

DIMENSION BY (column[, column...])

Specifies the dimensions for a model. Values from these columns represent the set of index values that are
used to identify cells in the multidimensional addressing space.

MEASURES (column[, column...])

Specifies the values associated with each unique combination of dimensions (e.g., with each cell of the model).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PARTITION BY [(]column[, column...][)]

Splits a model into independent partitions based on the columns given. You can not partition reference models.

main_model

Represents the model on which you perform work. Rows from your containing SELECT feed into this model,
rules are applied, and the resulting rows are returned.

MAIN model_name

Begins the definition of the main model, and also gives that model a name.

RULES [UPSERT|UPDATE]

Specifies whether rules may both create new cells and update existing cells (UPSERT), or whether they much
only update existing cells (UPDATE). If you want your model to be able to create new rows in your result set,
specify UPSERT. The default is UPSERT. You can also control this behavior on a rule-by-rule basis; see rule in
the syntax.

{AUTOMATIC|SEQUENTIAL} ORDER

Specifies whether the optimizer determines the order in which rules are evaluated (AUTOMATIC), or whether
rules are evaluated in the order in which you list them (SEQUENTIAL). The default is SEQUENTIAL.

ITERATE (count)

Requests that entire set of rules be evaluated repeatedly, count times. The default is to evaluate the set of rules
just once.

UNTIL (termination_condition)

Specifies a condition that, when met, causes iteration to cease. You must still specify a count, which serves as
somewhat of a safeguard against infinite loops.

measure[...]

Is a reference to one of the measures listed in the MEASURES clause. When you reference a measure, the
square-brackets are part of the syntax. You must specify all dimensions, either via a subquery or by listing
them, and the specific value of the measure associated with those dimensions will be returned, or referenced.

multi_column_for_loop

A for-loop iterating over multiple dimensions at one time. The easiest way to picture this is to think of a
subquery from which each row represents a specific combination of dimensions.

dimension_indexes

A list of values, whether from columns or expressions, that collectively identify a unique cell in the model.

single_column_for_loop

A for-loop iterating over one dimension.

IN ({subquery|literal[, literal...]})

The source of values for a for-loop may be a subquery, or it may be a specific list of literal values.

LIKE pattern

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Allows you to insert dimension values into a pattern. Use a percent-sign to mark the location at which you want
dimension values to be inserted. For example, use FOR x LIKE 'A%B' FROM 1 TO 3 INCREMENT 1 to generate values
such as 'A1B', 'A2B', 'A3B'.

FROM start_literal TO end_literal {INCREMENT|DECREMENT} diff_literal

Defines the starting and ending for-loop values, and also the difference between each subsequent value as the
loop iterates from start to end.

ORDER BY (order_column[, order_column...])

Imposes an order of evaluation with respect to the cells referenced from the left side of a rule. Use this clause if
you want a rule to be applied to cells in order. Otherwise, you have no guarantee as to the order in which the
rule is applied to the cells that it affects.

Following is a list of functions that have been designed specifically for use in the MODEL clause:

CV() or CV(dimension_column)

Returns the current value of a dimension column. May be used only on the right-hand side of an expression in a
rule. When the CV() form is used, the dimension column is determined implicitly based on the function call's
position in a list of dimension values.

PRESENTNNV(measure[dimension, dimension...], not_null, was_null)

Returns either not_null or was_null, depending on whether the specified measure was null when model processing
began. This function may be used only from the right-hand side of a rule expression.

PRESENTV(measure[dimension, dimension...], did_exist, didnt_exist)

Returns either did_exist or didnt_exist, depending on whether the specified measure existed when model
processing began. This function may be used only from the right-hand side of a rule expression. Be aware that
whether a measure existed is a completely separate question from whether that measure was null.

ITERATION_NUMBER

Returns zero on the first iteration through the rules, 1 on the second iteration, and so forth. This is useful when
you want to base rule calculations on the number of iterations.

The following example demonstrates that the MODEL clause gives a normal SELECT statement the ability to construct a
multidimensional array as a result set and calculate inter-row and inter-array values interdependently. The newly
calculated values are returned as part of the SELECT statement's result set:

ELECT SUBSTR(region,1,20) country, SUBSTR(product,1,15) product,

 year, sales

FROM sales_view

WHERE region IN ('USA','UK')

MODEL RETURN UPDATED ROWS

 PARTITION BY (region)

 DIMENSION BY (product, year)

 MEASURES (sale sales)

 RULES (

 sales['Bounce',2006] = sales['Bounce',2005] + sales['Bounce',2004],

 sales['Y Box', 2006] = sales['Y Box', 2005],

 sales['2_Products',2006] = sales['Bounce',2006]

 + sales['Y Box',2006])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 + sales['Y Box',2006])

ORDER BY region, product, year;

In this example, a query against the SALES_VIEW materialized view returns the sum of sales over the course of a few
years for the regions USA and UK. The MODEL clause then falls between the WHERE clause and the ORDER BY clause.
Since SALES_VIEW currently holds data for the years 2004 and 2005, we provide it rules to calculate figures for the
year 2006.

The subclause RETURN UPDATED ROWS, limits the result set to the rows that were created or updated by the query.
Next, the example defines the logical divisions of the data using data elements from the materialized view and using the
PARTITION BY, DIMENSION BY, and MEASURES subclauses. The RULES subclause then references individual measures
of the model by referring to combinations of different dimension values much like a spreadsheet macro references
worksheet cells with specific lookups and references to ranges of values.

PostgreSQL

PostgreSQL supports a straightforward implementation of the SELECT statement. It supports JOIN and subquery
applications. PostgreSQL also allows the creation of new temporary or permanent tables using the SELECT...INTO
syntax.

SELECT [ALL | DISTINCT [ON (select_item [,...])]]

[AS alias [(alias_list)]] [,...]

[INTO [[TEMP]ORARY] [TABLE] new_table_name]

[FROM [ONLY] table1[.*] [,...]]

[[join type]JOIN table2 {[ON join_condition] |

 [USING (column_list)]}

[WHERE search_condition]

[GROUP BY group_by_expression]

[HAVING having_condition]

[ORDER BY order_by_expression [{ASC | DESC

 | USING operator][,...] }]

[FOR UPDATE [OF column [,...]]

[LIMIT {count | ALL}][OFFSET [number_of_records]]]

where:

[ALL | DISTINCT [ON (select_item [,...]]]

Supports the ALL and DISTINCT keywords of the ANSI SQL standard, where ALL (the default) returns all rows
(including duplicates) and DISTINCT eliminates duplicate rows. In addition, DISTINCT ON eliminates duplicates
on only one the specified select_items, not on all of the select_items in the query (example below).

select_item

Includes the standard elements of a select_item list supported by the ANSI SQL standard. In addition to the
asterisk (*) shorthand to retrieve all rows, you can use table_name.* to retrieve all rows from an individual table.

AS alias [(alias_list)]

Creates an alias or a list of aliases for one or more columns (or tables in the FROM clause). AS is required for
select_item aliases, but not for FROM table aliases. (Some other database platforms treat the AS as an option
when declaring an alias.)

INTO [[TEMP]ORARY] [TABLE] new_table_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a new table from the result set of the query. Both TEMP and TEMPORARY are acceptable usages to
create a temporary table that is automatically dropped at the end of the session. Otherwise, the command
creates a permanent table. Permanent tables created with this statement must have new, unique names but
temporary tables may have the same name as an existing table. If you create a temporary table with the same
name as an existing permanent table, the temporary table is used to resolve all operations against that table
name while in the same session as the one that created it. Other sessions will continue to see the existing
permanent table.

FROM [ONLY] table1 [,..]

Specifies one or more source tables where the data resides. (Be sure to specify a join condition or a theta
WHERE clause so that you don't get a Cartesian product of all records in all tables.) PostgreSQL allows
inheritance in child tables of declared parent tables. Use the ONLY keyword to suppress rows from the child
tables of your source table. (You can turn off this default inheritance globally with the command SET
SQL_Inheritance TO OFF.) PostgreSQL also supports nested table subqueries (see the SUBQUERY Substatement
section). The FROM clause is not needed when used for computation:

SELECT 8 * 40;

PostgreSQL will also include an implicit FROM on SELECT statements that include schema-identified columns. For
example, the following query is acceptable (though not recommended):

SELECT sales.stor_id WHERE sales.stor_id = '6380';

GROUP BY group_by_expression

Allows group_by_expressions that can be the column name or the ordinal number of the column (as determined by
its position in the select_item list). An example illustrates this concept under the ORDER BY entry just below.

ORDER BY order_by_expression

Allows order_by_expressions that can be the column name, its alias, or the ordinal number of the column (as
determined by its position in the select_item list.) For example, the following two queries are functionally
identical:

SELECT stor_id, ord_date, qty AS quantity

FROM sales

ORDER BY stor_id, ord_date DESC, qty ASC;

SELECT stor_id, ord_date, qty

FROM sales

ORDER BY 1, 2 DESC, quantity;

In single table SELECT statements, you may also order by columns of the table that do not appear in the select_item list.
For example:

SELECT *

FROM sales

ORDER BY stor_id, qty;

ASC and DESC are ANSI standard. If not specified, ASC is the default. PostgreSQL sorts NULL values as higher than any
other value, causing NULL values to appear at the end of ASC sorts and at the beginning of DESC sorts.

FOR UPDATE OF column [,...] LIMIT {count | ALL}][OFFSET [number_of_records]]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Limits the number of rows returned by the query to the maximum specified by the integer count. The optional
OFFSET keyword tells PostgreSQL to skip number_of_records before starting to return rows. You should make
sure you have an ORDER BY clause when using LIMIT or you may get an unexpected result set. (PostgreSQL
7.0 and greater treat LIMIT/OFFSET as a hint and use it to create optimal, possibly very different query plans.)

PostgreSQL supports a handy variation of the DISTINCT clause — DISTINCT ON (select_item [,...]). This variation allows
you to pick and choose the exact columns that are considered for elimination of duplications. PostgreSQL chooses the
result set in a manner much like it does for ORDER BY. You should include an ORDER BY clause so that there's no
unpredictability as to which record is returned. For example:

SELECT DISTINCT ON (stor_id), ord_date, qty

FROM sales

ORDER BY stor_id, ord_date DESC;

The above query retrieves the most recent sales report for each store based on the most recent order date. However,
there would be no way to predict what single record would have been returned without the ORDER BY clause.

PostgreSQL supports only these types of JOIN syntax (refer to the JOIN Subclause section for more details):

FROM table1 [,...] {

 CROSS JOIN table2 |

 [INNER] JOIN table2 [{ON join_condition |

 USING (column_list)}] |

 LEFT [OUTER] JOIN table2 [{ON join_condition |

 USING (column_list)}] |

 NATURAL [LEFT [OUTER]] JOIN table2 |

 RIGHT [OUTER] JOIN table2 [{ON join_condition |

 USING (column_list)}]|

 NATURAL [RIGHT [OUTER]] JOIN table2

 FULL [OUTER] JOIN table2 }

where:

[CROSS] JOIN

Retrieves all records of both table1 and table2. This is syntactically the same as FROM table1, table2. The results
are a Cartesian product (usually a very bad thing!).

INNER JOIN

Retrieves those records of both table1 and table2 where there are matching values in both tables according to
the join condition. Note that the syntax FROM table1, table2 is semantically equivalent to an inner join without a
join condition (i.e., a Cartesian product). When using FROM table1, table2, be sure include the join condition(s) in
the WHERE clause. If you leave out a join type, PostgreSQL assumes you want an inner join.

NATURAL

Shortcuts the need to declare a join condition by assuming a USING clause that names all columns that
have the same name in both tables. (Be careful if columns have the same name but not the same
datatype or the same sort of values!) NATURAL is mutually exclusive of a specified join condition via ON
or USING.

LEFT [OUTER] JOIN

Retrieves all records in the leftmost table (i.e., table1) and matching records in the rightmost table (i.e., table2).
If there isn't a matching record in table2, NULL values are substituted. You can use LEFT OUTER JOIN to find all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If there isn't a matching record in table2, NULL values are substituted. You can use LEFT OUTER JOIN to find all
the records in a table even when there are no counterparts in the joined table. For example:

SELECT j.job_id, e.lname

FROM jobs j

LEFT OUTER JOIN employee e ON j.job_id = e.job_id

ORDER BY d.job_id

RIGHT [OUTER] JOIN

Retrieves all records in the rightmost table regardless of whether there is a matching record in the leftmost
table. Analogous to a LEFT JOIN.

FULL [OUTER] JOIN

Retrieves all records in the inner join in addition to all records that have no matching records on both the left
and right sides.

ON join_condition

Declares the condition(s) that join the result set of two (or more) tables together. This takes the form of
declaring the columns in table1 and table2 that must be equal. When multiple columns must be compared, use
the AND clause.

SQL Server

SQL Server supports most of the basic elements of the ANSI SELECT statement, including all of the various join types.
SQL Server offers several variations on the SELECT statement, including optimizer hints, the INTO clause, the TOP
clause, GROUP BY variations, COMPUTE, and WITH OPTIONS.

SELECT {[ALL | DISTINCT] | [TOP number [PERCENT]

 [WITH TIES]]} select_item [AS alias]

[INTO new_table_name]

[FROM {[rowset_function | table1 [,...]} [AS alias]]

[[join type]JOIN table2 {[ON join_condition]]

[WHERE search_condition]

[GROUP BY {grouping_column [,...]| ALL}] [WITH { CUBE | ROLLUP }]

[HAVING search_condition]

[ORDER BY order_by_expression [ASC | DESC]]

[COMPUTE {aggregation (expression)} [,...]

 [BY expression [,...]]]

[FOR {BROWSE | XML { RAW | AUTO | EXPLICIT}

 [, XMLDATA][, ELEMENTS][, BINARY base64]]

[OPTION (<hint> [,...])]

where:

TOP number [PERCENT][WITH TIES]

Specifies that only the number of rows are retrieved in the query result set. If PERCENT is specified, only the
first number percent of the rows are retrieved. WITH TIES is used only for queries with an ORDER BY clause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

first number percent of the rows are retrieved. WITH TIES is used only for queries with an ORDER BY clause.
This variation specifies that additional rows are returned from the base result set using the same value in the
ORDER BY clause, appearing as the last of the TOP rows.

INTO new_table_name

Creates a new table from the result set of the query. You can use this command to create temporary or
permanent tables. (Refer to SQL Server's rules for creating temporary or permanent tables in the
CREATE/ALTER TABLE Statement section.) The SELECT . . . INTO command quickly copies the rows and
columns queried from other table(s) into a new table using a non-logged operation. Since it is not logged, it is
not affected by COMMIT and ROLLBACK statements.

FROM {[rowset_function | table1 [,...]]}

Supports the standard behavior of the ANSI SQL FROM clause, including nested table subqueries. In addition,
SQL Server supports a set of extensions called rowset_functions. Rowset functions allow SQL Server to source
data from special or external data sources such as XML streams, full-text search file structures (a special
structure in SQL Server used to store things like MS Word documents and MS PowerPoint slide shows within the
database), or external data sources (like an MS Excel spreadsheet).

Examples are shown below. (Please see the SQL Server documentation for the full description of the available FROM
{[rowset_function | table1 [,...]]} options). Among the many possibilities, SQL Server currently supports the following
rowset_functions:

CONTAINSTABLE

Returns a derived table from a specified table that contains at least one full-text index TEXT or NTEXT column.
The records derived are based upon either a precise, fuzzy, weighted-match, or proximity-match search. The
derived table is then treated like any other FROM data source.

FREETEXTTABLE

Similar to CONTAINSTABLE except that records are derived based upon a meaning search of 'freetext_string'.
FREETEXTTABLE is more useful for ad hoc queries against full-text tables, but less accurate than
CONTAINSTABLE.

OPENDATASOURCE

Provides a means of sourcing data external to SQL Server via OLE DB without declaring a linked server, such as
an MS Excel spreadsheet or a Sybase Adaptive Server database table. It is intended for the occasional ad hoc
query. If you frequently retrieve result sets from external data sources, then you should declare a linked server.

OPENQUERY

Executes a pass-through query against a linked server. It is an effective means of performing a nested table
subquery against a data source that is external to SQL Server. The data source must first be declared as a
linked server.

OPENROWSET

Executes a pass-through query against an external data source. It is similar to OPENDATASOURCE, except that
OPENDATASOURCE only opens the data source; it does not actually pass through a SELECT statement.
OPENROWSET is intended for occasional, ad hoc usage only.

OPENXML

Provides a query-able, table-like view to an XML string.

GROUP BY [ALL] (group_by_expression) [WITH {CUBE | ROLLUP}]

Supports the ANSI SQL standard with some variations. The first noticeable difference is in syntax. Where the
ANSI standard clause is GROUP BY [{CUBE | ROLLUP}] (grouping_column [,...]), SQL Server uses GROUP BY
[ALL] (group_by_expression) [WITH {CUBE | ROLLUP}].

GROUP BY ALL tells SQL Server to provide group_by categories even when the matching aggregation is NULL. Normally,
SQL Server does not return a category whose aggregation is NULL. It must be used only in conjunction with a WHERE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server does not return a category whose aggregation is NULL. It must be used only in conjunction with a WHERE
clause. WITH {CUBE | ROLLUP} tells SQL Server to perform additional higher-level aggregates of the summary
categories. In the simplest terms, ROLLUP produces subtotals for the categories, while CUBE produces cross-tabulated
totals for the categories.

The GROUPING function can be used to help differentiate normally occurring NULLs from
the NULLs generated by ROLLUP and CUBE behavior.)

This example groups royalty and aggregate advance amounts. The GROUPING function
is applied to the royalty column.

USE pubs

SELECT royalty, SUM(advance) 'total advance',

 GROUPING(royalty) 'grp'

 FROM titles

 GROUP BY royalty WITH ROLLUP

The result set shows two NULL values under royalty. The first NULL represents the group of null values from this
column in the table. The second NULL is in the summary row added by the ROLLUP operation. The summary row shows
the total advance amounts for all royalty groups and is indicated by 1 in the grp column.

Here is the result set:

royalty total advance grp

--------- --------------------- ---

NULL NULL 0

10 57000.0000 0

12 2275.0000 0

14 4000.0000 0

16 7000.0000 0

24 25125.0000 0

NULL 95400.0000 1

ORDER BY

Functions normally as specified by the ANSI SQL standard. However, you should remember that SQL Server
allows a variety of collations that can affect how the result set is evaluated. Thus, under certain collations
"SMITH" and "smith" might evaluate and sort differently. Also note that you cannot ORDER BY columns of TEXT,
NTEXT, or IMAGE datatype.

COMPUTE {aggregation (expression)} [,...] [BY expression [,...]]]

Generates additional aggregations, usually totals, that appear at the end of the result set. BY (expression) adds
in subtotals and control breaks to the result set. COMPUTE and COMPUTE BY can be used simultaneously in the
same query. COMPUTE BY must be coupled with an ORDER BY clause, though the expression used by COMPUTE
BY can be a subset of the order_by_expression. The aggregation may be any of these function calls: AVG, COUNT,
MAX, MIN, STDEV, STDEVP, VAR, VARP, and SUM. Examples are shown later in this section.

COMPUTE, in any form, does not work with the DISTINCT keyword or with TEXT, NTEXT, or IMAGE datatypes.

FOR {BROWSE | XML { RAW | AUTO | EXPLICIT} [, XMLDATA][, ELEMENTS][, BINARY BASE64]]

FOR BROWSE is used to allow updates to data retrieved in a DB-Library browse mode cursor. (DB-Library is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FOR BROWSE is used to allow updates to data retrieved in a DB-Library browse mode cursor. (DB-Library is the
original access methodology for SQL Server and has since been supplanted by OLE DB in most applications.)
FOR BROWSE can only be used against tables with a unique index and a column with the TIMESTAMP datatype.
FOR BROWSE cannot be used in UNION statements or when a HOLDLOCK hint is active.

FOR XML

Used to extract the result set as an XML document to the SQL Server 2000 client only. You must further define
the resulting XML document as either RAW, AUTO, or EXPLICIT. RAW transforms each returned row into a
generic XML element with the <row/> element tag. AUTO transforms the results into a simple, nested XML tree.
EXPLICIT transforms the resulting XML tree into an explicitly defined shape. However, the query must be
written such that the desired nesting information is specified explicitly. You may optionally attach a few extra
control features.

XMLDATA

Returns the schema appended to the XML document. ELEMENTS returns the columns as subelements instead of
mapping them to XML attributes.

BINARY BASE6

Returns the binary data in base64-encoded format. (Binary is the default format for AUTO mode, but must be
declared for RAW and EXPLICIT.) FOR XML cannot be used in any sort of subquery, in conjunction with a
COMPUTE clause, BROWSE clause, in the definition of a view, in the result set of a user-defined function, or in a
cursor. Aggregations and GROUP BY are mutually exclusive of FOR XML AUTO.

OPTION (hint [,...])

Replaces elements of the default query plan with your own. Because the optimizer usually picks the best query
plan for any query, you are strongly discouraged from placing optimizer hints into your queries.

Here's an example of SQL Server's SELECT...INTO capability. This example creates a table called
non_mgr_employees using SELECT...INTO. The table contains the emp_id, first name, and last name of each non-
manager from the employee table, joined with their job description taken from the jobs table:

--QUERY

SELECT e.emp_id, e.fname, e.lname,

 SUBSTRING(j.job_desc,1,30) AS job_desc

INTO non_mgr_employee

FROM employee e

JOIN jobs AS j ON e.job_id = j.job_id

WHERE j.job_desc NOT LIKE '%MANAG%'

ORDER BY 2,3,1

The newly created and loaded table non_mgr_employee now can be queried like any other table.

SELECT...INTO should be used only in development or non-production code because it is
not logged or recoverable.

Many of SQL Server's extensions to the ANSI SELECT statement involve the GROUP BY clause. For example, the GROUP
BY ALL clause causes the aggregation to include NULL valued results to be included when they would normally be
excluded. The following two queries are essentially the same except for the ALL keyword, yet they produce very
different result sets:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

different result sets:

-- standard GROUP BY

SELECT type, AVG(price) AS price

FROM titles

WHERE royalty <= 10

GROUP BY type

ORDER BY type

-- Results

type price

------------ -------

business 17.3100

mod_cook 19.9900

popular_comp 20.0000

psychology 13.5040

trad_cook 17.9700

Compared to:

-- Using GROUP BY ALL

SELECT type, AVG(price) AS price

FROM titles

WHERE royalty = 10

GROUP BY ALL type

ORDER BY type

-- Results

type price

------------ -------

business 17.3100

mod_cook 19.9900

popular_comp 20.0000

psychology 13.5040

trad_cook 17.9700

UNDECIDED NULL

COMPUTE has a number of permutations that can impact the result set retrieved by the query. The following example
shows the sum of book prices broken out by type of book and sorted by type and then price:

--Query

SELECT type, price

FROM titles

WHERE type IN ('business','psychology')

 AND price > 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND price > 10

ORDER BY type, price

COMPUTE SUM(price) BY type

--Results

type price

------------ ---------------------

business 11.9500

business 19.9900

business 19.9900

 sum

 =====================

 51.9300

type price

------------ ---------------------

psychology 10.9500

psychology 19.9900

psychology 21.5900

 sum

 =====================

 52.5300

The COMPUTE clause behaves differently if you do not include BY. The following query retrieves the grand total of prices
and advances for books over $16.00:

--Query

SELECT type, price, advance

FROM titles

WHERE price > $16

COMPUTE SUM(price), SUM(advance)

--Result

type price advance

------------ --------------------- ---------------------

business 19.9900 5000.0000

business 19.9900 5000.0000

mod_cook 19.9900 .0000

popular_comp 22.9500 7000.0000

popular_comp 20.0000 8000.0000

psychology 21.5900 7000.0000

psychology 19.9900 2000.0000

trad_cook 20.9500 7000.0000

 sum

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sum

 =====================

 165.4500

 sum

 =====================

 41000.0000

You could even use COMPUTE BY and COMPUTE in the same query to produce subtotals and grand totals. (For the sake
of brevity, we'll show an example query, but not the result set.) In this example, we find the sum of prices and
advances by type for business and psychology books over $16.00:

SELECT type, price, advance

FROM titles

WHERE price > $16

 AND type IN ('business','psychology')

ORDER BY type, price

COMPUTE SUM(price), SUM(advance) BY type

COMPUTE SUM(price), SUM(advance)

Don't forget that you must include the ORDER BY clause with a COMPUTE BY clause! (You do not need an ORDER BY
clause with a simple COMPUTE clause without the BY keyword.) There are many permutations you can perform in a
single query — multiple COMPUTE and COMPUTE BY clauses, GROUP BY with a COMPUTE clause, and even with an
ORDER BY statement. It's actually fun to tinker around with the different ways you can build queries using COMPUTE
and COMPUTE BY. It's not theme park fun, but what'dya want? This is a programming book!

SQL Server also includes the FOR XML clause that converts the standard result set output into an XML document. This is
very useful for web database applications. You can execute queries with FOR XML directly against the database or
within a stored procedure. For example, we can retrieve one of our earlier example queries as an XML document:

SELECT type, price, advance

FROM titles

WHERE price > $16

 AND type IN ('business','psychology')

ORDER BY type, price

FOR XML AUTO

The results aren't particularly pretty, but they're very usable:

XML_F52E2B61-18A1-11d1-B105-00805F49916B

--

<titles type="business " price="19.9900"

advance="5000.0000"/><titles type="business " price="19.9900" advance="5000.0000"/>

<titles type="psychology" price="19.9900" advance="2000.0000"/><titles

type="psychology" price="21.5900" advance="7000.000

If you wanted the XML schema and/or XML elements fully tagged in the output, you could simply append the XMLDATA
and ELEMENTS keywords to the FOR XML clause. The query would look like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and ELEMENTS keywords to the FOR XML clause. The query would look like this:

SELECT type, price, advance

FROM titles

WHERE price > $16

 AND type IN ('business','psychology')

ORDER BY type, price

FOR XML AUTO, XMLDATA, ELEMENTS

SQL Server also implements a number of other enhancements to support XML. For example, the OPENXML rowset
function can be used to insert an XML document into a SQL Server table. SQL Server also includes system stored
procedures that can help you prepare and manipulate XML documents.

SEE ALSO

JOIN
WHERE

SET Statement

The SET statement assigns a value to a runtime variable. The variables may be platform-specific system variables or
user-defined variables.

Platform Command

DB2 Supported

MySQL Supported

Oracle Not supported

PostgreSQL Supported

SQL Server Supported

SQL2003 Syntax

SET variable = value

Keywords

variable

Denotes a system or user-defined variable.

value

Denotes a string or numeric value appropriate to the system or user-defined variable.

Rules at a Glance

Variable values are set for the duration of the session. The value assigned to the variable must match the datatype of
the variable. For example, you cannot assign a string value to a variable that is declared as with a numeric datatype.
The actual command to create a variable varies from platform to platform. For example, DB2, Oracle, and SQL Server
use the DECLARE statement to declare a variable name and datatype, but other platforms may use other means of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use the DECLARE statement to declare a variable name and datatype, but other platforms may use other means of
creating a variable.

The value assigned to a variable does not have to be a literal value. It may be a dynamic value that is derived from a
subquery. For example, we assign the maximum employee ID to the emp_id_var variable in the following example:

DECLARE emp_id_var CHAR(5)

SET emp_id_var = (SELECT MAX(emp_id)

 FROM employees WHERE type = 'F')

In this example, an employee type of 'F' indicates that the employee is a full-time, salaried employee.

Programming Tips and Gotchas

The SET statement is easily transportable between the database platforms. Only Oracle uses a consistently different
scheme for assigning a value to a variable. In the following example, we declare a variable on SQL Server called
emp_id_var and assign a value to it:

DECLARE emp_id_var CHAR(5)

SET emp_id_var = '67888'

Now, we will perform the same action on an Oracle server:

DECLARE emp_id_var CHAR(5);

emp_id_var := '67888';

DB2

DB2 supports the basic form of SET, assigning values to local variables, output parameters, or special registers. It
allows a single SET statement to set multiple variable values at one time. It also assigns values to the columns of a
base table in a trigger. The command cannot set both types of variables in a single statement.

SET variable = { value | NULL | DEFAULT } [,...]

The DB2 syntax elements are as follows:

variable

Identifies the target variable. SQL variables must be declared before they are used. A variable may also identify
a column in the base table of a trigger.

value

Describes the value of the variable in a datatype-appropriate format. When assigning values to columns in a
trigger, you may also use references to OLD and NEW correlation names. For more information on this concept,
refer to the DB2 platform specifics in the CREATE/ALTER TRIGGER Statement section.

NULL

Specifies a NULL value for columns or variables that allow NULL values.

DEFAULT

Assigns the default value to columns created with the WITH DEFAULT clause or the IDENTITY clause. This
option assigns NULL to columns that allow NULL and are not defined with a default or identity clause.

To set a single variable value:

SET new_var.order_qty = 125;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET new_var.order_qty = 125;

When setting multiple values with a single statement, the number of variables on the left side of the equal sign must
equal the number of values on the right side of the equal sign. To set multiple variables in a single statement:

SET new_var.order_qty = 125, new_var.discount = 4;

When using the SET variable = SELECT... variation, the values returned in the result set of the SELECT statement must
exactly match the variables item for item in ordinal position and datatype. If the SELECT statement does not return any
rows, then null values are assigned to the variables. You can also use the SELECT INTO statement to assign multiple
variable values with a single statement.

MySQL

SET, as a keyword in MySQL, has several uses. First, SET is a MySQL datatype that allows multiple values each
separated by a comma. In addition, SET may assign a value to a user variable. That latter use is described here, and
the syntax for it is:

SET @variable = value [,...]

When setting multiple values in a single statement, set each value separately with a comma between:

SET new_var.order_qty = 125, new_var.discount = 4;

In addition, MySQL allows the use of SELECT to assign values to variables in the same fashion as that described under
the ANSI description of SET. However, there are some weaknesses when using the SELECT method for assigning values
to variables. The primary problem is that values are not assigned immediately within the SELECT statement. Thus, for
the following example:

SELECT (@new_var := row_id) AS a,

 (@new_var + 3) AS b

FROM table_name;

the @new_var variable will not possess the newly selected value of row_id + 3. It will retain the value from the
beginning of the statement. For this reason, it is a best practice to assign only one value to a variable at a time.

Oracle

The SET clause is not supported as the method of assigning values to variables. Instead, user-defined variables are
simply assigned a value using the assignment indicator :=. The basic syntax is shown here:

variable := value

PostgreSQL

The PostgreSQL command SET is used to set a runtime variable.

SET variable { TO | = } { value | DEFAULT }

The runtime variable may be set to a string literal designated by value. Using the DEFAULT keyword sets the runtime
variable to its default value. PostgreSQL v7.2 supports these runtime variables:

CLIENT_ENCODING NAMES

Sets multibyte client encoding on PostgreSQL installations built with multibyte support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets multibyte client encoding on PostgreSQL installations built with multibyte support

DATESTYLE

Sets the style used to display dates and times. Supported styles include:

ISO

Depicts date and time as YYYY-MM-DD HH:MM:SS (the default ISO 8601 style).

SQL

Depicts the Oracle/Ingres style of date and time, not the date and time style mandated by ANSI SQL.

Postgresql

Depicts the long-time date and time format in PostgreSQL, though no longer the default.

German

Depicts the date and time as dd.mm.yyyy.

You can further qualify the SQL and Postgresql styles using the keywords as European, US, and NonEuropean, which
give dates in the forms dd/mm/yyyy, mm/dd/yyyy, and mm/dd/yyyy, respectively. For example: SET DATESTYLE = SQL,
European.

SEED

Sets the internal random number generator seed. The value may be any floating-point number between 0 and 1
multiplied by 231-1. This value can also be set via the PostgreSQL setseed function. For example:

SELECT setseed(value);.

SERVER_ENCODING

Sets multibyte server encoding on servers built with multibyte support.

Here is an example for setting the date and time format to the Oracle and European style:

SET DATESTYLE TO sql, European;

SQL Server

SQL Server supports SET for variable assignments, provided the variables have previously been created with the
DECLARE statement, and to define values for cursor variables in SQL Server. (SQL Server also uses the SET statement
for a variety of other purposes, such as enabling or disabling session flags like SET NOCOUNT ON.) The platform-
specific syntax is:

SET { { @variable = value}

 | { @cursor_variable = { @cursor_variable | cursor_name

 | { CURSOR [FORWARD_ONLY | SCROLL]

 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]

 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]

 [TYPE_WARNING]

FOR select_statement

 [FOR { READ ONLY | UPDATE [OF column_name [,...]] }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [FOR { READ ONLY | UPDATE [OF column_name [,...]] }

] } } } }

The command does not support the DEFAULT keyword, but otherwise supports all the syntax of the ANSI command.
The value for server_name must reference a connection named in a previous CONNECT statement, either as a literal or
as a variable.

SET CONNECTION Statement

The SET CONNECTION statement allows users to switch between several open connections on one or more database
servers.

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Supported, with limitations

SQL2003 Syntax

SET CONNECTION {DEFAULT | connection_name}

Keywords

connection_name

Names the connection of the current session. If the connection_name is different from the current session
connection name, then the connection context is switched to the connection_name.

DEFAULT

Switches to the default connection from any other connection. This enables rapid switching to the default
connection without knowing its name.

Description

This command does not end a connection. Instead, it switches from the current connection to the connection named
(making it the current connection), or from the current connection to the default connection. When switching between
connections, the old connection becomes dormant (without committing any changes), while the new connection
becomes active.

Rules at a Glance

SET CONNECTION does not create a connection. It merely switches your connection context. Use the CONNECT
command to create a new connection; use DISCONNECT to terminate a connection.

Programming Tips and Gotchas

The SET CONNECTION command is not frequently used, since many users connect programmatically via ODBC, JDBC,
or some other connectivity method. However, on those platforms that support SET CONNECTION, the command can be
very useful for rapidly changing connection properties without terminating any existing connections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

very useful for rapidly changing connection properties without terminating any existing connections.

DB2

DB2 supports the following basic form of SET CONNECTION:

SET CONNECTION server_name

The DB2 command does not support the DEFAULT keyword, but is otherwise compatible with the ANSI command. The
value for server_name must reference a connection created by a previous CONNECT statement.

Following is a fully embedded SQL program in DB2 that shows CONNECT and SET CONNECTION:

EXEC SQL CONNECT TO SQLNUTSHELL;

/* Opens connection to SQLNUTSHELL. The connection will now

 execute statements referencing objects at SQLNUTSHELL */

EXEC SQL CONNECT TO DB2DEV;

/* Opens connection to SQLNUTSHELL. The connection will now

 execute statements referencing objects at DB2DEV */

EXEC SQL SET CONNECTION SQLNUTSHELL;

/* Now move back to the SQLNUTSHELL connection and execute

 statements referencing objects at SQLNUTSHELL. The

 connection to DB2DEV is still available, only dormant. */

MySQL

Not supported.

Oracle

Not supported.

PostgreSQL

Not supported.

SQL Server

SQL Server supports SET CONNECTION, but only in embedded SQL, not within its ad hoc querying tool, SQL Query
Analyzer. Although SQL Server supports the full SQL2003 syntax within SQL embedded in other programs, such as a
C++ program, it is not used very often. Most prefer the SQL Server specific command USE instead. The platform-
specific syntax is:

SET CONNECTION connection_name

The command does not support the DEFAULT keyword, but is otherwise the same as the ANSI command. The value for
connection_name must reference a connection named in a previous CONNECT statement, either as a literal or as a
variable.

Here is a full TSQL program in SQL Server that shows CONNECT, DISCONNECT, and SET CONNECTION:

EXEC SQL CONNECT TO chicago.pubs AS chicago1 USER sa;

EXEC SQL CONNECT TO new_york.pubs AS new_york1 USER read-only;

-- opens connections to the servers named "chicago" and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- opens connections to the servers named "chicago" and

 "new_york"

EXEC SQL SET CONNECTION chicago1;

EXEC SQL SELECT name FROM employee INTO :name;

-- sets the chicago1 connection as active and performs work

 within that session

EXEC SQL SET CONNECTION new_york1;

EXEC SQL SELECT name FROM employee INTO :name;

-- sets the new_york1 connection as active and performs work

 within that session

EXEC SQL DISCONNECT ALL;

-- Terminates all sessions. You could alternately use two

-- DISCONNECT commands, one for each named connection.

See Also

CONNECT
DISCONNECT

SET CONSTRAINT Statement

The SET CONSTRAINT statement defines, for the current transaction, whether a deferrable constraint checks after each
DML statement or when the transaction is finally committed. If the session is not currently in an open transaction, the
setting applies to the next transaction.

Platform Command

DB2 Not supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Not supported

SQL2003 Syntax

SET CONSTRAINT {constraint_name [,...] | ALL} {DEFERRED | IMMEDIATE}

Keywords

{constraint_name [,...] | ALL}

Names one or more deferrable constraints where the setting will apply. The keyword ALL sets the constraint
mode for all deferrable constraints of the current transaction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEFERRED

Checks the conditions specified by the deferrable constraint when the transaction is committed, rather than
when the DML statements are issued.

IMMEDIATE

Checks the conditions specified by the deferrable constraint immediately after each DML statement is issued,
rather than when the transaction is committed.

Rules at a Glance

SET CONSTRAIN defines a value for the constraint mode of all deferrable constraints of the current transaction. If the
session is not currently in a transaction, then the SET CONSTRAINT statement applies to the next transaction issued
during the session.

The following example sets all deferrable constraints to be checked immediately following the issuance of each DML
statement:

SET CONSTRAINT ALL IMMEDIATE;

The next example sets two constraints to defer their data modification until the transaction is committed:

SET CONSTRAINT scott.hr_job_title, scott.emp_bonus DEFERRED:

Programming Tips and Gotchas

Constraints, when they are defined, may be specified as DEFERRABLE or NOT DEFERRABLE. The SET CONSTRAINT
statement will fail if it is issued against a specific constraint that was defined as NOT DEFERRABLE.

DB2

Not supported.

MySQL

Not supported.

Oracle

Oracle supports the ANSI standard exactly as described, except that SET CONSTRAINT is allowed, as well as SET
CONSTRAINTS.

PostgreSQL

PostgreSQL supports the ANSI standard syntax exactly as it is described. Currently, PostgreSQL only allows SET
CONSTRAINT against foreign key constraints, not check and unique constraints, which are always considered
IMMEDIATE.

SQL Server

Not supported.

SET PATH Statement

The SET PATH statement changes the value of the CURRENT PATH setting to one or more schemas.

Platform Command

DB2 Supported, with variations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2 Supported, with variations

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

SET PATH schema_name [,...]

Keywords

schema_name [,...]

Defines one or more schemas as the current path.

Rules at a Glance

SET PATH defines one or more schemas used to qualify an unqualified routine name (that is, functions, procedures, and
methods).

The following example sets the current path (i.e., schema name) for unqualified objects to scott:

SET PATH scott;

Then, whenever a routine is referenced during the current session, it will assume the scott schema if no schema is
identified.

Programming Tips and Gotchas

When referencing multiple schema names, all the schemas must belong to the current database. (The schemas cannot
be on a remote database.)

SET PATH does not apply the schema to unqualified objects like tables or views. It only applies to routines.

DB2

DB2 supports several variations on the ANSI standard:

SET {[CURRENT] PATH | CURRENT_PATH} =

 {schema_name | SYSTEM PATH | USER | CURRENT PATH | CURRENT_PATH} [,...]

where:

SET {[CURRENT] PATH | CURRENT_PATH} =

Sets the path, with a slight variation in syntax from the ANSI standard. Note that the equal sign (=) is required.

schema_name

Defines one or more user-specified paths as the current path. The schema_name may be a literal, a host
variable, or a string constant.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SYSTEM PATH

Defines the system schemas of SYSIBM, SYSFUN, and SYSPROC as the current path.

USER

Defines the value of the USER special register as the current path.

{CURRENT PATH | CURRENT_PATH}

Defines the value of the CURRENT PATH special register before the SET PATH statement was executed as the
current path.

The following example sets the schema scott and the DB2 system schemas as the current path:

SET PATH = scott, SYSTEM PATH

MySQL

Not supported.

Oracle

Not supported.

PostgreSQL

Not supported.

SQL Server

Not supported.

See Also

SET SCHEMA

SET ROLE Statement

The SET ROLE statement enables and disables specific roles for the current session.

Platform Command

DB2 Not supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

SET ROLE {NONE | role_name}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET ROLE {NONE | role_name}

Keywords

NONE

Assigns the CURRENT ROLE role to the current session.

role_name

Associates the set of privileges associated with the named role with the current session.

Rules at a Glance

When a user session is opened using the CONNECT statement, issuing the SET ROLE statement grants that session the
privileges associated with a role. The SET ROLE command can be issued only outside of a transaction.

The value for role_name must reference a valid user role existing on the server. You may specify the role name either as
a literal or through a variable.

Programming Tips and Gotchas

Sessions are created using the CONNECT statement, while roles are created using the CREATE ROLE statement.

Most database platforms offer some method of setting or changing the role used during a user session. SET ROLE is the
ANSI standard approach to setting the role used during a user session, but it is not widely supported by the different
database platforms. Check your platform to find an analogous command supported by your specific vendor.

DB2

Not supported. DB2 does not yet support roles.

MySQL

SET ROLE is not supported. An analogous method to control connection settings in MySQL is controlled in the [client]
section of the .my.cnf configuration file in the home directory. For example:

 [client]

host=server_name

user=user_name

password=client_password

To rapidly change between user roles, you can reassign host, user, and password connection properties by assigning
new values to MYSQL_HOST, USER (for Windows only), and MYSQL_PWD (though MYSQL_PWD is insecure in that other
users can view this file), respectively.

Oracle

When a user initiates a connection, Oracle explicitly assigns roles to the user. The role(s) under which the session is
operating can be changed with the SET ROLE command, assuming the user has permissions to the role. Oracle uses the
MAX_ENABLED_ROLES initialization parameter (in the INIT.ORA file) to control the maximum number of roles that can
be enabled concurrently. The Oracle syntax is:

SET ROLE { role_name [IDENTIFIED BY password] [,...]

| [ALL [EXCEPT role_name [,...]]

| NONE } ;

Options for the SET ROLE command include:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Options for the SET ROLE command include:

role_name

Declares a valid role name already created within Oracle to which the user has been granted permissions. Any
roles not specified are unavailable throughout the current session. You can enable multiple roles by providing a
list; place a comma between each role listed.

IDENTIFIED BY password

If the role_name has a password, that password must be specified using this clause.

ALL

Enables all roles that are granted to the current user, including roles that are granted through other roles, but
cannot be used with the IDENTIFIED BY clause.

EXCEPT

Specifies a list of roles to exclude from a SET ROLE ALL command.

NONE

Disables all roles, including the default role.

Roles with passwords may be accessed only through the statement SET responsibility role_name IDENTIFIED BY password.
For example, to enable the specific roles read_only and updater, identified by the passwords editor and
red_marker, respectively, for the current session:

SET ROLE

 read_only IDENTIFIED BY editor,

 updater IDENTIFIED BY red_marker;

To enable all roles except the read_write role:

SET ROLE ALL EXCEPT read_write;

PostgreSQL

SET ROLE is not supported. However, the ANSI SQL command SET SESSION AUTHORIZATION is supported and can
achieve somewhat similar results.

SQL Server

Not supported.

See Also

CONNECT
DISCONNECT
SET SESSION AUTHORIZATION

SET SCHEMA Statement

The SET SCHEMA statement changes the value of the CURRENT SCHEMA setting to a user-specified schemas.

Platform Command

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2 Supported, with variations

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

SET SCHEMA schema_name [,...]

Keywords

schema_name [,...]

Defines one or more schema as the current path.

Rules at a Glance

SET SCHEMA defines a user-defined schema to use to qualify an unqualified object, such as a table or view.

The following example sets the current schema for unqualified objects to scott:

SET SCHEMA scott;

Then, whenever an object is referenced during the current session, it will assume the scott schema, if no schema is
identified.

Programming Tips and Gotchas

The SET SCHEMA statement cannot assign a schema from a remote database as the CURRENT SCHEMA.

SET SCHEMA does not apply the schema to unqualified routines like functions, procedures, and methods. It only applies
to database objects like tables and views.

DB2

DB2 supports several variations on the ANSI standard:

SET [CURRENT] SCHEMA = {schema_name | USER } [,...]

where:

SET [CURRENT] SCHEMA =

Sets the path, with a slight variation in syntax from the ANSI standard. Note that the equal sign (=) is required.

schema_name

Defines a user-specified schema, of no more than 30 bytes in length, as the current schema. The schema_name
may be a literal, a host variable, or a string constant.

USER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defines the value of the USER special register as the current path.

The DB2 implementation is otherwise the same as the ANSI standard.

MySQL

Not supported.

Oracle

Not supported.

PostgreSQL

Not supported.

SQL Server

Not supported.

See Also

SET PATH

SET SESSION AUTHORIZATION Statement

The SET SESSION AUTHORIZATION statement sets the user identifier for the current session.

Platform Command

DB2 Not supported

MySQL Not supported

Oracle Not supported

PostgreSQL Supported

SQL Server Not supported

SQL2003 Syntax

SET SESSION AUTHORIZATION username

Keywords

username

Sets the session user and the current user of the SQL session to the context of username, where username may
be a literal, a parameter, or a host variable.

Rules at a Glance

This command allows you to switch between users and to run under their permissions.

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some platforms allow you to use special shortcut keywords, like SESSION USER and CURRENT USER. SESSION USER
and CURRENT USER are usually the same thing — the username of the currently active session provided by the client.
However, SESSION USER and CURRENT USER can diverge in a session when SETUID functions and other similar
mechanisms are invoked.

Superuser permissions are required to invoke this command, but you will still be able to switch back to the initial user
session even if the current user session does not normally have permission to run SET SESSION AUTHORIZATION.

You might also wish to check the value of the SESSION_USER and CURRENT_USER functions with this SQL statement:

SELECT SESSION_USER, CURRENT_USER;

Normally, you should issue SET SESSION AUTHORIZATION before any transactions to set the session and current user
values for all transactions that follow. It must be issued as the only command in its transaction batch.

DB2

Not supported. Similar functionality is achieved with the CONNECT statement or by logging off the server and
reconnecting.

MySQL

Not supported. You must disconnect your session from MySQL, and then reconnect to utilize another set of user
privileges.

Oracle

Not supported. Similar functionality is achieved using the CONNECT statement or by logging off the server and
reconnecting.

PostgreSQL

PostgreSQL supports the ANSI standard for this command. The only difference, and it is a minor one, is that the ANSI
standard does not allow this command during a transaction, while PostgreSQL does not care one way or the other.

SQL Server

Not supported. Similar functionality is achieved with the CONNECT statement or by logging off the server and
reconnecting.

See Also

CONNECT
GRANT
SESSION_USER

SET TIME ZONE Statement

The SET TIME ZONE statement changes the current session's time zone if it needs to be different from the default time
zone.

Platform Command

DB2 Not supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Not supported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

SET TIME ZONE {LOCAL | INTERVAL {+ | -}'00:00' [HOUR TO MINUTE]}

Keywords

LOCAL

Sets the current session's time zone to that of the local server.

INTERVAL

Sets an increase (with +) or decrease (with -) over the default time.

INTERVAL

Specifies the time zone offset from Coordinated Universal Time (UTC) in terms of hours and minutes.

HOUR TO MINUTE

Specifies the datatype of the TIME ZONE value.

Rules at a Glance

This is a relatively simple command that sets the user session time zone to that of the server (LOCAL), or sets the time
zone in relation to Coordinated Universal Time (UTC) (formerly Greenwich Mean Time or GMT). Thus, an INTERVAL of 2
would advance the time zone two hours greater than UTC, while an INTERVAL of -6 would reduce the time zone by six
hours from UTC to the United States central time zone.

Programming Tips and Gotchas

Like most SET commands, SET TIME ZONE can be executed only outside of an explicit transaction. In other words, you
do not need to encapsulate the command within a START or BEGIN TRAN and a COMMIT TRAN statement.

DB2

Not supported.

MySQL

Not supported.

Oracle

In Oracle9i and higher, you can use the following ALTER SESSION command to set the session time zone:

ALTER SESSION

 SET TIME_ZONE = {'[+ | -] hh:mm'

 | LOCAL

 | DBTIMEZONE

 | 'region'}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 | 'region'}

Use LOCAL to revert back to your session's original default time zone. Use DBTIMEZONE to set your session time zone
to be the database time zone. Use 'region' to specify a time zone region name such as EST or PST. Use an offset such as
'-5:00' to specify your time zone in terms of an hour and minute displacement from UTC. A displacement of '-5:00'
means that your time is five hours behind UTC time (e.g., 5:00 A.M. your time is 10:00 A.M. UTC time).

To retrieve a list of valid time zone region names, issue the following query:

SELECT tzname FROM v$timezone_names;

Both of the following commands set the time zone to Eastern Standard Time. The first command does this by specifying
the appropriate displacement from UTC, while the second command specifies the time zone region name:

ALTER SESSION SET TIME_ZONE = '-5:00';

ALTER SESSION SET TIME_ZONE = 'EST';

Oracle's time zone support is complex. Steven Feuerstein's Oracle PL/SQL Programming (O'Reilly), contains a good
explanation of it in the chapter on datetime datatypes.

PostgreSQL

PostgreSQL allows a session's time value to be set to the server default by interchangeably using the LOCAL or
DEFAULT clauses:

SET TIME ZONE {'timezone' | LOCAL | DEFAULT };

There are some variations from the ANSI standard:

'timezone'

Specifies a time zone by name. The possible values for time zone depends on the operating system. For
example, the file /usr/share/zoneinfo contains the database of time zones for Linux servers.

LOCAL / DEFAULT

Sets the current-session time values to those of the default time zone as determined by the local server.

For example, 'PST8PDT' is a valid time zone for California on Linux systems, while 'Europe/Rome' is a valid time zone for
Italy on Linux and other systems. If you specify an invalid time zone, the command sets the time zone to UTC.

If increasing the time zone over UTC, the plus sign is optional. If an invalid time zone is specified, UTC is used as the
time zone.

The following example sets the PostgreSQL time zone to Pacific Standard Time:

SET TIME ZONE 'PST8PDT';

Next, the time for the current session is returned to the server's default time zone:

SET TIME ZONE LOCAL;

SQL Server

Not supported.

SET TRANSACTION Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SET TRANSACTION statement controls many characteristics of data modification, primarily the read/write
characteristics and isolation level of a transaction.

Platform Command

DB2 Not supported

MySQL Supported, with variations

Oracle Supported, with limitations

PostgreSQL Supported

SQL Server Supported, with variations

SQL2003 Syntax

SET [LOCAL] TRANSACTION [READ ONLY | READ WRITE]

 [ISOLATION LEVEL {READ COMMITTED | READ UNCOMMITTED |

 REPEATABLE READ | SERIALIZABLE}

 [DIAGNOSTIC SIZE int]

Keywords

LOCAL

Changes transaction settings for the current session on the local server and only the local server. Otherwise,
the transaction settings for the next transaction are changed, even if the transaction runs on a remote server.

READ ONLY

Sets the next upcoming transaction as a read-only transaction. Once the next transaction is complete,
transaction behavior reverts to the default settings.

READ WRITE

Sets the next upcoming transaction so it may perform transactions that read and write data.

ISOLATION LEVEL

Sets the isolation level for the next transaction in the session.

READ COMMITTED

Allows a transaction to read rows written by other transactions only when they have been committed.

READ UNCOMMITTED

Allows a transaction to read rows which have been written, but not committed, by other transactions.

REPEATABLE READ

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All sessions can see records that are committed before their first transaction was begun. Other open sessions
can see or change only committed rows in the user's current session before their transactions were begun.
Consequently, later transactions can add records that might then be visible to the transactions of earlier
sessions, but the other sessions must requery to see those records.

SERIALIZABLE

All sessions can see records that are committed before their transaction was begun. Other open sessions can
see but cannot insert or update records within other user sessions until those transaction are completed. This is
the most restrictive isolation level and the default for SQL2003.

DIAGNOSTIC SIZE int

Designates the specific number of error messages, int, to capture for a transaction. The GET DIAGNOSTICS
statement retrieves these error messages.

Rules at a Glance

When issued, SET TRANSACTION sets the properties of the next upcoming transaction. Because of this, SET
TRANSACTION is an interim statement that should be issued after one transaction completes and before the next
transaction starts. (To begin a transaction and set its characteristics at the same time, use START TRANSACTION.)
More than one option may be applied with this command but only one access mode, isolation level, and diagnostic size
may be specified at a time.

The isolation level of a transaction specifies the degree of isolation a transaction has from other concurrently running
sessions. The isolation level controls:

Whether rows read and updated by your database session are available to other concurrently running database
sessions.

Whether the update, read, and write activity of other database sessions can affect your database session.

If you are unfamiliar with isolation levels, be sure to read the SQL2003 Syntax section under SET TRANSACTION
Statement, since the explanation for isolation levels is offered only in that section.

Programming Tips and Gotchas

The ISOLATION LEVEL clause controls a number of behaviors and anomalies in a transaction concerning concurrent
transactions, particularly the following:

Dirty reads

Occur when a transaction reads the altered records of another transaction before the other transaction has
completed. This allows a data modification to occur on a record that might not be committed to the database.

Nonrepeatable reads

Occur when one transaction reads a record while another modifies it. So if the first transaction attempts to
reread the record, it can't find it.

Phantom records

Occur when a transaction A reads a group of records, but transaction B adds or changes the data so that more
records satisfy the query issued by the transaction A. Thus, transaction A possibly reads in the records of
transaction B as if they were committed to the database, when in fact the records from transaction B may still
be rolled back. Since transaction A is reading records that are not yet permanent, these are called phantom
records.

Table 3-5 shows the impact of various isolation level settings on the anomalies just listed.

Table 3-5. Isolation level and anomaly impact
Isolation level Dirty reads Nonrepeatable reads Phantom records

READ UNCOMMITTED Allowed Allowed Allowed

READ COMMITTED Not allowed Allowed Allowed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REPEATABLE READ Not allowed Not allowed Allowed

SERIALIZABLE Not allowed Not allowed Not allowed

DB2

Not supported. DB2 supports all isolation levels, but not through the SET TRANSACTION statement. Isolation levels are
controlled instead through the program preparation process and in server-level settings issued by the database
administrator.

Although DB2 supports the ANSI isolation levels, it uses different names for them. DB2 also allows users to set the
isolation for specific statements, including SELECT, DELETE, INSERT, and UPDATE. DB2 uses the following names for
the various isolation levels:

CS

Specifies cursor stability (serializable) as the isolation level.

NC

Specifies no commit as the isolation level. Not supported by DB2.

RR

Specifies repeatable read as the isolation level.

RS

Specifies read stability (read committed) as the isolation level.

UR

Specifies uncommitted read (read uncommitted) as the isolation level.

DB2 also supports two statements, CHANGE ISOLATION LEVEL and SET CURRENT ISOLATION, that change the way
that DB2 isolates data from other processes while a database is being accessed.

MySQL

MySQL allows you to set the transaction isolation level for the next individual transaction, the whole session, or globally
across the server, as follows:

SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL

[READ UNCOMMITTED |READ COMMITTED | REPEATABLE READ

 | SERIALIZABLE]

By default, MySQL sets the isolation level for the transaction that immediately follows the statement.

GLOBAL

Sets the transaction isolation for all subsequent transactions across all user sessions or system threads.

SESSION

Sets the transaction isolation level for all subsequent transactions of the current session.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRANSACTION ISOLATION LEVEL

Sets a specific transaction isolation level, as described in earlier in the SET TRANSACTION Statement section.

When omitted, MySQL defaults to the REPEATABLE READ isolation level.

The SUPER privilege is required to set a GLOBAL transaction isolation level. You can also set the default isolation level
via the MYSQL command line executable using the -transaction-isolation='' switch. Following is an example that sets the all
subsequent threads (both user and system threads) to a serializable transaction isolation level:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Oracle

Oracle allows you to set a transaction as read-only or read-write, set the transaction isolation level, or specify a specific
rollback segment for your transactions.

SET TRANSACTION { [READ ONLY | READ WRITE]

| [ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE}]

| [USE ROLLBACK SEGMENT segment_name]

| NAME 'transaction_name'};

where:

READ ONLY

Sets the next transaction as read-only and serializable. This option is not available to the user SYS. The only
statements permitted in read-only sessions are SELECT, ALTER SESSION, ALTER SYSTEM, LOCK TABLE, and
SET ROLE.

READ WRITE

The default transaction style in Oracle. It allows transactions to read and write data.

READ COMMITTED

The default transaction isolation level in Oracle. The same as the ANSI standard.

SERIALIZABLE

Sets the transaction isolation level to the ANSI serializable level and requires the COMPATIBLE init parameter to
be set to 7.3.0 or higher.

USE ROLLBACK SEGMENT segment_name

Sets the next read-write transaction to be written to a specific Oracle rollback segment identified by
segment_name. Because it applies only to the current transaction, USE ROLLBACK SEGMENT should be the first
statement in the transaction. This option is not compatible with the READ ONLY option. The rollback segment
must already exist or else this statement will fail.

NAME

Assigns a name of 255 characters or less to the current transaction. This option is useful in distributed
transaction processing environments, for two-phase commits, because it lets you easily identify which local
transactions belong to a single distributed transaction.

The USE ROLLBACK SEGMENT variant can be useful for performance tuning by allowing you to direct long-running
transactions to rollback segments large enough to hold them, while small transactions could be directed to small
rollback segments that might be small enough to be retained in cache.

The SET TRANSACTION statement should be the first statement in any SQL batch, though Oracle treats it virtually the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SET TRANSACTION statement should be the first statement in any SQL batch, though Oracle treats it virtually the
same as the START TRANSACTION statement. So one could be substituted for the other.

In the following example, the query reports from a bi-weekly process on the Chicago server while avoiding impact from
any other users who might be updating or inserting records:

SET TRANSACTION READ ONLY NAME 'chicago';

SELECT prod_id, ord_qty

FROM sales

WHERE stor_id = 5;

In another case, late-night batch processing might create a huge transaction that would overflow all but the rollback
segment created to support that one transaction:

SET TRANSACTION USE ROLLBACK SEGMENT huge_tran_01;

PostgreSQL

SET TRANSACTION in PostgreSQL impacts the new transaction you are beginning only. Consequently, you may have to
issue this statement before each new transaction.

SET TRANSACTION ISOLATION LEVEL {READ COMMITTED | SERIALIZABLE};

where:

READ COMMITTED

Sets the transaction isolation level to the ANSI level READ COMMITTED. This is the default.

SERIALIZABLE

Sets the transaction isolation level to the ANSI level SERIALIZABLE.

By default, PostgreSQL supports the READ COMMITTED transaction isolation level. You can set the default transaction
isolation level for all transactions in the session by using either of the following commands:

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL

{ READ COMMITTED | SERIALIZABLE }

SET default_transaction_isolation =

 { 'read committed' | 'serializable' }

Of course, you can then override the isolation level of any subsequent transaction using the SET TRANSACTION
statement.

For example, you can set the next transaction to the serializable transaction isolation level:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Alternately, you could set all the transactions in an entire session to serializable:

SET SESSION CHARACTERISTICS AS TRANSACTION

 ISOLATION LEVEL SERIALIZABLE;

SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

SET TRANSACTION in SQL Server sets the isolation level for an entire session. All queries that follow a SET
TRANSACTION statement run under the isolation level set by the statement until it is otherwise changed.

SET TRANSACTION ISOLATION LEVEL

{ READ COMMITTED

| READ UNCOMMITTED

| REPEATABLE READ

| SERIALIZABLE}

where:

READ COMMITTED

Sets the transaction isolation level to the ANSI level READ COMMITTED. This is the default.

READ UNCOMMITTED

Sets the transaction isolation level to the ANSI level READ UNCOMMITTED. This has the same effect as the
NOLOCK optimizer hint.

REPEATABLE READ

Sets the transaction isolation level to the ANSI level REPEATABLE READ.

SERIALIZABLE

Sets the transaction isolation level to the ANSI level SERIALIZABLE. Similar results can be achieved in SQL
Server using the HOLDLOCK optimizer hint.

For example, the following command lowers the transaction isolation level for all SELECT statements during the session
from READ COMMITTED to REPEATABLE READ:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

GO

See Also

COMMIT
ROLLBACK

START TRANSACTION Statement

The START TRANSACTION statement allows you to perform all the functions of SET TRANSACTION while also initiating a
new transaction.

Platform Command

DB2 Not supported

MySQL Supported, with limitations

Oracle Not supported

PostgreSQL
Not supported;

see BEGIN TRAN below

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server
Not supported;

see BEGIN TRAN below

SQL2003 Syntax

START TRANSACTION [READ ONLY | READ WRITE]

 [ISOLATION LEVEL {READ COMMITTED | READ UNCOMMITTED |

 REPEATABLE READ | SERIALIZABLE}

 [DIAGNOSTIC SIZE int]

According to the ANSI standard, the only difference between SET and START is that SET is considered outside of the
current transaction, while START is considered the beginning of a new transaction. Thus, SET TRANSACTION settings
apply to the next transaction, while START TRANSACTION settings apply to the current transaction

While only MySQL supports the START TRANSACTION statement, three of the vendors (MySQL, PostgreSQL, and SQL
Server) support a similar command, BEGIN [TRAN[SACTION]] and its synonym BEGIN [WORK]. BEGIN TRANSACTION
declares an explicit transaction, but it does not set isolation levels.

Rules at a Glance

The only significant rule of the START TRANSACTION statement is that you must use this statement to control the
access mode, isolation level, or diagnostic size of the current transaction. Once a new transaction starts, you must
either issue new values for the setting(s) or rely on the default.

Most database platforms allow you to implicitly control transactions, using what is commonly called autocommit mode.
In autocommit mode, the database treats each statement as a transaction in and of itself, complete with an implicit
BEGIN TRAN and COMMIT TRAN statement.

The alternative to autocommit mode is to manually control each transaction explicitly. Under explicit transaction control,
you declare each new transaction with the START TRANSACTION statement. A new transaction may also start implicitly
any time a transaction-initiating statement is issued, such as INSERT, UPDATE, DELETE, or SELECT. The transaction is
not committed or rolled back until either COMMIT or ROLLBACK statements are explicitly issued.

Some platforms, namely DB2 and Oracle, do not support the explicit declaration of a new transaction using START
TRANSACTION, but they do support explicitly committing, savepointing, and rolling back a transaction. Other platforms,
such as MySQL, PostgreSQL, and SQL Server, allow you to both explicitly declare a transaction with START
TRANSACTION and to explicitly commit, savepoint, and roll back the transaction.

Programming Tips and Gotchas

Many of the platforms discussed in this book run in autocommit mode by default. Therefore, it is a good rule of thumb
to only use explicitly declared transactions if you intend to do so for all transactions in a session. In other words, do not
mix implicitly declared transactions and explicitly declared transactions in a single session. Each transaction that is
explicitly declared can only be made permanent with the COMMIT statement. Similarly, any transaction that fails or
needs to be discarded must be explicitly undone with the ROLLBACK statement.

Be sure to issue START in a pair with either COMMIT or ROLLBACK. Otherwise, the DBMS
may not complete the transaction(s) until it encounters COMMIT or ROLLBACK. Omitting
timely COMMITs (or ROLLBACKs) could lead potentially to huge or poorly planned
transactions.

It is a good idea to issue an explicit rollback or commit after one or a few statements because long-running transactions
can lock up resources, thus preventing other users from accessing those resources. And don't forget to commit (or roll
back)! Long-running or very large transaction batches can fill up the rollback segments or transaction logs of a
database, even if those files are small.

DB2

Not supported. Transactions in DB2 are started implicitly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Not supported. Transactions in DB2 are started implicitly.

MySQL

MySQL normally runs in autocommit mode, which means changes are automatically saved to disk when completed. If a
change fails for any reason, it is automatically rolled back.

MySQL supports START TRANSACTION, but it is merely a synonym for BEGIN. You can suspend autocommit for one or
several statements using the BEGIN syntax:

BEGIN [WORK]

where:

BEGIN

Marks the beginning of one or more transactions.

WORK

An optional keyword with no effect.

Issuing the following command can disable autocommit mode for all sessions and threads:

SET AUTOCOMMIT=0

Once you have disabled autocommit, the COMMIT statement is required to store any and every data modification to
disk, and the ROLLBACK statement is required to undo changes made during a transaction. Disabling autocommit is
only effective with "transaction-safe tables" such as InnoDB or BDB tables. Disabling autocommit on non-transaction
safe tables has no effect — autocommit will still be enabled.

Earlier versions of MySQL use an update log. However, the update log does not support
ANSI transactions unless the tables are defined as InnoDB or BDB.

Transactions are stored in the binary log in a single write operation when the COMMIT statement is issued. Here's an
example:

BEGIN;

 SELECT @A := SUM(salary)

 FROM employee

 WHERE type=1;

 UPDATE payhistory SET summmary=@A WHERE type=1;

COMMIT;

Rollbacks issued against non-transactional tables fail with the error ER_WARNING_NOT_COMPLETE_ROLLBACK,
but transaction safe tables will be restored as expected.

Oracle

Not supported. Transactions in Oracle are started implicitly. Refer to SET TRANSACTION on the Oracle platform for
more information about how Oracle controls individual transactions.

PostgreSQL

The PostgreSQL syntax is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PostgreSQL syntax is:

BEGIN [WORK | TRANSACTION]

where:

BEGIN

Marks the beginning of one or more transactions.

WORK

An optional keyword with no effect.

TRANSACTION

An optional keyword with no effect.

PostgreSQL normally runs in autocommit mode where each data modification statement or query is its own transaction.
PostgreSQL applies an implicit COMMIT for a transaction that completes without an error. PostgreSQL also automatically
issues a ROLLBACK statement at the end of a statement that fails. The BEGIN statement allows explicit COMMIT or
ROLLBACK of a transaction, which may then consist of multiple statements.

Manually coded transactions are much faster in PostgreSQL than are autocommitted transactions. The SET
TRANSACTION ISOLATION LEVEL should be set to SERIALIZABLE just after the BEGIN statement to bolster the
transaction isolation. PostgreSQL allows many data-modification statements (INSERT, UPDATE, DELETE) within a BEGIN
. . . COMMIT block. However, when the COMMIT command is issued, either all or none of the transaction takes place,
depending on the success or failure of the command.

BEGIN has a separate usage on database platforms that support their own procedural
language, namely Oracle and SQL Server. In these platforms, BEGIN, without the keyword
TRANSACTION, is used to mark a new block of procedural code. For this reason, you are
advised to include the TRANSACTION keyword for any transactions you write on
PostgreSQL. Otherwise, you will face some complicated migration issues, should you ever
move your code to Oracle or SQL Server.

Following is an example of BEGIN TRANSACTION in PostgreSQL:

BEGIN TRANSACTION;

 INSERT INTO jobs(job_id, job_desc, min_lvl, max_lvl)

 VALUES(15, 'Chief Operating Officer', 185, 135)

COMMIT;

SQL Server

Microsoft SQL Server supports the BEGIN TRANSACTION statement rather than the ANSI START TRANSACTION
statement. It also supports a couple of extensions that facilitate transaction backup and recovery. The Microsoft SQL
Server syntax is:

BEGIN TRAN[SACTION] [transaction_descriptor

 [WITH MARK ['log_descriptor']]]

where:

TRAN[SACTION]

Marks the beginning of a transaction. SQL Server allows either TRAN or TRANSACTION.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Marks the beginning of a transaction. SQL Server allows either TRAN or TRANSACTION.

transaction_descriptor

An up to 32-character name used to identify a transaction, or it can be a variable string datatype (CHAR,
NCHAR, VARCHAR, or NVARCHAR) variable up to 32 characters in size. When working with nested transactions,
only name the outermost transaction.

WITH MARK log_descriptor

Tells SQL Server to place a mark of name log_descriptor in the transaction log. This allows SQL Server to restore
a transaction log up to the specified log_descriptor. In a sense, this allows point in time recovery based on the
name of the mark for database set to FULL recovery mode. WITH MARK must be used in conjunction with a
named transaction.

When nesting transactions, only the outermost BEGIN . . . COMMIT or BEGIN . . . ROLLBACK pair should reference the
transaction name (if it has one). In general, we recommend avoiding nested transactions.

Here is a SQL Server set of INSERT statements, all performed as a single transaction:

BEGIN TRANSACTION

 INSERT INTO sales VALUES('7896','JR3435','Oct 28 2003',25,

 'Net 60','BU7832')

 INSERT INTO sales VALUES('7901','JR3435','Oct 28 2003',17,

 'Net 30','BU7832')

 INSERT INTO sales VALUES('7907','JR3435','Oct 28 2003',6,

 'Net 15','BU7832')

COMMIT

GO

If, for any reason, any one of these INSERT statements had to wait for completion, they would all have to wait since
they are treated as a single transaction.

See Also

COMMIT
ROLLBACK

SUBQUERY Substatement

A subquery is a nested query. Subqueries may appear in various places within a SQL statement.

Platform Command

DB2 Supported

MySQL Supported with limitations

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL supports the following types of subquery:

Scalar subqueries

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scalar subqueries

Subqueries that retrieve a single value. These are the most widely supported type of subquery among the
various database platforms.

Table subqueries

Subqueries that retrieve more than one values. This type of subquery retrieves more than a row of values.

Nested table subqueries

Subqueries that retrieve more than one column and more than one row.

Scalar and vector subqueries can, on some platforms, appear as part of the expression in a SELECT list of items,
WHERE clause, and HAVING clause. Nested table subqueries tend to appear in the FROM clause of SELECT statements.

A correlated subquery is a subquery that is dependent upon a value in an outer query. Consequently, the inner query is
executed once for every record retrieved in the outer query. Since subqueries can be nested many layers deep, a
correlated subquery may reference any level in the main query higher than its own level.

Different rules govern the behavior of a subquery depending on which clause it appears in. The level of support
amongst the database platforms also varies. Some platforms support subqueries in all clauses mentioned earlier
(SELECT, FROM, WHERE and HAVING), while others support subqueries in only one or two of the clauses.

Subqueries are usually associated with the SELECT statement. Since subqueries may appear in the WHERE clause, they
can be used in any SQL statement that supports a WHERE clause, including SELECT, INSERT...SELECT, DELETE, and
UPDATE statements.

SQL2003 Syntax

Scalar, table, and nested table subqueries are represented in the generalized syntax below:

SELECT column1, column2, ... (scalar subquery)

FROM table1, ... (nested table subquery)

 AS subquery_table_name]

WHERE foo = (scalar subquery)

 OR foo IN (table subquery)

Correlated subqueries are more complex because the value of such subqueries is dependent on values retrieved in their
main queries. For example:

SELECT column1

FROM table1 AS t1

WHERE foo IN

 (SELECT value1

 FROM table2 AS t2

 WHERE t2.pk_identifier = t1.fk_identifier)

Note that the IN clause is for example purposes only. Any comparison operator may be used).

Keywords

scalar subquery

Includes a scalar subquery in the SELECT item list or in the WHERE or HAVING clause of a query.

nested table subquery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Includes a nested table subquery only in the FROM clause in conjunction with the AS clause.

table subquery

Includes a table subquery only in the WHERE clause with operators such as IN, ANY, SOME, EXISTS, or ALL that
act upon multiple values. Table subqueries return one or more rows containing a single value.

Rules at a Glance

Subqueries allow you to return one or more values and nest them inside a SELECT, INSERT, UPDATE, or DELETE
statement, or inside another subquery. Subqueries can be used wherever expressions are allowed. Subqueries also can
often be replaced with a JOIN statement. Depending on the DBMS, subqueries may perform less quickly than joins.

Subqueries are always enclosed in parentheses.

Subqueries may appear in a SELECT clause with an item list containing at least one item, a FROM clause for referencing
one or more valid tables or views, and in WHERE and HAVING clauses.

Scalar subqueries can return only a single value. Certain operators in a WHERE clause expect only one value, such as
=, <, >, >=, <=, and <> (or !=). If a subquery returns more than one value against an operator that expects a single
value, the entire query will fail. On the other hand, table subqueries may return multiple values, but are usable only
with multivalue expressions like [NOT] IN, ANY, ALL, SOME, or [NOT] EXISTS.

Nested table subqueries may appear only in the FROM clause and should be aliased by the AS clause. The result set
returned by the nested table subquery, sometimes called a derived table, offers similar functionality to a view (see
CREATE VIEW). Every column returned in the derived table need not be used in the query, though they can all be acted
upon by the outer query.

Correlated subqueries typically appear as a component of a WHERE or HAVING clause in the outer query (and, less
commonly, in the SELECT item list) and are correlated through the WHERE clause of the inner query (that is, the
subquery). (Correlated subqueries can also be used as nested table subqueries, though this is less common.) Be sure to
include a WHERE clause in such a subquery that evaluates based on a correlating value from the outer query. (The
example for a correlated query in the earlier ANSI syntax diagram illustrates this requirement.) It is important to
specify a table alias, called a correlation name, using the AS clause or other alias shortcut for every table referenced in
a correlated query, both in the outer and inner query. Correlation names avoid ambiguity and help the DBMS quickly
resolve the tables involved in the query.

All ANSI-compliant subqueries comply with the following short list of rules:

A subquery cannot include an ORDER BY clause.

A subquery cannot be enclosed in an aggregate function. The following query is invalid: SELECT foo FROM table1
WHERE sales >= AVG(SELECT column1 FROM sales_table...). You can get around this limitation by performing the
aggregation in the subquery rather than in the outer query.

Programming Tips and Gotchas

For most all vendor platforms, subqueries should not reference large object datatypes (e.g., CLOB or BLOB on Oracle
and IMAGE or TEXT on SQL Server), or array datatypes (such as TABLE or CURSOR on SQL Server).

The platforms all support subqueries, but not every vendor supports every type of subquery. Table 3-6 tells you
whether your platform supports each type of subquery.

Table 3-6. Platform-specific subquery support
Platform DB2 MySQL Oracle PostgreSQL SQL Server

Scalar subquey in SELECT item list ચ ચ ચ X ચ

Scalar subquey in WHERE/HAVING clause ચ ચ ચ ચ ચ

Vector subquery in WHERE/HAVING clause ચ ચ ચ ચ ચ

Nested table in FROM clause ચ ચ ચ ચ ચ

Correlated subquery in WHERE/HAVING clause ચ ચ ચ ચ ચ

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subqueries are not relegated to SELECT statements only. They may also be used in INSERT, UPDATE, and DELETE
statements that include a WHERE clause. Subqueries are often used for the following purposes:

To identify the rows inserted into the target table using an INSERT...SELECT statement, CREATE
TABLE...SELECT statement, or SELECT...INTO.

To identify the rows of a view or materialized view in a CREATE VIEW statement.

To identify value(s) assigned to existing rows using an UPDATE statement.

To identify values for conditions in WHERE and HAVING clauses of SELECT, UPDATE, and DELETE statements.

To build a view of a table(s) on the fly (i.e., nested table subqueries).

Examples

This section shows subquery examples that are equally valid on DB2, MySQL, Oracle, PostgreSQL, and SQL Server.

A simple scalar subquery is shown in the SELECT item list of the following query:

SELECT job, (SELECT AVG(salary) FROM employee) AS "Avg Sal"

FROM employee

Nested table subqueries are functionally equivalent to querying a view. In the following, we query the education level
and salary in a nested table subquery, and then perform aggregations on the values in the derived table in the outer
query.

SELECT AVG(edlevel), AVG(salary)

FROM (SELECT edlevel, salary

 FROM employee) AS emprand

GROUP BY edlevel

Remember that this query may fail, depending on the platform, without the AS clause to
associate a name with the derived table.

The following query shows a standard table subquery in the WHERE clause expression. In this case, we want all project
numbers for employees in the department 'A00':

SELECT projno

FROM emp_act

WHERE empno IN

 (SELECT empno

 FROM employee

 WHERE workdept = 'A00')

The above subquery is executed only once for the outer query.

In the next example, we want to know the names of employees and their level of seniority. We get this result set
through a correlated subquery:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

through a correlated subquery:

SELECT firstname, lastname,

 (SELECT COUNT(*)

 FROM employee senior

 WHERE employee.hiredate > senior.hiredate) as senioritype

FROM employee

Unlike the previous subquery, this subquery is executed one time for every row retrieved by the outer query. In a query
like this, the total processing time could be very long, since the inner query may potentially execute many times for a
single result set.

Correlated subqueries depend on values retrieved by the outer query before being able to complete the processing of
the inner query. They are tricky to master, but offer unique programmatic capabilities. The following example returns
information about orders where the quantity sold in each order is less than the average quantity in other sales for that
title:

SELECT s1.ord_num, s1.title_id, s1.qty

FROM sales AS s1

WHERE s1.qty <

 (SELECT AVG(s2.qty)

 FROM sales AS s2

 WHERE s2.title_id = s1.title_id)

For this example, you can accomplish the same functionality using a self join. However, there are situations in which a
correlated subquery may be the only easy way to do what you need.

The next example shows how a correlated subquery might be used to update values in a table:

UPDATE course SET ends =

 (SELECT min(c.begins) FROM course AS c

 WHERE c.begins BETWEEN course.begins AND course.ends)

WHERE EXISTS

 (SELECT * FROM course AS c

 WHERE c.begins BETWEEN course.begins AND course.ends)

Similarly, you can use a subquery to determine which rows to delete. This example uses a correlated subquery to delete
rows from one table based on related rows in another table:

DELETE FROM course

WHERE EXISTS

 (SELECT * FROM course AS c

 WHERE course.id > c.id

 AND (course.begins BETWEEN c.begins

 AND c.ends OR course.ends BETWEEN c.begins AND c.ends))

DB2

DB2 supports the ANSI standard subquery types. It allows scalar subqueries in the SELECT item list, nested table
subqueries in the FROM clause, and scalar and vector subqueries in the expressions of WHERE and HAVING clauses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subqueries in the FROM clause, and scalar and vector subqueries in the expressions of WHERE and HAVING clauses.
DB2 allows correlated subqueries in the SELECT item list and in WHERE and HAVING clauses.

MySQL

MySQL supports nested table subqueries as select items and in the WHERE clause.

Oracle

Oracle supports ANSI standard subqueries, though it uses a different nomenclature. In Oracle, a nested table subquery
that appears in the FROM clause is called an inline view. That makes plenty of sense because nested table subqueries
are basically views built on the fly. Oracle calls a subquery that appears in the WHERE clause and HAVING clause of a
query a nested subquery. Oracle allows correlated subqueries in the SELECT item list and in the WHERE and HAVING
clauses.

PostgreSQL

PostgreSQL supports ANSI standard subqueries in the FROM, WHERE, and HAVING clauses. However, subqueries
appearing in a HAVING clause cannot include ORDER BY, FOR UPDATE, and LIMIT clauses. PostgreSQL does not
currently support subqueries in the SELECT item list.

SQL Server

SQL Server supports ANSI standard subqueries. Scalar subqueries can be used almost anywhere a standard expression
is allowed. Subqueries in SQL Server cannot include the COMPUTE or FOR BROWSE clauses. They can include the
ORDER BY clause if the TOP clause is also used.

See Also

DELETE
INSERT
SELECT
UPDATE
WHERE

TRUNCATE TABLE Statement

The TRUNCATE TABLE statement, a non-ANSI statement, irrevocably removes all rows from a table without logging the
individual row deletes. It quickly erases all the records in a table without altering the table structure, taking little or no
space in the redo logs or transaction logs. However, since a truncate operation is not logged, the TRUNCATE TABLE
statement cannot be rolled back once it is issued.

Platform Command

DB2 Not supported

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

Defacto Standard Syntax

Officially, TRUNCATE TABLE is not an ANSI standard command. However, it is a commonly supported statement
standard that follows this format:

TRUNCATE TABLE table_name

Keywords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keywords

table_name

The name of any valid table within the current database or schema context.

Rules at a Glance

The TRUNCATE TABLE statement has the same effect on a table as a DELETE statement with no WHERE clause; both
erase all rows in a given table. However, there are two important differences. TRUNCATE TABLE is faster and it is non-
logged, meaning it cannot be rolled back if issued in error. Plus, TRUNCATE TABLE does not activate triggers, while the
DELETE statement does.

This command should be issued manually. We strongly encourage you not to place it into automated scripts or
production systems that contain irreplaceable data. It cannot be paired with transaction control statements such as
BEGIN TRAN or COMMIT.

Programming Tips and Gotchas

Because the TRUNCATE TABLE statement is not logged, it is generally used only in development databases. Use it in
production databases with caution!

We strongly advise that you do not write TRUNCATE TABLE statements into the stored
procedures or functions of a production application because most platforms do not log the
operation nor can they recover an improperly issued TRUNCATE statement.

The TRUNCATE TABLE command will fail if another user has a lock on the table at the time the statement is issued.
TRUNCATE TABLE does not activate triggers, but it will work when they are present. However, it won't work when
foreign key constraints are in place on a given table.

DB2

As of Version 8, DB2 does not support the TRUNCATE TABLE statement.

MySQL

MySQL supports a basic format for the TRUNCATE TABLE statement starting in Version 3.23:

TRUNCATE TABLE name

MySQL achieves the results of a TRUNCATE TABLE command by dropping and recreating the affected table. Since
MySQL stores each table in a file called table_name.frm, the table_name.frm file must exist in the directory containing
the database files for the command to work properly.

For example, to remove all data from the publishers table:

TRUNCATE TABLE publishers

Oracle

Oracle allows a table or an indexed cluster (but not a hash cluster) to be truncated. Oracle's syntax is:

TRUNCATE { CLUSTER [owner.]cluster

 | TABLE [owner.]table [{PRESERVE | PURGE} MATERIALIZED VIEW LOG]}

[{DROP | REUSE} STORAGE]

TRUNCATE TABLE was first introduced by Oracle, and other platforms soon added support for the statement. Oracle has
added more features to this statement than are commonly implemented by other vendors. Oracle's syntax elements are
as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as follows:

CLUSTER | TABLE

Specifies whether an index cluster or a table will be truncated. An index cluster is a physical construct that
stores related rows of two tables next to each other physically on disk to speed up joins by lowering I/O.
SNAPSHOT LOG and STORAGE options are not available when truncating an index cluster.

PRESERVE MATERIALIZED VIEW LOG

Maintains any snapshot logs when a master table is truncated.

PURGE MATERIALIZED VIEW LOG

Clears out any snapshot logs.

DROP STORAGE

Causes the disk space freed by the deleted rows to be deallocated.

REUSE STORAGE

Causes the space allocated to a table to remain allocated to that table, though empty.

For example:

TRUNCATE TABLE scott.authors

 PRESERVE SNAPSHOT LOG REUSE STORAGE

This example command erases all records in the table scott.authors. It also maintains the existing snapshot log and
allows the table to keep and reuse the storage space already allocated to it.

PostgreSQL

PostgreSQL varies little from the defacto industry standard, but does add the optional TABLE keyword:

TRUNCATE [TABLE] name

The TABLE component of the command is optional. For example, the following command erases all the records in the
authors table on a PostgreSQL database:

TRUNCATE authors

SQL Server

SQL Server supports the defacto industry standard.

See Also

DELETE

UNION Set Operator

The UNION set operator combines the result sets of two or more queries, showing all the rows returned by each of the
queries as one, single result set.

UNION is in a class of keyword called a set operator. Other set operators include INTERSECT and EXCEPT/MINUS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UNION is in a class of keyword called a set operator. Other set operators include INTERSECT and EXCEPT/MINUS.
(EXCEPT and MINUS are functually equivalent. EXCEPT is the ANSI standard.) All set operators are used to
simultaneously manipulate the result sets of two or more queries; hence the term "set operators."

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

SQL2003 Syntax

There are technically no limits to the number of queries that you may combine with the UNION statement. The general
syntax is:

<SELECT statement1>

UNION [ALL | DISTINCT]

<SELECT statement2>

UNION [ALL | DISTINCT]

...

Keywords

UNION

Determines which result sets will be combined into a single result set. Duplicate rows are, by default, excluded.

ALL

Combines duplicate rows from all result sets.

DISTINCT

Eliminates duplicate rows from the final result set. Columns containing a NULL value are considered duplicates.
(If neither ALL nor DISTINCT are used, DISTINCT behavior is the default.)

Rules at a Glance

There is only one significant rule to remember when using UNION: the order, number, and datatype of columns should
be the same in all queries.

The datatypes do not have to be identical, but they should be compatible. For example, CHAR and VARCHAR are
compatible datatypes. By default, the result set will default to the largest of two (or more) compatible datatypes, and a
query that unions three CHAR columns (CHAR(5), CHAR(10), and CHAR(12)) will display the results in the CHAR(12)
format with extra space padded onto the smaller column results.

Programming Tips and Gotchas

Even though the ANSI standard calls for INTERSECT to take precedence over other set operators in a single statement,
many platforms evaluate all set operators with equal precedence. Explicitly control the precedence of set operators
using parentheses. Otherwise, the DBMS is likely to evaluate them from leftmost to rightmost expression.

Depending on the platform, DISTINCT can incur a significant performance cost, since it often adds a second pass
through the results to winnow out duplicate records. ALL can be specified in any instance where no duplicate records
are expected (or where duplicate records are OK) for faster results.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are expected (or where duplicate records are OK) for faster results.

According to the ANSI standard, only one ORDER BY clause is allowed in the entire query. Include it at the end of the
last SELECT statement. In order to avoid column and table ambiguity, be sure to alias each column for each table with
the same respective alias. However, for column naming purposes, only the alias in the first query is used to each
column in the SELECT...UNION query. For example:

SELECT au_lname AS "lastname", au_fname AS "firstname"

FROM authors

UNION

SELECT emp_lname AS "lastname", emp_fname AS "firstname"

FROM employees

ORDER BY lastname, firstname

Also, while your query may have compatible datatyped columns throughout the queries in the UNION, there may be
some variation in behavior across the DBMS platforms, especially with regard to varying length of the columns. For
example, if the au_lname column in the first query is markedly longer than the emp_lname column in the second
query, each platform may apply different rules as to which length is used. In general, though, the platforms will choose
the longer (and less restrictive) column size for use in the result set.

Each DBMS may apply its own rules as to which column name is used if the columns across the tables have different
names. In general, the column names of the first query are used.

DB2

DB2 supports the UNION and UNION ALL keywords of the ANSI standard, plus the VALUES clause:

<SELECT statement1>

UNION [ALL]

<SELECT statement2>

UNION [ALL]

...

[VALUES (expression1, expression2,

 ...)] [, (expression1, expression2, ...)] [,...]

where:

VALUES

Allows you to specify one or more sets of hand-coded values as records in the combined result set. Each set of
hand-coded values must contain the exact same number of columns as the queries in the UNION. Separate
rows of hard-coded values in the record set using commas.

Although UNION DISTINCT is not supported, UNION is the functional equivalent. The CORRESPONDING clause is not
supported.

The datatypes LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, and structured types are not
usable in a UNION (but are usable in UNION ALL).

If the result set has the same column name across tables, that name is used. If, however, the tables have different
column names, DB2 generates a new column name. That column is then unusable in the ORDER BY clause or the FOR
UPDATE clause.

If multiple set operations are used in a single query, those enclosed in parentheses are evaluated first. Then, the
queries are evaluated in left-to-right order. However, all INTERSECT operations are performed before any UNION and
EXCEPT operations. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXCEPT operations. For example:

SELECT empno

FROM employee

WHERE workdept LIKE 'E%'

UNION

SELECT empno

FROM emp_act

WHERE projno IN ('IF1000', 'IF2000', 'AD3110')

UNION

VALUES ('AA0001'), ('AB0002'), ('AC0003')

The example above retrieves all employee IDs from the employee table that are in any department that starts with "E,"
as well as any employee IDs from the employee accounts (emp_act) table working in the projects 'IF1000', 'IF2000',
and 'AD3110', and always includes employee IDs 'AA0001', 'AB0002', and 'AC0003'.

MySQL

Not supported

Oracle

Oracle supports the UNION and UNION ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

UNION [ALL]

<SELECT statement2>

UNION [ALL]

...

Oracle does not support the CORRESPONDING clause. UNION DISTINCT is not supported, but UNION is the functional
equivalent. Oracle does not support UNION or UNION ALL on queries under the following circumstances:

Queries containing columns of LONG, BLOB, CLOB, BFILE, or VARRAY datatype.

Queries containing a FOR UPDATE clause or a TABLE collection expression.

If the first query in the set operation contains any expressions in the select item list, then include the AS statement to
associate an alias with the column. Also, only the last query in the set operation may contain an ORDER BY clause. For
example, you could find out all unique store IDs without duplicates using this query:

SELECT stor_id FROM stores

UNION

SELECT stor_id FROM sales;

PostgreSQL

PostgreSQL supports the UNION and UNION ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<SELECT statement1>

UNION [ALL]

<SELECT statement2>

UNION [ALL]

...

PostgreSQL does not support UNION or UNION ALL on queries with a FOR UPDATE clause. PostgreSQL does not support
the CORRESPONDING clause. UNION DISTINCT is not supported, but UNION is the functional equivalent.

The first query in the set operation may not contain an ORDER BY clause or a LIMIT clause. Subsequent queries in the
UNION or UNION ALL set operation may contain these clauses, but such queries must be enclosed in parentheses.
Otherwise, the rightmost occurrence of ORDER BY or LIMIT will be assumed to apply to the entire set operation.

For example, we could find all authors and all employees whose last name starts with "P":

SELECT a.au_lname

FROM authors AS a

WHERE a.au_lname LIKE 'P%'

UNION

SELECT e.lname

FROM employee AS e

WHERE e.lname LIKE 'W%';

SQL Server

SQL Server supports the UNION and UNION ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

UNION [ALL]

<SELECT statement2>

UNION [ALL]

...

SQL Server does not support the CORRESPONDING clause. UNION DISTINCT is not supported, but UNION is the
functional equivalent.

You can use SELECT...INTO with UNION or UNION ALL, but INTO may only appear in the first query of the union.
Special keywords, such as SELECT TOP and GROUP BY...WITH CUBE, are usable with all queries in a union. However,
be sure to include them with all queries in the union. If you use SELECT TOP or GROUP BY...WITH CUBE in only one
query, the operation will fail.

Each query in a union must contain the same number of columns. The datatypes of the columns do not have to be
identical, but they must implicitly convert. For example, mixing VARCHAR and CHAR columns is acceptable. When
returning data, SQL Server uses the larger of the two columns when evaluating the size of the columns returned in the
result set. Thus, if a SELECT...UNION statement has a CHAR(5) column and a CHAR(10) column, it will display the data
of both columns as a CHAR(10) column. Numeric columns are converted to and displayed as the most precise datatype
in the union.

For example, the following query unions the results of two independent queries that use GROUP BY...WITH CUBE:

SELECT ta.au_id, COUNT(ta.au_id)

FROM pubs..titleauthor AS ta

JOIN pubs..authors AS a ON a.au_id = ta.au_id

WHERE ta.au_id >= '722-51-5454'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE ta.au_id >= '722-51-5454'

GROUP BY ta.au_id WITH CUBE

UNION

SELECT ta.au_id, COUNT(ta.au_id)

FROM pubs..titleauthor AS ta

JOIN pubs..authors AS a ON a.au_id = ta.au_id

WHERE ta.au_id < '722-51-5454'

GROUP BY ta.au_id WITH CUBE

See also

EXCEPT
INTERSECT
MINUS
SELECT

UPDATE Statement

The UPDATE statement changes existing data in a table. Use great caution when issuing an UPDATE statement without
a WHERE clause, since the statement then affects every row in the entire table.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

UPDATE [ONLY] {table_name | view_name}

SET {{column_name = { ARRAY [array_val [,...]] | DEFAULT |

 NULL | scalar_expression},

 column_name = { ARRAY | DEFAULT |

 NULL | scalar_expression}

 [,...] }

 | ROW = row_expression }

[WHERE search_condition | WHERE CURRENT OF cursor_name]

Keywords

ONLY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Restricts cascading of the updated values to any subtables of the target table or view. ONLY effects only typed
(object-oriented) tables and views. If used with a nontyped table or view, it causes an error.

table_name | view_name

The target table or view of the update statement. You need appropriate permissions on the target according to
the rules of the platform. Updates against views often have special rules. Generally, it is only advisable to
perform an UPDATE against a view if the view is representative of a single table.

SET

Assigns a specific value to a column or row.

column_name

Used in conjunction with SET, as in SET column1= 'foo'. Allows you to set a new value for the specified column.
You can update as many columns as you like in one statement, though you cannot update the same column
more than once in a single statement.

ARRAY [array_val [,...]]

Assigns the column to an array value or to an empty array (using ARRAY[]). This behavior is not widely
supported by DBMS platforms.

NULL

Sets the column to NULL.

DEFAULT

Sets the column to its default value as defined by a DEFAULT specification.

scalar_expression

Sets the column to any single value expression, such as a literal string or numeric value, a scalar function, or a
scalar subquery.

ROW

Used in conjunction with SET is a mutually exclusive option to SET column_name, as in SET ROW =
ROW('foo','bar'). This behavior is not widely supported by DBMS platforms.

row_expression

Used to set a value for each and every column in the table.

WHERE search_condition

Defines search criteria for the UPDATE statement using the search_condition to ensure that only the target rows
are updated. Any legal WHERE clause is acceptable. Typically, these criteria are evaluated against each row of
the table before the update is applied. If the search criteria is a subquery, the subquery is executed on each
row — potentially a long-running process.

WHERE CURRENT OF cursor_name

Restricts the UPDATE statement to the current row of a defined and opened cursor called cursor_name.

Rules at a Glance

The UPDATE statement can be used to modify the value of one or more columns of a table or view at a time. Typically,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The UPDATE statement can be used to modify the value of one or more columns of a table or view at a time. Typically,
you will update the values in one or more rows at a time. The new values must be scalar (except in row expressions
and arrays). That is, the new value must have a single, constant value at the time the transaction is executed, though it
can be literal or derived from a function call or subquery.

A basic UPDATE statement without a WHERE clause looks like this:

UPDATE authors

SET contract = 0

Without a WHERE clause, all authors in the authors table have their contract status set to zero (meaning they don't
have a contract any more). Similarly, values can be adjusted mathematically with an UPDATE statement:

UPDATE titles

SET price = price * 1.1

This UPDATE statement would increase all book prices by 10%.

You can set multiple values in one statement as here, where we set all author last name and first names to uppercase
letters:

UPDATE authors SET au_lname = UPPER(au_lname),

 au_fname = UPPER(au_fname);

Adding a WHERE clause to an UPDATE statement allows records in the table to be modified selectively:

UPDATE titles

SET type = 'pers_comp',

 price = (price * 1.15)

WHERE type = 'popular_com';

The above query makes two changes to any record of the type 'popular_com'. The command increases their price by
15% and alters their type to 'pers_comp'.

You can also invoke functions or subqueries to derive the values used in an UPDATE statement. In some cases, you
may wish to update the specific row that is being processed by a declared and open cursor. The following example
shows both concepts:

UPDATE titles SET ytd_sales = (SELECT SUM(qty)

 FROM sales

 WHERE title_id = 'TC7777')

WHERE CURRENT OF title_cursor;

This query assumes that you have declared and opened a cursor named title_cursor and that it is processing titles
with an ID of TC7777.

Sometimes you need to update values in a given table based on the values stored in another table. For example, if you
need to update the publication date for all the titles written by a certain author, you might find the author and list of
titles first through subqueries:

UPDATE titles

SET pubdate = 'Jan 01 2002'

WHERE title_id IN

 (SELECT title_id

 FROM titleauthor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FROM titleauthor

 WHERE au_id IN

 (SELECT au_id

 FROM authors

 WHERE au_lname = 'White'))

Programming Tips and Gotchas

The UPDATE statement alters values in existing records of a table or view. If you update a view, the view should include
all necessary (NOT NULL) columns, or else the statement may fail. Columns with a DEFAULT value can usually be safely
omitted.

The SET ROW clause is not widely supported among DBMS platforms. Avoid this clause. The WHERE CURRENT OF
clause is more commonly implemented on DBMS platforms, but must be used in conjunction with a cursor. Make sure
you understand the use and functionality of cursors before using this clause.

In an interactive user session, it is good practice to issue a SELECT statement using the same WHERE clause before
issuing the actual UPDATE statement. This precaution enables you to check all rows in the result set before actually
performing the UPDATE, helping ensure that you don't alter anything you don't mean to.

DB2

DB2 supports most of the standard structures found in the ANSI standard. It includes transaction control features using
a transaction isolation level clause (the WITH clause), as well as typed table and view modification, but does not include
the SET ROW clause.

UPDATE [ONLY] ({table_name | view_name}) AS alias

SET { {column_name1 = { DEFAULT | NULL | expression },

 column_name2 = { DEFAULT | NULL | expression }

 [,...] } |

 { (column_name1[..attribute_name],

 column_name2[..attribute_name][,...]) =

 ({DEFAULT | NULL | expression},

 {DEFAULT | NULL | expression}[,...]) |

 SELECT statement }

[WHERE {search_conditions | CURRENT OF cursor_name}]

[WITH { RR | RS | CS | UR }]

where:

AS alias

Specifies an alias for the target table or view. This is useful for UPDATE statements that involve lengthy WHERE
clauses or correlated subqueries.

..attribute_name

Specifies the attribute_name when updating a column that is a structured type.

WITH

Controls the transaction isolation level for the update statement (RR is repeatable read, RS is read stability, CS
is cursor stability, and UR is uncommitted read). See SET TRANSACTION for details on DB2's transaction
isolation levels.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isolation levels.

The UPDATE statement must have only one value assignment per column. A column value can be set only once in an
UPDATE statement. If any values of the update violate a constraint on the table or otherwise cause an error, then none
of the columns are updated. When updating the value of an identity column to the current identity value, just use
DEFAULT for that column. (DB2 fully supports updates on structure types, but they are neither commonly used nor
quick and easy to explain. Refer to the DB2 documentation for more details on updating structured types.) DB2 allows
parenthetical SET clauses where multiple target columns and values are assessed at once (see example later).

DB2 not only allows updates against standard tables and views, but also against typed (object-oriented) tables and
views. (Refer to CREATE TABLE and CREATE TYPE for more details on these.) There are some special rules for updating
against typed tables and views:

The object ID column is not updateable.

..attribute_name must be used in conjunction with a column_name that was previously defined as a user-defined
structured type. The attribute_name must be an attribute of the structured type identified as column_name.

Updating the column distribution statistics of a typed table requires specification of the subtable that first
introduced the column.

Multiple attribute assignments on the same structured type column occur in left-to-right order for a SET clause
in parentheses, or else in the order specified in the SET clause.

The same column may appear many times in a single UPDATE statement as long as each appearance sets a
value for a specific attribute_name.

Updating the URL value of DATALINK columns is the same as deleting and then re-inserting them. Updating a
DATALINK column with NULL is the same as deleting it. Updating the comment value of a DATALINK without relinking
requires passing an empty string for the URL value.

Here are two examples that show how DB2 updates multiple values at once using the standard SET clause:

UPDATE employee

SET job=NULL, salary=0, bonus=0, comm=0

WHERE workdept = 'E21'

 AND job <> 'MANAGER'

This statement could also be written using a parenthetical SET clause, as follows:

UPDATE employee

SET (job, salary, bonus, comm) = (NULL, 0, 0, 0)

WHERE workdept = 'E21'

 AND job <> 'MANAGER'

Here is an example of a DB2 update against a base table on a type called circles. The circles attributes are owner,
radius, X-axis center, and Y-axis center. Since the column C is defined as a type of circle, the UPDATE statement is
changing the attributes of a single column:

UPDATE CIRCLES

SET (OWNER, C..RADIUS_LENGTH, C..X_CENTER, C..Y_CENTER) =

 ('tony', 5, 18, 22)

WHERE ID = 15

MySQL

MySQL supports the ANSI standard with a few variations, including the LOW PRIORITY clause, the IGNORE clause, and
the LIMIT clause:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the LIMIT clause:

UPDATE [LOW PRIORITY] [IGNORE] table_name

SET column_name = {scalar_expression}

 [,...]

WHERE search_conditions

[ORDER BY column_name1 [{ASC | DESC}] [,...]]

[LIMIT integer]

where:

LOW PRIORITY

Tells MySQL to delay the execution of the UPDATE statement until no other client is reading from the table.

IGNORE

Tells MySQL to ignore any duplicate key errors generated by PRIMARY KEY and UNIQUE constraints. However,
only records that don't generate such errors will be updated.

ORDER BY

Tells MySQL to update the rows in the specified order (ascending or descending) of the columns specified.

LIMIT integer

Restricts the UPDATE action to a specific number of rows as designated by the integer value.

MySQL supports DEFAULT value assignment in the INSERT statement, but not currently in the UPDATE statement.

The following UPDATE would increase all prices in the titles table by 1:

UPDATE titles SET price = price + 1;

The following example limits the UPDATE to the first 10 records encountered in the titles table according to title_id.
Also, the value of price is updated twice. Those two updates of price are assessed from left to right. First, the price is
doubled, then it is increased by 1:

UPDATE titles

SET price = price * 2,

 price = price + 1

ORDER BY title_id

LIMIT 10;

Oracle

The Oracle implementation of UPDATE allows updates against views, materialized views, subqueries, and tables in an
allowable schema:

UPDATE [ONLY]

 { [schema.]{view_name | materialized_view_name |

 table_name}

 [@database_link] [alias]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [@database_link] [alias]

 {[PARTITION (partition_name)] |

 [SUBPARTITION (subpartition_name)]}

 | subquery [WITH {[READ ONLY] | [CHECK OPTION [CONSTRAINT constraint_name]]

 | [TABLE (collection_expression_name) [(+)]] }

SET {column_name1 [,...] = {expression [,...] | subquery} |

 VALUE [(alias)] = { value | (subquery)},

 {column_name1 [,...] = {expression [,...] | subquery} |

 VALUE [(alias)] = { value | (subquery)},

 [,...]

WHERE search_conditions | CURRENT OF cursor_name}

RETURNING expression [,...] INTO variable [,...];

Syntax elements for Oracle's version of UPDATE are:

ONLY

Tells Oracle not to update rows from any subviews. Applies only to views that belong to a hierarchy.

materialized_view_name

Applies the update statement to a pre-existing snapshot.

@database_link

Applies the update statement to a view or table on a remote server made available through a pre-existing
database link

alias

Specifies an alias for the table being updated. Oracle allows table aliases, but does not support the AS keyword
with UPDATE statements. Aliases can also be supplied for the VALUE clause of an UPDATE statement.

PARTITION

Applies the update to a named partition, rather than to an entire table. You are not required to name a partition
when updating a partitioned table, but doing so can, in many cases, help reduce the complexity of your WHERE
clause.

SUBPARTITION

Applies the update to a named subpartition, rather than to an entire table.

WITH READ ONLY

Specifies that the subquery cannot be updated. In some cases, an UPDATE transaction may actually alter the
records used in a subquery. The WITH READ ONLY clause prevents this from happening.

WITH CHECK OPTION

Tells Oracle to abort any changes to the updated table that would not appear in the result set of the subquery.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CONSTRAINT

Tells Oracle to further restrict changes based upon a specific constraint.

SET VALUE

Allows you to set the entire row value for any TABLE datatype. The SET VALUE clause is very similar to the
ANSI SET ROW clause. You can also specify a subquery that retrieves all values needed by the SET VALUE
clause.

RETURNING

Retrieves the rows affected by the command, whereas UPDATE normally only shows the number of rows
updated. When used for a single-row update, the values of the row can be stored in PL/SQL variables and bind
variables. When used for a multirow delete, the values of the rows are stored in bind arrays.

INTO

Indicates the variables into which the values brought back by the RETURNING clause should be stored.

Oracle has some important rules about issuing UPDATE statements:

UPDATE statements are not allowed against tables or the base tables of views containing a domain index with a
status of FAILED or IN PROGRESS. UPDATE statements are also not allowed against any table having an index
partition with a status of UNUSABLE. (You can avoid the index partition problem by setting the
SKIP_UNUSABLE_INDEXES session parameter to TRUE.)

Updates against views can be problematic if a view's defining query contains a join, an aggregate function, a set
operator, the DISTINCT keyword, an ORDER BY clause, a GROUP BY clause, a CONNECT BY clause, a START
WITH clause, an analytical function, a collection expression, or a subquery. (Under these circumstances, you
can use an INSTEAD OF trigger to update the tables underlying a view.)

The following code snippets show some examples of the extensions that Oracle offers in the UPDATE statement. To
begin with, assume that the sales table has grown into a large partitioned table. You can update a specific partition
using the PARTITON clause, for example:

UPDATE sales PARTITION (sales_yr_2004) s

 SET s.payterms = 'Net 60'

 WHERE qty > 100;

You can also use the SET VALUE clause to supply a new value for each column in the row identified by the WHERE
clause:

UPDATE big_sales bs

 SET VALUE(bs) = (SELECT VALUE(s) FROM sales s

 WHERE bs.title_id = s.title_id)

 AND bs.stor_id = s.stor_id)

 WHERE bs.title_id = 'TC7777';

You can return values for review after an update by using the RETURNING clause. The following example updates one
row, placing the updated values into PL/SQL variables:

UPDATE employee

 SET job_id = 13, job_level = 140

 WHERE last_name = 'Josephs'

RETURNING last_name, job_id

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INTO :var1, :var2;

PostgreSQL

PostgreSQL supports the ANSI standard UPDATE syntax with a couple of small variations. PostgreSQL supports the
addition of a FROM clause. PostgreSQL's other variations include no support for the ARRAY keyword, but support for an
array functionality. PostgreSQL's UPDATE syntax is:

UPDATE [ONLY] {table_name | view_name}

SET column_name1 = {DEFAULT | NULL | scalar_expression },

 column_name2 = {DEFAULT | NULL | scalar_expression }

 [,...]

[FROM {table1 [AS alias], table2 [AS alias] [,...]}]

[WHERE search_condition | WHERE CURRENT OF cursor_name]

Most syntax elements are the same as in the ANSI standard. The only non-standard element is:

FROM

Provides the ability to build highly selective join-based criteria when determining which rows to update. FROM is
not needed when only one table, the target table, is used to determine the rows updated.

In the following example, we want to update job_lvl for employees who have a job_id of 12 and a min_lvl of 25. We
could do this with a large, complex subquery, or we could use the FROM clause to enable us to build a join:

UPDATE employee

 SET job_lvl = 80

 FROM employee AS e, jobs AS j

 WHERE e.job_id = j.job_id

 AND j.job_id = 12

 AND j.min_lvl = 25;

All other aspects of the ANSI standard are fully supported.

SQL Server

SQL Server supports most of the basic components of the ANSI UPDATE statement, but it does not support the ONLY
and ARRAY keywords, nor does it support array update functionality. SQL Server has extended the capabilities of
UPDATE by adding table hints using the WITH clause, query hints using the OPTION clause, as well as more robust
variable handling, as follows:

UPDATE {table_name | view_name | rowset}

[WITH (hint1, hint2 [,...])]

SET {column_name = {DEFAULT | NULL | scalar_expression }

 | variable_name = scalar_expression

 | variable_name = column_name = scalar_expression } [,...]

[FROM {table1 | view1 | nested_table1 | rowset1} [,...]]

 [AS alias]

[JOIN {table2 [,...]}]

WHERE {conditions | CURRENT OF [GLOBAL] cursor_name}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE {conditions | CURRENT OF [GLOBAL] cursor_name}

[OPTION (hint1, hint2 [,...])]

SQL Server's UPDATE syntax elements are as follows:

WITH hint

Allows the use of table hints to override the default behavior of the query optimizer. Since the query optimizer
is quite good at choosing query plans, use hints only with a deep understanding of the tables, indexes, and data
affected by the operation. Without this understanding, including hints could result in a decrease rather than an
increase in performance.

variable_name

SQL Server variables must be declared prior to the UPDATE statement in the form of DECLARE @variable. The
construct SET @variable = column1 = expression1 sets a variable to the final value of an updated column, whereas
SET @variable = column1, column1 = expression sets the variable to the value of the column before execution of
the UPDATE statement.

FROM

Provides the ability to build highly selective join-based criteria when determining which rows to update. FROM is
not needed when only one table, the target table, is used to determine the rows updated. SQL Server rowset
functions are described in the SELECT Statement section.

AS alias

Allows you to assign an easy-to-use alias to the table, view, nested table subquery, or rowset function.

JOIN

Provides the ability to use ANSI standard syntax for joined tables, in conjunction with the FROM clause.

GLOBAL

A slight variation on the ANSI standard WHERE CURRENT OF clause. The clause WHERE CURRENT OF
cursor_name, when used in combination with a cursor, tells SQL Server to update only the single record where
the cursor is currently positioned. The cursor is assumed to be a local cursor, but can be designated a global
cursor by using the keyword GLOBAL.

OPTION hint

Allows the use of query hints to override the default behavior of the query optimizer. Like the WITH clause,
which uses table hints, use query hints only with a deep understanding of the tables, indexes, and data affected
by the operation. Without this understanding, including hints could result in a decrease rather than an increase
in performance.

The primary extension to the ANSI standard that Microsoft SQL Server offers in an UPDATE statement is a FROM clause.
This FROM clause allows the use of the JOIN statement to make it especially easy to update rows in the target table by
correlating rows declared in the FROM clause to the rows updated by the UPDATE table_name component of the
statement. The following example shows an update using the ANSI style and a rather cumbersome subquery, followed
by an update using SQL Server's FROM clause extension, to update the result of a table join. Both statements
accomplish the same work, but in very different ways:

-- ANSI style

UPDATE titles

SET pubdate = GETDATE()

WHERE title_id IN

 (SELECT title_id

 FROM titleauthor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FROM titleauthor

 WHERE au_id IN

 (SELECT au_id

 FROM authors

 WHERE au_lname = 'White'))

-- Microsoft Transact-SQL style

UPDATE titles

SET pubdate = GETDATE()

FROM authors AS a

JOIN titleauthor AS t2 ON a.au_id = t2.au_id

WHERE t2.title_id = titles.title_id

 AND a.au_lname = 'White'

Performing this update using the Transact-SQL style is simply a matter of joining two tables — authors and
titleauthor — to the titles table. To perform the same operation using ANSI-compliant code, the au_id in author
must first be found and passed up to the titleauthors table, and then the title_id must be identified and passed up to
the main update statement.

The following example updates the state column for the first 10 authors from the authors table:

UPDATE authors

SET state = 'ZZ'

FROM (SELECT TOP 10 * FROM authors ORDER BY au_lname) AS t1

WHERE authors.au_id = t1.au_id

The important thing to note about this example is that it is normally difficult to update the first n records in an UPDATE
statement unless there is some explicit row sequence you can identify in the WHERE clause. However, the nested table
subquery in the FROM clause uses a TOP keyword to return on the first 10 records, thereby saving a lot of added
programming that would otherwise be required.

See Also

DECLARE
SELECT
WHERE

WHERE Clause

The WHERE clause sets the search criteria for an operation such as SELECT, UPDATE, or DELETE. Any records in the
target table(s) that do not meet the search criteria are excluded from the operation. The search conditions may include
many variations such as calculations, Boolean operators, and SQL predicates (for example, LIKE or BETWEEN).

Platform Command

DB2 Supported

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

 { WHERE search_criteria | WHERE CURRENT OF cursor_name }

Keywords

WHERE search_criteria

Defines search criteria for the statement to ensure that only the target rows are affected.

WHERE CURRENT OF cursor_name

Restricts the operation of the statement to the current row of a defined and opened cursor called cursor_name.

Rules at a Glance

WHERE clauses are found in SELECT statements, DELETE statements, INSERT...SELECT statements, UPDATE
statements, and any statement that might have a query or subquery such as DECLARE, CREATE TABLE, CREATE VIEW,
and so forth. The search conditions, all of which are described in their own entries elsewhere in the book, can include:

All records (=ALL, >ALL, <= ALL, SOME/ANY)

For example, to see publishers who live in the same city as their authors:

SELECT pub_name

FROM publishers

WHERE city = SOME (SELECT city FROM authors);

Combinations (AND, OR, and NOT) and evaluation hierarchy

For example, to see all authors with sales in quantities greater than or equal to 75 units, or secondary authors
with a royalty of greater than or equal to 60:

SELECT a.au_id

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

WHERE ta.title_id IN (SELECT title_id FROM sales

 WHERE qty >= 75)

 OR (a.au_id IN (SELECT au_id FROM titleauthor

 WHERE royaltyper >= 60)

 AND a.au_id IN (SELECT au_id FROM titleauthor

 WHERE au_ord = 2));

See Programming Tips and Gotchas next, for more information.

Comparison operators (such as =, < >, <, >, <=, and >=).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Comparison operators (such as =, < >, <, >, <=, and >=).

For example, to see author's last and first name from the authors table for authors who don't have a contract
(i.e., contract value of zero):

SELECT au_lname, au_fname

FROM authors

WHERE contract = 0;

Lists (IN and NOT IN).

For example, to see all authors who do not yet have a title in the titleauthors table:

SELECT au_fname, au_lname

FROM authors

WHERE au_id NOT IN (SELECT au_id FROM titleauthor);

NULL comparisons (IS NULL and IS NOT NULL)

For example, to see titles that have NULL year-to-date sales:

SELECT title_id, SUBSTRING(title, 1, 25) AS title

FROM titles

WHERE ytd_sales IS NULL;

Be sure not to specify = NULL in a query. NULL is unknown and can never be equal to
anything. Using = NULL is not the same as specifying the IS NULL operator. Refer to the
section IS Operator, earlier in this chapter, for more information.

Pattern matches (LIKE and NOT LIKE)

For example, to see authors whose last names start with a "C":

SELECT au_id

FROM authors

WHERE au_lname LIKE 'C%';

Range operations (BETWEEN and NOT BETWEEN)

For example, to see authors with last names between "Smith" and "White":

SELECT au_lname, au_fname

FROM authors

WHERE au_lname BETWEEN 'smith' AND 'white';

Programming Tips and Gotchas

The WHERE clause may require special handling when dealing with certain datatypes, such as LOBs or certain character

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The WHERE clause may require special handling when dealing with certain datatypes, such as LOBs or certain character
sets like UNICODE.

Parentheses are used to control evaluation hierarchy within a WHERE clause. Encapsulating a clause within parentheses
tells the DBMS to evaluate that clause before others. Parentheses can be nested to create a hierarchy of evaluations.
The innermost parenthetical clause will be evaluated first. You should watch parentheses very carefully for two reasons:

You must always have an equal number of opening and closing parentheses. Any imbalance in the number of
opening and closing parentheses will cause an error.

You should be careful where you place parentheses, since misplacing a parenthesis can dramatically change the
result set of your query.

For example, consider again the following query, which returns six rows in the pubs database on the SQL Server
platform:

SELECT DISTINCT a.au_id

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

WHERE ta.title_id IN (SELECT title_id FROM sales

 WHERE qty >= 75)

 OR (a.au_id IN (SELECT au_id FROM titleauthor

 WHERE royaltyper >= 60)

 AND a.au_id IN (SELECT au_id FROM titleauthor

 WHERE au_ord = 2))

The output from this query is as follows:

au_id

213-46-8915

724-80-9391

899-46-2035

998-72-3567

Changing just one set of parenthesis produces different results:

SELECT DISTINCT a.au_id

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

WHERE (ta.title_id IN (SELECT title_id FROM sales

 WHERE qty >= 75)

 OR a.au_id IN (SELECT au_id FROM titleauthor

 WHERE royaltyper >= 60))

 AND a.au_id IN (SELECT au_id FROM titleauthor

 WHERE au_ord = 2)

This time, the output will look like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This time, the output will look like this:

au_id

213-46-8915

724-80-9391

899-46-2035

DB2

Supported as described above.

MySQL

Supported as described above.

Oracle

Supported as described above.

PostgreSQL

Supported as described above.

SQL Server

Supported as described above.

See Also

ALL/ANY/SOME
BETWEEN
DECLARE CURSOR
DELETE
EXISTS
IN
LIKE
SELECT
UPDATE

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. SQL Functions
A function is a special type of command word in the SQL command set, and each SQL dialect varies in its
implementation of the command set. In effect, functions are one-word commands that return single values. The value
of a function can be determined by input parameters, as with a function that averages a list of database values. But
many functions do not use any type of input parameter, such as the function that returns the current system time,
CURRENT_TIME.

The ANSI standard supports a number of useful functions. This chapter covers those functions, providing detailed
descriptions and examples for each platform. In addition, each database maintains a long list of their own internal
functions that are outside of the scope of the standard SQL. This chapter provides parameters and descriptions for each
database implementation's internal functions.

In addition, most database platforms support the ability to create user-defined functions (UDFs). For more information
on UDFs, refer to the CREATE/ALTER FUNCTION/PROCEDURE Statements.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Types of Functions
There are different ways to categorize functions into groups. The following subsections describe distinctions that are
critical to understand how functions work.

4.1.1 Deterministic and Nondeterministic Functions

Functions can be either deterministic or nondeterministic . A deterministic function always returns the same results if
given the same input values. A nondeterministic function may return different results every time it is called, even when
the same input values are provided.

Why is it important that a given input always returns the same output? It is important because of how functions may be
used within views, in user-defined functions, and in stored procedures. Restrictions vary across implementations, but
these objects sometimes allow only deterministic functions within their defining code. For example, SQL Server allows
the creation of an index on a column expression—as long as the expression does not contain nondeterministic functions.
Rules and restrictions vary between the platforms, so check the specific documentation when using functions.

4.1.2 Aggregate and Scalar Functions

Another way of categorizing functions is in terms of whether they operate on values from just one row at a time, on
values from a collection, or on a set of rows. Aggregate functions operate against a collection of values and return a
single summarizing value. Scalar functions return a single value based on scalar input arguments. Some scalar
functions, such as CURRENT_TIME, do not require any arguments.

4.1.3 Window Functions

Window functions can be thought of as being similar to aggregate functions in that they operate over many rows at one
time. The difference lies in how you define those rows. Aggregate functions operate over the sets of rows defined by a
query's GROUP BY clause. With window functions, you specify the set of rows for each function call, and different
invocations of a function within the same query can execute over different sets of rows.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 ANSI SQL Aggregate Functions
Aggregate functions return a single value based upon a set of other values. If used among other expressions in the item
list of a SELECT statement, the SELECT must have a GROUP BY or HAVING clause. No GROUP BY or HAVING clause is
required if the aggregate function is the only value retrieved by the SELECT statement. The supported aggregate
functions and their syntax are listed in Table 4-1.

Table 4-1. ANSI SQL aggregate functions
Function Usage

AVG(

expression)
Computes the average value of a column given by expression.

CORR(

dependent, independent)
Computes a correlation coefficient.

COUNT(

expression)
Counts the rows defined by the expression.

COUNT(*)
Counts all rows in the specified table or view.

COVAR_POP (

dependent, independent)
Computes population covariance.

COVAR_SAMP(

dependent, independent)
Computes sample covariance.

CUME_DIST(

value_list) WITHIN GROUP (ORDER BY sort_list)

Computes the relative rank of a hypothetical row within a group of rows,
where the rank is equal to the number of rows less than or equal to the
hypothetical row divided by the number of rows in the group.

DENSE_RANK(

value_list) WITHIN GROUP (ORDER BY sort_list)
Generates a dense rank (no ranks are skipped) for a hypothetical row
(value_list) in a group of rows generated by GROUP BY.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MIN(

expression)
Finds the minimum value in a column given by expression.

MAX(

expression)
Finds the maximum value in a column given by expression.

PERCENT_RANK(

value_list) WITHIN GROUP (ORDER BY sort_list)
Generates a relative rank for a hypothetical row by dividing that row's
rank less 1 by the number of rows in the group.

PERCENTILE_CONT (

percentile) WITHIN GROUP (ORDER BY sort_list)
Generates an interpolated value that, if added to the group, would
correspond to the percentile given.

PERCENTILE_DISC (

percentile) WITHIN GROUP (ORDER BY sort_list)
Returns the value with the smallest cumulative distribution value greater
than or equal to percentile.

RANK(

value_list) WITHIN GROUP (ORDER BY sort_list)
Generates a rank for a hypothetical row (value_list) in a group of rows
generated by GROUP BY.

REGR_AVGX(

dependent, independent)
Computes the average of the independent variable.

REGR_AVGY(

dependent, independent)
Computes the average of the dependent variable.

REGR_COUNT(

dependent, independent)
Counts the number of pairs remaining in the group after any pair with
one or more NULL values has been eliminated.

REGR_INTERCEPT(

dependent,independent)
Computes the y-intercept of the least-squares-fit linear equation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dependent,independent)

REGR_R2(

dependent, independent)
Squares the correlation coefficient.

REGR_SLOPE(

dependent, independent)
Determines the slope of the least-squares-fit linear equation.

REGR_SXX(

dependent, independent)
Sums the squares of the independent variables.

REGR_SXY(

dependent, independent)
Sums the products of each pair of variables.

REGR_SYY(

dependent, independent)
Sums the squares of the dependent variables.

STDDEV_POP(

expression)
Computes the population standard deviation of all expression values in a
group.

STDDEV_SAMP(

expression)
Computes the sample standard deviation of all expression values in a
group.

SUM(

expression)
Computes the sum of column values given by expression.

VAR_POP(

expression)
Computes the population variance of all expression values in a group.

VAR_SAMP(

Computes the sample standard deviation of all expression values in a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expression)
Computes the sample standard deviation of all expression values in a
group.

Technically speaking, ANY, EVERY, and SOME are considered aggregate functions. However, they have been discussed
as range search criteria since they are most often used that way. Refer to ALL/ANY/SOME Operators for more
information on these functions.

The number of values processed by an aggregate function varies depending on the number of rows queried from the
table. This behavior makes aggregate functions different from scalar functions, which can only operate on the values of
a single row per invocation.

The general syntax of an aggregate function is:

aggregate_function_name ([ALL | DISTINCT] expression)

The aggregate function name may be AVG, COUNT, MAX, MIN, or SUM, as listed in Table 4-1. The ALL keyword, which
specifies the default behavior, evaluates all rows when aggregating the value of the function. The DISTINCT keyword
uses only distinct values when evaluating the function.

All aggregate functions except COUNT(*) will ignore NULL values when computing their
results.

AVG and SUM

The AVG function computes the average of values in a column or an expression. SUM computes the sum. Both functions
work with numeric values and ignore NULL values. Use the DISTINCT keyword to compute the average or sum of all
distinct values of a column or expression.

SQL Standard Syntax

AVG ([ALL | DISTINCT] expression)

SUM ([ALL | DISTINCT] expression)

MySQL, PostgreSQL, and SQL Server

All these platforms support the SQL2003 syntax of AVG and SUM.

DB2 and Oracle

DB2 and Oracle support the ANSI syntax and the following analytic syntax:

AVG ([ALL | DISTINCT] expression) OVER (window_clause)

SUM ([ALL | DISTINCT] expression) OVER (window_clause)

For an explanation of the window_clause, see the Section 4.3 later in this chapter.

Examples

The following query computes average year-to-date sales for each type of book:

SELECT type, AVG(ytd_sales) AS "average_ytd_sales"FROM titles GROUP BY type;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT type, AVG(ytd_sales) AS "average_ytd_sales"FROM titles GROUP BY type;

This query returns the sum of year-to-date sales for each type of book:

SELECT type, SUM(ytd_sales) FROM titles GROUP BY type;

CORR

The CORR function returns the correlation coefficient between a set of dependent and independent variables.

SQL2003 Syntax

Calls the function with two variables, one dependent and the other independent:

CORR(dependent, independent)

Any pair in which either the dependent variable, independent variable, or both are NULL is ignored. The result of the
function is NULL when none of the input pairs consist of two non-NULL values.

Oracle

Oracle supports the SQL2003 syntax, and the following analytic syntax:

CORR (dependent, independent) OVER (window_ clause)

For an explanation of the window_clause, see the Section 4.3 later in this chapter.

DB2, MySQL, PostgreSQL, and SQL Server

These platforms do not support any form of the CORR function.

Example

The following CORR example uses the data shown by the first SELECT:

SELECT * FROM test2;

 Y X

---------- ----------

 1 3

 2 2

 3 1

SELECT CORR(y,x) FROM test2;

 CORR(Y,X)

 -1

COUNT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The COUNT function is used to compute the number of rows in an expression.

SQL2003 Syntax

COUNT(*)

COUNT([ALL|DISTINCT] expression)

COUNT(*)

Counts all the rows in the target table whether or not they include NULLs.

COUNT([ALL|DISTINCT] expression)

Computes the number of rows with non-NULL values in a specific column or expression. When the keyword
DISTINCT is used, duplicate values will be ignored and a count of the distinct values is returned. ALL returns the
number of non-NULL values in the expression and is implicit when DISTINCT is not used.

MySQL, PostgreSQL, and SQL Server

All of these platforms support the SQL2003 syntax of COUNT.

DB2 and Oracle

DB2 and Oracle support the ANSI syntax and the following analytic syntax:

COUNT ({*|[DISTINCT] expression}) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

Examples

This query counts all rows in a table:

SELECT COUNT(*) FROM publishers;

The following query finds the number of different countries where publishers are located:

SELECT COUNT(DISTINCT country) "Count of Countries"

FROM publishers

COVAR_POP

The COVAR_POP function returns the population covariance of a set of dependent and independent variables.

SQL2003 Syntax

Call the function with two variables, one dependent and the other independent:

COVAR_POP(dependent, independent)

The function disregards any pair in which either the dependent variable, independent variable, or both are NULL. If no
rows remain in the group after NULL elimination, then the result of the function is NULL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rows remain in the group after NULL elimination, then the result of the function is NULL.

Oracle

Oracle supports the SQL2003 syntax and implements the following analytic syntax:

COVAR_POP (dependent, independent) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

DB2

In DB2, the function is named CORRELATION.

MySQL, PostgreSQL, and SQL Server

These platforms do not support any form of the COVAR_POP function.

Example

The following COVAR_POP example uses the data shown by the first SELECT:

SELECT * FROM test2;

 Y X

---------- ----------

 1 3

 2 2

 3 1

SELECT COVAR_POP(y,x) FROM test2;

COVAR_POP(Y,X)

 -.66666667

COVAR_SAMP

The COVAR_SAMP function returns the sample covariance of a set of dependent and independent variables.

SQL2003 Syntax

Call the function with two variables, one dependent and the other independent:

COVAR_SAMP(dependent, independent)

The function disregards any pair in which either the dependent variable, independent variable, or both are NULL. The
result of the function is NULL when none of the input pairs consist of two non-NULL values.

Oracle

Oracle supports the SQL2003 syntax and implements the following analytic syntax:

COVAR_SAMP (dependent, independent) OVER (window_clause)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COVAR_SAMP (dependent, independent) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

DB2, MySQL, PostgreSQL, and SQL Server

These platforms do not support any form of the COVAR_SAMP function.

Example

The following COVAR_SAMP example uses the data shown by the first SELECT:

SELECT * FROM test2;

 Y X

---------- ----------

 1 3

 2 2

 3 1

SQL> SELECT COVAR_SAMP(y,x) FROM test2;

COVAR_SAMP(Y,X)

 -1

CUME_DIST

Computes the relative rank of a hypothetical row within a group of rows, where that relative rank is computed as
follows:

(rows_preceding_hypothetical + rows_peered_with_hypothetical) / rows_in_group

Bear in mind that the rows_in_group value includes the hypothetical row that you are proposing when you call the
function.

SQL2003 Syntax

In the following syntax, items in the value_list correspond by position to items in the sort_list. Therefore, both lists must
have the same number of expressions.

CUME_DIST(value_list) WITHIN GROUP (ORDER BY sort_list)

value_list ::= expression [,expression...]

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle follows the SQL2003 syntax and implements the following analytic syntax:

CUME_DIST OVER ([partioning] ordering)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CUME_DIST OVER ([partioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this chapter titled Section 4.3.

DB2, MySQL, PostgreSQl, and SQL Server

These platforms do not implement the CUME_DIST aggregate function.

Example

The following example determines the relative rank of the hypothetical new row (num=4, odd=1) within each group of
rows from test4, where groups are distinguished by the values in the odd column:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

SELECT odd, CUME_DIST(4,1) WITHIN GROUP (ORDER BY num, odd)

FROM test4

GROUP BY odd;

 ODD CUME_DIST(4,1)WITHINGROUP(ORDERBYNUM,ODD)

---------- ---

 0 1

 1 .8

In group odd=0, the new row comes after the three rows: (0,0), (2,0), and (4,0). It will peer with itself. The total number
of rows in the group will be four, which includes the hypothetical row. The relative rank, therefore, is computed as
follows:

(3 rows preceding + 1 peering) / (3 in group + 1 hypothetical)

= 4 / 4 = 1

In group odd=1, the new row follows the three rows (1,1), (3,1), and a duplicate (3,1). Again, there is one peer, the
hypothetical row itself. The number of rows in the group is five, which includes the hypothetical row. The relative rank
is then:

(3 rows preceding + 1 peering) / (4 in group + 1 hypothetical)

= 4 / 5 = .8

DENSE_RANK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Computes a rank in a group for a hypothetical row that you supply. This is a dense rank. Rankings are never skipped,
even when a group contains rows that rank identically.

SQL2003 Syntax

In the following syntax, items in the value_list correspond by position to items in the sort_list. Therefore, both lists must
have the same number of expressions.

DENSE_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)

value_list ::= expression [,expression...]

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle follows the SQL2003 syntax and implements the following analytic syntax:

DENSE_RANK() OVER ([partioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this chapter titled Section 4.3.

DB2, MySQL, PostgreSQl, and SQL Server

These platforms do not implement the DENSE_RANK aggregate function. However, DB2 does support DENSE_RANK as
an analytic function. See the section later in this chapter titled Section 4.3.

Example

The following example determines the dense rank of the hypothetical new row (num=4, odd=1) within each group of
rows from test4, where groups are distinguished by the values in the odd column:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

SELECT odd, DENSE_RANK(4,1) WITHIN GROUP (ORDER BY num, odd)

FROM test4

GROUP BY odd;

 ODD DENSE_RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)

---------- --

 0 4

 1 3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1 3

In group odd=0, the new row comes after (0,0), (2,0), and (4,0), and thus it is position 4. In group odd=1, the new row
follows (1,1), (3,1), and a duplicate (3,1). In that case, the duplicate occurrences of (3,1) both rank #2, so the new row is
ranked #3. Compare this behavior with RANK, which gives a different result.

MIN and MAX

MIN(expression) and MAX(expression) find the minimum and maximum value of expression (string, datetime, or numeric)
in a set of rows. DISTINCT or ALL may be used with these functions, but do not affect the result.

SQL2003 Syntax

MIN([ALL | DISTINCT] expression)

MAX([ALL | DISTINCT] expression)

PostgreSQL and SQL Server

These platforms support the SQL2003 syntax of MIN and MAX.

DB2 and Oracle

DB2 and Oracle support the ANSI syntax and implements the following analytic syntax:

MIN ({ALL|[DISTINCT] expression}) OVER (window_clause)

MAX ({ALL|[DISTINCT] expression}) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

MySQL

MySQL supports the SQL2003 syntax of MIN and MAX. MySQL also supports the functions LEAST() and GREATEST(),
providing the same capabilities.

Examples

The following query finds the best and worst sales for any title on record:

SELECT MIN(ytd_sales), MAX(ytd_sales)

FROM titles;

Aggregate functions are used often in the HAVING clause of queries with GROUP BY. The following query selects all
categories (types) of books that have an average price for all books in the category higher than $15.00:

SELECT type 'Category', AVG(price) 'Average Price'

FROM titles

GROUP BY type

HAVING AVG(price) > 15

PERCENT_RANK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Generates a relative rank for a hypothetical row by dividing that row's rank less 1 by the number of rows in the group.

SQL2003 Syntax

In the following syntax, items in the value_list correspond by position to items in the sort_list. Therefore, both lists must
have the same number of expressions.

PERCENT_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)

value_list ::= expression [,expression...]

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle follows the SQL2003 syntax and implements the following syntax:

PERCENT_RANK() OVER ([partioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this chapter titled Section 4.3.

DB2, MySQL, PostgreSQl, and SQL Server

These platforms do not implement the PERCENT_RANK aggregate function.

Example

The following example determines the percentage rank of the hypothetical new row (num=4, odd=1) within each group of
rows from test4, where groups are distinguished by the values in the odd column:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

SELECT odd, PERCENT_RANK(4,1) WITHIN GROUP (ORDER BY num, odd)

FROM test4

GROUP BY odd;

 ODD PERCENT_RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)

---------- --

 0 1

 1 .75

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1 .75

In group odd=0, the new row comes after (0,0), (2,0), and (4,0), and thus it is position 4. The rank computation is: (4th
rank - 1)/3 rows = 100%. In group odd=1, the new row follows (1,1), (3,1), and a duplicate (3,1), and is again ranked at #4.
The rank computation for odd=1 is: (4th rank - 1)/4 rows = 3/4 = 75%.

PERCENTILE_CONT

Generates an interpolated value corresponding to a percentile that you specify.

SQL2003 Syntax

In the following syntax, percentile is a number between zero and one:

PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY sort_list)

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle allows only one expression in the ORDER BY clause:

PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY expression)

Oracle also allows some use of windowing syntax:

PERCENTILE_CONT (percentile) WITHIN GROUP

(ORDER BY sort_list) OVER (partitioning)

See Section 4.3 later in this chapter for a description of partitioning.

DB2, MySQL, PostgreSQL, and SQL Server

These platforms do not implement PERCENTILE_CONT.

Example

The following example groups the data in test4 by the column named odd, and invokes PERCENTILE_CONT to return a
50th percentile value for each group:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 5 1

SELECT odd, PERCENTILE_CONT(0.50) WITHIN GROUP (ORDER BY NUM)

FROM test4

GROUP BY odd;

 ODD PERCENTILE_CONT(0.50)WITHINGROUP(ORDERBYNUM)

---------- --

 0 2

 1 3

PERCENTILE_DISC

Determines the value in a group with the smallest cumulative distribution greater than or equal to a percentile that you
specify.

SQL2003 Syntax

In the following syntax, percentile is a number between zero and one:

PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY sort_list)

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle allows only one expression in the ORDER BY clause:

PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY expression)

Oracle also allows some use of windowing syntax:

PERCENTILE_DISC (percentile) WITHIN GROUP

(ORDER BY sort_list) OVER (partitioning)

See Section 4.3 later in this chapter for a description of partitioning.

DB2, MySQL, PostgreSQL, and SQL Server

These platforms do not implement PERCENTILE_DISC.

Example

The following example is similar to that for PERCENTILE_CONT, except that it returns, for each group, the value closest,
but not exceeding, the 60th percentile:

SELECT * FROM test4;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

SELECT odd, PERCENTILE_DISC(0.60) WITHIN GROUP (ORDER BY NUM)

FROM test4

GROUP BY odd;

PERCENTILE_CONT(0.50)WITHINGROUP(ORDERBYNUM)

--

 2

 3

RANK

Computes a rank in a group for a hypothetical row that you supply. This is not a dense rank. If the group contains rows
that rank identically, then it's possible for ranks to be skipped. If you want a dense rank, use the DENSE_RANK
function.

SQL2003 Syntax

In the following syntax, items in the value_list correspond by position to items in the sort_list. Therefore, both lists must
have the same number of expressions.

RANK(value_list) WITHIN GROUP (ORDER BY sort_list)

value_list ::= expression [,expression...]

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle follows the SQL2003 syntax and implements the following analytic syntax:

RANK() OVER ([partitioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this chapter titled Section 4.3.

DB2, MySQL, PostgreSQl, and SQL Server

These platforms do not implement the RANK aggregate function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

The following example determines the rank of the hypothetical new row (num=4, odd=1) within each group of rows from
test4, where groups are distinguished by the values in the odd column:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

SELECT odd, RANK(4,1) WITHIN GROUP (ORDER BY num, odd)

FROM test4

GROUP BY odd;

 ODD RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)

---------- ------------------------------------

 0 4

 1 4

In both cases, the rank of the hypothetical new row is 4. In group odd=0, the new row comes after: (0,0), (2,0), and
(4,0), and thus it is position 4. In group odd=1, the new row follows (1,1), (3,1), and a duplicate (3,1). In that case, the
new row is preceding by three rows, so it is ranked #4. Compare this behavior with DENSE_RANK.

The REGR Family of Functions

SQL2003 defines a family of functions, having names beginning with REGR_, that relate to different aspects of linear
regression. The functions work in the context of a least-squares regression line.

SQL2003 Syntax

Following is the syntax and a brief description of each REGR_ function:

REGR_AVGX(dependent, independent)

Averages (as in AVG(x)) the independent variable values.

REGR_AVGY(dependent, independent)

Averages (as in AVG(y)) the dependent variable values.

REGR_COUNT(dependent, independent)

Counts the number of non-NULL number pairs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REGR_INTERCEPT(dependent, independent)

Computes the y-intercept of the regression line.

REGR_R2(dependent, independent)

Computes the coefficient of determination.

REGR_SLOPE(dependent, independent)

Computes the slope of the regression line.

REGR_SXX(dependent, independent)

Sums the squares of the independent variable values.

REGR_SXY(dependent, independent)

Sums the products of each pair of values.

REGR_SYY(dependent, independent)

Sums the squares of the dependent variable values.

The REGR_ functions only work on number pairs containing two non-NULL values. Any number pair with one or more
NULL values will be ignored.

DB2 and Oracle

DB2 and Oracle support the SQL2003 syntax for all REGR_ functions. In addition, DB2 allows the shortened name
REGR_ICPT in place of REGR_INTERCEPT.

Oracle supports the following analytic syntax:

REGR_function (dependent, independent) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

MySQL, PostgreSQL, and SQL Server

These platforms do not implement the REGR family of functions.

Example

The following REGEXP_COUNT example demonstrates that any pair with one or more NULL values is ignored. The table
test3 contains three non-NULL number pairs, and three other pairs having at least one NULL:

SQL> SELECT * FROM test3;

 Y X

---------- ----------

 1 3

 2 2

 3 1

 4 NULL

 NULL 4

 NULL NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NULL NULL

The REGR_COUNT function ignores the pairs having NULLs, counting only those pairs with non-NULL values:

SELECT REGR_COUNT(y,x) FROM test3;

REGR_COUNT(Y,X)

 3

Likewise, all other REGR_ functions filter out any pairs having NULL values before performing their respective
computations.

STDDEV_POP

Use STDDEV_POP to find the population standard deviation within a group of numeric values.

SQL2003 Syntax

STDDEV_POP(numeric_expression)

DB2 and MySQL

Use the STDDEV function. In DB2 and MySQL, STDDEV returns the population standard deviation.

PostgreSQL

This platform does not provide a function to compute population standard deviation.

Oracle

Oracle supports the standard syntax and the following analytic syntax:

STDDEV_POP (numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

SQL Server

Use the STDEVP function.

Example

The following example computes the population standard deviation for the values 1, 2, and 3:

SELECT * FROM test;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM test;

 X

 1

 2

 3

SELECT STDDEV_POP(x) FROM test;

STDDEV_POP(X)

 .816496581

STDDEV_SAMP

Use STDDEV_SAMP to find the sample standard deviation within a group of numeric values.

SQL2003 Syntax

STDDEV_SAMP(numeric_expression)

Oracle

Oracle supports the standard syntax. Oracle also provides the STDDEV function, which operates similar to
STDDEV_SAMP except that it returns zero as not NULL when there is only one value in the set.

Oracle also supports analytic syntax:

STDDEV_SAMP (numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

DB2

This platform does not provide a function to compute sample standard deviation.

MySQL

MySQL does not provide a function to compute sample standard deviation. MySQL does provide a function named
STDDEV, but it returns the population standard deviation.

PostgreSQL

Use STDDEV.

SQL Server

Use STDEV (with only one D!).

Example

The following example computes the sample standard deviation for the values 1, 2, and 3:

SELECT * FROM test;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM test;

 X

 1

 2

 3

SELECT STDDEV_SAMP(x) FROM test;

STDDEV_SAMP(X)

 1

VAR_POP

Use VAR_POP to compute the population variance of a set of values.

SQL2003 Syntax

VAR_POP(numeric_expression)

DB2 and PostgreSQL

These platforms do not provide a function to compute population variance.

MySQL

Use the VARIANCE function, which in MySQL returns the population variance.

Oracle

Oracle supports the standard syntax and the following analytic syntax:

VAR_POP (numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

SQL Server

Use the VARP function.

Example

The following example computes the population variance for the values 1, 2, and 3:

SELECT * FROM test;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM test;

 X

 1

 2

 3

SELECT VAR_POP(x) FROM test;

VAR_POP(X)

.666666667

VAR_SAMP

Use VAR_SAMP to compute the sample variance of a set of values.

SQL2003 Syntax

VAR_SAMP(numeric_expression)

DB2 and PostgreSQL

Use VARIANCE(numeric_expression) to compute sample variance.

MySQL

MySQL provides no function for computing sample variance. There is the VARIANCE function, but in MySQL that
function returns the population variance.

Oracle

Oracle supports the standard syntax. You may also use the VARIANCE function, which differs from VAR_SAMP by
returning zero (and not NULL) for sets having only a single value.

Oracle also supports analytic syntax:

VAR_SAMP (numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

SQL Server

Use the VAR function.

Example

The following example computes the sample variance for the values 1, 2, and 3:

SELECT * FROM test;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM test;

 X

 1

 2

 3

SELECT VAR_SAMP(x) FROM test;

VAR_SAMP(X)

 1

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 ANSI SQL Window Functions
SQL2003 allows for a window_clause in aggregate function calls, the addition of which makes those functions into window
functions. Both Oracle and DB2 support this window function syntax. This section describes how to use the
window_clause within Oracle and DB2.

Oracle tends to refer to window functions as analytic functions.

Window, or analytic, functions are similar to standard aggregate functions in that they operate on multiple rows, or
groups of rows, within the result set returned from a query. However, the groups of rows that a window function
operates on are defined not by a GROUP BY clause, but by partitioning and windowing clauses. Furthermore, the order
within these groups is defined by an ordering clause, but that order only affects function evaluation, and has no effect
on the order in which rows are returned by the query.

Window functions are the last items in a query to be evaluated except for the ORDER BY
clause. Because of this late evaluation, window functions cannot be used within the
WHERE, GROUP BY, or HAVING clauses.

4.3.1 SQL2003's Window Syntax

SQL2003 specifies the following syntax for window functions:

FUNCTION_NAME(expr) OVER {window_name|(window_specification)}

window_specification ::= [window_name][partitioning][ordering][framing]

partitioning ::= PARTITION BY value [, value...] [COLLATE collation_name]

ordering ::= ORDER [SIBLINGS] BY rule [, rule...]

rule ::= {value|position|alias} [ASC|DESC] [NULLS {FIRST|LAST}]

framing ::= {ROWS|RANGE} {start|between} [exclusion]

start ::= {UNBOUNDED PRECEDING|unsigned-integer PRECEDING|CURRENT ROW}

between ::= BETWEEN bound AND bound

bound ::= {start|UNBOUNDED FOLLOWING|unsigned-integer FOLLOWING}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bound ::= {start|UNBOUNDED FOLLOWING|unsigned-integer FOLLOWING}

exclusion ::= {EXCLUDE CURRENT ROW|EXCLUDE GROUP

 |EXCLUDE TIES|EXCLUDE NO OTHERS}

4.3.2 Oracle's Window Syntax

Oracle's window function syntax is as follows:

FUNCTION_NAME(expr) OVER (window_clause)

window_clause ::= [partitioning] [ordering [framing]]

partitioning ::= PARTITION BY value [, value...]

ordering ::= ORDER [SIBLINGS] BY rule [, rule...]

rule ::= {value|position|alias} [ASC|DESC]

 [NULLS {FIRST|LAST}]

framing ::= {ROWS|RANGE} {not_range|begin AND end}

not_range ::= {UNBOUNDED PRECEDING

 |CURRENT ROW|

 |value PRECEDING}

begin ::= {UNBOUNDED PRECEDING

 |CURRENT ROW|

 |value {PRECEDING|FOLLOWING}}

end ::= {UNBOUNDED FOLLOWING

 |CURRENT ROW|

 |value {PRECEDING|FOLLOWING}}

4.3.3 DB2's Window Syntax

DB2's syntax is similar to Oracle's. For OLAP, ranking, and numbering functions, DB2 allows the following syntax:

FUNCTION_NAME(expr) OVER (window_clause)

window_clause ::= [partitioning] [ordering]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window_clause ::= [partitioning] [ordering]

partitioning ::= PARTITION BY (value [, value...])

ordering ::= {ORDER BY rule [, rule...] | ORDER OF table_name}

rule ::= {value|position|alias} [ASC|DESC [NULLS {FIRST|LAST}]]

When aggregate functions (e.g. AVG) are used as window functions, DB2 allows the addition of a framing clause:

FUNCTION_NAME(expr) OVER (window_clause)

window_clause ::= [partitioning] [ordering [framing]] [all|framing]

all ::= RANGE UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

partitioning ::= PARTITION BY (value [, value...])

ordering ::= {ORDER BY rule [, rule...] | ORDER OF table_name}

rule ::= {value|position|alias} [ASC|DESC [NULLS {FIRST|LAST}]]

framing ::= {ROWS|RANGE} {group_start|group_between|group_end}

group_start ::= {UNBOUNDED PRECEDING|unsigned-integer PRECEDING

 |CURRENT ROW}

group_between ::= BETWEEN {UNBOUNDED PRECEDING|unsigned_integer PRECEDING

 |unsigned_integer FOLLOWING|CURRENT ROW}

 AND {UNBOUNDED FOLLOWING|unsigned_integer PRECEDING

 |unsigned_integer FOLLOWING|CURRENT ROW}

group_end ::= UNBOUNDED FOLLOWING|unsigned-integer FOLLOWING}

4.3.4 Partitioning

Partitioning the rows operated on by the partition clause is similar to using the GROUP BY expression on a standard
SELECT statement. The partitioning clause takes a list of expressions that will be used to divide the result set into
groups. We'll use the following table as the basis for some examples:

SELECT * FROM odd_nums;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM odd_nums;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

The following results illustrate the effects of partitioning by ODD. The sum of the even numbers is 2 (0+2), and the
sum of the odd numbers is 4 (1+3). The second column of the result set reports the sum of all values in the partition to
which that row belongs. Yet all the detail rows are returned. The query provides summary results in the context of
detail rows:

SELECT NUM, SUM(NUM) OVER (PARTITION BY ODD) S

FROM ODD_NUMS;

NUM S

--------- ----------

0 2

2 2

1 4

3 4

Not using a partitioning clause at all will sum all of the numbers in the NUM column for each row returned by the query.
In effect, the entire result set is treated as a single, large partition:

SELECT NUM, SUM(NUM) OVER () S FROM ODD_NUMS;

NUM S

--------- ----------

0 6

1 6

2 6

3 6

4.3.5 Ordering

You specify the order of the rows on which an analytic function operates using the ordering clause. However, this
analytic ordering clause does not define the result set ordering. To define the overall result set ordering, you must use
the query's ORDER BY clause. The following use of Oracle's FIRST_VALUE function illustrates the effect of different
orderings of the partitions:

SELECT NUM,

 SUM(NUM) OVER (PARTITION BY ODD) S,

 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM ASC) first_asc,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM ASC) first_asc,

 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM DESC) first_desc

FROM ODD_NUMS;

 NUM S FIRST_ASC FIRST_DESC

---------- ---------- ---------- ----------

 0 2 0 2

 2 2 0 2

 1 4 1 3

 3 4 1 3

As you can see, the ORDER BY clauses in the window function invocations affect the ordering of the rows in the
respective partitions when those functions are evaluated. Thus, ORDER BY NUM ASC orders partitions in ascending
order, resulting in 0 for the first value in the even-number partition and 1 for the first value in the odd-number partition.
ORDER BY NUM DESC has the opposite effect.

The preceding query also illustrates an important point: using window functions, you can
summarize and order many different ways in the same query.

4.3.6 Grouping or Windowing

Many analytic functions also allow you to specify a virtual, moving window surrounding a row within a partition. You do
this using the framing clause. Such moving windows are useful for running calculations such as a running total.

The following, Oracle-based example uses the framing clause on the analytic variant of SUM to calculate a running sum
of the values in the first column. No partitioning clause is used, so each invocation of SUM operates over the entire
result set. However, the ORDER BY clause sorts the rows for SUM in ascending order of NUM's value, and the BETWEEN
clause (which is the windowing clause) causes each invocation of SUM to include values for NUM only up through the
current row. Each successive invocation of SUM includes yet another value for NUM, in order, from the lowest value of
NUM to the greatest:

SELECT NUM, SUM(NUM) OVER (ORDER BY NUM ROWS

 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) S FROM ODD_NUMS;

NUM S

--------- ----------

0 0

1 1

2 3

3 6

This example's a bit too easy, as the order of the final result set happens to match the order of the running total. That
doesn't need to be the case. The following example generates the same results, but in a different order. You can see
that the running total values are appropriate for each value of NUM, but the rows are presented in a different order
than before. The result set ordering is completely independent of the ordering used for window function calculations:

SELECT NUM, SUM(NUM) OVER (ORDER BY NUM ROWS

 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) S FROM ODD_NUMS

ORDER BY NUM DESC;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY NUM DESC;

 NUM S

---------- ----------

 3 6

 2 3

 1 1

 0 0

4.3.7 List of Window Functions

SQL2003 specifies that any aggregate function may also be used as a window function. Both Oracle and DB2 largely
follow the standard in that respect, so you'll find that you can take just about any aggregate function (certainly the
standard ones) and apply to it the window function syntax described in the preceding sections.

In addition to the aggregate functions, SQL2003 defines the window functions described in the following sections. Only
Oracle and DB2 currently implement these functions. All examples use the following table and data, which is a variation
on the ODD_NUMS table used earlier to illustrate the concepts of partitioning, ordering, and grouping:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

Platform-specific window functions for Oracle (there are none for DB2) are included in the lists found under Section 4.5
later in this chapter.

CUME_DIST()

Calculates the cumulative distribution, or relative rank, of the current row to other rows in the same partition. The
calculation for a given row is as follows:

number of peer or preceding rows / number of rows in partition

Because the result for a given row depends on the number of rows preceding that row in the same partition, it's
important to always specify an ORDER BY clause when invoking this function.

SQL2003 Syntax

CUME_DIST() OVER {window_name|(window_specification)}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CUME_DIST() OVER {window_name|(window_specification)}

DB2

DB2 does not support the CUME_DIST() window function.

Oracle

Oracle does not allow the framing portion of the windowing syntax. Oracle requires the ordering clause:

CUME_DIST() OVER ([partitioning] ordering)

Example

The following Oracle-based example uses CUME_DIST() to generate a relative rank for each row, ordering by NUM,
after partitioning the data by ODD:

SELECT NUM, ODD, CUME_DIST() OVER

 (PARTITION BY ODD ORDER BY NUM) cumedist

FROM test4;

 NUM ODD CUMEDIST

---------- ---------- ----------

 0 0 .333333333

 2 0 .666666667

 4 0 1

 1 1 .25

 3 1 .75

 3 1 .75

 5 1 1

Following is an explanation of the calculation behind the rank for the row in which NUM=0:

1. Because of the ORDER BY clause, the rows in the partition are ordered as follows:

NUM=0
NUM=2
NUM=4

1. There are no rows preceding NUM=0.

2. There is one row that is a peer of NUM=0, and that is the NUM=0 row itself. Thus, the divisor is 1.

3. There are three rows in the partition as a whole, making the dividend 3.

4. The result of 1/3 is.33 repeating, as shown in the example output.

DENSE_RANK()

Assigns a rank to each row in a partition, which should be ordered in some manner. The rank for a given row is
computed by counting the number of rows preceding the row in question, and then adding 1 to the result. Rows with
duplicate ORDER BY values will rank the same. Unlike the case with RANK(), gaps in rank numbers will not result from
two rows sharing the same rank.

SQL2003 Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

DENSE_RANK() OVER {window_name|(window_specification)}

DB2

DB2 requires the ordering clause and does not allow the framing clause:

DENSE_RANK() OVER ([partitioning] ordering)

Oracle

Oracle also requires the ordering clause and does not allow the framing clause:

DENSE_RANK() OVER ([partitioning] ordering)

Example

Compare the results from the following Oracle-based example to those shown in the section on the RANK() function:

SELECT NUM, DENSE_RANK() OVER (ORDER BY NUM) rank

FROM test4;

 NUM RANK

---------- ----------

 0 1

 1 2

 2 3

 3 4

 3 4

 4 5

 5 6

The two rows where NUM=3 are both ranked at #3. The next higher row is ranked at #4. Rank numbers are not
skipped, hence the term "dense."

RANK()

Assigns a rank to each row in a partition, which should be ordered in some manner. The rank for a given row is
computed by counting the number of rows preceding the row in question, and then adding 1 to the result. Rows with
duplicate ORDER BY values will rank the same, and will lead to subsequent gaps in rank numbers.

SQL2003 Syntax

RANK() OVER {window_name|(window_specification)}

DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2

DB2 requires the ordering clause and does not allow the framing clause:

RANK() OVER ([partitioning] ordering)

Oracle

Oracle also requires the ordering clause and does not allow the framing clause:

RANK() OVER ([partitioning] ordering)

Example

The following Oracle-based example uses the NUM column to rank the rows in the test4 table:

SELECT NUM, RANK() OVER (ORDER BY NUM) rank

FROM test4;

 NUM RANK

---------- ----------

 0 1

 1 2

 2 3

 3 4

 3 4

 4 6

 5 7

Because both rows where NUM=3 rank the same at #4, the next higher row will be ranked at #6. The #5 rank is
skipped.

PERCENT_RANK

Computes the relative rank of a row by dividing that row's rank less 1 by the number of rows in the partition, also less
1:

(rank - 1) / (rows - 1)

Compare this calculation to that used for CUME_DIST.

SQL2003 Syntax

PERCENT_RANK() OVER ({window_name|(window_specification)}

DB2

DB2 does not support the PERCENT_RANK() window function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle

Oracle requires the ordering clause and does not allow the framing clause:

PERCENT_RANK() OVER ([partitioning] ordering)

Example

The following, Oracle-based example assigns a relative rank to values of NUM, partitioning the data on the ODD
column:

SELECT NUM, ODD, PERCENT_RANK() OVER

 (PARTITION BY ODD ORDER BY NUM) cumedist

FROM test4;

 NUM ODD CUMEDIST

---------- ---------- ----------

 0 0 0

 2 0 .5

 4 0 1

 1 1 0

 3 1 .333333333

 3 1 .333333333

 5 1 1

Following is an explanation of the calculation behind the rank for the row in which NUM=2:

1. Row NUM=2 is the second row in its partition; thus, it ranks #2.

2. Subtract 1 from 2 to get a divisor of 1.

3. The dividend is the total number of rows in the partition, or 3.

4. Subtract 1 from 3 to get a dividend of 2.

5. The result of 1/3 is.33 repeating, as shown in the example.

ROW_NUMBER

Assigns a unique number to each row in a partition.

SQL2003 Syntax

ROW_NUMBER() OVER ({window_name|(window_specification)}

DB2

DB2 does not allow the framing clause, and it makes the ordering clause optional:

ROW_NUMBER() OVER ([partitioning] [ordering])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle

Oracle requires the ordering clause and does not allow the framing clause:

ROW_NUMBER() OVER ([partitioning] ordering)

Example

SELECT NUM, ODD, ROW_NUMBER() OVER

 (PARTITION BY ODD ORDER BY NUM) cumedist

FROM test4;

 NUM ODD CUMEDIST

---------- ---------- ----------

 0 0 1

 2 0 2

 4 0 3

 1 1 1

 3 1 2

 3 1 3

 5 1 4

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.4 ANSI SQL Scalar Functions
The ANSI SQL scalar functions return a single value each time they are invoked. The SQL standard provides many
scalar functions that can be used to manipulate date and time types, strings, and numbers, as well as retrieve system
information such as the current user or login name. Scalar functions fall into the categories listed in Table 4-2.

Table 4-2. Categories of scalar functions
Function
category Explanation

Built-in

Performs operations on values or settings built into the database.

Oracle uses the term "built-in" to describe all the specialty functions that are provided by Oracle, and thus
"built into" their DBMS. This is a distinct and separate usage from the "built-in" functions described here.

CASE and
CAST

While these two functions operate on scalar input values, they are in a category all their own. CASE
supplies IF-THEN logic to SQL statements and CAST can convert values from one datatype to another.

Date and
Time

Performs operations on temporal datatypes and returns values in a temporal datatype format. There is no
SQL2003 function that operates on a temporal datatype and returns a temporal result. The closest
function is EXTRACT (covered in Section 4.4.3 later in this chapter), which operates on temporal values
and returns numeric values. Functions returning temporal values but operating on no arguments are
covered in the later Section 4.4.1.

Numeric Performs operations on numeric values and returns numeric values.

String Performs operations on character values (e.g., CHAR, VARCHAR, NCHAR, NVARCHAR, and CLOB) and
returns a string or numeric value.

4.4.1 Built-in Scalar Functions

SQL2003 built-in scalar functions identify both the current user session and the characteristics of the current user
session, such as the current session privileges. Built-in scalar functions are always nondeterministic. The
CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP functions listed in Table 4-3 are built-in functions that fall
into the date-and-time category of functions. Although the five platforms provide many additional functions beyond
these SQL built-ins, the SQL standard defines only those listed in Table 4-3.

Table 4-3. ANSI SQL built-in scalar functions
Function Usage

CURRENT_DATE Returns the current date.

CURRENT_TIME Returns the current time.

CURRENT_TIMESTAMP Returns the current date and time.

CURRENT_USER or USER Returns the currently active user within the database server.

SESSION_USER Returns the currently active Authorization ID, if it differs from the user.

SYSTEM_USER Returns the currently active user within the host operating system.

DB2

DB2 supports the SQL2003 built-in scalar functions CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,
CURRENT_USER, and USER. The SQL2003 scalar functions CURRENT_ROLE, LOCAL_TIME, LOCAL_TIMESTAMP,
SESSION_USER, and SYSTEM_USER are not supported.

MySQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL

MySQL supports all the SQL2003 built-in scalar functions, plus Oracle's variant SYSDATE. In addition, MySQL supports
NOW() as a synonym of the function CURRENT_TIMESTAMP.

Oracle

Oracle supports USER and SYSDATE as a synonym of CURRENT_TIMESTAMP.

PostgreSQL

PostgreSQL supports all the SQL2003 built-in scalar functions except SESSION_USER.

SQL Server

SQL Server supports all the built-in scalar functions.

Examples

The following queries retrieve the values from built-in functions. Notice that the various platforms return dates in their
native formats:

/* On MySQL */

SELECT CURRENT_TIMESTAMP;'2001-12-15 23:50:26'

/* DB2 */

VALUES CURRENT_TIMESTAMP'2001-12-15 23.50.26.000000'

/* On Microsoft SQL Server */

SELECT CURRENT_TIMESTAMPGO'Dec 15,2001 23:50:26'

/* On Oracle */

SELECT USER FROM dual;dylan

4.4.2 CASE and CAST Functions

ANSI SQL2003 provides a function named CASE that can be used to create IF-THEN flow-control logic within queries or
update statements. The CAST function is for converting between datatypes and is also in the ANSI standard. All of the
databases covered by this book provide ANSI standard support for both the CASE and CAST functions.

CASE

The CASE function provides IF-THEN-ELSE functionality within a SELECT or UPDATE statement. It evaluates a list of
conditions and returns one value out of several possible values.

CASE has two usages: simple and searched. Simple CASE expressions compares one value, the input_value, with a list of
other values and return a result associated with the first matching value. Searched CASE expressions allow the analysis
of several logical conditions and return a result associated with the first one that is true.

All vendors provide the ANSI SQL2003 syntax for CASE.

SQL2003 Syntax and Description

-- Simple comparison operation

CASE input_valueWHEN when_condition THEN resulting_value[...n]

[ELSE else_result_value]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[ELSE else_result_value]

END

-- Boolean searched operation

CASE

WHEN Boolean_condition THEN resulting_value[...n]

[ELSE else_result_expression]

END

In the simple CASE function, the input_value is evaluated against each WHEN clause. The resulting_value is returned for
the first TRUE instance of input_value = when_condition. If no when_condition evaluates as TRUE, the else_result_value is
returned. If no else_result_value is specified, then NULL is returned.

In the more elaborate Boolean searched operation, the structure is essentially the same as the simple comparison
operation except that each WHEN clause has its own Boolean comparison operation.

In either usage, multiple WHEN clauses are used, though only one ELSE clause is necessary.

Examples

Here is a simple comparison operation where the CASE function alters the display of the contract column to make it
more understandable:

SELECT au_fname,

 au_lname,

 CASE contract

 WHEN 1 THEN 'Yes'

 ELSE 'No'

 END 'contract'

FROM authors

WHERE state = 'CA'

Here is an elaborate searched CASE function in a SELECT statement that will report how many titles have been sold in
different year-to-date sales ranges:

SELECT CASE

 WHEN ytd_sales IS NULL THEN 'Unknown'

 WHEN ytd_sales <= 200 THEN 'Not more than 200'

 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'

 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'

 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'

 ELSE 'Over 10000'

 END 'YTD Sales',

 COUNT(*) 'Number of Titles'

FROM titles

GROUP BY CASE

 WHEN ytd_sales IS NULL THEN 'Unknown'

 WHEN ytd_sales <= 200 THEN 'Not more than 200'

 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'

 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'

 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'

 ELSE 'Over 10000'

 END

ORDER BY MIN(ytd_sales)

The results are:

YTD Sales Number of Titles

---------------------- ----------------

Unknown 2

Not more than 200 1

Between 201 and 1000 2

Between 1001 and 5000 9

Between 5001 and 10000 1

Over 10000 3

Next is an UPDATE statement that applies discounts to all of the titles. This more complicated command will discount all
personal computer-related titles by 25%, all other titles by 10%, and apply only a 5% discount to titles with year-to-
date sales exceeding 10,000 units. This query uses a searched CASE expression to perform price adjustment:

UPDATE titles

SET price = price *

 CASE

 WHEN ytd_sales > 10000 THEN 0.95 -- 5% discount

 WHEN type = 'popular_comp' THEN 0.75 -- 25% discount

 ELSE 0.9 -- 10% discount

 END

WHERE pub_date IS NOT NULL

The update has now completed three separate UPDATE operations in a single statement.

CAST

The CAST command explicitly converts an expression of one datatype to another. All vendors provide the ANSI
SQL2003 syntax for CAST.

SQL2003 Syntax and Description

CAST(expression AS data_type[(length)])

The CAST function converts any expression, such as a column value or variable, into another defined datatype. The
length of the datatype may be optionally supplied for those datatypes (such as CHAR or VARCHAR) that support
lengths.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lengths.

Be aware that some conversions, such as DECIMAL values to INTEGER, will result in
rounding operations. Also, some conversion operations may result in an error if the new
datatype does not have sufficient space to display the converted value.

Examples

This example retrieves the year-to-date sales as a CHAR and concatenates it with a literal string and a portion of the
title of the book. It converts ytd_sales to CHAR(5), plus it shortens the length of the title to make the results more
readable.

SELECT CAST(ytd_sales AS CHAR(5)) + ' Copies sold of ' + CAST(title AS VARCHAR(30))

FROM titles

WHERE ytd_sales IS NOT NULL

 AND ytd_sales > 10000

ORDER BY ytd_sales DESC

The results are:

22246 Copies sold of The Gourmet Microwave

18722 Copies sold of You Can Combat Computer Stress

15096 Copies sold of Fifty Years in Buckingham Pala

4.4.3 Numeric Scalar Functions

The list of official SQL2003 numeric functions is rather small, and the different platforms provide supplementary
mathematical and statistical functions. MySQL directly supports many of these functions. The other database platforms
offer the same capabilities of numeric scalar functions through their own internally defined functions, but they do not
share the same name as those declared by the SQL standard. The supported numeric functions and syntax are listed in
Table 4-4.

Table 4-4. SQL2003 numeric functions
Function Usage

ABS Returns the absolute value of a number.

MOD Returns the remainder of one number divided into another.

BIT_LENGTH Returns an integer value representing the number of bits in another value.

CEIL or
CEILING

Rounds a noninteger value upwards to the next greatest integer. Returns an integer value
unchanged.

CHAR_LENGTH Returns an integer value representing the number of characters in a string expression.

EXP Raises a value to the power of the mathematical constant known as e.

EXTRACT Allows the datepart to be extracted (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE_HOUR, or TIMEZONE_MINUTE) from a temporal expression.

FLOOR Rounds a noninteger value downwards to the next least integer. Returns an integer value
unchanged.

LN Returns the natural logarithm of a number.

OCTET_LENGTH Returns an integer value representing the number of octets in another value. This value is the same
as BIT_LENGTH/8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

POSITION Returns an integer value representing the starting position of a string within the search string.

POWER Raises a number to a specified power.

SQRT Computes the square root of a number.

WIDTH_BUCKET Deposits a value into the appropriate bucket from a set of buckets covering a given range.

ABS

All platforms have standard SQL2003 support for the ABS function.

SQL2003 Syntax

ABS(expression)

ABS returns the absolute value of the number in expression.

Example

The following shows how to use the ABS function:

/* SQL2003 */

SELECT ABS(-1) FROM NUMBERS1

BIT_LENGTH, CHAR_LENGTH, and OCTET_LENGTH

All platforms stray from the ANSI standard in their support for the scalar functions for determining the length of
expressions. While the platform support is nonstandard, the equivalent functionality exists under different names.

SQL2003 Syntax

The SQL2003 scalar functions for getting the length of a value take an expression to calculate the value and return the
length as an integer. The BIT_LENGTH function returns the number of bits contained within the value of expression. The
CHAR_LENGTH is the number of characters in the string expression. OCTET_LENGTH returns the number of octets within
the string expression. All three of these functions will return NULL if expression is NULL.

BIT_LENGTH(expression)

CHAR_LENGTH(expression)

OCTET_LENGTH(expression)

DB2

DB2 does not support BIT_LENGTH, CHAR_LENGTH, or OCTET_LENGTH. DB2 does support a scalar function named
LENGTH(), which provides similar functionality for nongraphic string types. For graphic string types, LENGTH returns
the number of double-byte characters in a string.

MySQL

MySQL supports CHAR_LENGTH and the SQL2003 synonym CHARACTER_LENGTH().

Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle

The closest any of the platforms get to the BIT_LENGTH function is Oracle. Oracle supports the LENGTHB function,
which returns an integer value representing the number of bytes in an expression. For the length of an expression in
characters, Oracle provides a LENGTH() function as a synonym for CHAR_LENGTH.

PostgreSQL

PostgreSQL supports CHAR_LENGTH and the SQL2003 synonym CHARACTER_LENGTH().

SQL Server

SQL Server provides the LEN function.

Example

The following example, shown for different databases, determines the length of a string and a value retrieved from a
column:

/* On MySQL and PostgreSQL */

SELECT CHAR_LENGTH('hello');SELECT OCTET_LENGTH(book_title) FROM titles;

/* On Microsoft SQL Server */

SELECT DATALENGTH(title) FROM titlesWHERE type = 'popular_comp'GO

/* On Oracle or DB2 */

SELECT LENGTH('HORATIO') "Length of characters"FROM dual;

CEIL

The CEIL function returns the smallest integer greater than an input value that you specify.

SQL2003 Syntax

SQL2003 supports the following two forms of the function:

CEIL(expression)

CEILING (expression)

DB2

DB2 supports both variations of the SQL2003 syntax.

MySQL

MySQL supports only CEILING.

Oracle

Oracle supports only CEIL.

PostgreSQL

PostgreSQL has no support for either CEIL or CEILING.

SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

SQL Server supports only CEILING.

Examples

When you pass a positive, noninteger number, the effect of CEIL is to round up to the next highest integer:

SELECT CEIL(100.1) FROM dual;

FLOOR(100.1)

 101

Remember, though, that with negative numbers, rounding "up" results in a lower absolute value:

SELECT CEIL(-100.1) FROM dual;

FLOOR(-100.1)

 -100

Use FLOOR to get behavior opposite to that of CEIL.

EXP

The EXP function returns the value of the mathematical constant e (approximately 2.718281) raised to the power of a
specified number.

SQL2003 Syntax

All platforms support the SQL2003 syntax:

EXP(expression)

Example

The following example uses EXP to return an approximation of e:

SELECT EXP(1) FROM dual;

 EXP(1)

2.71828183

Use LN to go in the opposite direction.

EXTRACT

The EXTRACT function is supported by Oracle, PostgreSQL, and MySQL. The other platforms support a separate
command to accomplish the same functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

EXTRACT(date_part FROM expression)

The SQL2003 scalar function for extracting parts from a date is EXTRACT. The SQL2003 EXTRACT function takes a
date_part and an expression that evaluates to a date time value.

DB2

DB2 provides unique functions that provide the same behavior as EXTRACT. Those functions are DAY, DAYNAME,
DAYOFWEEK, DAYOFWEEK_ISO, DAYOFYEAR, DAYS, HOUR, JULIAN_DAY, MICROSECOND, MIDNIGHT_SECONDS,
MINUTE, MONTH, MONTHNAME, SECOND, TIME, WEEK, WEEK_ISO, and YEAR. Look to the list shown later in this
chapter in Section 4.5.1 for examples on how to use these functions. As with Oracle, DB2 also offers a TO_CHAR
function that can be used to format a string from a date value.

When extracting parts of a date value on DB2 into an integer, such as the year or minute,
use the special functions provided by DB2 instead of the TO_CHAR function. Doing so will
provide the highest performance, since a conversion from a result string into an integer
won't be required.

MySQL

MySQL's implementation is extended somewhat beyond the ANSI standard. The ANSI standard does not have a
provision for returning multiple fields from the same call to EXTRACT() (e.g., DAY_HOUR). The MySQL extensions try
to accomplish what the combination DATE_TRUNC() and DATE_PART() do in PostgreSQL. MySQL supports the
dateparts listed in Table 4-5.

Table 4-5. MySQL dateparts
Type value Meaning

SECOND Seconds

MINUTE Minutes

HOUR Hours

DAY Days

MONTH Months

YEAR Years

MINUTE_SECOND Minutes and seconds

HOUR_MINUTE Hours and minutes

DAY_HOUR Days and hours

YEAR_MONTH Years and months

HOUR_SECOND Hours, minutes, and seconds

DAY_MINUTE Days, hours, and minutes

DAY_SECOND Days, hours, minutes, and seconds

Oracle

Oracle supports the SQL2003 syntax with the dateparts listed in Table 4-6.

Table 4-6. Oracle dateparts
Type value Meaning

DAY The day of the month field (1-31)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HOUR Returns the hour field (0-23)

MINUTE The minutes field (0-59)

MONTH The month field (1-12)

SECOND The seconds field (0-59)

TIMEZONE_HOUR The hour component of the time zone offset

TIMEZONE_MINUTE The minute component of the time zone offset

TIMEZONE_REGION The current time zone name

TIMEZONE_ABBR The abbreviation of the current time zone

YEAR The year field

PostgreSQL

PostgreSQL supports the SQL2003 syntax with a few extra dateparts. PostgreSQL supports the dateparts listed in Table
4-7.

Table 4-7. PostgreSQL dateparts
Type value Meaning

CENTURY The year field divided by 100.

DAY The day of the month field (1-31).

DECADE The year field divided by 10.

DOW Day of week (0-6, where Sunday is 0). This type only works for TIMESTAMP values.

DOY Day of year (1-366.) The maximum returned value is only 365 for years that are not leap years.
This type can only be used on TIMESTAMP values.

EPOCH Returns the number of seconds between the epoch (1970-01-01 00:00:00-00) and the value.
The result can be negative for values before the epoch.

HOUR Returns the hour field (0-23).

MICROSECONDS The seconds field (including fractional parts) multiplied by 1,000,000.

MILLENNIUM The year field divided by 1,000.

MILLISECONDS The seconds field (including fractional parts) multiplied by 1,000.

MINUTE The minutes field (0-59).

MONTH The month field (1-12).

QUARTER The quarter of the year (1-4) that the value is in. This type can only be used with TIMESTAMP
values.

SECOND The seconds field (0-59).

TIMEZONE_HOUR The hour component of the time zone offset.

TIMEZONE_MINUTE The minute component of the time zone offset.

WEEK The week number that the value falls on within the year.

YEAR The year field.

SQL Server

SQL Server provides the function DATEPART(date_part, expression) as a synonym for the SQL2003 function
EXTRACT(date_part FROM expression). SQL Server supports the dateparts listed in Table 4-8.

Table 4-8. SQL Server dateparts
Type
value Meaning

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

year The year field of the datetime expression. The abbreviations yy and yyyy can also be used for two-digit
and four-digit years, respectively.

quarter The quarter that the datetime expression falls on. The abbreviations q and qq can also be used.

dayofyear The day of the year for the date time expression. The abbreviations y and dy can also be used.

day The day of the month for the date time expression. The abbreviations d and dd can also be used.

week The week of the year for the date time expression. The abbreviations wk and ww can also be used.

weekday The day of the week for the date time expression. The abbreviation dw can also be used.

hour The hour of the day for the date time expression. The abbreviation hh can also be used.

minute The minute of the hour for the date time expression. The abbreviations n and mi can also be used.

second The second of the minute for the date time expression. The abbreviations s and ss can also be used.

millisecond The millisecond for the date time expression. The abbreviation ms can also be used.

Example

This example extracts dateparts from several date time values:

/* On MySQL */

SELECT EXTRACT(YEAR FROM "2013-07-02");2013

SELECT EXTRACT(YEAR_MONTH FROM "2013-07-02 01:02:03");201307

SELECT EXTRACT(DAY_MINUTE FROM "2013-07-02 01:02:03");20102

/* On PostgreSQL */

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');

20

FLOOR

The FLOOR function returns the largest integer less than an input value that you specify.

SQL2003 Syntax

All platforms support the SQL2003 syntax:

FLOOR(expression)

Examples

When you pass a positive number, the effect of FLOOR is to eliminate anything after the decimal point:

SELECT FLOOR(100.1) FROM dual;

FLOOR(100.1)

 100

Remember, though, that with negative numbers, going in the "less than" direction corresponds to increasingly larger
absolute values:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

absolute values:

SELECT FLOOR(-100.1) FROM dual;

FLOOR(-100.1)

 -101

Use CEIL to get behavior opposite to FLOOR.

LN

The LN function returns the natural logarithm of a number, which is the power to which you would need to raise the
mathematical constant e (approximately 2.718281) in order to get the number in question as the result.

SQL2003 Syntax

LN(expression)

DB2, Oracle, PostgreSQL

DB2, Oracle, and PostgreSQL support the SQL2003 syntax for the LN function. DB2 and PostgreSQL also support the
use of LOG as a synonym for LN.

MySQL and SQL Server

MySQL and SQL Server call their natural logarithm function LOG:

LOG(expression)

Example

The following, Oracle-based example shows the natural logarithm of a number closely approximating the mathematical
constant known as e:

SELECT LN(2.718281) FROM dual;

LN(2.718281)

 .999999695

Use the EXP function to go in the other direction.

MOD

The MOD function returns the remainder of a dividend divided by a divider. All platforms support the SQL2003 syntax
for the MOD function.

SQL2003 Syntax

MOD(dividend, divider)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MOD(dividend, divider)

The standard syntax for the MOD function is to return the remainder of dividend divided by the divider; returns the
dividend if the divider is 0.

Example

The following shows how to use the MOD function from within a SELECT statement:

SELECT MOD(12, 5) FROM NUMBERS

2

POSITION

The POSITION function returns an integer that indicates the starting position of a string within the search string.

SQL2003 Syntax

POSITION(string1 IN string2)

The standard syntax for the POSITION function is to return the first location of string1 within string2. POSITION returns 0
if string1 does not occur within string2 and NULL if either argument is NULL.

DB2

DB2's equivalent function is POSSTR.

MySQL

MySQL supports POSITION as defined in SQL2003.

Oracle

Oracle's equivalent function is called INSTR.

PostgreSQL

PostgreSQL supports POSITION as defined in SQL2003.

SQL Server

SQL Server has both CHARINDEX and PATINDEX. CHARINDEX and PATINDEX are very similar, except that PATINDEX
allows the use of wildcard characters in the search criteria.

Examples

/* DB2 */

SELECT POSSTR('bar', 'foobar');

4

/* On MySQL */

SELECT LOCATE('bar', 'foobar');4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT LOCATE('bar', 'foobar');4

/* On MySQL and PostgreSQL */

SELECT POSITION('fu' IN 'snafhu');0

/* On Microsoft SQL Server */

SELECT CHARINDEX('de', 'abcdefg')GO4

SELECT PATINDEX('%fg', 'abcdefg')GO6

POWER

Use POWER to raise a number to a specific value.

SQL2003 Syntax

POWER(base, exponent)

The result of the POWER function is base raised to the exponent power, or baseexponent. If base is negative, then exponent
must be an integer.

DB2, Oracle, PostgreSQL, and SQL Server

These vendors all support the SQL2003 syntax.

MySql

MySQL supports the same functionality, but requires the use of the keyword POW:

POW(base, exponent)

Example

Raising a positive number to an exponent is straightforward:

SELECT POWER(10,3) FROM dual;

POWER(10,3)

 1000

Anything raised to the 0th power evaluates to 1:

SELECT POWER(0,0) FROM dual;

POWER(0,0)

 1

Negative exponents move the decimal point to the left:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Negative exponents move the decimal point to the left:

SELECT POWER(10,-3) FROM dual;

POWER(10,-3)

 .001

SQRT

The SQRT function returns the square root of a number.

SQL2003 Syntax

All platforms support the SQL2003 syntax:

SQRT(expression)

Example

SELECT SQRT(100) FROM dual;

 SQRT(100)

 10

WIDTH_BUCKET

The WIDTH_BUCKET function assigns values to buckets in an equiwidth histogram.

SQL2003 Syntax

In the following syntax, expression represents a value to be assigned to a bucket. You would typically base expression on
one or more columns returned by a query.

WIDTH_BUCKET(expression, min, max, buckets)

The buckets argument specifies the number of buckets to create over the range defined by min through max. min is
inclusive, whereas max is not. The value from expression is assigned to one of those buckets, and the function then
returns the corresponding bucket number. When expression falls outside the range of buckets, the function returns either
0 or max+1, depending on whether expression is lower than min or greater than or equal to max.

Examples

The following example divides the integer values 1 through 10 into two buckets:

SELECT x, WIDTH_BUCKET(x,1,10,2)

FROM pivot;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM pivot;

 X WIDTH_BUCKET(X,1,10,2)

---------- ----------------------

 1 1

 2 1

 3 1

 4 1

 5 1

 6 2

 7 2

 8 2

 9 2

 10 3

The following example is more interesting. It divides 11 values from 1 through 10 into three buckets, and illustrates the
distinction between min being inclusive and max being noninclusive:

SELECT x, WIDTH_BUCKET(x,1,10,3)

FROM pivot;

 X WIDTH_BUCKET(X,1,10,3)

---------- ----------------------

 1 1

 2 1

 3 1

 4 2

 5 2

 6 2

 7 3

 8 3

 9 3

 9.9 3

 10 4

Pay particular attention to the results for X=1, 9.9, and 10. An input value of min, 1 in this example, falls into that first
bucket, proving that the lower end of the range for bucket #1 is defined as x >= min. An input value of max, however,
falls outside the highest bucket. In this example, 10 falls into the overflow bucket numbered max+1. The value 9.9 falls
into bucket #3, illustrating that the upper end of the range for the highest bucket is defined as x < max.

4.4.4 String Functions and Operators

Basic string functions and operators offer a number of capabilities and return a string value as a result. Some string
functions are dyadic, indicating that they operate on two strings at once. SQL2003 supports the string functions listed in
Table 4-9.

Table 4-9. SQL String functions and operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 4-9. SQL String functions and operators
Function or

operator Usage

Concatenation
operator

Appends two or more literal string expressions, column values, or variables together into one
string.

CONVERT Converts a string to a different representation within the same character set.

LOWER Converts a string to all lowercase characters.

OVERLAY Returns the result of replacing a substring of one string with another.

SUBSTRING Returns a portion of a string.

TRANSLATE Converts a string from one character set to another.

TRIM Removes leading characters, trailing characters, or both from a character string.

UPPER Converts a string to all uppercase characters.

Concatenation Operator

SQL2003 defines a concatenation operator (||), which joins two distinct strings into one string value.

DB2

DB2 supports the SQL2003 concatenation operator and the CONCAT function as a synonym.

MySQL

MySQL supports CONCAT() as a synonym for the SQL2003 concatenation operator.

Oracle and PostgreSQL

PostgreSQL and Oracle support the SQL2003 double vertical bar concatenation operator.

SQL Server

SQL Server uses the plus sign (+) as a synonym for the SQL2003 concatenation operator. SQL Server has the system
setting CONCAT_NULL_YIELDS_NULL, which can be set to alter the behavior when NULL values are used in the
concatenation of string values.

Examples

/* SQL2003 Syntax */

'string1' || 'string2' || 'string3'

'string1string2string3'

/* On MySQL */

CONCAT('string1', 'string2')

'string1string2'

If any of the concatenation values are NULL, the entire returned string is NULL. Also, if a numeric value is
concatenated, it is implicitly converted to a character string.

SELECT CONCAT('My ', 'bologna ', 'has ', 'a ', 'first ', 'name...');

'My bologna has a first name...'

SELECT CONCAT('My ', NULL, 'has ', 'first ', 'name...');NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT CONCAT('My ', NULL, 'has ', 'first ', 'name...');NULL

CONVERT and TRANSLATE

The CONVERT function alters the representation of a character string within its character set and collation. For example,
CONVERT might be used to alter the number of bits per character.

TRANSLATE alters the character set of a string value from one base-character set to another. Thus, TRANSLATE might
be used to translate a value from the English character set to a Kanji (Japanese) or Cyrillic (Russian) character set. The
translation must already exist, either by default or by having been created using the CREATE TRANSLATION command.

SQL2003 Syntax

CONVERT (char_value USING conversion_char_name)

TRANSLATE(char_value USING translation_name)

CONVERT converts char_value to the characterset with the name supplied in conversion_char_name. TRANSLATE converts
char_value to the character set provided in translation_name.

Among the platforms, only Oracle supports CONVERT and TRANSLATE with the same meaning as SQL2003. Oracle's
implementation of TRANSLATE is very similar to SQL2003, but not identical. In its implementation, Oracle accepts only
two arguments and translates only between the database character set and the national language support character
set.

MySQL's implementation of the CONV function only translates numbers from one base to another. In contrast, SQL
Server's implementation of CONVERT is a very rich utility that alters the base datatype of an expression, but is
otherwise dissimilar to the SQL2003 CONVERT function. PostgreSQL does not support CONVERT, and its implementation
of TRANSLATE morphs any occurrence of a character string to any other character string.

DB2

DB2 does not support CONVERT, and its support for the TRANSLATE function is not ANSI standard. TRANSLATE is used
to translate substrings and has historically acted as a synonym for UPPER, since UPPER was only recently added to DB2.
When TRANSLATE is used with only a string expression as an argument, the result will be an uppercase equivalent of
that argument. When used with more than one argument, as in TRANSLATE(source, replacements, match), the function
translates all characters in source that are also in match. Each character in source will be replaced with the character in
replacements that is found in the same position as the matching character in match. Following are some examples:

TRANSLATE('Hello, World!')

'HELLO, WORLD!'

TRANSLATE('Hello, World!', 'wZ', 'lW')

'Hewwo, Zorwd!'

MySQL

MySQL does not support TRANSLATE or CONVERT.

Oracle

Oracle supports the following CONVERT and TRANSLATE functions:

CONVERT(char_value, target_char_set, source_char_set)

TRANSLATE(char_value USING {CHAR_CS | NCHAR_CS})

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRANSLATE(char_value USING {CHAR_CS | NCHAR_CS})

Under Oracle's implementation, the CONVERT function returns the text of char_value in the target character set. The
char_value is the string to convert, target_char_set is the name of the character set into which the string is to be
converted, and source_char_set is the name of the character set in which char_value was originally stored.

Oracle's TRANSLATE function follows the ANSI syntax, but you can choose between two character sets only: the
database character set (CHAR_CS) and the national character set (NCHAR_CS).

Oracle supports a different function that is also named TRANSLATE, which omits the
USING keyword. That version of TRANSLATE has nothing to do with character set
translation.

Both the target and source character set names can be passed either as literal strings, in variables, or in columns from
a table. Note that replacement characters might be substituted when converting from or to a character set that does
not support a representation of all the characters used in the conversion.

Oracle supports several common character sets, including US7ASCII, WE8DECDEC, WE8HP, F7DEC, WE8EBCDIC500,
WE8PC850, and WE8ISO8859P1. For example:

SELECT CONVERT('Gro2', 'US7ASCII', 'WE8HP')FROM DUAL;Gross

PostgreSQL

PostgreSQL supports the ANSI standard CONVERT and conversions can be defined by using CREATE CONVERSION.
PostgreSQL's implementation of the TRANSLATE function offers a large superset of functions that can convert any
occurrence of one text string to another within another specified string.

TRANSLATE (character_string, from_text, to_text)

Here are some examples:

SELECT TRANSLATE('12345abcde', '5a', 'XX');'1234XXbcde'

SELECT TRANSLATE(title, 'Computer', 'PC')FROM titlesWHERE type = 'Personal_computer'

SELECT CONVERT('PostgreSQL' USING iso_8859_1_to_utf_8)

'PostgreSQL'

SQL Server

SQL Server does not support TRANSLATE. SQL Server's implementation of the CONVERT function does not follow the
SQL2003 specification. Instead, it is functionally equivalent to the CAST function.

CONVERT (data_type[(length) | (precision,scale)], expression[,style])

The style clause is used to define the format of a date conversion. Refer to the SQL Server documentation for more
information. Following is an example:

SELECT title, CONVERT(char(7), ytd_sales)

FROM titles

ORDER BY title

GO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GO

LOWER and UPPER

The functions LOWER and UPPER allow the case of a string to be altered quickly and easily, so that all the characters
are lower- or uppercase, respectively. These functions are supported in all the database implementations covered in
this book. The different database platforms also support a variety of other text formatting functions that are specific to
their implementation.

SQL2003 Syntax

LOWER(string)

UPPER(string)

LOWER converts string into a lowercase string. UPPER is the uppercase counterpart of LOWER.

DB2 and MySQL

These platforms support the SQL2003 UPPER and LOWER scalar functions, as well as the synonyms UCASE and LCASE.

Oracle, PostgreSQL, and SQL Server

These platforms support the SQL2003 UPPER and LOWER scalar functions, as in the following example:

Example

SELECT LOWER('You Talkin To ME?'), UPPER('you talking to me?!');

you talkin to me?, YOU TALKING TO ME?!

OVERLAY

The OVERYLAY function embeds one string into another and returns the result.

SQL2003 Syntax

OVERLAY(string PLACING embedded_string FROM start[FOR length])

If any of the inputs are NULL, the OVERLAY function returns a NULL. The embedded_string replaces the length characters
in string starting at character position start. If the length is not specified, then the embedded_string will replace all
characters after start in string.

DB2, MySQL, Oracle, and SQL Server

These platforms do not have support for the OVERLAY function. You can simulate the OVERLAY function on these
platforms by using a combination of SUBSTRING and the concatenation operator.

PostgreSQL

PostgreSQL supports the ANSI standard for OVERLAY.

Examples

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Examples

This is an example of how to use the OVERLAY function:

/* SQL2003 and PostgreSQL */

SELECT OVERLAY('DONALD DUCK' PLACING 'TRUMP' FROM 8) FROM NAMES;'DONALD TRUMP'

SUBSTRING

The SUBSTRING function allows one character string to be returned from another.

SQL2003 Syntax

SUBSTRING(extraction_string FROM starting_position [FOR length]

[COLLATE collation_name])

If any of the inputs are NULL, the SUBSTRING function returns a NULL. The extraction_string is the source where the
character value is to be extracted. It may be a literal string, a column in a table with a character datatype, or a variable
with a character datatype. The starting_position is an integer value telling the function at which position to begin
performing the extract. The optional length is an integer value that tells the function how many characters to extract,
starting at the starting_position. If the optional FOR is omitted, then the substring starting at starting_position and
continuing to the end of the extraction_string is returned.

DB2

SUBSTR(extraction_string, starting_position [, length])

DB2's implementation, SUBSTR, largely functions the same way as SQL2003's SUBSTRING. It does not support the
COLLATE clause. If length is omitted, the remainder of the string (starting at starting_position) is returned.

MySQL

SUBSTRING(extraction_string FROM starting_position)

MySQL's implementation assumes that the characters are to be extracted from the starting position and will continue to
the end of the character string.

Oracle

SUBSTR(extraction_string, starting_position [, length])

Oracle's implementation, SUBSTR, largely functions the same way as SQL2003's SUBSTRING. It does not support the
COLLATE clause. When a starting_position is a negative number, Oracle counts from the end of the extraction_string. If
length is omitted, the remainder of the string (starting at starting_position) is returned.

PostgreSQL

SUBSTRING(extraction_string [FROM starting_position] [FOR length])

PostgreSQL largely supports the ANSI standard, except that it does not accept the COLLATE clause.

SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

SUBSTRING(extraction_string [FROM starting_position] [FOR length])

SQL Server largely supports the ANSI standard, except that it does not allow the COLLATE clause. SQL Server allows
this command to be applied to text, image, and binary datatypes; however, the starting_position and length represent the
number of bytes rather than the number of characters to count.

Examples

These examples generally work on any one of the five database platforms profiled in this book. Only the second Oracle
example, with a negative starting position, fails on the others (assuming, of course, that Oracle's SUBSTR is translated
into SUBSTRING):

/* On Oracle, counting from the left */

SELECT SUBSTR('ABCDEFG',3,4) FROM DUAL;'CDEF'

/* On Oracle, counting from the right */

SELECT SUBSTR('ABCDEFG',-5,4) FROM DUAL;'CDEF'

/* On MySQL */

SELECT SUBSTRING('Be vewy, vewy quiet' FROM 5);'wy, vewy quiet'

/* On PostgreSQL or SQL Server */

SELECT au_lname, SUBSTRING(au_fname, 1, 1)FROM authorsWHERE au_lname = 'Carson'

Carson C

TRIM

The TRIM function removes leading characters, trailing characters, or both from a specified character string or BLOB
value. This function also removes other types of characters from a specified character string. The default function is to
trim the specified character from both sides of the character string. If no removal character is specified, TRIM removes
spaces by default.

SQL2003 Syntax

TRIM([[{LEADING | TRAILING | BOTH}] [removal_char] FROM]

 target_string

 [COLLATE collation_name])

The removal_char is the character to be stripped out. The target_string is the character string from which characters are to
be stripped. If a removal_char is not specified, then TRIM strips out spaces. The COLLATE clause forces the result set of
the function into another pre-existing collation set.

DB2

DB2 provides the functions LTRIM and RTRIM to trim off leading spaces or trailing spaces, respectively.

MySQL, Oracle, and PostgreSQL

These platforms support the SQL2003 syntax of TRIM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These platforms support the SQL2003 syntax of TRIM.

Microsoft SQL Server

SQL Server provides the functions LTRIM and RTRIM to trim off leading spaces or trailing spaces, respectively. On SQL
Server the LTRIM and RTRIM cannot be used to trim other types of characters.

Examples

SELECT TRIM(' wamalamadingdong ');'wamalamadingdong'

SELECT LTRIM(RTRIM(' wamalamadingdong '));'wamalamadingdong'

SELECT TRIM(LEADING '19' FROM '1976 AMC GREMLIN');'76 AMC GREMLIN'

SELECT TRIM(BOTH 'x' FROM 'xxxWHISKEYxxx');'WHISKEY'

SELECT TRIM(TRAILING 'snack' FROM 'scooby snack');'scooby '

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.5 Platform-Specific Extensions
The following sections provide a full listing and description of each vendor-supported function. The functions are
platform-specific. Thus, a MySQL function, for example, is not guaranteed to be supported by any other vendor.

4.5.1 DB2-Supported Extensions

This section provides an alphabetical listing of DB2-supported functions that are specific to DB2 and not from the ANSI
standard, with examples and corresponding results.

ABSVAL(number)

Synonym for ABS(number). For example:

VALUES(ABSVAL(-1)) -> 1

ACOS(number)

Returns the arc cosine of a number ranging from -1 to 1. The result ranges from 0 to and is expressed in
radians. For example:

SELECT ACOS(0) -> 1.570796

ASCII(text)

Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') -> 120

ASIN(number)

Returns the arc sine of number ranging from -1 to 1. The resulting value ranges from -/2 to /2 and is expressed
in radians. For example:

SELECT ASIN(0) -> 0.000000

ATAN(number)

Returns the arctangent of any number. The resulting value ranges from -/2 to /2 and is expressed in radians. For
example:

SELECT ATAN(3.1415) -> 1.262619

ATAN2(number,nbr)

Returns the arctangent of number and nbr. The values for number and nbr are not restricted, but the results range
from - to and are expressed in radians. ATAN2(x,y) is similar to ATAN(y/x) with the exception that the signs of x
and y are used to determine the quadrant of the result. For example:

VALUES(ATAN2(3.1415, 1)) -> +3.08177595443792E-001

ATANH(number)

Returns the hyperbolic arctangent of number. The values for number are not restricted, but the results range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the hyperbolic arctangent of number. The values for number are not restricted, but the results range
from - to and are expressed in radians. For example:

VALUES(ATANH(0)) -> +0.00000000000000E+000

BIGINT(expression)

Returns a 64-bit integer representation of expression, where expression can be a number, character string, date,
time, or timestamp. For example:

SELECT BIGINT('1991-11-22') -> 19911122

BLOB(string [,length])

Returns a BLOB representation of string, where string can be a string representation of any type. This example
will return BLOBs from the employee_images table that contain the binary string "JFIF."

SELECT image FROM employee_images WHERE image LIKE BLOB('%JFIF%')

CHAR(expression [,length])

Returns a fixed-length character string representation of expression, where the optional parameter length is the
length attribute of the character value returned.

CHR(number)

Returns the character having the ASCII code value equal to number. For example:

VALUES(CHR(120)) -> 'x'

CLOB(string [,length])

Returns a CLOB representation of string.

COALESCE(expression [,...])

Returns the first argument that is not NULL. For example:

SELECT COALESCE(1,2,3) -> 1

CONCAT(string1, string2)

Returns string1 concatenated with string2. It is equivalent to the concatenation operator (||). For example:

SELECT CONCAT(au_lname, au_fname) FROM authors -> 'JeffersonThomas'

COS(number)

Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) -> 1.000000

COSH(number)

Returns the hyperbolic cosine of number. For example:

VALUES(COSH(3.1415)) -> +1.15908832931176E+001

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COT(number)

Returns the cotangent of number. For example:

SELECT COT(3.1415) -> -10792.88993953

DATE(expression)

Returns a date value from expression. If expression is an integer value, then the returned date is equivalent to
expression-1 days after January 1, 0001. For example:

SELECT DATE(3) -> '01/03/0001'

DAY(expression)

Returns the day number in a date expression. For example:

SELECT DAY('1999-04-15') -> 15

DAYNAME(expression)

Returns the name of the day in expression using the locale of the database server. For example:

SELECT DAYNAME('1999-04-15') -> 'Thursday'

DAYOFWEEK(expression), DAYOFWEEK_ISO(expression), DAYOFYEAR(expression)

Returns the day of the week or year in expression. DAYOFWEEK returns an integer value in the range 1-7,
where 1 represents Sunday. DAYOFWEEK_ISO has the same range as DAYOFWEEK, but the value of 1
represents Monday. DAYOFYEAR returns an integer value in the range 1-366, where the value returned is the
day of the year starting with 1 for January 1st. For example:

VALUES(DAYOFWEEK('1999-04-15')) -> 5

VALUES(DAYOFWEEK_ISO('1999-04-15')) -> 4

VALUES(DAYOFYEAR('1999-04-15')) -> 105

DAYS(expression)

Returns one more than the number of days between expression and January 1, 0001. For example:

VALUES(DAYS('1999-04-15')) -> 729859

DBCLOB(expression [,length])

Returns a DBCLOB representation of a graphic string type, where length specifies the length of the DBCLOB
value returned.

DBPARTITIONNUM(column)

Returns the database partition number of the row containing column. For more information, please look to the
DB2 user documentation for DBPARTITIONNUM.

DECIMAL(expression [,precision [,scale [,decimal_char]), DEC(expression [,precision [,scale [,decimal_char])

Returns a decimal representation of expression. The optional arguments control the precision and scale used in the
result, whereas decimal_char is the decimal character found in expression, if any.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

result, whereas decimal_char is the decimal character found in expression, if any.

DECRYPT_BIN(data [,password]) or DECRYPT_CHAR(data [,password])

Returns decrypted data using the optional password. The result of DECRYPT_BIN is a VARCHAR FOR BIT DATA,
whereas DECRYPT_CHAR returns a VARCHAR.

DEGREES(number)

Returns the number of degrees converted from the argument expressed in radians. For example:

VALUES(DEGREES(3.1415926)) -> +1.79999996929531E+002

DEREF(expression)

Returns the object reference of expression, where expression must return a REF to an object. For more
information on User Defined Types (UDTs) please consult the DB2 User Guide.

DIFFERENCE(expression1, expression2)

Returns the difference between the sounds of two strings based on their SOUNDEX values. The result is an
integer in the range of 0-4, where 4 is the best SOUNDEX match. For example:

VALUES(DIFFERENCE('thimble', 'nimble')) -> 4

DIGITS(number)

Returns the number argument into a character string of digits. The result of DIGITS does not contain decimal or
sign characters and it may be padded on the left with zeros. For example:

VALUES(DIGITS(DEC('-3.1415926', 12, 8))) -> 000031415926

DOUBLE(number)

Returns number converted to a DOUBLE.

ENCRYPT(data [,password [,hint]])

Returns data encrypted with the optional password. The optional hint argument allows a user to store up to a 32-
byte password hint that is encoded into the result value. To get the password hint, look to the GETHINT
function. For example:

UPDATE employee SET ssn = ENCRYPT(ssn, 'luvbug', 'Herbie is-a?')

WHERE empid = '54321-AD'

EVENT_MON_STATE(expression)

Returns the state of an event monitor. For details on usage or available event monitors, please look to the DB2
user documentation.

FLOAT(number)

FLOAT is a synonym for DOUBLE.

GETHINT(data)

Returns the password hint encoded in data. The data argument must be encrypted with the ENCRYPT function.
For example:

SELECT GETHINT(ssn) FROM EMPLOYEE WHERE empid = '54321-AD'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT GETHINT(ssn) FROM EMPLOYEE WHERE empid = '54321-AD'

 'Herbie is-a?'

GENERATE_UNIQUE()

Returns a 13-byte CHAR(13) FOR BIT DATA value that is guaranteed to be unique from other invocations within
the same database. For example:

INSERT INTO employee(id, emp_name)

 VALUES(GENERATE_UNIQUE(), 'Bob Smith')

GRAPHIC(expression [,length])

Returns a fixed-length graphic string representation of expression, where the optional length argument is the
length of the result.

HASHEDVALUE(column)

Returns the partitioning map index of the row containing column. For more information, please look to the DB2
user documentation for HASHEDVALUE().

HEX(expression)

Returns a hexadecimal representation of expression. For example:

VALUES(HEX(255)) -> 000000FF

HOUR(expression)

Returns the hour of part of the time value in expression. For example:

SELECT HOUR(execution_time), COUNT(*) FROM trades

 GROUP BY HOUR(execution_time)

1 2

----------- -----------

 8 2058

 9 856

 10 912

 11 714

. . .

IDENTITY_VAL_LOCAL()

Returns the value most recently assigned to an identity column. Returns NULL when an identity column has not
been inserted into a table since the last COMMIT or ROLLBACK statement.

INSERT(expression1, expression2, expression3, expression4)

Returns expression1 with expression4, replacing expression3 bytes at position expression2. For example:

VALUES (INSERT('food', 2, 2, 'are')) -> 'fared'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INTEGER(expression)

Returns an integer representation of expression.

JULIAN_DAY(expression)

Returns the Julian day number for the date value in expression. The value returned is the number of days
between the date value in expression and the start of the Julian date calendar, January 1, 4713 B.C. For
example:

VALUES(JULIAN_DAY('1999-04-15')) -> 2451284

LEFT(string, length)

Returns the first length bytes from string. For example:

VALUES(LEFT('Hello, World!', 5)) -> 'Hello'

LENGTH(expression)

Returns the integer length of expression, or NULL if expression is NULL. For example:

VALUES(LENGTH('Hello, World!')) -> 13

LOCATE(substring, string [,starting_pos])

Returns the location of substring within string or zero, if the substring is not found within string. The optional
starting_pos can be used to specify the starting position within string to begin the search. For example:

VALUES(LOCATE('World', 'Hello, World!')) -> 8

LOG(number)

Returns the natural logarithm of number, the same as LN(number).

LOG10(number)

Returns the base 10 logarithm of number. For example:

VALUES(LOG10(50)) -> +1.69897000433602E+000

LONG_VARCHAR(string)

Returns a LONG_VARCHAR representation of string.

LONG_VARGRAPHIC(string)

Returns a LONG_VARGRAPHIC representation of string.

LTRIM(string)

Removes all characters inset from the left of string. For example:

VALUES(LTRIM(' Howdy! ')) -> 'Howdy! '

MICROSECOND(expression)

Returns the microsecond part of the time value in expression. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the microsecond part of the time value in expression. For example:

VALUES(MICROSECOND(CURRENT_TIMESTAMP)) -> 252270

MIDNIGHT_SECONDS(expression)

Returns the number of seconds that have elapsed between midnight and the time value in expression. For
example:

VALUES(MIDNIGHT_SECONDS('08:20:15')) -> 30015

MINUTE(expression)

Returns the minute part of the time value in expression. For example:

VALUES(MINUTE('08:20:15')) -> 20

MONTH(expression)

Returns the month part of the date value in expression. For example:

VALUES(MONTH('1999-04-15')) -> 4

MONTHNAME(expression)

Returns the month's name for the date value stored in expression using the current locale of the database. For
example:

VALUES(MONTHNAME('1999-04-15')) -> 'April'

MULTIPLY_ALT(number1, number2)

Returns the product of number1 and number2. The function MULTIPLY_ALT is a good alternative to the standard
multiplication operator (*) when the numbers being multiplied have a precision greater than 31. For example:

VALUES(MULTIPLY_ALT(DECIMAL('256'), DECIMAL('256'))) -> 65536

NULLIF(expression1, expression2)

Returns NULL if expression1 and expression2 are equal; otherwise the function returns expression1. For example:

VALUES(NULLIF('1999-04-15', '2000-04-15')) -> '1999-04-15'

POSSTR(source, search)

Returns the character position of the first occurrence of search within source where the first character position is
1. For example:

VALUES(POSSTR('Hello, World!', 'World')) -> 8

QUARTER(expression)

Returns an integer ranging from 1 to 4, representing the quarter of the year that contains the date in expression.
For example:

VALUES(QUARTER('2004-04-15')) -> 2

RADIANS(expression)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RADIANS(expression)

Returns the number of radians from expression, which is expressed in degrees. For example:

VALUES(RADIANS(180)) -> +3.14159265358979E+000

RAISE_ERROR(sqlstate, errorstring)

Raises an error upon execution. This function is useful for generating critical errors in complicated SQL
statements and stored procedures. The sqlstate parameter is used for passing error code information back to the
application executing the SQL statement, and the errorstring parameter is used for a custom error message. For
example:

SELECT a.au_fname, a.aulname,

 CASE WHEN t.ytd_sales = 0 THEN 'no sales'

 WHEN t.ytd_sales > 0 THEN 'OK'

 ELSE RAISE_ERROR('70001', 'Sales should not be negative.')

 END

FROM authors a, titleauthor, titles t

WHERE titleauthor.au_id = a.au_id AND

 Titleauthor.title_id = t.title_id

GROUP BY a.au_lname, a.au_fname

RAND([seed])

Returns a random floating-point value between 0 and 1, using seed as the random number generator seed.

REAL(number)

Returns a single-precision floating point representation of number.

REC2XML(decimal, format, rowtags, column_name [, . . .])

Returns an XML string containing XML tags, as well as column names and column data. The arguments are
described in the following list:

decimal

Decimal value greater than 0, but less than or equal to 6.0, that contains the factor to expand string
values to compensate for the string value expanding due to character replacements for the XML values
and elements.

format

Case-sensitive string value equal to "COLATTVAL" or "COLATTVAL_XML". If column values can contain
XML data that would need to be translated to produce valid XML output, then use "COLATTVAL". If the
columns will not contain special XML markup characters, then use "COLATTVAL_XML". Column names
containing special markup characters will still be translated (i.e., "escaped") when "COLATTVAL_XML" is
chosen.

rowtags

String value to name the row element containing the column data. If rowtags is an empty string, then
the value of row is used. If rowtags contains a string of only spaces, then the enclosing row element will
be omitted in the output.

column_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

column_name

The name of a column to place into the XML result. For example:

SELECT REC2XML(1.3, 'COLATTVAL', 'Author', au_id, au_fname,

 au_lname)

FROM AUTHORS WHERE au_id = '172-32-1176'

<Author>

 <column name="AU_ID">172-32-1176</column>

 <column name="AU_FNAME">Johnson</column>

 <column name="AU_LNAME">White</column>

</Author>

REPEAT(string, number)

Returns a character string that is composed of string repeated number times. For example:

VALUES(CHAR(REPEAT('Duck ', 3))) -> 'Duck Duck Duck'

REPLACE(string, search_string, replacement_string)

Returns string with every occurrence of search_string replaced with replacement_string. For example:

VALUES(REPLACE('change', 'e', 'ing')) -> 'changing'

RIGHT(string, number)

Returns the number rightmost bytes from string. For example:

VALUES(RIGHT('Hello, World!', 6)) -> 'World!'

ROUND(number[, decimal])

Returns number rounded to decimal places right of the decimal point. When decimal is omitted, number is rounded
to places. Note that decimal, an integer, can be negative to round off digits left of the decimal point. For
example:

VALUES(ROUND(12345.6789, 2)) -> 12345.6800

RTRIM(string)

Returns string with all trailing whitespace characters removed. For example:

VALUES(RTRIM(' welcome ')) -> ' welcome'

SECOND(expression)

Returns the seconds part of the time value in expression. For example:

VALUES(SECOND('08:20:15')) -> 15

SIGN(number)

When number < 0, returns -1. When number = 0, returns 0. When number > 0, returns 1. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When number < 0, returns -1. When number = 0, returns 0. When number > 0, returns 1. For example:

VALUES(SIGN(-3.1415926), SIGN(0), SIGN(3.1415926))

-1.00000000000000E+000 0 +1.00000000000000E+000

SIN(number)

Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SINH(number)

Returns the hyperbolic sine of number.

SMALLINT(number)

Returns a SMALLINT value equivalent to number.

SOUNDEX(string)

Returns a character string containing the phonetic representation of string. This function allows words that are
spelled differently but sound alike in English to be compared for equality. For example:

VALUES(SOUNDEX('thimble')) -> 'T514'

SPACE(number)

Returns a string composed of number spaces. For example:

VALUES(SPACE(5)) -> ' '

STDDEV({ ALL | DISTINCT } expression)

Returns the standard deviation of the values contained within expression. The ALL keyword specifies the default
behavior in which all values in expression are used in the standard deviation. The keyword DISTINCT omits
duplicate values in expression when doing the calculation. For example:

SELECT STDDEV(values) FROM NUMBERS -> 0.0642

SUBSTR(string, start [, length])

Returns a substring of string of length bytes starting at start. If length is too large to permit a valid substring, then
string is padded with trailing spaces until a valid substring can be found. The starting position, start, must be an
integer value in the range of 1 to the length of string. For example:

VALUES(SUBSTR('Hello, World!', 8, 5)) -> 'World'

TABLE_NAME(object [,schema])

Returns the unqualified name of object after resolving any aliases. The optional schema argument specifies the
database schema to use in resolving the object name. For example:

VALUES(TABLE_NAME('trades')) -> 'trades'

TABLE_SCHEMA(object [,schema])

Returns the schema name of the object after resolving any aliases. The optional schema argument specifies the
database schema to use in resolving the object name. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

database schema to use in resolving the object name. For example:

VALUES(TABLE_SCHEMA('trades')) -> 'MYSCHEMA'

TAN(number)

Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) -> -0.000093

TANH(number)

Returns the hyperbolic tangent of number.

TIME(expression)

Returns a time value equivalent to the time in expression. For example:

VALUES(TIME('2003-04-15 08:20:15')) -> '08:20:15'

TIMESTAMP(expression1 [,expression2])

Returns a timestamp value created from date and time values in expression1 and expression2. If only expression1 is
given, then it must contain a valid date and time value. If both arguments are given, then expression1 must
contain a valid string representation of a date and expression2 a valid string representation of time. For example:

VALUES(TIMESTAMP('2003-04-15', '08:20:15'))

2003-04-15-08.20.15.000000

TIMESTAMP_FORMAT(string,format)

Returns a timestamp value after extracting it from string. The second argument, format, contains the timestamp
format used in string. (For details on the timestamp format, see the VARCHAR_FORMAT function.) For example:

VALUES(TIMESTAMP_FORMAT('2003-4-15 08:20:15', 'YYYY-MM-DD HH24:MI:SS'))

2003-04-15-08.20.15.000000

TIMESTAMP_ISO(expression)

Returns a timestamp value from expression. If expression is a date value, then the time value will consist of zeros.
If the expression is a time value, then the current date will be used in constructing the timestamp value. For
example:

VALUES(TIMESTAMP_ISO('2003-04-15')) -> 2003-04-15-00.00.00.000000

TIMESTAMPDIFF(interval_type, tsdiff_expression)

Returns an estimated number of intervals between two timestamp values. The interval_type argument must be
a power of 2 in the range between 1 and 256, where the meaning of the value is interpreted as in the following
table:

interval_type Timestamp difference returned

1 Fractions of a second

2 Seconds

4 Minutes

8 Hours

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

The tsdiff_expression must be the result of subtracting two timestamp values and converting to a single CHAR(22) value.
For example:

VALUES(TIMESTAMPDIFF(2, CHAR(CURRENT_DATE - CURRENT_TIMESTAMP)))

515

TO_CHAR(timestamp, format)

Synonym for VARCHAR_FORMAT.

TO_DATE(string, format)

Synonym for TIMESTAMP_FORMAT.

TRANSLATE(string, tostring, fromstring [,pad_char])

Returns a string equivalent to the string argument with each character found in tostring replaced with the
corresponding character from fromstring. The optional pad_char argument can contain a single-byte character
that will be used to pad tostring if it is shorter than fromstring. If the same character appears more than once in
fromstring, then only the first occurrence will count and all following occurrences will be ignored. For example:

VALUES(TRANSLATE('123,456,789.45', ',.', '.,')) -> '123.456.789,45'

TRUNCATE(number1, number2) or TRUNC(number1, number2)

Returns number1 with all digits to the right of the decimal point by number2 places replaced with zeros. If
number2 is negative, then the truncation occurs to the left of the decimal place. For example:

VALUES(TRUNCATE(DEC('123.456'), -1)) -> 120.

TYPE_ID(expression)

Returns the internal type identifier to the user-defined structured type instance stored in expression. For more
information on User Defined Types (UDTs) please consult the DB2 User Guide.

TYPE_NAME(expression)

Returns the unqualified name to the user-defined structured type instance stored in expression. For more
information on User Defined Types (UDTs) please consult the DB2 User Guide.

TYPE_SCHEMA(expression)

Returns the schema name to the user-defined structured type instance stored in expression. For more
information on User Defined Types (UDTs) please consult the DB2 User Guide.

VALUE(expression [,...])

Returns the first argument that is not NULL. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the first argument that is not NULL. For example:

VALUES(VALUE('Hello!', 5)) -> 'Hello!'

VAR or VARIANCE({ ALL | DISTINCT } expression)

Returns the variance of the values contained within expression. The ALL keyword specifies the default behavior in
which all values in expression are used in the calculation. The keyword DISTINCT omits duplicate values in
expression when doing the calculation. For example:

SELECT VARIANCE(values) FROM NUMBERS -> 987244882.22

VARCHAR(expression[,length])

Returns a varying-length character representation of expression, where length is the length attribute for the
varying-length character result. If length is omitted, then the length of the result is the length of the expression.

VARCHAR_FORMAT(expression, format)

Returns a string representation of the timestamp value in expression in the format provided in the format
argument. Listed below are the available specifiers for format and their meanings.

YYYY

Four-digit year

MM

Two-digit month (01-12)

DD

Two-digit day of month (01, 02, ...)

HH24

Two-digit hour of day (00-24)

MI

Two-digit minute (00-59)

SS

Two-digit second (00-59)

For example:

VALUES(VARCHAR_FORMAT(CURRENT_TIMESTAMP, 'YYYY-MM-DD HH24:MI:SS'))

2003-06-24 09:37:45

VARGRAPHIC(expression [,length])

Returns a varying-length graphic string representation of expression, where length is the length attribute for the
varying-length graphic string result. If length is omitted, then the length of the result is the length of the
expression.

WEEK(expression)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WEEK(expression)

Returns the week of the year for the date value contained in expression. The range for the result is 1-54 and the
week starts with Sunday. For example:

VALUES(WEEK('2003-04-15')) -> 16

WEEK_ISO(expression)

Returns the week of the year for the date value contained in expression. The range for the result is 1-53, and the
week starts with Monday. The first week of the year always contains January 4th. For example:

VALUES(WEEK_ISO('2003-04-15')) -> 16

YEAR(expression)

Returns the year part of the date value in expression. For example:

VALUES(YEAR('2004-04-15')) -> 2004

4.5.2 MySQL-Supported Functions

This section provides an alphabetical listing of MySQL-supported functions, with examples and corresponding results.

ACOS(number)

Returns the arc cosine of number ranging from -1 to 1. The result ranges from 0 to and is expressed in radians.
For example:

SELECT ACOS(0) -> 1.570796

ASCII(text)

Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') -> 120

ASIN(number)

Returns the arc sine of number ranging from -1 to 1. The resulting value ranges from -/2 to /2 and is expressed
in radians. For example:

SELECT ASIN(0) -> 0.000000

ATAN(number)

Returns the arctangent of any number. The resulting value ranges from -/2 to /2 and is expressed in radians. For
example:

SELECT ATAN(3.1415) -> 1.262619

ATAN2(x,y)

Returns the arctangent of the two variables x and y. ATAN2(x,y) is similar to ATAN(y/x), with the exception that
the signs of x and y are used to determine the quadrant of the result. For example:

ATAN2(3.1415, 1) -> 1.262619

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BENCHMARK(count,expr)

Executes the expression (expr) count times. The result value is always 0. For example:

BENCHMARK(1000000,ATAN2(3.1415, 1)) -> 0

BIN(number)

Returns a string containing the binary value of n, where n is a BIGINT number.

BINARY string

Casts string to a binary string.

BIT_AND(expr)

An aggregate function that returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit
(BIGINT) precision. The value of -1 is returned when no matching rows are found. For example:

BIT_AND(mycolumn) -> 0

BIT_COUNT(number)

Returns the number of bits that are set in number. For example:

BIT_COUNT(5) -> 2

BIT_OR(expr)

An aggregate function that returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit
(BIGINT) precision. The value of zero is returned when no matching rows are found. For example:

BIT_OR(mycolumn) -> 1

CHAR(number [,...])

Returns a string consisting of the characters given by the ASCII code values in the arguments. Any NULL values
are ignored. For example:

CHAR(120,121,122) -> 'xyz'

COALESCE(list)

Returns the first non-NULL element in the list. For example:

COALESCE(NULL, 1, 2) -> 1

COMPRESS(string)

Returns a compressed version of string.

CONCAT_WS(separator, str1, str2[,...])

A special form of CONCAT() that inserts separator between every pair of string arguments concatenated. If
separator is NULL, then the result is NULL. For example:

CONCAT_WS(', ', au_lname, au_fname) -> 'Jefferson, Thomas'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CONCAT_WS(', ', au_lname, au_fname) -> 'Jefferson, Thomas'

CONNECTION_ID()

Returns the connection ID for the connection. Every connection has its own unique ID. For example:

CONNECTION_ID() -> 305102

CONV(number,from_base,to_base)

Returns a string representation of the number number, converted from base from_base to base to_base. If any
argument is NULL, then the result is NULL. For example:

CONV(12,10,2) -> 1100

COS(number)

Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) -> 1.000000

CURDATE()

Returns today's date as a value in YYYY-MM-DD or YYYYMMDD format, depending on whether the function is
used in a string or numeric context. For example:

CURDATE() -> '2003-06-24'

CURTIME()

Returns the current time as a value in HH:MM:SS or HHMMSS format, depending on whether the function is
used in a string or numeric context. For example:

CURTIME() -> '20:40:20'

DATABASE()

Returns the current database name. For example:

DATABASE() -> 'PUBS'

DATE_ADD(date,INTERVAL expr type)

DATE_SUB(date,INTERVAL expr type)

ADDDATE(date,INTERVAL expr type)

SUBDATE(date,INTERVAL expr type)

These functions perform date arithmetic calculations. ADDATE() and SUBDATE() are synonyms for DATE_ADD(
) and DATE_SUB(). DATE_ADD() returns the result of adding the INTERVAL to the date expression. DATE_SUB(
) is the result of subtracting the INTERVAL from the date expression. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

) is the result of subtracting the INTERVAL from the date expression. For example:

DATE_ADD('1999-04-15', INTERVAL 1 DAY) -> '1999-04-16'

DATE_SUB('1999-04-15', INTERVAL 1 DAY) -> '1999-04-14'

DATE_ FORMAT(date, format)

Formats the date value according to the format string. Listed below are the available specifiers for format and
their meanings.

%a

Abbreviation of the day (Sun-Sat)

%b

Abbreviation of the month (Jan-Dec)

%c

Month number (1-12)

%D

Day of month with a suffix (1st, 2nd, 3rd, ...)

%d

Two digit day of month (01, 02, ...)

%e

Day of month (1, 2, 3, ...)

%H

Hour (00-23)

%h

Hour (01-12)

%i

Minutes (00-59)

%I

Hour (01-12)

%j

Day of year (001-366)

%k

Hour (0-23)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hour (0-23)

%l

Hour (1-12)

%M

Full month name (January-December)

%m

Month (01-12)

%p

A.M. or P.M.

%r

12-hour time (hh:mm:ss A.M or P.M)

%S, %s

Seconds (00-59)

%T

24-hour time (hh:mm:ss)

%U

Week number (00-53, Sunday being the first day of the week)

%u

Week number (00-53, Monday being the first day of the week)

%V

Week number (01-53, Sunday being the first day of the week)

%v

Week number (01-53, Monday being the first day of the week)

%W

Name of the day (Sunday-Saturday)

%w

Day of the week (0 = Sunday, 6 = Saturday)

%X

Four-digit year with Sunday being the first day of the week

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Four-digit year with Sunday being the first day of the week

%x

Four-digit year with Monday being the first day of the week

%Y

Four-digit year

%y

Two-digit year

%%

Literal "%"

For example:

DATE_FORMAT('1999-04-15', '%M-%D-%Y') -> 'April-15th-1999'

DAYNAME(date)

Returns the name of the weekday for date. For example:

DAYNAME('1999-04-15') -> 'Thursday'

DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31. For example:

DAYOFMONTH('1999-04-15') -> 15

DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, . . . 7 = Saturday). For example:

DAYOFWEEK('1999-04-15') -> 5

DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366. For example:

DAYOFYEAR('1999-04-15') -> 105

DECODE(crypt_str,pass_str)

Decrypts the encrypted string crypt_str using pass_str as the password; crypt_str should be a string returned from
ENCODE(). For example:

DECODE(ENCODE('foo','bar'),'bar') -> 'foo'

DEGREES(number)

Returns the argument number converted from radians to degrees. For example:

DEGREES(3.1415926) -> 179.99999692953

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEGREES(3.1415926) -> 179.99999692953

ELT(n, str1, str2, str3[,...n])

Returns str1 if n = 1, str2 if n = 2, and so on. If n is less than 1 or greater than the number of arguments, then
this function returns NULL. ELT() is the complement of FIELD(). For example:

ELT(1, 'Hi', 'There') -> 'Hi'

ELT(2, 'Hi', 'There') -> 'There'

EMPTY_BLOB and EMPTY_CLOB

Returns empty LOB locators, which you can use to initialize BLOB and CLOB values that you wish to create as
part of an INSERT or UPDATE statement.

ENCODE(str,pass_str)

Encrypts str using pass_str as the password. To decrypt the result, use DECODE(). The result is a binary string
the same length as the string. For example:

DECODE(ENCODE('foo','bar'),'bar') -> 'foo'

ENCRYPT(str[,salt])

Encrypts str using the Unix crypt() system call. The salt argument should be a string with two characters. For
example:

ENCRYPT('password') -> 'ZB7yqPUHvNnmo'

EXPORT_SET(bits,on,off,[separator,[number_of_bits]])

Returns a string where every bit set in bits gets an on string and every unset bit gets an off string. Each string is
separated with separator; the default is a comma (,). Only number_of_bits of bits is used; the default is 64. For
example:

EXPORT_SET(4,'T','F')

F,F,T,F,

F,F

FIELD(str,str1,str2,str3[,...])

Returns the index of str in the given string arguments. Returns 0 if str is not found. FIELD() is the complement
of ELT(). For example:

FIELD('GOOSE','DUCK','DUCK','GOOSE','DUCK') -> 3

FIND_IN_SET(str,strlist)

Returns the index of str within the strlist, where strlist is a list of strings separated by commas. This function is
equivalent to calling FIELD(str, CONCAT_WS(',', str1, str2, str3, [,...])). For example:

FIND_IN_SET('b','a,b,c,d') -> 2

FORMAT(number,decimals)

Formats the number number to a format like #,###,###.##, rounded to decimals decimals. If decimals is 0, the
result has no decimal point or fractional part. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

result has no decimal point or fractional part. For example:

FORMAT(12345.2132,2) -> 12,345.21

FORMAT(12345.2132,0) -> 12,345

FROM_DAYS(number)

Given a day number number, returns a DATE value. This function should not be used for values that precede the
advent of the Gregorian calendar (1582), due to the days lost when the calendar was changed. For example:

FROM_DAYS(888888) -> 2433-09-10

FROM_UNIXTIME(unix_timestamp)

Returns a representation of the unix_timestamp argument as a value in YYYY-MM-DD HH:MM:SS or
YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context. For
example:

FROM_UNIXTIME(888123892) -> 1998-02-21 21:04:52

FROM_UNIXTIME(unix_timestamp,format)

Returns a string representation of the unix_timestamp, formatted according to the format string. format may
contain the same specifiers as those listed in the entry for the DATE_FORMAT() function. For example:

FROM_UNIXTIME(888123892,'%Y %D %M') -> '1998 21st February'

GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, with a time-out of timeout seconds. Returns 1 if the
lock is obtained successfully or NULL if an error occurs or the attempt to acquire the lock times out. For
example:

GET_LOCK('lochness',10) -> 1

GREATEST(x,y[,...])

Returns the largest argument. For example:

GREATEST(8,2,4) -> 8

HEX(number)

Returns a string representation of the hexadecimal value of number. This is equivalent to CONV(number,10,16).
For example:

HEX(255) -> FF

HOUR(time)

Returns the hour for time, in the range 0 to 23. For example:

HOUR('08:20:15') -> 8

IF(expr1, expr2, expr3)

Returns expr2 if expr1 is TRUE, otherwise returns expr3. For example:

IF(1,'yes','no') -> 'yes'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IF(1,'yes','no') -> 'yes'

IF(0,'yes','no') -> 'no'

IFNULL(expr1, expr2)

Returns expr1 if expr1 is not NULL, otherwise returns expr2. For example:

IFNULL(0,'NULL') -> 0

IFNULL(NULL,'NULL') -> 'NULL'

INSERT(str, pos, len, newstr)

Returns the string str with newstr inserted at character position pos for length len. For example:

INSERT('paper',2,3,'ea') -> 'pear'

INSTR(str,substr)

Returns the position of the first occurrence of the substring substr in the string str. For example:

INSTR('ducks','c') -> 3

INTERVAL(num1,num2,num3,num4[,...n])

Returns 0 if num1 < num2, 1 if num1 < num3, and so on. It is required that num2< num3< num4< . . . < numN.
For example:

INTERVAL(5,1,6) -> 1

INTERVAL(5,2,3,7,9) -> 2

IS_FREE_LOCK(lock)

Returns 1 if lock is free and zero if the lock is currently in use. The function may return NULL on error
conditions. For example:

IS_FREE_LOCK('lochness') -> 0

ISNULL(expr)

If expr is NULL, IFNULL() returns 1; otherwise it returns 0. For example:

ISNULL(1) -> 0

ISNULL(NULL) -> 1

LAST_INSERT_ID([expr])

Returns the last automatically generated value that was inserted into an AUTO_INCREMENT column. For
example:

LAST_INSERT_ID() -> 0

LCASE(str)

Synonym for lower(str). For example:

LCASE('DUCK') -> 'duck'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LCASE('DUCK') -> 'duck'

LEAST(X,Y[,...n])

With two or more arguments, returns the smallest (minimum-valued) argument. For example:

LEAST(10,5,3,7) -> 3

LEFT(str,len)

Returns the leftmost len characters from the string str. For example:

LEFT('Ducks', 4) -> 'Duck'

LENGTH(str)

These functions return the length of the string str. For example:

LENGTH('DUCK') -> 4

LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. The file must be on the server, and the user must
specify the full pathname to the file and have access to the file.

LOCATE(substr,str), POSITION(substr IN str)

Returns the position of the first occurrence of the substring substr in the string str. Returns zero if substr is not in
str. LOCATE is a synonym for the standard POSITION(substr IN str). For example:

LOCATE('al','Donald') -> 4

POSITION('al' IN 'Donald') -> 4

LOCATE(substr,str,pos)

Returns the position of the first occurrence of the substring substr in the string str, starting at position pos;
returns zero if substr is not in str. For example:

LOCATE('World', 'Hello, World!') -> 8

LOG(X)

Returns the natural logarithm of X. For example:

LOG(50) -> 3.912023

LOG2(X)

Returns the base-2 logarithm of X. For example:

LOG2(50) -> 5.64386

LOG10(X)

Returns the base-10 logarithm of X. For example:

LOG10(50) -> 1.698970

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LOG10(50) -> 1.698970

LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr until str is len characters long. For example:

LPAD('ucks',6,'d') -> 'dducks'

LTRIM(str)

Returns the string str with leading-space characters removed. For example:

LTRIM(' Howdy! ') -> 'Howdy! '

MAKE_SET(bits, str1, str2[, ...n])

Returns a set (a string containing substrings separated by commas) consisting of the string arguments that
have the corresponding bit in bits set; str1 corresponds to bit 0, str2 to bit 1, etc. NULL strings in str1, str2, ... are
not appended to the result. For example:

MAKE_SET(1 | 4,'hello','nice','world') -> 'hello,world'

MD5(string)

Calculates an MD5 checksum for the string. Value is returned as a 32-digit-long hex number. For example:

MD5('somestring') -> 1f129c42de5e4f043cbd88ff6360486f

MINUTE(time)

Returns the minute for time, in the range to 59. For example:

MINUTE('08:20:15') -> 20

MONTH(date)

Returns the month for date, in the range 1 to 12. For example:

MONTH('1999-04-15') -> 4

MONTHNAME(date)

Returns the name of the month for date. For example:

MONTHNAME('1999-04-15') -> 'April'

NOW() , SYSDATE()

Returns the current date and time as a value in YYYY-MM-DD HH:MM:SS or YYYYMMDDHHMMSS format,
depending on whether the function is used in a string or numeric context. For example:

NOW() -> 2003-06-24 20:40:24

SYSDATE() -> 2003-06-24 20:40:24

CURRENT_TIMESTAMP -> 2003-06-24 20:40:24

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NULLIF(expr1, expr2)

Returns NULL if expr1 is equal to expr2; otherwise returns expr1. For example:

NULLIF(2,29) -> 2

NULLIF(29,29) -> NULL

OCT(n)

Returns an octal value equivalent of n, where n is a number. This is equivalent to CONV(N,10,8). Returns NULL if
n is NULL. For example:

OCT(255) -> 377

ORD(str)

Returns the character ordinal of the multibyte character string str. The value is calculated using the following
formula: ((first byte ASCII code)*256+(second byte ASCII code)*256*256)(third byte ASCII
code)*256*256*256[,...]. If str isn't a multibyte character, then this function returns the same value as the
ASCII() function. For example:

ORD('29') -> 50

PASSWORD(str)

Calculates a password string from the plain-text password str. This is the function that is used for encrypting
MySQL passwords. For example:

PASSWORD('password') -> 5d2e19393cc5ef67

PERIOD_ADD(period,months)

Adds the number of months found in months to the period in period (in the format YYMM or YYYYMM). Returns a
value in the format YYYYMM. For example:

PERIOD_ADD(9902,3) -> 199905

PERIOD_DIFF(period1, period2)

Returns the number of months between period1 and period2. period1 and period2 should be in the format YYMM or
YYYYMM. For example:

PERIOD_DIFF(9902,9905) -> -3

PI()

Returns the value of -. For example:

PI() -> 3.141593

POW(X,Y), POWER(X,Y)

Returns the value of X raised to the power of Y. For example:

POW(2, 8) -> 256.000000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4. For example:

QUARTER('1999-04-15') -> 2

RADIANS(X)

Returns the argument X, converted from degrees to radians. For example:

RADIANS(180) -> 3.1415926535898

RAND() , RAND(N)

Returns a random floating-point value in the range 0 to 1.0. If an integer argument N is specified, it is used as
the seed value. For example:

RAND() -> 0.29588872501244

RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the lock is released
or NULL if the named lock doesn't exist or isn't locked by this thread (in which case the lock is not released).
For example:

RELEASE_LOCK('lochness') -> 1

REPEAT(str, count)

Returns a string consisting of the string str repeated count times. For example:

REPEAT('Duck', 3) -> 'DuckDuckDuck'

REPLACE(str, from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string to_str. For example:

REPLACE('change', 'e', 'ing') -> 'changing'

REVERSE(str)

Returns the string str reversed. For example:

REVERSE('STOP') -> 'POTS'

RIGHT(str,ten)

Returns the rightmost 10 characters from the string str. For example:

RIGHT('Hello, World!', 6) -> 'World!'

ROUND(X[,D])

Returns the argument X, rounded to a number with D decimals. If D is 0, the result has no decimal point or
fractional part. For example:

ROUND(12345.6789, 2) -> 12345.68

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROUND(12345.6789, 2) -> 12345.68

RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr until str is len characters long. For example:

RPAD('duck',6,'s') -> 'duckss'

RTRIM(str)

Returns the string str with trailing space characters removed. For example:

RTRIM(' welcome ') -> 'welcome '

SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes, and seconds, as a value in HH:MM:SS or HHMMSS
format, depending on whether the function is used in a string or numeric context. For example:

SEC_TO_TIME(256) -> 00:04:16

SECOND(time)

Returns the second for time, in the range to 59. For example:

SECOND('08:20:15') -> 15

SHA(X) or SHA1(X)

Returns a SHA1 160-bit checksum for X. For example:

SHA('abc') -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or positive. For
example:

SIGN(-3.1415926) -> -1

SIN(number)

Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SOUNDEX(str)

Returns a soundex string from str. For example:

SOUNDEX('thimble') -> 'T514'

expr1 SOUNDS LIKE expr2

Synonymous with the expression:

SOUNDEX(expr1) = SOUNDEX(expr2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SOUNDEX(expr1) = SOUNDEX(expr2)

SPACE(n)

Returns a string consisting of n space characters. For example:

SPACE(5) -> ' '

STD(expr), STDDEV(expr)

Returns the standard deviation of expr. The STDDEV() form of this function is provided for Oracle compatibility.
For example:

STD(5) -> NULL

STRCMP(expr1,expr2)

STRCMP() returns zero, as marked if the strings are the same, -1 if the first argument is smaller than the
second according to the current sort order, and 1 otherwise. For example:

STRCMP('DUCKY', 'DUCK') -> 1

STRCMP('DUCK', 'DUCK') -> 0

SUBSTRING(str, pos, len), MID(str, pos, len)

Returns a substring len characters long from string str, starting at position pos. These functions are synonyms
for the ANSI SQL92 function SUBSTRING(str FROM pos FOR len). For example:

SUBSTRING('Hello, World!', 8, 10) -> 'World!'

SUBSTRING('Hello, World!' FROM 8 FOR 10) -> 'World!'

SUBSTRING(str,pos), SUBSTRING(str FROM pos)

Returns a substring from string str starting at position pos. For example:

SUBSTRING('Hello, World!', 8) -> 'World!'

SUBSTRING('Hello, World!' FROM 8) -> 'World!'

SUBSTRING_INDEX(str, delim, count)

Returns the substring of str after count occurrences of the delimiter delim. For example:

SUBSTRING_INDEX('www.mysql.com', '.', 2) -> 'www.mysql'

TAN(number)

Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) -> -0.000093

TIME_FORMAT(time, format)

This is used like DATE_FORMAT(), but the format string may contain only those format specifiers that handle
hours, minutes, and seconds. Other specifiers produce a NULL value or 0. See DATE_FORMAT for the format
specifiers available. For example:

TIME_FORMAT('2003-04-15 08:20:15', '%r') -> 08:20:15 AM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TIME_FORMAT('2003-04-15 08:20:15', '%r') -> 08:20:15 AM

TIME_TO_SEC(time)

Returns the time argument, converted to seconds. For example:

TIME_TO_SEC('08:20:15') -> 30015

TO_DAYS(date)

Given a date, returns a day number (the number of days since the year 0). For example:

TO_DAYS('1999-04-15') -> 730224

TRUNCATE(X,D)

Returns the number X, truncated to D decimals. If D is 0, the result has no decimal point or fractional part. For
example:

TRUNCATE('123.456', 2) -> '123.45'

TRUNCATE('123.456', 0) -> '123'

TRUNCATE('123.456', -1) -> '120'

UCASE(str)

Synonym for UPPER(str). For example:

UCASE('duck') -> 'DUCK'

UNCOMPRESS(string)

Returns a compressed version of string.

UNHEX(str)

Returns a binary string constructed from hex characters in str.

UNIX_TIMESTAMP() ,UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since 1970-01-01 00:00:00 GMT). If
UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as seconds since 1970-
01-01 00:00:00 GMT. For example:

UNIX_TIMESTAMP() -> 1056512427

UNIX_TIMESTAMP('1999-04-15') -> 924159600

USER() , SYSTEM_USER() , SESSION_USER()

These functions return the current MySQL username. For example:

USER() -> 'login@machine.com'

SYSTEM_USER() -> 'login@machine.com'

SESSION_USER() -> 'login@machine.com'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VERSION()

Returns a string indicating the MySQL server version. For example:

VERSION() -> '4.0.12-standard'

WEEK(date), WEEK(date, first)

With a single argument, returns the week for date, in the range 1 to 53. (The beginning of a week 53 is possible
during some years.) The two-argument form of WEEK() allows the user to specify whether the week starts on
Sunday (0) or Monday (1). For example:

WEEK('1999-04-15') -> 15

WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, . . . 6 = Sunday). For example:

WEEKDAY('1999-04-15') -> 3

YEAR(date)

Returns the year for date, in the range 1000 to 9999. For example:

YEAR('1999-04-15') -> 1999

YEARWEEK(date), YEARWEEK(date, first)

Returns the year and week for date. The second argument works exactly like the second argument to WEEK().
Note that the year may be different from the year in the date argument for the first and the last week of the
year. For example:

YEARWEEK('1999-04-15') -> 199915

4.5.3 Oracle-Supported Functions

This section provides an alphabetical listing of the SQL functions specific to Oracle, with examples and corresponding
results.

ACOS(number)

Returns the arc cosine of number ranging from -1 to 1. The result ranges from 0 to 1 and is expressed in
radians. For example:

SELECT ACOS(0) FROM DUAL -> 1.570796

ADD_MONTHS(date, int)

Returns the date plus int months. For example:

SELECT ADD_MONTHS('15-APR-1999', 3) FROM DUAL -> 15-JUL-99

ASCII(text)

Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') FROM DUAL -> 120

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ASCIISTR(text)

Converts text from any character set into an ASCII equivalent. Characters in text that have no equivalent in
ASCII will be replaced with the string \XXXX, where XXXX represents the UTF-16 code unit. For example:

SELECT ASCIISTR('ÄBC') FROM DUAL -> '\00C4BC'

ASIN(number)

Returns the arc sine of number ranging from -1 to 1. The resulting value ranges from -/2 to /2 and is expressed
in radians. For example:

SELECT ASIN(0) FROM DUAL -> 0.000000

ATAN(number)

Returns the arctangent of number. The resulting value ranges from -/2 to /2 and is expressed in radians. For
example:

SELECT ATAN(3.1415) FROM DUAL -> 1.262619

ATAN2(number,nbr)

Returns the arctangent of number and nbr. The values for number and nbr are not restricted, but the results range
from - to and are expressed in radians. ATAN2(x,y) is similar to ATAN(y/x), with the exception that the signs of
x and y are used to determine the quadrant of the result. For example:

SELECT ATAN2(3.1415, 1) FROM DUAL -> 1.26261873

BFILENAME(directory,filename)

Returns a BFILE locator associated with a physical LOB binary file on the server's filesystem in directory with the
name filename.

BIN_TO_NUM(expr[,...n])

Returns a decimal number equivalent of the binary bit vector contained in the expr arguments. For example:

SELECT BIN_TO_NUM(1,0,1) FROM DUAL -> 5

BITAND(integer1, integer2)

Returns the bitwise AND of the two integer arguments. For example:

SELECT BITAND(101, 2) FROM DUAL -> 0

SELECT BITAND(column1, 1) FROM DUAL -> 1

CARDINALITY(nested_table)

Returns the number of elements (cardinality) of the nested_table. If the nested_table is empty, NULL will be
returned. For example:

SELECT CARDINALITY(mytable) FROM DUAL -> 6

CHARTOROWID(char)

Converts a value from a character datatype (CHAR or VARCHAR2 datatype) to a ROWID datatype.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converts a value from a character datatype (CHAR or VARCHAR2 datatype) to a ROWID datatype.

CHR(number [USING NCHAR_CS])

Returns the character having the binary equivalent to number in either the database character set (if USING
NCHAR_CS is not included) or the national character set (if USING NCHAR_CS is included).

COALESCE(list)

Returns the first non-NULL element in the list. For example:

SELECT COALESCE(NULL, 1, 2) FROM DUAL -> 1

COLLECT (column)

Creates for each group a nested table consisting of all values in a column. This is an aggregate function.

COMPOSE(string)

Returns string as a fully normalized UNICODE string.

CONCAT(string1, string2)

Returns string1 concatenated with string2. CONCAT is equivalent to the concatenation operator (||). For example:

SELECT CONCAT(au_lname, au_fname) FROM AUTHORS -> 'JeffersonThomas'

CONVERT(char_value, target_char_set, source_char_set)

Converts a character string from one character set to another; returns char_value in the target_char_set after
converting char_value from the source_char_set.

CORR_K(expr1, expr2 [,return_type])

CORR_S(expr1, expr2 [,return_type])

CORR_K returns Kendall's tau-b correlation coefficient, and CORR_S returns Spearman's rho correlation
coefficient of a set of numbered pairs (expr1 and expr2). The return_type argument, a VARCHAR2, can be omitted
or one of the following values: 'COEFFICIENT', 'ONE_SIDED_SIG', 'TWO_SIDED_SIG'. The value of 'COEFFICIENT',
which specifies the default behavior, returns the coefficent of the correlation. The values of 'ONE_SIDED_SIG' and
'TWO_SIDED_SIG' will return the one- and two-tailed significance of the correlation, respectively.

COS(number)

Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) FROM DUAL -> 1.000000

COSH(number)

Returns the hyperbolic cosine of number. For example:

SELECT COSH(180) FROM DUAL -> 7.4469E+77

SELECT COT(3.1415) FROM DUAL -> -10792.88993953

COT(number)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COT(number)

Returns the cotangent of number. For example:

SELECT COT(3.1415) -> -10792.88993953

CV([dimension_column])

Relevant only in the inter-row calculations performed within the MODEL clause of a SELECT statement, this
function returns the current value of the dimension_column. CV can only be used in the righthand side of a rule,
since it returns the value of the dimension_column from the left-hand side of the same rule.

DBTIMEZONE

Returns the time zone offset from UTC time for the database server. For example:

SELECT DBTIMEZONE FROM DUAL -> +00:00

DECODE(expr, search , result [, search, result [,...n]] [,default])

Compares expr to the search value; if expr is equal to a search, it returns the result. For example:

DECODE ('B','A',1,'B',2,...'Z',26,'?') -> 2

Without a match, DECODE returns default, or NULL if default is omitted. Refer to Oracle documentation for more
details. Consider using CASE instead, as CASE is part of the ANSI/ISO SQL standard.

DECOMPOSE(string [{CANONICAL | COMPATIBILITY}])

Returns string decomposed into UNICODE code-points. The second argument specifies the type of decomposition
performed. CANONICAL, which specifies the default behavior, allows the original UNICODE string to be
recomposed.

DEPTH(number)

Returns the depth of the path specified by the UNDER_PATH condition in an XML query. See the Oracle SQL
Reference for more information.

DEREF(expression)

Returns the object referenced by expression, where expression must return a REF to an object.

DUMP(expression [,return_format [, starting_at [,length]]])

Returns a VARCHAR2 value containing a datatype code, length in bytes, and internal representation of expression.
The resulting value is returned in the format of return_format. For example:

SELECT DUMP('abc', 1016) FROM DUAL

Typ=96 Len=3 CharacterSet=AL32UTF8: 61,62,63

EMPTY_BLOB() , EMPTY_CLOB()

Returns an empty LOB locator that can be used to initialize a LOB variable. It can also be used to initialize a
LOB column or attribute to empty in an INSERT or UPDATE statement.

EXISTSNODE(instance, xpath [, namespace])

Returns 1 if applying the XPath query in xpath would return any nodes from instance; otherwise, returns 0. The
optional namespace parameter specifies the XML namespace in the query. For more information on XML queries,
refer to the Oracle SQL Reference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

refer to the Oracle SQL Reference.

EXTRACT(instance, xpath [, namespace])

Returns the XML nodes from instance returned by running the XPath query contained in the xpath parameter. The
optional namespace parameter specifies the XML namespace in the query. For more information on XML queries,
refer to the Oracle SQL Reference. For example:

SELECT EXTRACT(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),

 '/foo/bar') from DUAL

<bar>Hello, World!</bar>

EXTRACTVALUE(instance, xpath [, namespace])

Returns the value from an XML node returned by running the XPath query contained in the xpath parameter.
The optional namespace parameter specifies the XML namespace in the query. For more information on XML
queries, refer to the Oracle SQL Reference. For example:

SELECT EXTRACTVALUE(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),

 '/foo/bar') from DUAL

Hello, World!

FIRST

An aggregate function that returns a specified value from the row that ranks first, given the order specified in
the ORDER BY clause. Syntax:

aggregate(aexpr) KEEP (DENSE_RANK FIRST ORDER BY expr [,...n])

where the syntax of expr is:

expr := [ASC|DESC] [NULLS {FIRST|LAST}]

The first ranking row following the order specified by expr will be used in the aggregate function aggregate. The
aexpr is the expression passed to the aggregate function. For example:

SELECT MAX(c1) KEEP (DENSE_RANK FIRST ORDER BY c2) FROM FIVE_NUMS

1

FIRST_VALUE(expression IGNORE NULLS) OVER (window_clause)

Returns the first value in an ordered set of values. FIRST_VALUE is an analytic function. See the Section 4.3
earlier in this chapter for a detailed explanation of the window_clause. For example:

SELECT FIRST_VALUE(col1) OVER () FROM NUMS

1

1

1

1

FROM_TZ(timestamp, timezone)

Returns timestamp converted to a TIMESTAMP WITH TIME ZONE value, where timestamp is a TIMESTAMP value
and timezone is a string in the TZH:TZM format. For example:

SELECT FROM_TZ(TIMESTAMP '2004-04-15 23:59:59', '8:00') FROM DUAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT FROM_TZ(TIMESTAMP '2004-04-15 23:59:59', '8:00') FROM DUAL

'15-APR-04 11.59.59 PM +08:00'

GREATEST(expression [,...n])

Returns the greatest of the list of expressions. All expressions after the first are implicitly converted to the
datatype of the first expression before the comparison. For example:

SELECT GREATEST(8,2,4) FROM DUAL -> 8

GROUP_ID()

Returns a positive value for each duplicate group returned by a query containing a GROUP BY clause. This
function is useful in filtering out duplicate groups created when using CUBE, ROLLUP, or other GROUP BY
extension (see GROUPING.)

GROUPING(column_name)

Returns 1 when a row is added by CUBE, ROLLUP, or other GROUP BY extensions; otherwise returns 0. For
example:

SELECT royalty, SUM(advance) 'total advance',

 GROUPING(royalty) 'grp'

 FROM titles

 GROUP BY royalty WITH ROLLUP

royalty total advance grp

--------- --------------------- ---

NULL NULL 0

10 57000.0000 0

12 2275.0000 0

14 4000.0000 0

16 7000.0000 0

24 25125.0000 0

NULL 95400.0000 1

GROUPING_ID(column_name1 [, column_name2 ,...])

Returns the base-10 number that is equal to the binary value constructed by concatenating the GROUPING
values on each of the parameters. GROUPING_ID is useful when returning a query containing multiple levels of
aggregation created by GROUP BY expressions. Consider using the GROUPING_ID function instead of multiple
GROUPING functions within one query. This function is a shorthand equivalent of:

BIN_TO_NUM(GROUPING(column_name1) [, GROUPING(column_name2) ,...])

HEXTORAW(string)

Converts string containing hexadecimal digits into a raw value. For example:

SELECT HEXTORAW('0FE') FROM DUAL -> '00FE'

INITCAP(string)

Returns string, with the first letter of each word in uppercase and all other letters in lowercase. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns string, with the first letter of each word in uppercase and all other letters in lowercase. For example:

SELECT INITCAP('thomas jefferson') FROM DUAL -> 'Thomas Jefferson'

INSTR(string1, string2 [, start_at [, occurrence]])

Returns the position of string2 within string1. INSTR searches string1 with a starting position of start_at (an
integer) looking for the specified occurrence of string2. For example:

SELECT INSTR('foobar', 'o', 1, 1) FROM DUAL -> 2

Use INSTRB for bytes, INSTRC for UNICODE complete characters, INSTR2 for UNICODE UCS2 code points, and
INSTR4 for UNICODE UCS4 code points.

ITERATION_NUMBER

Relevant only in the inter-row calculations performed within the MODEL clause of a SELECT statement, this
function returns the number of times the rules within the MODEL clause have been executed while processing
the query.

LAG(expression [,offset][,default]) OVER (window_clause)

An analytic function that provides access to more than one row of a table at the same time without a self join.
LAG provides a "lagging" value in the result set that lags offset rows behind the current row. The default value is
used for the first offset rows in the result set, since the "lagging" value is undefined for these rows. See Section
4.3 earlier in this chapter for a detailed explanation of the window_clause. For example:

SELECT c1, LAG(c1, 2, 0) OVER (ORDER BY c1) FROM FIVE_NUMS

1 0

2 0

3 1

4 2

5 3

LAST

Returns the row that ranks last given the order specified in the ORDER BY clause. The syntax is:

aggregate(aexpr) KEEP (DENSE_RANK LAST ORDER BY expr [,...n])

where the syntax of expr is:

expr := [ASC|DESC] [NULLS {FIRST|LAST}]

The last ranking row following the order specified by expr will be used in the aggregate function aggregate. The
aexpr is the expression passed to the aggregate function. For example:

SELECT MIN(c1) KEEP (DENSE_RANK LAST ORDER BY c1) FROM FIVE_NUMS

5

LAST_DAY(date)

Returns the date of the last day of the month that contains date. For example:

SELECT LAST_DAY('15-APR-1999') FROM DUAL -> 30-APR-99

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LAST_VALUE(expression [IGNORE NULLS]) OVER (window_clause)

Returns the last value in an ordered set of values. See Section 4.3 earlier in this chapter for a detailed
explanation of the window_clause. For example:

SELECT c1, LAST_VALUE(c1) OVER (ORDER BY c1) FROM FIVE_NUMS

1 5

2 5

3 5

4 5

5 5

LEAD(expression [,offset][,default]) OVER(window_clause)

An analytic function that provides access to more than one row of a table at the same time without a self join.
LEAD provides a "leading" value in the result set that is offset rows ahead of the current row. The default value is
used for the last offset rows in the result set, since the "leading" value is undefined for these rows. See Section
4.3 earlier in this chapter for a detailed explanation of the window_clause. For example:

SELECT c1, LEAD(c1, 2) OVER (ORDER BY c1) FROM FIVE_NUMS

1 3

2 4

3 5

4

5

LEAST(expression [,...n])

Returns the least of the list of expressions. For example:

SELECT LEAST(10,5,3,7) FROM DUAL -> 3

LENGTH(string)

Returns the integer length of string, or NULL if string is NULL. For example:

SELECT LENGTH('DUCK') FROM DUAL -> 4

LENGTHB(string)

Returns the length of char in bytes; otherwise, the same as LENGTH. For example:

SELECT LENGTHB('DUCK') FROM DUAL -> 4

Use LENGTHB for bytes, LENGTHC for UNICODE complete characters, LENGTH2 for UNICODE UCS2 code points,
and LENGTH4 for UNICODE UCS4 code points.

LNNVL(condition)

Returns true if condition is false or if one of the operands in condition is NULL. For example:

SELECT COUNT(*) FROM authors WHERE LNNVL(contract <> 1) -> 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LOCALTIMESTAMP [(precision)]

Returns a TIMESTAMP value for the current date and time. This function is similar to CURRENT_TIMESTAMP,
with the exception that this function does not return a TIME ZONE value with the TIMESTAMP. For example:

SELECT LOCALTIMESTAMP FROM DUAL -> '15-APR-05 03.15.00 PM'

LOG(base_number, number)

Returns the logarithm of any base_number of number. For example:

SELECT LOG(50,10) FROM DUAL -> .58859191

LPAD(string1, number [,string2])

Returns string1, left-padded to length number using characters in string2; string2 defaults to a single blank. For
example:

SELECT LPAD('ucks',5,'d') FROM DUAL -> 'ducks'

LTRIM(string[, set])

Removes all characters in set from the left of string. Set defaults to a single blank. For example:

SELECT LTRIM(' Howdy! ',' ') FROM DUAL -> 'Howdy! '

MAKE_REF({table_name | view_name} , key [,...n])

Creates a reference (REF) to a row of an object view or a row in an object table whose object identifier is
primary key-based.

MEDIAN(expression) OVER (partitioning)

Returns the median value in an ordered set of numeric or datetime values. See Section 4.3 earlier in this
chapter for a detailed explanation of the partitioning clause. For example:

SELECT MEDIAN(c1) FROM FIVE_NUMS -> 3

MONTHS_BETWEEN(date1, date2)

Returns the number of months between dates date1 and date2. When date1 is later than date2, the result is
positive. If it is earlier, the result is negative. For example:

SELECT MONTHS_BETWEEN('15-APR-2000', '15-JUL-1999') FROM DUAL -> 9

NANVL(a, b)

Returns b when a is not a number (NaN); returns a otherwise. Expression a must evaluate to a BINARY_FLOAT
or BINARY_DOUBLE number, which are the only number types that permit storing NaN. For example:

SELECT c1, NANVL(c1, 0) FROM NUMS

1.0E+000 1.0E+000

2.0E+000 2.0E+000

Nan 0

NCHAR(number)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A synonym for CHR(number) USING NCHAR_CS.

NEW_TIME(date, time_zone1, time_zone2)

Returns the date and time in time_zone2 using date as the input date/time, and using time_zone1 as the
originating time zone. For example:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH12:MI:SS'

SELECT NEW_TIME(TO_DATE('04-15-99 08:22:31', 'MM-DD-YY HH12:MI:SS'),

'AST', 'PST') FROM DUAL

15-APR-2099 04:22:31

Time_zone1 and Time_zone2 may be any of these text strings:

AST, ADT: Atlantic Standard or Daylight Time

BST, BDT: Bering Standard or Daylight Time

CST, CDT: Central Standard or Daylight Time

EST, EDT: Eastern Standard or Daylight Time

GMT: Greenwich Mean Time

HST, HDT: Alaska-Hawaii Standard or Daylight Time

MST, MDT: Mountain Standard or Daylight Time

NST: Newfoundland Standard Time

PST, PDT: Pacific Standard or Daylight Time

YST, YDT: Yukon Standard or Daylight Time

NEXT_DAY(date, string)

Returns the date of the first weekday named by string that is later than date. The argument string must be either
the full name or the abbreviation of a day of the week in the date language of the session. For example:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY'

SELECT NEXT_DAY('15-APR-1999', 'SUNDAY') FROM DUAL

18-APR-1999

NLS_CHARSET_DECL_LEN(bytecnt, csid)

Returns the declaration width (bytecnt) of an NCHAR column using the character set ID (csid) of the column.

NLS_CHARSET_ID(text)

Returns the NLS character set ID number corresponding to text.

NLS_CHARSET_NAME(number)

Returns the VARCHAR2 name for the NLS character set corresponding to the ID number.

NLS_INITCAP(string [,nlsparameter])

Returns string with the first letter of each word in uppercase and all other letters in lowercase. The nlsparameter
offers special linguistic sorting features.

NLS_LOWER(string [,nlsparameter])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns string with all letters lowercase. The nlsparameter offers special linguistic sorting features.

NLSSORT(string [,nlsparameter])

Returns the string of bytes used to sort string. The nlsparameter offers special linguistic sorting features.

NLS_UPPER(string [,nlsparameter])

Returns string with all letters uppercase. The nlsparameter offers special linguistic sorting features.

NTILE(expression) OVER ([partitioning] ordering)

Divides an ordered data set into a number of groups numbered 1 to expression and assigns the appropriate
group number to each row. Rows are allocated to each group so that the number of rows per group varies by
no more than one. See Section 4.3 earlier in this chapter for details on the partitioning and ordering clauses. For
example:

SELECT c1, NTILE(4) OVER (ORDER BY c1) FROM FIVE_NUMS

1 1

2 1

3 2

4 3

5 4

NULLIF(expr1, expr2)

Returns NULL if expr1 is equal to expr2. If the two expressions are not equal, then the function returns expr1. A
NULL value, if passed as one of the expressions, can only be specified as the second expression expr2. For
example:

SELECT c1, c2, NULLIF(c1, c2) FROM NUMS

1 2 1

2 2

3 2 3

NUMTODSINTERVAL(number, string)

Converts number to an INTERVAL DAY TO SECOND literal, where number is a number or an expression resolving
to a number, such as a numeric datatype column. The second argument, string, can be 'DAY', 'HOUR', 'MINUTE',
or 'SECOND', which specifies how to interpret number. For example:

SELECT NUMTODSINTERVAL(100, 'DAY') FROM DUAL

+000000100 00:00:00.000000000

NUMTOYMINTERVAL(number, string)

Converts number to an INTERVAL YEAR TO MONTH literal, where number is a number or an expression resolving
to a number, such as a numeric datatype column. The second argument, string, can be 'YEAR' or 'MONTH', which
specifies how to interpret number. For example:

SELECT NUMTOYMINTERVAL(100, 'YEAR') FROM DUAL

+000000100-00

NVL(expression1, expression2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NVL(expression1, expression2)

If expression1 is NULL, expression2 is returned in place of that NULL value. Otherwise, expression1 is returned.
expression1 and expression2 may be any datatype. For example:

SELECT NVL(2,29) FROM DUAL -> 2

NVL2(expression1, expression2, expression3)

Similar to NVL, except that if expression1 is not NULL, expression2 is returned. If expression1 is NULL, expression3 is
returned. The expressions may be any datatype except LONG. For example:

SELECT NVL2(1,3,5) FROM DUAL -> 3

ORA_HASH(expression [, buckets [, seed]])

Computes a hash value from expression and returns a bucket number based on the computed hash value. The
optional buckets argument is the maximum bucket number to use, which is one less than the total number of
buckets, since the bucket numbering starts at 0. The default for buckets is 4,294,967,295. The optional seed
value is used to seed the hashing function so that multiple results can be produced from the same data by only
changing the seed value. The seed value defaults to 0. This example psuedo-randomly assigns all numbers to
one of two buckets and returns those assigned to the first bucket, which will be a sample of roughly one half of
the values:

SELECT C1 FROM FIVE_NUMS WHERE

 ORA_HASH(C1, 1, TO_CHAR(SYSTIMESTAMP, 'SSSS.FF')) = 0

1

5

PATH(number)

Returns the path specified by the UNDER_PATH condition with the correlation variable number in an XML query.
See the Oracle SQL Reference for more information.

POWERMULTISET(nested_table) POWERMULTISET_BY_CARDINALITY(nested_table, cardinality)

Returns a nested table of nested tables of all nonempty subsets of the input nested table in the nested_table
parameter. POWERMULTISET_BY_CARDINALITY has an additional parameter that can be used to limit the
subsets returned to a specified minimum cardinality. For more information, please see the Oracle SQL
Reference.

PRESENTNNV(cell_reference, expr1, expr2)

Relevant only in the inter-row calculations performed within the MODEL clause of a SELECT statement, this
function returns expr1 when cell_reference exists and is not NULL; otherwise, it returns expr2.

PRESENTV(cell_reference, expr1, expr2)

Relevant only in the interrow calculations performed within the MODEL clause of a SELECT statement. This
function returns expr1 when cell_reference exists; otherwise, it returns expr2.

PREVIOUS(cell_reference)

Relevant only in the inter-row calculations performed within the ITERATE...[UNTIL] section of a SELECT's
MODEL clause. This function returns the value held by cell_reference at the beginning of the iteration.

RATIO_TO_REPORT (value_exprs) OVER (partitioning)

Computes the ratio of a value in value_exprs to the sum of all value_exprs with each partition. If values_expr is
NULL, the ratio-to-report value also is NULL. See Section 4.3 earlier in this chapter for details on the partitioning
clause. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clause. For example:

SELECT c1, RATIO_TO_REPORT(c1) OVER () FROM FIVE_NUMS

1 .066666667

2 .133333333

3 .2

4 .266666667

5 .333333333

RAWTOHEX(raw)

Converts a raw value to a string (character datatype) of its hexadecimal equivalent. For example:

SELECT RAWTOHEX('Hi') FROM DUAL -> 4869

RAWTONHEX(raw)

Converts a raw value to an NVARCHAR2 (character datatype) of its hexadecimal equivalent.

REF(table_alias)

REF takes a table alias associated with a row from an object table or an object view. A special reference value is
returned for the object instance that is bound to the variable or row.

REFTOHEX(expression)

Converts expression to a character value containing its hexadecimal equivalent.

REGEXP_INSTR(string, pattern [, start_at [, occurrence [, roption [, mparam]]]])

Returns the character position within string matching the regular expression pattern in pattern. REGEXP_INSTR
searches string with a starting position of start_at (an integer greater than 0) looking for the specified occurrence
of pattern. Both the start_at and occurrence parameters default to 1. The roption parameter can be 0 or 1 and
specifies if the position returned is the first character matching the pattern or the character after. The default
for roption is 0, which returns the position of the first character matching the pattern. The mparam argument can
be used to modify the matching behavior of the function and can be set to one or more of the following
characters:

'i'

matching is case-insensitive

'c'

matching is case-sensitive

'n'

the "." character matches newline characters

'm'

treat input string as multiple lines; use '^' to match the beginning of a line and '$' to match the end of a line

For example:

SELECT REGEXP_INSTR('Hello, World!', '([^]*)!', 1, 1) FROM DUAL -> 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REGEXP_REPLACE(string, pattern [, newstr [, start_at [, occurrence [, mparam]]]])

Returns the result of replacing all occurrences of the regular expression in pattern within string with another
string newstr. REGEXP_REPLACE searches string with a starting position of start_at (an integer greater than 0)
looking for the specified occurrence of pattern. Both the start_at and occurrence parameters default to 1. The
mparam argument can be used to modify the matching behavior of the function and can be set to one or more of
the following characters:

'i'

matching is case-insensitive

'c'

matching is case-sensitive

'n'

the "." character matches newline characters

'm'

treat input string as multiple lines; use '^' to match the beginning of a line and '$' to match the end of a line

For example:

SELECT REGEXP_REPLACE('Hello, World!', '([^]*!)', 'Reader!') FROM DUAL

'Hello, Reader!'

REGEXP_SUBSTR(string, pattern [, start_at [, occurrence [, mparam]]])

Returns the substring within string matching the regular expression pattern pattern. REGEXP_SUBSTR searches
string with a starting position of start_at (an integer greater than 0) looking for the specified occurrence of pattern.
Both the start_at and occurrence parameters default to 1. The mparam argument can be used to modify the
matching behavior of the function and can be set to one or more of the following characters:

'i'

matching is case-insensitive

'c'

matching is case-sensitive

'n'

the `.' character matches newline characters

'm'

treat input string as multiple lines; use '^' to match the beginning of a line and '$' to match the end of a line

For example:

SELECT REGEXP_SUBSTR('Hello, World!', '([^]*!)') FROM DUAL

'World!'

REMAINDER(m, n)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REMAINDER(m, n)

Returns the remainder of m divided by n. This return value is equivalent to the expression:

m-n*ROUND(m/n)

The function MOD uses FLOOR instead of ROUND. For example:

SELECT REMAINDER(11, 4), MOD(11, 4) FROM DUAL

-1 3

REPLACE(string, search_string [,replacement_string])

Returns string with every occurrence of search_string replaced with replacement_string. For example:

SELECT REPLACE('change', 'e', 'ing') FROM DUAL -> 'changing'

ROUND (number[, decimal])

Returns number rounded to decimal places right of the decimal point. When decimal is omitted, number is rounded
to an integer. Note that decimal, an integer, can be negative to round off digits left of the decimal point. For
example:

SELECT ROUND(12345.6789, 2) FROM DUAL -> 12345.68

ROUND (date[, format])

Returns the date rounded to the unit specified by the format model. When format is omitted, date is rounded to
the nearest day. (For more on valid format specifiers, see the TO_CHAR function.) For example:

SELECT ROUND(TO_DATE('15-APR-1999'), 'MONTH') FROM DUAL

01-APR-1999

ROWIDTOCHAR(rowid), ROWIDTONCHAR(rowid)

ROWIDTOCHAR converts a rowid value to the VARCHAR2 datatype, 18 characters long. ROWIDTONCHAR
converts rowid to an 18-character long NVARCHAR2 value. For example:

SELECT ROWIDTOCHAR(ROWID) FROM NUMS

ABAsxDAAKAAAAEqAAA

ABAsxDAAKAAAAEqAAB

ABAsxDAAKAAAAEqAAC

ABAsxDAAKAAAAEqAAD

RPAD(string1, number [, string2])

Returns string1, right-padded to length number with the value of string2, repeated as needed. string2 defaults to a
single blank. For example:

SELECT RPAD('duck',8,'s') FROM DUAL -> 'duckssss'

RTRIM(string[,set])

Returns string, with all the rightmost characters that appear in set removed; set defaults to a single blank. For
example:

SELECT RTRIM(' welcome ', ' ') FROM DUAL -> ' welcome'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT RTRIM(' welcome ', ' ') FROM DUAL -> ' welcome'

SCN_TO_TIMESTAMP(scn)

Returns the timestamp associated with the System Change Number (SCN) argument. For example:

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) FROM NUMS WHERE c1 = 1

15-APR-04 02.56.05.000000000 PM

SESSIONTIMEZONE

Returns the session's time zone offset. For example:

SELECT SESSIONTIMEZONE FROM DUAL -> -06:00

SET(nested_table)

Returns a nested table of distinct elements from the input nested table. For more information, please see the
Oracle SQL Reference.

SIGN(number)

When number < 0, returns -1. When number = 0, returns 0. When number > 0, returns 1. For example:

SELECT SIGN(-3.1415926) FROM DUAL -> -1

SIN(number)

Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SINH(number)

Returns the hyperbolic sine of number. For example:

SELECT SINH(180) FROM DUAL -> 7.4469E+77

SOUNDEX(string)

Returns a character string containing the phonetic representation of string. This function allows words that are
spelled differently but sound alike in English to be compared for equality. For example:

SELECT SOUNDEX('thimble') FROM DUAL -> 'T514'

STATS_BINOMIAL_TEST, STATS_CROSSTAB, STATS_F_TEST, STATS_KS_TEST, STATS_MODE, STATS_MW_TEST,
STATS_ONE_WAY_ANOVA, STATS_T_TEST_ONE, STATS_T_TEST_PAIRED, STATS_T_TEST_INDEP,
STATS_T_TEST_INDEPU, STATS_WSR_TEST

Oracle provides many sophisticated statistical functions. For further information on the STATS_* functions,
please see the Oracle SQL Reference.

STDDEV([DISTINCT | ALL] expression) [OVER (window_clause)]

Returns a sample standard deviation of a set of numbers shown as expression. See Section 4.3 earlier in this
chapter for details on the window_clause. For example:

SELECT STDDEV(col1) FROM NUMS -> 5.71547607

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT STDDEV(col1) FROM NUMS -> 5.71547607

STDDEV_SAMP(expression) [OVER (window_clause)]

Computes the cumulative sample standard deviation and returns the square root of the sample variance. See
Section 4.3 earlier in this chapter for details on the window_clause. For example:

SELECT STDDEV_SAMP(col1) FROM NUMS -> 5.71547607

STDEV_POP(expression) [OVER (window_clause)]

Computes the population standard deviation and returns the square root of the population variance. See Section
4.3 earlier in this chapter for details on the window_clause. For example:

SELECT STDDEV_POP(col1) FROM NUMS -> 4.94974747

SUBSTR(string, start [FROM starting_position] [FOR length])

Refer to the earlier section on SUBSTR. For example:

SELECT SUBSTR('Hello, World!',8,10) FROM DUAL -> 'World!'

SUBSTRB(extraction_string [, length])

Returns the portion of string beginning at start and continuing for length characters. If length is omitted, all
characters from start onward are returned. If start is negative, it represents an offset from the right edge of the
string. For example:

SELECT SUBSTR ('Hello, World!', 8)

FROM DUAL -> World!

Use SUBSTRB for bytes, SUBSTRC for UNICODE complete characters, SUBSTR2 for UNICODE UCS2 code points,
and SUBSTR4 for UNICODE UCS4 code points.

SYS_CONNECT_BY_PATH(column, char)

For hierarchical queries, SYS_CONNECT_BY_PATH returns the path from the root to the node with the column
name specified by the column parameter. The char parameter specifies the node separator for the return path.
For more on Oracle hierarchical queries, please refer to the Oracle SQL Reference.

SYS_CONTEXT(namespace,attribute[,length])

Returns the value of attribute associated with the context namespace, usable in both SQL and PL/SQL statements.
For example:

SELECT SYS_CONTEXT ('USERENV', 'SESSION_USER') FROM DUAL

 'LOGIN'

SYS_DBURIGEN(column [,rowid] [,...] [, 'text() '])

Returns a URL that can be used as a unique reference to the row specified by the column parameter. For
columns that don't hold unique values, a rowid can be used directly after the column it identifies to guarantee
that the URL only points to one row. Use the 'text()' option if you want the URL to point to the text within an
XML document, instead of the document itself.

SYS_EXTRACT_UTC(datetime)

Returns the datetime argument converted to a UTC datetime value. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the datetime argument converted to a UTC datetime value. For example:

SELECT SYS_EXTRACT_UTC(TIMESTAMP '2004-04-15 11:59:59.00 -08:00')

FROM DUAL

'15-APR-04 07.59.59.000000000 PM'

SYS_GUID()

Generates and returns a globally unique identifier (RAW value) made up of 16 bytes. For example:

SELECT SYS_GUID() FROM DUAL -> C0FD3FDC30148EAEE030440A49096A41

SYS_TYPEID(object_value)

Returns the type ID of the object_value parameter.

SYS_XMLAGG(expr [,format])

Returns a single XML document created by aggregating the XML documents or fragments in the expr parameter.
The optional format parameter can be used to format the XML document. For more information, refer to the
Oracle SQL Reference.

SYS_XMLGEN(expression [,format])

Returns a single XML document created from the expression. The optional format parameter can be used to
format the XML document. For more information, refer to the Oracle SQL Reference.

SYSDATE

Returns the current date and time on the system in which the database is hosted. The value returned is of type
DATE. For example:

SELECT SYSDATE FROM DUAL -> 26-JUN-2003

SYSTIMESTAMP

Returns the current date and time on the system in which the database is hosted. The value returned is of type
TIMESTAMP. For example:

SELECT SYSTIMESTAMP FROM DUAL

26-JUN-2003 11.15.00.000000 PM -06:00

TAN(number)

Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) FROM DUAL -> -0.000093

TANH(number)

Returns the hyperbolic tangent of number. For example:

SELECT TANH(180) FROM DUAL -> 1

TIMESTAMP_TO_SCN (timestamp_value)

Returns the approximate system change number (SCN) associated with that timestamp. The return value is of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the approximate system change number (SCN) associated with that timestamp. The return value is of
type NUMBER.

TO_BINARY_DOUBLE (expr [, format [, nls_parameter]])

Converts expr to a BINARY_DOUBLE in the format specified by the format parameter. If expr is a character
expression, the format and nls_parameter options have equivalent meanings, as they do in the TO_CHAR function.
If expr is a numeric expression, then format and nls_parameter must be omitted. For example:

SELECT c1, TO_BINARY_DOUBLE(c1) FROM NUMS

1 1.0E+000

2 2.0E+000

3 3.0E+000

TO_BINARY_FLOAT(expr [, format [, nls_parameter]])

Converts expr to a BINARY_FLOAT in the format specified by the format parameter. If expr is a character
expression, the format and nls_parameter options have equivalent meanings as they do in the TO_CHAR function.
If expr is a numeric expression, then format and nls_parameter must be omitted. For example:

SELECT c1, TO_BINARY_FLOAT(c1) FROM NUMS

1 1.0E+000

2 2.0E+000

3 3.0E+000

TO_CHAR (character_expr)

Converts character_expr to the database character set. For example:

SELECT TO_CHAR('Howdy') FROM DUAL

Howdy

TO_CHAR (date | interval [, format [, nls_parameter]])

Converts date or interval to a VARCHAR2 in the format specified by the date format. When format is omitted, date
is converted to the default date format. The nls_parameter option offers additional control over formatting. Listed
below are the available specifiers for format and their meanings.

AD or A.D.

AD indicator

AM or A.M.

Meridian indicator

BC or B.C.

BC indicator

D

Day of week (1-7)

DAY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Name of day

DD

Day of month (1-31)

DDD

Day of year (1-366)

DL

Long date format

DS

Short date format

DY

Abbreviated name of day

FF

Fractional seconds; to specify the precision, include a number (1-9) after the FF specifier

HH or HH12

Hour of day (1-12)

HH24

Hour of day (0-23)

J

Julian day; the number of days since January 1, 4713 BC

MI

Minute (0-59)

MM

Month (01-12)

MON

Abbreviated name of month

RM

Roman numeral month (I-XII)

SS

Second (0-59)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Second (0-59)

SSSSS

Seconds past midnight (0-86,399)

SYYY

Four-digit year; BC dates are prefixed with a minus sign

TS

Short time format.

TZD

Daylight savings information (example: PST versus PDT)

TZH

Time zone hour

TZM

Time zone minute

TZR

Time zone region

X

Local radix character

Y, YY, or YYY

One, two, or three digits for the year

Y,YYY

Year with comma

YYYY

Four-digit year

For example:

SELECT TO_CHAR(TO_DATE('15-APR-1999') ,'MON-DD-YYYY') FROM DUAL

APR-15-1999

TO_CHAR (number [, format [, nls_parameter]])

Converts number to a VARCHAR2 in the format specified. When format is omitted, number is converted to a string
long enough to hold the number. The nls_parameter option offers additional control over formatting options. For
example:

SELECT TO_CHAR(123.45, '$999.99') FROM DUAL -> $123.45

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TO_CLOB (expr)

Converts the character expression given by expr to the CLOB datatype. For example:

SELECT LENGTH(TO_CLOB('I am a SQL nut!')) FROM DUAL -> 15

TO_DATE(string [, format [, nls_parameter]])

Converts string (in CHAR or VARCHAR2) to a DATE datatype. The nls_parameter option offers additional control
over formatting options. For example:

SELECT TO_DATE('15/04/1999', 'DD/MM/YYYY') FROM DUAL

15-APR-1999

TO_DSINTERVAL(string [, nls_parameter])

Converts the character expression given by string to the INTERVAL DAY TO SECOND datatype. The nls_parameter
option offers additional control over formatting options. For example:

SELECT CURRENT_DATE, CURRENT_DATE-TO_DSINTERVAL('14 00:00:00') FROM DUAL

15-APR-2003 01-APR-2003

TO_LOB(long_column)

Usable only by LONG or LONG RAW expressions, it converts LONG or LONG RAW values in the column
long_column to LOB values. It is usable only in the SELECT list of a subquery in an INSERT statement.

TO_MULTI_BYTE(string)

Returns string with all of its single-byte characters converted to their corresponding multibyte characters.

TO_NCHAR(expr [, format [,nls_parameter]])

Synonymous with the TO_CHAR function, except the return datatype is NCHAR. For more on valid format
specifiers, see the TO_CHAR function.

TO_NCLOB (expr)

Converts the character expression given by expr to the NCLOB datatype. For example:

SELECT LENGTH(TO_NCLOB('I am a SQL nut!')) FROM DUAL -> 15

TO_NUMBER(string [, format [,nls_parameter]])

Converts a numeric string (of CHAR or VARCHAR2 datatype) to a value of NUMBER datatype, optionally in the
format specified by the format model. The nls_parameter option offers additional control over formatting options.
For example:

SELECT TO_NUMBER('12345') FROM DUAL -> 12345

TO_SINGLE_BYTE(string)

Returns string with all of its multibyte characters converted to their corresponding single-byte characters.

TO_TIMESTAMP(string [, format [,nls_parameter]])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TO_TIMESTAMP(string [, format [,nls_parameter]])

Converts the character expression provided by string to the TIMESTAMP datatype, optionally in the format
specified by the format parameter. The nls_parameter option offers additional control over formatting options. (For
more on valid format specifiers, see the TO_CHAR function.) For example:

SELECT TO_TIMESTAMP(CURRENT_DATE) FROM DUAL -> 04-MAY-04 12.00.00 AM

TO_TIMESTAMP_TZ(string [, format [,nls_parameter]])

Converts the character expression provided by string to the TIMESTAMP WITH TIME ZONE datatype, optionally
in the format specified by the format parameter. The nls_parameter option offers additional control over
formatting options. (For more on valid format specifiers, see the TO_CHAR function.) For example:

SELECT TO_TIMESTAMP_TZ('15-04-2006', 'DD-MM-YYYY') FROM DUAL

15-APR-06 12.00.00.000000000 AM -07:00

TO_YMINTERVAL(string)

Converts the character expression provided by string to the INTERVAL YEAR TO MONTH datatype. For example:

SELECT TO_DATE('29-FEB-2000')+TO_YMINTERVAL('04-00') FROM DUAL

29-FEB-04

TRANSLATE(char_value, from_text, to_text)

Returns char_value with each occurrence of a character in from_text replaced by its corresponding character in
to_text. For example:

SELECT TRANSLATE('foobar', 'fa', 'bu') FROM DUAL -> 'boobur'

TRANSLATE (text USING [CHAR_CS | NCHAR_CS])

Converts text into the character set specified. Use CHAR_CS to convert text to the CHAR datatype or NCHAR_CS
to convert text to the NCHAR datatype. For example:

SELECT TRANSLATE(N'foobar' USING CHAR_CS) FROM DUAL

'foobar'

TREAT (expr AS [REF] [schema.]type)

Converts expr from its declared type to the type specified in the type parameter. For more information on the
usage of this function, please look to the SQL Reference for the Oracle Database.

TRUNC (base [, number])

Returns base truncated to number decimal places. When number is omitted, base is truncated to an integer.
number can be negative to truncate (make zero) digits left of the decimal point. (For more on valid format
specifiers, see the TO_CHAR function.)For example:

SELECT TRUNC('123.456', 2) FROM DUAL -> 123.45

TRUNC (date [, format])

Returns date truncated to the unit specified by format. When format is omitted, date is truncated to the nearest
whole day. (For more on valid format specifiers, see the TO_CHAR function.) For example:

SELECT TRUNC(TO_DATE('15/04/1999', 'MM/DD/YYYY'), 'YYYY')

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT TRUNC(TO_DATE('15/04/1999', 'MM/DD/YYYY'), 'YYYY')

FROM DUAL

1999

See TO_CHAR for a list of format specifiers.

TZ_OFFSET ({expr | SESSIONTIMEZONE | DBTIMEZONE})

Returns the time zone offset corresponding to the argument. The character expression expr can either be the
name of the time zone or a time zone offset. The SESSIONTIMEZONE and DBTIMEZONE arguments provide the
time zone for the session or database, respectively. For example:

SELECT TZ_OFFSET('+08:00'), TZ_OFFSET(SESSIONTIMEZONE) FROM DUAL

+08:00 -07:00

UID

Returns an integer that uniquely identifies the currently logged on session user. No parameters are needed. For
example:

SELECT UID FROM DUAL -> 47

UNISTR(string)

Converts string to the NCHAR datatype while converting any UNICODE encoding values within string. For
example:

SELECT UNISTR('El Ni\00F1o') FROM DUAL -> 'El Niño'

UPDATEXML(instance, xpath, expr [, namespace])

Updates the values held by nodes within instance to the new value in expr. Only those nodes returned by the
XPath query contained in the xpath parameter are updated. The optional namespace parameter specifies the XML
namespace in the query. For more information on XML queries, refer to the Oracle SQL Reference. For example:

SELECT UPDATEXML(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),

 '/foo/bar', '<bar>Bye, World!</bar>') from DUAL

Bye, World!

USERENV(option)

Returns information about the current session in VARCHAR2. This function has been deprecated and is only
provided for backward compatibility. USERENV is a synonym for SYS_CONTEXT('USER_ENV', option). Look to
the SYS_CONTEXT function with the USERENV namespace for current functionality. For example:

SELECT USERENV('LANGUAGE') "Language" FROM DUAL

'AMERICAN_AMERICA.AL32UTF8'

VALUE(table_alias)

Takes a table_alias associated with a row in an object table and returns the object instance stored within the
object table for that row.

VARIANCE([DISTINCT] expression) [OVER (window_clause)]

Returns the variance of expression calculated as follows: 0 if the number of rows in expression = 1; VAR_SAMP if
the number of rows in expression > 1. See Section 4.3 earlier in this chapter for details on the window_clause. For

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the number of rows in expression > 1. See Section 4.3 earlier in this chapter for details on the window_clause. For
example:

SELECT VARIANCE(col1) FROM NUMS -> 32.6666667

VAR_POP(expression) [OVER (window_clause)]

Returns the population variance of the set of numbers represented by expression after discarding the NULLs in
the set. See Section 4.3 earlier in this chapter for details on the window_clause. For example:

SELECT VAR_POP(col1) FROM NUMS -> 24.5

VAR_SAMP(expression) [OVER (window_clause)]

Returns the sample variance of the set of numbers represented by expression after discarding the NULLs in the
set. See Section 4.3 earlier in this chapter for details on the window_clause. For example:

SELECT VAR_SAMP(col1) FROM NUMS -> 32.6666667

VSIZE(expression)

Returns the number of bytes in the internal representation of expression. When expression is NULL, returns NULL.
For example:

SELECT vsize(1) FROM DUAL -> 2

XMLAGG(instance [, order_by])

An aggregate function that returns an XML document from a table of XML fragments contained in instance. The
optional order_by clause allows the XML fragments in the result to be ordered. For more information on XML
queries refer to the Oracle SQL Reference.

XMLCOLATTVAL(expr [AS alias] [,...])

Returns an XML fragment from the expr arguments. The optional AS clause can be used to change the value of
the name attribute. For more information on XML queries, refer to the Oracle SQL Reference.

XMLCONCAT(instance [,...])

Returns an XML instance that is the union of all XML instance parameters. For more information on XML queries
refer to the Oracle SQL Reference.

XMLELEMENT([NAME] name [, XMLATTRIBUTES(expr [AS alias] [,...])] [, value [,...]])

Returns an XMLELEMENT with the name specified in the name parameter and attributes specified in the optional
XMLATTRIBUTES clause. The value parameters provide the values of the XMLELEMENT result. For more
information on XML queries refer to the Oracle SQL Reference.

XMLFOREST(value [AS alias] [,...])

Returns an XML fragment constructed from the values provided in the value parameters. The optional AS clause
can be used to change the enclosing tag name. For more information on XML queries refer to the Oracle SQL
Reference.

XMLSEQUENCE(instance)

Returns an array of XML fragments constructed from the top-level nodes in the XML instance provided by the
instance parameter. For more information on XML queries, refer to the Oracle SQL Reference.

XMLTRANSFORM(instance, stylesheet)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the result of applying the XSL stylesheet in the stylesheet parameter to the XML document contained in
instance. For more information on XML queries, refer to the Oracle SQL Reference.

4.5.4 PostgreSQL-Supported Functions

This section lists the functions specific to PostgreSQL, with examples and corresponding results.

ABSTIME(timestamp)

Converts the timestamp value to ABSTIME type. This function is provided for backwords compatibility and may be
removed in future versions. For example:

SELECT ABSTIME(CURRENT_TIMESTAMP) -> 2003-06-24 00:19:17-07

ACOS(number)

Returns the arc cosine of number ranging from -1 to 1. The result ranges from 0 to and is expressed in radians.
For example:

SELECT ACOS(0) -> 1.570796

AGE(timestamp)

Same meaning as AGE(CURRENT_DATE, timestamp).

AGE(timestamp, timestamp)

Returns the time between the two timestamp values. For example:

SELECT AGE('2003-12-31', CURRENT_TIMESTAMP)

6 mons 7 days 00:34:41.658325

AREA(object)

Returns the area of an item. For example:

SELECT AREA(BOX '((0,0),(1,1))') -> 1

ASCII(text)

Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') -> 120

ASIN(number)

Returns the arc sine of number ranging from -1 to 1. The resulting value ranges from -/2 to /2 and is expressed
in radians. For example:

SELECT ASIN(0) -> 0.000000

ATAN(number)

Returns the arctangent of number. The resulting value ranges from -/2 to /2 and is expressed in radians. For
example:

SELECT ATAN(3.1415) -> 1.262619

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT ATAN(3.1415) -> 1.262619

ATAN2(float1,float2)

Returns the arctangent of the two float values. ATAN2(x,y) is similar to ATAN(y/x), with the exception that the
signs of x and y are used to determine the quadrant of the result. For example:

SELECT ATAN2(3.1415926, 0) -> 1.5707963267949

BOX(box,box)

Returns a BOX created by the intersection of the two boxes. If the two boxes do not intersect, the return value
is NULL. For example:

SELECT BOX(BOX '((-1,-1),(1,1))', BOX '((0,0),(1,1))')

 (1,1),(0,0)

BOX(circle)

Returns a BOX with vertices that intersect circle so that the box is the maximum size that can be fully contained
within circle. For example:

SELECT BOX(CIRCLE '((0,0),2.0)')

 (1.41421356237309,1.41421356237309),

(-1.41421356237309,-1.41421356237309)

BOX(point,point)

Returns a BOX with the two point arguments as opposite corners. For example:

SELECT BOX(POINT(0,0), POINT(1,1)) -> (1,1),(0,0)

BOX(polygon)

Converts polygon to a BOX. For example:

SELECT BOX(POLYGON '((0,0),(1,1),(2,0))') -> (2,1),(0,0)

BROADCAST(inet)

Constructs a broadcast address as text. For example:

SELECT BROADCAST('192.168.1.5/24') -> '192.168.1.255/24'

CBRT(float8)

Returns the cube root of float8. For example:

SELECT CBRT(8) -> 2

CENTER(object)

Returns a POINT object to the center of the argument. For example:

SELECT CENTER(CIRCLE '((0,0), 2.0)') -> (0,0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CHAR(text)

Converts text to the CHAR type.

CHAR_LENGTH(string) or CHARACTER_LENGTH(string)

Returns the length of string in characters.

CIRCLE(box)

Returns a CIRCLE contained within box. For example:

SELECT CIRCLE(BOX '((0,0),(1,1))') -> <(0.5,0.5),0.707106781186548>

CIRCLE(point,float8)

Converts point to a CIRCLE with float8 for the radius. For example:

SELECT CIRCLE(POINT '(0,0)', 2.0) -> <(0,0),2>

COALESCE(list)

Returns the first non-NULL value in list. For example:

SELECT COALESCE(NULL,1,2,3,NULL) -> 1

COS(number)

Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) -> 1.000000

COT(number)

Returns the cotangent of number. For example:

SELECT COT(3.1415) -> -10792.88993953

DATE_PART(text, value)

Equivalent to EXTRACT(text, value); for more details on the usage of EXTRACT, see the section about EXTRACT
in Section 4.4.

DATE_TRUNC(precision,timestamp)

Truncates timestamp to the specified precision. For example:

SELECT DATE_TRUNC('hour', TIMESTAMP '2003-04-15 23:58:30')

2003-04-15 23:00:00

DEGREES(float8)

Converts radians to degrees. For example:

SELECT DEGREES(3.1415926) -> 179.999996929531

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DIAMETER(circle)

Returns the diameter of circle. For example:

SELECT DIAMETER(CIRCLE(POINT '(0,0)', 2.0)) -> 4

FLOAT(int)

Converts int to a floating point.

FLOAT4(int)

Converts int to a floating point.

HEIGHT(box)

Returns the vertical size of box. For example:

SELECT HEIGHT(BOX '((0,0),(1,1))') -> 1

HOST(inet)

Extracts the host address as text. For example:

SELECT HOST('192.168.1.5/24') -> '192.168.1.5'

INITCAP(text)

Converts the first letter of each word to uppercase. For example:

SELECT INITCAP('my name is inigo montoya.')

 'My Name Is Inigo Montoya.'

INTEGER(float)

Converts a floating point to integer.

INTERVAL(reltime)

Converts reltime to an INTERVAL.

ISCLOSED(path)

Returns 't' if path is closed, 'f' if open. For example:

SELECT ISCLOSED(PATH '((0,0),(1,1),(2,0))') -> 't'

SELECT ISCLOSED(PATH '[(0,0),(1,1),(2,0)]') -> 'f'

ISFINITE(interval)

Returns 'f' if interval is open, 't' otherwise. For example:

SELECT ISFINITE(INTERVAL '4 hours') -> 't'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ISFINITE(timestamp)

Returns 'f' if timestamp is either invalid or infinite, 't' otherwise. For example:

SELECT ISFINITE(TIMESTAMP '2001-02-16 21:28:30') -> 't'

ISOPEN(path)

Returns an open path. For example:

SELECT ISOPEN(PATH '((0,0),(1,1),(2,0))') -> 'f'

SELECT ISOPEN(PATH '[(0,0),(1,1),(2,0)]') -> 't'

LENGTH(object)

Returns the length of object. For example:

SELECT LENGTH('Howdy!') -> 6

SELECT LENGTH(PATH '((-1,0),(1,0))') -> 4

LOG(float8)

Returns a base-10 logarithm. For example:

SELECT LOG(100) -> 2

LPAD(text,int,text)

Returns a left-pad string to the specified length. For example:

SELECT LPAD('Duck', 10, 's') -> 'ssssssDuck'

LSEG(box)

Converts a box diagonal to a line segment. For example:

SELECT LSEG(BOX '((-1,0),(1,0))') -> [(1,0),(-1,0)]

LSEG(point,point)

Converts points to a line segment. For example:

SELECT LSEG(POINT '(-1,0)', POINT '(1,0)') -> [(-1,0),(1,0)]

LTRIM(text)

Returns text with all leading whitespace removed. For example:

SELECT LTRIM(' Howdy! ') -> 'Howdy! '

MASKLEN(cidr)

Returns the netmask length in cidr. For example:

SELECT MASKLEN('192.168.1.5/24') -> 24

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT MASKLEN('192.168.1.5/24') -> 24

NETMASK(inet)

Returns the netmask for inet. For example:

SELECT NETMASK('192.168.1.5/24') -> '255.255.255.0'

NETWORK(inet)

Returns the network part of inet. For example:

SELECT NETWORK('192.168.1.5/24') -> '192.168.1.0/24

NPOINTS(object)

Returns the number of points in object. For example:

SELECT NPOINTS(POLYGON '((1,1),(0,0))') -> 2

NULLIF(input,value)

Returns NULL if input = value, else returns input. For example:

SELECT NULLIF(5, 6), NULLIF(5, 5)

 5 NULL

PATH(polygon)

Converts polygon to a path. For example:

SELECT PATH('((0,0),(1,1),(2,0))')

 ((0,0),(1,1),(2,0))

PCLOSE(path)

Converts path to a closed path. For example:

SELECT PCLOSE(PATH '[(0,0),(1,1),(2,0)]')

 ((0,0),(1,1),(2,0))

PI()

Returns the constant pi.

POLYGON(path)

Converts path to a POLYGON. For example:

SELECT POLYGON(PATH '((0,0),(1,1),(2,0))')

 ((0,0),(1,1),(2,0))

POINT(circle)

Returns the center of circle. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the center of circle. For example:

SELECT POINT(CIRCLE '((0,0), 2.0)') -> (0,0)

POINT(lseg1,lseg2)

Returns the intersection of two line segments. For example:

SELECT POINT(LSEG '((-1,0),(1,0))', LSEG '((-2,-2),(2,2))')

 (0,0)

POINT(polygon)

Returns the center point of polygon. For example:

SELECT POINT(POLYGON '((0,0),(1,1),(2,0))')

 (1,0.333333333333333)

POLYGON(box)

Returns a 4-point polygon. For example:

SELECT POLYGON(BOX '((0,0),(1,1))')

 ((0,0),(0,1),(1,1),(1,0))

POLYGON(circle)

Synonym for POLYGON(12, circle).

POLYGON(npts,circle)

Returns and approximation of circle as a polygon with npts vertices. For example:

SELECT POLYGON(6, CIRCLE '((0,0),2.0)')

 ((-2,0),

 (-0.999999999994107,1.73205080757228),

 (1.00000000001179,1.73205080756207),

 (2,-2.04136478690279e-11),

 (0.999999999976428,-1.73205080758249),

 (-1.00000000002946,-1.73205080755187))

POPEN(path)

Converts path to an open path. For example:

SELECT POPEN(PATH '((0,0),(1,1),(2,0))')

 [(0,0),(1,1),(2,0)]

POW (number,exponent)

Raises a number to the specified exponent. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Raises a number to the specified exponent. For example:

SELECT POW(2, 3) -> 8

RADIANS(float8)

Converts degrees to radians. For example:

SELECT RADIANS(180) -> 3.14159265358979

RADIUS(circle)

Returns the radius of circle. For example:

SELECT RADIUS(CIRCLE '((0,0), 2.0)') -> (0,0)

RELTIME(interval)

Converts interval to a RELTIME. Provided for backward compatibility and may be removed in a future release.

ROUND(number)

Rounds number to the nearest integer. For example:

SELECT ROUND(5.5) -> 6

RPAD(text,length,char)

Pads text to the specified length using char. For example:

SELECT RPAD('Duck', 10, 's') -> 'Duckssssss'

RTRIM(text)

Returns text with all trailing whitespace removed. For example:

SELECT RTRIM(' St. Lucia ') -> ' St. Lucia'

SET_MASKLEN(inet, size)

Sets the netmask length for inet to size. For example:

SELECT SET_MASKLEN('192.168.1.5/24',16)

 '192.168.1.5/16'

SIN(number)

Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SUBSTRING(string [FROM start] [FOR bytes]), SUBSTR(string,start[,bytes])

Extracts a substring of length bytes from string starting at the character position start. If bytes is omitted, then the
length returned is the remainder of the string from the start position. For example:

SELECT SUBSTRING('Inigo Montoya' FROM 7 FOR 4) -> 'Mont'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT SUBSTRING('Inigo Montoya' FROM 7 FOR 4) -> 'Mont'

TAN(number)

Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) -> -0.000093

TEXT(char)

Converts char to TEXT type.

TIMESTAMP(date [,time])

Converts date to a timestamp.

TO_CHAR(expression, text)

Converts expression to a string. For example:

SELECT TO_CHAR(NUMERIC '-125.8', '999D99S') -> 125.80-

SELECT TO_CHAR (interval '15h 2m 12s','HH24:MI:SS') -> 15:02:12

TO_DATE(string, format)

Converts string to a date using the second argument for the input format. Listed below are the available
specifiers for format and their meanings.

AM or A.M.

Meridian indicator

AD or A.D.

AD indicator

BC or B.C.

BC indicator

CC

Two-digit century

D

Day of week (1-7)

DD

Day of month (01-31)

DDD

Day of year (001-366)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAY

Full uppercase day name

Day

Full camel case day name

day

Full lowercase day name

DY

Abbreviated uppercase day name

Dy

Abbreviated camel case day name

dy

Abbreviated lowercase day name

HH or HH12

Hour of day (01-12)

HH24

Hour of day (00-23)

IW

ISO week number of year

J

Julian day number (days since January 1, 4713 BC)

MI

Minute of hour (00-59)

MM

Two-digit month number (01-12)

MON

Abbreviated uppercase month name

Mon

Abbreviated camel case month name

mon

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mon

Abbreviated lowercase month name

MONTH

Full uppercase month name

Month

Full camel case month name

month

Full lowercase month name

MS

Milliseconds (000-999)

PM or P.M.

Meridian indicator

Q

Quarter of the year

RM

Roman Numeral month (I-XII)

rm

Lowercase Roman Numeral month (i-xii)

SS

Seconds (00-59)

SSSS

Seconds past midnight (0-86399)

TZ

Uppercase time zone name

tz

Lowercase time zone name

US

Microseconds (000000-999999)

W

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Week of month (1-5)

WW

Week of year (1-53)

Y, YY, or YYY

One-, two-, or three-digit years

Y,YYY

Year with comma

YYYY

Four-digit year

For example:

SELECT TO_DATE('05 Dec 2000', 'DD Mon YYYY') -> 2000-12-05

TO_NUMBER(string, format)

Converts string to a numeric value using the second argument for the input format. For example:

SELECT TO_NUMBER('12,454.8-', '99G999D9S') -> -12454.8

TO_TIMESTAMP(text, format)

Converts text to a timestamp value using the second argument for the input format. (For more on valid format
specifiers, see the TO_DATE function.) For example:

SELECT TO_TIMESTAMP('05 Dec 2000', 'DD Mon YYYY') -> 2000-12-05 00:00:00-08

TRANSLATE(text,from,to)

Converts the characters found in text that also exist in from to the corresponding characters in to. For example:

SELECT TRANSLATE('foo', 'fo', 'ab') -> 'abb'

TRUNC(float8)

Truncates (towards zero). For example:

SELECT TRUNC(PI()) -> 3

VARCHAR(string)

Converts string to a VARCHAR.

WIDTH(box)

Returns the width of box. For example:

SELECT WIDTH(BOX '((0,0),(3,1))') -> 3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.5 SQL Server-Supported Functions

This section provides an alphabetical listing of Microsoft SQL Server-supported functions, with examples and
corresponding results.

ACOS(number)

Returns the arc cosine of number ranging from -1 to 1. The result ranges from 0 to and is expressed in radians.
For example:

SELECT ACOS(0) -> 1.570796

APP_NAME()

Returns the application name for the current session, set by the application. For example:

SELECT APP_NAME() -> 'SQL Enterprise Manager'

ASCII(text)

Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') -> 120

ASIN(number)

Returns the arc sine of number ranging from -1 to 1. The resulting value ranges from -/2 to /2 and is expressed
in radians. For example:

SELECT ASIN(0) -> 0.000000

ATAN(number)

Returns the arctangent of any number. The resulting value ranges from -/2 to /2 and is expressed in radians. For
example:

SELECT ATAN(3.1415) -> 1.262619

ATN2(float1, float2)

Returns the angle (in radians) whose tangent is float1/float2. For example:

SELECT ATN2(35.175643, 129.44) -> 0.265345

BINARY_CHECKSUM(* | expression [,...n])

Returns the binary checksum for a list of expressions or for a row of a table. This example returns a list of user
IDs where the stored password checksum doesn't match the current password's checksum:

SELECT userid AS 'Changed' FROM users WHERE NOT password_chksum =

BINARY_CHECKSUM(password)

CHAR(integer_expression)

Converts a numeric ASCII code to a character. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converts a numeric ASCII code to a character. For example:

SELECT CHAR(78) -> 'N'

CHARINDEX(substring, string [, start_location])

Returns the position of the first occurrence of a substring in a string. For example:

SELECT CHARINDEX('he', 'Howdy, there!') -> 9

CHECKSUM(* | expression [,...n])

Returns a checksum (computed over row values or expressions provided). The following example returns a list
of user IDs for which the stored password checksum doesn't match the current password's checksum:

SELECT userid AS 'Changed' FROM users WHERE NOT password_chksum =

BINARY_CHECKSUM(password)

CHECKSUM_AGG([ALL | DISTINCT] expression)

Returns the checksum of the values in a group. For example:

SELECT CHECKSUM_AGG(BINARY_CHECKSUM(*)) FROM authors -> 67

COALESCE(expression [,...n])

Returns the first non-NULL argument from a list of arguments. For example:

SELECT COALESCE(NULL, 1, 3, 5, 7) -> 1

COL_LENGTH(table, column)

Returns column length in bytes. For example:

SELECT COL_LENGTH('authors', 'au_fname') -> 50

COL_NAME(table_id, column_id)

Returns column name, given table_id and column_id. For example:

SELECT COL_NAME(OBJECT_ID('authors'), 1)

CONTAINS({column | *}, contains_search_condition)

Searches columns for exact or "fuzzy" matches of the contains_seach_criteria. CONTAINS is an elaborate function
used to perform full-text searches. Refer to the vendor documentation for more information. This example
returns all product ID's from the products table that contain the words "peanut" and "butter" in close proximity
to each other.

SELECT productid FROM products

WHERE CONTAINS(productname, ' "peanut" NEAR "butter" ')

CONTAINSTABLE(table, column, contains_search_condition)

Returns a table with exact and "fuzzy" matches to contains_search_condition. CONTAINSTABLE is an elaborate
function used to perform full-text searches. The following example returns all product ID's from the products
table that contain the words "peanut" and "butter" in close proximity to each other:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

table that contain the words "peanut" and "butter" in close proximity to each other:

SELECT productid FROM products WHERE CONTAINS

(products, productname, ' "peanut" NEAR "butter" ')

CONVERT(data_type[(length)], expression [, style])

Converts data from one datatype to another. For example:

SELECT CONVERT(VARCHAR(50), CURRENT_TIMESTAMP, 1) -> '06/29/03'

COS(number)

Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) -> 1.000000

COT(number)

Returns the cotangent of number. For example:

SELECT COT(3.1415) -> -10792.88993953

DATABASEPROPERTYEX (database, property)

Returns a database option or property. For example:

SELECT DATABASEPROPERTYEX('pubs', 'Version') -> 539

DATALENGTH(expression)

Returns the number of bytes in a character or binary string. For example:

SELECT MAX(DATALENGTH(au_fname)) FROM authors -> 11

DATEADD(datepart, number, date)

Adds a number of dateparts (e.g., days) to a datetime value. For example:

SELECT DATEADD(Year, 10, CURRENT_TIMESTAMP) -> 2013-06-29 19:47:15.270

DATEDIFF(datepart, startdate, enddate)

Calculates the difference between two datetime values expressed in the specified datepart. For example:

SELECT DATEDIFF(Day, CURRENT_TIMESTAMP,

 DATEADD(Year, 1, CURRENT_TIMESTAMP))

366

DATENAME(datepart, date)

Returns the name of a datepart (e.g., month) of a datetime argument. For example:

SELECT DATENAME(month, GETDATE()) -> 'June'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DATEPART(datepart, date)

Returns the value of a datepart (e.g., hour) of a datetime argument. For example:

SELECT DATEPART(year, GETDATE()) -> 2003

DAY(date)

Returns an integer value representing the day of the date provided as a parameter. For example:

SELECT DAY('04/15/2004') -> 15

DB_ID([database_name])

Returns a database ID and given name. For example:

SELECT DB_ID() -> 5

DB_NAME(database_id)

Returns the database name. For example:

SELECT DB_NAME(5) -> 'pubs'

DEGREES(numeric_expression)

Converts radians to degrees. For example:

SELECT DEGREES(PI()) -> 180

DIFFERENCE(character_expression, character_expression)

Compares how two arguments sound and returns a number from 0 to 4. A higher result indicates a better
phonetic match. For example:

SELECT DIFFERENCE('moe', 'low') -> 3

FILE_ID(file_name)

Returns the file ID for the logical file_name. For example:

SELECT FILE_ID('master') -> 1

FILE_NAME(file_id)

Returns the logical filename for the file_id. For example:

SELECT FILE_NAME(1) -> 'master'

FILEGROUP_ID(filegroup_name)

Returns filegroup ID for the logical filegroup_name. For example:

SELECT FILEGROUP_ID('PRIMARY') -> 1

FILEGROUP_NAME(filegroup_id)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the logical filegroup name for filegroup_id. For example:

SELECT FILEGROUP_NAME(1) -> 'PRIMARY'

FILEGROUPPROPERTY(filegroup_name, property)

Returns the filegroup property value for the specified property. For example:

SELECT FILEGROUPPROPERTY('PRIMARY', 'IsReadOnly') -> 0

FILEPROPERTY(file, property)

Returns the file property value for the specified property. For example:

SELECT FILEPROPERTY('pubs', 'SpaceUsed') -> 160

FULLTEXTCATALOGPROPERTY(catalog_name, property)

Returns the fulltext catalog properties. For example:

SELECT FULLTEXTCATALOGPROPERTY('Cat_Desc', 'LogSize')

FULLTEXTSERVICEPROPERTY(property)

Returns the fulltext service level properties. For example:

SELECT FULLTEXTSERVICEPROPERTY('IsFulltextInstalled') -> 1

FORMATMESSAGE(msg_number, param_value [,... n])

Constructs a message from an existing message in the SYSMESSAGES table. (Similar to RAISEERROR). For
example:

sp_addmessage 50001, 1, 'Table %s has %s rows.'

SELECT FORMATMESSAGE(50001, 'AUTHORS',

(SELECT COUNT(*) FROM AUTHORS)) 'Table AUTHORS has 23.'

FREETEXT({ column |*}, freetext_string)

Used for a full-text search. Returns rows with column that match the meaning, but not exactly the value, of
freetext_string.

FREETEXTTABLE(table, { column |*}, freetext_string [, top_n_by_rank])

Used for a full-text search. Returns rows from table with column that match the meaning, but not exactly the
value, of freetext_string. For example:

SELECT * from FREETEXTTABLE (authors, *, 'kev')

GETANSINULL([database])

Returns default nullability setting for new columns. For example:

SELECT GETANSINULL() -> 1

GETDATE()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GETDATE()

Returns current date and time. For example:

SELECT GETDATE() -> 2003-06-27 19:26:59.893

GETUTCDATE()

Returns the current date as a Coordinated Universal Time (UTC) date. For example:

SELECT GETUTCDATE() -> 2003-06-28 02:26:46.720

GROUPING(column_name)

Returns 1 when a row is added by CUBE or ROLLUP; otherwise returns 0. For example:

SELECT royalty, SUM(advance) 'total advance',

 GROUPING(royalty) 'grp'

 FROM titles

 GROUP BY royalty WITH ROLLUP

royalty total advance grp

--------- --------------------- ---

NULL NULL 0

10 57000.0000 0

12 2275.0000 0

14 4000.0000 0

16 7000.0000 0

24 25125.0000 0

NULL 95400.0000 1

HOST_ID()

Returns the workstation ID. For example:

SELECT HOST_ID() -> 216

HOST_NAME()

Returns the process host name. For example:

SELECT HOST_NAME() -> 'PLATO'

IDENT_CURRENT(table_name)

Returns the last identity value generated for the specified table. For example:

SELECT IDENT_CURRENT('jobs') -> 876

IDENT_INCR(table_or_view)

Returns an identity column increment value. For example:

SELECT IDENT_INCR('jobs') -> 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT IDENT_INCR('jobs') -> 1

IDENT_SEED(table_or_view)

Returns an identity seed value. For example:

SELECT IDENT_SEED('jobs') -> 1

IDENTITY(data_type [, seed, increment]) AS column_name

Used in a SELECT INTO statement to insert an identity column into the destination table. For example:

SELECT IDENTITY(int, 1,1) AS ID

INTO NewTable

FROM OldTable

INDEX_COL(table, index_id, key_id)

Returns an index column name given a table name, index ID, and the sequential number of the column in the
index key. For example:

SELECT INDEX_COL(OBJECT_ID('authors'), 1, 1) -> NULL

INDEXPROPERTY(table_id, index, property)

Returns an index property (such as FILLFACTOR). For example:

SELECT INDEXPROPERTY(OBJECT_ID('authors'),

'UPKCL_auidind', 'IsPadIndex')

0

ISDATE(expression)

Validates if a character string can be converted to DATETIME. For example:

SELECT ISDATE(NULL), ISDATE(GETDATE())

0 1

IS_MEMBER({group | role})

Returns true or false (1 or 0) depending on whether the user is a member of the specified Windows NT group or
SQL Server role. For example:

SELECT IS_MEMBER('db_owner') -> 0

IS_SRVROLEMEMBER(role [,login])

Returns true or false (1 or 0) depending on whether the user is a member of the specified server role. For
example:

SELECT IS_SRVROLEMEMBER('sysadmin') -> 0

ISNULL(check_expression, replacement_value)

Returns the first argument if it is not NULL; otherwise returns the second argument. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the first argument if it is not NULL; otherwise returns the second argument. For example:

SELECT ISNULL(NULL, 'NULL') -> 'NULL'

ISNUMERIC(expression)

Validates if a character string can be converted to NUMERIC. For example:

SELECT ISNUMERIC('3.1415'), ISNUMERIC('IRK')

1 0

LEFT(character_expression, integer_expression)

Returns the leftmost integer_expression characters of character_expression. For example:

SELECT LEFT('Wet Paint', 3) -> 'Wet'

LEN(string_expression)

Returns the number of characters in the expression. For example:

SELECT LEN('Wet Paint') -> 9

LOG(float_expression)

Returns the natural logarithm. For example:

SELECT LOG(PI()) -> 1.1447298858494002

LOG10(float_expression)

Returns the base-10 logarithm. For example:

SELECT LOG10(PI()) -> 0.49714987269413385

LTRIM(character_expression)

Trims leading space characters. For example:

SELECT LTRIM(' beaucoup ') -> 'beaucoup '

MONTH(date)

Returns the month part of the date provided. For example:

SELECT MONTH(GETDATE()) -> 6

NCHAR(integer_expression)

Returns the UNICODE character with the given integer code. For example:

SELECT NCHAR(120) -> 'x'

NEWID()

Creates a new unique identifier of type UNIQUEIDENTIFIER. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a new unique identifier of type UNIQUEIDENTIFIER. For example:

SELECT NEWID() -> '32B35185-F55E-4FE0-B2C8-B57B35815C12'

NULLIF(expression, expression)

Returns a NULL if the two specified expressions are equivalent. For example:

SELECT NULLIF(5, 5) -> NULL

OBJECT_ID(object)

Returns the object ID of object. For example:

SELECT OBJECT_NAME (OBJECT_ID('authors')) -> 'authors'

OBJECT_NAME(object_id)

Returns the object name of an object with the object ID. For example:

SELECT OBJECT_NAME (OBJECT_ID('authors')) -> 'authors'

OBJECTPROPERTY(id, property)

Returns the properties of objects in the current database. For example:

SELECT OBJECTPROPERTY (object_id('authors'),'ISTABLE') -> 1

OPEN {[GLOBAL]cursor_name}| cursor_variable_name}

Opens a local or global cursor.

OPENDATASOURCE(provider_name, init_string)

Makes a connection to a data source without using a linked server name. For examples, refer to the "Loaders"
section of the SQL Server User's Guide.

OPENQUERY(linked_server, query)

Queries a remote data source previously configured as a linked server. For an example, refer to the "Loaders"
section of the SQL Server User's Guide.

OPENROWSET(provider_name, {datasource; user_id,password | provider_string}, {[catalog.][schema.]object | query})

Queries a remote data source without setting it up as a linked server.

PARSENAME(object_name, object_piece)

Returns the database name, owner name, server name, or object name for the object specified. Object_piece is
an integer between 1 and 4. For example:

SELECT PARSENAME('pubs..authors', 1) -> 'authors'

SELECT PARSENAME('pubs..authors', 2) -> NULL

SELECT PARSENAME('pubs..authors', 3) -> 'pubs'

SELECT PARSENAME('pubs..authors', 4) -> NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PATINDEX('%pattern%', expression)

Returns the position of the first occurrence of a pattern in a string. For example:

SELECT PATINDEX('%Du%', 'Donald Duck') -> 8

PERMISSIONS([object_id [, column]])

Returns a numeric value representing a bitmap with the current user's permissions on the specified object or
column. For example:

SELECT PERMISSIONS(OBJECT_ID('authors'))&8 -> 8

PI()

Returns the pi constant. For example:

SELECT 2*PI() -> 6.2831853071795862

RADIANS(numeric_expression)

Converts degrees to radians. For example:

SELECT RADIANS(90.0) -> 1.570796326794896600

RAND([seed])

Returns a pseudo-random FLOAT type value between and 1. For example:

SELECT RAND(PI()) -> 0.71362925915543995

REPLICATE(character_expression, integer_expression)

Repeats a string a number of times. For example:

SELECT REPLICATE('FOOBAR', 3) -> 'FOOBARFOOBARFOOBAR'

REPLACE(string_expression1,string_expression2,string_expression3)

Performs a search-and-replace on string_expression1, replacing each occurrence of string_expression2 with
string_expression3. For example:

SELECT REPLACE('Donald Duck', 'Duck', 'Trump') -> 'Donald Trump'

REVERSE(character_expression)

Reverses the characters of a string. For example:

SELECT REVERSE('Donald Duck') -> 'kcuD dlanoD'

RIGHT(character_expression, integer_expression)

Returns the rightmost integer_expression characters of character_expression. For example:

SELECT RIGHT('Donald Duck', 4) -> 'Duck'

ROUND (number, decimal [,function])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROUND (number, decimal [,function])

Returns number rounded to decimal places right of the decimal point. Note that decimal, an integer, can be
negative to round off digits left of the decimal point. If a nonzero integer is provided for function, the return
value will be truncated; otherwise the value is rounded. For example:

SELECT ROUND(PI(), 2) -> 3.1400000000000001

ROWCOUNT_BIG()

Returns the number of rows affected by the most recent query. (Same as @@ROWCOUNT, but returns a
BIGINT type.) For example:

SELECT ROWCOUNT_BIG() -> 1

RTRIM(character_expression)

Trims trailing space characters from the expression. For example:

SELECT RTRIM(' beaucoup ') -> ' beaucoup'

SIGN(numeric_expression)

Returns -1 if the argument is negative, 0 if it is zero, and 1 if the argument is positive. For example:

SELECT SIGN(-PI()) -> -1.0

SIN(number)

Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SOUNDEX(character_expression)

Returns a four-character code based on how the argument string sounds. For example:

SELECT SOUNDEX('char') -> 'C600'

SPACE(integer_expression)

Returns a string consisting of a given number of space characters. For example:

SELECT SPACE(5) -> ' '

STATS_DATE(table_id, index_id)

Returns the date and time that index statistics were last updated. For example:

SELECT i.name, STATS_DATE(i.id, i.indid)

FROM sysobjects o, sysindexes i

WHERE o.name = 'authors' AND o.id = i.id

UPKCL_auidind 2000-08-06 01:34:00.153

aunmind 2000-08-06 01:34:00.170

STDEV(expression)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STDEV(expression)

Returns the standard deviation of values in expression. For example:

SELECT STDEV(qty) FROM sales -> 16.409201831957116

STDEVP(expression)

Returns the standard deviation for the population of values in expression. For example:

SELECT STDEVP(qty) FROM sales -> 16.013741264834152

STR(number [, length [, decimal]])

Converts number to a character string with length length and decimal decimal places.

STUFF(string1, start, length, string2)

Replaces the length characters at position start within string1 with those in string2. For example:

SELECT STUFF('Donald Duck', 8, 4, 'Trump') -> 'Donald Trump'

SUBSTRING(string, start, length)

Extracts length characters from string starting at the character in the start position. For example:

SELECT SUBSTRING('Donald Duck', 8, 4) -> 'Duck'

SUSER_ID([login])

Returns the system user ID of a given login name. Incidentally, this function will always return NULL with SQL
Server 2000 or later. Therefore, avoid using this function.

SUSER_SID([login])

Returns the Security ID (SID) for the current user, or for the specified login. The SID is retuned in binary
format. For example:

SELECT SUSER_SID('montoyai')

0x68FC17A71010DE40B005BCF2E443B377

SUSER_SNAME([server_user_sid])

Returns the login name for the current user, or for the specified login Security ID (SID). For example:

SELECT SUSER_SNAME() -> 'montoyai'

TAN(number)

Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) -> -0.000093

TEXTPTR(column)

Returns a pointer to a TEXT, NTEXT, or IMAGE column in VARBINARY format. For example:

SELECT TEXTPTR(pr_info)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT TEXTPTR(pr_info)

FROM pub_info WHERE pub_id = '0736'

ORDER BY pub_id

0xFEFF6F00000000005C00000001000100

TEXTVALID(table.column, text_ptr)

Returns true or false (1 or 0), depending on whether the provided pointer to a TEXT, NTEXT, or IMAGE column
is valid. For example:

SELECT pub_id, 'Valid (if 1) Text data'

 = TEXTVALID ('pub_info.logo', TEXTPTR(logo))

FROM pub_info

ORDER BY pub_id

0736 1

0877 1

1389 1

1622 1

1756 1

9901 1

9952 1

9999 1

TYPEPROPERTY(datatype, property)

Returns information about datatype properties. The datatype argument can contain the name of any datatype,
and property can be a string containing one of the following:

Precision

The precision of the datatype is the number of digits or characters that it can store.

Scale

The scale is the number of decimal places for a numeric datatype. A NULL value will be returned if datatype is
not a numeric datatype. For example:

SELECT TYPEPROPERTY('decimal', 'PRECISION') -> 38

UNICODE(ncharacter_expression)

Returns the UNICODE code point for the first character of the input parameter. For example:

SELECT UNICODE('Hello!') -> 72

USER_ID([user])

Returns the user ID for user in the current database. If user is omitted, then the current user's ID will be
returned. For example:

SELECT USER_ID() -> 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

USER_NAME([id])

Returns the current username in the current database. For example:

SELECT USER_NAME() -> 'montoyai'

VAR(expression)

Returns the statistical variance for the values represented by expression. For example:

SELECT VAR(qty) FROM sales -> 269.26190476190476

VARP(expression)

Returns statistical variance for the population represented by all values of expression in a group. VARP is an
aggregate function. For example:

SELECT VARP(qty) FROM sales -> 256.43990929705217

YEAR(date)

Returns an integer that is the YEAR part of the specified date. For example:

SELECT YEAR(CURRENT_TIMESTAMP) -> 2003

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Database Programming
While SQL plays an important role in standardizing the communication with different RDBMSs, a missing piece still
remains for those who want to write database software applications. The missing piece is the database programming
Application Programming Interface (API) used to transport SQL statements to and process their results from an RDBMS.
While all the database platforms discussed in this book provide their own proprietary interfaces for database application
developers, this chapter focuses on two commonly used APIs that provide a consistent interface across database
platforms. Specifically, this chapter introduces you to:

ADO.NET

ADO.NET is Microsoft's high-level database programming API on the .NET platform. The ADO.NET API is a
collection of .NET interfaces that are accessible from any of the .NET languages. The primary benefits of
ADO.NET are ease of use, portability within the .NET platform, XML integration, and access to data sources
other than relational databases. The ADO.NET examples covered in this book are written in C#; however,
ADO.NET is also available from Visual Basic and the other .NET languages.

JDBC

JDBC, or Java Database Connectivity, was developed primarily by Sun Microsystems to be the primary database
programming API for the Java language. JDBC is the most popular database programming API for the Java
language and offers operating-system portability, reasonable performance for most applications, and a well-
documented interface. In addition, drivers for most database systems are typically free. This chapter covers
JDBC Version 3.0. For additional information, please browse http://java.sun.com/jdbc.

As a quick desk reference, this chapter won't provide all the information needed to develop a large enterprise database
application. However, we give you enough to get started by covering components that are common to all database
applications, both large and small.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 Database Programming Overview
Developing successful database applications, large and small, involves many steps. Careful thought must be given to
application architecture, and especially to the following issues:

How to map application data, which is typically object-oriented, to a relational database

How to handle errors gracefully

How to maximize performance and scalability

A typical database application will require many different SQL statements. The management of so many statements is
simplified by the fact that all SQL statements will follow roughly the same pattern of execution within an application.
Figure 5-1 is a state diagram showing how SQL statements are prepared, executed, and then processed by a database
application when interacting with a relational database system. The state diagram has been broken down into eleven
steps, four of which are optional (and are indented in the diagram).

Figure 5-1. Statement execution state diagram

Following are detailed descriptions of each step shown in Figure 5-1:

1. Establish connectivity: Establishing connectivity is the first step in every successful database application. It is in
this step that the client, or database application, makes a physical connection to the database that will be used
to transmit the SQL statements to the database and the results back to the client. The actual physical
connection could be over a LAN, WAN, or even a simple logical connection back to the client in cases where the
database application and server are running on the same machine. For more information on how to establish
connectivity, please see the section Section 5.2 later in this chapter.

2. Begin transaction (optional): A transaction may be begun so that the database changes may be rolled back on
failure or committed on success. For more information on transaction control from database programming APIs,
please see Section 5.4 later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

please see Section 5.4 later in this chapter.

3. Create statement object: Most modern database programming APIs are object-oriented and therefore use an
object to represent a SQL statement. There will typically be one statement object per SQL statement executed
within the application. The statement object holds the state information required to execute the SQL statement,
such as the SQL statement itself and input parameters when they exist.

4. Associate SQL with statement object: After the statement object has been created, it needs to have a SQL
statement assigned to it. Once this is done, the statement object may be executed.

5. Bind input parameters (optional): While not part of the ANSI SQL standard, the ability to bind parameters to
"placeholders" within a SQL statement is supported by all the database platforms covered in this book. If the
SQL statement has placeholders for input parameters, the statement object will need to have a program
variable associated with each input parameter. If the SQL statement contains no input parameters, then this
step may be skipped. Input parameters are useful for optimizing performance when the same SQL statement is
re-executed many times, because the server-side parsing of the statement only needs to be done once prior to
the first execution. Another reason to use input parameters is to embed binary data, such as BLOB data, into
SQL statements such as INSERT and UPDATE statements.

6. Execute statement object: After the statement object has been successfully created and initialized with a SQL
statement, the statement object can be executed. This step executes the SQL statement on the database
server.

7. Process Results (optional): After the database server returns a result set, the application may process the
results. This step is optional, since it is typically not required for statements that insert or update data in the
database.

8. Re-execution: If the same statement needs to be re-executed to retry on a failure or to execute again with
different values for the input parameters, the application can return to Step 6. If the application has no need to
re-execute the same statement, it moves on to Step 9.

9. Execute another SQL statement: If the application needs to execute a different SQL statement and can reuse
the statement object, then the application can return to Step 4; if not, it can move to Step 10.

10. End transaction (optional): Assuming a transaction was begun in step 2, the transaction is now either
committed or rolled back. If the transaction is rolled back, then all changes to the database made by the
statement object will be removed from the database.

11. Free resources: After successfully executing the statement and processing any results, the client- and server-
side resources need to be freed for use by other applications.

The remaining sections in this chapter provide examples of how to use the ADO.NET and JDBC database APIs to build
applications that follow the steps outlined in Figure 5-1.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 Opening a Database Connection
Before interacting with a database, an application must first establish a connection to the database server. The APIs
covered in this book abstract the low-level connectivity details into a few simple object-oriented classes, making it
easier to focus on the database application instead of protocols and network topology.

5.2.1 Opening an ADO.NET Database Connection

Opening a connection with ADO.NET requires instantiating a connection object with a properly formatted connection
string and then invoking the Open method on the connection object. The connection object can be an OdbcConnection,
SqlConnection, or an OleDbConnection. The OdbcConnection is designed for any ODBC datasource, and the OleDbConnection
type will work with any OLE DB Provider. For the highest performance data access, use connection objects specifically
tuned to the specific database platform, such as SqlConnection for Microsoft SQL Server. Following is the syntax for
creating a Connection object in ADO.NET:

{Odbc|OleDb|Sql}Connection connection =

 new {Odbc|OleDb|Sql}Connection(connection_string);

connection.Open();

The format of the connection string is the same for all of the connection types. The format is a string of key/value pairs
delimited by semicolons. For example:

key1=value1; key2=value2; key3=value3; ...

While the format is the same for every connection type, the keys and values are quite different. Tables Table 5-1
through Table 5-3 list the attributes for the three connection types listed above. Many database platforms support
additional attributes that can also be set through the connection string. For a list of these attributes, please consult the
appropriate database vendor documentation.

Following are examples of two connection strings for an OdbcConnection:

DSN=MyOracleDSN; UID=scott; PWD=tiger;

DRIVER={SQL Server};SERVER=(local);UID=sa;PWD=;DATABASE=pubs;

The first string connects to a Data Source Name, or DSN, with the name MyOracleDSN using the username scott and
the password tiger.

The second string connects using the SQL Server driver to a database named pubs on the local server. The username
is sa. The password is blank, indicating to the driver that the password is not required for the sa user.

Following is an example of a connection string for an OleDbConnection, which connects to an Oracle9i data source using
the MSDAORA OLE DB provider, the use name scott, and the password tiger.

Provider=MSDAORA;Data Source=Oracle9;User ID=scott;Password=tiger;

Finally, here is an example of a connection string for a SqlConnection, which connects to a SQL Server data source on the
local server:

Server=(local);UID=sa;PWD=;DATABASE=pubs;Connection Timeout=60;

In Tables Table 5-1 through Table 5-3, you'll find synonyms for some keywords. For example, you can use "DSN" and
"Data Source Name" interchangeably in your code.

Table 5-1. Connection string attributes for OdbcConnection
Keyword Notes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data
Source
Name

DSN

The DSN, FILEDSN, or DRIVER attribute must be provided to connect. The DSN is the Data Source Name
known by the client's driver manager. The advantage of using a DSN is that the DSN can be changed to
point to a different database platform while the database applications are still running.

User ID

UID
This value is set to the user identifier authorized to open a new connection.

Password

PWD

The password for the user. If the user doesn't have a password for the data source, then this property
should still be supplied with an empty value.

DSN_File
Name

FILEDSN

Similar to the DSN, the FILEDSN is a file, typically with a DSN extension that contains the attributes for
the connection object to establish connectivity. Even when using a FILEDSN, the connection may still need
the password provided, since passwords aren't stored within DSN files.

Driver
Name

DRIVER

A Driver may be explicitly used instead of a DSN or FILEDSN. The drawback of using a driver directly is
that the application won't be isolated from changes made to the driver and will require slight modifications
to target a different database platform.

SAVEFILE
When the SAVEFILE attribute is set to a legal filename, the connection attributes will be saved to the file
once successful connectivity is established. This option is only available when using DRIVER and FILEDSN
connectivity methods.

Table 5-2. Connection string attribute for OleDbConnection
Keyword Notes

Provider The name of the provider: this is the only required attribute. The specified provider may require additional
attributes.

Table 5-3. Connection string attributes for SqlConnection
Keyword Notes

Application Name The name of the application that will be displayed from server management utilities.

AttachDBFilename

Extended
properties

Initial File Name

The pathname to an attachable database.

Connect Timeout

Connection Timeout
Number of seconds to wait before the connection attempt is aborted. The default is 15 seconds.

Connection Lifetime Time in seconds the connection can remain in the connection pool, when pooling is enabled.

Connection Reset Specifies whether or not the connection is reset when it is reused from the connection pool.
Default is true.

Current Language The language the connection session should use.

Data Source

Server

Address

Addr

Network Address

The SQL Server instance name or network address.

Initial Catalog

Database
The name of the database.

Integrated Security

Trusted_Connection
Set to true or sspi for secure connections. The default is false.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Max Pool Size The maximum number of connections allowed in the connection pool at a time. The default is
100.

Min Pool Size The minimum number of connections to keep in the connection pool at a time. The default is 0.

Network Library

Net

The network library to use in establishing the connection. Valid settings are dbnmpntw for Named
Pipes, dbmsrpcn for Multiprotocol, dbmsadsn for AppleTalk, dbmsgnet for VIA, dbmsipcn for Shared
Memory, dbmsspxn for IPX/SPX, and dbmssocn for TCP/IP. The default is dbmssocn for TCP/IP.

Packet Size The network packet size in bytes; the default is 8,192.

Password

Pwd
The user's password.

Persist Security
Info

Determines if security-sensitive connection properties, such as the password, are stored within
the connection object after a connection has been attempted or completed. The default is false.

Pooling Determines if connection pooling should be used for the connection. The default is true.

User ID The user's login name.

Workstation ID The name of the computer connecting to the database.

5.2.2 Opening a JDBC Database Connection

Following is the syntax for registering a driver with the JDBC Driver Manager and then opening a database connection:

Class.forName(driver_name);

Connection connection = DriverManager.getConnection(connect_string,

 username, password);

The first step in establishing JDBC connectivity is to instruct the Java Virtual Machine (JVM) class loader to load the
appropriate JDBC driver.

The most common method of loading the driver into the class loader is to use the static forName method of the Class
class. This method can provide applications with greater flexibility in changing database platforms by having the Java
Virtual Machine (JVM) load the database driver at runtime:

Class.forName("driver_name");

After the database driver has been loaded, the application can establish connectivity by invoking the static getConnection
method on the JDBC DriverManager class. The getConnection method takes three arguments: a connection string,
username, and password:

Connection connection = DriverManager.getConnection(connect_string,

 username, password);

The connection string follows the following JDBC URL naming scheme:

jdbc:subprotocol:subname

Following are examples of how to connect to the different vendors covered in this book using JDBC.

5.2.2.1 DB2

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

Connection connection = DriverManager.getConnection(

 "jdbc:db2:DATABASE", "user", "passwd");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "jdbc:db2:DATABASE", "user", "passwd");

5.2.2.2 MySQL

Class.forName("org.gjt.mm.mysql.Driver");

Connection connection = DriverManager.getConnection(

 "jdbc:mysql://127.0.0.1:3306/DATABASE",

 "user", "passwd");

5.2.2.3 PostgreSQL

Class.forName("org.postgresql.Driver");

Connection connection = DriverManager.getConnection(

 "jdbc:postgresql://127.0.0.1:5432/DATABASE",

 "user", "passwd");

5.2.2.4 Oracle

Class.forName("oracle.jdbc.driver.OracleDriver");

Connection connection = DriverManager.getConnection(

 "jdbc:oracle:thin:@myserver",

 "scott","tiger");

5.2.2.5 SQL Server

Class.forName(

 "com.microsoft.jdbc.sqlserver.SQLServerDriver"

);

Connection connection = DriverManager.getConnection(

 "jdbc:microsoft:sqlserver://SERVER:1433;" +

 "DatabaseName=pubs;",

 "user", "passwd");

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 Closing a Database Connection
Once an application is finished using an open connection, that connection should be closed. Some APIs automatically
close connections when the application exits; however, it is best to explicitly close the connection as soon as the
application is finished accessing the database to allow other applications access to precious connection resources.

Calling the appropriate close methods when finished with an ADO.NET or JDBC object is
essential to freeing precious database resources used by the application. Both ADO.NET
and Java offer very few guarantees when objects are finalized; therefore, it is common for
those applications that don't close objects explicitly to run out of database resources (such
as connections, statement handles, and memory).

5.3.1 Closing an ADO.NET Database Connection

To close an ADO.NET connection, invoke the Close method on the connection object:

connection.Close();

5.3.2 Closing a JDBC Database Connection

To close a JDBC connection, invoke the close method on the connection object:

connection.close();

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4 Managing Transactions
Most database programming APIs provide methods of controlling transactions, setting savepoints, and modifying
isolation levels. This section covers the mechanisms for controlling transactions from the ADO.NET and JDBC APIs
covered in this chapter.

5.4.1 Beginning a Transaction

Beginning a transaction is the first step in guaranteeing atomicity when executing multiple SQL statements. After
beginning a transaction, the transaction can be committed to make the changes performed by the executed SQL
statements permanent or the transaction can be rolled back to abort the changes and leave the database unchanged.

5.4.1.1 Beginning an ADO.NET transaction

To begin a transaction using ADO.NET, invoke the BeginTransaction method on a connection object. A Transaction object is
returned that can be used in the creation of ADO.NET Command objects that execute within the same transaction. To
execute a Command object within the new transaction, you must first attach the Transaction object to the Command
object's Transaction property. Following is the syntax for starting a transaction by creating a Transaction object in
ADO.NET:

{Odbc|OleDb|Sql}Transaction transaction =

 connection.BeginTransaction([IsolationLevel.

 {Chaos | ReadCommitted | ReadUncommitted |RepeatableRead |

 Serializable | Unspecified}]);

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();

statement.Transaction = transaction;

When creating the Transaction object, you can optionally specify the isolation level that is used for the transaction. The
isolation level controls how much (or little) your database transactions are insulated from the effects of other
transactions. The available isolation levels are:

Chaos

Pending changes of other transactions with higher isolation levels (ReadCommitted, ReadUncommitted,
RepeatableRead, or Serializable) cannot be changed.

ReadUncommitted

The lowest ANSI standard isolation level, unprotected against dirty reads, non-repeatable reads, and phantom
records.

ReadCommitted

The next highest ANSI standard isolation level above ReadUncommitted, protects against dirty reads.

RepeatableRead

The next highest ANSI standard isolation level above ReadCommitted, protects against dirty reads and
nonrepeatable reads.

Serializable

The highest ANSI standard isolation level. Protects against dirty reads, non-repeatable reads, and phantom
records.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

records.

Unspecified

Isolation level cannot be determined. This option is not typically passed into the BeginTransaction method; its
purpose is to provide an Unknown state for the Connection object's IsolationLevel property. If the Transaction has
this IsolationLevel, even after being set to another value, then it is safe to assume that the database does not
support the IsolationLevel that you requested.

For more information about isolation levels, see Programming Tips and Gotchas under SET TRANSACTION Statement.

The isolation level used during SQL statement execution can have a significant impact on
the performance and scalability of a database application, as well as on the RDBMS itself.
When deciding which isolation level to use, choose the lowest level that provides the
appropriate isolation guarantees for the database application.

5.4.1.2 Beginning a JDBC transaction

JDBC starts a connection in AUTO COMMIT mode, which is a setting that automatically commits changes made by each
SQL statement when it executes. To gain control over when changes are committed, the AUTO COMMIT setting must be
turned off. JDBC's mechanism of beginning a transaction is subtle compared to ADO.NET, which uses a BeginTransaction
method to begin a transaction. In JDBC, a transaction is started as soon as the AUTO COMMIT mode is turned off or
just after the transaction has been committed or rolled back. Committing or rolling back the transaction doesn't turn the
AUTO COMMIT mode back on, so multiple commits or rollbacks will need to be executed to commit/roll back multiple
units of work until the connection is closed or AUTO COMMIT is explicitly turned back on. To turn off the AUTO COMMIT
mode, execute the setAutoCommit method of the JDBC Connection object with a false argument:

connection.setAutoCommit(false);

Beware that invoking setAutoCommit to turn AUTO COMMIT mode on or off when a
transaction has already begun will automatically commit that transaction.

JDBC also supports different isolation levels through the JDBC Connection interface. To set the isolation level used for
new transactions, invoke the setTransactionIsolation method with one of the following isolation levels:

TRANSACTION_NONE

Indicates transactions are not supported on the connection. This value is not typically used to set the isolation
level, but to query the connection for transaction support with the getTransactionIsolation method on the
Connection interface.

TRANSACTION_READ_UNCOMMITTED

The lowest ANSI standard isolation level, unprotected against dirty reads, nonrepeatable reads, and phantom
records.

TRANSACTION_READ_COMMITTED

The next highest ANSI standard isolation level above TRANSACTION_READ_UNCOMMITTED. Protects against dirty
reads.

TRANSACTION_REPEATABLE_READ

The next highest ANSI standard isolation level above TRANSACTION_READ_COMMITTED. Protects against dirty
reads and nonrepeatable reads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRANSACTION_SERIALIZABLE

The highest ANSI standard isolation level. Protects against dirty reads, nonrepeatable reads, and phantom
records.

For a more detailed explanation of transaction isolation levels, see Programming Tips and Gotchas under SET
TRANSACTION Statement.

Following is example code setting the isolation level in JDBC:

connection.setIsolationLevel(Connection.TRANSACTION_SERIALIZABLE);

The isolation level used on the connection can have a significant impact on the
performance and scalability of a database application, as well as on the RDBMS itself.
When deciding which isolation level to use, choose the lowest level that provides the
appropriate isolation guarantees for the connection.

5.4.2 Committing a Transaction

Committing a transaction is a way to explicitly close the transaction and make its database modifications permanent.

5.4.2.1 Committing an ADO.NET transaction

To commit a transaction using ADO.NET, invoke the Commit method on the Transaction object:

transaction.Commit();

ADO.NET is more object-oriented than many database-programming APIs, as can be seen from the encapsulation of a
transaction into a unique object type. This has the drawback of making the methods for explicitly ending a transaction
more difficult to find than those to begin a transaction, since they are on different object types. Remember that the
method to begin a transaction is on the Connection object, and the methods to commit or roll back a transaction are
found on the Transaction object.

5.4.2.2 Committing a JDBC transaction

Invoking the commit method on a JDBC Connection object commits a transaction within JDBC and begins a new
transaction:

connection.commit();

If the connection is in AUTO COMMIT mode, you will then get a Java exception of type SQLException because the
connection will not have a pending transaction.

5.4.3 Rolling Back a Transaction

Rolling back a transaction is a way to close the transaction explicitly and to discard any database modifications since the
transaction was started.

5.4.3.1 Rolling back an ADO.NET transaction

To roll back a transaction using ADO.NET, invoke the Rollback method on the Transaction object:

transaction.Rollback();

After rolling back a Transaction object, the Dispose method should be invoked to free any resources held by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After rolling back a Transaction object, the Dispose method should be invoked to free any resources held by the
transaction:

transaction.Dispose();

5.4.3.2 Rolling back a JDBC transaction

Invoking the rollback method on a JDBC Connection object rolls back a transaction within JDBC and begins a new
transaction:

connection.rollback();

If the connection is in AUTO COMMIT mode, then a Java exception will be thrown of SQLException type.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.5 Executing Statements
The primary purpose of programming to a specific database API is to execute SQL statements. The next section covers
the steps required to successfully execute a simple SQL statement, such as INSERT or UPDATE, that does not return
results. The section following focuses on the more complicated task of executing statements that do return results.

5.5.1 Executing an ADO.NET Statement

The following code fragment provides the syntax for executing a SQL INSERT statement using ADO.NET:

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();

statement.CommandText = "INSERT INTO authors(au_id, au_lname, " +

 " au_fname, contract) " +

 "VALUES ('xyz', 'Brown', 'Emmit', 1)";

int rowsInserted = statement.ExecuteNonQuery();

statement.Close();

To execute a statement using ADO.NET, take the following steps:

1. Create an ADO.NET Command object. SqlCommand is used for access to Microsoft SQL Server, OdbcCommand is
used for ODBC data sources, and OleDbCommand for OLE-DB data sources.

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();

2. After creating the appropriate Command object, a SQL statement needs to be associated with the Command
before it can be executed.

statement.CommandText = "INSERT INTO authors(au_id, au_lname, " +

 " au_fname, contract) " +

 "VALUES ('xyz', 'Brown', 'Emmit', 1)";

3. After assignment of the SQL statement, the Command object is ready for execution.

int rowsInserted = statement.ExecuteNonQuery();

There are three methods that can be used to execute ADO.NET Command objects:

a. ExecuteReader: Executes SQL statements that return rows, such as SELECT statements. The return value
is an ADO.NET DataReader object.

b. ExecuteNonQuery: Executes SQL statements that do not typically return result sets, such as INSERT,
DELETE, or UPDATE statements. The return value is an integer value equal to the number of rows
affected by the statement execution.

c. ExecuteScalar: Executes SQL statements that return a single value, such as statements containing a
single aggregate function.

d. After the Command object is executed, it should be explicitly closed to free up resources that have been
allocated to execute statements and to communicate with the database server. To free up these
resources, invoke the Command object's Dispose method:

statement.Dispose();

The resources held by ADO.NET Statement objects are freed using the Dispose method,
which differs from the Close method used by all other ADO.NET types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which differs from the Close method used by all other ADO.NET types.

5.5.2 Executing a JDBC Statement

The following code fragment provides the syntax for executing a SQL INSERT statement using JDBC:

java.sql.Statement statement = connection.createStatement();

int rowsInserter = statement.executeUpdate(

 "INSERT INTO authors(au_id, au_lname, au_fname, contract) " +

 " VALUES ('xyz', 'Brown', 'Emmit', 1)");

statement.close();

1. Executing a SQL statement first requires the creation of a JDBC Statement object. A Statement object is produced
by invoking the createStatement method on a valid JDBC Connection object:

java.sql.Statement statement = connection.createStatement();

2. After a Statement object has been created, a SQL statement can be executed by invoking one of the execute
methods found on the Statement object. For non-query statements, the executeUpdate method is the best method
to use:

statement.executeUpdate("INSERT INTO authors(au_id, au_lname, " +

 "au_fname, contract) VALUES " +

 "('xyz', 'Brown', 'Emmit', 1)");

The executeUpdate method returns an int value indicating the number of rows inserted, updated, or deleted
during the execution of the SQL statement. If the execution fails, you will get a SQLException.

3. After the Statement object has been executed, it may be executed again, or freed by invoking the close method.

statement.close();

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.6 Retrieving Data
A typical database program retrieves data from a database server and processes it. These programs will execute
SELECT statements following a process similar to that described in the previous section. The difference between
executing a SELECT statement as opposed to a statement that does not return results is that with SELECT you must
execute additional code to process the results returned by SELECT.

5.6.1 Retrieving Data Using ADO.NET

The following C# code fragment executes a SQL SELECT statement that returns author names from the authors table
and then iterates through the results one row at a time, printing out each author's name. The code is explained in the
detailed steps that follow:

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();

statement.CommandText = "SELECT au_fname, au_lname FROM authors";

{Odbc|OleDb|Sql}DataReader resultSet = statement.ExecuteReader();

while(resultSet.Read())

{

 String fname = "NULL";

 String lname = "NULL";

 if(!resultSet.IsDBNull(0)) fname = resultSet.GetString(0);

 if(!resultSet.IsDBNull(1)) lname = resultSet.GetString(1);

 System.Console.WriteLine(lname + ", " + fname);

}

resultSet.Close();

statement.Close();

Column ordinals are all zero-based (the first column is 0, the second is 1, etc.) in
ADO.NET, which is different from the one-based ordinals used by JDBC.

To execute a SQL query and process the results using ADO.NET, take the following steps:

1. Create the Command object that will be used to execute the SELECT statement and attach a SELECT statement
to it:

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();

statement.CommandText = "SELECT au_fname, au_lname FROM AUTHORS";

2. Invoke the ExecuteReader method on the Command object, creating a new DataReader object.

{Odbc|OleDb|Sql}DataReader resultSet = statement.ExecuteReader();

3. Iterate through each row in the result set. After execution of the SELECT statement, retrieve rows using the
DataReader's Read method. If you expect a multiple row result, you should invoke the Read method from within a
while loop:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

while loop:

while(resultSet.Read())

{

4. Having fetched a row of data into the DataReader object, the column data can be extracted using the DataReader's
Get methods. Before calling the Get methods, we check to see if the data is NULL using the DataReader's IsDBNull
method. If the value returned by the IsDBNull method is true, then the value of the string will be NULL. There
are many Get methods for each type of column. Using the appropriate datatype for the column is important,
because a conversion is not always possible. For a list of available Get methods and the ANSI SQL types they
should be used with, please see Table 5-4.

 String fname = "NULL";

 String lname = "NULL";

 if(!resultSet.IsDBNull(0)) fname = resultSet.GetString(0);

 if(!resultSet.IsDBNull(1)) lname = resultSet.GetString(1);

When creating an ADO.NET program that fetches data that can contain NULL values, it is always safest to check
the return value of the DataReader object's IsDBNull method prior to extracting a value.

5. The Read method of DataReader returns false when all the data has been read from the database server. At that
point, the Close methods on the Command object and DataReader should be invoked to free up the resources
used internally to process the statement.

resultSet.Close();

statement.Close();

Table 5-4. ADO.NET DataReader Get methods
Method name Description

GetBoolean(int i) Returns the value from the ith column as a Boolean value, where i is the zero-based column
number.

GetByte(int i)
Returns the value from the ith column as a single-byte value, where i is the zero-based column
number. No conversion will be done if the data in the column exceeds one byte and an
InvalidCastException object will be thrown.

GetBytes(int i, long
dataIndex, byte[]
buffer, int
bufferIndex, int
length)

Returns the value from the ith column as a binary value, where i is the zero-based column
number, dataIndex is the offset in the column value to start reading, buffer is the byte array to
copy the data into, bufferIndex is the offset into buffer at which to start copying data, and length is
the maximum length to copy into buffer.

GetChar(int i) Returns a single char value from the ith column. For use with character type columns, where i is
the zero-based column number.

GetChars(int i, long
dataIndex, char[]
buffer, int
bufferIndex, int
length)

Returns a string of characters from the ith column. For use with character type columns, where i
is the zero-based column number, dataIndex is the offset in the column value to start reading,
buffer is the char array to copy the data into, bufferIndex is the offset into buffer at which to start
copying data, and length is the maximum length to copy into buffer.

GetDataTypeName(int
i)

Gets a String value that contains the name of the column's datatype, where i is the zero-based
column number.

GetDateTime(int i) Returns a DateTime value from the ith column. For use with temporal type columns, where i is the
zero-based column number.

GetDecimal(int i) Returns a single Decimal value from the ith column. For use with numeric type columns, where i
is the zero-based column number.

GetDouble(int i) Returns a single double value from the ith column. For use with double precision type columns,
where i is the zero-based column number.

GetFloat(int i) Returns a single float value from the ith column. For use with floating-point columns, where i is
the zero-based column number.

GetInt{16,32,64}(int
i)

Retrieves data from integer columns. The precision of the return value is encoded within the
function names. Use GetInt16 for a 16-bit signed short integer, GetInt32 for a 32-bit signed int, and
GetInt64 for a 64-bit signed long.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetName(int i) Returns a String value containing the name of the ith column, where i is the zero-based column
number.

GetOrdinal(string
name)

Returns an int value containing the ordinal value of the column with name matching the name
argument.

GetString(int i) Returns a single String value from the ith column. For use with character type columns, where i is
the zero-based column number.

Beyond the Get methods, there are three other methods on the DataReader type that are frequently used when
processing data from a query. Those three methods are listed in Table 5-5.

Table 5-5. Frequently used ADO.NET DataReader methods
Method
name Description

Close() Closes the DataReader object, freeing up resources held by the instance.

IsDBNull(int i) Returns true if the specified column is NULL, otherwise it returns false, where i is the zero-based
column number.

Read() Fetch the next row if one is available, and return true, otherwise return false.

5.6.2 Retrieving Data Using JDBC

The following Java code fragment executes a SQL SELECT statement that returns author names from the authors table
and then iterates through the results one row at a time, printing out each author's name:

java.sql.Statement statement = connection.createStatement();

java.sql.ResultSet result =

 statement.executeQuery("SELECT au_fname, au_lname FROM authors");

while(result.next()) {

 String fname = result.getString(1);

 if(result.wasNull()) fname = "NULL";

 String lname = result.getString(2);

 if(result.wasNull()) lname = "NULL";

 System.out.println(lname + ", " + fname);

}

result.close();

statement.close();

Column ordinals are all one-based (first column is 1, second is 2, etc.) in JDBC, which is
different from the zero-based ordinals used by ADO.NET.

5.6.2.1 Use the following steps to execute query statements in JDBC:

1. Create a JDBC Statement object by invoking the createStatement method on a valid Connection object:

java.sql.Statement statement = connection.createStatement();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java.sql.Statement statement = connection.createStatement();

2. The query is executed by invoking one of the execute methods on the Statement object. Result sets from query
statements are processed by JDBC ResultSet objects, which are returned from the executeQuery method of JDBC
Statement objects.

java.sql.ResultSet result =

 statement.executeQuery("SELECT au_fname, au_lname FROM authors");

3. After creating a ResultSet object, you can iterate through one row at a time by invoking the next method. The
next method returns a Boolean value, true for each row in a result set and false after all rows have been
iterated through. It is common to invoke the next method within a while loop to process the rows one-by-one.
The ResultSet does not begin on the first row of the result, so you must invoke the next method to advance to
the first row before calling any of the get methods.

while(result.next()) {

4. To retrieve column data from the rows within a result set, invoke the appropriate get method on the ResultSet
object. For a list of the most common get methods, check Table 5-6. Note that the column data is checked for a
NULL value after the get method has been invoked, since the nullness of a value can't be determined from the
value returned by the get methods.

 String fname = result.getString("au_fname");

 if(result.wasNull()) fname = "NULL";

 String lname = result.getString("au_lname");

 if(result.wasNull()) lname = "NULL";

When creating a JDBC program that fetches data from nullable columns, it is always safest to check the value
returned from a ResultSet object for a NULL value using the wasNull method.

The JDBC get methods that return object types will return Java NULL values when
returning database NULL values. However, this does not apply to non-object types
such as getInt(), which returns zero in the case of a database NULL. For this reason,
this chapter uses the verbose wasNull() method to test the value for a NULL.

5. Free the resources held by the result set and statement objects. When finished with the ResultSet and Statement
objects, invoke their close methods so that database resources can be freed.

result.close();

statement.close();

Table 5-6. JDBC ResultSet get methods
Method name Description

getBlob({int i|String
name})

Retrieves a Blob value from BLOB type columns, where i is the one-based column ordinal and
name is the name of the column.

getBoolean({int
i|String name})

Retrieves a boolean value from BOOLEAN type columns, where i is the one-based column ordinal
and name is the name of the column.

getByte({int i|String
name})

Retrieves a byte value from CHARACTER or BINARY type columns, where i is the one-based
column ordinal and name is the name of the column.

getBytes({int i|String
name})

Retrieves a byte[] value from BINARY type columns, where i is the one-based column ordinal
and name is the name of the column.

getClob({int i|String
name})

Retrieves a Clob value from CLOB type columns, where i is the one-based column ordinal and
name is the name of the column.

getDate({int i|String
name})

Retrieves a Date value from TEMPORAL type columns, where i is the one-based column ordinal
and name is the name of the column.

getDouble({int i|String Retrieves a double value from DOUBLE PRECISION type columns, where i is the one-based

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getDouble({int i|String
name})

Retrieves a double value from DOUBLE PRECISION type columns, where i is the one-based
column ordinal and name is the name of the column.

getFloat({int i|String
name})

Retrieves a float value from REAL type columns, where i is the one-based column ordinal and
name is the name of the column.

getInt({int i|String
name})

Retrieves an int value from INTEGER type columns, where i is the one-based column ordinal and
name is the name of the column.

getLong({int i|String
name})

Retrieves a long value from INTEGER type columns, where i is the one-based column ordinal and
name is the name of the column.

getRow() Returns the current row number.

getShort({int i|String
name})

Retrieves a short value from INTEGER type columns, where i is the one-based column ordinal
and name is the name of the column.

getString({int i|String
name})

Retrieves a String value from CHARACTER type columns, where i is the one-based column
ordinal and name is the name of the column.

getTime({int i|String
name})

Retrieves a Time value from TEMPORAL type columns, where i is the one-based column ordinal
and name is the name of the column.

getTimestamp({int
i|String name})

Retrieves a Timestamp value from TEMPORAL type columns, where i is the one-based column
ordinal and name is the name of the column.

Beyond the get methods, there are three other methods on the ResultSet type that are frequently used when processing
data from a query. Those three methods are listed in Table 5-7.

Table 5-7. Frequently used JDBC ResultSet methods
Method
name Description

close() Closes the ResultSet object, freeing up resources held by the instance.

next() Advances the ResultSet object to the next available row and returns true. If no rows remain false will be
returned.

wasNull() Returns true if the last column returned with a get method contained a database NULL value, returns
false otherwise.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.7 Bound Parameters
One of the easiest ways to optimize a slow database application that executes many similar SQL statements is to
parameterize the most commonly used SQL statements. Parameterization is a way of reusing a SQL statement by
writing it with placeholders for frequently changing values. This provides two major benefits: the potential for reduced
server roundtrips and better processing efficiency on the database server, since the server doesn't need to parse, plan,
and optimize the execution of frequently used SQL statements on every execution.

Parametrized statements are useful in using string or binary values within SQL statements that contain unfriendly
characters, such as quote marks or terminal NULL characters that indicate the end of a string. Usage in this way
provides security benefits to a database application where user input is used within statements. Not binding a
parameter coming from an end user could allow clever modification of the statement in a way that may divulge secret
information from the database.

Since there is a slight cost involved in setting up a parameterized statement, it's good
practice to only parameterize statements that will be executed at least three times prior to
the statement closing. If a statement is only executed once prior to freeing the statement,
the costs of preparing the statement and binding the parameters could result in a
performance net loss to the application.

5.7.1 ADO.NET Bound Parameters

The following C# code fragment executes a SQL INSERT statement that adds new sales to the sales table in the pubs
database. The INSERT statement is parameterized to provide better performance, since the statement object needs to
be parsed only once on the server.

// Create a Command object for the SQL statement

Statement statement = connection.CreateCommand();

statement.CommandText =

 "INSERT INTO SALES(stor_id,

 ord_num,

 ord_date,

 qty,

 payterms,

 title_id) " +

 "VALUES(@stor_id, @ord_num, @ord_date, @qty, @payterms, @title_id)";

//Prepare the statement on the server

statement.Prepare();

// Declare parameters that will be bound

{Odbc|OleDb|Sql}Parameter stor_id, ord_num, ord_date,

 qty, payterms, title_id;

stor_id = statement.Parameters.Add("@stor_id", DbType.String);

ord_num = statement.Parameters.Add("@ord_num", DbType.String);

ord_date = statement.Parameters.Add("@ord_date", DbType.DateTime);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ord_date = statement.Parameters.Add("@ord_date", DbType.DateTime);

qty = statement.Parameters.Add("@qty", DbType.Int16);

payterms = statement.Parameters.Add("@payterms", DbType.String);

title_id = statement.Parameters.Add("@title_id", DbType.String);

while(GetNextSale(stor_id, ord_num, ord_date, qty, payterms, title_id))

{

 // Execute the statement

 int result = statement.ExecuteNonQuery();

 if(result != 1)

 {

 // If result isn't 1, then the insert failed.

 System.Console.WriteLine("The INSERT failed.");

 break;

 }

}

5.7.1.1 Use the following steps to execute statements with bound parameters in
ADONET:

1. As done in previous sections, we create an ADO.NET Command object and assign a SQL statement to it. The
difference for using bound parameters within the statement is in the VALUES clause of the INSERT statement.
Contained within the VALUES clause are six named placeholders for the parameters that will be later bound to
the Command object. In ADO.NET the placeholders begin with the @ symbol and are followed by an identifier
that is unique amongst all placeholders in the statement.

Statement statement = connection.CreateCommand();

statement.CommandText =

 "INSERT INTO SALES(stor_id,

 ord_num,

 ord_date,

 qty,

 payterms,

 title_id) " +

 "VALUES(@stor_id, @ord_num, @ord_date, @qty, @payterms, @title_id)";

2. Invoke the Prepare method on the Command object to prepare the SQL statement for execution. This notifies the
database layer that the Command object will be executed with bound parameters.

statement.Prepare();

3. Declare the parameter objects using the parameter type that matches the Command object: OdbcParameter,
OleDbParameter, or SqlParameter. After declaring the parameters, create parameter objects by invoking the Add
method of the Command object's Parameter collection and assign the return value to the Parameter object. The
first argument to the Add method is the name of the placeholder that the parameter will map to during
execution. In the example below, the stor_id Parameter object will map to the first item in the VALUES clause,
which has the placeholder named @stor_id. The second argument in the Add method is the column type that the
placeholder maps to on the server. Look to Table 5-8 for a list of frequently used types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

placeholder maps to on the server. Look to Table 5-8 for a list of frequently used types.

{Odbc|OleDb|Sql}Parameter stor_id, ord_num, ord_date,

 qty, payterms, title_id;

stor_id = statement.Parameters.Add("@stor_id", DbType.String);

ord_num = statement.Parameters.Add("@ord_num", DbType.String);

ord_date = statement.Parameters.Add("@ord_date", DbType.DateTime);

qty = statement.Parameters.Add("@qty", DbType.Int16);

payterms = statement.Parameters.Add("@payterms", DbType.String);

title_id = statement.Parameters.Add("@title_id", DbType.String);

4. In this example, the Parameter objects are assigned a value by the user-defined GetNextSale function call, which
could be implemented like this:

static bool GetNextSale(SqlParameter stor_id,

 SqlParameter ord_num,

 SqlParameter ord_date,

 SqlParameter qty,

 SqlParameter payterms,

 SqlParameter title_id)

{

 // Omitted is the code that would

 // Read a sale record from a file, or user input, etc.

 // If there are no more sale records, return false.

 if(!more_records) return false;

 // Assign values to the parameter objects

 stor_id.Value = 1234;

 ord_num.Value = "ABCD.123";

 ord_date.Value = new DateTime(2003,2,24);

 qty.Value = 50;

 payterms.Value = "Net 60";

 title_id.Value = "SD2043";

 return true;

}

Notice that the parameters are assigned a value by assigning directly to the Value property on the Parameter
object. The stor_id parameter object is assigned a value of 1234, whereas ord_date is assigned a C# ADO.NET
DateTime object. The function returns false if there are no more sales to insert into the table; otherwise the
function returns true.

Combined with a while loop, the program will continue to insert new sales into the database until the GetNextSale
function runs out of new records to process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function runs out of new records to process.

while(GetNextSale(stor_id, ord_num, ord_date, qty, payterms, title_id))

{

5. Invoking the ExecuteNonQuery method on the Command object executes the INSERT statement, with the bound
parameter values replaced for their corresponding placeholders. The ExecuteNonQuery method returns the
number of rows affected, which will be 1 in this case on a successful single-row insert. This return value is used
in error handling and the application will exit if the statement should ever fail to execute.

 // Execute the statement

 int result = statement.ExecuteNonQuery();

 if(result != 1)

 {

 // If result isn't 1, then the insert failed.

 System.Console.WriteLine("The INSERT failed.");

 break;

 }

Table 5-8. Frequently used parameter object types
DbType object

type Description

AnsiString Variable-length, non-Unicode character string between 1 and 8,000 characters.

AnsiStringFixedLength Fixed-length, non-Unicode character string.

Binary Variable-length binary string between 1 and 8,000 bytes.

Boolean Represents a true or false value.

Byte Unsigned integer value ranging 0 to 255.

Currency Currency value ranging from -263 to 263-1.

DateTime Date and time value.

Decimal Numeric value ranging from 10-28 to 7.9 1028 with about 28 significant digits.

Double Floating point type ranging from 5.0 10-324 to 1.7 10308 with about 15 digits.

Int{16,32,64} Signed integer; the number suffix indicates the number of bits of precision. For example, Int32 is
a 32-bit integer.

Single Floating point type ranging from 5.0 10-324 to 1.7 10308, with about 15 digits.

String Variable-length, Unicode character string.

StringFixedLength Fixed-length, Unicode character string.

UInt{16,32,64} Unsigned integer; the number suffix indicates the number of bits of precision. For example,
UInt32 is a 32-bit unsigned integer.

5.7.2 Binding Parameters with JDBC

The following Java code fragment executes a SQL INSERT statement that adds new sales to the sales table in the pubs
database. The INSERT statement is parameterized to provide better performance.

// Create a Command object for the SQL statement

PreparedStatement statement = connection.prepareStatement(

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PreparedStatement statement = connection.prepareStatement(

 "INSERT INTO SALES(stor_id,

 ord_num,

 ord_date,

 qty,

 payterms,

 title_id) " +

 "VALUES(?, ?, ?, ?, ?, ?)");

while(getNextSale(statement))

{

 // Execute the statement

 int result = statement.executeUpdate();

 if(result != 1)

 {

 // If result isn't 1, then the insert failed.

 System.out.println("The INSERT failed.");

 break;

 }

}

5.7.2.1 Use the following steps to execute statements with bound parameters in
JDBC:

1. Create a JDBC PreparedStatement object and pass the parameterized SQL statement into its constructor. The
difference for using bound parameters within the statement is in the VALUES clause of the INSERT statement.
Contained within the VALUES clause are six placeholders (the question marks) for the parameters that will later
be bound to the PreparedStatement object.

PreparedStatement statement = connection.prepareStatement(

 "INSERT INTO SALES(stor_id,

 ord_num,

 ord_date,

 qty,

 payterms,

 title_id) " +

 "VALUES(?, ?, ?, ?, ?, ?)");

1. In this example, the parameters are assigned a value by the user-defined getNextSale function call, which could
be implemented like this:

static boolean getNextSale(PreparedStatement statement)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static boolean getNextSale(PreparedStatement statement)

 throws SQLException

{

 // Omitted is the code that would

 // Read a sale record from a file, or user input, etc.

 // If there are no more sale records, return false.

 if(!more_records) return false;

 statement.setString(1, "1234");

 statement.setString(2, "ABCD.123");

 statement.setDate(3, new java.sql.Date(2003, 2, 24));

 statement.setInt(4,50);

 statement.setString(5, "Net 60");

 statement.setString(6, "SD2043");

 return true;

}

1. Each binding position is referenced by its ordinal position in the SQL statement, with the first position starting at
1. The values are assigned to placeholders using the set methods found on the PreparedStatement object. Table 5-
9 contains a list of frequently used set methods.

2. The function returns false if there are no more sales to insert into the table; otherwise the function returns true.

3. Combined with a while loop, the program will continue to insert new sales into the database until the getNextSale
function runs out of new records to process.

while(getNextSale(statement))

{

1. Invoking the executeUpdate method on the PreparedStatement object executes the INSERT statement, with the
bound parameter values replaced for their corresponding placeholders. The executeUpdate method returns the
number of rows affected, which will be 1 in this case on a successful single-row insert. This return value is used
in error handling and the application will exit if the statement should ever fail to execute.

 // Execute the statement

 int result = statement.executeUpdate();

 if(result != 1)

 {

 // If result isn't 1, then the insert failed.

 System.out.println("The INSERT failed.");

 break;

 }

}

Table 5-9. Frequently used PreparedStatement set methods
Method name Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Method name Description

setBlob(int i, Blob value) Sets the placeholder at position i to the Blob contained in value.

setBoolean(int i, boolean value) Sets the placeholder at position i to the boolean contained in value.

setByte(int i, byte value) Sets the placeholder at position i to the byte contained in value.

setClob(int i, Clob value) Sets the placeholder at position i to the Clob contained in value.

setDate(int i, Date value[,
Calendar cal])

Sets the placeholder at position i to the Date contained in value. If cal is provided, it'll
be used to interpret the Date value.

setDouble(int i, double value) Sets the placeholder at position i to the double contained in value.

setFloat(int i, float value) Sets the placeholder at position i to the float contained in value.

setInt(int i, int value) Sets the placeholder at position i to the int contained in value.

setLong(int i, long value) Sets the placeholder at position i to the long contained in value.

setNull(int i, int v) Sets the placeholder at position i to a NULL value when v is true.

setString(int i, String value) Sets the placeholder at position i to the String contained in value.

setTimestamp(int i, Timestamp
value[,Calendar cal])

Sets the placeholder at position i to the Timestamp contained in value. If cal is provided,
it'll be used to interpret the Timestamp value.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.8 Error Handling
With everything that can go wrong in a database application, the correct handling of errors is a topic large enough for
its own chapter (or book!). We're lucky that the APIs covered in this book, built on the modern Java language and on
the .NET framework, contain error handling mechanisms that make recovering from errors easy.

5.8.1 Error Handling in ADO.NET

ADO.NET's error handling model is based on .NET exceptions. Functions or methods that can fail because of an error
must be wrapped in a try/catch/finally block. The difficult part of handling exceptions is determining what to do when an
error occurs and freeing resources for objects that were created. The following code example shows the error handling
pattern that can be successfully used with ADO.NET to clean up all resources in the event of an error:

{Odbc|OleDb|Sql}Connection connection = null;

{Odbc|OleDb|Sql}Command statement = null;

{Odbc|OleDb|Sql}DataReader resultSet = null;

try {

 // Create and use the Connection, Command, and DataReader objects

 connection = new SqlConnection(connection_string);

 connection.Open();

 statement = connection.CreateCommand();

 statement.CommandText = SQL;

 resultSet = statement.ExecuteReader();

} catch(Exception e) {

 // Notify user that an error occurred

} finally {

 if(resultSet != null) resultSet.Close();

 if(statement != null) statement.Dispose();

 if(connection != null) connection.Close();

}

If an error occurs in the try block and an exception (of type Exception in this case) is thrown, the exception will be caught
and the code in the catch block will be executed. The finally block, which will be executed regardless of whether an
exception is thrown, should be responsible for freeing the resources. Which resources to free is difficult to determine if
you don't know the point of failure. For example, if the failure occurs when executing a SQL statement, then the only
resources that need to be freed are the statement and connection objects. In the code fragment above, an exception
thrown in the ExecuteReader method would prevent the resultSet object from being closed, since it would still be set to its
initial value of null.

It is good programming practice to free resources in the opposite order in which they were
allocated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.8.2 Error Handling in JDBC

JDBC's error handling model is based on Java exceptions; therefore, the standard try/catch/finally error handling
paradigm of Java can be applied to JDBC applications. The following Java code fragment is an example of how to use a
try/catch/finally code block to gracefully handle application exceptions and free allocated resources:

Connection connection = null;

Statement statement = null;

ResultSet resultSet = null;

try {

 // Create and use the Connection, Statement, and ResultSet objects

 connection = DriverManager.getConnection(connection_string);

 statement = connection.createStatement();

 resultSet = statement.executeQuery(SQL);

} catch(Exception e) {

 // Then, notify the user of an error.

} finally {

 if(resultSet != null)

 try{resultSet.close();} catch(Exception e) {}

 if(statement != null)

 try{statement.close();} catch(Exception e) {}

 if(connection != null)

 try{connection.close();} catch(Exception e) {}

}

If an error occurs in the try block and an exception (of type Exception in this case) is thrown, the exception will be caught
and the code in the catch block will be executed. The finally block, which will be executed regardless of whether an
exception is thrown, should be responsible for freeing the resources held by the connection, result set, and statement
objects. Note that each object is first tested for a null value before freeing the resources held by the object. This NULL
test is to make the code applicable to all error conditions — the code functions if the exception occurs while opening the
connection as well as processing the result set data. The close methods on the JDBC objects can also generate exceptions
when freeing resources, so they must be wrapped in their own try/catch blocks. This makes coding awkward, but even
so, it will be relatively simple if you follow the pattern given here.

It is good programming practice to free resources in the opposite order from what they
were allocated.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.9 Examples
In the previous sections of this chapter, we examined the fundamental components of SQL statement processing found
in most database programs, but didn't include any programs in their entirety. In the following section, we combine the
necessary steps into a small program that executes a simple SELECT statement and prints out the results. The same
example is provided for both of the APIs covered in this chapter.

The examples execute a SELECT statement and print out the results after establishing connectivity with the database.
The SELECT statement is as follows:

SELECT a.au_lname, a.au_fname, SUM(t.ytd_sales)

FROM authors a, titleauthor, titles t

WHERE titleauthor.au_id = a.au_id and

 titleauthor.title_id = t.title_id

GROUP BY a.au_lname, a.au_fname

ORDER BY 3 DESC

The examples execute the statement and print out the three-column result set returned by the database server.

5.9.1 ADO.NET Example

The following C# ADO.NET database program connects to a database and prints a list of authors in the pubs database
that includes their year-to-date sales. This program can be easily be adapted to meet other database processing needs
by following the practices outlined in the earlier sections of this chapter.

using System;

using System.Data.SqlClient;

class ExampleApplication

{

 static void Main(string[] args)

 {

 String connection_string =

 "Server=(local);Trusted_Connection=true;DATABASE=pubs;";

 String SQL =

 "SELECT a.au_lname, a.au_fname, SUM(t.ytd_sales) " +

 "FROM authors a, titleauthor, titles t " +

 "WHERE titleauthor.au_id = a.au_id and " +

 " titleauthor.title_id = t.title_id " +

 "GROUP BY a.au_lname, a.au_fname " +

 "ORDER BY 3 DESC";

 SqlConnection connection = null;

 SqlCommand statement = null;

 SqlDataReader resultSet = null;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SqlDataReader resultSet = null;

 try

 {

 // Create Connection and Connect to the Server

 connection = new SqlConnection(connection_string);

 connection.Open();

 // Create a Command object for the SQL statement

 statement = connection.CreateCommand();

 statement.CommandText = SQL;

 // Create a Reader for reading the result set

 resultSet = statement.ExecuteReader();

 while(resultSet.Read())

 {

 // Extract the data from the server and display it

 String fname = "NULL";

 String lname = "NULL";

 String sales = "ZERO";

 if(!resultSet.IsDBNull(0))

 fname = resultSet.GetString(0);

 if(!resultSet.IsDBNull(1))

 lname = resultSet.GetString(1);

 if(!resultSet.IsDBNull(2))

 sales = resultSet.GetInt32(2).ToString();

 System.Console.WriteLine(lname + ", " +

 fname + " has sales of " +

 sales);

 }

 }

 catch(SqlException e)

 {

 // Print out the error string, if any.

 System.Console.WriteLine("Error:" + e.ToString());

 } finally {

 // Free up resources

 if(resultSet != null) resultSet.Close();

 if(statement != null) statement.Dispose();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(statement != null) statement.Dispose();

 if(connection != null) connection.Close();

 }

 }

}

5.9.2 JDBC Example

The following Java JDBC database program connects to a database and prints out each of the authors in the pubs
database, as well as their year-to-date sales.

import java.sql.*;

public class ExampleApplication

{

 public static void main(String[] args)

 {

 String connection_string =

 "jdbc:microsoft:sqlserver://localhost:1433;" +

 "User=montoyai;Password=12345;DatabaseName=pubs;";

 String SQL =

 "SELECT a.au_lname, a.au_fname, SUM(t.ytd_sales) " +

 "FROM authors a, titleauthor, titles t " +

 "WHERE titleauthor.au_id = a.au_id and " +

 " titleauthor.title_id = t.title_id " +

 "GROUP BY a.au_lname, a.au_fname " +

 "ORDER BY 3 DESC";

 Connection connection = null;

 Statement statement = null;

 ResultSet resultSet = null;

 try

 {

 Class.forName("com.microsoft.jdbc.sqlserver.SQLServerDriver");

 // Create Connection and Connect to the Server

 connection = DriverManager.getConnection(connection_string);

 // Create a Command object for the SQL statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Create a Command object for the SQL statement

 statement = connection.createStatement();

 // Create a Reader for reading the result set

 resultSet = statement.executeQuery(SQL);

 while(resultSet.next())

 {

 // Extract the data from the server and display it

 String lname = resultSet.getString(1);

 if(resultSet.wasNull()) lname = "NULL";

 String fname = resultSet.getString(2);

 if(resultSet.wasNull()) fname = "NULL";

 String sales = resultSet.getString(3);

 if(resultSet.wasNull()) sales = "ZERO";

 System.out.println(lname + ", " +

 fname + " has sales of " + sales);

 }

 }

 catch(Exception e)

 {

 // Print out the error string, if any.

 System.out.println("Error:" + e.toString());

 } finally {

 // Free up resources

 if(resultSet != null)

 try {resultSet.close();} catch(Exception e) {}

 if(statement != null)

 try {statement.close();} catch(Exception e) {}

 if(connection != null)

 try {connection.close();} catch(Exception e) {}

 }

 }

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix A. Sybase Adaptive Server
For the most part, Microsoft SQL Server's dialect of SQL documented throughout this book applies to Sybase Adaptive
Server Enterprise 12.5. This appendix documents those datatypes, statements, functions, and keywords that differ
between these two popular platforms.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.1 Sybase Adaptive Server Datatypes
Table A-1 compares the datatypes supported by Sybase Adaptive Server to those supported by Microsoft SQL Server.
While there is significant overlap in the types offered, a few types differ in meaning or are missing on one of the
platforms. Where differences in the types exist, they'll be listed in the table. Types that are not listed within the table
should be considered identical on both platforms.

Table A-1. Sybase Adaptive Server datatypes
Sybase

adaptive
server

datatype

Microsoft SQL
Server datatype Notes

N/A BIGINT Usage of decimal(19,0) as an equivalent to BIGINT will allow storage of
values within the same range.

BINARY BINARY Describes a fixed-length binary value up to 255 bytes in size. In contrast,
Microsoft SQL Server can store 8,000 bytes.

CHAR(N) CHAR(N) Holds fixed-length character data up to the database's page size in length.

DATETIME DATETIME
Holds date and time data within the range of 1753-01-01 00:00:00 through
9999-12-31 23:59:59. The DATETIME type can store milliseconds with a
granularity of 1/300 second.

NCHAR(N) N/A
Holds fixed-length character strings in the national character set up to the
database's page size in length. In contrast, Microsoft SQL Server's NCHAR
datatype stores Unicode character strings.

N/A NTEXT Holds Unicode text passages up to 1,073,741,823 characters in length.

NVARACHAR(N) N/A
Holds variable-length character strings in the national character set up to the
database's page size in length. In contrast, Microsoft SQL Server's
NVARACHAR datatype stores Unicode character strings.

TIMESTAMP ROWVERSION A unique number within a database that is updated whenever a row is
updated.

SMALLDATETIME SMALLDATETIME
Holds date and time data within the range of 1900-01-01 00:00 through
2079-12-31 23:59. Unlike Microsoft SQL Server, Sybase cannot hold dates
with second resolution in a SMALLDATETIME.

N/A SQL_VARIANT Sybase has no weakly typed storage type like SQL Server's SQL_VARIANT.

UNICHAR NCHAR(N) Stores fixed-length, Unicode character strings up to the database's page size
in length.

N/A UNIQUEIDENTIFIER Represents a value that is unique across all databases and all servers.

UNIVARCHAR NCHAR(N) Stores variable-length, Unicode character strings up to the database's page
size in length.

VARBINARY(N) VARBINARY(N) Describes a variable-length binary value up to 255 bytes in size. In contrast,
Microsoft SQL Server can store up to 8,000 bytes.

VARCHAR(N) VARCHAR(N) Holds fixed-length character data up to the database's page size in length.

The primary differences between the types offered by SQL Server and Sybase are the storage sizes, precision, and
default meaning of the NCHAR type. When converting data from one platform to the other, it is important to observe
these subtle differences to avoid data truncation or corruption.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.2 Sybase Adaptive Server SQL Statements
As we saw in the previous section, there is significant overlap in the type support offered by Sybase and SQL Server.
This section compares the SQL dialects of Sybase to SQL Server. In most cases, the SQL Server statements described
in Chapter 3 apply to Sybase as well. This section outlines those statements that are different between the two
platforms.

In Table A-2, the SQL commands are listed along with notes containing the differences between SQL Server and
Sybase. While most of the statements have identical syntax and meaning, for those statements that contain large
differences, the syntax for Sybase is listed with notes on how the statements differ.

Table A-2. Sybase Adaptive Server SQL statements
Command Notes

ALTER
PROCEDURE

Sybase does not support the ENCRYPTION keyword or replication through the FOR REPLICATION
keywords.

ALTER TABLE

Sybase does not support the ROWGUIDCOL keyword or the CHECK and NOCHECK keywords for
enabling constraints.

ALTER TABLE table_name

[ADD {column_name datatype attributes}[,...]]

| [DROP column_name[,...]]

| [ADD CONSTRAINT {constraint_name constraint_clause}[,...]]

| [DROP CONSTRAINT constraint_name[,...]]

| [MODIFY {column_name data_type [[NOT] NULL]}[,...]]

| [{ENABLE|DISABLE} trigger_name]

ALTER
TRIGGER

Sybase has no equivalent to the ALTER TRIGGER statement in SQL Server. For equivalent
functionality, drop the existing trigger with a DROP TRIGGER statement and recreate it with the
CREATE TRIGGER statement.

ALTER VIEW
Sybase has no equivalent to the ALTER VIEW statement in SQL Server. For equivalent functionality,
drop the existing view with a DROP VIEW statement and recreate it with the CREATE VIEW
statement.

CALL Not supported by SQL Server or Sybase. Look to the EXECUTE command for this functionality.

CONNECT

Supported with variations.

CONNECT TO server_name

CREATE
DATABASE

Creating a new database in Sybase has the following syntax:

CREATE DATABASE database_name

[ON { DEFAULT | database_device} [=size]

 [, {database_device [=size]}[,...]]

[LOG ON {log_device [=size]}[,...]

[WITH {OVERRIDE | DEFAULT_LOCATION = "pathname"}]

[FOR {LOAD | PROXY_UPDATE}]

DEFAULT specifies the default device, equivalent to the PRIMARY keyword on SQL Server.

size is the size of the database or transaction log in megabytes.

log_device has the same meaning as SQL Server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

log_device has the same meaning as SQL Server.

PROXY_UPDATE automatically gets the metadata from the DEFAULT_LOCATION when
creating the database.

CREATE
FUNCTION

Support is identical to that offered by SQL Server, except that the following options are unsupported:
VARYING, ENCRYPTION, and FOR REPLICATION.

CREATE
INDEX

Differences exist within the options provided in the WITH clause, as follows:

[WITH [{FILLFACTOR = fillfactor |

MAX_ROWS_PER_PAGE = num_rows}]

[[,]RESERVEPAGEGAP = num_pages]

[[,]CONSUMERS = X]

[[,]IGNORE_DUP_KEY]

[[,]IGNORE_DUP_ROW | ALLOW_DUP_ROW]

[[,]SORTED_DATA]

[[,]STATISTICS USING num_steps VALUES]

FILLFACTOR has the same meaning as SQL Server.

MAX_ROWS_PER_PAGE is another way of controlling the fill factor of the index, but uses the
row count instead of a percentage of the page space.

RESERVEPAGEGAP provides a method of controlling the ratio of empty index pages to filled
ones. This can provide a performance advantage for indexes that grow in size frequently.
Valid values for num_pages are 0-255, with the default being 0.

IGNORE_DUP_KEY has the same meaning as SQL Server.

IGNORE_DUP_ROW allows the creation of a clustered index on tables that contain duplicate
rows. While the index can be created when the table contains duplicate rows, any insert or
update statement that can result in the creation of a duplicate row will be canceled once the
index is created.

CREATE
INDEX

ALLOW_DUP_ROW is similar to IGNORE_DUP_ROW, except that it permits insert and update
statements that will result in duplicate rows.

SORTED_DATA speeds up the creation of indexes for tables that are already sorted on disk.

WITH STATISTICS USING num_steps VALUES controls the amount of statistics maintained
and provided to the query optimizer.

CREATE
PROCEDURE

Support is identical to that offered by SQL Server, except that the following options are unsupported:
VARYING, ENCRYPTION, and FOR REPLICATION.

CREATE ROLE

Supported with variations.

CREATE ROLE role_name [WITH PASSWD "password"

[, {"PASSWD EXPIRATION" | "MIN PASSWD LENGTH" |

"MAX FAILED LOGINS" } option_value][,...]]

This statement will create a role by role_name with an optional password. Unique to Sybase is the
ability to specify simple security options for the new role.

While casual users of SQL Server and Sybase will notice no differences in the CREATE TABLE syntax,
others will note the following differences:

The NOT FOR REPLICATION option is not supported on Sybase.

The ROWGUIDCOL column attribute is not supported on Sybase.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE
TABLE

The ROWGUIDCOL column attribute is not supported on Sybase.

The TEXTIMAGE_ON option is not supported on Sybase.

The IDENTITY attribute cannot have a seed or increment value specified on Sybase.

Other than those small changes, the features unique to Sybase are listed below.

CREATE TABLE [database_name.[owner].]table_name

 ({column_name datatype

 {[DEFAULT default_value]

 | [IDENTITY | NULL | NOT NULL]

 | [OFF ROW | IN ROW [(size_in_bytes)]]

 | REFERENCES [[database_name.]owner.]ref_table [(ref_column)]

 {UNIQUE | PRIMARY KEY} [CLUSTERED | NONCLUSTERED] [asc |

 desc]

 [WITH { FILLFACTOR = pct,

 MAX_ROWS_PER_PAGE = num_rows, }

 RESERVEPAGEGAP = num_pages }]

 [ON segment_name]

 | CHECK (search_condition)

 }

 |[CONSTRAINT constraint_name]

 |FOREIGN KEY ({column_name}[,...]) REFERENCES

 [[database_name.]owner.]ref_table

 [({ref_column}[,...])]

 | CHECK (search_condition)

 |{UNIQUE | PRIMARY KEY} [CLUSTERED | NONCLUSTERED]

 ({column_name [ASC | DESC]}[,...])

 [WITH { FILLFACTOR = pct,

 MAX_ROWS_PER_PAGE = num_rows,

 RESERVEPAGEGAP = num_pages }]

 [ON segment_name]}[,...])

[LOCK {DATAROWS | DATAPAGES | ALLPAGES }]

[WITH { MAX_ROWS_PER_PAGE = num_rows,

 EXP_ROW_SIZE = num_bytes,

 RESERVEPAGEGAP = num_pages,

 IDENTITY_GAP = value }]

[ON segment_name]

[[EXTERNAL TABLE] AT pathname]

OFF/IN ROW specifies if a Java-SQL column is physically stored inside a row or outside. The
SIZE_IN_BYTES option is the maximum space required to store an IN ROW type.

ASC/DESC determines the ordering for an index created for a constraint. Ascending order,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE
TABLE

ASC/DESC determines the ordering for an index created for a constraint. Ascending order,
ASC, is the default.

MAX_ROWS_PER_PAGE limits the number of rows per page.

LOCK specifies the locking strategy used for the table.

EXP_ROW_SIZE specifies the expected row size in bytes. The default is zero, which means
the server's default will be used.

RESERVEPAGEGAP specifies the desired ratio of filled to empty pages. Valid values are 0-255,
with a default of zero.

IDENTITY_GAP controls the gap between consecutive values in identity columns.

EXTERNAL TABLE specifies that the table is stored externally. This is the default, so its usage
is optional.

CREATE
TRIGGER

Sybase offers support similar to SQL Server, with the following exceptions:

WITH ENCRYPTION is not permitted.

AFTER and INSTEAD OF are not permitted.

WITH APPEND is not permited.

NOT FOR REPLICATION is not permitted.

COLUMNS_UPDATED() function is not supported.

CREATE VIEW Support is identical to that offered by SQL Server except that Sybase has no ENCRYPTION,
SCHEMABINDING, or VIEW_METADATA options.

DECLARE
CURSOR

Support is identical to that offered by SQL Server, except that Sybase has no INSENSITIVE or
SCROLL options.

DELETE

The DELETE statement is nearly identical between Sybase and SQL Server. SQL Server supports a
WITH and OPTION clause that Sybase does not. The features unique to Sybase are listed below.

DELETE [[owner.]{table_name | view_name}]

[FROM {[owner.]

 {view_name [READPAST]

 |table_name [READPAST]

 [(INDEX {index_name|table_name}

 [PREFETCH size][LRU | MRU])]

}}[,...]

[WHERE {search_conditions | CURRENT OF cursor_name}]]

[PLAN "abstract_plan"]

READPAST instructs the server to skip over all pages or rows currently locked by other transactions,
deleting rows only from pages not currently in use.

PREFETCH specifies the I/O size, in kilobytes, for tables that are bound to caches.

LRU/MRU specifies either a least or most recently used buffer replacement strategy.

PLAN sends abstract_plan as an alternative execution plan to the query optimizer.

DISCONNECT

Supported with the following command:

DISCONNECT

Supported with the following syntax:

DROP ROLE role_name [WITH OVERRIDE]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP ROLE
DROP ROLE role_name [WITH OVERRIDE]

Using WITH OVERRIDE will ignore all restrictions on dropping the role from the databases.

FETCH

The FETCH command differs significantly from SQL Server. Sybase has sequential server-side
cursors, so the NEXT, PRIOR, FIRST, and LAST options are not permitted.

Additionally, parameters can be used in a target list as long as there is a one-to-one mapping
between these items and the ones returned by the SELECT statement when the cursor was created.

FETCH cursor_name [INTO fetch_target_list]

For example:

DECLARE authors_cursor CURSOR

FOR SELECT au_lname, au_fname FROM authors

OPEN authors_cursor

FETCH authors_cursor INTO @lname, @fname

GO

GRANT Support is identical to that offered by SQL Server, except that Sybase has no AS clause.

INSERT Sybase offers the SQL99 syntax for INSERT statements; therefore, Sybase permits none of the
extended features of SQL Server.

RETURN Sybase's return statement RETURN, unlike SQL Server, cannot return NULL values.

REVOKE

Sybase offers support similar to SQL Server with the following exceptions:

The TO clause cannot be used in place of FROM.

The AS clause is not permitted.

SAVEPOINT Support identical to SQL Server's SAVE TRANSACTION statement.

SELECT

Sybase offers support for SELECT statements identical to SQL Server, with the following exceptions:

Sybase has a PLAN clause instead of an OPTION clause used for passing hints to the server's
statement optimizer.

Sybase has no TOP clause.

Sybase does not support WITH CUBE or WITH ROLLUP in the GROUP BY clause.

Sybase offers a FOR { UPDATE | READ ONLY } clause that can only be used with a stored
procedure when the query defines the result for a cursor.

Sybase has AT ISOLATION { 0, 1, 2, 3 } for choosing a non-default isolation level for query
execution.

Sybase also offers a SELECT INTO statement, but with an additional, optional clause for
controlling the locking: LOCK { DATAROWS | DATAPAGES | ALLPAGES }

SET ROLE

Sybase supports the SET ROLE statement with the following syntax:

SET ROLE {"SA_ROLE" | "SSO_ROLE" | "OPER_ROLE" | role_name

[WITH PASSWD "password"]} { ON | OFF }

SET TIME
ZONE The SET TIMEZONE statement is not supported in Sybase or SQL Server.

START
TRANSACTION

Support is offered through BEGIN TRANSACTION, which is identical to SQL Server, except that
parameterized transaction names are not supported.

The UPDATE statement is nearly identical between Sybase and SQL Server. SQL Server supports

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UPDATE

The UPDATE statement is nearly identical between Sybase and SQL Server. SQL Server supports
WITH and OPTION clauses that Sybase does not. The features unique to Sybase are listed below.

UPDATE {table_name | view_name}

 SET {[{table_name.|view_name.}]

 column_name1 = {expression1|NULL|(select_statement)} |

 variable_name1 = {expression1|NULL|(select_statement)}}

 [,...]

[FROM {view_name [READPAST]|table_name [READPAST]

 [(INDEX {index_name | table_name }

[PREFETCH size][LRU|MRU])]}[,...]

[WHERE {search_conditions | CURRENT OF cursor_name}]

[PLAN "abstract_plan"]

UPDATE

READPAST instructs the server to skip over all pages or rows currently locked by other
transactions, updating rows only from pages not currently in use.

PREFETCH specifies the I/O size, in kilobytes, for tables that are bound to caches.

LRU/MRU specifies either the least or most recently used buffer replacement strategy.

PLAN sends abstract_plan as an alternative execution plan to the query optimizer.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.3 Sybase Adaptive Server SQL Functions
This section compares the functions provided by Sybase and SQL Server. Table A-3 provides a list of the functions supported by
differ on SQL Server. Only functions with differences between the two platforms have been listed.

Table A-3. Sybase Adaptive Server-supported functions
Sybase function SQL Server function

To retrieve the application name on
Sybase, use the following SQL
statement:

select program_name

from master..sysprocesses

where spid = @@spid

APP_NAME() Returns application name for current session; set
by application.

N/A BINARY_CHECKSUM({* | expression [,...]}) Returns binary checksum for list of expressions or
row of a table.

N/A CAST(expression AS datatype)
Converts a valid SQL Server expression to the
specified datatype. On
Enterprise, use the

CHAR_LENGTH(expression) N/A
Returns the number of characters in the
expression. On SQL Server,
provides equivalent

N/A CHECKSUM({* | expression [,...]}) Returns checksum value (computed over row
values or expressions

N/A CHECKSUM_AGG([ALL | DISTINCT] expression) Returns checksum of the values in group.

N/A COALESCE(expression [,...]) Returns the first non-NULL argument from a list of
arguments.

COMPARE(char_expression1,
char_expression2 [, {collation_name |
collation_ID}])

N/A

Returns the following values, based on the
collation rules:

1 : char_expression1
char_expression2

0: char_expression1

-1 :
char_expression2

N/A CONTAINS({column |* }, 'contains_search_condition'})

Searches columns on exact or
contains_seach_condition
function used to perform full-text searches. Refer
to the vendor

N/A CONTAINSTABLE(table, column, contains_search_condition)

Returns a table with exact and
contains_search_condition
function used to perform full-text searches. Refer
to the vendor

N/A COUNT_BIG([ALL | DISTINCT] expression) Same as

N/A DATABASEPROPERTYEX(database, property) Returns database option or property.

N/A DAY(date) Returns an integer value representing the day of
the date provided as

N/A FILE_ID('file_name') Returns the file ID for the logical filename.

N/A FILE_NAME(file_id) Returns the logical filename for file ID.

N/A FILEGROUP_ID('filegroup_name') Returns filegroup ID for the logical filegroup name.

N/A FILEGROUP_NAME(filegroup_id) Returns the logical filegroup name for filegroup ID.

N/A FILEGROUPPROPERTY(filegroup_name, property) Returns filegroup property value for the specified
property.

N/A FILEPROPERTY(file, property) Returns file property value for the specified
property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

property.

N/A FULLTEXTCATALOGPROPERTY(catalog_name, property) Returns full-text catalog properties.

N/A FULLTEXTSERVICEPROPERTY(property) Returns full-text service-level properties.

N/A FORMATMESSAGE(msg_number, param_value [,...]) Constructs a message from an existing message in
SYSMESSAGES

N/A FREETEXTTABLE(table { column |*}, 'freetext_string' [,
top_n_by_rank])

Used for full-text search; returns a table with
columns that match
match value of

N/A GETANSINULL(['database']) Returns default nullability setting for new columns.

N/A GETUTCDATE() Returns Universal Time Coordinate (UTC) date.

N/A GROUPING(column_name) Returns 1 when the row is added by CUBE or
ROLLUP; otherwise, returns

HEXTOINT(hexadecimal_string) N/A

Returns an integer equivalent to the hexadecimal
argument. On SQL
CONVERT(INT,

However, the function does not work with
hexadecimal strings as it
with true hexadecimal values.

N/A IDENT_INCR('table_or_view') Returns identity-column increment value.

N/A IDENT_SEED('table_or_view') Returns identity seed value.

N/A IDENT_CURRENT('table_name') Returns the last identity value generated for the
specified table.

N/A IDENTITY(data_type [, seed, increment]) As column_name Used in
identity column into the destination table.

N/A INDEXPROPERTY(table_id, index, property) Returns index property (such as

INTTOHEX(integer_expression) N/A

Returns the hexadecimal string equivalent to the
integer argument.
SQL Server, use
integer_expression).

N/A ISDATE(expression) Validates if a character string can be converted to
DATETIME

N/A IS_MEMBER({'group' | 'role'})

Returns true or false (1 or 0) depending on
whether user is a member
Server role. For equivalent functionality on
Sybase, use

N/A IS_SRVROLEMEMBER('role' [,'login']) Returns true or false (1 or 0), depending on
whether user is a member

N/A ISNUMERIC(expression)

Validates if a character string can be converted to
NUMERIC
use the following statement:

SELECT 1 WHERE expression

NOT LIKE '%[^0-9]%'

IS_SEC_SERVICE_ON(`security_service') N/A Returns 1 if the security service is active; returns
0 otherwise.

lct_admin({{'LASTCHANCE' |
`LOGFULL'} N/A

Modifies the last-chance threshold for databases or
processes; useful
processes.

N/A LEFT(character_expression, integer_expression) Returns a portion of a character expression,
starting at

N/A LEN(string_expression)
Returns the number of characters in the
expression. On Sybase, the
function provides equivalent

LICENSE_ENABLED('feature') N/A Returns 1 if a feature's license is active.

N/A. MONTH(date) Returns month part of the date provided.

MUT_EXCL_ROLES(role1, role2 [,
{membership | activation }]) N/A Returns information regarding the mutual

exclusivity between

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{membership | activation }]) N/A exclusivity between

N/A NCHAR(integer_expression)
Returns the Unicode character with the given
integer code. On Sybase,
function.

N/A NEWID() Creates a new unique identifier of type
UNIQUEIDENTIFIER

N/A NULLIF(expression, expression) Returns NULL if two specified expressions are
equivalent.

N/A OBJECTPROPERTY(id, property) Returns properties of objects in the current
database.

N/A OPEN{[Global]cursor_name | cursor_variable_name} Opens local or global cursor.

N/A OPENDATASOURCE(provider_name, init_string) Makes a connection to data source without using a
linked server name.

N/A OPENQUERY(linked_server, 'query') Queries a remote data source previously setup as
a linked server.

N/A OPENROWSET('provider_name', {'datasource'; 'user_id',password |
'provider_string'},{[catalog.][schema.]object | 'query'})

Queries a remote data source without setting it up
as a linked server.

N/A PARSENAME('object_name', object_piece)
Returns database name, owner name, server
name, or object name for
Object_piece

PATINDEX('%pattern%', expression) N/A Returns position of the first occurrence of a
pattern in a string.

N/A PERMISSIONS(object_id, column) Returns a value containing a bitmap with current
user's permissions on the specified object/column.

PROC_ROLE('role_name') N/A

Returns 0 if the current user has not been granted
the role specified
the IS_MEMBER
functionality.

N/A REPLACE('string_expression1','string_expression2','string_expression3)
Replaces the occurrence of the second expression
with the third
Same as STUFF.

ROLE_CONTAIN('role1',' role2') N/A Returns 1 if

ROLE_ID(role_name) N/A

Returns the role identifier for the role with name
role_name
statement:

SELECT uid FROM sysusers WHERE

issqlrole <> 0 AND name = role_name

This statement will return the role identifier for the
role with name

ROLE_NAME(role_id) N/A

Returns the role name matching the role identifier
equal to
statement:

SELECT name FROM sysusers WHERE issqlrole <> 0 AND

uid = role_id

ROWCNT(sysindexes.doampg) N/A

Provides an estimate of the number of rows in a
table. For equivalent
use the following statement:

SELECT rowcnt FROM sysindexes

WHERE name = '

N/A ROWCOUNT_BIG() Returns the number of rows affected by last query
(same as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

N/A SESSION_USER Returns username in the current connection.

SHOW_ROLE() N/A Returns a list of roles for the current user.

SHOW_SEC_SERVICES() N/A Returns a list of security services currently in use.

SORTKEY(char_expr [, {collation_name |
collation_id}]) N/A Returns a value that can be used to order the

values in

N/A STATS_DATE(table_id, index_id) Returns date and time when index statistics were
last updated.

N/A STDEV(expression) Returns standard deviation of values in the
column.

N/A STDEVP(expression) Returns standard deviation for the population of
values.

SUSER_ID(['login']) N/A
Returns the user identifier for the current user or
specified login.
function is

N/A SUSER_SID(['login'])
Returns Security ID (SID) for the current user or
specified login in
equivalent to this function is

SUSER_NAME([server_user_id]) N/A
Returns the login name for the current user or
specified
equivalent

N/A SUSER_SNAME([server_user_sid])
Returns login name for the current user or
specified
equivalent is

SYB_SENDMSG(ip_address, port,
message) N/A Sends a UDP data packet containing the

argument to the

N/A SYSTEM_USER Returns login name for the current session.

TO_UNICHAR(integer) N/A
Returns a single character Unicode expression
equivalent to the
use the

TSEQUEL(timestamp_expr,
timestamp_literal) N/A

Returns true if
timestamp_literal
Server has equivalent functionality when using the
equivalency

N/A TYPEPROPERTY(datatype,property) Returns information about datatype properties.

UHIGHSURR(uchar_expr, start) N/A Returns 1 if the Unicode value in
position

ULOWSURR(uchar_expr, start) N/A Returns 1 if the Unicode value in
position

N/A UNICODE(`ncharacter_expression')
Returns the Unicode integer value for the first
character of the
equivalent of this function is

USCALAR(uchar_expr) N/A
Returns the scalar value for the first Unicode
character in
equivalent is the

VALID_NAME(user_name) N/A Returns the value 0 if
username for any database on the server.

VALID_USER(user_id) N/A Returns the value 1 if
identifier for any database on the server.

N/A VAR(expression) Returns statistical variance in a column.

N/A VARP(expression) Returns statistical variance for a population for all
values in the

N/A YEAR(date) Returns an integer which is a YEAR part of the
specified

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.4 Sybase Adaptive Server Keywords
This section lists the keywords used by Sybase Adaptive Server Enterprise.

ABSOLUTE ACTION ADD ALL

ALLOCATE ALTER AND ANY

ARE ARITH_OVERFLOW AS ASC

ASSERTION AT AUTHORIZATION AVG

BEGIN BETWEEN BIT BIT_LENGTH

BOTH BREAK BROWSE BULK

BY CASCADE CASCADED CASE

CAST CATALOG CHAR CHAR_CONVERT

CHAR_LENGTH CHARACTER CHARACTER_LENGTH CHECK

CHECKPOINT CLOSE CLUSTERED COALESCE

COLLATE COLLATION COLUMN COMMIT

COMPUTE CONFIRM CONNECT CONNECTION

CONSTRAINT CONSTRAINTS CONTINUE CONTROLROW

CONVERT CORRESPONDING COUNT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR DATABASE

DATE DAY DBCC DEALLOCATE

DEC DECIMAL DECLARE DEFAULT

DEFERRABLE DEFERRED DELETE DESC

DESCRIBE DESCRIPTOR DETERMINISTIC DIAGNOSTICS

DISCONNECT DISK DISTINCT DOMAIN DOUBLE

DROP DUMMY DUMP ELSE

END END-EXEC ENDTRAN ERRLVL

ERRORDATA ERROREXIT ESCAPE EXCEPT

EXCEPTION EXCLUSIVE EXEC EXECUTE

EXISTS EXIT EXP_ROW_SIZE EXTERNAL

EXTRACT FALSE FETCH FILLFACTOR

FIRST FLOAT FOR FOREIGN

FOUND FROM FULL FUNC

FUNCTION GET GLOBAL GO

GOTO GRANT GROUP HAVING

HOLDLOCK HOUR IDENTITY IDENTITY_GAP

IDENTITY_INSERT IDENTITY_START IF IMMEDIATE

IN INDEX INDICATOR INITIALLY

INNER INOUT INPUT INSENSITIVE

INSERT INSTALL INT INTEGER

INTERSECT INTERVAL INTO IS

ISOLATION JAR JOIN KEY

KILL LANGUAGE LAST LEADING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LEFT LEVEL LIKE LINENO

LOAD LOCAL LOCK LOWER

MATCH MAX MAX_ROWS_PER_PAGE MIN

MINUTE MIRROR MIRROREXIT MODIFY

MODULE MONTH NAMES NATIONAL

NATURAL NCHAR NEW NEXT

NO NOHOLDLOCK NONCLUSTERED NOT

NULL NULLIF NUMERIC NUMERIC_TRUNCATION

OCTET_LENGTH OF OFF OFFSETS

ON ONCE ONLINE ONLY

OPEN OPTION OR ORDER

OUT OUTER OUTPUT OVER

OVERLAPS PAD PARTIAL PARTITION

PERM PERMANENT PLAN POSITION

PRECISION PREPARE PRESERVE PRIMARY

PRINT PRIOR PRIVILEGES PROC

PROCEDURE PROCESSEXIT PROXY_TABLE PUBLIC

QUIESCE RAISERROR READ READPAST

READTEXT REAL RECONFIGURE REFERENCES REMOVE

RELATIVE REORG REPLACE REPLICATION

RESERVEPAGEGAP RESTRICT RETURN RETURNS

REVOKE RIGHT ROLE ROLLBACK

ROWCOUNT ROWS RULE SAVE

SCHEMA SCROLL SECOND SECTION

SELECT SESSION_USER SET SETUSER

SHARED SHUTDOWN SIZE SMALLINT

SOME SPACE SQL SQLCODE

SQLERROR SQLSTATE STATISTICS STRINGSIZE

STRIPE SUBSTRING SUM SYB_IDENTITY

SYB_RESTREE SYB_TERMINATE SYSTEM_USER TABLE

TEMP TEMPORARY TEXTSIZE THEN

TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE

TO TRAILING TRAN TRANSACTION

TRANSLATE TRANSLATION TRIGGER TRIM

TRUE TRUNCATE TSEQUAL UNION

UNIQUE UNKNOWN UNPARTITION UPDATE

UPPER USAGE USE USER

USER_OPTION USING VALUE VALUES

VARCHAR VARYING VIEW WAITFOR

WHEN WHENEVER WHERE WHILE

WITH WORK WRITE WRITETEXT

YEAR ZONE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix B. Shared and Platform-Specific Keywords
The tables below display the keywords in the ANSI standard, and in the five platform-specific implementations of SQL
that are discussed in this book, with the Sybase Adaptive Server. The keyword tables appear in the following order:

Shared keywords

SQL2003 keywords

DB2 keywords

MySQL keywords

Oracle keywords

PostgreSQL keywords

SQL Server keywords

Sybase Adaptive Server keywords

Table B-1. Shared keywords
ADD ALL ALTER AND

AS ASC BY CHECK

COLUMN CREATE DATE DEFAULT

DELETE DESC DROP FOR

FROM IN INTO IS

LIKE NOT NULL ON

OR ORDER REVOKE SELECT

SET TABLE THEN TO

UNIQUE UPDATE WITH

Table B-2. SQL2003 keywords
ABSOLUTE ACTION ADD ADMIN

AFTER AGGREGATE ALIAS ALL

ALLOCATE ALTER AND ANY

ARE ARRAY AS ASC

ASSERTION ASSERTION AT ATOMIC

AUTHORIZATION BEFORE BEGIN BIGINT

BINARY BIT BLOB BOOLEAN

BOTH BREADTH BY CALL

CASCADE CASCADED CASE CAST

CATALOG CHAR CHARACTER CHECK

CLASS CLOB CLOSE COLLATE

COLLATION COLLECT COLUMN COMMIT

COMPLETION CONDITION CONNECT CONNECTION

CONSTRAINT CONSTRAINTS CONSTRUCTOR CONTAINS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CONSTRAINT CONSTRAINTS CONSTRUCTOR CONTAINS

CONTINUE CORRESPONDING CREATE CROSS

CUBE CURRENT CURRENT_DATE CURRENT_PATH

CURRENT_ROLE CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER

CURSOR CYCLE DATA DATALINK

DATE DAY DEALLOCATE DEC

DECIMAL DECLARE DEFAULT DEFERRABLE

DELETE DEPTH DEREF DESC

DESCRIPTOR DESTRUCTOR DIAGNOSTICS DICTIONARY

DISCONNECT DO DOMAIN DOUBLE

DROP ELEMENT END-EXEC EQUALS

ESCAPE EXCEPT EXCEPTION EXECUTE

EXIT EXPAND EXPANDING FALSE

FIRST FLOAT FOR FOREIGN

FREE FROM FUNCTION FUSION

GENERAL GET GLOBAL GOTO

GROUP GROUPING HANDLER HASH

HOUR IDENTITY IF IGNORE

IMMEDIATE IN INDICATOR INITIALIZE

INITIALLY INNER INOUT INPUT

INSERT INT INTEGER INTERSECT

INTERSECTION INTERVAL INTO IS

ISOLATION ITERATE JOIN KEY

LANGUAGE LARGE LAST LATERAL

LEADING LEAVE LEFT LESS

LEVEL LIKE LIMIT LOCAL

LOCALTIME LOCALTIMESTAMP LOCATOR LOOP

MATCH MEMBER MEETS MERGE

MINUTE MODIFIES MODIFY MODULE

MONTH MULTISET NAMES NATIONAL

NATURAL NCHAR NCLOB NEW

NEXT NO NONE NORMALIZE

NOT NULL NUMERIC OBJECT

OF OFF OLD ON

ONLY OPEN OPERATION OPTION

OR ORDER ORDINALITY OUT

OUTER OUTPUT PAD PARAMETER

PARAMETERS PARTIAL PATH PERIOD

POSTFIX PRECEDES PRECISION PREFIX

PREORDER PREPARE PRESERVE PRIMARY

PRIOR PRIVILEGES PROCEDURE PUBLIC

READ READS REAL RECURSIVE

REDO REF REFERENCES REFERENCING

RELATIVE REPEAT RESIGNAL RESTRICT

RESULT RETURN RETURNS REVOKE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RIGHT ROLE ROLLBACK ROLLUP

ROUTINE ROW ROWS SAVEPOINT

SCHEMA SCROLL SEARCH SECOND

SECTION SELECT SEQUENCE SESSION

SESSION_USER SET SETS SIGNAL

SIZE SMALLINT SPECIFIC SPECIFICTYPE

SQL SQLEXCEPTION SQLSTATE SQLWARNING

START STATE STATIC STRUCTURE

SUBMULTISET SUCCEEDS SUM SYSTEM_USER

TABLE TABLESAMPLE TEMPORARY TERMINATE

THAN THEN TIME TIMESTAMP

TIMEZONE_HOUR TIMEZONE_MINUTE TO TRAILING

TRANSACTION TRANSLATION TREAT TRIGGER

TRUE UESCAPE UNDER UNDO

UNION UNIQUE UNKNOWN UNTIL

UPDATE USAGE USER USING

VALUE VALUES VARCHAR VARIABLE

VARYING VIEW WHEN WHENEVER

WHERE WHILE WITH WRITE

YEAR ZONE

Table B-3. DB2 keywords
ACQUIRE ADD AFTER ALIAS

ALL ALLOCATE ALLOW ALTER

AND ANY AS ASC

ASUTIME AUDIT AUTHORIZATION AUXILIARY

AVG BEFORE BEGIN BETWEEN

BINARY BUFFERPOOL BY CALL

CALLED CAPTURE CASCADED CASE

CAST CCSID CHAR CHARACTER

CHECK CLOSE CLUSTER COLLECTION

COLLID COLUMN COMMENT COMMIT

CONCAT CONDITION CONNECT CONNECTION

CONSTRAINT CONTAINS CONTINUE COUNT

COUNT_BIG CREATE CROSS CURRENT

CURRENT_DATE CURRENT_LC_PATH CURRENT_PATH CURRENT_SERVER

CURRENT_TIME CURRENT_TIMESTAMP CURRENT_TIMEZONE CURRENT_USER

CURSOR DATA DATABASE DATE

DAY DAYS DB2GENERAL DB2SQL

DBA DBINFO DBSPACE DECLARE

DEFAULT DELETE DESC DESCRIPTOR

DETERMINISTIC DISALLOW DISCONNECT DISTINCT

DO DOUBLE DROP DSSIZE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DYNAMIC EDITPROC ELSE ELSEIF

END END-EXEC ERASE ESCAPE

EXCEPT EXCEPTION EXCLUSIVE EXECUTE

EXISTS EXIT EXPLAIN EXTERNAL

FENCED FETCH FIELDPROC FILE

FINAL FOR FOREIGN FREE

FROM FULL FUNCTION GENERAL

GENERATED GO GOTO GRANT

GRAPHIC GROUP HANDLER HAVING

HOUR HOURS IDENTIFIED IF

IMMEDIATE IN INDEX INDICATOR

INNER INOUT INSENSITIVE INSERT

INTEGRITY INTERSECT INTO IS

ISOBID ISOLATION JAVA JOIN

KEY LABEL LANGUAGE LC_CTYPE

LEAVE LEFT LIKE LINKTYPE

LOCAL LOCALE LOCATOR LOCATORS

LOCK LOCKSIZE LONG LOOP

MAX MICROSECOND MICROSECONDS MIN

MINUTE MINUTES MODE MODIFIES

MONTH MONTHS NAME NAMED

NHEADER NO NODENAME NODENUMBER

NOT NULL NULLS NUMPARTS

OBID OF ON ONLY

OPEN OPTIMIZATION OPTIMIZE OPTION

OR ORDER OUT OUTER

PACKAGE PAGE PAGES PARAMETER

PART PARTITION PATH PCTFREE

PCTINDEX PIECESIZE PLAN POSITION

PRECISION PREPARE PRIMARY PRIQTY

PRIVATE PRIVILEGES PROCEDURE PROGRAM

PSID PUBLIC QUERYNO READ

READS RECOVERY REFERENCES RELEASE

RENAME REPEAT RESET RESOURCE

RESTRICT RESULT RETURN RETURNS

REVOKE RIGHT ROLLBACK ROW

ROWS RRN RUN SCHEDULE

SCHEMA SCRATCHPAD SECOND SECONDS

SECQTY SECURITY SELECT SET

SHARE SIMPLE SOME SOURCE

SPECIFIC SQL STANDARD STATIC

STATISTICS STAY STOGROUP STORES

STORPOOL STYLE SUBPAGES SUBSTRING

SUM SYNONYM TABLE TABLESPACE

THEN TO TRANSACTION TRIGGER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

THEN TO TRANSACTION TRIGGER

TRIM TYPE UNDO UNION

UNIQUE UNTIL UPDATE USAGE

USER USING VALIDPROC VALUES

VARIABLE VARIANT VCAT VIEW

VOLUMES WHEN WHERE WHILE

WITH WLM WORK WRITE

YEAR YEARS

Table B-4. MySQL keywords
ACTION ADD AFTER AGGREGATE

ALL ALTER AND AS

ASC AUTO_INCREMENT AVG AVG_ROW_LENGTH

BETWEEN BIGINT BINARY BIT

BLOB BOOL BOTH BY

CASCADE CASE CHANGE CHAR

CHARACTER CHECK CHECKSUM COLUMN

COLUMNS COMMENT CONSTRAINT CREATE

CROSS CURRENT_DATE CURRENT_TIME CURRENT_TIMESTAMP

DATA DATABASE DATABASES DATE

DATETIME DAY DAY_HOUR DAY_MINUTE

DAY_SECOND DAYOFMONTH DAYOFWEEK DAYOFYEAR

DEC DECIMAL DEFAULT DELAY_KEY_WRITE

DELAYED DELETE DESC DESCRIBE

DISTINCT DISTINCTROW DOUBLE DROP

ELSE ENCLOSED END ENUM

ESCAPE ESCAPED EXISTS EXPLAIN

FIELDS FILE FIRST FLOAT

FLOAT4 FLOAT8 FLUSH FOR

FOREIGN FROM FULL FUNCTION

GLOBAL GRANT GRANTS GROUP

HAVING HEAP HIGH_PRIORITY HOSTS

HOUR HOUR_MINUTE HOUR_SECOND IDENTIFIED

IF IGNORE IN INDEX

INFILE INNER INSERT INSERT_ID

INT INT1 INT2 INT3

INT4 INT8 INTEGER INTERVAL

INTO IS ISAM JOIN

KEY KEYS KILL LAST_INSERT_ID

LEADING LEFT LENGTH LIKE

LIMIT LINES LOAD LOCAL

LOCK LOGS LONG LONGBLOB

LONGTEXT LOW_PRIORITY MATCH MAX

MAX_ROWS MEDIUMBLOB MEDIUMINT MEDIUMTEXT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MIDDLEINT MIN_ROWS MINUTE MINUTE_SECOND

MODIFY MONTH MONTHNAME MYISAM

NATURAL NO NOT NULL

NUMERIC ON OPTIMIZE OPTION

OPTIONALLY OR ORDER OUTER

OUTFILE PACK_KEYS PARTIAL PASSWORD

PRECISION PRIMARY PRIVILEGES PROCEDURE

PROCESS PROCESSLIST READ REAL

REFERENCES REGEXP RELOAD RENAME

REPLACE RESTRICT RETURNS REVOKE

RLIKE ROW ROWS SECOND

SELECT SET SHOW SHUTDOWN

SMALLINT SONAME SQL_BIG_RESULT SQL_BIG_SELECTS

SQL_BIG_TABLES SQL_LOG_OFF SQL_LOG_UPDATE SQL_LOW_PRIORITY_UPDATES

SQL_SELECT_LIMIT SQL_SMALL_RESULT SQL_WARNINGS STARTING

STATUS STRAIGHT_JOIN STRING TABLE

TABLES TEMPORARY TERMINATED TEXT

THEN TIME TIMESTAMP TINYBLOB

TINYINT TINYTEXT TO TRAILING

TYPE UNIQUE UNLOCK UNSIGNED

UPDATE USAGE USE USING

VALUES VARBINARY VARCHAR VARIABLES

VARYING WHEN WITH WRITE

ZEROFILL

Table B-5. Oracle keywords
ACCESS ADD ALL ALTER

AND ANY AS ASC

AUDIT BETWEEN BY CHAR

CHECK CLUSTER COLUMN COMMENT

COMPRESS CONNECT CREATE CURRENT

DATE DECIMAL DEFAULT DELETE

DESC DISTINCT DROP ELSE

EXCLUSIVE EXISTS FILE FLOAT

FOR FROM GRANT GROUP

HAVING IDENTIFIED IMMEDIATE IN

INCREMENT INDEX INITIAL INSERT

INTEGER INTERSECT INTO IS

LEVEL LIKE LOCK LONG

MAXEXTENTS MINUS MODE MODIFY

MSLABEL NOAUDIT NOCOMPRESS NOT

NOWAIT NULL NUMBER OF

OFFLINE ON ONLINE OPTION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OR ORDER PCTFREE PRIOR

PRIVILEGES PUBLIC RAW RENAME

RESOURCE REVOKE ROW ROWID

ROWNUM ROWS SELECT SESSION

SET SHARE SIZE SMALLINT

START SUCCESSFUL SYNONYM SYSDATE

TABLE THEN TO TRIGGER

UID UNION UNIQUE UPDATE

USER VALIDATE VALUES VARCHAR

VARCHAR2 VIEW WHENEVER WHERE

WITH

Table B-6. PostgreSQL keywords
ABORT ADD ALL ALLOCATE

ALTER ANALYZE AND ANY

ARE AS ASC ASSERTION

AT AUTHORIZATION AVG BEGIN

BETWEEN BINARY BIT BIT_LENGTH

BOTH BY CASCADE CASCADED

CASE CAST CATALOG CHAR

CHAR_LENGTH CHARACTER CHARACTER_LENGTH CHECK

CLOSE CLUSTER COALESCE COLLATE

COLLATION COLUMN COMMIT CONNECT

CONNECTION CONSTRAINT CONTINUE CONVERT

COPY CORRESPONDING COUNT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_SESSION

CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATE DEALLOCATE DEC DECIMAL

DECLARE DEFAULT DELETE DESC

DESCRIBE DESCRIPTOR DIAGNOSTICS DISCONNECT

DISTINCT DO DOMAIN DROP

ELSE END ESCAPE EXCEPT

EXCEPTION EXEC EXECUTE EXISTS

EXISTS EXPLAIN EXTEND EXTERNAL

EXTRACT FALSE FETCH FIRST

FLOAT FOR FOREIGN FOUND

FROM FULL FULL GET

GLOBAL GO GOTO GRANT

GROUP HAVING IDENTITY IN

INDICATOR INNER INPUT INSERT

INTERSECT INTERVAL INTO IS

JOIN LAST LEADING LEFT

LIKE LISTEN LOAD LOCAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LOCK LOWER MAX MIN

MODULE MOVE NAMES NATIONAL

NATURAL NCHAR NEW NO

NONE NOT NOTIFY NULL

NULLIF NUMERIC OCTET_LENGTH OFFSET

ON OPEN OR ORDER

OUTER OUTPUT OVERLAPS PARTIAL

POSITION PRECISION PREPARE PRESERVE

PRIMARY PRIVILEGES PROCEDURE PUBLIC

REFERENCES RESET REVOKE RIGHT

ROLLBACK ROWS SCHEMA SECTION

SELECT SESSION SESSION_USER SET

SETOF SHOW SIZE SOME

SQL SQLCODE SQLERROR SQLSTATE

SUBSTRING SUM SYSTEM_USER TABLE

TEMPORARY THEN TO TO

TRAILING TRANSACTION TRANSLATE TRANSLATION

TRIM TRUE UNION UNIQUE

UNIQUE UNKNOWN UNLISTEN UNTIL

UPDATE UPPER USAGE USER

USING VACUUM VALUE VALUES

VARCHAR VARYING VERBOSE VIEW

WHEN WHENEVER WHERE WITH

WORK WRITE

Table B-7. Microsoft SQL Server keywords
ADD ALL ALTER AND

ANY AS ASC AUTHORIZATION

BACKUP BEGIN BETWEEN BREAK

BROWSE BULK BY CASCADE

CASE CHECK CHECKPOINT CLOSE

CLUSTERED COALESCE COLLATE COLUMN

COMMIT COMPUTE CONSTRAINT CONTAINS

CONTAINSTABLE CONTINUE CONVERT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR DATABASE

DBCC DEALLOCATE DECLARE DEFAULT

DELETE DENY DESC DISK

DISTINCT DISTRIBUTED DOUBLE DROP

DUMMY DUMP ELSE END

ERRLVL EXCEPT EXEC EXECUTE

EXISTS EXIT FETCH FILE

FILLFACTOR FOR FOREIGN FREETEXT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FREETEXTTABLE FROM FULL FUNCTION

GOTO GRANT GROUP HAVING

HOLDLOCK IDENTITY IDENTITY_INSERT IDENTITYCOL

IF IN INDEX INNER

INSERT INTERSECT INTO IS

JOIN KEY KILL LEFT

LIKE LINENO LOAD NATIONAL

NOCHECK NONCLUSTERED NOT NULL

NULLIF OF OFF OFFSETS

ON OPEN OPENDATASOURCE OPENQUERY

OPENROWSET OPENXML OPTION OR

ORDER OUTER PERCENT PLAN

PRECISION PRIMARY PRINT PROC

PROCEDURE PUBLIC RAISERROR READ

READTEXT RECONFIGURE REFERENCES REPLICATION

RESTORE RESTRICT RETURN REVOKE

RIGHT ROLLBACK ROWCOUNT ROWGUIDCOL

RULE SAVE SCHEMA SELECT

SESSION_USER SET SETUSER SHUTDOWN

SOME STATISTICS SYSTEM_USER TABLE

TEXTSIZE THEN TO TOP

TRAN TRANSACTION TRIGGER TRUNCATE

TSEQUAL UNION UNIQUE UPDATE

UPDATETEXT USE USER VALUES

VARYING VIEW WAITFOR WHEN

WHERE WHILE WITH WRITETEXT

Table B-8. Sybase Adaptive Server keywords
ABSOLUTE ACTION ADD ALL

ALLOCATE ALTER AND ANY

ARE ARITH_OVERFLOW AS ASC

ASSERTION AT AUTHORIZATION AVG

BEGIN BETWEEN BIT BIT_LENGTH

BOTH BREAK BROWSE BULK

BY CASCADE CASCADED CASE

CAST CATALOG CHAR CHAR_ CONVERT

CHAR_LENGTH CHARACTER CHARACTER_LENGTH CHECK

CHECKPOINT CLOSE CLUSTERED COALESCE

COLLATE COLLATION COLUMN COMMIT

COMPUTE CONFIRM CONNECT CONNECTION

CONSTRAINT CONSTRAINTS CONTINUE CONTROLROW

CONVERT CORRESPONDING COUNT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_TIME

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CURRENT_TIMESTAMP CURRENT_USER CURSOR DATABASE

DATE DAY DBCC DEALLOCATE

DEC DECIMAL DECLARE DEFAULT

DEFERRABLE DEFERRED DELETE DESC

DESCRIBE DESCRIPTOR DETERMINISTIC DIAGNOSTICS

DISCONNECT DISK DISTINCT DOMAIN DOUBLE

DROP DUMMY DUMP ELSE

END END-EXEC ENDTRAN ERRLVL

ERRORDATA ERROREXIT ESCAPE EXCEPT

EXCEPTION EXCLUSIVE EXEC EXECUTE

EXISTS EXIT EXP_ROW_SIZE EXTERNAL

EXTRACT FALSE FETCH FILLFACTOR

FIRST FLOAT FOR FOREIGN

FOUND FROM FULL FUNC

FUNCTION GET GLOBAL GO

GOTO GRANT GROUP HAVING

HOLDLOCK HOUR IDENTITY IDENTITY_GAP

IDENTITY_INSERT IDENTITY_START IF IMMEDIATE

IN INDEX INDICATOR INITIALLY

INNER INOUT INPUT INSENSITIVE

INSERT INSTALL INT INTEGER

INTERSECT INTERVAL INTO IS

ISOLATION JAR JOIN KEY

KILL LANGUAGE LAST LEADING

LEFT LEVEL LIKE LINENO

LOAD LOCAL LOCK LOWER

MATCH MAX MAX_ROWS_PER_PAGE MIN

MINUTE MIRROR MIRROREXIT MODIFY

MODULE MONTH NAMES NATIONAL

NATURAL NCHAR NEW NEXT

NO NOHOLDLOCK NONCLUSTERED NOT

NULL NULLIF NUMERIC NUMERIC_TRUNCATION

OCTET_LENGTH OF OFF OFFSETS

ON ONCE ONLINE ONLY

OPEN OPTION OR ORDER

OUT OUTER OUTPUT OVER

OVERLAPS PAD PARTIAL PARTITION

PERM PERMANENT PLAN POSITION

PRECISION PREPARE PRESERVE PRIMARY

PRINT PRIOR PRIVILEGES PROC

PROCEDURE PROCESSEXIT PROXY_TABLE PUBLIC

QUIESCE RAISERROR READ READPAST

READTEXT REAL RECONFIGURE REFERENCES REMOVE

RELATIVE REORG REPLACE REPLICATION

RESERVEPAGEGAP RESTRICT RETURN RETURNS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RESERVEPAGEGAP RESTRICT RETURN RETURNS

REVOKE RIGHT ROLE ROLLBACK

ROWCOUNT ROWS RULE SAVE

SCHEMA SCROLL SECOND SECTION

SELECT SESSION_USER SET SETUSER

SHARED SHUTDOWN SIZE SMALLINT

SOME SPACE SQL SQLCODE

SQLERROR SQLSTATE STATISTICS STRINGSIZE

STRIPE SUBSTRING SUM SYB_IDENTITY

SYB_RESTREE SYB_TERMINATE SYSTEM_USER TABLE

TEMP TEMPORARY TEXTSIZE THEN

TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE

TO TRAILING TRAN TRANSACTION

TRANSLATE TRANSLATION TRIGGER TRIM

TRUE TRUNCATE TSEQUAL UNION

UNIQUE UNKNOWN UNPARTITION UPDATE

UPPER USAGE USE USER

USER_OPTION USING VALUE VALUES

VARCHAR VARYING VIEW WAITFOR

WHEN WHENEVER WHERE WHILE

WITH WORK WRITE WRITETEXT

YEAR ZONE

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of SQL in a Nutshell is a chameleon. There are approximately 85 species of chameleons
existing in the world today. They are mostly indigenous to Africa, although there are a few species found in Asia and in
Europe. Most are tree dwellers. The chameleon is relatively small; the average adult size is between 6 and 12 inches. It
lives mostly on insects and uses its long tongue to capture its prey. Indeed, the tongue is a critical tool. It can stretch
up to 1.5 times the lizard's body length, and there is an adhesive pad on the end on which the insects are trapped.
There are several other characteristics common to all species of chameleons. For example, its eyes are large and
protruding, and the lizard can see 360 degrees without moving its head or body. Its toes are on either side of its feet,
usually three on one side and two on the other. This is ideal for moving quickly and efficiently through tree branches.

Chameleons are best known for their ability to change their appearance to adapt to their physical environment.
Actually, several types of reptiles can change their skin color, but the chameleon is far and away the most
accomplished. This skill, which is moderated by the nervous system, obviously is invaluable for hunting prey and
avoiding predators, and also helps to stablize body temperature. The extent of this camouflage capability is related to
the gender, age, and species of the lizard.

Mary Brady was the production editor for SQL in a Nutshell, and Jane Ellin was the copyeditor. Ann Schirmer was the
proofreader. Sarah Sherman and Colleen Gorman provided quality control. Julie Hawks wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1
using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Mary Brady.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

/ division arithmetic operator
!> not greater than operator
!< not less than operator
!= not equal to operator
(pound symbol)
(double-pound symbol)
% modula arithmetic operator
& bitwise AND operator
> greater than operator
>= greater than or equal to operator
< less than operator
<= less than or equal to operator
* multiplication arithmetic operator
+ addition arithmetic operator
+ unary operator
- subtraction arithmetic operator
- unary operator
= assignment operator
= equal to comparison operator
^ bitwise exclusive OR operator
| bitwise OR operator
~ unary operator

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ABS function
ABSTIME function (PostgreSQL)
ABSVAL function (DB2)
ACOS function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
ADD_MONTHS function (Oracle)
ADDDATE function (MySQL)
addition (+) arithmetic operator
ADO.NET
 beginning transactions
 bound parameters
 closing connection
 committing transactions
 database connection
 database program example
 DataReader methods
 Get
 error handling
 executing statements
 parameter object types
 retrieving data
 rolling back transactions
AGE function (PostgreSQL)
aggregate functions
ALL operator 2nd
 keywords
 platform differences
 platform support for
 programming tips
 quick reference
 rules
 SQL2003 syntax
ALTER DATABASE statement [See CREATE/ALTER DATABASE statements]
ALTER DOMAIN statement, quick reference
ALTER FUNCTION statement [See CREATE/ALTER FUNCTION/PROCEDURE statements]
ALTER INDEX statement [See CREATE/ALTER INDEX statements]
ALTER METHOD statement [See CREATE/ALTER METHOD statements]
ALTER PROCEDURE statement [See CREATE/ALTER FUNCTION/PROCEDURE statements]
ALTER TABLE statement [See CREATE/ALTER TABLE statements]
ALTER TRIGGER statement [See CREATE/ALTER TRIGGER statements]
ALTER TYPE statement [See CREATE/ALTER TYPE statements]
ALTER VIEW statement [See CREATE/ALTER VIEW statements]
AND operator
ANSI standard
AnsiString parameter object type (ADO.NET)
AnsiStringFixedLength parameter object type (ADO.NET)
ANY operator 2nd
 keywords
 platform differences
 platform support for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 programming tips
 quick reference
 rules
 SQL2003 syntax
APP_NAME function
 SQL Server
AREA function (PostgreSQL)
arithmetic operators 2nd
AS keyword and assignment operator
ASCII function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
ASCIISTR function (Oracle)
ASIN function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
assignment (=) operator
assignment operators
ATAN function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
ATAN2 function
 DB2
 MySQL
 Oracle
 PostgreSQL
ATANH function (DB2)
ATN2 function (SQL Server)
AuthorizationID
AVG function 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

BENCHMARK function (MySQL)
BETWEEN clause
BETWEEN operator 2nd
 keywords
 platform differences
 platform support for
 programming tips
 quick reference
 rules
 SQL2003 syntax
BFILE datatype
 Oracle
 platform comparison
BFILENAME function (Oracle)
BIGINT datatype
 DB2
 MySQL
 platform comparison
 SQL Server 2nd
BIGINT function (DB2)
BIGSERIAL datatype
 platform comparison
 PostgreSQL 2nd
BIN function (MySQL)
BIN_TO_NUM function (Oracle)
BINARY datatype
 platform comparison
 SQL Server 2nd
 Sybase adaptive server
BINARY function (MySQL)
Binary parameter object type (ADO.NET)
BINARY_CHECKSUM function
 SQL Server
BINARY_DOUBLE datatype
 Oracle
 platform comparison
BINARY_FLOAT datatype
 Oracle
 platform comparison
BIT datatype
 MySQL
 platform comparison
 PostgreSQL
 SQL Server
BIT VARYING datatype
 platform comparison
 PostgreSQL
BIT_AND function (MySQL)
BIT_COUNT function (MySQL)
BIT_LENGTH function
BIT_OR function (MySQL)
BITAND function (Oracle)
bitwise AND (&) operator
bitwise exclusive OR (^) operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bitwise operators
bitwise OR (|) operator
BLOB datatype
 DB2
 MySQL
 Oracle
 platform comparison
BLOB function (DB2)
BOOL datatype
 MySQL
 platform comparison
 PostgreSQL
Boolean comparison operators
BOOLEAN datatype
 platform comparison
 PostgreSQL
Boolean parameter object type (ADO.NET)
bound parameters
 ADO.NET
 JDBC
BOX datatype
 platform comparison
 PostgreSQL
BOX function (PostgreSQL)
BROADCAST function (PostgreSQL)
built-in scalar functions
BULKADMIN (SQL Server system role)
Byte parameter object type (ADO.NET)
BYTEA datatype
 platform comparison
 PostgreSQL

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

CALL statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
 versus EXECUTE statement
candidate key
CARDINALITY function (Oracle)
CASE function
CAST function 2nd
catalogs
CBRT function (PostgreSQL)
CEIL function
CENTER function (PostgreSQL)
Chaos isolation level (Transaction object (ADO.NET))
CHAR datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
CHAR FOR BIT DATA datatype
 DB2
 platform comparison
CHAR function
 DB2
 MySQL
 PostgreSQL
 SQL Server
CHAR VARYING datatype
 DB2
 Oracle
 platform comparison
 SQL Server
CHAR() datatype
 SQL Server
 Sybase adaptive server
CHAR_LENGTH function 2nd
 PostgreSQL
CHARACTER datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
character sets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

character string literals
CHARACTER VARYING datatype
 DB2
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
CHARINDEX function (SQL Server)
CHARTOROWID function (Oracle)
CHECK constraints
CHECKSUM function
 SQL Server
CHECKSUM_AGG function
 SQL Server
CHR function
 DB2
 Oracle
CIDR datatype
 platform comparison
 PostgreSQL
CIRCLE datatype
 platform comparison
 PostgreSQL
CIRCLE function (PostgreSQL)
CLOB datatype
 DB2
 Oracle
 platform comparison
CLOB function (DB2)
CLOSE CURSOR statement
 DB2
 keywords
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
clusters
COALESCE function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
Codd, E. F.
COL_LENGTH function (SQL Server)
COL_NAME function (SQL Server)
collations
COLLECT function (Oracle)
column-level constraints
column_constraint_clause (Oracle)
columns
COMMIT statement
 DB2
 keywords
 MySQL
 Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
COMMIT TO SWITCHOVER TO
COMPARE function
comparison operators 2nd
COMPOSE function (Oracle)
COMPRESS function (MySQL)
compressed tables in Oracle
CONCAT function
 DB2
 Oracle
CONCAT_WS function (MySQL)
concatenation operator
CONNECT statement
 DB2
 keywords
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
CONNECTION_ID() function (MySQL)
connections (database)
 closing
 opening
 ADO.NET
 JDBC
connectivity, establishing
constraints
 CHECK
 FOREIGN KEY
 PRIMARY KEY
 scope
 syntax
 UNIQUE
CONTAINS function
 SQL Server
CONTAINSTABLE function
 SQL Server
CONV function (MySQL)
CONVERT function
 Oracle
 SQL Server
CORR function 2nd
CORR_K function (Oracle)
correlated subqueries
Correlated subquery in WHERE/HAVING clause
COS function
 DB2
 MySQL
 Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PostgreSQL
 SQL Server
COSH function
 DB2
 Oracle
COT function
 DB2
 MySQL
 PostgreSQL 2nd
 SQL Server
COUNT function 2nd
COUNT_BIG function
COVAR_POP function 2nd
COVAR_SAMP function 2nd
CREATE/ALTER DATABASE statements
 DB2 [See DB2, CREATE/ALTER DATABASE statements]
 MySQL
 Oracle [See Oracle, CREATE/ALTER DATABASE statements]
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server [See SQL Server, CREATE/ALTER DATABASE statements]
CREATE/ALTER DOMAIN statements, quick reference
CREATE/ALTER FUNCTION/PROCEDURE statements
 DB2 [See DB2, CREATE/ALTER FUNCTION/PROCEDURE statements]
 keywords
 CALL ON NULL INPUT
 CASCADE
 code_block
 CONTAINS SQL
 CREATE
 DETERMINISTIC
 DYNAMIC RESULT SETS
 IN
 LANGUAGE
 MODIFIES SQL DATA
 NAME
 NO SQL
 OUT
 PARAMETER STYLE
 READS SQL DATA
 RESTRICT
 RETURN NULL ON NULL INPUT
 RETURNS
 SPECIFIC
 STATIC DISPATCH
 MySQL
 Oracle [See Oracle, CREATE/ALTER FUNCTION/PROCEDURE statements]
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server [See SQL Server, CREATE/ALTER FUNCTION/PROCEDURE statements]
 SQL2003 syntax
CREATE/ALTER INDEX statements
 common vendor syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DB2 [See DB2, CREATE/ALTER INDEX statements]
 keywords
 MySQL
 Oracle [See Oracle, CREATE/ALTER INDEX statements]
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server [See SQL Server, CREATE/ALTER INDEX statements]
CREATE/ALTER METHOD statements
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server
 SQL2003 syntax
CREATE/ALTER ROLE statements
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
CREATE/ALTER SCHEMA statements
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
CREATE/ALTER TABLE statements
 DB2 [See DB2, CREATE/ALTER TABLE statements]
 keywords
 ADD 2nd
 ALTER
 CASCADE
 column_name
 CONSTRAINT
 DROP COLUMN
 DROP CONSTRAINT
 GLOBAL TEMPORARY
 LIKE
 LOCAL TEMPORARY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OF
 ON COMMIT
 REF IS
 RESTRICT
 MySQL [See MySQL, CREATE/ALTER TABLE statements]
 Oracle [See Oracle, CREATE/ALTER TABLE statements]
 platform support for
 PostgreSQL [See PostgreSQL, CREATE/ALTER TABLE statements]
 programming tips
 quick reference
 rules
 SQL Server [See SQL Server, CREATE/ALTER TABLE statements]
 SQL2003 syntax
CREATE/ALTER TRIGGER statements
 DB2
 keywords
 MySQL
 Oracle [See Oracle, CREATE/ALTER TRIGGER statements]
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server (SQL Server, CREATE/ALTER TRIGGER statements)
 SQL2003 syntax
CREATE/ALTER TYPE statements
 DB2 [See DB2, CREATE/ALTER TYPE statements]
 keywords
 MySQL
 Oracle [See Oracle, CREATE/ALTER TYPE statements]
 platform support for
 PostgreSQL [See PostgreSQL, CREATE/ALTER TYPE statements]
 programming tips
 quick reference 2nd
 rules
 SQL Server
 SQL2003 syntax
CREATE/ALTER VIEW statements
 DB2 [See DB2, CREATE/ALTER VIEW statements]
 keywords
 MySQL
 Oracle [See Oracle, CREATE/ALTER VIEW statements]
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server
 SQL2003 syntax
CROSS JOIN
CUME_DIST function 2nd 3rd
CURDATE() function (MySQL)
Currency parameter object type (ADO.NET)
CURSOR datatype
 platform comparison
 SQL Server
cursors [See CLOSE CURSOR statement DECLARE CURSOR command]
CURTIME() function (MySQL)
CV function (Oracle)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CV function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

data
 retrieving
 ADO.NET
 JDBC
Data Control Language (DCL)
Data Definition Language (DDL)
Data Manipulation Language (DML)
data structures
database objects and operators 2nd
database programming [See programming databases]
DATABASE() function (MySQL)
DATABASEPROPERTYEX function
 SQL Server
DATALENGTH function (SQL Server)
DATALINK datatype
 DB2
 platform comparison
DataReader methods (ADO.NET)
 Get
datatypes
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
 Sybase adaptive server
DATE datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
DATE function (DB2)
DATE_ FORMAT function (MySQL)
DATE_ADD function (MySQL)
DATE_PART function (PostgreSQL)
DATE_SUB function (MySQL)
DATE_TRUNC function (PostgreSQL)
DATEADD function (SQL Server)
DATEDIFF function (SQL Server)
DATENAME function (SQL Server)
DATEPART function (SQL Server)
DATETIME datatype
 MySQL
 platform comparison
 PostgreSQL
 SQL Server 2nd
 Sybase adaptive server
DateTime parameter object type (ADO.NET)
DAY function
 DB2
 SQL Server
DAYNAME function
 DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MySQL
DAYOFMONTH function (MySQL)
DAYOFWEEK function
 DB2
 MySQL
DAYOFWEEK_ISO function (DB2)
DAYOFYEAR function
 DB2
 MySQL
DAYS function (DB2)
DB_ACCESSADMIN (SQL Server system role)
DB_BACKUPOPERATOR (SQL Server system role)
DB_DATAREADER (SQL Server system role)
DB_DATAWRITER (SQL Server system role)
DB_DDLADMIN (SQL Server system role)
DB_DENYDATAREADER (SQL Server system role)
DB_DENYDATAWRITER (SQL Server system role)
DB_ID function (SQL Server)
DB_NAME function (SQL Server)
DB_OWNER (SQL Server system role)
DB_SECURITYADMIN (SQL Server system role)
DB2
 allowed characters in identifiers
 beginning identifier character
 CALL statement
 CLOSE CURSOR statement
 COMMIT statement
 CONNECT statement
 connecting using JDBC
 CREATE/ALTER DATABASE statements
 ALIAS
 APPLY
 AT DBPARITIONNUM
 AUTOCONFIGURE
 CATALOG TABLESPACE
 COLLATE USING
 CREATE {DATABASE | DB}
 DFT_EXTENT_SZ
 EXTENTSIZE
 MANAGED BY
 NUMSEGS
 ON
 OVERHEAD
 PREFETCHSIZE
 tablespace_definition
 TEMPORARY TABLESPACE
 TRANSFERRATE
 USER TABLESPACE
 USING CODESET
 WITH
 CREATE/ALTER FUNCTION/PROCEDURE statements
 CARDINALITY
 CONTAINS SQL
 DBINFO
 EXTERNAL NAME
 FENCED
 FINAL CALL
 INHERIT SPECIAL REGISTERS
 LANGUAGE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MODIFIES SQL DATA
 NO SQL
 PARALLEL
 PARAMETER STYLE
 PREDICATES
 PROGRAM TYPE
 READS SQL DATA
 RETURNS
 SCRATCHPAD
 THREADSAFE
 TRANSFORM GROUP
 CREATE/ALTER INDEX statements
 ALLOW REVERSE SCANS
 ASC
 CLUSTER
 COLLECT STATISTICS
 DESC
 EXTEND USING
 INCLUDE
 MINPCTUSED
 PCTFREE
 SPECIFICATION ONLY
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE statements
 ACTIVATE NOT LOGGED INITIALLY
 ACTIVATE VALUE COMPRESSION
 ADD
 ALTER [COLUMN]
 ALTER {CHECK | FOREIGN KEY}
 APPEND
 AS
 AS IDENTITY
 COMPACT
 COMPRESS SYSTEM DEFAULT
 copy_options
 DATA CAPTURE 2nd
 DEFINITION ONLY
 derived_table_options
 DROP
 FILE LINK CONTROL
 GENERATED
 IN
 intermediate table, defining
 LIKE
 LINKTYPE URL
 LOCKSIZE
 LOGGED
 MODE DB2OPTIONS
 NLINE LENGTH
 NO LINK CONTROL
 NOT LOGGED INITIALLY
 OPTIONS
 ORGANIZE BY
 PARTITIONING KEY
 PCTFREE
 REPLICATED
 SCOPE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SET MATERIALIZED QUERY
 UNDER
 VALUE COMPRESSION
 VOLATILE
 WITH RESTRICT ON DROP
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 ADD METHOD
 ALTER METHOD
 DISTINCT
 DROP METHOD
 FENCED
 INLINE LENGTH
 METHOD
 MODE DB2SQL
 OVERRIDING
 RESTRICT
 THREADSAFE
 WITH COMPARISONS
 WITHOUT COMPARISONS
 CREATE/ALTER VIEW statements
 WITH CHECK OPTION clause
 datalink-related attributes
 datatypes
 DECLARE CURSOR command
 DELETE statement
 DISCONNECT statement
 DROP statements
 [DISTINCT] TYPE
 [SPECIFIC] FUNCTION
 [SPECIFIC] METHOD
 BUFFERPOOL
 DATABASE PARTITION GROUP
 EVENT MONITOR
 FUNCTION MAPPING
 INDEX
 NICKNAME
 PACKAGE
 RESTRICT
 SCHEMA
 SEQUENCE
 SERVER
 TABLE
 TABLESPACE
 TRANSFORM
 TRIGGER
 TYPE MAPPING
 USER MAPPING FOR
 VIEW
 WRAPPER
 EXCEPT set operator
 external scalar user-defined functions
 external stored procedure
 external table user-defined functions
 FETCH statement
 functions
 ABSVAL
 ACOS
 ASCII

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ASIN
 ATAN
 ATAN2
 ATANH
 BIGINT
 BLOB
 CHAR
 CHR
 CLOB
 COALESCE
 CONCAT
 COS
 COSH
 COT
 DATE
 DAY
 DAYNAME
 DAYOFWEEK
 DAYOFWEEK_ISO
 DAYOFYEAR
 DAYS
 DBCLOB
 DBPARTITIONNUM
 DEC
 DECIMAL
 DECRYPT_BIN
 DECRYPT_CHAR
 DEGREES
 DEREF
 DIFFERENCE
 DIGITS
 DOUBLE
 ENCRYPT
 EVENT_MON_STATE
 FLOAT
 GENERATE_UNIQUE()
 GETHINT
 GRAPHIC
 HASHEDVALUE
 HEX
 HOUR
 IDENTITY_VAL_LOCAL()
 INSERT
 INTEGER
 JULIAN_DAY
 LEFT
 LENGTH
 LOCATE
 LOG
 LOG10
 LONG_VARCHAR
 LONG_VARGRAPHIC
 LTRIM
 MICROSECOND
 MIDNIGHT_SECONDS
 MINUTE
 MONTH
 MONTHNAME
 MULTIPLY_ALT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NULLIF
 POSSTR
 QUARTER
 RADIANS
 RAISE_ERROR
 RAND
 REAL
 REC2XML
 REPEAT
 REPLACE
 RIGHT
 ROUND
 RTRIM
 SECOND
 SIGN
 SIN
 SINH
 SMALLINT
 SOUNDEX
 SPACE
 STDDEV
 SUBSTR
 TABLE_NAME
 TABLE_SCHEMA
 TAN
 TANH
 TIME
 TIMESTAMP
 TIMESTAMP_FORMAT
 TIMESTAMP_ISO
 TIMESTAMPDIFF
 TO_CHAR
 TO_DATE
 TRANSLATE
 TRUNC
 TRUNCATE
 TYPE_ID
 TYPE_NAME
 TYPE_SCHEMA
 VALUE
 VAR
 VARCHAR
 VARCHAR_FORMAT
 VARGRAPHIC
 VARIANCE
 WEEK
 WEEK_ISO
 YEAR
 GRANT statement
 {ALTER | USAGE} ON SEQUENCE
 {ALTERIN | CREATEIN | DROPIN} ON SCHEMA
 {BIND | CONTROL | EXECUTE} ON PACKAGE
 CONTROL ON INDEX
 database_privileges
 EXECUTE ON
 object_privilege
 PASSTHRU ON SERVER
 TO USER
 USE OF TABLESPACE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WITH GRANT OPTION
 identifier size
 INSERT statement
 INTERSECT set operator
 JOIN subclause
 keywords
 LDAP
 LIKE operator
 MERGE statement
 OLE-DB external table user-defined functions
 OPEN statement
 ORDER BY clause
 RELEASE SAVEPOINT statement
 reserved identifiers
 RETURN statement
 REVOKE statement
 { ALTERIN | CREATEIN | DROPIN } ON SCHEMA
 { BIND | CONTROL | EXECUTE} ON PACKAGE
 {ALTER | USAGE} ON SEQUENCE
 CONTROL ON INDEX
 database_privileges
 EXECUTE ON
 FROM
 levels of system privileges
 object_privilege
 PASSTHRU ON SERVER
 RESTRICT
 USE OF TABLESPACE
 ROLLBACK statement
 SAVEPOINT statement
 schema addressing
 SELECT statement
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 sourced user-defined functions
 SQL stored procedure
 SQL user-defined functions
 START TRANSACTION statement
 SUBQUERY substatement
 TRUNCATE TABLE statement
 UNION set operator
 UPDATE statement
 web site
 WHERE clause
 window syntax
DB2 keywords
DBCLOB datatype
 DB2
 platform comparison
DBCLOB function (DB2)
DBCREATOR (SQL Server system role)
DBPARTITIONNUM function (DB2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBTIMEZONE function (Oracle)
DEC datatype
 DB2
 platform comparison
 SQL Server
DEC function (DB2)
DECIMAL datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL 2nd
 SQL Server
DECIMAL function (DB2)
Decimal parameter object type (ADO.NET)
declarative processing
DECLARE CURSOR command
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
DECODE function
 MySQL
 Oracle
DECOMPOSE function (Oracle)
DECRYPT_BIN function (DB2)
DECRYPT_CHAR function (DB2)
DEGREES function
 DB2
 MySQL
 PostgreSQL
 SQL Server
DELETE statement
 DB2
 keywords
 MySQL
 operators and 2nd
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
delimited identifiers
delimiters
DENSE_RANK function 2nd 3rd
DEPTH function (Oracle)
DEREF function
 DB2
 Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

deterministic functions
dialects, SQL
DIAMETER function (PostgreSQL)
DIFFERENCE function
 DB2
 SQL Server
DIGITS function (DB2)
DISCONNECT statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
DISKADMIN (SQL Server system role)
division (/) arithmetic operator
DOUBLE datatype
 DB2
 MySQL
 platform comparison
DOUBLE function (DB2)
Double parameter object type (ADO.NET)
DOUBLE PRECISION datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
double-pound symbol (##)
DROP DATABASE statement, quick reference
DROP DOMAIN statement, quick reference
DROP FUNCTION statement, quick reference
DROP INDEX statement, quick reference
DROP METHOD statement, quick reference
DROP ROLE statement, quick reference
DROP statements
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
DROP TABLE statement, quick reference
DROP TRIGGER statement, quick reference
DROP TYPE statement, quick reference
DROP VIEW statement, quick reference
DUMP function (Oracle)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ELT function (MySQL)
EMPTY_BLOB() function (Oracle)
EMPTY_CLOB() function (Oracle)
ENCODE function (MySQL)
ENCRYPT function
 DB2
 MySQL
ENUM datatype
 MySQL
 platform comparison
equal to (=) comparison operator
error handling
 ADO.NET
 JDBC
EVENT_MON_STATE function (DB2)
EXCEPT set operator
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
EXECUTE statement versus CALL statement
EXISTS operator 2nd
 platform differences
 platform support for
 programming tips
 quick reference
 rules
 SQL2003 syntax
EXISTSNODE function (Oracle)
EXP function
explicit transactions
EXPORT_SET function (MySQL)
expressions
 operator precedence and
 testing against range of values
EXTRACT function
 Oracle
EXTRACTVALUE function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

FETCH statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
FIELD function (MySQL)
FILE_ID function
 SQL Server
FILE_NAME function
 SQL Server
FILEGROUP_ID function
 SQL Server
FILEGROUP_NAME function
 SQL Server
FILEGROUPPROPERTY function
 SQL Server
FILEPROPERTY function
 SQL Server
filtering checks
FIND_IN_SET function (MySQL)
FIRST function (Oracle)
FIRST_VALUE function (Oracle)
FLOAT datatype
 DB2
 MySQL
 Oracle
 platform comparison
 SQL Server 2nd
FLOAT function
 DB2
 PostgreSQL
FLOAT4 datatype
 platform comparison
 PostgreSQL
FLOAT4 function (PostgreSQL)
FLOAT8 datatype
 platform comparison
 PostgreSQL
FLOOR function
FOREIGN KEY constraints
 CASCADE keyword
 FOREIGN KEY keyword
 MATCH keyword
 NO ACTION keyword
 ON DELETE keyword
 ON UPDATE keyword
 REFERENCES keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RESTRICT keyword
 SET DEFAULT keyword
 SET NULL keyword
FORMAT function (MySQL)
FORMATMESSAGE function
 SQL Server
freeing resources
FREETEXT function (SQL Server)
FREETEXTTABLE function
 SQL Server
FROM clause
FROM_DAYS function (MySQL)
FROM_TZ function (Oracle)
FROM_UNIXTIME function (MySQL) 2nd
FULL [OUTER] JOIN
FULLTEXTCATALOGPROPERTY function
 SQL Server
FULLTEXTSERVICEPROPERTY function
 SQL Server
functions
 ABS
 aggregate
 APP_NAME()
 AVG 2nd
 BINARY_CHECKSUM
 BIT_LENGTH
 CASE
 CAST 2nd
 CEIL
 CHAR_LENGTH 2nd
 CHECKSUM
 CHECKSUM_AGG
 COALESCE
 COMPARE
 CONTAINS
 CONTAINSTABLE
 CONVERT
 CORR 2nd
 COUNT 2nd
 COUNT_BIG
 COVAR_POP 2nd
 COVAR_SAMP 2nd
 CUME_DIST 2nd
 CUME_DIST()
 DATABASEPROPERTYEX
 DAY
 DB2 supported [See DB2, functions]
 DENSE_RANK 2nd
 DENSE_RANK()
 deterministic
 EXP
 EXTRACT
 FILE_ID
 FILE_NAME
 FILEGROUP_ID
 FILEGROUP_NAME
 FILEGROUPPROPERTY
 FILEPROPERTY
 FLOOR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FORMATMESSAGE
 FREETEXTTABLE
 FULLTEXTCATALOGPROPERTY
 FULLTEXTSERVICEPROPERTY
 GETANSINULL
 GETUTCDATE()
 GROUPING
 HEXTOINT
 IDENT_CURRENT
 IDENT_INCR
 IDENT_SEED
 IDENTITY
 INDEXPROPERTY
 INTTOHEX
 IS_MEMBER
 IS_SEC_SERVICE_ON
 IS_SRVROLEMEMBER
 ISDATE
 ISNUMERIC
 lct_admin
 LEFT
 LEN
 LICENSE_ENABLED
 LN
 LOWER
 MAX 2nd
 MIN 2nd
 MOD
 MONTH
 MUT_EXCL_ROLES
 MySQL supported [See MySQL, functions]
 NCHAR
 NEWID()
 nondeterministic
 NULLIF
 numeric
 OBJECTPROPERTY
 OCTET_LENGTH
 OPEN
 OPENDATASOURCE
 OPENQUERY
 OPENROWSET
 operators and 2nd
 Oracle supported [See Oracle, functions]
 OVERLAY
 PARSENAME
 PATINDEX
 PERCENT_RANK 2nd 3rd
 PERCENTILE_CONT 2nd
 PERCENTILE_DISC 2nd
 PERMISSIONS
 POSITION
 PostgreSQL [See PostgreSQL, functions]
 POWER
 PROC_ROLE
 RANK 2nd
 RANK()
 REGR_AVGX 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 REGR_AVGY 2nd 3rd 4th 5th 6th 7th 8th 9th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 REGR_COUNT 2nd 3rd 4th 5th 6th 7th 8th
 REGR_INTERCEPT 2nd 3rd 4th 5th 6th 7th
 REGR_R2 2nd 3rd 4th 5th 6th
 REGR_SLOPE 2nd 3rd 4th 5th
 REGR_SXX 2nd 3rd 4th
 REGR_SXY 2nd 3rd
 REGR_SYY 2nd
 REPLACE
 ROLE_CONTAIN
 ROLE_ID
 ROLE_NAME
 ROW_NUMBER
 ROWCNT
 ROWCOUNT_BIG()
 scalar 2nd
 built-in
 categories of
 SESSION_USER
 SHOW_ROLE()
 SHOW_SEC_SERVICES()
 SORTKEY
 SQL Server supported [See SQL Server, functions]
 SQL2003 numeric
 SQRT
 STATS_DATE
 STDDEV_POP 2nd
 STDDEV_SAMP 2nd
 STDEV
 STDEVP
 string
 SUBSTRING
 SUM 2nd
 SUSER_ID
 SUSER_NAME
 SUSER_SID
 SUSER_SNAME
 SYB_SENDMSG
 Sybase adaptive server versus SQL Server
 Sybase adaptive server-supported
 SYSTEM_USER
 TO_UNICHAR
 TRANSLATE
 TRIM
 TSEQUEL
 TYPEPROPERTY
 types of
 UHIGHSURR
 ULOWSURR
 UNICODE
 UPPER
 USCALAR
 VALID_NAME
 VALID_USER
 VAR
 VAR_POP 2nd
 VAR_SAMP 2nd
 VARP
 WIDTH_BUCKET
 window 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 windowing
 YEAR

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

GENERATE_UNIQUE() function (DB2)
GET DIAGNOSTIC statement
Get methods (ADO.NET DataReader)
Get methods (JDBC ResultSet)
GET_LOCK function (MySQL)
GETANSINULL function
 SQL Server
GETDATE() function (SQL Server)
GETHINT function (DB2)
GETUTCDATE() function
 SQL Server
GRANT statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
GRAPHIC datatype
 DB2
 platform comparison
GRAPHIC function (DB2)
greater than (>) operator
greater than or equal to (>=) operator
GREATEST function
 MySQL
 Oracle
GROUP BY clause 2nd
group clause
GROUP_ID() function (Oracle)
GROUPING function
 Oracle
 SQL Server
GROUPING_ID function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

HASHEDVALUE function (DB2)
HAVING clause
HEIGHT function (PostgreSQL)
HEX function
 DB2
 MySQL
HEXTOINT function
HEXTORAW function (Oracle)
HOST function (PostgreSQL)
HOST_ID() function (SQL Server)
HOST_NAME() function (SQL Server)
HOUR function
 DB2
 MySQL

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

IDENT_CURRENT function
 SQL Server
IDENT_INCR function
 SQL Server
IDENT_SEED function
 SQL Server
identifier rules
identifiers
 allowed characters
 beginning characters
 quoted
 reserved
 size
IDENTITY function
 SQL Server
IDENTITY_VAL_LOCAL() function (DB2)
IF function (MySQL)
IFNULL function (MySQL)
IMAGE datatype
 platform comparison
 SQL Server
implicit transactions
IN operator 2nd
 keywords
 platform support for
 quick reference
 SQL2003 syntax
INDEX_COL function (SQL Server)
INDEXPROPERTY function
 SQL Server
INET datatype
 platform comparison
 PostgreSQL
INIT.ORA file
INITCAP function
 Oracle
INITCAP function (PostgreSQL)
INNER JOIN
INSERT function
 DB2
 MySQL
INSERT statement
 DB2
 keywords
 MySQL
 operators and 2nd
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSTR function
 MySQL
 Oracle
INT datatype
 DB2
 MySQL
 platform comparison
 SQL Server
Int parameter object type (ADO.NET)
INT2 datatype
 platform comparison
INT4 datatype
 platform comparison
INT8 datatype
 PostgreSQL
INTEGER datatype
 DB2
 Oracle
 platform comparison
 PostgreSQL
INTEGER function
 DB2
 PostgreSQL
INTERSECT set operator
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
INTERVAL datatype
 platform comparison
 PostgreSQL
INTERVAL DAY datatype
 Oracle
INTERVAL DAY TO SECOND datatype
 platform comparison
INTERVAL function
 MySQL
 PostgreSQL
INTERVAL YEAR datatype
 Oracle
INTERVAL YEAR TO MONTH datatype
 platform comparison
INTTOHEX function
IS operator
 keywords
 platform support for
 programming tips
 quick reference
 rules
 SQL2003 syntax
IS_FREE_LOCK function (MySQL)
IS_MEMBER function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SQL Server
IS_SEC_SERVICE_ON function
IS_SRVROLEMEMBER function
 SQL Server
ISCLOSED function (PostgreSQL)
ISDATE function
 SQL Server
ISFINITE function (PostgreSQL)
ISNULL function
 MySQL
 SQL Server
ISNUMERIC function
 SQL Server
ISOPEN function (PostgreSQL)
ITERATION_NUMBER function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Java Virtual Machine (JVM) class loader
JDBC
 beginning transactions
 bound parameters
 closing connection
 committing transactions
 database connection
 database program example
 error handling
 executing statements
 PreparedStatement set methods
 ResultSet methods
 Get
 retrieving data
 rolling back transactions
JDBC (Java Database Connectivity)
JOIN clause 2nd
JOIN subclause 2nd
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
 types
JULIAN_DAY function (DB2)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

keywords 2nd
 DB2 2nd
 Microsoft SQL Server
 MySQL 2nd
 Oracle 2nd
 PostgreSQL 2nd
 shared 2nd
 SQL Server
 SQL2003 2nd
 Sybase adaptive server 2nd 3rd 4th 5th

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

LAG function (Oracle)
LAST function (Oracle)
LAST_DAY function (Oracle)
LAST_INSERT_ID function (MySQL)
LAST_VALUE function (Oracle)
LCASE function (MySQL)
lct_admin function
LDAP (Lightweight Directory Access Protocol)
 on DB2 servers
LEAD function (Oracle)
LEAST function
 MySQL
 Oracle
LEFT [OUTER] JOIN
LEFT function
 DB2
 MySQL
 SQL Server
LEN function
 SQL Server
LENGTH function
 DB2
 MySQL
 Oracle
 PostgreSQL
LENGTHB function (Oracle)
less than (<) operator
less than or equal to (<=) operator
LICENSE_ENABLED function
LIKE operator 2nd
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
LINE datatype
 platform comparison
 PostgreSQL
literals 2nd
LN function
LNNVL function (Oracle)
LOAD_FILE function (MySQL)
LOCALTIMESTAMP function (Oracle)
LOCATE function
 DB2
 MySQL
LOCATE(substr,str,pos)
LOG function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
LOG10 function
 DB2
 MySQL
 SQL Server
LOG2 function (MySQL)
logfiles (Oracle)
logical operators 2nd
LONG datatype
 Oracle
 platform comparison
LONG RAW datatype
 Oracle
 platform comparison
LONG VARCHAR datatype
 DB2
 platform comparison
LONG VARCHAR FOR BIT DATA datatype
 DB2
LONG VARGRAPHIC datatype
 DB2
 platform comparison
LONG_VARCHAR function (DB2)
LONG_VARGRAPHIC function (DB2)
LONGBLOB datatype
 MySQL
 platform comparison
LONGTEXT datatype
 MySQL
 platform comparison
LOWER function
LPAD function
 MySQL
 Oracle
 PostgreSQL
LSEG datatype
 platform comparison
 PostgreSQL
LSEG function (PostgreSQL)
LTRIM function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

MACADDR datatype
 platform comparison
 PostgreSQL
MAKE_REF function (Oracle)
MAKE_SET function (MySQL)
MASKLEN function (PostgreSQL)
MAX function 2nd
MD5 function (MySQL)
MEDIAN function (Oracle)
MEDIUMBLOB datatype
 MySQL
 platform comparison
MEDIUMINT datatype
 MySQL
MEDIUMTEXT datatype
 MySQL
 platform comparison
MERGE statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
metadata
methods
 ADO.NET DataReader
 JDBC ResultSet
MICROSECOND function (DB2)
Microsoft SQL Server
Microsoft SQL Server keywords
MID function (MySQL)
MIDNIGHT_SECONDS function (DB2)
MIN function 2nd
MINUTE function
 DB2
 MySQL
MOD function
modula (%) arithmetic operator (SQLServer)
MONEY datatype
 platform comparison
 PostgreSQL
 SQL Server
MONTH function
 DB2
 MySQL
 SQL Server
MONTHNAME function
 DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MySQL
MONTHS_BETWEEN function (Oracle)
multiplication (*) arithmetic operator
MULTIPLY_ALT function (DB2)
MUT_EXCL_ROLES function
MySQL
 allowed characters in identifiers
 ALTER TABLE syntax
 beginning identifier character
 CALL statement
 COMMIT statement
 connecting using JDBC
 CREATE/ALTER DATABASE statements
 CREATE/ALTER FUNCTION/PROCEDURE statements
 CREATE/ALTER INDEX statements
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE
 keywords and parameters
 CREATE/ALTER TABLE statements
 ALTER
 ALTER COLUMN
 AUTO_INCREMENT
 AVG_ROW_LENGTH
 CHANGE
 CHECKSUM
 COMMENT
 constraint_type
 DATA DIRECTORY
 DELAY_KEY_WRITE
 DROP
 ENABLE KEYS
 IF NOT EXISTS
 IGNORE SELECT_statement
 INDEX DIRECTORY
 INSERT_METHOD
 keywords
 MAX_ROWS
 MIN_ROWS
 MODIFY
 PACK_KEYS
 parameters
 PASSWORD
 RAID_CHUNKS
 RAID_CHUNKSIZE
 RAID_TYPE
 RENAME
 REPLACE SELECT_statement
 ROW_FORMAT
 TEMPORARY
 TYPE
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 CREATE/ALTER VIEW statements
 datatypes
 DECLARE CURSOR command
 DELETE statement
 DISCONNECT statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DROP statements
 EXCEPT set operator
 FETCH statement
 functions
 ,POW
 ACOS
 ADDDATE
 ASCII
 ASIN
 ATAN
 ATAN2
 BENCHMARK
 BIN
 BINARY
 BIT_AND
 BIT_COUNT
 BIT_OR
 CHAR
 COALESCE
 COMPRESS
 CONCAT_WS
 CONNECTION_ID()
 CONV
 COS
 COT
 CURDATE()
 CURTIME()
 DATABASE()
 DATE_ FORMAT
 DATE_ADD
 DATE_SUB
 DAYNAME
 DAYOFMONTH
 DAYOFWEEK
 DAYOFYEAR
 DECODE
 DEGREES
 ELT
 ENCODE
 ENCRYPT
 EXPORT_SET
 FIELD
 FIND_IN_SET
 FORMAT
 FROM_DAYS
 FROM_UNIXTIME 2nd
 GET_LOCK
 GREATEST
 HEX
 HOUR
 IF
 IFNULL
 INSERT
 INSTR
 INTERVAL
 IS_FREE_LOCK
 ISNULL
 LAST_INSERT_ID
 LCASE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LEAST
 LEFT
 LENGTH
 LOAD_FILE
 LOCATE
 LOG
 LOG10
 LOG2
 LPAD
 LTRIM
 MAKE_SET
 MD5
 MID
 MINUTE
 MONTH
 MONTHNAME
 NOW()
 NULLIF
 OCT
 ORD
 PASSWORD
 PERIOD_ADD
 PERIOD_DIFF
 PI()
 POSITION
 POWER
 QUARTER
 RADIANS
 RAND()
 RELEASE_LOCK
 REPEAT
 REPLACE
 REVERSE
 RIGHT
 ROUND
 RPAD
 RTRIM
 SEC_TO_TIME
 SECOND
 SESSION_USER()
 SHA
 SHA1
 SIGN
 SIN
 SOUNDEX
 SPACE
 STD
 STDDEV
 STRCMP
 SUBDATE
 SUBSTRING
 SUBSTRING_INDEX
 SYSDATE()
 SYSTEM_USER()
 TAN
 TIME_FORMAT
 TIME_TO_SEC
 TO_DAYS
 TRUNCATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UCASE
 UNCOMPRESS
 UNHEX
 UNIX_TIMESTAMP
 USER()
 VERSION()
 WEEK
 WEEKDAY
 YEAR
 YEARWEEK
 GRANT statement
 identifier size
 INSERT statement
 INTERSECT set operator
 JOIN subclause
 keywords
 LIKE operator
 MERGE statement
 OPEN statement
 ORDER BY clause
 RELEASE SAVEPOINT statement
 reserved identifiers
 RETURN statement
 REVOKE statement
 ROLLBACK statement
 SAVEPOINT statement
 schema addressing
 SELECT statement
 {FOR UPDATE | LOCK IN SHARE MODE}
 FROM É USE INDEX
 HIGH_PRIORITY
 IGNORE INDEX
 INTO
 JOIN syntax
 LIMIT
 PROCEDURE
 select_item
 SQL_BIG_RESULT
 SQL_BUFFER_RESULT
 SQL_SMALL_RESULT
 STRAIGHT_JOIN
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 special rules
 START TRANSACTION statement
 SUBQUERY substatement
 TRUNCATE TABLE statement
 UNION set operator
 UPDATE statement
 web site
 WHERE clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

naming conventions
NANVL function (Oracle)
NATIONAL CHAR datatype
 Oracle
 platform comparison
 SQL Server
NATIONAL CHAR VARYING datatype
 Oracle
 platform comparison
 SQL Server
NATIONAL CHARACTER datatype
 Oracle
 platform comparison
 SQL Server
NATIONAL CHARACTER VARYING datatype
 MySQL
 Oracle
 platform comparison
 SQL Server
NATIONAL TEXT datatype
 platform comparison
 SQL Server
NATURAL [INNER | {LEFT | RIGHT}[OUTER]] JOIN
NCHAR datatype
 MySQL
 Oracle
 platform comparison
 SQL Server
NCHAR function
 Oracle
 SQL Server
NCHAR VARYING datatype
 Oracle
 platform comparison
NCHAR() datatype
 SQL Server 2nd
 Sybase adaptive server
NCLOB datatype
 Oracle
 platform comparison
nested parentheses and operator precedence
nested tables
 in FROM clause
 Oracle
 subqueries
NETMASK function (PostgreSQL)
NETWORK function (PostgreSQL)
NEW_TIME function (Oracle)
NEWID() function
 SQL Server
NEXT_DAY function (Oracle)
NLS_CHARSET_DECL_LEN function (Oracle)
NLS_CHARSET_ID function (Oracle)
NLS_CHARSET_NAME function (Oracle)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NLS_INITCAP function (Oracle)
NLS_LOWER function (Oracle)
NLS_UPPER function (Oracle)
NLSSORT function (Oracle)
nondeterministic functions
not equal to (!=) operator 2nd 3rd
not greater than (!>) operator
not less than (!<) operator
NOT operator
NOW() function (MySQL)
NPOINTS function (PostgreSQL)
NTEXT datatype
 platform comparison
 SQL Server 2nd
NTILE function (Oracle)
NULL values
NULLIF function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
NUM datatype
 DB2
NUMBER datatype
 Oracle
 platform comparison
NUMERIC datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL 2nd
 SQL Server 2nd
numeric datatype and unary operators
numeric functions
 enhanced
NUMTODSINTERVAL function (Oracle)
NUMTOYMINTERVAL function (Oracle)
NVARACHAR() datatype (Sybase Adaptive Server)
NVARCHAR datatype
 MySQL
 platform comparison
 SQL Server
NVARCHAR2 datatype
 Oracle
NVARCHAR2() datatype
 platform comparison
NVL function (Oracle)
NVL2 function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

OBJECT_ID function (SQL Server)
OBJECT_NAME function (SQL Server)
OBJECTPROPERTY function
 SQL Server
objects
OCT function (MySQL)
OCTET_LENGTH function
OdbcConnection
 connection string attributes for
OID datatype
 platform comparison
 PostgreSQL
OLAP functions
OleDbConnection
 connection string attributes for
OPEN function
 SQL Server
OPEN statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
OPENDATASOURCE function
 SQL Server
OPENQUERY function
 SQL Server
OPENROWSET function
 SQL Server
operator precedence
operators 2nd
 string
OPERATORS, quick reference
OR operator
ORA_HASH function (Oracle)
Oracle
 allowed characters in identifiers
 ALTER INDEX syntax
 ALTER TABLE statement
 ALTER TABLE syntax
 altering a partitioned table
 basics
 beginning identifier character
 CALL statement
 column_constraint_clause
 COMMIT statement
 compressed tables
 CONNECT statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 connecting using JDBC
 CREATE INDEX syntax
 CREATE/ALTER DATABASE statements
 ACTIVATE
 ADD LOGFILE
 ADD SUPPLEMENTAL LOG DATA
 ALLOW
 ARCHIVELOG 2nd
 AUTOMATIC
 BACKUP CONTROLFILE TO
 BEGIN BACKUP
 BIGFILE
 CANCEL
 CHARACTER SET
 CLEAR LOGFILE
 CONTINUE
 CONTROLFILE REUSE
 CREATE DATAFILE
 CREATE STANDBY CONTROLFILE AS
 DATABASE
 DATAFILE 2nd
 DEFAULT TABLESPACE
 DEFAULT TEMPORARY TABLESPACE
 ENABLE BLOCK CHANGE TRACKING
 ENABLE THREAD
 EXTENT MANAGEMENT 2nd
 FLASHBACK
 FOR
 FORCE LOGGING 2nd
 GUARD
 LOGFILE 2nd
 MANAGED STANDBY DATABASE
 MAXDATAFILES
 MAXINSTANCES
 MAXLOGFILES
 MAXLOGHISTORY
 MAXLOGMEMBERS
 MOUNT
 NATIONAL CHARACTER SET
 OPEN
 PARALLEL
 RECOVER
 REGISTER
 RENAME FILE
 RENAME GLOBAL_NAME TO
 SET DEFAULT TABLESPACE
 SET STANDBY
 SET TIME_ZONE
 SMALLFILE
 STANDBY
 START LOGICAL STANDBY APPLY
 SYSAUX DATAFILE
 TABLESPACE
 TEST
 UNDO TABLESPACE
 UNTIL
 USER SYS IDENTIFIED BY
 USER SYSTEM IDENTIFIED BY
 CREATE/ALTER FUNCTION/PROCEDURE statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AGGREGATE
 ALTER
 AS
 AUTHID
 code_block
 COMPILE
 CREATE
 IN
 IS
 LANGUAGE
 NOCOPY
 OUT
 PARALLEL_ENABLE
 PIPELINED
 CREATE/ALTER INDEX statements
 ALLOCATE EXTENT
 alter_index_partitioning_clause
 ASC
 BITMAP
 CLUSTER
 COALESCE
 COMPRESS
 COMPUTE
 DEALLOCATE UNUSED
 DESC
 ENABLE
 GLOBAL
 INDEXTYPE IS
 LOCAL
 LOGGING
 MONITORING USAGE
 NOSORT
 PARALLEL
 PARAMETERS
 physical_attributes_clause
 rebuild_clause
 RENAME TO
 REVERSE
 SHRINK SPACE
 TABLESPACE DEFAULT
 UNUSABLE
 UPDATE BLOCK REFERENCES
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE statements
 ADD É
 ADD PARTITION
 ALLOCATE EXTENT
 AS object_type
 AS subquery
 CACHE
 CLUSTER
 COALESCE
 COALESCE PARTITION
 COMPRESS
 constraint_state clause
 DEALLOCATE UNUSED
 DROP É

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DROP PARTITION
 ENABLE ROW MOVEMENT
 ENABLE TABLE LOCK
 EXCHANGE PARTITION
 foreign key constraint
 GROUP
 inline_ref_constraint 2nd
 LOGGING
 MERGE PARTITION
 MINIMIZE RECORDS_PER_BLOCK
 MODIFY DEFAULT ATTRIBUTES
 MODIFY É
 MODIFY PARTITION
 MODIFY SUBPARTITION
 MONITORING
 MOVE É
 MOVE PARTITION
 OBJECT IDENTIFIER IS
 OF XMLTYPE
 OIDINDEX
 ON COMMIT
 ORGANIZATION EXTERNAL
 ORGANIZATION HEAP
 ORGANIZATION INDEX
 PARALLEL
 parameters
 partition_clause
 partition_level_subpartition_clause
 partition_storage_clause
 physical_attributes_clause
 PROJECT COLUMN
 RENAME É
 RENAME PARTITION
 ROWDEPENDENCIES
 SET SUBPARTITION TEMPLATE
 SET UNUSED É
 SHRINK SPACE
 SPLIT PARTITION
 storage_clause 2nd
 SUBSTITUTABLE AT ALL LEVELS
 table_constraint_clause
 table_partition_description clause
 table_ref_constraint 2nd
 TABLESPACE
 TRUNCATE PARTITION
 update_index_clause
 UPGRADE INCLUDING DATA
 xml_schema_spec
 XMLTYPE
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 ADD
 AS OBJECT
 AS TABLE OF
 AS VARRAY
 AUTHID
 BODY
 CASCADE
 COMPILE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 compiler_directives 2nd
 CONVERT TO SUBSTITUTABLE
 datatype
 DEBUG
 DROP
 EXCEPTIONS INTO
 EXTERNAL NAME
 FORCE
 INCLUDING TABLE DATA
 INVALIDATE
 MEMBER
 MODIFY
 MODIFY ELEMENT TYPE
 MODIFY LIMIT
 OID
 OR REPLACE
 OVERRIDING
 REPLACE AS OBJECT
 REUSE SETTINGS
 SPECIFICATION
 STATIC
 UNDER
 CREATE/ALTER VIEW statements
 datatypes
 DECLARE CURSOR command
 default database user accounts
 DELETE statement
 DISCONNECT statement
 DROP statements
 [PUBLIC] DATABASE LINK
 [PUBLIC] SYNONYM
 CLUSTER
 CONTEXT
 DATABASE
 DIMENSION
 DIRECTORY
 FUNCTION
 INDEX
 INDEXTYPE
 JAVA
 LIBRARY
 MATERIALIZED VIEW
 OPERATOR
 OUTLINE
 PACKAGE
 PROCEDURE
 PROFILE
 ROLE
 ROLLBACK SEGMENT
 SEQUENCE
 SNAPSHOT
 TABLE
 TABLESPACE
 TRIGGER
 TYPE
 USER
 VIEW
 EXCEPT set operator
 FETCH statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 functions
 ACOS
 ADD_MONTHS
 ASCII
 ASCIISTR
 ASIN
 ATAN
 ATAN2
 BFILENAME
 BIN_TO_NUM
 BITAND
 CARDINALITY
 CHARTOROWID
 CHR
 COALESCE
 COLLECT
 COMPOSE
 CONCAT
 CONVERT
 CORR_K
 COS
 COSH
 CV
 DBTIMEZONE
 DECODE
 DECOMPOSE
 DEPTH
 DEREF
 DUMP
 EMPTY_BLOB()
 EMPTY_CLOB()
 EXISTSNODE
 EXTRACT
 EXTRACTVALUE
 FIRST
 FIRST_VALUE
 FROM_TZ
 GREATEST
 GROUP_ID()
 GROUPING
 GROUPING_ID
 HEXTORAW
 INITCAP
 INSTR
 ITERATION_NUMBER
 LAG
 LAST
 LAST_DAY
 LAST_VALUE
 LEAD
 LEAST
 LENGTH
 LENGTHB
 LNNVL
 LOCALTIMESTAMP
 LOG
 LPAD
 LTRIM
 MAKE_REF

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MEDIAN
 MONTHS_BETWEEN
 NANVL
 NCHAR
 NEW_TIME
 NEXT_DAY
 NLS_CHARSET_DECL_LEN
 NLS_CHARSET_ID
 NLS_CHARSET_NAME
 NLS_INITCAP
 NLS_LOWER
 NLS_UPPER
 NLSSORT
 NTILE
 NULLIF
 NUMTODSINTERVAL
 NUMTOYMINTERVAL
 NVL
 NVL2
 ORA_HASH
 PATH
 POWERMULTISET
 PRESENTNNV
 PRESENTV
 PREVIOUS
 RATIO_TO_REPORT
 RAWTOHEX
 REF
 REFTOHEX
 REGEXP_INSTR
 REGEXP_REPLACE
 REGEXP_SUBSTR
 REMAINDER
 REPLACE
 ROUND
 ROWIDTOCHAR
 RPAD
 RTRIM
 SCN_TO_TIMESTAMP
 SESSIONTIMEZONE
 SET
 SIGN
 SIN
 SINH
 SOUNDEX
 STATS_BINOMIAL_TEST
 STDDEV
 STDDEV_SAMP
 STDEV_POP
 SUBSTR
 SUBSTRB
 SYS_CONNECT_BY_PATH
 SYS_CONTEXT
 SYS_DBURIGEN
 SYS_EXTRACT_UTC
 SYS_GUID()
 SYS_TYPEID
 SYS_XMLAGG
 SYS_XMLGEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SYSDATE
 SYSTIMESTAMP
 TAN
 TANH
 TIMESTAMP_TO_SCN
 TO_BINARY_DOUBLE
 TO_BINARY_FLOAT
 TO_CHAR 2nd
 TO_CLOB
 TO_DATE
 TO_DSINTERVAL
 TO_LOB
 TO_MULTI_BYTE
 TO_NCHAR
 TO_NCLOB
 TO_NUMBER
 TO_SINGLE_BYTE
 TO_TIMESTAMP
 TO_TIMESTAMP_TZ
 TO_YMINTERVAL
 TRANSLATE 2nd
 TREAT
 TRUNC 2nd
 TZ_OFFSET
 UID
 UNISTR
 UPDATEXML
 USERENV
 VALUE
 VAR_POP
 VAR_SAMP
 VARIANCE
 VSIZE
 XMLAGG
 XMLCOLATTVAL
 XMLCONCAT
 XMLELEMENT
 XMLFOREST
 XMLSEQUENCE
 XMLTRANSFORM
 global temporary table
 GRANT statement
 IDENTIFIED BY
 object_privilege
 ON
 role
 system_privilege
 TO
 identifier size
 index-organized table (IOT)
 indexes
 INIT.ORA file
 INSERT statement
 ALL
 conditional multitable
 ELSE
 FIRST
 INSERT
 subquery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TABLE
 table_name
 unconditional multitable
 VALUES
 WHEN
 INTERSECT set operator
 JOIN subclause
 keywords
 LIKE operator
 local index partitioning
 logfiles
 MERGE statement
 nested tables
 object-type tables
 OPEN statement
 ORDER BY clause
 ORGANIZATION HEAP clause
 partitioned and subpartitioned tables
 altering
 physical_attributes_clause
 primary databases
 RELEASE SAVEPOINT statement
 reserved identifiers
 RETURN statement
 REVOKE statement
 ROLLBACK statement
 SAVEPOINT statement
 schema addressing
 SELECT statement
 [CROSS] JOIN
 ALL
 AS
 DISTINCT
 flashback queries
 flashback_query_clause
 FOR UPDATE
 FROM
 FULL [OUTER] JOIN
 INNER JOIN
 INTO
 JOIN
 LEFT [OUTER] JOIN
 MODEL clause
 NATURAL
 ON
 optimizer_hint
 ORDER SIBLINGS BY
 PARTITION
 PARTITION BY
 partitioned outer joins
 RIGHT [OUTER] JOIN
 SAMPLE
 select_item
 SUBPARTITION
 subquery
 TABLE
 UNIQUE
 USING
 VERSIONS BETWEEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE É
 WITH query_name AS
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 special rules
 standby databases
 START TRANSACTION statement
 storage_clause and LOBs
 stored procedures
 SUBQUERY substatement
 syntax for object table
 syntax for XMLType table
 syntax to alter existing database
 syntax to create new database
 system privileges
 {ALTER | DROP} ANY ROLE
 {CREATE | ALTER | DROP | EXECUTE} ANY PROCEDURE
 {CREATE | ALTER | DROP | SELECT} ANY SEQUENCE
 {CREATE | ALTER | DROP} ANY CLUSTER
 {CREATE | ALTER | DROP} ANY DIMENSION
 {CREATE | ALTER | DROP} ANY INDEX
 {CREATE | ALTER | DROP} ANY MATERIALIZED VIEW
 {CREATE | ALTER | DROP} ANY SNAPSHOT
 {CREATE | ALTER | DROP} ANY TYPE
 {CREATE | ALTER | DROP} PROFILE
 {CREATE | ALTER | DROP} ROLLBACK SEGMENT
 {CREATE | ALTER | DROP} TABLESPACE
 {CREATE | DROP | ALTER} ANY OUTLINE
 {CREATE | DROP | EXECUTE } ANY INDEXTYPE
 {CREATE | DROP | EXECUTE} ANY OPERATOR
 {CREATE | DROP } ANY DIRECTORY
 {CREATE | DROP} ANY CONTEXT
 {CREATE | DROP} ANY LIBRARY
 {CREATE | DROP} ANY SYNONYM
 {CREATE | DROP} ANY TRIGGER
 {CREATE | DROP} ANY VIEW
 {CREATE | DROP} PUBLIC SYNONYM
 ADMINISTER DATABASE TRIGGER
 ALTER ANY TABLE
 ALTER ANY TRIGGER
 ALTER DATABASE
 ALTER RESOURCE COST
 ALTER SESSION
 ALTER SYSTEM
 ALTER USER
 ANALYZE ANY
 AUDIT ANY
 AUDIT SYSTEM
 BACKUP ANY TABLE
 BECOME USER
 COMMENT ANY TABLE
 CREATE ANY TABLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CREATE CLUSTER
 CREATE DATABASE LINK
 CREATE DIMENSION
 CREATE INDEXTYPE
 CREATE MATERIALIZED VIEW
 CREATE OPERATOR
 CREATE PROCEDURE
 CREATE PUBLIC DATABASE LINK
 CREATE ROLE
 CREATE SEQUENCE
 CREATE SESSION
 CREATE SNAPSHOT
 CREATE SYNONYM
 CREATE TRIGGER
 CREATE TYPE
 CREATE USER
 CREATE VIEW
 DEBUG ANY PROCEDURE
 DEBUG CONNECT SESSION
 DELETE ANY TABLE
 DROP ANY TABLE
 DROP PUBLIC DATABASE LINK
 DROP USER
 EXECUTE ANY TYPE
 EXEMPT ACCESS POLICY
 FLASHBACK ANY TABLE
 FORCE ANY TRANSACTION
 FORCE TRANSACTION
 GLOBAL QUERY REWRITE
 GRANT ANY OBJECT PRIVILEGE
 GRANT ANY PRIVILEGE
 GRANT ANY ROLE
 INSERT ANY TABLE
 LOCK ANY TABLE
 MANAGE TABLESPACE
 ON COMMIT REFRESH
 QUERY REWRITE
 RESTRICTED SESSION
 RESUMABLE
 SELECT ANY DICTIONARY
 SELECT ANY OUTLINE
 SELECT ANY TABLE
 SYSDBA
 SYSOPER
 UNDER ANY TYPE
 UNDER ANY VIEW
 UNLIMITED TABLESPACE
 UPDATE ANY TABLE
 TRUNCATE TABLE statement
 UDFs
 UNION set operator
 UPDATE statement
 WHERE clause
 window syntax
 XMLType tables
Oracle keywords
ORD function (MySQL)
ORDER BY clause 2nd 3rd
 DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
ordering clause
ORGANIZATION HEAP clause (Oracle)
OVERLAY function

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

parameter object types (ADO.NET)
parameters
 binding input
 bound [See bound parameters]
parametrized statements
parentheses
 nested and operator precedence
PARSENAME function
 SQL Server
partitioned tables
 Oracle
 altering
partitioning clause
PASSWORD function (MySQL)
PATH datatype
 platform comparison
 PostgreSQL
PATH function
 Oracle
 PostgreSQL
PATINDEX function
 SQL Server
PCLOSE function (PostgreSQL)
PERCENT_RANK function 2nd 3rd
PERCENTILE_CONT function 2nd
PERCENTILE_DISC function 2nd
PERIOD_ADD function (MySQL)
PERIOD_DIFF function (MySQL)
permissions
PERMISSIONS function
 SQL Server
physical_attributes_clause (Oracle)
PI() function
 MySQL
 PostgreSQL
 SQL Server
PL/pgSQL
PL/SQL
platform comparisons
POINT datatype
 platform comparison
 PostgreSQL
POINT function (PostgreSQL)
POLYGON datatype
 platform comparison
 PostgreSQL
POLYGON function (PostgreSQL)
POPEN function (PostgreSQL)
POSITION function
 MySQL
POSSTR function (DB2)
PostgreSQL
 allowed characters in identifiers
 beginning identifier character

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CLOSE CURSOR statement
 COMMIT statement
 CONNECT statement
 connecting using JDBC
 CREATE/ALTER DATABASE statements
 CREATE/ALTER FUNCTION/PROCEDURE statements
 CREATE/ALTER INDEX statements
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE statements
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 CREATE/ALTER VIEW statements
 datatypes
 DECLARE CURSOR command
 DELETE statement
 DISCONNECT statement
 DROP statements
 [PROCEDURAL] LANGUAGE
 AGGEGATE
 DATABASE
 FUNCTION
 GROUP
 INDEX
 OPERATOR
 RULE
 SEQUENCE
 TABLE
 TRIGGER
 TYPE
 USER
 VIEW
 EXCEPT set operator
 FETCH statement
 functions
 ABSTIME
 ACOS
 AGE
 AREA
 ASCII
 ASIN
 ATAN
 ATAN2
 BOX
 BROADCAST
 CBRT
 CENTER
 CHAR
 CHAR_LENGTH
 CIRCLE
 COALESCE
 COS
 COT 2nd
 DATE_PART
 DATE_TRUNC
 DEGREES
 DIAMETER
 FLOAT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FLOAT4
 HEIGHT
 HOST
 INITCAP
 INTEGER
 INTERVAL
 ISCLOSED
 ISFINITE
 ISOPEN
 LENGTH
 LOG
 LPAD
 LSEG
 LTRIM
 MASKLEN
 NETMASK
 NETWORK
 NPOINTS
 NULLIF
 PATH
 PCLOSE
 PI()
 POINT
 POLYGON
 POPEN
 POW
 RADIANS
 RADIUS
 RELTIME
 ROUND
 RPAD
 RTRIM
 SET_MASKLEN
 SIN
 SUBSTR
 SUBSTRING
 TAN
 TEXT
 TIMESTAMP
 TO_CHAR
 TO_DATE
 TO_NUMBER
 TO_TIMESTAMP
 TRANSLATE
 TRUNC
 VARCHAR
 WIDTH
 GRANT statement
 identifier size
 INSERT statement
 INTERSECT set operator
 JOIN subclause
 keywords
 LIKE operator
 MERGE statement
 OPEN statement
 ORDER BY clause
 RELEASE SAVEPOINT statement
 reserved identifiers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RETURN statement
 REVOKE statement
 ROLLBACK statement
 SAVEPOINT statement
 schema addressing
 SELECT statement
 [CROSS] JOIN
 ALL
 AS
 FOR UPDATE OF
 FROM
 FULL [OUTER] JOIN
 GROUP BY
 INNER JOIN
 INTO
 LEFT [OUTER] JOIN
 NATURAL
 ON
 ORDER BY
 RIGHT [OUTER] JOIN
 select_item
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 START TRANSACTION statement
 SUBQUERY substatement
 TRUNCATE TABLE statement
 UNION set operator
 UPDATE statement
 web site
 WHERE clause
PostgreSQL keywords
pound symbol (#)
POW function
 MySQL
 PostgreSQL
POWER function
 MySQL
POWERMULTISET function (Oracle)
prefixes
PreparedStatement set methods (JDBC)
PRESENTNNV function (Oracle)
PRESENTV function (Oracle)
PREVIOUS function (Oracle)
primary databases (Oracle)
PRIMARY KEY constraints
PROC_ROLE function
procedural programming
PROCEDURE, quick reference
PROCESSADMIN (SQL Server system role)
programming databases
 examples
 overview

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 overview

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

QUARTER function
 DB2
 MySQL
quoted identifier symbol
quoted identifiers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

RADIANS function
 DB2
 MySQL
 PostgreSQL
 SQL Server
RADIUS function (PostgreSQL)
RAISE_ERROR function (DB2)
RAND function
 DB2
 SQL Server
RAND() function (MySQL)
RANK function 2nd
RANK() function
RATIO_TO_REPORT function (Oracle)
RAW datatype
 Oracle
 platform comparison
RAWTOHEX function (Oracle)
RDBMSs (Relational Database Management System)
ReadCommitted isolation level (Transaction object (ADO.NET))
ReadUncommitted isolation level (Transaction object (ADO.NET))
REAL datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
REAL function (DB2)
REC2XML function (DB2)
records
REF function (Oracle)
REFTOHEX function (Oracle)
REGEXP_INSTR function (Oracle)
REGEXP_REPLACE function (Oracle)
REGEXP_SUBSTR function (Oracle)
REGR family of functions
REGR_AVGX function 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
REGR_AVGY function 2nd 3rd 4th 5th 6th 7th 8th 9th
REGR_COUNT function 2nd 3rd 4th 5th 6th 7th 8th
REGR_INTERCEPT function 2nd 3rd 4th 5th 6th 7th
REGR_R2 function 2nd 3rd 4th 5th 6th
REGR_SLOPE function 2nd 3rd 4th 5th
REGR_SXX function 2nd 3rd 4th
REGR_SXY function 2nd 3rd
REGR_SYY function 2nd
Relational Database Management Systems (RDBMSs)
relational databases, principles of
RELEASE SAVEPOINT statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
RELEASE_LOCK function (MySQL)
RELTIME function (PostgreSQL)
REMAINDER function (Oracle)
REPEAT function
 DB2
 MySQL
RepeatableRead isolation level (Transaction object (ADO.NET))
REPLACE function
 DB2
 MySQL
 Oracle
 SQL Server
REPLICATE function
 SQL Server
reserved words 2nd
resources, freeing
ResultSet methods (JDBC)
 Get
RETURN statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
REVERSE function
 MySQL
 SQL Server
REVOKE statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
RIGHT [OUTER] JOIN
RIGHT function
 DB2
 MySQL
 SQL Server
ROLE_CONTAIN function
ROLE_ID function
ROLE_NAME function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROLLBACK statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
ROUND function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
row processing
ROW_NUMBER function
ROWCNT function
ROWCOUNT_BIG() function
 SQL Server
ROWID datatype
 Oracle
 platform comparison
ROWIDTOCHAR function (Oracle)
rows, filtering and comparison operators
ROWVERSION datatype
 platform comparison
 SQL Server 2nd
RPAD function
 MySQL
 Oracle
 PostgreSQL
RTRIM function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

sampling
SAVEPOINT statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
scalar functions 2nd
 built-in
 categories of
scalar subqueries
Scalar subquey in SELECT item list
Scalar subquey in WHERE/HAVING clause
schema addressing
schemas
SCN_TO_TIMESTAMP function (Oracle)
SEC_TO_TIME function (MySQL)
SECOND function
 DB2
 MySQL
SECURITYADMIN (SQL Server system role)
SELECT statement
 DB2
 examples
 GROUP BY clause
 HAVING clause
 keywords
 ALL
 AS
 DISTINCT
 FROM
 GROUP BY
 HAVING
 JOIN
 ORDER BY
 WHERE
 MySQL
 operators and 2nd
 Oracle
 ORDER BY clause
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
SEQUEL (Structured English Query Language)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SERIAL datatype
 platform comparison
 PostgreSQL
SERIAL4 datatype
 platform comparison
 PostgreSQL
SERIAL8 datatype
 platform comparison
 PostgreSQL
Serializable isolation level (Transaction object (ADO.NET))
SERVERADMIN (SQL Server system role)
SESSION_USER function
SESSION_USER() function (MySQL)
SESSIONTIMEZONE function (Oracle)
SET CATALOG statement, quick reference
SET COLLATION statement, quick reference
SET CONNECTION statement
 DB2
 description
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
SET CONSTRAINT statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
SET datatype
 MySQL
 platform comparison
SET DESCRIPTOR statement, quick reference
SET function (Oracle)
set methods (JDBC PreparedStatement)
set operations
SET PATH statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET ROLE statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
SET SCHEMA statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
SET SESSION AUTHORIZATION statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
SET statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
SET TIME ZONE statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
SET TRANSACTION statement
 DB2
 keywords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
SET_MASKLEN function (PostgreSQL)
SETUPADMIN (SQL Server system role)
SHA function (MySQL)
SHA1 function (MySQL)
shared keywords
SHOW_ROLE() function
SHOW_SEC_SERVICES() function
SIGN function
 DB2
 MySQL
 Oracle
 SQL Server
SIN function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
Single parameter object type (ADO.NET)
SINH function
 DB2
 Oracle
SMALLDATETIME datatype
 platform comparison
 SQL Server 2nd
 Sybase adaptive server
SMALLINT datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
SMALLINT function (DB2)
SMALLMONEY datatype
 platform comparison
 SQL Server
SOME operator 2nd
 keywords
 platform differences
 platform support for
 programming tips
 quick reference
 rules
 SQL2003 syntax
SORTKEY function
SOUNDEX function
 DB2
 MySQL
 Oracle
 SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SPACE function
 DB2
 MySQL
 SQL Server
SQL command reference, quick reference
SQL dialects
SQL history and implementations
SQL Server
 allowed characters in identifiers
 basics
 beginning identifier character
 BIGINT datatype
 BINARY datatype
 CALL statement
 CHAR() datatype
 CLOSE CURSOR statement
 COMMIT statement
 CONNECT statement
 connecting using JDBC
 CREATE/ALTER DATABASE statements
 ADD FILEGROUP
 ADD LOG
 ANSI_NULL_DEFAULT
 ANSI_NULLS
 ANSI_PADDING
 ANSI_WARNINGS
 ARITHABORT
 AUTO_CLOSE
 AUTO_CREATE_STATISTICS
 auto_option
 AUTO_SHRINK
 AUTO_UPDATE_STATISTICS
 COLLATE
 CONCAT_NULL_YIELDS_NULL
 CURSOR_CLOSE_ON_COMMIT
 CURSOR_DEFAULT
 FOR LOAD
 MODIFY FILE
 MODIFY FILEGROUP
 MODIFY NAME
 MULTI_USER
 NUMERIC_ROUNDABORT
 OFFLINE
 ON file_definition
 QUOTED_IDENTIFIER
 READ_ONLY
 RECOVERY
 RECURSIVE_TRIGGERS
 REMOVE FILE
 REMOVE FILEGROUP
 RESTRICTED_USER
 SET
 SINGLE_USER
 sql_options clause
 TORN_PAGE_DETECTION
 WITH
 CREATE/ALTER FUNCTION/PROCEDURE statements
 @parameter datatype
 CREATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ENCRYPTION
 FOR REPLICATION
 RECOMPILE
 RETURNS
 SCHEMABINDING
 WITH
 CREATE/ALTER INDEX statements
 ASC
 CLUSTERED
 DESC
 DROP_EXISTING
 FILLFACTOR
 IGNORE_DUP_KEY
 ON
 PAD_INDEX
 SORT_IN_TEMPDB
 STATISTICS_NORECOMPUTE
 WITH
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE statements
 CHECK
 CHECK CONSTRAINT
 COLLATE
 DEFAULT
 ENABLE TRIGGER
 FOREIGN KEY
 IDENTITY
 NOT FOR REPLICATION
 PRIMARY KEY
 ROWGUIDCOL
 TEXTIMAGE_ON
 WITH CHECK
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 CREATE/ALTER VIEW statements
 datatypes
 compared to Sybase adaptive server
 DATETIME datatype
 DECLARE CURSOR command
 DYNAMIC
 FAST_FORWARD
 FOR
 FOR UPDATE
 FORWARD_ONLY
 GLOBAL
 INSENSITIVE
 KEYSET
 LOCAL
 OPTIMISTIC
 READ_ONLY
 SCROLL
 SCROLL_LOCKS
 SQL-92 compatibility syntax
 STATIC
 Transact-SQL extensioned syntax
 TYPE_WARNING
 DELETE statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 delimiters and operators
 DISCONNECT statement
 DROP statements
 DATABASE
 DEFAULT
 FUNCTION
 INDEX
 PROCEDURE
 RULE
 STATISTICS
 TABLE
 TRIGGER
 TYPE
 VIEW
 EXCEPT set operator
 FETCH statement
 functions
 ACOS
 APP_NAME
 ASCII
 ASIN
 ATAN
 ATN2
 BINARY_CHECKSUM
 CHAR
 CHARINDEX
 CHECKSUM
 CHECKSUM_AGG
 COALESCE
 COL_LENGTH
 COL_NAME
 CONTAINS
 CONTAINSTABLE
 CONVERT
 COS
 COT
 DATABASEPROPERTYEX
 DATALENGTH
 DATEADD
 DATEDIFF
 DATENAME
 DATEPART
 DAY
 DB_ID
 DB_NAME
 DEGREES
 DIFFERENCE
 FILE_ID
 FILE_NAME
 FILEGROUP_ID
 FILEGROUP_NAME
 FILEPROPERTY
 FORMATMESSAGE
 FREETEXT
 FREETEXTTABLE
 FULLTEXTCATALOGPROPERTY
 FULLTEXTSERVICEPROPERTY
 GETANSINULL
 GETDATE()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 GETUTCDATE()
 GROUPING
 HOST_ID()
 HOST_NAME()
 IDENT_CURRENT
 IDENT_INCR
 IDENT_SEED
 IDENTITY
 INDEX_COL
 INDEXPROPERTY
 IS_MEMBER
 IS_SRVROLEMEMBER
 ISDATE
 ISNULL
 ISNUMERIC
 LEFT
 LEN
 LOG
 LOG10
 LTRIM
 MONTH
 NCHAR
 NEWID()
 NULLIF
 OBJECT_ID
 OBJECT_NAME
 OBJECTPROPERTY
 OPEN
 OPENDATASOURCE
 OPENQUERY
 OPENROWSET
 PARSENAME
 PATINDEX
 PERMISSIONS
 PI()
 RADIANS
 RAND
 REPLACE
 REPLICATE
 REVERSE
 RIGHT
 ROUND
 ROWCOUNT_BIG
 RTRIM
 SIGN
 SIN
 SOUNDEX
 SPACE
 STATS_DATE
 STDEV
 STDEVP
 STR
 STUFF
 SUBSTRING
 SUSER_ID
 SUSER_SID
 SUSER_SNAME
 TAN
 TEXTPTR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TEXTVALID
 TYPEPROPERTY
 UNICODE
 USER_ID
 USER_NAME
 VAR
 VARP
 YEAR
 GRANT statement
 identifier size
 INSERT statement
 INTERSECT set operator
 JOIN subclause
 keywords
 LIKE operator
 MERGE statement
 NCHAR() datatype 2nd
 nested triggers
 NTEXT datatype
 OPEN statement
 ORDER BY clause
 recursive triggers
 RELEASE SAVEPOINT statement
 reserved identifiers
 RETURN statement
 REVOKE statement
 ROLLBACK statement
 ROWVERSION datatype
 SAVEPOINT statement
 schema addressing
 SELECT statement
 COMPUTE clause
 FOR
 FROM
 GROUP BY
 INTO
 OPTION
 ORDER BY
 TOP
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 SMALLDATETIME datatype
 SQL_VARIANT datatype
 START TRANSACTION statement
 stored procedures 2nd
 SUBQUERY substatement
 system roles
 BULKADMIN
 DB_ACCESSADMIN
 DB_BACKUPOPERATOR
 DB_DATAREADER
 DB_DATAWRITER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DB_DDLADMIN
 DB_DENYDATAREADER
 DB_DENYDATAWRITER
 DB_OWNER
 DB_SECURITYADMIN
 DBCREATOR
 DISKADMIN
 PROCESSADMIN
 SECURITYADMIN
 SERVERADMIN
 SETUPADMIN
 SYSADMIN
 TRUNCATE TABLE statement
 UDFs
 UNION set operator
 UNIQUEIDENTIFIER datatype
 UPDATE statement
 VARBINARY() datatype
 VARCHAR() datatype
 versus Sybase adaptive server
 functions
 web site
 WHERE clause
SQL Standard web site
SQL/CLI (Call-Level Interface)
SQL/Foundation
SQL/Framework
SQL/JRT (Java Routines and Types)
SQL/MED (Management of External Data)
SQL/OBJ (Object Language Binding)
SQL/PSM (Persistent Stored Modules)
SQL/Schemata
SQL/XML 2nd
SQL_VARIANT datatype
 platform comparison
 SQL Server 2nd
SQL2003
 allowed characters in identifiers
 beginning identifier character
 categories and datatypes
 data structures
 identifier size
 keywords
 new features
 numeric functions
 reserved identifiers
 schema addressing
 statement classes
 supplemental features packages
 window syntax
SQL2003 keywords
SQL2003 syntax
 ALL operator
 ANY operator
 BETWEEN operator
 CALL statement
 CLOSE CURSOR statement
 COMMIT statement
 CONNECT statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CREATE/ALTER FUNCTION/PROCEDURE statements
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE statements
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 CREATE/ALTER VIEW statements
 DECLARE CURSOR command
 DELETE statement
 DISCONNECT statement
 DROP statements
 EXCEPT set operator
 EXISTS operator
 FETCH statement
 GRANT statement
 IN operator
 INSERT statement
 INTERSECT set operator
 IS operator
 JOIN subclause
 LIKE operator
 MERGE statement
 OPEN statement
 ORDER BY clause
 RELEASE SAVEPOINT statement
 RETURN statement
 REVOKE statement
 ROLLBACK statement
 SAVEPOINT statement
 SELECT statement
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 SOME operator
 START TRANSACTION statement
 SUBQUERY substatement
 UNION set operator
 UPDATE statement
 WHERE clause
SQL92
SQL99
 deleted elements in SQL2003
SqlConnection
 connection string attributes for
SQLPL
SQRT function
standby databases (Oracle)
START TRANSACTION statement
 DB2
 MySQL
 Oracle
 platform support for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
statement objects
 associating SQL with
 creating
 executing
statements
 executing
 preparing and executing
 re-executing
 Sybase adaptive server SQL
STATS_BINOMIAL_TEST function (Oracle)
STATS_DATE function
 SQL Server
STD function (MySQL)
STDDEV function
 DB2
 MySQL
 Oracle
STDDEV_POP function 2nd
STDDEV_SAMP function 2nd
 Oracle
STDEV function
 SQL Server
STDEV_POP function (Oracle)
STDEVP function
 SQL Server
STOP LOGICAL STANDBY APPLY
storage_clause (Oracle)
stored procedures
 operators and 2nd
STR function (SQL Server)
STRCMP function (MySQL)
string functions and operators
String parameter object type (ADO.NET)
StringFixedLength parameter object type (ADO.NET)
STUFF function (SQL Server)
SUBDATE function (MySQL)
subpartitioned tables
 Oracle
 altering
subqueries
 correlated
 nested table
 scalar
 table
SUBQUERY substatement
 DB2
 examples
 keywords
 MySQL
 Oracle
 platform support for 2nd
 PostgreSQL
 programming tips
 rules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SQL Server
 SQL2003 syntax
SUBSTR function
 DB2
 Oracle
 PostgreSQL
SUBSTRB function (Oracle)
SUBSTRING function
 MySQL
 PostgreSQL
 SQL Server
SUBSTRING_INDEX function (MySQL)
subtraction (-) arithmetic operator
suffixes
SUM function 2nd
SUSER_ID function
 SQL Server
SUSER_NAME function
SUSER_SID function
 SQL Server
SUSER_SNAME function
 SQL Server
SYB_SENDMSG function
Sybase Adaptive Aerver
 TIMESTAMP datatype
Sybase Adaptive Server
 BINARY datatype
 CHAR() datatype
 datatypes
 compared to SQL Server
 DATETIME datatype
 keywords 2nd
 NCHAR() datatype
 NVARACHAR() datatype
 SMALLDATETIME datatype
 SQL statements
 statements
 supported functions
 UNICHAR datatype
 UNIVARCHAR datatype
 VARBINARY() datatype
 VARCHAR() datatype
 versus SQL Server
 functions
Sybase Adaptive Server keywords
Sybase adaptive server keywords
SYS_CONNECT_BY_PATH function (Oracle)
SYS_CONTEXT function (Oracle)
SYS_DBURIGEN function (Oracle)
SYS_EXTRACT_UTC function (Oracle)
SYS_GUID() function (Oracle)
SYS_TYPEID function (Oracle)
SYS_XMLAGG function (Oracle)
SYS_XMLGEN function (Oracle)
SYSADMIN (SQL Server system role)
SYSDATE function (Oracle)
SYSDATE() function (MySQL)
system delimiters
SYSTEM_USER function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SYSTEM_USER() function (MySQL)
SYSTIMESTAMP function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

TABLE datatype
 platform comparison
 SQL Server
table subqueries
 nested
table-level constraints
TABLE_NAME function (DB2)
TABLE_SCHEMA function (DB2)
tables
TABLESAMPLE clause
TAN function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
TANH function
 DB2
 Oracle
testing expressions against range of values
TEXT datatype
 MySQL
 platform comparison
 PostgreSQL
 SQL Server
TEXT function (PostgreSQL)
TEXTPTR function (SQL Server)
TEXTVALID function (SQL Server)
TIME datatype
 DB2
 platform comparison
 PostgreSQL
TIME function (DB2)
TIME_FORMAT function (MySQL)
TIME_TO_SEC function (MySQL)
TIMESPAN datatype
 platform comparison
 PostgreSQL
TIMESTAMP datatype
 DB2
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
 Sybase adaptive server
TIMESTAMP function
 DB2
 PostgreSQL
TIMESTAMP_FORMAT function (DB2)
TIMESTAMP_ISO function (DB2)
TIMESTAMP_TO_SCN function (Oracle)
TIMESTAMPDIFF function (DB2)
TIMETZ datatype
 platform comparison

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PostgreSQL
TINYINT datatype
 platform comparison
 SQL Server
TO_BINARY_DOUBLE function (Oracle)
TO_BINARY_FLOAT function (Oracle)
TO_CHAR function
 DB2
 Oracle 2nd
 PostgreSQL
TO_CLOB function (Oracle)
TO_DATE function
 DB2
 Oracle
 PostgreSQL
TO_DAYS function (MySQL)
TO_DSINTERVAL function (Oracle)
TO_LOB function (Oracle)
TO_MULTI_BYTE function (Oracle)
TO_NCHAR function (Oracle)
TO_NCLOB function (Oracle)
TO_NUMBER function
 Oracle
 PostgreSQL
TO_SINGLE_BYTE function (Oracle)
TO_TIMESTAMP function
 Oracle
 PostgreSQL
TO_TIMESTAMP_TZ function (Oracle)
TO_UNICHAR function
TO_YMINTERVAL function (Oracle)
Transact-SQL
Transaction object
 ADO.NET
 JDBC
TRANSACTION_NONE isolation level (Transaction object (JDBC))
TRANSACTION_READ_COMMITTED isolation level (Transaction object (JDBC))
TRANSACTION_READ_UNCOMMITTED isolation level (Transaction object (JDBC))
TRANSACTION_REPEATABLE_READ isolation level (Transaction object (JDBC))
TRANSACTION_SERIALIZABLE isolation level (Transaction object (JDBC))
transactions
 beginning 2nd
 ADO.NET
 JDBC
 closing and making permanent
 committing
 ending
 explicit
 implicit
 managing
 rolling back
TRANSLATE function
 DB2
 Oracle 2nd
 PostgreSQL
TREAT function (Oracle)
TRIM function
TRUNC function
 DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Oracle 2nd
 PostgreSQL
TRUNCATE function
 DB2
 MySQL
TRUNCATE TABLE statement
 DB2
 defacto standard syntax
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
TSEQUEL function
Twelve Principles of Relational Databases
TYPE_ID function (DB2)
TYPE_NAME function (DB2)
TYPE_SCHEMA function (DB2)
TYPEPROPERTY function
 SQL Server
TZ_OFFSET function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

UCASE function (MySQL)
UHIGHSURR function
UID function (Oracle)
UInt parameter object type (ADO.NET)
ULOWSURR function
unary operators 2nd
UNCOMPRESS function (MySQL)
UNHEX function (MySQL)
UNICHAR datatype (Sybase adaptive server)
UNICODE function
 SQL Server
UNION set operator
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
UNIQUE constraints
UNIQUEIDENTIFIER datatype
 platform comparison
 SQL Server 2nd
UNISTR function (Oracle)
UNIVARCHAR datatype (Sybase adaptive server)
UNIX_TIMESTAMP function (MySQL)
Unspecified isolation level (Transaction object (ADO.NET))
UPDATE statement
 DB2
 keywords
 MySQL
 operators and 2nd
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
UPDATEXML function (Oracle)
UPPER function
URLs
 MySQL
 open source
 Oracle
 PostgreSQL
 SQL Server
UROWID datatype
 Oracle
 platform comparison
USCALAR function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user
USER() function (MySQL)
USER_ID function (SQL Server)
USER_NAME function (SQL Server)
USERENV function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

VALID_NAME function
VALID_USER function
VALUE function
 DB2
 Oracle
VAR function
 DB2
 SQL Server
VAR_POP function 2nd
 Oracle
VAR_SAMP function 2nd
 Oracle
VARBINARY datatype
 platform comparison
 SQL Server
VARBINARY() datatype
 SQL Server
 Sybase adaptive server
VARBIT datatype
 platform comparison
VARCHAR datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
VARCHAR FOR BIT DATA datatype
 DB2
 platform comparison
VARCHAR function
 DB2
 PostgreSQL
VARCHAR() datatype
 SQL Server
 Sybase adaptive server
VARCHAR_FORMAT function (DB2)
VARCHAR2 datatype
 Oracle
 platform comparison
VARGRAPHIC datatype
 DB2
 platform comparison
VARGRAPHIC function (DB2)
VARIANCE function
 DB2
 Oracle
VARP function
 SQL Server
Vector subquery in WHERE/HAVING clause
VERSION() function (MySQL)
views 2nd
 operators and 2nd
VSIZE function (Oracle)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSIZE function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

WEEK function
 DB2
 MySQL
WEEK_ISO function (DB2)
WEEKDAY function (MySQL)
WHERE clause 2nd 3rd
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
WHERE clause (SELECT statement)
 comparison operators and
 logical operators and
WIDTH function (PostgreSQL)
WIDTH_BUCKET function
window functions 2nd
 DB2 syntax
 group clause
 Oracle syntax
 ordering clause
 partitioning clause
 SQL2003 syntax
windowing functions
WITH[OUT] SESSION SHUTDOWN

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Xbase
XML datatype
 Oracle
 platform comparison
XML schema
 tables based on
XMLAGG function (Oracle)
XMLCOLATTVAL function (Oracle)
XMLCONCAT function (Oracle)
XMLELEMENT function (Oracle)
XMLFOREST function (Oracle)
XMLSEQUENCE function (Oracle)
XMLTRANSFORM function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

YEAR function
 DB2
 MySQL
 SQL Server
YEARWEEK function (MySQL)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ABS function
ABSTIME function (PostgreSQL)
ABSVAL function (DB2)
ACOS function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
ADD_MONTHS function (Oracle)
ADDDATE function (MySQL)
addition (+) arithmetic operator
ADO.NET
 beginning transactions
 bound parameters
 closing connection
 committing transactions
 database connection
 database program example
 DataReader methods
 Get
 error handling
 executing statements
 parameter object types
 retrieving data
 rolling back transactions
AGE function (PostgreSQL)
aggregate functions
ALL operator 2nd
 keywords
 platform differences
 platform support for
 programming tips
 quick reference
 rules
 SQL2003 syntax
ALTER DATABASE statement [See CREATE/ALTER DATABASE statements]
ALTER DOMAIN statement, quick reference
ALTER FUNCTION statement [See CREATE/ALTER FUNCTION/PROCEDURE statements]
ALTER INDEX statement [See CREATE/ALTER INDEX statements]
ALTER METHOD statement [See CREATE/ALTER METHOD statements]
ALTER PROCEDURE statement [See CREATE/ALTER FUNCTION/PROCEDURE statements]
ALTER TABLE statement [See CREATE/ALTER TABLE statements]
ALTER TRIGGER statement [See CREATE/ALTER TRIGGER statements]
ALTER TYPE statement [See CREATE/ALTER TYPE statements]
ALTER VIEW statement [See CREATE/ALTER VIEW statements]
AND operator
ANSI standard
AnsiString parameter object type (ADO.NET)
AnsiStringFixedLength parameter object type (ADO.NET)
ANY operator 2nd
 keywords
 platform differences
 platform support for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 programming tips
 quick reference
 rules
 SQL2003 syntax
APP_NAME function
 SQL Server
AREA function (PostgreSQL)
arithmetic operators 2nd
AS keyword and assignment operator
ASCII function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
ASCIISTR function (Oracle)
ASIN function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
assignment (=) operator
assignment operators
ATAN function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
ATAN2 function
 DB2
 MySQL
 Oracle
 PostgreSQL
ATANH function (DB2)
ATN2 function (SQL Server)
AuthorizationID
AVG function 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

BENCHMARK function (MySQL)
BETWEEN clause
BETWEEN operator 2nd
 keywords
 platform differences
 platform support for
 programming tips
 quick reference
 rules
 SQL2003 syntax
BFILE datatype
 Oracle
 platform comparison
BFILENAME function (Oracle)
BIGINT datatype
 DB2
 MySQL
 platform comparison
 SQL Server 2nd
BIGINT function (DB2)
BIGSERIAL datatype
 platform comparison
 PostgreSQL 2nd
BIN function (MySQL)
BIN_TO_NUM function (Oracle)
BINARY datatype
 platform comparison
 SQL Server 2nd
 Sybase adaptive server
BINARY function (MySQL)
Binary parameter object type (ADO.NET)
BINARY_CHECKSUM function
 SQL Server
BINARY_DOUBLE datatype
 Oracle
 platform comparison
BINARY_FLOAT datatype
 Oracle
 platform comparison
BIT datatype
 MySQL
 platform comparison
 PostgreSQL
 SQL Server
BIT VARYING datatype
 platform comparison
 PostgreSQL
BIT_AND function (MySQL)
BIT_COUNT function (MySQL)
BIT_LENGTH function
BIT_OR function (MySQL)
BITAND function (Oracle)
bitwise AND (&) operator
bitwise exclusive OR (^) operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bitwise operators
bitwise OR (|) operator
BLOB datatype
 DB2
 MySQL
 Oracle
 platform comparison
BLOB function (DB2)
BOOL datatype
 MySQL
 platform comparison
 PostgreSQL
Boolean comparison operators
BOOLEAN datatype
 platform comparison
 PostgreSQL
Boolean parameter object type (ADO.NET)
bound parameters
 ADO.NET
 JDBC
BOX datatype
 platform comparison
 PostgreSQL
BOX function (PostgreSQL)
BROADCAST function (PostgreSQL)
built-in scalar functions
BULKADMIN (SQL Server system role)
Byte parameter object type (ADO.NET)
BYTEA datatype
 platform comparison
 PostgreSQL

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

CALL statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
 versus EXECUTE statement
candidate key
CARDINALITY function (Oracle)
CASE function
CAST function 2nd
catalogs
CBRT function (PostgreSQL)
CEIL function
CENTER function (PostgreSQL)
Chaos isolation level (Transaction object (ADO.NET))
CHAR datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
CHAR FOR BIT DATA datatype
 DB2
 platform comparison
CHAR function
 DB2
 MySQL
 PostgreSQL
 SQL Server
CHAR VARYING datatype
 DB2
 Oracle
 platform comparison
 SQL Server
CHAR() datatype
 SQL Server
 Sybase adaptive server
CHAR_LENGTH function 2nd
 PostgreSQL
CHARACTER datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
character sets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

character string literals
CHARACTER VARYING datatype
 DB2
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
CHARINDEX function (SQL Server)
CHARTOROWID function (Oracle)
CHECK constraints
CHECKSUM function
 SQL Server
CHECKSUM_AGG function
 SQL Server
CHR function
 DB2
 Oracle
CIDR datatype
 platform comparison
 PostgreSQL
CIRCLE datatype
 platform comparison
 PostgreSQL
CIRCLE function (PostgreSQL)
CLOB datatype
 DB2
 Oracle
 platform comparison
CLOB function (DB2)
CLOSE CURSOR statement
 DB2
 keywords
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
clusters
COALESCE function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
Codd, E. F.
COL_LENGTH function (SQL Server)
COL_NAME function (SQL Server)
collations
COLLECT function (Oracle)
column-level constraints
column_constraint_clause (Oracle)
columns
COMMIT statement
 DB2
 keywords
 MySQL
 Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
COMMIT TO SWITCHOVER TO
COMPARE function
comparison operators 2nd
COMPOSE function (Oracle)
COMPRESS function (MySQL)
compressed tables in Oracle
CONCAT function
 DB2
 Oracle
CONCAT_WS function (MySQL)
concatenation operator
CONNECT statement
 DB2
 keywords
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
CONNECTION_ID() function (MySQL)
connections (database)
 closing
 opening
 ADO.NET
 JDBC
connectivity, establishing
constraints
 CHECK
 FOREIGN KEY
 PRIMARY KEY
 scope
 syntax
 UNIQUE
CONTAINS function
 SQL Server
CONTAINSTABLE function
 SQL Server
CONV function (MySQL)
CONVERT function
 Oracle
 SQL Server
CORR function 2nd
CORR_K function (Oracle)
correlated subqueries
Correlated subquery in WHERE/HAVING clause
COS function
 DB2
 MySQL
 Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PostgreSQL
 SQL Server
COSH function
 DB2
 Oracle
COT function
 DB2
 MySQL
 PostgreSQL 2nd
 SQL Server
COUNT function 2nd
COUNT_BIG function
COVAR_POP function 2nd
COVAR_SAMP function 2nd
CREATE/ALTER DATABASE statements
 DB2 [See DB2, CREATE/ALTER DATABASE statements]
 MySQL
 Oracle [See Oracle, CREATE/ALTER DATABASE statements]
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server [See SQL Server, CREATE/ALTER DATABASE statements]
CREATE/ALTER DOMAIN statements, quick reference
CREATE/ALTER FUNCTION/PROCEDURE statements
 DB2 [See DB2, CREATE/ALTER FUNCTION/PROCEDURE statements]
 keywords
 CALL ON NULL INPUT
 CASCADE
 code_block
 CONTAINS SQL
 CREATE
 DETERMINISTIC
 DYNAMIC RESULT SETS
 IN
 LANGUAGE
 MODIFIES SQL DATA
 NAME
 NO SQL
 OUT
 PARAMETER STYLE
 READS SQL DATA
 RESTRICT
 RETURN NULL ON NULL INPUT
 RETURNS
 SPECIFIC
 STATIC DISPATCH
 MySQL
 Oracle [See Oracle, CREATE/ALTER FUNCTION/PROCEDURE statements]
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server [See SQL Server, CREATE/ALTER FUNCTION/PROCEDURE statements]
 SQL2003 syntax
CREATE/ALTER INDEX statements
 common vendor syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DB2 [See DB2, CREATE/ALTER INDEX statements]
 keywords
 MySQL
 Oracle [See Oracle, CREATE/ALTER INDEX statements]
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server [See SQL Server, CREATE/ALTER INDEX statements]
CREATE/ALTER METHOD statements
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server
 SQL2003 syntax
CREATE/ALTER ROLE statements
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
CREATE/ALTER SCHEMA statements
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
CREATE/ALTER TABLE statements
 DB2 [See DB2, CREATE/ALTER TABLE statements]
 keywords
 ADD 2nd
 ALTER
 CASCADE
 column_name
 CONSTRAINT
 DROP COLUMN
 DROP CONSTRAINT
 GLOBAL TEMPORARY
 LIKE
 LOCAL TEMPORARY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 OF
 ON COMMIT
 REF IS
 RESTRICT
 MySQL [See MySQL, CREATE/ALTER TABLE statements]
 Oracle [See Oracle, CREATE/ALTER TABLE statements]
 platform support for
 PostgreSQL [See PostgreSQL, CREATE/ALTER TABLE statements]
 programming tips
 quick reference
 rules
 SQL Server [See SQL Server, CREATE/ALTER TABLE statements]
 SQL2003 syntax
CREATE/ALTER TRIGGER statements
 DB2
 keywords
 MySQL
 Oracle [See Oracle, CREATE/ALTER TRIGGER statements]
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server (SQL Server, CREATE/ALTER TRIGGER statements)
 SQL2003 syntax
CREATE/ALTER TYPE statements
 DB2 [See DB2, CREATE/ALTER TYPE statements]
 keywords
 MySQL
 Oracle [See Oracle, CREATE/ALTER TYPE statements]
 platform support for
 PostgreSQL [See PostgreSQL, CREATE/ALTER TYPE statements]
 programming tips
 quick reference 2nd
 rules
 SQL Server
 SQL2003 syntax
CREATE/ALTER VIEW statements
 DB2 [See DB2, CREATE/ALTER VIEW statements]
 keywords
 MySQL
 Oracle [See Oracle, CREATE/ALTER VIEW statements]
 platform support for
 PostgreSQL
 programming tips
 quick reference 2nd
 rules
 SQL Server
 SQL2003 syntax
CROSS JOIN
CUME_DIST function 2nd 3rd
CURDATE() function (MySQL)
Currency parameter object type (ADO.NET)
CURSOR datatype
 platform comparison
 SQL Server
cursors [See CLOSE CURSOR statement DECLARE CURSOR command]
CURTIME() function (MySQL)
CV function (Oracle)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CV function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

data
 retrieving
 ADO.NET
 JDBC
Data Control Language (DCL)
Data Definition Language (DDL)
Data Manipulation Language (DML)
data structures
database objects and operators 2nd
database programming [See programming databases]
DATABASE() function (MySQL)
DATABASEPROPERTYEX function
 SQL Server
DATALENGTH function (SQL Server)
DATALINK datatype
 DB2
 platform comparison
DataReader methods (ADO.NET)
 Get
datatypes
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
 Sybase adaptive server
DATE datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
DATE function (DB2)
DATE_ FORMAT function (MySQL)
DATE_ADD function (MySQL)
DATE_PART function (PostgreSQL)
DATE_SUB function (MySQL)
DATE_TRUNC function (PostgreSQL)
DATEADD function (SQL Server)
DATEDIFF function (SQL Server)
DATENAME function (SQL Server)
DATEPART function (SQL Server)
DATETIME datatype
 MySQL
 platform comparison
 PostgreSQL
 SQL Server 2nd
 Sybase adaptive server
DateTime parameter object type (ADO.NET)
DAY function
 DB2
 SQL Server
DAYNAME function
 DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MySQL
DAYOFMONTH function (MySQL)
DAYOFWEEK function
 DB2
 MySQL
DAYOFWEEK_ISO function (DB2)
DAYOFYEAR function
 DB2
 MySQL
DAYS function (DB2)
DB_ACCESSADMIN (SQL Server system role)
DB_BACKUPOPERATOR (SQL Server system role)
DB_DATAREADER (SQL Server system role)
DB_DATAWRITER (SQL Server system role)
DB_DDLADMIN (SQL Server system role)
DB_DENYDATAREADER (SQL Server system role)
DB_DENYDATAWRITER (SQL Server system role)
DB_ID function (SQL Server)
DB_NAME function (SQL Server)
DB_OWNER (SQL Server system role)
DB_SECURITYADMIN (SQL Server system role)
DB2
 allowed characters in identifiers
 beginning identifier character
 CALL statement
 CLOSE CURSOR statement
 COMMIT statement
 CONNECT statement
 connecting using JDBC
 CREATE/ALTER DATABASE statements
 ALIAS
 APPLY
 AT DBPARITIONNUM
 AUTOCONFIGURE
 CATALOG TABLESPACE
 COLLATE USING
 CREATE {DATABASE | DB}
 DFT_EXTENT_SZ
 EXTENTSIZE
 MANAGED BY
 NUMSEGS
 ON
 OVERHEAD
 PREFETCHSIZE
 tablespace_definition
 TEMPORARY TABLESPACE
 TRANSFERRATE
 USER TABLESPACE
 USING CODESET
 WITH
 CREATE/ALTER FUNCTION/PROCEDURE statements
 CARDINALITY
 CONTAINS SQL
 DBINFO
 EXTERNAL NAME
 FENCED
 FINAL CALL
 INHERIT SPECIAL REGISTERS
 LANGUAGE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MODIFIES SQL DATA
 NO SQL
 PARALLEL
 PARAMETER STYLE
 PREDICATES
 PROGRAM TYPE
 READS SQL DATA
 RETURNS
 SCRATCHPAD
 THREADSAFE
 TRANSFORM GROUP
 CREATE/ALTER INDEX statements
 ALLOW REVERSE SCANS
 ASC
 CLUSTER
 COLLECT STATISTICS
 DESC
 EXTEND USING
 INCLUDE
 MINPCTUSED
 PCTFREE
 SPECIFICATION ONLY
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE statements
 ACTIVATE NOT LOGGED INITIALLY
 ACTIVATE VALUE COMPRESSION
 ADD
 ALTER [COLUMN]
 ALTER {CHECK | FOREIGN KEY}
 APPEND
 AS
 AS IDENTITY
 COMPACT
 COMPRESS SYSTEM DEFAULT
 copy_options
 DATA CAPTURE 2nd
 DEFINITION ONLY
 derived_table_options
 DROP
 FILE LINK CONTROL
 GENERATED
 IN
 intermediate table, defining
 LIKE
 LINKTYPE URL
 LOCKSIZE
 LOGGED
 MODE DB2OPTIONS
 NLINE LENGTH
 NO LINK CONTROL
 NOT LOGGED INITIALLY
 OPTIONS
 ORGANIZE BY
 PARTITIONING KEY
 PCTFREE
 REPLICATED
 SCOPE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SET MATERIALIZED QUERY
 UNDER
 VALUE COMPRESSION
 VOLATILE
 WITH RESTRICT ON DROP
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 ADD METHOD
 ALTER METHOD
 DISTINCT
 DROP METHOD
 FENCED
 INLINE LENGTH
 METHOD
 MODE DB2SQL
 OVERRIDING
 RESTRICT
 THREADSAFE
 WITH COMPARISONS
 WITHOUT COMPARISONS
 CREATE/ALTER VIEW statements
 WITH CHECK OPTION clause
 datalink-related attributes
 datatypes
 DECLARE CURSOR command
 DELETE statement
 DISCONNECT statement
 DROP statements
 [DISTINCT] TYPE
 [SPECIFIC] FUNCTION
 [SPECIFIC] METHOD
 BUFFERPOOL
 DATABASE PARTITION GROUP
 EVENT MONITOR
 FUNCTION MAPPING
 INDEX
 NICKNAME
 PACKAGE
 RESTRICT
 SCHEMA
 SEQUENCE
 SERVER
 TABLE
 TABLESPACE
 TRANSFORM
 TRIGGER
 TYPE MAPPING
 USER MAPPING FOR
 VIEW
 WRAPPER
 EXCEPT set operator
 external scalar user-defined functions
 external stored procedure
 external table user-defined functions
 FETCH statement
 functions
 ABSVAL
 ACOS
 ASCII

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ASIN
 ATAN
 ATAN2
 ATANH
 BIGINT
 BLOB
 CHAR
 CHR
 CLOB
 COALESCE
 CONCAT
 COS
 COSH
 COT
 DATE
 DAY
 DAYNAME
 DAYOFWEEK
 DAYOFWEEK_ISO
 DAYOFYEAR
 DAYS
 DBCLOB
 DBPARTITIONNUM
 DEC
 DECIMAL
 DECRYPT_BIN
 DECRYPT_CHAR
 DEGREES
 DEREF
 DIFFERENCE
 DIGITS
 DOUBLE
 ENCRYPT
 EVENT_MON_STATE
 FLOAT
 GENERATE_UNIQUE()
 GETHINT
 GRAPHIC
 HASHEDVALUE
 HEX
 HOUR
 IDENTITY_VAL_LOCAL()
 INSERT
 INTEGER
 JULIAN_DAY
 LEFT
 LENGTH
 LOCATE
 LOG
 LOG10
 LONG_VARCHAR
 LONG_VARGRAPHIC
 LTRIM
 MICROSECOND
 MIDNIGHT_SECONDS
 MINUTE
 MONTH
 MONTHNAME
 MULTIPLY_ALT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NULLIF
 POSSTR
 QUARTER
 RADIANS
 RAISE_ERROR
 RAND
 REAL
 REC2XML
 REPEAT
 REPLACE
 RIGHT
 ROUND
 RTRIM
 SECOND
 SIGN
 SIN
 SINH
 SMALLINT
 SOUNDEX
 SPACE
 STDDEV
 SUBSTR
 TABLE_NAME
 TABLE_SCHEMA
 TAN
 TANH
 TIME
 TIMESTAMP
 TIMESTAMP_FORMAT
 TIMESTAMP_ISO
 TIMESTAMPDIFF
 TO_CHAR
 TO_DATE
 TRANSLATE
 TRUNC
 TRUNCATE
 TYPE_ID
 TYPE_NAME
 TYPE_SCHEMA
 VALUE
 VAR
 VARCHAR
 VARCHAR_FORMAT
 VARGRAPHIC
 VARIANCE
 WEEK
 WEEK_ISO
 YEAR
 GRANT statement
 {ALTER | USAGE} ON SEQUENCE
 {ALTERIN | CREATEIN | DROPIN} ON SCHEMA
 {BIND | CONTROL | EXECUTE} ON PACKAGE
 CONTROL ON INDEX
 database_privileges
 EXECUTE ON
 object_privilege
 PASSTHRU ON SERVER
 TO USER
 USE OF TABLESPACE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WITH GRANT OPTION
 identifier size
 INSERT statement
 INTERSECT set operator
 JOIN subclause
 keywords
 LDAP
 LIKE operator
 MERGE statement
 OLE-DB external table user-defined functions
 OPEN statement
 ORDER BY clause
 RELEASE SAVEPOINT statement
 reserved identifiers
 RETURN statement
 REVOKE statement
 { ALTERIN | CREATEIN | DROPIN } ON SCHEMA
 { BIND | CONTROL | EXECUTE} ON PACKAGE
 {ALTER | USAGE} ON SEQUENCE
 CONTROL ON INDEX
 database_privileges
 EXECUTE ON
 FROM
 levels of system privileges
 object_privilege
 PASSTHRU ON SERVER
 RESTRICT
 USE OF TABLESPACE
 ROLLBACK statement
 SAVEPOINT statement
 schema addressing
 SELECT statement
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 sourced user-defined functions
 SQL stored procedure
 SQL user-defined functions
 START TRANSACTION statement
 SUBQUERY substatement
 TRUNCATE TABLE statement
 UNION set operator
 UPDATE statement
 web site
 WHERE clause
 window syntax
DB2 keywords
DBCLOB datatype
 DB2
 platform comparison
DBCLOB function (DB2)
DBCREATOR (SQL Server system role)
DBPARTITIONNUM function (DB2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBTIMEZONE function (Oracle)
DEC datatype
 DB2
 platform comparison
 SQL Server
DEC function (DB2)
DECIMAL datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL 2nd
 SQL Server
DECIMAL function (DB2)
Decimal parameter object type (ADO.NET)
declarative processing
DECLARE CURSOR command
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
DECODE function
 MySQL
 Oracle
DECOMPOSE function (Oracle)
DECRYPT_BIN function (DB2)
DECRYPT_CHAR function (DB2)
DEGREES function
 DB2
 MySQL
 PostgreSQL
 SQL Server
DELETE statement
 DB2
 keywords
 MySQL
 operators and 2nd
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
delimited identifiers
delimiters
DENSE_RANK function 2nd 3rd
DEPTH function (Oracle)
DEREF function
 DB2
 Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

deterministic functions
dialects, SQL
DIAMETER function (PostgreSQL)
DIFFERENCE function
 DB2
 SQL Server
DIGITS function (DB2)
DISCONNECT statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
DISKADMIN (SQL Server system role)
division (/) arithmetic operator
DOUBLE datatype
 DB2
 MySQL
 platform comparison
DOUBLE function (DB2)
Double parameter object type (ADO.NET)
DOUBLE PRECISION datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
double-pound symbol (##)
DROP DATABASE statement, quick reference
DROP DOMAIN statement, quick reference
DROP FUNCTION statement, quick reference
DROP INDEX statement, quick reference
DROP METHOD statement, quick reference
DROP ROLE statement, quick reference
DROP statements
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
DROP TABLE statement, quick reference
DROP TRIGGER statement, quick reference
DROP TYPE statement, quick reference
DROP VIEW statement, quick reference
DUMP function (Oracle)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ELT function (MySQL)
EMPTY_BLOB() function (Oracle)
EMPTY_CLOB() function (Oracle)
ENCODE function (MySQL)
ENCRYPT function
 DB2
 MySQL
ENUM datatype
 MySQL
 platform comparison
equal to (=) comparison operator
error handling
 ADO.NET
 JDBC
EVENT_MON_STATE function (DB2)
EXCEPT set operator
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
EXECUTE statement versus CALL statement
EXISTS operator 2nd
 platform differences
 platform support for
 programming tips
 quick reference
 rules
 SQL2003 syntax
EXISTSNODE function (Oracle)
EXP function
explicit transactions
EXPORT_SET function (MySQL)
expressions
 operator precedence and
 testing against range of values
EXTRACT function
 Oracle
EXTRACTVALUE function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

FETCH statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
FIELD function (MySQL)
FILE_ID function
 SQL Server
FILE_NAME function
 SQL Server
FILEGROUP_ID function
 SQL Server
FILEGROUP_NAME function
 SQL Server
FILEGROUPPROPERTY function
 SQL Server
FILEPROPERTY function
 SQL Server
filtering checks
FIND_IN_SET function (MySQL)
FIRST function (Oracle)
FIRST_VALUE function (Oracle)
FLOAT datatype
 DB2
 MySQL
 Oracle
 platform comparison
 SQL Server 2nd
FLOAT function
 DB2
 PostgreSQL
FLOAT4 datatype
 platform comparison
 PostgreSQL
FLOAT4 function (PostgreSQL)
FLOAT8 datatype
 platform comparison
 PostgreSQL
FLOOR function
FOREIGN KEY constraints
 CASCADE keyword
 FOREIGN KEY keyword
 MATCH keyword
 NO ACTION keyword
 ON DELETE keyword
 ON UPDATE keyword
 REFERENCES keyword

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RESTRICT keyword
 SET DEFAULT keyword
 SET NULL keyword
FORMAT function (MySQL)
FORMATMESSAGE function
 SQL Server
freeing resources
FREETEXT function (SQL Server)
FREETEXTTABLE function
 SQL Server
FROM clause
FROM_DAYS function (MySQL)
FROM_TZ function (Oracle)
FROM_UNIXTIME function (MySQL) 2nd
FULL [OUTER] JOIN
FULLTEXTCATALOGPROPERTY function
 SQL Server
FULLTEXTSERVICEPROPERTY function
 SQL Server
functions
 ABS
 aggregate
 APP_NAME()
 AVG 2nd
 BINARY_CHECKSUM
 BIT_LENGTH
 CASE
 CAST 2nd
 CEIL
 CHAR_LENGTH 2nd
 CHECKSUM
 CHECKSUM_AGG
 COALESCE
 COMPARE
 CONTAINS
 CONTAINSTABLE
 CONVERT
 CORR 2nd
 COUNT 2nd
 COUNT_BIG
 COVAR_POP 2nd
 COVAR_SAMP 2nd
 CUME_DIST 2nd
 CUME_DIST()
 DATABASEPROPERTYEX
 DAY
 DB2 supported [See DB2, functions]
 DENSE_RANK 2nd
 DENSE_RANK()
 deterministic
 EXP
 EXTRACT
 FILE_ID
 FILE_NAME
 FILEGROUP_ID
 FILEGROUP_NAME
 FILEGROUPPROPERTY
 FILEPROPERTY
 FLOOR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FORMATMESSAGE
 FREETEXTTABLE
 FULLTEXTCATALOGPROPERTY
 FULLTEXTSERVICEPROPERTY
 GETANSINULL
 GETUTCDATE()
 GROUPING
 HEXTOINT
 IDENT_CURRENT
 IDENT_INCR
 IDENT_SEED
 IDENTITY
 INDEXPROPERTY
 INTTOHEX
 IS_MEMBER
 IS_SEC_SERVICE_ON
 IS_SRVROLEMEMBER
 ISDATE
 ISNUMERIC
 lct_admin
 LEFT
 LEN
 LICENSE_ENABLED
 LN
 LOWER
 MAX 2nd
 MIN 2nd
 MOD
 MONTH
 MUT_EXCL_ROLES
 MySQL supported [See MySQL, functions]
 NCHAR
 NEWID()
 nondeterministic
 NULLIF
 numeric
 OBJECTPROPERTY
 OCTET_LENGTH
 OPEN
 OPENDATASOURCE
 OPENQUERY
 OPENROWSET
 operators and 2nd
 Oracle supported [See Oracle, functions]
 OVERLAY
 PARSENAME
 PATINDEX
 PERCENT_RANK 2nd 3rd
 PERCENTILE_CONT 2nd
 PERCENTILE_DISC 2nd
 PERMISSIONS
 POSITION
 PostgreSQL [See PostgreSQL, functions]
 POWER
 PROC_ROLE
 RANK 2nd
 RANK()
 REGR_AVGX 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 REGR_AVGY 2nd 3rd 4th 5th 6th 7th 8th 9th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 REGR_COUNT 2nd 3rd 4th 5th 6th 7th 8th
 REGR_INTERCEPT 2nd 3rd 4th 5th 6th 7th
 REGR_R2 2nd 3rd 4th 5th 6th
 REGR_SLOPE 2nd 3rd 4th 5th
 REGR_SXX 2nd 3rd 4th
 REGR_SXY 2nd 3rd
 REGR_SYY 2nd
 REPLACE
 ROLE_CONTAIN
 ROLE_ID
 ROLE_NAME
 ROW_NUMBER
 ROWCNT
 ROWCOUNT_BIG()
 scalar 2nd
 built-in
 categories of
 SESSION_USER
 SHOW_ROLE()
 SHOW_SEC_SERVICES()
 SORTKEY
 SQL Server supported [See SQL Server, functions]
 SQL2003 numeric
 SQRT
 STATS_DATE
 STDDEV_POP 2nd
 STDDEV_SAMP 2nd
 STDEV
 STDEVP
 string
 SUBSTRING
 SUM 2nd
 SUSER_ID
 SUSER_NAME
 SUSER_SID
 SUSER_SNAME
 SYB_SENDMSG
 Sybase adaptive server versus SQL Server
 Sybase adaptive server-supported
 SYSTEM_USER
 TO_UNICHAR
 TRANSLATE
 TRIM
 TSEQUEL
 TYPEPROPERTY
 types of
 UHIGHSURR
 ULOWSURR
 UNICODE
 UPPER
 USCALAR
 VALID_NAME
 VALID_USER
 VAR
 VAR_POP 2nd
 VAR_SAMP 2nd
 VARP
 WIDTH_BUCKET
 window 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 windowing
 YEAR

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

GENERATE_UNIQUE() function (DB2)
GET DIAGNOSTIC statement
Get methods (ADO.NET DataReader)
Get methods (JDBC ResultSet)
GET_LOCK function (MySQL)
GETANSINULL function
 SQL Server
GETDATE() function (SQL Server)
GETHINT function (DB2)
GETUTCDATE() function
 SQL Server
GRANT statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
GRAPHIC datatype
 DB2
 platform comparison
GRAPHIC function (DB2)
greater than (>) operator
greater than or equal to (>=) operator
GREATEST function
 MySQL
 Oracle
GROUP BY clause 2nd
group clause
GROUP_ID() function (Oracle)
GROUPING function
 Oracle
 SQL Server
GROUPING_ID function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

HASHEDVALUE function (DB2)
HAVING clause
HEIGHT function (PostgreSQL)
HEX function
 DB2
 MySQL
HEXTOINT function
HEXTORAW function (Oracle)
HOST function (PostgreSQL)
HOST_ID() function (SQL Server)
HOST_NAME() function (SQL Server)
HOUR function
 DB2
 MySQL

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

IDENT_CURRENT function
 SQL Server
IDENT_INCR function
 SQL Server
IDENT_SEED function
 SQL Server
identifier rules
identifiers
 allowed characters
 beginning characters
 quoted
 reserved
 size
IDENTITY function
 SQL Server
IDENTITY_VAL_LOCAL() function (DB2)
IF function (MySQL)
IFNULL function (MySQL)
IMAGE datatype
 platform comparison
 SQL Server
implicit transactions
IN operator 2nd
 keywords
 platform support for
 quick reference
 SQL2003 syntax
INDEX_COL function (SQL Server)
INDEXPROPERTY function
 SQL Server
INET datatype
 platform comparison
 PostgreSQL
INIT.ORA file
INITCAP function
 Oracle
INITCAP function (PostgreSQL)
INNER JOIN
INSERT function
 DB2
 MySQL
INSERT statement
 DB2
 keywords
 MySQL
 operators and 2nd
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSTR function
 MySQL
 Oracle
INT datatype
 DB2
 MySQL
 platform comparison
 SQL Server
Int parameter object type (ADO.NET)
INT2 datatype
 platform comparison
INT4 datatype
 platform comparison
INT8 datatype
 PostgreSQL
INTEGER datatype
 DB2
 Oracle
 platform comparison
 PostgreSQL
INTEGER function
 DB2
 PostgreSQL
INTERSECT set operator
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
INTERVAL datatype
 platform comparison
 PostgreSQL
INTERVAL DAY datatype
 Oracle
INTERVAL DAY TO SECOND datatype
 platform comparison
INTERVAL function
 MySQL
 PostgreSQL
INTERVAL YEAR datatype
 Oracle
INTERVAL YEAR TO MONTH datatype
 platform comparison
INTTOHEX function
IS operator
 keywords
 platform support for
 programming tips
 quick reference
 rules
 SQL2003 syntax
IS_FREE_LOCK function (MySQL)
IS_MEMBER function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SQL Server
IS_SEC_SERVICE_ON function
IS_SRVROLEMEMBER function
 SQL Server
ISCLOSED function (PostgreSQL)
ISDATE function
 SQL Server
ISFINITE function (PostgreSQL)
ISNULL function
 MySQL
 SQL Server
ISNUMERIC function
 SQL Server
ISOPEN function (PostgreSQL)
ITERATION_NUMBER function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Java Virtual Machine (JVM) class loader
JDBC
 beginning transactions
 bound parameters
 closing connection
 committing transactions
 database connection
 database program example
 error handling
 executing statements
 PreparedStatement set methods
 ResultSet methods
 Get
 retrieving data
 rolling back transactions
JDBC (Java Database Connectivity)
JOIN clause 2nd
JOIN subclause 2nd
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
 types
JULIAN_DAY function (DB2)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

keywords 2nd
 DB2 2nd
 Microsoft SQL Server
 MySQL 2nd
 Oracle 2nd
 PostgreSQL 2nd
 shared 2nd
 SQL Server
 SQL2003 2nd
 Sybase adaptive server 2nd 3rd 4th 5th

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

LAG function (Oracle)
LAST function (Oracle)
LAST_DAY function (Oracle)
LAST_INSERT_ID function (MySQL)
LAST_VALUE function (Oracle)
LCASE function (MySQL)
lct_admin function
LDAP (Lightweight Directory Access Protocol)
 on DB2 servers
LEAD function (Oracle)
LEAST function
 MySQL
 Oracle
LEFT [OUTER] JOIN
LEFT function
 DB2
 MySQL
 SQL Server
LEN function
 SQL Server
LENGTH function
 DB2
 MySQL
 Oracle
 PostgreSQL
LENGTHB function (Oracle)
less than (<) operator
less than or equal to (<=) operator
LICENSE_ENABLED function
LIKE operator 2nd
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
LINE datatype
 platform comparison
 PostgreSQL
literals 2nd
LN function
LNNVL function (Oracle)
LOAD_FILE function (MySQL)
LOCALTIMESTAMP function (Oracle)
LOCATE function
 DB2
 MySQL
LOCATE(substr,str,pos)
LOG function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
LOG10 function
 DB2
 MySQL
 SQL Server
LOG2 function (MySQL)
logfiles (Oracle)
logical operators 2nd
LONG datatype
 Oracle
 platform comparison
LONG RAW datatype
 Oracle
 platform comparison
LONG VARCHAR datatype
 DB2
 platform comparison
LONG VARCHAR FOR BIT DATA datatype
 DB2
LONG VARGRAPHIC datatype
 DB2
 platform comparison
LONG_VARCHAR function (DB2)
LONG_VARGRAPHIC function (DB2)
LONGBLOB datatype
 MySQL
 platform comparison
LONGTEXT datatype
 MySQL
 platform comparison
LOWER function
LPAD function
 MySQL
 Oracle
 PostgreSQL
LSEG datatype
 platform comparison
 PostgreSQL
LSEG function (PostgreSQL)
LTRIM function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

MACADDR datatype
 platform comparison
 PostgreSQL
MAKE_REF function (Oracle)
MAKE_SET function (MySQL)
MASKLEN function (PostgreSQL)
MAX function 2nd
MD5 function (MySQL)
MEDIAN function (Oracle)
MEDIUMBLOB datatype
 MySQL
 platform comparison
MEDIUMINT datatype
 MySQL
MEDIUMTEXT datatype
 MySQL
 platform comparison
MERGE statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
metadata
methods
 ADO.NET DataReader
 JDBC ResultSet
MICROSECOND function (DB2)
Microsoft SQL Server
Microsoft SQL Server keywords
MID function (MySQL)
MIDNIGHT_SECONDS function (DB2)
MIN function 2nd
MINUTE function
 DB2
 MySQL
MOD function
modula (%) arithmetic operator (SQLServer)
MONEY datatype
 platform comparison
 PostgreSQL
 SQL Server
MONTH function
 DB2
 MySQL
 SQL Server
MONTHNAME function
 DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MySQL
MONTHS_BETWEEN function (Oracle)
multiplication (*) arithmetic operator
MULTIPLY_ALT function (DB2)
MUT_EXCL_ROLES function
MySQL
 allowed characters in identifiers
 ALTER TABLE syntax
 beginning identifier character
 CALL statement
 COMMIT statement
 connecting using JDBC
 CREATE/ALTER DATABASE statements
 CREATE/ALTER FUNCTION/PROCEDURE statements
 CREATE/ALTER INDEX statements
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE
 keywords and parameters
 CREATE/ALTER TABLE statements
 ALTER
 ALTER COLUMN
 AUTO_INCREMENT
 AVG_ROW_LENGTH
 CHANGE
 CHECKSUM
 COMMENT
 constraint_type
 DATA DIRECTORY
 DELAY_KEY_WRITE
 DROP
 ENABLE KEYS
 IF NOT EXISTS
 IGNORE SELECT_statement
 INDEX DIRECTORY
 INSERT_METHOD
 keywords
 MAX_ROWS
 MIN_ROWS
 MODIFY
 PACK_KEYS
 parameters
 PASSWORD
 RAID_CHUNKS
 RAID_CHUNKSIZE
 RAID_TYPE
 RENAME
 REPLACE SELECT_statement
 ROW_FORMAT
 TEMPORARY
 TYPE
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 CREATE/ALTER VIEW statements
 datatypes
 DECLARE CURSOR command
 DELETE statement
 DISCONNECT statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DROP statements
 EXCEPT set operator
 FETCH statement
 functions
 ,POW
 ACOS
 ADDDATE
 ASCII
 ASIN
 ATAN
 ATAN2
 BENCHMARK
 BIN
 BINARY
 BIT_AND
 BIT_COUNT
 BIT_OR
 CHAR
 COALESCE
 COMPRESS
 CONCAT_WS
 CONNECTION_ID()
 CONV
 COS
 COT
 CURDATE()
 CURTIME()
 DATABASE()
 DATE_ FORMAT
 DATE_ADD
 DATE_SUB
 DAYNAME
 DAYOFMONTH
 DAYOFWEEK
 DAYOFYEAR
 DECODE
 DEGREES
 ELT
 ENCODE
 ENCRYPT
 EXPORT_SET
 FIELD
 FIND_IN_SET
 FORMAT
 FROM_DAYS
 FROM_UNIXTIME 2nd
 GET_LOCK
 GREATEST
 HEX
 HOUR
 IF
 IFNULL
 INSERT
 INSTR
 INTERVAL
 IS_FREE_LOCK
 ISNULL
 LAST_INSERT_ID
 LCASE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LEAST
 LEFT
 LENGTH
 LOAD_FILE
 LOCATE
 LOG
 LOG10
 LOG2
 LPAD
 LTRIM
 MAKE_SET
 MD5
 MID
 MINUTE
 MONTH
 MONTHNAME
 NOW()
 NULLIF
 OCT
 ORD
 PASSWORD
 PERIOD_ADD
 PERIOD_DIFF
 PI()
 POSITION
 POWER
 QUARTER
 RADIANS
 RAND()
 RELEASE_LOCK
 REPEAT
 REPLACE
 REVERSE
 RIGHT
 ROUND
 RPAD
 RTRIM
 SEC_TO_TIME
 SECOND
 SESSION_USER()
 SHA
 SHA1
 SIGN
 SIN
 SOUNDEX
 SPACE
 STD
 STDDEV
 STRCMP
 SUBDATE
 SUBSTRING
 SUBSTRING_INDEX
 SYSDATE()
 SYSTEM_USER()
 TAN
 TIME_FORMAT
 TIME_TO_SEC
 TO_DAYS
 TRUNCATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 UCASE
 UNCOMPRESS
 UNHEX
 UNIX_TIMESTAMP
 USER()
 VERSION()
 WEEK
 WEEKDAY
 YEAR
 YEARWEEK
 GRANT statement
 identifier size
 INSERT statement
 INTERSECT set operator
 JOIN subclause
 keywords
 LIKE operator
 MERGE statement
 OPEN statement
 ORDER BY clause
 RELEASE SAVEPOINT statement
 reserved identifiers
 RETURN statement
 REVOKE statement
 ROLLBACK statement
 SAVEPOINT statement
 schema addressing
 SELECT statement
 {FOR UPDATE | LOCK IN SHARE MODE}
 FROM É USE INDEX
 HIGH_PRIORITY
 IGNORE INDEX
 INTO
 JOIN syntax
 LIMIT
 PROCEDURE
 select_item
 SQL_BIG_RESULT
 SQL_BUFFER_RESULT
 SQL_SMALL_RESULT
 STRAIGHT_JOIN
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 special rules
 START TRANSACTION statement
 SUBQUERY substatement
 TRUNCATE TABLE statement
 UNION set operator
 UPDATE statement
 web site
 WHERE clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

naming conventions
NANVL function (Oracle)
NATIONAL CHAR datatype
 Oracle
 platform comparison
 SQL Server
NATIONAL CHAR VARYING datatype
 Oracle
 platform comparison
 SQL Server
NATIONAL CHARACTER datatype
 Oracle
 platform comparison
 SQL Server
NATIONAL CHARACTER VARYING datatype
 MySQL
 Oracle
 platform comparison
 SQL Server
NATIONAL TEXT datatype
 platform comparison
 SQL Server
NATURAL [INNER | {LEFT | RIGHT}[OUTER]] JOIN
NCHAR datatype
 MySQL
 Oracle
 platform comparison
 SQL Server
NCHAR function
 Oracle
 SQL Server
NCHAR VARYING datatype
 Oracle
 platform comparison
NCHAR() datatype
 SQL Server 2nd
 Sybase adaptive server
NCLOB datatype
 Oracle
 platform comparison
nested parentheses and operator precedence
nested tables
 in FROM clause
 Oracle
 subqueries
NETMASK function (PostgreSQL)
NETWORK function (PostgreSQL)
NEW_TIME function (Oracle)
NEWID() function
 SQL Server
NEXT_DAY function (Oracle)
NLS_CHARSET_DECL_LEN function (Oracle)
NLS_CHARSET_ID function (Oracle)
NLS_CHARSET_NAME function (Oracle)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NLS_INITCAP function (Oracle)
NLS_LOWER function (Oracle)
NLS_UPPER function (Oracle)
NLSSORT function (Oracle)
nondeterministic functions
not equal to (!=) operator 2nd 3rd
not greater than (!>) operator
not less than (!<) operator
NOT operator
NOW() function (MySQL)
NPOINTS function (PostgreSQL)
NTEXT datatype
 platform comparison
 SQL Server 2nd
NTILE function (Oracle)
NULL values
NULLIF function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
NUM datatype
 DB2
NUMBER datatype
 Oracle
 platform comparison
NUMERIC datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL 2nd
 SQL Server 2nd
numeric datatype and unary operators
numeric functions
 enhanced
NUMTODSINTERVAL function (Oracle)
NUMTOYMINTERVAL function (Oracle)
NVARACHAR() datatype (Sybase Adaptive Server)
NVARCHAR datatype
 MySQL
 platform comparison
 SQL Server
NVARCHAR2 datatype
 Oracle
NVARCHAR2() datatype
 platform comparison
NVL function (Oracle)
NVL2 function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

OBJECT_ID function (SQL Server)
OBJECT_NAME function (SQL Server)
OBJECTPROPERTY function
 SQL Server
objects
OCT function (MySQL)
OCTET_LENGTH function
OdbcConnection
 connection string attributes for
OID datatype
 platform comparison
 PostgreSQL
OLAP functions
OleDbConnection
 connection string attributes for
OPEN function
 SQL Server
OPEN statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
OPENDATASOURCE function
 SQL Server
OPENQUERY function
 SQL Server
OPENROWSET function
 SQL Server
operator precedence
operators 2nd
 string
OPERATORS, quick reference
OR operator
ORA_HASH function (Oracle)
Oracle
 allowed characters in identifiers
 ALTER INDEX syntax
 ALTER TABLE statement
 ALTER TABLE syntax
 altering a partitioned table
 basics
 beginning identifier character
 CALL statement
 column_constraint_clause
 COMMIT statement
 compressed tables
 CONNECT statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 connecting using JDBC
 CREATE INDEX syntax
 CREATE/ALTER DATABASE statements
 ACTIVATE
 ADD LOGFILE
 ADD SUPPLEMENTAL LOG DATA
 ALLOW
 ARCHIVELOG 2nd
 AUTOMATIC
 BACKUP CONTROLFILE TO
 BEGIN BACKUP
 BIGFILE
 CANCEL
 CHARACTER SET
 CLEAR LOGFILE
 CONTINUE
 CONTROLFILE REUSE
 CREATE DATAFILE
 CREATE STANDBY CONTROLFILE AS
 DATABASE
 DATAFILE 2nd
 DEFAULT TABLESPACE
 DEFAULT TEMPORARY TABLESPACE
 ENABLE BLOCK CHANGE TRACKING
 ENABLE THREAD
 EXTENT MANAGEMENT 2nd
 FLASHBACK
 FOR
 FORCE LOGGING 2nd
 GUARD
 LOGFILE 2nd
 MANAGED STANDBY DATABASE
 MAXDATAFILES
 MAXINSTANCES
 MAXLOGFILES
 MAXLOGHISTORY
 MAXLOGMEMBERS
 MOUNT
 NATIONAL CHARACTER SET
 OPEN
 PARALLEL
 RECOVER
 REGISTER
 RENAME FILE
 RENAME GLOBAL_NAME TO
 SET DEFAULT TABLESPACE
 SET STANDBY
 SET TIME_ZONE
 SMALLFILE
 STANDBY
 START LOGICAL STANDBY APPLY
 SYSAUX DATAFILE
 TABLESPACE
 TEST
 UNDO TABLESPACE
 UNTIL
 USER SYS IDENTIFIED BY
 USER SYSTEM IDENTIFIED BY
 CREATE/ALTER FUNCTION/PROCEDURE statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AGGREGATE
 ALTER
 AS
 AUTHID
 code_block
 COMPILE
 CREATE
 IN
 IS
 LANGUAGE
 NOCOPY
 OUT
 PARALLEL_ENABLE
 PIPELINED
 CREATE/ALTER INDEX statements
 ALLOCATE EXTENT
 alter_index_partitioning_clause
 ASC
 BITMAP
 CLUSTER
 COALESCE
 COMPRESS
 COMPUTE
 DEALLOCATE UNUSED
 DESC
 ENABLE
 GLOBAL
 INDEXTYPE IS
 LOCAL
 LOGGING
 MONITORING USAGE
 NOSORT
 PARALLEL
 PARAMETERS
 physical_attributes_clause
 rebuild_clause
 RENAME TO
 REVERSE
 SHRINK SPACE
 TABLESPACE DEFAULT
 UNUSABLE
 UPDATE BLOCK REFERENCES
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE statements
 ADD É
 ADD PARTITION
 ALLOCATE EXTENT
 AS object_type
 AS subquery
 CACHE
 CLUSTER
 COALESCE
 COALESCE PARTITION
 COMPRESS
 constraint_state clause
 DEALLOCATE UNUSED
 DROP É

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DROP PARTITION
 ENABLE ROW MOVEMENT
 ENABLE TABLE LOCK
 EXCHANGE PARTITION
 foreign key constraint
 GROUP
 inline_ref_constraint 2nd
 LOGGING
 MERGE PARTITION
 MINIMIZE RECORDS_PER_BLOCK
 MODIFY DEFAULT ATTRIBUTES
 MODIFY É
 MODIFY PARTITION
 MODIFY SUBPARTITION
 MONITORING
 MOVE É
 MOVE PARTITION
 OBJECT IDENTIFIER IS
 OF XMLTYPE
 OIDINDEX
 ON COMMIT
 ORGANIZATION EXTERNAL
 ORGANIZATION HEAP
 ORGANIZATION INDEX
 PARALLEL
 parameters
 partition_clause
 partition_level_subpartition_clause
 partition_storage_clause
 physical_attributes_clause
 PROJECT COLUMN
 RENAME É
 RENAME PARTITION
 ROWDEPENDENCIES
 SET SUBPARTITION TEMPLATE
 SET UNUSED É
 SHRINK SPACE
 SPLIT PARTITION
 storage_clause 2nd
 SUBSTITUTABLE AT ALL LEVELS
 table_constraint_clause
 table_partition_description clause
 table_ref_constraint 2nd
 TABLESPACE
 TRUNCATE PARTITION
 update_index_clause
 UPGRADE INCLUDING DATA
 xml_schema_spec
 XMLTYPE
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 ADD
 AS OBJECT
 AS TABLE OF
 AS VARRAY
 AUTHID
 BODY
 CASCADE
 COMPILE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 compiler_directives 2nd
 CONVERT TO SUBSTITUTABLE
 datatype
 DEBUG
 DROP
 EXCEPTIONS INTO
 EXTERNAL NAME
 FORCE
 INCLUDING TABLE DATA
 INVALIDATE
 MEMBER
 MODIFY
 MODIFY ELEMENT TYPE
 MODIFY LIMIT
 OID
 OR REPLACE
 OVERRIDING
 REPLACE AS OBJECT
 REUSE SETTINGS
 SPECIFICATION
 STATIC
 UNDER
 CREATE/ALTER VIEW statements
 datatypes
 DECLARE CURSOR command
 default database user accounts
 DELETE statement
 DISCONNECT statement
 DROP statements
 [PUBLIC] DATABASE LINK
 [PUBLIC] SYNONYM
 CLUSTER
 CONTEXT
 DATABASE
 DIMENSION
 DIRECTORY
 FUNCTION
 INDEX
 INDEXTYPE
 JAVA
 LIBRARY
 MATERIALIZED VIEW
 OPERATOR
 OUTLINE
 PACKAGE
 PROCEDURE
 PROFILE
 ROLE
 ROLLBACK SEGMENT
 SEQUENCE
 SNAPSHOT
 TABLE
 TABLESPACE
 TRIGGER
 TYPE
 USER
 VIEW
 EXCEPT set operator
 FETCH statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 functions
 ACOS
 ADD_MONTHS
 ASCII
 ASCIISTR
 ASIN
 ATAN
 ATAN2
 BFILENAME
 BIN_TO_NUM
 BITAND
 CARDINALITY
 CHARTOROWID
 CHR
 COALESCE
 COLLECT
 COMPOSE
 CONCAT
 CONVERT
 CORR_K
 COS
 COSH
 CV
 DBTIMEZONE
 DECODE
 DECOMPOSE
 DEPTH
 DEREF
 DUMP
 EMPTY_BLOB()
 EMPTY_CLOB()
 EXISTSNODE
 EXTRACT
 EXTRACTVALUE
 FIRST
 FIRST_VALUE
 FROM_TZ
 GREATEST
 GROUP_ID()
 GROUPING
 GROUPING_ID
 HEXTORAW
 INITCAP
 INSTR
 ITERATION_NUMBER
 LAG
 LAST
 LAST_DAY
 LAST_VALUE
 LEAD
 LEAST
 LENGTH
 LENGTHB
 LNNVL
 LOCALTIMESTAMP
 LOG
 LPAD
 LTRIM
 MAKE_REF

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MEDIAN
 MONTHS_BETWEEN
 NANVL
 NCHAR
 NEW_TIME
 NEXT_DAY
 NLS_CHARSET_DECL_LEN
 NLS_CHARSET_ID
 NLS_CHARSET_NAME
 NLS_INITCAP
 NLS_LOWER
 NLS_UPPER
 NLSSORT
 NTILE
 NULLIF
 NUMTODSINTERVAL
 NUMTOYMINTERVAL
 NVL
 NVL2
 ORA_HASH
 PATH
 POWERMULTISET
 PRESENTNNV
 PRESENTV
 PREVIOUS
 RATIO_TO_REPORT
 RAWTOHEX
 REF
 REFTOHEX
 REGEXP_INSTR
 REGEXP_REPLACE
 REGEXP_SUBSTR
 REMAINDER
 REPLACE
 ROUND
 ROWIDTOCHAR
 RPAD
 RTRIM
 SCN_TO_TIMESTAMP
 SESSIONTIMEZONE
 SET
 SIGN
 SIN
 SINH
 SOUNDEX
 STATS_BINOMIAL_TEST
 STDDEV
 STDDEV_SAMP
 STDEV_POP
 SUBSTR
 SUBSTRB
 SYS_CONNECT_BY_PATH
 SYS_CONTEXT
 SYS_DBURIGEN
 SYS_EXTRACT_UTC
 SYS_GUID()
 SYS_TYPEID
 SYS_XMLAGG
 SYS_XMLGEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SYSDATE
 SYSTIMESTAMP
 TAN
 TANH
 TIMESTAMP_TO_SCN
 TO_BINARY_DOUBLE
 TO_BINARY_FLOAT
 TO_CHAR 2nd
 TO_CLOB
 TO_DATE
 TO_DSINTERVAL
 TO_LOB
 TO_MULTI_BYTE
 TO_NCHAR
 TO_NCLOB
 TO_NUMBER
 TO_SINGLE_BYTE
 TO_TIMESTAMP
 TO_TIMESTAMP_TZ
 TO_YMINTERVAL
 TRANSLATE 2nd
 TREAT
 TRUNC 2nd
 TZ_OFFSET
 UID
 UNISTR
 UPDATEXML
 USERENV
 VALUE
 VAR_POP
 VAR_SAMP
 VARIANCE
 VSIZE
 XMLAGG
 XMLCOLATTVAL
 XMLCONCAT
 XMLELEMENT
 XMLFOREST
 XMLSEQUENCE
 XMLTRANSFORM
 global temporary table
 GRANT statement
 IDENTIFIED BY
 object_privilege
 ON
 role
 system_privilege
 TO
 identifier size
 index-organized table (IOT)
 indexes
 INIT.ORA file
 INSERT statement
 ALL
 conditional multitable
 ELSE
 FIRST
 INSERT
 subquery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TABLE
 table_name
 unconditional multitable
 VALUES
 WHEN
 INTERSECT set operator
 JOIN subclause
 keywords
 LIKE operator
 local index partitioning
 logfiles
 MERGE statement
 nested tables
 object-type tables
 OPEN statement
 ORDER BY clause
 ORGANIZATION HEAP clause
 partitioned and subpartitioned tables
 altering
 physical_attributes_clause
 primary databases
 RELEASE SAVEPOINT statement
 reserved identifiers
 RETURN statement
 REVOKE statement
 ROLLBACK statement
 SAVEPOINT statement
 schema addressing
 SELECT statement
 [CROSS] JOIN
 ALL
 AS
 DISTINCT
 flashback queries
 flashback_query_clause
 FOR UPDATE
 FROM
 FULL [OUTER] JOIN
 INNER JOIN
 INTO
 JOIN
 LEFT [OUTER] JOIN
 MODEL clause
 NATURAL
 ON
 optimizer_hint
 ORDER SIBLINGS BY
 PARTITION
 PARTITION BY
 partitioned outer joins
 RIGHT [OUTER] JOIN
 SAMPLE
 select_item
 SUBPARTITION
 subquery
 TABLE
 UNIQUE
 USING
 VERSIONS BETWEEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE É
 WITH query_name AS
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 special rules
 standby databases
 START TRANSACTION statement
 storage_clause and LOBs
 stored procedures
 SUBQUERY substatement
 syntax for object table
 syntax for XMLType table
 syntax to alter existing database
 syntax to create new database
 system privileges
 {ALTER | DROP} ANY ROLE
 {CREATE | ALTER | DROP | EXECUTE} ANY PROCEDURE
 {CREATE | ALTER | DROP | SELECT} ANY SEQUENCE
 {CREATE | ALTER | DROP} ANY CLUSTER
 {CREATE | ALTER | DROP} ANY DIMENSION
 {CREATE | ALTER | DROP} ANY INDEX
 {CREATE | ALTER | DROP} ANY MATERIALIZED VIEW
 {CREATE | ALTER | DROP} ANY SNAPSHOT
 {CREATE | ALTER | DROP} ANY TYPE
 {CREATE | ALTER | DROP} PROFILE
 {CREATE | ALTER | DROP} ROLLBACK SEGMENT
 {CREATE | ALTER | DROP} TABLESPACE
 {CREATE | DROP | ALTER} ANY OUTLINE
 {CREATE | DROP | EXECUTE } ANY INDEXTYPE
 {CREATE | DROP | EXECUTE} ANY OPERATOR
 {CREATE | DROP } ANY DIRECTORY
 {CREATE | DROP} ANY CONTEXT
 {CREATE | DROP} ANY LIBRARY
 {CREATE | DROP} ANY SYNONYM
 {CREATE | DROP} ANY TRIGGER
 {CREATE | DROP} ANY VIEW
 {CREATE | DROP} PUBLIC SYNONYM
 ADMINISTER DATABASE TRIGGER
 ALTER ANY TABLE
 ALTER ANY TRIGGER
 ALTER DATABASE
 ALTER RESOURCE COST
 ALTER SESSION
 ALTER SYSTEM
 ALTER USER
 ANALYZE ANY
 AUDIT ANY
 AUDIT SYSTEM
 BACKUP ANY TABLE
 BECOME USER
 COMMENT ANY TABLE
 CREATE ANY TABLE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CREATE CLUSTER
 CREATE DATABASE LINK
 CREATE DIMENSION
 CREATE INDEXTYPE
 CREATE MATERIALIZED VIEW
 CREATE OPERATOR
 CREATE PROCEDURE
 CREATE PUBLIC DATABASE LINK
 CREATE ROLE
 CREATE SEQUENCE
 CREATE SESSION
 CREATE SNAPSHOT
 CREATE SYNONYM
 CREATE TRIGGER
 CREATE TYPE
 CREATE USER
 CREATE VIEW
 DEBUG ANY PROCEDURE
 DEBUG CONNECT SESSION
 DELETE ANY TABLE
 DROP ANY TABLE
 DROP PUBLIC DATABASE LINK
 DROP USER
 EXECUTE ANY TYPE
 EXEMPT ACCESS POLICY
 FLASHBACK ANY TABLE
 FORCE ANY TRANSACTION
 FORCE TRANSACTION
 GLOBAL QUERY REWRITE
 GRANT ANY OBJECT PRIVILEGE
 GRANT ANY PRIVILEGE
 GRANT ANY ROLE
 INSERT ANY TABLE
 LOCK ANY TABLE
 MANAGE TABLESPACE
 ON COMMIT REFRESH
 QUERY REWRITE
 RESTRICTED SESSION
 RESUMABLE
 SELECT ANY DICTIONARY
 SELECT ANY OUTLINE
 SELECT ANY TABLE
 SYSDBA
 SYSOPER
 UNDER ANY TYPE
 UNDER ANY VIEW
 UNLIMITED TABLESPACE
 UPDATE ANY TABLE
 TRUNCATE TABLE statement
 UDFs
 UNION set operator
 UPDATE statement
 WHERE clause
 window syntax
 XMLType tables
Oracle keywords
ORD function (MySQL)
ORDER BY clause 2nd 3rd
 DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
ordering clause
ORGANIZATION HEAP clause (Oracle)
OVERLAY function

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

parameter object types (ADO.NET)
parameters
 binding input
 bound [See bound parameters]
parametrized statements
parentheses
 nested and operator precedence
PARSENAME function
 SQL Server
partitioned tables
 Oracle
 altering
partitioning clause
PASSWORD function (MySQL)
PATH datatype
 platform comparison
 PostgreSQL
PATH function
 Oracle
 PostgreSQL
PATINDEX function
 SQL Server
PCLOSE function (PostgreSQL)
PERCENT_RANK function 2nd 3rd
PERCENTILE_CONT function 2nd
PERCENTILE_DISC function 2nd
PERIOD_ADD function (MySQL)
PERIOD_DIFF function (MySQL)
permissions
PERMISSIONS function
 SQL Server
physical_attributes_clause (Oracle)
PI() function
 MySQL
 PostgreSQL
 SQL Server
PL/pgSQL
PL/SQL
platform comparisons
POINT datatype
 platform comparison
 PostgreSQL
POINT function (PostgreSQL)
POLYGON datatype
 platform comparison
 PostgreSQL
POLYGON function (PostgreSQL)
POPEN function (PostgreSQL)
POSITION function
 MySQL
POSSTR function (DB2)
PostgreSQL
 allowed characters in identifiers
 beginning identifier character

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CLOSE CURSOR statement
 COMMIT statement
 CONNECT statement
 connecting using JDBC
 CREATE/ALTER DATABASE statements
 CREATE/ALTER FUNCTION/PROCEDURE statements
 CREATE/ALTER INDEX statements
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE statements
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 CREATE/ALTER VIEW statements
 datatypes
 DECLARE CURSOR command
 DELETE statement
 DISCONNECT statement
 DROP statements
 [PROCEDURAL] LANGUAGE
 AGGEGATE
 DATABASE
 FUNCTION
 GROUP
 INDEX
 OPERATOR
 RULE
 SEQUENCE
 TABLE
 TRIGGER
 TYPE
 USER
 VIEW
 EXCEPT set operator
 FETCH statement
 functions
 ABSTIME
 ACOS
 AGE
 AREA
 ASCII
 ASIN
 ATAN
 ATAN2
 BOX
 BROADCAST
 CBRT
 CENTER
 CHAR
 CHAR_LENGTH
 CIRCLE
 COALESCE
 COS
 COT 2nd
 DATE_PART
 DATE_TRUNC
 DEGREES
 DIAMETER
 FLOAT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FLOAT4
 HEIGHT
 HOST
 INITCAP
 INTEGER
 INTERVAL
 ISCLOSED
 ISFINITE
 ISOPEN
 LENGTH
 LOG
 LPAD
 LSEG
 LTRIM
 MASKLEN
 NETMASK
 NETWORK
 NPOINTS
 NULLIF
 PATH
 PCLOSE
 PI()
 POINT
 POLYGON
 POPEN
 POW
 RADIANS
 RADIUS
 RELTIME
 ROUND
 RPAD
 RTRIM
 SET_MASKLEN
 SIN
 SUBSTR
 SUBSTRING
 TAN
 TEXT
 TIMESTAMP
 TO_CHAR
 TO_DATE
 TO_NUMBER
 TO_TIMESTAMP
 TRANSLATE
 TRUNC
 VARCHAR
 WIDTH
 GRANT statement
 identifier size
 INSERT statement
 INTERSECT set operator
 JOIN subclause
 keywords
 LIKE operator
 MERGE statement
 OPEN statement
 ORDER BY clause
 RELEASE SAVEPOINT statement
 reserved identifiers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RETURN statement
 REVOKE statement
 ROLLBACK statement
 SAVEPOINT statement
 schema addressing
 SELECT statement
 [CROSS] JOIN
 ALL
 AS
 FOR UPDATE OF
 FROM
 FULL [OUTER] JOIN
 GROUP BY
 INNER JOIN
 INTO
 LEFT [OUTER] JOIN
 NATURAL
 ON
 ORDER BY
 RIGHT [OUTER] JOIN
 select_item
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 START TRANSACTION statement
 SUBQUERY substatement
 TRUNCATE TABLE statement
 UNION set operator
 UPDATE statement
 web site
 WHERE clause
PostgreSQL keywords
pound symbol (#)
POW function
 MySQL
 PostgreSQL
POWER function
 MySQL
POWERMULTISET function (Oracle)
prefixes
PreparedStatement set methods (JDBC)
PRESENTNNV function (Oracle)
PRESENTV function (Oracle)
PREVIOUS function (Oracle)
primary databases (Oracle)
PRIMARY KEY constraints
PROC_ROLE function
procedural programming
PROCEDURE, quick reference
PROCESSADMIN (SQL Server system role)
programming databases
 examples
 overview

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 overview

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

QUARTER function
 DB2
 MySQL
quoted identifier symbol
quoted identifiers

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

RADIANS function
 DB2
 MySQL
 PostgreSQL
 SQL Server
RADIUS function (PostgreSQL)
RAISE_ERROR function (DB2)
RAND function
 DB2
 SQL Server
RAND() function (MySQL)
RANK function 2nd
RANK() function
RATIO_TO_REPORT function (Oracle)
RAW datatype
 Oracle
 platform comparison
RAWTOHEX function (Oracle)
RDBMSs (Relational Database Management System)
ReadCommitted isolation level (Transaction object (ADO.NET))
ReadUncommitted isolation level (Transaction object (ADO.NET))
REAL datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
REAL function (DB2)
REC2XML function (DB2)
records
REF function (Oracle)
REFTOHEX function (Oracle)
REGEXP_INSTR function (Oracle)
REGEXP_REPLACE function (Oracle)
REGEXP_SUBSTR function (Oracle)
REGR family of functions
REGR_AVGX function 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
REGR_AVGY function 2nd 3rd 4th 5th 6th 7th 8th 9th
REGR_COUNT function 2nd 3rd 4th 5th 6th 7th 8th
REGR_INTERCEPT function 2nd 3rd 4th 5th 6th 7th
REGR_R2 function 2nd 3rd 4th 5th 6th
REGR_SLOPE function 2nd 3rd 4th 5th
REGR_SXX function 2nd 3rd 4th
REGR_SXY function 2nd 3rd
REGR_SYY function 2nd
Relational Database Management Systems (RDBMSs)
relational databases, principles of
RELEASE SAVEPOINT statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
RELEASE_LOCK function (MySQL)
RELTIME function (PostgreSQL)
REMAINDER function (Oracle)
REPEAT function
 DB2
 MySQL
RepeatableRead isolation level (Transaction object (ADO.NET))
REPLACE function
 DB2
 MySQL
 Oracle
 SQL Server
REPLICATE function
 SQL Server
reserved words 2nd
resources, freeing
ResultSet methods (JDBC)
 Get
RETURN statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
REVERSE function
 MySQL
 SQL Server
REVOKE statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
RIGHT [OUTER] JOIN
RIGHT function
 DB2
 MySQL
 SQL Server
ROLE_CONTAIN function
ROLE_ID function
ROLE_NAME function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROLLBACK statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
ROUND function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
row processing
ROW_NUMBER function
ROWCNT function
ROWCOUNT_BIG() function
 SQL Server
ROWID datatype
 Oracle
 platform comparison
ROWIDTOCHAR function (Oracle)
rows, filtering and comparison operators
ROWVERSION datatype
 platform comparison
 SQL Server 2nd
RPAD function
 MySQL
 Oracle
 PostgreSQL
RTRIM function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

sampling
SAVEPOINT statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
scalar functions 2nd
 built-in
 categories of
scalar subqueries
Scalar subquey in SELECT item list
Scalar subquey in WHERE/HAVING clause
schema addressing
schemas
SCN_TO_TIMESTAMP function (Oracle)
SEC_TO_TIME function (MySQL)
SECOND function
 DB2
 MySQL
SECURITYADMIN (SQL Server system role)
SELECT statement
 DB2
 examples
 GROUP BY clause
 HAVING clause
 keywords
 ALL
 AS
 DISTINCT
 FROM
 GROUP BY
 HAVING
 JOIN
 ORDER BY
 WHERE
 MySQL
 operators and 2nd
 Oracle
 ORDER BY clause
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
SEQUEL (Structured English Query Language)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SERIAL datatype
 platform comparison
 PostgreSQL
SERIAL4 datatype
 platform comparison
 PostgreSQL
SERIAL8 datatype
 platform comparison
 PostgreSQL
Serializable isolation level (Transaction object (ADO.NET))
SERVERADMIN (SQL Server system role)
SESSION_USER function
SESSION_USER() function (MySQL)
SESSIONTIMEZONE function (Oracle)
SET CATALOG statement, quick reference
SET COLLATION statement, quick reference
SET CONNECTION statement
 DB2
 description
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
SET CONSTRAINT statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
SET datatype
 MySQL
 platform comparison
SET DESCRIPTOR statement, quick reference
SET function (Oracle)
set methods (JDBC PreparedStatement)
set operations
SET PATH statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET ROLE statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
SET SCHEMA statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
SET SESSION AUTHORIZATION statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
SET statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 quick reference
 rules
 SQL Server
 SQL2003 syntax
SET TIME ZONE statement
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
SET TRANSACTION statement
 DB2
 keywords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
SET_MASKLEN function (PostgreSQL)
SETUPADMIN (SQL Server system role)
SHA function (MySQL)
SHA1 function (MySQL)
shared keywords
SHOW_ROLE() function
SHOW_SEC_SERVICES() function
SIGN function
 DB2
 MySQL
 Oracle
 SQL Server
SIN function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
Single parameter object type (ADO.NET)
SINH function
 DB2
 Oracle
SMALLDATETIME datatype
 platform comparison
 SQL Server 2nd
 Sybase adaptive server
SMALLINT datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
SMALLINT function (DB2)
SMALLMONEY datatype
 platform comparison
 SQL Server
SOME operator 2nd
 keywords
 platform differences
 platform support for
 programming tips
 quick reference
 rules
 SQL2003 syntax
SORTKEY function
SOUNDEX function
 DB2
 MySQL
 Oracle
 SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SPACE function
 DB2
 MySQL
 SQL Server
SQL command reference, quick reference
SQL dialects
SQL history and implementations
SQL Server
 allowed characters in identifiers
 basics
 beginning identifier character
 BIGINT datatype
 BINARY datatype
 CALL statement
 CHAR() datatype
 CLOSE CURSOR statement
 COMMIT statement
 CONNECT statement
 connecting using JDBC
 CREATE/ALTER DATABASE statements
 ADD FILEGROUP
 ADD LOG
 ANSI_NULL_DEFAULT
 ANSI_NULLS
 ANSI_PADDING
 ANSI_WARNINGS
 ARITHABORT
 AUTO_CLOSE
 AUTO_CREATE_STATISTICS
 auto_option
 AUTO_SHRINK
 AUTO_UPDATE_STATISTICS
 COLLATE
 CONCAT_NULL_YIELDS_NULL
 CURSOR_CLOSE_ON_COMMIT
 CURSOR_DEFAULT
 FOR LOAD
 MODIFY FILE
 MODIFY FILEGROUP
 MODIFY NAME
 MULTI_USER
 NUMERIC_ROUNDABORT
 OFFLINE
 ON file_definition
 QUOTED_IDENTIFIER
 READ_ONLY
 RECOVERY
 RECURSIVE_TRIGGERS
 REMOVE FILE
 REMOVE FILEGROUP
 RESTRICTED_USER
 SET
 SINGLE_USER
 sql_options clause
 TORN_PAGE_DETECTION
 WITH
 CREATE/ALTER FUNCTION/PROCEDURE statements
 @parameter datatype
 CREATE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ENCRYPTION
 FOR REPLICATION
 RECOMPILE
 RETURNS
 SCHEMABINDING
 WITH
 CREATE/ALTER INDEX statements
 ASC
 CLUSTERED
 DESC
 DROP_EXISTING
 FILLFACTOR
 IGNORE_DUP_KEY
 ON
 PAD_INDEX
 SORT_IN_TEMPDB
 STATISTICS_NORECOMPUTE
 WITH
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE statements
 CHECK
 CHECK CONSTRAINT
 COLLATE
 DEFAULT
 ENABLE TRIGGER
 FOREIGN KEY
 IDENTITY
 NOT FOR REPLICATION
 PRIMARY KEY
 ROWGUIDCOL
 TEXTIMAGE_ON
 WITH CHECK
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 CREATE/ALTER VIEW statements
 datatypes
 compared to Sybase adaptive server
 DATETIME datatype
 DECLARE CURSOR command
 DYNAMIC
 FAST_FORWARD
 FOR
 FOR UPDATE
 FORWARD_ONLY
 GLOBAL
 INSENSITIVE
 KEYSET
 LOCAL
 OPTIMISTIC
 READ_ONLY
 SCROLL
 SCROLL_LOCKS
 SQL-92 compatibility syntax
 STATIC
 Transact-SQL extensioned syntax
 TYPE_WARNING
 DELETE statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 delimiters and operators
 DISCONNECT statement
 DROP statements
 DATABASE
 DEFAULT
 FUNCTION
 INDEX
 PROCEDURE
 RULE
 STATISTICS
 TABLE
 TRIGGER
 TYPE
 VIEW
 EXCEPT set operator
 FETCH statement
 functions
 ACOS
 APP_NAME
 ASCII
 ASIN
 ATAN
 ATN2
 BINARY_CHECKSUM
 CHAR
 CHARINDEX
 CHECKSUM
 CHECKSUM_AGG
 COALESCE
 COL_LENGTH
 COL_NAME
 CONTAINS
 CONTAINSTABLE
 CONVERT
 COS
 COT
 DATABASEPROPERTYEX
 DATALENGTH
 DATEADD
 DATEDIFF
 DATENAME
 DATEPART
 DAY
 DB_ID
 DB_NAME
 DEGREES
 DIFFERENCE
 FILE_ID
 FILE_NAME
 FILEGROUP_ID
 FILEGROUP_NAME
 FILEPROPERTY
 FORMATMESSAGE
 FREETEXT
 FREETEXTTABLE
 FULLTEXTCATALOGPROPERTY
 FULLTEXTSERVICEPROPERTY
 GETANSINULL
 GETDATE()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 GETUTCDATE()
 GROUPING
 HOST_ID()
 HOST_NAME()
 IDENT_CURRENT
 IDENT_INCR
 IDENT_SEED
 IDENTITY
 INDEX_COL
 INDEXPROPERTY
 IS_MEMBER
 IS_SRVROLEMEMBER
 ISDATE
 ISNULL
 ISNUMERIC
 LEFT
 LEN
 LOG
 LOG10
 LTRIM
 MONTH
 NCHAR
 NEWID()
 NULLIF
 OBJECT_ID
 OBJECT_NAME
 OBJECTPROPERTY
 OPEN
 OPENDATASOURCE
 OPENQUERY
 OPENROWSET
 PARSENAME
 PATINDEX
 PERMISSIONS
 PI()
 RADIANS
 RAND
 REPLACE
 REPLICATE
 REVERSE
 RIGHT
 ROUND
 ROWCOUNT_BIG
 RTRIM
 SIGN
 SIN
 SOUNDEX
 SPACE
 STATS_DATE
 STDEV
 STDEVP
 STR
 STUFF
 SUBSTRING
 SUSER_ID
 SUSER_SID
 SUSER_SNAME
 TAN
 TEXTPTR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 TEXTVALID
 TYPEPROPERTY
 UNICODE
 USER_ID
 USER_NAME
 VAR
 VARP
 YEAR
 GRANT statement
 identifier size
 INSERT statement
 INTERSECT set operator
 JOIN subclause
 keywords
 LIKE operator
 MERGE statement
 NCHAR() datatype 2nd
 nested triggers
 NTEXT datatype
 OPEN statement
 ORDER BY clause
 recursive triggers
 RELEASE SAVEPOINT statement
 reserved identifiers
 RETURN statement
 REVOKE statement
 ROLLBACK statement
 ROWVERSION datatype
 SAVEPOINT statement
 schema addressing
 SELECT statement
 COMPUTE clause
 FOR
 FROM
 GROUP BY
 INTO
 OPTION
 ORDER BY
 TOP
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 SMALLDATETIME datatype
 SQL_VARIANT datatype
 START TRANSACTION statement
 stored procedures 2nd
 SUBQUERY substatement
 system roles
 BULKADMIN
 DB_ACCESSADMIN
 DB_BACKUPOPERATOR
 DB_DATAREADER
 DB_DATAWRITER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DB_DDLADMIN
 DB_DENYDATAREADER
 DB_DENYDATAWRITER
 DB_OWNER
 DB_SECURITYADMIN
 DBCREATOR
 DISKADMIN
 PROCESSADMIN
 SECURITYADMIN
 SERVERADMIN
 SETUPADMIN
 SYSADMIN
 TRUNCATE TABLE statement
 UDFs
 UNION set operator
 UNIQUEIDENTIFIER datatype
 UPDATE statement
 VARBINARY() datatype
 VARCHAR() datatype
 versus Sybase adaptive server
 functions
 web site
 WHERE clause
SQL Standard web site
SQL/CLI (Call-Level Interface)
SQL/Foundation
SQL/Framework
SQL/JRT (Java Routines and Types)
SQL/MED (Management of External Data)
SQL/OBJ (Object Language Binding)
SQL/PSM (Persistent Stored Modules)
SQL/Schemata
SQL/XML 2nd
SQL_VARIANT datatype
 platform comparison
 SQL Server 2nd
SQL2003
 allowed characters in identifiers
 beginning identifier character
 categories and datatypes
 data structures
 identifier size
 keywords
 new features
 numeric functions
 reserved identifiers
 schema addressing
 statement classes
 supplemental features packages
 window syntax
SQL2003 keywords
SQL2003 syntax
 ALL operator
 ANY operator
 BETWEEN operator
 CALL statement
 CLOSE CURSOR statement
 COMMIT statement
 CONNECT statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CREATE/ALTER FUNCTION/PROCEDURE statements
 CREATE/ALTER METHOD statements
 CREATE/ALTER ROLE statements
 CREATE/ALTER SCHEMA statements
 CREATE/ALTER TABLE statements
 CREATE/ALTER TRIGGER statements
 CREATE/ALTER TYPE statements
 CREATE/ALTER VIEW statements
 DECLARE CURSOR command
 DELETE statement
 DISCONNECT statement
 DROP statements
 EXCEPT set operator
 EXISTS operator
 FETCH statement
 GRANT statement
 IN operator
 INSERT statement
 INTERSECT set operator
 IS operator
 JOIN subclause
 LIKE operator
 MERGE statement
 OPEN statement
 ORDER BY clause
 RELEASE SAVEPOINT statement
 RETURN statement
 REVOKE statement
 ROLLBACK statement
 SAVEPOINT statement
 SELECT statement
 SET CONNECTION statement
 SET CONSTRAINT statement
 SET PATH statement
 SET ROLE statement
 SET SCHEMA statement
 SET SESSION AUTHORIZATION statement
 SET statement
 SET TIME ZONE statement
 SET TRANSACTION statement
 SOME operator
 START TRANSACTION statement
 SUBQUERY substatement
 UNION set operator
 UPDATE statement
 WHERE clause
SQL92
SQL99
 deleted elements in SQL2003
SqlConnection
 connection string attributes for
SQLPL
SQRT function
standby databases (Oracle)
START TRANSACTION statement
 DB2
 MySQL
 Oracle
 platform support for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
statement objects
 associating SQL with
 creating
 executing
statements
 executing
 preparing and executing
 re-executing
 Sybase adaptive server SQL
STATS_BINOMIAL_TEST function (Oracle)
STATS_DATE function
 SQL Server
STD function (MySQL)
STDDEV function
 DB2
 MySQL
 Oracle
STDDEV_POP function 2nd
STDDEV_SAMP function 2nd
 Oracle
STDEV function
 SQL Server
STDEV_POP function (Oracle)
STDEVP function
 SQL Server
STOP LOGICAL STANDBY APPLY
storage_clause (Oracle)
stored procedures
 operators and 2nd
STR function (SQL Server)
STRCMP function (MySQL)
string functions and operators
String parameter object type (ADO.NET)
StringFixedLength parameter object type (ADO.NET)
STUFF function (SQL Server)
SUBDATE function (MySQL)
subpartitioned tables
 Oracle
 altering
subqueries
 correlated
 nested table
 scalar
 table
SUBQUERY substatement
 DB2
 examples
 keywords
 MySQL
 Oracle
 platform support for 2nd
 PostgreSQL
 programming tips
 rules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SQL Server
 SQL2003 syntax
SUBSTR function
 DB2
 Oracle
 PostgreSQL
SUBSTRB function (Oracle)
SUBSTRING function
 MySQL
 PostgreSQL
 SQL Server
SUBSTRING_INDEX function (MySQL)
subtraction (-) arithmetic operator
suffixes
SUM function 2nd
SUSER_ID function
 SQL Server
SUSER_NAME function
SUSER_SID function
 SQL Server
SUSER_SNAME function
 SQL Server
SYB_SENDMSG function
Sybase Adaptive Aerver
 TIMESTAMP datatype
Sybase Adaptive Server
 BINARY datatype
 CHAR() datatype
 datatypes
 compared to SQL Server
 DATETIME datatype
 keywords 2nd
 NCHAR() datatype
 NVARACHAR() datatype
 SMALLDATETIME datatype
 SQL statements
 statements
 supported functions
 UNICHAR datatype
 UNIVARCHAR datatype
 VARBINARY() datatype
 VARCHAR() datatype
 versus SQL Server
 functions
Sybase Adaptive Server keywords
Sybase adaptive server keywords
SYS_CONNECT_BY_PATH function (Oracle)
SYS_CONTEXT function (Oracle)
SYS_DBURIGEN function (Oracle)
SYS_EXTRACT_UTC function (Oracle)
SYS_GUID() function (Oracle)
SYS_TYPEID function (Oracle)
SYS_XMLAGG function (Oracle)
SYS_XMLGEN function (Oracle)
SYSADMIN (SQL Server system role)
SYSDATE function (Oracle)
SYSDATE() function (MySQL)
system delimiters
SYSTEM_USER function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SYSTEM_USER() function (MySQL)
SYSTIMESTAMP function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

/ division arithmetic operator
!> not greater than operator
!< not less than operator
!= not equal to operator
(pound symbol)
(double-pound symbol)
% modula arithmetic operator
& bitwise AND operator
> greater than operator
>= greater than or equal to operator
< less than operator
<= less than or equal to operator
* multiplication arithmetic operator
+ addition arithmetic operator
+ unary operator
- subtraction arithmetic operator
- unary operator
= assignment operator
= equal to comparison operator
^ bitwise exclusive OR operator
| bitwise OR operator
~ unary operator

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

TABLE datatype
 platform comparison
 SQL Server
table subqueries
 nested
table-level constraints
TABLE_NAME function (DB2)
TABLE_SCHEMA function (DB2)
tables
TABLESAMPLE clause
TAN function
 DB2
 MySQL
 Oracle
 PostgreSQL
 SQL Server
TANH function
 DB2
 Oracle
testing expressions against range of values
TEXT datatype
 MySQL
 platform comparison
 PostgreSQL
 SQL Server
TEXT function (PostgreSQL)
TEXTPTR function (SQL Server)
TEXTVALID function (SQL Server)
TIME datatype
 DB2
 platform comparison
 PostgreSQL
TIME function (DB2)
TIME_FORMAT function (MySQL)
TIME_TO_SEC function (MySQL)
TIMESPAN datatype
 platform comparison
 PostgreSQL
TIMESTAMP datatype
 DB2
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
 Sybase adaptive server
TIMESTAMP function
 DB2
 PostgreSQL
TIMESTAMP_FORMAT function (DB2)
TIMESTAMP_ISO function (DB2)
TIMESTAMP_TO_SCN function (Oracle)
TIMESTAMPDIFF function (DB2)
TIMETZ datatype
 platform comparison

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 PostgreSQL
TINYINT datatype
 platform comparison
 SQL Server
TO_BINARY_DOUBLE function (Oracle)
TO_BINARY_FLOAT function (Oracle)
TO_CHAR function
 DB2
 Oracle 2nd
 PostgreSQL
TO_CLOB function (Oracle)
TO_DATE function
 DB2
 Oracle
 PostgreSQL
TO_DAYS function (MySQL)
TO_DSINTERVAL function (Oracle)
TO_LOB function (Oracle)
TO_MULTI_BYTE function (Oracle)
TO_NCHAR function (Oracle)
TO_NCLOB function (Oracle)
TO_NUMBER function
 Oracle
 PostgreSQL
TO_SINGLE_BYTE function (Oracle)
TO_TIMESTAMP function
 Oracle
 PostgreSQL
TO_TIMESTAMP_TZ function (Oracle)
TO_UNICHAR function
TO_YMINTERVAL function (Oracle)
Transact-SQL
Transaction object
 ADO.NET
 JDBC
TRANSACTION_NONE isolation level (Transaction object (JDBC))
TRANSACTION_READ_COMMITTED isolation level (Transaction object (JDBC))
TRANSACTION_READ_UNCOMMITTED isolation level (Transaction object (JDBC))
TRANSACTION_REPEATABLE_READ isolation level (Transaction object (JDBC))
TRANSACTION_SERIALIZABLE isolation level (Transaction object (JDBC))
transactions
 beginning 2nd
 ADO.NET
 JDBC
 closing and making permanent
 committing
 ending
 explicit
 implicit
 managing
 rolling back
TRANSLATE function
 DB2
 Oracle 2nd
 PostgreSQL
TREAT function (Oracle)
TRIM function
TRUNC function
 DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Oracle 2nd
 PostgreSQL
TRUNCATE function
 DB2
 MySQL
TRUNCATE TABLE statement
 DB2
 defacto standard syntax
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
TSEQUEL function
Twelve Principles of Relational Databases
TYPE_ID function (DB2)
TYPE_NAME function (DB2)
TYPE_SCHEMA function (DB2)
TYPEPROPERTY function
 SQL Server
TZ_OFFSET function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

UCASE function (MySQL)
UHIGHSURR function
UID function (Oracle)
UInt parameter object type (ADO.NET)
ULOWSURR function
unary operators 2nd
UNCOMPRESS function (MySQL)
UNHEX function (MySQL)
UNICHAR datatype (Sybase adaptive server)
UNICODE function
 SQL Server
UNION set operator
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
UNIQUE constraints
UNIQUEIDENTIFIER datatype
 platform comparison
 SQL Server 2nd
UNISTR function (Oracle)
UNIVARCHAR datatype (Sybase adaptive server)
UNIX_TIMESTAMP function (MySQL)
Unspecified isolation level (Transaction object (ADO.NET))
UPDATE statement
 DB2
 keywords
 MySQL
 operators and 2nd
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
UPDATEXML function (Oracle)
UPPER function
URLs
 MySQL
 open source
 Oracle
 PostgreSQL
 SQL Server
UROWID datatype
 Oracle
 platform comparison
USCALAR function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user
USER() function (MySQL)
USER_ID function (SQL Server)
USER_NAME function (SQL Server)
USERENV function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

VALID_NAME function
VALID_USER function
VALUE function
 DB2
 Oracle
VAR function
 DB2
 SQL Server
VAR_POP function 2nd
 Oracle
VAR_SAMP function 2nd
 Oracle
VARBINARY datatype
 platform comparison
 SQL Server
VARBINARY() datatype
 SQL Server
 Sybase adaptive server
VARBIT datatype
 platform comparison
VARCHAR datatype
 DB2
 MySQL
 Oracle
 platform comparison
 PostgreSQL
 SQL Server
VARCHAR FOR BIT DATA datatype
 DB2
 platform comparison
VARCHAR function
 DB2
 PostgreSQL
VARCHAR() datatype
 SQL Server
 Sybase adaptive server
VARCHAR_FORMAT function (DB2)
VARCHAR2 datatype
 Oracle
 platform comparison
VARGRAPHIC datatype
 DB2
 platform comparison
VARGRAPHIC function (DB2)
VARIANCE function
 DB2
 Oracle
VARP function
 SQL Server
Vector subquery in WHERE/HAVING clause
VERSION() function (MySQL)
views 2nd
 operators and 2nd
VSIZE function (Oracle)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VSIZE function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

WEEK function
 DB2
 MySQL
WEEK_ISO function (DB2)
WEEKDAY function (MySQL)
WHERE clause 2nd 3rd
 DB2
 keywords
 MySQL
 Oracle
 platform support for
 PostgreSQL
 programming tips
 rules
 SQL Server
 SQL2003 syntax
WHERE clause (SELECT statement)
 comparison operators and
 logical operators and
WIDTH function (PostgreSQL)
WIDTH_BUCKET function
window functions 2nd
 DB2 syntax
 group clause
 Oracle syntax
 ordering clause
 partitioning clause
 SQL2003 syntax
windowing functions
WITH[OUT] SESSION SHUTDOWN

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Xbase
XML datatype
 Oracle
 platform comparison
XML schema
 tables based on
XMLAGG function (Oracle)
XMLCOLATTVAL function (Oracle)
XMLCONCAT function (Oracle)
XMLELEMENT function (Oracle)
XMLFOREST function (Oracle)
XMLSEQUENCE function (Oracle)
XMLTRANSFORM function (Oracle)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

YEAR function
 DB2
 MySQL
 SQL Server
YEARWEEK function (MySQL)

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
SQL in a Nutshell, 2nd Edition

By Kevin E. Kline

Publisher: O'Reilly

Pub Date: September 2004

ISBN: 0-596-00481-8

Pages: 710

This essential desktop reference drills down and documents every SQL command and how to use it in both commercial
(Oracle, DB2, and Microsoft SQL Server) and open source implementations (PostgreSQL, and MySQL). It includes the
command syntax (by vendor, if the syntax differs across implementations), a description, and practical examples. And it
also explains how the leading commercial and open sources database product implement SQL. This wealth of
information is packed into a succinct, comprehensive, and extraordinarily easy-to-use format.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.1 Sybase Adaptive Server Datatypes
Table A-1 compares the datatypes supported by Sybase Adaptive Server to those supported by Microsoft SQL Server.
While there is significant overlap in the types offered, a few types differ in meaning or are missing on one of the
platforms. Where differences in the types exist, they'll be listed in the table. Types that are not listed within the table
should be considered identical on both platforms.

Table A-1. Sybase Adaptive Server datatypes
Sybase

adaptive
server

datatype

Microsoft SQL
Server datatype Notes

N/A BIGINT Usage of decimal(19,0) as an equivalent to BIGINT will allow storage of
values within the same range.

BINARY BINARY Describes a fixed-length binary value up to 255 bytes in size. In contrast,
Microsoft SQL Server can store 8,000 bytes.

CHAR(N) CHAR(N) Holds fixed-length character data up to the database's page size in length.

DATETIME DATETIME
Holds date and time data within the range of 1753-01-01 00:00:00 through
9999-12-31 23:59:59. The DATETIME type can store milliseconds with a
granularity of 1/300 second.

NCHAR(N) N/A
Holds fixed-length character strings in the national character set up to the
database's page size in length. In contrast, Microsoft SQL Server's NCHAR
datatype stores Unicode character strings.

N/A NTEXT Holds Unicode text passages up to 1,073,741,823 characters in length.

NVARACHAR(N) N/A
Holds variable-length character strings in the national character set up to the
database's page size in length. In contrast, Microsoft SQL Server's
NVARACHAR datatype stores Unicode character strings.

TIMESTAMP ROWVERSION A unique number within a database that is updated whenever a row is
updated.

SMALLDATETIME SMALLDATETIME
Holds date and time data within the range of 1900-01-01 00:00 through
2079-12-31 23:59. Unlike Microsoft SQL Server, Sybase cannot hold dates
with second resolution in a SMALLDATETIME.

N/A SQL_VARIANT Sybase has no weakly typed storage type like SQL Server's SQL_VARIANT.

UNICHAR NCHAR(N) Stores fixed-length, Unicode character strings up to the database's page size
in length.

N/A UNIQUEIDENTIFIER Represents a value that is unique across all databases and all servers.

UNIVARCHAR NCHAR(N) Stores variable-length, Unicode character strings up to the database's page
size in length.

VARBINARY(N) VARBINARY(N) Describes a variable-length binary value up to 255 bytes in size. In contrast,
Microsoft SQL Server can store up to 8,000 bytes.

VARCHAR(N) VARCHAR(N) Holds fixed-length character data up to the database's page size in length.

The primary differences between the types offered by SQL Server and Sybase are the storage sizes, precision, and
default meaning of the NCHAR type. When converting data from one platform to the other, it is important to observe
these subtle differences to avoid data truncation or corruption.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.2 Sybase Adaptive Server SQL Statements
As we saw in the previous section, there is significant overlap in the type support offered by Sybase and SQL Server.
This section compares the SQL dialects of Sybase to SQL Server. In most cases, the SQL Server statements described
in Chapter 3 apply to Sybase as well. This section outlines those statements that are different between the two
platforms.

In Table A-2, the SQL commands are listed along with notes containing the differences between SQL Server and
Sybase. While most of the statements have identical syntax and meaning, for those statements that contain large
differences, the syntax for Sybase is listed with notes on how the statements differ.

Table A-2. Sybase Adaptive Server SQL statements
Command Notes

ALTER
PROCEDURE

Sybase does not support the ENCRYPTION keyword or replication through the FOR REPLICATION
keywords.

ALTER TABLE

Sybase does not support the ROWGUIDCOL keyword or the CHECK and NOCHECK keywords for
enabling constraints.

ALTER TABLE table_name

[ADD {column_name datatype attributes}[,...]]

| [DROP column_name[,...]]

| [ADD CONSTRAINT {constraint_name constraint_clause}[,...]]

| [DROP CONSTRAINT constraint_name[,...]]

| [MODIFY {column_name data_type [[NOT] NULL]}[,...]]

| [{ENABLE|DISABLE} trigger_name]

ALTER
TRIGGER

Sybase has no equivalent to the ALTER TRIGGER statement in SQL Server. For equivalent
functionality, drop the existing trigger with a DROP TRIGGER statement and recreate it with the
CREATE TRIGGER statement.

ALTER VIEW
Sybase has no equivalent to the ALTER VIEW statement in SQL Server. For equivalent functionality,
drop the existing view with a DROP VIEW statement and recreate it with the CREATE VIEW
statement.

CALL Not supported by SQL Server or Sybase. Look to the EXECUTE command for this functionality.

CONNECT

Supported with variations.

CONNECT TO server_name

CREATE
DATABASE

Creating a new database in Sybase has the following syntax:

CREATE DATABASE database_name

[ON { DEFAULT | database_device} [=size]

 [, {database_device [=size]}[,...]]

[LOG ON {log_device [=size]}[,...]

[WITH {OVERRIDE | DEFAULT_LOCATION = "pathname"}]

[FOR {LOAD | PROXY_UPDATE}]

DEFAULT specifies the default device, equivalent to the PRIMARY keyword on SQL Server.

size is the size of the database or transaction log in megabytes.

log_device has the same meaning as SQL Server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

log_device has the same meaning as SQL Server.

PROXY_UPDATE automatically gets the metadata from the DEFAULT_LOCATION when
creating the database.

CREATE
FUNCTION

Support is identical to that offered by SQL Server, except that the following options are unsupported:
VARYING, ENCRYPTION, and FOR REPLICATION.

CREATE
INDEX

Differences exist within the options provided in the WITH clause, as follows:

[WITH [{FILLFACTOR = fillfactor |

MAX_ROWS_PER_PAGE = num_rows}]

[[,]RESERVEPAGEGAP = num_pages]

[[,]CONSUMERS = X]

[[,]IGNORE_DUP_KEY]

[[,]IGNORE_DUP_ROW | ALLOW_DUP_ROW]

[[,]SORTED_DATA]

[[,]STATISTICS USING num_steps VALUES]

FILLFACTOR has the same meaning as SQL Server.

MAX_ROWS_PER_PAGE is another way of controlling the fill factor of the index, but uses the
row count instead of a percentage of the page space.

RESERVEPAGEGAP provides a method of controlling the ratio of empty index pages to filled
ones. This can provide a performance advantage for indexes that grow in size frequently.
Valid values for num_pages are 0-255, with the default being 0.

IGNORE_DUP_KEY has the same meaning as SQL Server.

IGNORE_DUP_ROW allows the creation of a clustered index on tables that contain duplicate
rows. While the index can be created when the table contains duplicate rows, any insert or
update statement that can result in the creation of a duplicate row will be canceled once the
index is created.

CREATE
INDEX

ALLOW_DUP_ROW is similar to IGNORE_DUP_ROW, except that it permits insert and update
statements that will result in duplicate rows.

SORTED_DATA speeds up the creation of indexes for tables that are already sorted on disk.

WITH STATISTICS USING num_steps VALUES controls the amount of statistics maintained
and provided to the query optimizer.

CREATE
PROCEDURE

Support is identical to that offered by SQL Server, except that the following options are unsupported:
VARYING, ENCRYPTION, and FOR REPLICATION.

CREATE ROLE

Supported with variations.

CREATE ROLE role_name [WITH PASSWD "password"

[, {"PASSWD EXPIRATION" | "MIN PASSWD LENGTH" |

"MAX FAILED LOGINS" } option_value][,...]]

This statement will create a role by role_name with an optional password. Unique to Sybase is the
ability to specify simple security options for the new role.

While casual users of SQL Server and Sybase will notice no differences in the CREATE TABLE syntax,
others will note the following differences:

The NOT FOR REPLICATION option is not supported on Sybase.

The ROWGUIDCOL column attribute is not supported on Sybase.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE
TABLE

The ROWGUIDCOL column attribute is not supported on Sybase.

The TEXTIMAGE_ON option is not supported on Sybase.

The IDENTITY attribute cannot have a seed or increment value specified on Sybase.

Other than those small changes, the features unique to Sybase are listed below.

CREATE TABLE [database_name.[owner].]table_name

 ({column_name datatype

 {[DEFAULT default_value]

 | [IDENTITY | NULL | NOT NULL]

 | [OFF ROW | IN ROW [(size_in_bytes)]]

 | REFERENCES [[database_name.]owner.]ref_table [(ref_column)]

 {UNIQUE | PRIMARY KEY} [CLUSTERED | NONCLUSTERED] [asc |

 desc]

 [WITH { FILLFACTOR = pct,

 MAX_ROWS_PER_PAGE = num_rows, }

 RESERVEPAGEGAP = num_pages }]

 [ON segment_name]

 | CHECK (search_condition)

 }

 |[CONSTRAINT constraint_name]

 |FOREIGN KEY ({column_name}[,...]) REFERENCES

 [[database_name.]owner.]ref_table

 [({ref_column}[,...])]

 | CHECK (search_condition)

 |{UNIQUE | PRIMARY KEY} [CLUSTERED | NONCLUSTERED]

 ({column_name [ASC | DESC]}[,...])

 [WITH { FILLFACTOR = pct,

 MAX_ROWS_PER_PAGE = num_rows,

 RESERVEPAGEGAP = num_pages }]

 [ON segment_name]}[,...])

[LOCK {DATAROWS | DATAPAGES | ALLPAGES }]

[WITH { MAX_ROWS_PER_PAGE = num_rows,

 EXP_ROW_SIZE = num_bytes,

 RESERVEPAGEGAP = num_pages,

 IDENTITY_GAP = value }]

[ON segment_name]

[[EXTERNAL TABLE] AT pathname]

OFF/IN ROW specifies if a Java-SQL column is physically stored inside a row or outside. The
SIZE_IN_BYTES option is the maximum space required to store an IN ROW type.

ASC/DESC determines the ordering for an index created for a constraint. Ascending order,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE
TABLE

ASC/DESC determines the ordering for an index created for a constraint. Ascending order,
ASC, is the default.

MAX_ROWS_PER_PAGE limits the number of rows per page.

LOCK specifies the locking strategy used for the table.

EXP_ROW_SIZE specifies the expected row size in bytes. The default is zero, which means
the server's default will be used.

RESERVEPAGEGAP specifies the desired ratio of filled to empty pages. Valid values are 0-255,
with a default of zero.

IDENTITY_GAP controls the gap between consecutive values in identity columns.

EXTERNAL TABLE specifies that the table is stored externally. This is the default, so its usage
is optional.

CREATE
TRIGGER

Sybase offers support similar to SQL Server, with the following exceptions:

WITH ENCRYPTION is not permitted.

AFTER and INSTEAD OF are not permitted.

WITH APPEND is not permited.

NOT FOR REPLICATION is not permitted.

COLUMNS_UPDATED() function is not supported.

CREATE VIEW Support is identical to that offered by SQL Server except that Sybase has no ENCRYPTION,
SCHEMABINDING, or VIEW_METADATA options.

DECLARE
CURSOR

Support is identical to that offered by SQL Server, except that Sybase has no INSENSITIVE or
SCROLL options.

DELETE

The DELETE statement is nearly identical between Sybase and SQL Server. SQL Server supports a
WITH and OPTION clause that Sybase does not. The features unique to Sybase are listed below.

DELETE [[owner.]{table_name | view_name}]

[FROM {[owner.]

 {view_name [READPAST]

 |table_name [READPAST]

 [(INDEX {index_name|table_name}

 [PREFETCH size][LRU | MRU])]

}}[,...]

[WHERE {search_conditions | CURRENT OF cursor_name}]]

[PLAN "abstract_plan"]

READPAST instructs the server to skip over all pages or rows currently locked by other transactions,
deleting rows only from pages not currently in use.

PREFETCH specifies the I/O size, in kilobytes, for tables that are bound to caches.

LRU/MRU specifies either a least or most recently used buffer replacement strategy.

PLAN sends abstract_plan as an alternative execution plan to the query optimizer.

DISCONNECT

Supported with the following command:

DISCONNECT

Supported with the following syntax:

DROP ROLE role_name [WITH OVERRIDE]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP ROLE
DROP ROLE role_name [WITH OVERRIDE]

Using WITH OVERRIDE will ignore all restrictions on dropping the role from the databases.

FETCH

The FETCH command differs significantly from SQL Server. Sybase has sequential server-side
cursors, so the NEXT, PRIOR, FIRST, and LAST options are not permitted.

Additionally, parameters can be used in a target list as long as there is a one-to-one mapping
between these items and the ones returned by the SELECT statement when the cursor was created.

FETCH cursor_name [INTO fetch_target_list]

For example:

DECLARE authors_cursor CURSOR

FOR SELECT au_lname, au_fname FROM authors

OPEN authors_cursor

FETCH authors_cursor INTO @lname, @fname

GO

GRANT Support is identical to that offered by SQL Server, except that Sybase has no AS clause.

INSERT Sybase offers the SQL99 syntax for INSERT statements; therefore, Sybase permits none of the
extended features of SQL Server.

RETURN Sybase's return statement RETURN, unlike SQL Server, cannot return NULL values.

REVOKE

Sybase offers support similar to SQL Server with the following exceptions:

The TO clause cannot be used in place of FROM.

The AS clause is not permitted.

SAVEPOINT Support identical to SQL Server's SAVE TRANSACTION statement.

SELECT

Sybase offers support for SELECT statements identical to SQL Server, with the following exceptions:

Sybase has a PLAN clause instead of an OPTION clause used for passing hints to the server's
statement optimizer.

Sybase has no TOP clause.

Sybase does not support WITH CUBE or WITH ROLLUP in the GROUP BY clause.

Sybase offers a FOR { UPDATE | READ ONLY } clause that can only be used with a stored
procedure when the query defines the result for a cursor.

Sybase has AT ISOLATION { 0, 1, 2, 3 } for choosing a non-default isolation level for query
execution.

Sybase also offers a SELECT INTO statement, but with an additional, optional clause for
controlling the locking: LOCK { DATAROWS | DATAPAGES | ALLPAGES }

SET ROLE

Sybase supports the SET ROLE statement with the following syntax:

SET ROLE {"SA_ROLE" | "SSO_ROLE" | "OPER_ROLE" | role_name

[WITH PASSWD "password"]} { ON | OFF }

SET TIME
ZONE The SET TIMEZONE statement is not supported in Sybase or SQL Server.

START
TRANSACTION

Support is offered through BEGIN TRANSACTION, which is identical to SQL Server, except that
parameterized transaction names are not supported.

The UPDATE statement is nearly identical between Sybase and SQL Server. SQL Server supports

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UPDATE

The UPDATE statement is nearly identical between Sybase and SQL Server. SQL Server supports
WITH and OPTION clauses that Sybase does not. The features unique to Sybase are listed below.

UPDATE {table_name | view_name}

 SET {[{table_name.|view_name.}]

 column_name1 = {expression1|NULL|(select_statement)} |

 variable_name1 = {expression1|NULL|(select_statement)}}

 [,...]

[FROM {view_name [READPAST]|table_name [READPAST]

 [(INDEX {index_name | table_name }

[PREFETCH size][LRU|MRU])]}[,...]

[WHERE {search_conditions | CURRENT OF cursor_name}]

[PLAN "abstract_plan"]

UPDATE

READPAST instructs the server to skip over all pages or rows currently locked by other
transactions, updating rows only from pages not currently in use.

PREFETCH specifies the I/O size, in kilobytes, for tables that are bound to caches.

LRU/MRU specifies either the least or most recently used buffer replacement strategy.

PLAN sends abstract_plan as an alternative execution plan to the query optimizer.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.3 Sybase Adaptive Server SQL Functions
This section compares the functions provided by Sybase and SQL Server. Table A-3 provides a list of the functions supported by
differ on SQL Server. Only functions with differences between the two platforms have been listed.

Table A-3. Sybase Adaptive Server-supported functions
Sybase function SQL Server function

To retrieve the application name on
Sybase, use the following SQL
statement:

select program_name

from master..sysprocesses

where spid = @@spid

APP_NAME() Returns application name for current session; set
by application.

N/A BINARY_CHECKSUM({* | expression [,...]}) Returns binary checksum for list of expressions or
row of a table.

N/A CAST(expression AS datatype)
Converts a valid SQL Server expression to the
specified datatype. On
Enterprise, use the

CHAR_LENGTH(expression) N/A
Returns the number of characters in the
expression. On SQL Server,
provides equivalent

N/A CHECKSUM({* | expression [,...]}) Returns checksum value (computed over row
values or expressions

N/A CHECKSUM_AGG([ALL | DISTINCT] expression) Returns checksum of the values in group.

N/A COALESCE(expression [,...]) Returns the first non-NULL argument from a list of
arguments.

COMPARE(char_expression1,
char_expression2 [, {collation_name |
collation_ID}])

N/A

Returns the following values, based on the
collation rules:

1 : char_expression1
char_expression2

0: char_expression1

-1 :
char_expression2

N/A CONTAINS({column |* }, 'contains_search_condition'})

Searches columns on exact or
contains_seach_condition
function used to perform full-text searches. Refer
to the vendor

N/A CONTAINSTABLE(table, column, contains_search_condition)

Returns a table with exact and
contains_search_condition
function used to perform full-text searches. Refer
to the vendor

N/A COUNT_BIG([ALL | DISTINCT] expression) Same as

N/A DATABASEPROPERTYEX(database, property) Returns database option or property.

N/A DAY(date) Returns an integer value representing the day of
the date provided as

N/A FILE_ID('file_name') Returns the file ID for the logical filename.

N/A FILE_NAME(file_id) Returns the logical filename for file ID.

N/A FILEGROUP_ID('filegroup_name') Returns filegroup ID for the logical filegroup name.

N/A FILEGROUP_NAME(filegroup_id) Returns the logical filegroup name for filegroup ID.

N/A FILEGROUPPROPERTY(filegroup_name, property) Returns filegroup property value for the specified
property.

N/A FILEPROPERTY(file, property) Returns file property value for the specified
property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

property.

N/A FULLTEXTCATALOGPROPERTY(catalog_name, property) Returns full-text catalog properties.

N/A FULLTEXTSERVICEPROPERTY(property) Returns full-text service-level properties.

N/A FORMATMESSAGE(msg_number, param_value [,...]) Constructs a message from an existing message in
SYSMESSAGES

N/A FREETEXTTABLE(table { column |*}, 'freetext_string' [,
top_n_by_rank])

Used for full-text search; returns a table with
columns that match
match value of

N/A GETANSINULL(['database']) Returns default nullability setting for new columns.

N/A GETUTCDATE() Returns Universal Time Coordinate (UTC) date.

N/A GROUPING(column_name) Returns 1 when the row is added by CUBE or
ROLLUP; otherwise, returns

HEXTOINT(hexadecimal_string) N/A

Returns an integer equivalent to the hexadecimal
argument. On SQL
CONVERT(INT,

However, the function does not work with
hexadecimal strings as it
with true hexadecimal values.

N/A IDENT_INCR('table_or_view') Returns identity-column increment value.

N/A IDENT_SEED('table_or_view') Returns identity seed value.

N/A IDENT_CURRENT('table_name') Returns the last identity value generated for the
specified table.

N/A IDENTITY(data_type [, seed, increment]) As column_name Used in
identity column into the destination table.

N/A INDEXPROPERTY(table_id, index, property) Returns index property (such as

INTTOHEX(integer_expression) N/A

Returns the hexadecimal string equivalent to the
integer argument.
SQL Server, use
integer_expression).

N/A ISDATE(expression) Validates if a character string can be converted to
DATETIME

N/A IS_MEMBER({'group' | 'role'})

Returns true or false (1 or 0) depending on
whether user is a member
Server role. For equivalent functionality on
Sybase, use

N/A IS_SRVROLEMEMBER('role' [,'login']) Returns true or false (1 or 0), depending on
whether user is a member

N/A ISNUMERIC(expression)

Validates if a character string can be converted to
NUMERIC
use the following statement:

SELECT 1 WHERE expression

NOT LIKE '%[^0-9]%'

IS_SEC_SERVICE_ON(`security_service') N/A Returns 1 if the security service is active; returns
0 otherwise.

lct_admin({{'LASTCHANCE' |
`LOGFULL'} N/A

Modifies the last-chance threshold for databases or
processes; useful
processes.

N/A LEFT(character_expression, integer_expression) Returns a portion of a character expression,
starting at

N/A LEN(string_expression)
Returns the number of characters in the
expression. On Sybase, the
function provides equivalent

LICENSE_ENABLED('feature') N/A Returns 1 if a feature's license is active.

N/A. MONTH(date) Returns month part of the date provided.

MUT_EXCL_ROLES(role1, role2 [,
{membership | activation }]) N/A Returns information regarding the mutual

exclusivity between

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{membership | activation }]) N/A exclusivity between

N/A NCHAR(integer_expression)
Returns the Unicode character with the given
integer code. On Sybase,
function.

N/A NEWID() Creates a new unique identifier of type
UNIQUEIDENTIFIER

N/A NULLIF(expression, expression) Returns NULL if two specified expressions are
equivalent.

N/A OBJECTPROPERTY(id, property) Returns properties of objects in the current
database.

N/A OPEN{[Global]cursor_name | cursor_variable_name} Opens local or global cursor.

N/A OPENDATASOURCE(provider_name, init_string) Makes a connection to data source without using a
linked server name.

N/A OPENQUERY(linked_server, 'query') Queries a remote data source previously setup as
a linked server.

N/A OPENROWSET('provider_name', {'datasource'; 'user_id',password |
'provider_string'},{[catalog.][schema.]object | 'query'})

Queries a remote data source without setting it up
as a linked server.

N/A PARSENAME('object_name', object_piece)
Returns database name, owner name, server
name, or object name for
Object_piece

PATINDEX('%pattern%', expression) N/A Returns position of the first occurrence of a
pattern in a string.

N/A PERMISSIONS(object_id, column) Returns a value containing a bitmap with current
user's permissions on the specified object/column.

PROC_ROLE('role_name') N/A

Returns 0 if the current user has not been granted
the role specified
the IS_MEMBER
functionality.

N/A REPLACE('string_expression1','string_expression2','string_expression3)
Replaces the occurrence of the second expression
with the third
Same as STUFF.

ROLE_CONTAIN('role1',' role2') N/A Returns 1 if

ROLE_ID(role_name) N/A

Returns the role identifier for the role with name
role_name
statement:

SELECT uid FROM sysusers WHERE

issqlrole <> 0 AND name = role_name

This statement will return the role identifier for the
role with name

ROLE_NAME(role_id) N/A

Returns the role name matching the role identifier
equal to
statement:

SELECT name FROM sysusers WHERE issqlrole <> 0 AND

uid = role_id

ROWCNT(sysindexes.doampg) N/A

Provides an estimate of the number of rows in a
table. For equivalent
use the following statement:

SELECT rowcnt FROM sysindexes

WHERE name = '

N/A ROWCOUNT_BIG() Returns the number of rows affected by last query
(same as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

N/A SESSION_USER Returns username in the current connection.

SHOW_ROLE() N/A Returns a list of roles for the current user.

SHOW_SEC_SERVICES() N/A Returns a list of security services currently in use.

SORTKEY(char_expr [, {collation_name |
collation_id}]) N/A Returns a value that can be used to order the

values in

N/A STATS_DATE(table_id, index_id) Returns date and time when index statistics were
last updated.

N/A STDEV(expression) Returns standard deviation of values in the
column.

N/A STDEVP(expression) Returns standard deviation for the population of
values.

SUSER_ID(['login']) N/A
Returns the user identifier for the current user or
specified login.
function is

N/A SUSER_SID(['login'])
Returns Security ID (SID) for the current user or
specified login in
equivalent to this function is

SUSER_NAME([server_user_id]) N/A
Returns the login name for the current user or
specified
equivalent

N/A SUSER_SNAME([server_user_sid])
Returns login name for the current user or
specified
equivalent is

SYB_SENDMSG(ip_address, port,
message) N/A Sends a UDP data packet containing the

argument to the

N/A SYSTEM_USER Returns login name for the current session.

TO_UNICHAR(integer) N/A
Returns a single character Unicode expression
equivalent to the
use the

TSEQUEL(timestamp_expr,
timestamp_literal) N/A

Returns true if
timestamp_literal
Server has equivalent functionality when using the
equivalency

N/A TYPEPROPERTY(datatype,property) Returns information about datatype properties.

UHIGHSURR(uchar_expr, start) N/A Returns 1 if the Unicode value in
position

ULOWSURR(uchar_expr, start) N/A Returns 1 if the Unicode value in
position

N/A UNICODE(`ncharacter_expression')
Returns the Unicode integer value for the first
character of the
equivalent of this function is

USCALAR(uchar_expr) N/A
Returns the scalar value for the first Unicode
character in
equivalent is the

VALID_NAME(user_name) N/A Returns the value 0 if
username for any database on the server.

VALID_USER(user_id) N/A Returns the value 1 if
identifier for any database on the server.

N/A VAR(expression) Returns statistical variance in a column.

N/A VARP(expression) Returns statistical variance for a population for all
values in the

N/A YEAR(date) Returns an integer which is a YEAR part of the
specified

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

A.4 Sybase Adaptive Server Keywords
This section lists the keywords used by Sybase Adaptive Server Enterprise.

ABSOLUTE ACTION ADD ALL

ALLOCATE ALTER AND ANY

ARE ARITH_OVERFLOW AS ASC

ASSERTION AT AUTHORIZATION AVG

BEGIN BETWEEN BIT BIT_LENGTH

BOTH BREAK BROWSE BULK

BY CASCADE CASCADED CASE

CAST CATALOG CHAR CHAR_CONVERT

CHAR_LENGTH CHARACTER CHARACTER_LENGTH CHECK

CHECKPOINT CLOSE CLUSTERED COALESCE

COLLATE COLLATION COLUMN COMMIT

COMPUTE CONFIRM CONNECT CONNECTION

CONSTRAINT CONSTRAINTS CONTINUE CONTROLROW

CONVERT CORRESPONDING COUNT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR DATABASE

DATE DAY DBCC DEALLOCATE

DEC DECIMAL DECLARE DEFAULT

DEFERRABLE DEFERRED DELETE DESC

DESCRIBE DESCRIPTOR DETERMINISTIC DIAGNOSTICS

DISCONNECT DISK DISTINCT DOMAIN DOUBLE

DROP DUMMY DUMP ELSE

END END-EXEC ENDTRAN ERRLVL

ERRORDATA ERROREXIT ESCAPE EXCEPT

EXCEPTION EXCLUSIVE EXEC EXECUTE

EXISTS EXIT EXP_ROW_SIZE EXTERNAL

EXTRACT FALSE FETCH FILLFACTOR

FIRST FLOAT FOR FOREIGN

FOUND FROM FULL FUNC

FUNCTION GET GLOBAL GO

GOTO GRANT GROUP HAVING

HOLDLOCK HOUR IDENTITY IDENTITY_GAP

IDENTITY_INSERT IDENTITY_START IF IMMEDIATE

IN INDEX INDICATOR INITIALLY

INNER INOUT INPUT INSENSITIVE

INSERT INSTALL INT INTEGER

INTERSECT INTERVAL INTO IS

ISOLATION JAR JOIN KEY

KILL LANGUAGE LAST LEADING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LEFT LEVEL LIKE LINENO

LOAD LOCAL LOCK LOWER

MATCH MAX MAX_ROWS_PER_PAGE MIN

MINUTE MIRROR MIRROREXIT MODIFY

MODULE MONTH NAMES NATIONAL

NATURAL NCHAR NEW NEXT

NO NOHOLDLOCK NONCLUSTERED NOT

NULL NULLIF NUMERIC NUMERIC_TRUNCATION

OCTET_LENGTH OF OFF OFFSETS

ON ONCE ONLINE ONLY

OPEN OPTION OR ORDER

OUT OUTER OUTPUT OVER

OVERLAPS PAD PARTIAL PARTITION

PERM PERMANENT PLAN POSITION

PRECISION PREPARE PRESERVE PRIMARY

PRINT PRIOR PRIVILEGES PROC

PROCEDURE PROCESSEXIT PROXY_TABLE PUBLIC

QUIESCE RAISERROR READ READPAST

READTEXT REAL RECONFIGURE REFERENCES REMOVE

RELATIVE REORG REPLACE REPLICATION

RESERVEPAGEGAP RESTRICT RETURN RETURNS

REVOKE RIGHT ROLE ROLLBACK

ROWCOUNT ROWS RULE SAVE

SCHEMA SCROLL SECOND SECTION

SELECT SESSION_USER SET SETUSER

SHARED SHUTDOWN SIZE SMALLINT

SOME SPACE SQL SQLCODE

SQLERROR SQLSTATE STATISTICS STRINGSIZE

STRIPE SUBSTRING SUM SYB_IDENTITY

SYB_RESTREE SYB_TERMINATE SYSTEM_USER TABLE

TEMP TEMPORARY TEXTSIZE THEN

TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE

TO TRAILING TRAN TRANSACTION

TRANSLATE TRANSLATION TRIGGER TRIM

TRUE TRUNCATE TSEQUAL UNION

UNIQUE UNKNOWN UNPARTITION UPDATE

UPPER USAGE USE USER

USER_OPTION USING VALUE VALUES

VARCHAR VARYING VIEW WAITFOR

WHEN WHENEVER WHERE WHILE

WITH WORK WRITE WRITETEXT

YEAR ZONE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix A. Sybase Adaptive Server
For the most part, Microsoft SQL Server's dialect of SQL documented throughout this book applies to Sybase Adaptive
Server Enterprise 12.5. This appendix documents those datatypes, statements, functions, and keywords that differ
between these two popular platforms.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Appendix B. Shared and Platform-Specific Keywords
The tables below display the keywords in the ANSI standard, and in the five platform-specific implementations of SQL
that are discussed in this book, with the Sybase Adaptive Server. The keyword tables appear in the following order:

Shared keywords

SQL2003 keywords

DB2 keywords

MySQL keywords

Oracle keywords

PostgreSQL keywords

SQL Server keywords

Sybase Adaptive Server keywords

Table B-1. Shared keywords
ADD ALL ALTER AND

AS ASC BY CHECK

COLUMN CREATE DATE DEFAULT

DELETE DESC DROP FOR

FROM IN INTO IS

LIKE NOT NULL ON

OR ORDER REVOKE SELECT

SET TABLE THEN TO

UNIQUE UPDATE WITH

Table B-2. SQL2003 keywords
ABSOLUTE ACTION ADD ADMIN

AFTER AGGREGATE ALIAS ALL

ALLOCATE ALTER AND ANY

ARE ARRAY AS ASC

ASSERTION ASSERTION AT ATOMIC

AUTHORIZATION BEFORE BEGIN BIGINT

BINARY BIT BLOB BOOLEAN

BOTH BREADTH BY CALL

CASCADE CASCADED CASE CAST

CATALOG CHAR CHARACTER CHECK

CLASS CLOB CLOSE COLLATE

COLLATION COLLECT COLUMN COMMIT

COMPLETION CONDITION CONNECT CONNECTION

CONSTRAINT CONSTRAINTS CONSTRUCTOR CONTAINS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CONSTRAINT CONSTRAINTS CONSTRUCTOR CONTAINS

CONTINUE CORRESPONDING CREATE CROSS

CUBE CURRENT CURRENT_DATE CURRENT_PATH

CURRENT_ROLE CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER

CURSOR CYCLE DATA DATALINK

DATE DAY DEALLOCATE DEC

DECIMAL DECLARE DEFAULT DEFERRABLE

DELETE DEPTH DEREF DESC

DESCRIPTOR DESTRUCTOR DIAGNOSTICS DICTIONARY

DISCONNECT DO DOMAIN DOUBLE

DROP ELEMENT END-EXEC EQUALS

ESCAPE EXCEPT EXCEPTION EXECUTE

EXIT EXPAND EXPANDING FALSE

FIRST FLOAT FOR FOREIGN

FREE FROM FUNCTION FUSION

GENERAL GET GLOBAL GOTO

GROUP GROUPING HANDLER HASH

HOUR IDENTITY IF IGNORE

IMMEDIATE IN INDICATOR INITIALIZE

INITIALLY INNER INOUT INPUT

INSERT INT INTEGER INTERSECT

INTERSECTION INTERVAL INTO IS

ISOLATION ITERATE JOIN KEY

LANGUAGE LARGE LAST LATERAL

LEADING LEAVE LEFT LESS

LEVEL LIKE LIMIT LOCAL

LOCALTIME LOCALTIMESTAMP LOCATOR LOOP

MATCH MEMBER MEETS MERGE

MINUTE MODIFIES MODIFY MODULE

MONTH MULTISET NAMES NATIONAL

NATURAL NCHAR NCLOB NEW

NEXT NO NONE NORMALIZE

NOT NULL NUMERIC OBJECT

OF OFF OLD ON

ONLY OPEN OPERATION OPTION

OR ORDER ORDINALITY OUT

OUTER OUTPUT PAD PARAMETER

PARAMETERS PARTIAL PATH PERIOD

POSTFIX PRECEDES PRECISION PREFIX

PREORDER PREPARE PRESERVE PRIMARY

PRIOR PRIVILEGES PROCEDURE PUBLIC

READ READS REAL RECURSIVE

REDO REF REFERENCES REFERENCING

RELATIVE REPEAT RESIGNAL RESTRICT

RESULT RETURN RETURNS REVOKE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RIGHT ROLE ROLLBACK ROLLUP

ROUTINE ROW ROWS SAVEPOINT

SCHEMA SCROLL SEARCH SECOND

SECTION SELECT SEQUENCE SESSION

SESSION_USER SET SETS SIGNAL

SIZE SMALLINT SPECIFIC SPECIFICTYPE

SQL SQLEXCEPTION SQLSTATE SQLWARNING

START STATE STATIC STRUCTURE

SUBMULTISET SUCCEEDS SUM SYSTEM_USER

TABLE TABLESAMPLE TEMPORARY TERMINATE

THAN THEN TIME TIMESTAMP

TIMEZONE_HOUR TIMEZONE_MINUTE TO TRAILING

TRANSACTION TRANSLATION TREAT TRIGGER

TRUE UESCAPE UNDER UNDO

UNION UNIQUE UNKNOWN UNTIL

UPDATE USAGE USER USING

VALUE VALUES VARCHAR VARIABLE

VARYING VIEW WHEN WHENEVER

WHERE WHILE WITH WRITE

YEAR ZONE

Table B-3. DB2 keywords
ACQUIRE ADD AFTER ALIAS

ALL ALLOCATE ALLOW ALTER

AND ANY AS ASC

ASUTIME AUDIT AUTHORIZATION AUXILIARY

AVG BEFORE BEGIN BETWEEN

BINARY BUFFERPOOL BY CALL

CALLED CAPTURE CASCADED CASE

CAST CCSID CHAR CHARACTER

CHECK CLOSE CLUSTER COLLECTION

COLLID COLUMN COMMENT COMMIT

CONCAT CONDITION CONNECT CONNECTION

CONSTRAINT CONTAINS CONTINUE COUNT

COUNT_BIG CREATE CROSS CURRENT

CURRENT_DATE CURRENT_LC_PATH CURRENT_PATH CURRENT_SERVER

CURRENT_TIME CURRENT_TIMESTAMP CURRENT_TIMEZONE CURRENT_USER

CURSOR DATA DATABASE DATE

DAY DAYS DB2GENERAL DB2SQL

DBA DBINFO DBSPACE DECLARE

DEFAULT DELETE DESC DESCRIPTOR

DETERMINISTIC DISALLOW DISCONNECT DISTINCT

DO DOUBLE DROP DSSIZE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DYNAMIC EDITPROC ELSE ELSEIF

END END-EXEC ERASE ESCAPE

EXCEPT EXCEPTION EXCLUSIVE EXECUTE

EXISTS EXIT EXPLAIN EXTERNAL

FENCED FETCH FIELDPROC FILE

FINAL FOR FOREIGN FREE

FROM FULL FUNCTION GENERAL

GENERATED GO GOTO GRANT

GRAPHIC GROUP HANDLER HAVING

HOUR HOURS IDENTIFIED IF

IMMEDIATE IN INDEX INDICATOR

INNER INOUT INSENSITIVE INSERT

INTEGRITY INTERSECT INTO IS

ISOBID ISOLATION JAVA JOIN

KEY LABEL LANGUAGE LC_CTYPE

LEAVE LEFT LIKE LINKTYPE

LOCAL LOCALE LOCATOR LOCATORS

LOCK LOCKSIZE LONG LOOP

MAX MICROSECOND MICROSECONDS MIN

MINUTE MINUTES MODE MODIFIES

MONTH MONTHS NAME NAMED

NHEADER NO NODENAME NODENUMBER

NOT NULL NULLS NUMPARTS

OBID OF ON ONLY

OPEN OPTIMIZATION OPTIMIZE OPTION

OR ORDER OUT OUTER

PACKAGE PAGE PAGES PARAMETER

PART PARTITION PATH PCTFREE

PCTINDEX PIECESIZE PLAN POSITION

PRECISION PREPARE PRIMARY PRIQTY

PRIVATE PRIVILEGES PROCEDURE PROGRAM

PSID PUBLIC QUERYNO READ

READS RECOVERY REFERENCES RELEASE

RENAME REPEAT RESET RESOURCE

RESTRICT RESULT RETURN RETURNS

REVOKE RIGHT ROLLBACK ROW

ROWS RRN RUN SCHEDULE

SCHEMA SCRATCHPAD SECOND SECONDS

SECQTY SECURITY SELECT SET

SHARE SIMPLE SOME SOURCE

SPECIFIC SQL STANDARD STATIC

STATISTICS STAY STOGROUP STORES

STORPOOL STYLE SUBPAGES SUBSTRING

SUM SYNONYM TABLE TABLESPACE

THEN TO TRANSACTION TRIGGER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

THEN TO TRANSACTION TRIGGER

TRIM TYPE UNDO UNION

UNIQUE UNTIL UPDATE USAGE

USER USING VALIDPROC VALUES

VARIABLE VARIANT VCAT VIEW

VOLUMES WHEN WHERE WHILE

WITH WLM WORK WRITE

YEAR YEARS

Table B-4. MySQL keywords
ACTION ADD AFTER AGGREGATE

ALL ALTER AND AS

ASC AUTO_INCREMENT AVG AVG_ROW_LENGTH

BETWEEN BIGINT BINARY BIT

BLOB BOOL BOTH BY

CASCADE CASE CHANGE CHAR

CHARACTER CHECK CHECKSUM COLUMN

COLUMNS COMMENT CONSTRAINT CREATE

CROSS CURRENT_DATE CURRENT_TIME CURRENT_TIMESTAMP

DATA DATABASE DATABASES DATE

DATETIME DAY DAY_HOUR DAY_MINUTE

DAY_SECOND DAYOFMONTH DAYOFWEEK DAYOFYEAR

DEC DECIMAL DEFAULT DELAY_KEY_WRITE

DELAYED DELETE DESC DESCRIBE

DISTINCT DISTINCTROW DOUBLE DROP

ELSE ENCLOSED END ENUM

ESCAPE ESCAPED EXISTS EXPLAIN

FIELDS FILE FIRST FLOAT

FLOAT4 FLOAT8 FLUSH FOR

FOREIGN FROM FULL FUNCTION

GLOBAL GRANT GRANTS GROUP

HAVING HEAP HIGH_PRIORITY HOSTS

HOUR HOUR_MINUTE HOUR_SECOND IDENTIFIED

IF IGNORE IN INDEX

INFILE INNER INSERT INSERT_ID

INT INT1 INT2 INT3

INT4 INT8 INTEGER INTERVAL

INTO IS ISAM JOIN

KEY KEYS KILL LAST_INSERT_ID

LEADING LEFT LENGTH LIKE

LIMIT LINES LOAD LOCAL

LOCK LOGS LONG LONGBLOB

LONGTEXT LOW_PRIORITY MATCH MAX

MAX_ROWS MEDIUMBLOB MEDIUMINT MEDIUMTEXT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MIDDLEINT MIN_ROWS MINUTE MINUTE_SECOND

MODIFY MONTH MONTHNAME MYISAM

NATURAL NO NOT NULL

NUMERIC ON OPTIMIZE OPTION

OPTIONALLY OR ORDER OUTER

OUTFILE PACK_KEYS PARTIAL PASSWORD

PRECISION PRIMARY PRIVILEGES PROCEDURE

PROCESS PROCESSLIST READ REAL

REFERENCES REGEXP RELOAD RENAME

REPLACE RESTRICT RETURNS REVOKE

RLIKE ROW ROWS SECOND

SELECT SET SHOW SHUTDOWN

SMALLINT SONAME SQL_BIG_RESULT SQL_BIG_SELECTS

SQL_BIG_TABLES SQL_LOG_OFF SQL_LOG_UPDATE SQL_LOW_PRIORITY_UPDATES

SQL_SELECT_LIMIT SQL_SMALL_RESULT SQL_WARNINGS STARTING

STATUS STRAIGHT_JOIN STRING TABLE

TABLES TEMPORARY TERMINATED TEXT

THEN TIME TIMESTAMP TINYBLOB

TINYINT TINYTEXT TO TRAILING

TYPE UNIQUE UNLOCK UNSIGNED

UPDATE USAGE USE USING

VALUES VARBINARY VARCHAR VARIABLES

VARYING WHEN WITH WRITE

ZEROFILL

Table B-5. Oracle keywords
ACCESS ADD ALL ALTER

AND ANY AS ASC

AUDIT BETWEEN BY CHAR

CHECK CLUSTER COLUMN COMMENT

COMPRESS CONNECT CREATE CURRENT

DATE DECIMAL DEFAULT DELETE

DESC DISTINCT DROP ELSE

EXCLUSIVE EXISTS FILE FLOAT

FOR FROM GRANT GROUP

HAVING IDENTIFIED IMMEDIATE IN

INCREMENT INDEX INITIAL INSERT

INTEGER INTERSECT INTO IS

LEVEL LIKE LOCK LONG

MAXEXTENTS MINUS MODE MODIFY

MSLABEL NOAUDIT NOCOMPRESS NOT

NOWAIT NULL NUMBER OF

OFFLINE ON ONLINE OPTION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OR ORDER PCTFREE PRIOR

PRIVILEGES PUBLIC RAW RENAME

RESOURCE REVOKE ROW ROWID

ROWNUM ROWS SELECT SESSION

SET SHARE SIZE SMALLINT

START SUCCESSFUL SYNONYM SYSDATE

TABLE THEN TO TRIGGER

UID UNION UNIQUE UPDATE

USER VALIDATE VALUES VARCHAR

VARCHAR2 VIEW WHENEVER WHERE

WITH

Table B-6. PostgreSQL keywords
ABORT ADD ALL ALLOCATE

ALTER ANALYZE AND ANY

ARE AS ASC ASSERTION

AT AUTHORIZATION AVG BEGIN

BETWEEN BINARY BIT BIT_LENGTH

BOTH BY CASCADE CASCADED

CASE CAST CATALOG CHAR

CHAR_LENGTH CHARACTER CHARACTER_LENGTH CHECK

CLOSE CLUSTER COALESCE COLLATE

COLLATION COLUMN COMMIT CONNECT

CONNECTION CONSTRAINT CONTINUE CONVERT

COPY CORRESPONDING COUNT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_SESSION

CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATE DEALLOCATE DEC DECIMAL

DECLARE DEFAULT DELETE DESC

DESCRIBE DESCRIPTOR DIAGNOSTICS DISCONNECT

DISTINCT DO DOMAIN DROP

ELSE END ESCAPE EXCEPT

EXCEPTION EXEC EXECUTE EXISTS

EXISTS EXPLAIN EXTEND EXTERNAL

EXTRACT FALSE FETCH FIRST

FLOAT FOR FOREIGN FOUND

FROM FULL FULL GET

GLOBAL GO GOTO GRANT

GROUP HAVING IDENTITY IN

INDICATOR INNER INPUT INSERT

INTERSECT INTERVAL INTO IS

JOIN LAST LEADING LEFT

LIKE LISTEN LOAD LOCAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LOCK LOWER MAX MIN

MODULE MOVE NAMES NATIONAL

NATURAL NCHAR NEW NO

NONE NOT NOTIFY NULL

NULLIF NUMERIC OCTET_LENGTH OFFSET

ON OPEN OR ORDER

OUTER OUTPUT OVERLAPS PARTIAL

POSITION PRECISION PREPARE PRESERVE

PRIMARY PRIVILEGES PROCEDURE PUBLIC

REFERENCES RESET REVOKE RIGHT

ROLLBACK ROWS SCHEMA SECTION

SELECT SESSION SESSION_USER SET

SETOF SHOW SIZE SOME

SQL SQLCODE SQLERROR SQLSTATE

SUBSTRING SUM SYSTEM_USER TABLE

TEMPORARY THEN TO TO

TRAILING TRANSACTION TRANSLATE TRANSLATION

TRIM TRUE UNION UNIQUE

UNIQUE UNKNOWN UNLISTEN UNTIL

UPDATE UPPER USAGE USER

USING VACUUM VALUE VALUES

VARCHAR VARYING VERBOSE VIEW

WHEN WHENEVER WHERE WITH

WORK WRITE

Table B-7. Microsoft SQL Server keywords
ADD ALL ALTER AND

ANY AS ASC AUTHORIZATION

BACKUP BEGIN BETWEEN BREAK

BROWSE BULK BY CASCADE

CASE CHECK CHECKPOINT CLOSE

CLUSTERED COALESCE COLLATE COLUMN

COMMIT COMPUTE CONSTRAINT CONTAINS

CONTAINSTABLE CONTINUE CONVERT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR DATABASE

DBCC DEALLOCATE DECLARE DEFAULT

DELETE DENY DESC DISK

DISTINCT DISTRIBUTED DOUBLE DROP

DUMMY DUMP ELSE END

ERRLVL EXCEPT EXEC EXECUTE

EXISTS EXIT FETCH FILE

FILLFACTOR FOR FOREIGN FREETEXT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FREETEXTTABLE FROM FULL FUNCTION

GOTO GRANT GROUP HAVING

HOLDLOCK IDENTITY IDENTITY_INSERT IDENTITYCOL

IF IN INDEX INNER

INSERT INTERSECT INTO IS

JOIN KEY KILL LEFT

LIKE LINENO LOAD NATIONAL

NOCHECK NONCLUSTERED NOT NULL

NULLIF OF OFF OFFSETS

ON OPEN OPENDATASOURCE OPENQUERY

OPENROWSET OPENXML OPTION OR

ORDER OUTER PERCENT PLAN

PRECISION PRIMARY PRINT PROC

PROCEDURE PUBLIC RAISERROR READ

READTEXT RECONFIGURE REFERENCES REPLICATION

RESTORE RESTRICT RETURN REVOKE

RIGHT ROLLBACK ROWCOUNT ROWGUIDCOL

RULE SAVE SCHEMA SELECT

SESSION_USER SET SETUSER SHUTDOWN

SOME STATISTICS SYSTEM_USER TABLE

TEXTSIZE THEN TO TOP

TRAN TRANSACTION TRIGGER TRUNCATE

TSEQUAL UNION UNIQUE UPDATE

UPDATETEXT USE USER VALUES

VARYING VIEW WAITFOR WHEN

WHERE WHILE WITH WRITETEXT

Table B-8. Sybase Adaptive Server keywords
ABSOLUTE ACTION ADD ALL

ALLOCATE ALTER AND ANY

ARE ARITH_OVERFLOW AS ASC

ASSERTION AT AUTHORIZATION AVG

BEGIN BETWEEN BIT BIT_LENGTH

BOTH BREAK BROWSE BULK

BY CASCADE CASCADED CASE

CAST CATALOG CHAR CHAR_ CONVERT

CHAR_LENGTH CHARACTER CHARACTER_LENGTH CHECK

CHECKPOINT CLOSE CLUSTERED COALESCE

COLLATE COLLATION COLUMN COMMIT

COMPUTE CONFIRM CONNECT CONNECTION

CONSTRAINT CONSTRAINTS CONTINUE CONTROLROW

CONVERT CORRESPONDING COUNT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_TIME

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CURRENT_TIMESTAMP CURRENT_USER CURSOR DATABASE

DATE DAY DBCC DEALLOCATE

DEC DECIMAL DECLARE DEFAULT

DEFERRABLE DEFERRED DELETE DESC

DESCRIBE DESCRIPTOR DETERMINISTIC DIAGNOSTICS

DISCONNECT DISK DISTINCT DOMAIN DOUBLE

DROP DUMMY DUMP ELSE

END END-EXEC ENDTRAN ERRLVL

ERRORDATA ERROREXIT ESCAPE EXCEPT

EXCEPTION EXCLUSIVE EXEC EXECUTE

EXISTS EXIT EXP_ROW_SIZE EXTERNAL

EXTRACT FALSE FETCH FILLFACTOR

FIRST FLOAT FOR FOREIGN

FOUND FROM FULL FUNC

FUNCTION GET GLOBAL GO

GOTO GRANT GROUP HAVING

HOLDLOCK HOUR IDENTITY IDENTITY_GAP

IDENTITY_INSERT IDENTITY_START IF IMMEDIATE

IN INDEX INDICATOR INITIALLY

INNER INOUT INPUT INSENSITIVE

INSERT INSTALL INT INTEGER

INTERSECT INTERVAL INTO IS

ISOLATION JAR JOIN KEY

KILL LANGUAGE LAST LEADING

LEFT LEVEL LIKE LINENO

LOAD LOCAL LOCK LOWER

MATCH MAX MAX_ROWS_PER_PAGE MIN

MINUTE MIRROR MIRROREXIT MODIFY

MODULE MONTH NAMES NATIONAL

NATURAL NCHAR NEW NEXT

NO NOHOLDLOCK NONCLUSTERED NOT

NULL NULLIF NUMERIC NUMERIC_TRUNCATION

OCTET_LENGTH OF OFF OFFSETS

ON ONCE ONLINE ONLY

OPEN OPTION OR ORDER

OUT OUTER OUTPUT OVER

OVERLAPS PAD PARTIAL PARTITION

PERM PERMANENT PLAN POSITION

PRECISION PREPARE PRESERVE PRIMARY

PRINT PRIOR PRIVILEGES PROC

PROCEDURE PROCESSEXIT PROXY_TABLE PUBLIC

QUIESCE RAISERROR READ READPAST

READTEXT REAL RECONFIGURE REFERENCES REMOVE

RELATIVE REORG REPLACE REPLICATION

RESERVEPAGEGAP RESTRICT RETURN RETURNS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RESERVEPAGEGAP RESTRICT RETURN RETURNS

REVOKE RIGHT ROLE ROLLBACK

ROWCOUNT ROWS RULE SAVE

SCHEMA SCROLL SECOND SECTION

SELECT SESSION_USER SET SETUSER

SHARED SHUTDOWN SIZE SMALLINT

SOME SPACE SQL SQLCODE

SQLERROR SQLSTATE STATISTICS STRINGSIZE

STRIPE SUBSTRING SUM SYB_IDENTITY

SYB_RESTREE SYB_TERMINATE SYSTEM_USER TABLE

TEMP TEMPORARY TEXTSIZE THEN

TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE

TO TRAILING TRAN TRANSACTION

TRANSLATE TRANSLATION TRIGGER TRIM

TRUE TRUNCATE TSEQUAL UNION

UNIQUE UNKNOWN UNPARTITION UPDATE

UPPER USAGE USE USER

USER_OPTION USING VALUE VALUES

VARCHAR VARYING VIEW WAITFOR

WHEN WHENEVER WHERE WHILE

WITH WORK WRITE WRITETEXT

YEAR ZONE

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1 The Relational Model and ANSI SQL
Relational Database Management Systems (RDBMSs), such as those covered in this book, are the primary engines of
information systems worldwide, particularly web applications and distributed client/server computing systems. They
enable a multitude of users to quickly and simultaneously access, create, edit, and manipulate data without impeding or
impacting other users. They also allow developers to write useful applications to access their resources as well as
provide administrators with the capabilities they need to maintain, secure, and optimize organizational data resources.

An RDBMS is defined as a system whose users view data as a collection of tables related to each other through common
data values. Data is stored in tables, which are composed of rows and columns. Tables of independent data can be
linked (or related) to one another if they each have unique, identifying columns of data (called keys) that represent a
data value held in common. E. F. Codd first described relational database theory in his landmark paper "A Relational
Model of Data for Large Shared Data Banks," published in the Communications of the ACM (Association for Computing
Machinery) in June, 1970. Under Codd's new relational data model, data was structured (into tables of rows and
columns); manageable using operations like selections, projections, and joins; and consistent as the result of integrity
rules like keys and referential integrity. Codd also articulated rules that governed how a relational database should be
designed; the process for applying these rules is now known as normalization.

1.1.1 Codd's Rules for Relational Database Systems

Codd applied rigorous mathematical theories, primarily set theory, to the management of data, and he compiled a list of
criteria a database must meet to be considered relational. At its core, the relational database concept centers around
storing data in tables. This concept is now so common as to seem trivial; however, not long ago designing a system
capable of sustaining the relational model was considered a long shot with limited usefulness. Following are Codd's
Twelve Principles of Relational Databases:

1. Information is represented logically in tables.

2. Data must be logically accessible by table, primary key, and column.

3. Null values must be uniformly treated as "missing information," not as empty strings, blanks, or zeros.

4. Metadata (data about the database) must be stored in the database just as regular data is.

5. A single language must be able to define data, views, integrity constraints, authorization, transactions, and data
manipulation.

6. Views must show the updates of their base tables and vice versa.

7. A single operation must be available to do each of the following operations: retrieve data, insert data, update
data, or delete data.

8. Batch and end-user operations are logically separate from physical storage and access methods.

9. Batch and end-user operations can change the database schema without having to recreate it or the
applications built upon it.

10. Integrity constraints must be available and stored in the metadata, not in an application program.

11. The data manipulation language of the relational system should not care where or how the physical data is
distributed and should not require alteration if the physical data is centralized or distributed.

12. Any row processing done in the system must obey the same integrity rules and constraints that set-processing
operations do.

These principles continue to be the litmus test used to validate the "relational" characteristics of a database platform; a
database that does not meet all of these rules is not fully relational. While these rules do not apply to applications
development, they do determine whether the database engine itself can be considered truly "relational." Currently,
most commercial RDBMS products pass Codd's test. Among the platforms discussed in SQL in a Nutshell, Second
Edition, only MySQL fails to support all of these requirements.

Understanding Codd's principles assists programmers and developers in the proper development and design of
Relational Databases (RDBs). The following sections detail how some of these requirements are met within SQL using
RDBs.

1.1.1.1 Data structures (rules 1, 2, and 8)

Codd's rules 1 and 2 state that "information is represented logically in tables" and that "data must be logically

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Codd's rules 1 and 2 state that "information is represented logically in tables" and that "data must be logically
accessible by table, primary key, and column." So the process of defining a table for a SQL database does not require
that programs instruct the database how to interact with the underlying physical data structures. Furthermore, SQL
logically isolates the process of accessing data and physically maintaining that data as required by rule 8, "batch and
end-user operations are logically separate from physical storage and access methods."

In the relational model, data is shown logically as a two-dimensional table that describes a single entity (for example,
business expenses). Academics refer to tables as entities and to columns as attributes. Tables are composed of rows, or
records (academics call them tuples), and columns (called attributes, since each column of a table describes a specific
attribute of the entity). The intersection of a record and a column provides a single value. The column or columns
whose values uniquely identify each record can act as a primary key. These days this representation seems elementary,
but it was actually quite innovative when it was first proposed.

SQL2003 defines a whole data structure hierarchy beyond simple tables, though tables are the core data structure.
Relational design handles data on a table-by-table basis, not on a record-by-record basis. This table-centric orientation
is the heart of set programming. Consequently, almost all SQL commands operate much more efficiently against sets of
data within or across tables than against individual records. Said another way, effective SQL programming requires that
you think in terms of sets of data, rather than of individual rows.

Figure 1-1 is a description of the SQL2003 terminology used to describe the hierarchical data structures used by a
relational database: clusters contain sets of catalogs; catalogs contain sets of schemas; schemas contain sets of
objects, such as tables and views; and tables are composed of sets of columns and records.

Figure 1-1. SQL2003 dataset hierarchy

For example, in a Business_Expense table, a column called Expense_Date might show when an expense was

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, in a Business_Expense table, a column called Expense_Date might show when an expense was
incurred. Each record in the table describes a specific entity; in this case, everything that makes up a business expense
(when it happened, how much it cost, who incurred the expense, what it was for, and so on). Each attribute of an
expense, in other words each column, is supposed to be atomic; that is, each column is supposed to contain one, and
only one, value. If a table is constructed in which the intersection of a row and column can contain more than one
distinct value, then one of SQL's primary design guidelines has been violated. (Naturally, some of the database
platforms discussed in this book allow you to place more than one value into a column, via VARRAY or TABLE
datatypes.)

There are rules of behavior specified for column values. Foremost is that column values must share a common domain,
better known as a datatype. For example, the value ELMER should not be placed into the Expense_Date field. The
value ELMER is a string, not a date, while the Expense_Date field can contain only dates. Therefore, this column would
be defined as having a DATE datatype. In addition, SQL2003 allows further controls of such values through the
application of constraints and assertions. (Constraints are discussed in detail later in Chapter 2.) A SQL constraint might
limit Expense_Date to expenses less than a year old.

Additionally, data access for all individuals and computer processes is controlled at the schema level by an
AuthorizationID or user. Permissions to specific sets of data may be granted or restricted to each user.

Moreover, SQL databases also employ character sets and collations. Character sets are the "symbols" or "alphabets"
used by the "language" of the data. For example, the American English character set does not contain the special
character for ñ in the Spanish character set. Collations are sets of sorting rules that operate on a character set. A
collation defines how a given data manipulation operation sorts data. For example, an American English character set
might be sorted either by character-order, case-insensitive, or by character-order, case-sensitive.

The ANSI standard does not say how sorts should be done, only that platforms must
provide common collations found in a particular language.

It is important to know what collation you are using when writing SQL code against a database platform since it can
have a direct impact on how queries behave, particularly on the behavior of the WHERE and ORDER BY clauses of
SELECT statements. For example, a query that sorts data using a binary collation will return data in a very different
order than one that sorts data using, say, an American English collation.

1.1.1.2 NULLS (rule 3)

Most databases allow any of their supported datatypes to store NULL values. Inexperienced SQL programmers and
developers tend to think of NULL as zero or blank. In fact, NULL is neither of these. In SQL2003, NULL literally means
that the value is unknown or indeterminate. (This question alone—whether NULL should be considered unknown or
indeterminate—is the subject of academic debate.) This differentiation enables a database designer to distinguish
between those entries that represent a deliberately placed zero (for example) and those where either the data is not
recorded in the system or where a NULL has been explicitly entered. For an example of this semantic difference,
consider a system that tracks payments. A product with a NULL price does not mean that the product is free; instead, a
NULL price indicates that the amount is not known or perhaps not yet determined.

There is a good deal of differentiation between the database platforms in terms of how
they handle NULL values. This leads to some major porting issues between those platforms
relating to NULLs. For example, an empty string (i.e., a NULL string) is inserted as a NULL
value on Oracle. With the exception of Sybase, all the other databases covered in this book
permit the insertion of an empty string into VARCHAR and CHAR columns.

One side effect of the indeterminate nature of a NULL value is that it cannot be used in a calculation or a comparison.
Here are a few brief but very important rules, from the ANSI standard, to remember about the behavior of NULL values
when dealing with NULLs in SQL statements:

A NULL value cannot be inserted into a column defined as NOT NULL.

NULL values are not equal to each other. It is a frequent mistake to compare two columns that contain NULL
and expect the NULL values to match. (The proper way to identify a NULL value in a WHERE clause or in a
Boolean expression is to use phrases such as "value IS NULL" and "value IS NOT NULL".)

A column containing a NULL value is ignored in the calculation of aggregate values such as AVG, SUM, or MAX.
COUNT.

When columns that contain NULL values are listed in the GROUP BY clause of a query, the query output

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When columns that contain NULL values are listed in the GROUP BY clause of a query, the query output
contains a single row for NULL values. In essence, the ANSI standard considers all NULLs found to be in a single
group.

DISTINCT and ORDER BY clauses, like GROUP BY, also see NULL values as indistinguishable from each other.
With the ORDER BY clause, the vendor is free to choose whether NULL values sort high (first in the result set)
or sort low (last in the result set) by default.

1.1.1.3 Metadata (rules 4 and 10)

Codd's fourth rule for relational databases states that data about the database (metadata) must be stored in standard
tables, just as all other data. Metadata is data that describes the database itself. For example, every time you create a
new table or view in a database, records are created and stored that describe the new table. Additional records are
needed to store any columns, keys, or constraints on the table. This technique is implemented in most commercial and
open source SQL database products. For example, SQL Server uses what it calls "system tables" to track all the
information about the databases, tables, and database objects in any given database. It also has "system databases"
that keep track of information about the server on which the database is installed and configured.

1.1.1.4 The language (rules 5 and 11)

Codd's rules do not require SQL to be used with a relational database. His rules, particularly rules 5 and 11, only specify
how the language should behave when coupled with a relational database. At one time, SQL competed with other
languages (like Digital's RDO or Fox/PRO) that might have fit the relational bill, but SQL won out for three reasons.
First, SQL is a relatively simple, intuitive, English-like language that handles most aspects of data manipulation. Second,
SQL is satisfyingly high-level. A programmer or Database Administrator (DBA) does not have to spend time ensuring
that data is stored in the proper memory registers or that data is cached to disk. The Database Management System
(DBMS) handles that task automatically. Finally, because SQL is not owned by any single vendor, it was adopted across
a number of platforms.

1.1.1.5 Views (rule 6)

A view is a virtual table that does not exist as a physical data repository of data, but is instead constructed, on the fly,
from a SELECT statement whenever the view is queried. Views enable you to construct different representations out of
the same source data for a variety of audiences without having to alter the way in which the data is stored.

Some vendors support database objects called materialized views. Materialized views are
not governed by the same rules as ANSI standard views.

1.1.1.6 Set operations (rules 7 and 12)

Other database manipulation languages, such as the venerable Xbase, perform their data operations quite differently
from SQL. These languages require you to tell the program exactly how to treat the data, one record at a time. Since
the program cycles down through a list of records, performing its logic on one record after another, this style of
programming is frequently called row processing or procedural programming.

In contrast, SQL programs operate on logical sets of data. Set theory is applied in most all SQL statements such as
SELECT, INSERT, UPDATE, or DELETE statements. In effect, data is selected from a set called a table. Unlike the row
processing style, set processing allows a programmer to tell the database simply what is required, not how each
individual piece of data should be handled. Sometimes set processing is referred to as declarative processing, since a
programmer declares only what data is wanted, as in "Give me all employees in the southern region who earn more
than $70,000 per year," rather than describing the exact procedure used to retrieve or manipulate the data.

Set theory was the brainchild of mathematician Georg Cantor, who developed it at the end
of the nineteenth century. At the time, set theory (and his theory of the infinite) was quite
controversial. Today, set theory is such a common part of life that it is learned in
elementary school.

Examples of set theory in conjunction with relational databases are detailed in the following section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Examples of set theory in conjunction with relational databases are detailed in the following section.

1.1.2 Codd's Rules in Action: Simple SELECT Examples

Up to this point, the chapter has been about the individual aspects of a relational database platform as defined by Codd
and implemented under ANSI SQL. This section presents a high-level overview of the most important SQL statement,
SELECT, and some of its most salient points—namely, the relational operations known as projections, selections, and
joins:

Projection

Retrieves specific columns of data.

Selection

Retrieves specific rows of data.

Join

Returns columns and rows from two or more tables in a single result set.

Although at first glance it might appear that the SELECT statement deals only with the relational selection operation, in
actuality, SELECT embodies all three operations. (Refer to SELECT Statement.)

The following statement embodies the projection operation by selecting the first and last names of an author, plus his
home state, from the authors table:

SELECT au_fname, au_lname, state

FROM authors

The results from any such SELECT statement are presented as another table of data:

au_fname au_lname state

-------------------- ----------------------------------- -----

Johnson White CA

Marjorie Green CA

Cheryl Carson CA

Michael O'Leary CA

Meander Smith KS

Morningstar Greene TN

Reginald Blotchet-Halls OR

Innes del Castillo MI

The resulting data is sometimes called a result set, work table, or a derived table, differentiating it from the base table
in the database that is the target of the SELECT statement.

It is important to note that the relational operation of projection, and not selection, is specified using the SELECT clause
(that is, the keyword SELECT followed by a list of expressions to be retrieved) of a SELECT statement. Selection, the
operation of retrieving specific rows of data, is specified using the WHERE clause in a SELECT statement. WHERE filters
out unwanted rows of data and retrieves only the requested rows. Using the previous example, the following selects
authors from states other than California:

SELECT au_fname, au_lname, state

FROM authors

WHERE state <> 'CA'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE state <> 'CA'

The previous query retrieved all authors; the result of this query is a much smaller subset of records:

au_fname au_lname state

-------------------- ----------------------------------- -----

Meander Smith KS

Morningstar Greene TN

Reginald Blotchet-Halls OR

Innes del Castillo MI

By combining the capabilities of projection and selection together in a single query, you can use SQL to retrieve only
the columns and records that you need at any given time.

Joins are the next, and last, relational operation we're going to talk about in this section. A join relates one table to
another in order to return a result set consisting of related data from both tables.

Different vendors allow varying numbers of tables to join in a single join operation. For
example, Oracle places no limit on the number of joins, while Microsoft SQL Server allows
up to 256 tables in a join operation.

The ANSI standard method of performing joins is to use the JOIN clause in a SELECT statement. An older method, know
as a theta join, performs the join analysis in the WHERE clause. The following example shows both approaches. Each
statement retrieves employee information from the employee base table as well as job descriptions from the jobs
base table. The first SELECT uses the newer, ANSI JOIN clause, while the second SELECT uses a theta join:

-- ANSI style

SELECT a.au_fname, a.au_lname, t.title_id

FROM authors AS a

JOIN titleauthor AS t ON a.au_id = t.au_id

WHERE a.state <> 'CA'

-- Theta style

SELECT a.au_fname, a.au_lname, t.title_id

FROM authors AS a,

 titleauthor AS t

WHERE a.au_id = t.au_id

 AND a.state <> 'CA'

For more information about joins, refer to JOIN Subclause.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2 History of the SQL Standard
Because SQL dialects began to proliferate, the ANSI published its first SQL standard in 1986 to bring greater conformity
among vendors, and a second, widely-adopted standard in 1989. The International Standards Organization (ISO) also
approves the SQL standard. ANSI released updates in 1992, known as SQL92 and SQL2, and again in 1999, termed
both SQL99 and SQL3. Now that the ANSI standard has advanced, we generally use the industry standard term
SQL2003. Each time it revises the SQL standard, ANSI adds new features and incorporates new commands and
capabilities into the language. For example, the SQL99 standard added a group of capabilities that handled object-
oriented datatype extensions.

1.2.1 What's New in SQL2003

SQL99 had two main parts, Foundation:1999 and Bindings:1999. The SQL2003 Foundation section includes all of the
Foundation and Bindings standards from SQL99, but a new section called Schemata was created.

The Core requirements of SQL2003 did not change from Core SQL99. So the database platforms that conformed to
Core SQL99 automatically conform to SQL2003. Although the Core of SQL2003 has no additions (except for a few new
reserved words), a number of individual statements and behaviors have been updated or modified. Because these
updates are reflected in the individual syntax descriptions of each statement in Chapter 3, we won't spend time on
them here.

A few elements of the Core in SQL99 have been deleted from SQL2003, including:

The BIT and BIT VARYING datatypes

The UNION JOIN clause

The UPDATE...SET ROW statement

In addition, a number of features, most of which were rather obscure, have been added, deleted, or renamed. At this
point in time, many of the new features of SQL2003 standard are interesting mostly from an academic standpoint
because none of the database platforms support the feature yet. However, there are a few new features that hold more
than passing interest:

Elementary OLAP functions

Adds an Online Analytical Processing (OLAP) amendment, including a number of windowing functions to support
widely used calculations such as moving averages and cumulative sums. Windowing functions are aggregates
computed over a window of data: ROW_NUMBER, RANK, DENSE_RANK, PERCENT_RANK, and CUME_DIST.
OLAP functions are fully described in T611 of the standard. Some database platforms are starting to support the
OLAP functions. Refer to Chapter 4 for details.

Sampling

Adds the TABLESAMPLE clause to the FROM clause. This is useful for statistical queries on large databases, such
as a data warehouse.

Enhanced numeric functions

Adds a large number of numeric functions. In this case, the standard was mostly catching up with the trend in
the industry, since the new functions are already supported by one or more of the database platforms. Refer to
Chapter 4 for details.

Another important change from SQL92 is that SQL99 is built upon SQL92's levels of conformance.

1.2.2 Levels of Conformance

SQL92 first introduced levels of conformance by defining three categories: Entry, Intermediate, and Full. Vendors had
to achieve at least Entry-level conformance to claim ANSI SQL compliance. The U.S. National Institute of Standards and
Technology (NIST) later added the Transitional level between the Entry and Intermediate levels. So NIST's levels of
conformance were Entry, Transitional, Intermediate, and Full, while ANSI's were only Entry, Intermediate, and Full.
Each higher level of the standard was a superset of the subordinate level, meaning that each higher level of the
standard included all the features of the lower level of conformance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

standard included all the features of the lower level of conformance.

Later, SQL99 altered the base levels of conformance. Gone were the Entry, Intermediate, and Full levels of
conformance. With SQL99, vendors must implement all the features of the lowest level of conformance, Core SQL99, in
order to claim (and publish) that they are SQL99 ready. Core SQL99 includes the old Entry SQL92 feature set, features
from other SQL92 levels, and some brand new features. A vendor may also choose to implement additional feature
packages described in the SQL99 standard.

1.2.3 Supplemental Features Packages in the SQL2003 Standard

The SQL2003 standard represents the ideal, but very few vendors currently meet or exceed the Core SQL2003
requirements. The Core standard is like the interstate speed limit: some drivers go above, others go below, but few go
exactly the speed limit. Similarly, vendor implementations can vary greatly.

The nine supplemental features packages, representing different subsets of commands, are platform-optional. Some
features might show up in multiple packages, while others do not appear in any of the packages. These packages and
their features are described in the list that follows.

Two committees—one within ANSI, the other within ISO, and both composed of representatives from virtually every
RDBMS vendor—drafted the definitions shown in the list. In this collaborative and somewhat political environment,
vendors compromised on exactly which proposed features and implementations were incorporated into a new standard.

Many times, a new feature in the ANSI standard is derived from an existing product or is the outgrowth of new research
and development in the academic community. Consequently, vendor adoption of specific ANSI standards can be spotty
at times. A relatively new addition to the SQL2003 standard is SQL/XML. The other parts of the SQL99 standard are
persisted in SQL2003, though their names may have changed or they may have been slightly rearranged.

Part 1 - SQL/Framework

Includes common definitions and concepts used throughout the standard. Defines the way the standard is
structured and how the various parts relate to one another. Describes the conformance requirements set out by
the standards committee.

Part 2 - SQL/Foundation

Includes the Core, an augmentation of the SQL99 Core, and is the largest and most important part of the
standard.

Part 3 - SQL/CLI (Call-Level Interface)

Defines the call-level interface for dynamically invoking SQL statements from external application programs.
SQL/CLI also includes over 60 routine specifications to facilitate the development of truly portable shrink-
wrapped software.

Part 4 - SQL/PSM (Persistent Stored Modules)

Standardizes procedural language constructs similar to those found in database platform-specific SQL dialects
like PL/SQL and Transact-SQL.

Part 9 - SQL/MED (Management of External Data)

Defines the management of data located outside of the database platform using datalinks and a wrapper
interface.

Part 10 - SQL/OBJ (Object Language Binding)

Describes how to embed SQL statements in Java programs. It is closely related to JDBC, but offers a few
advantages over JDBC. It is also very different from the traditional host language binding possible in early
versions of the standard.

Part 11 - SQL/Schemata

Defines over 85 views (three more than in SQL99) used to describe the metadata of each database and stored
in a special schema called INFORMATION_SCHEMA. A number of views that existed in SQL99 have been
updated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

updated.

Part 12 - SQL/JRT (Java Routines and Types)

Defines a number of SQL routines and types using the Java programming language. Features of Java, such as
Java static methods and Java classes, are now supported.

Part 14 - SQL/XML

Adds a new type, called XML, four new operators (XMLPARSE, XMLSERIALIZE, XMLROOT, and XMLCONCAT),
several new functions (described in Chapter 4), and the new IS DOCUMENT predicate. It also includes rules for
mapping SQL-related elements (like identifiers, schemas, and objects) to XML-related elements.

Note that parts 5, 6, 7, and 8 do not exist by design.

Be aware that an RDBMS platform may claim SQL2003 compliance by meeting Core SQL99 standards, so read the
vendor's fine print for a full description of its ANSI conformity features. By understanding what features comprise the
nine packages, you gain a clear idea of both the capabilities of a particular RDBMS and how the various features behave
when SQL code is transported to other database products.

The ANSI standards—which cover retrieval, manipulation, and management of data in commands, such as SELECT,
JOIN, ALTER TABLE, and DROP—formalize many SQL behaviors and syntax structures across a variety of platforms.
These standards become even more important as open source database products, such as MySQL and PostgreSQL,
grow in popularity and are developed by virtual teams rather than large corporations.

SQL in a Nutshell, Second Edition, explains the SQL implementation of five popular RDBMSs. These vendors do not
meet all the SQL2003 standards; in fact, all RDBMS platforms play a constant game of tag with the standards bodies.
Many times, as soon as vendors close in on the standard, the standards bodies update, refine, or otherwise change the
benchmark. Conversely, the vendors often implement new features that are not yet a part of the standard.

1.2.4 SQL2003 Statement Classes

Comparing statement classes further delineates SQL2003 from SQL92. However, you will still hear these terms
bantered about. So you need to know them. In SQL92, SQL statements are grouped into three broad categories:

Data Manipulation Language (DML)

Provides specific data-manipulation commands such as SELECT, INSERT, UPDATE, and DELETE.

Data Definition Language (DDL)

Contains commands that handle the accessibility and manipulation of database objects, including CREATE and
DROP.

Data Control Language (DCL)

Contains the permission-related commands GRANT and REVOKE.

In contrast, SQL2003 supplies seven core categories, now called classes, that provide a general framework for the
types of commands available in SQL. These statement "classes" are slightly different than the SQL92 statement
categories, since they attempt to identify the statements within each class more accurately and logically. Furthermore,
because SQL is constantly under development, new features and commands enter the standard and may necessitate
new statement classes. So, SQL2003 has a new sets of statement classes, originally added in the SQL99 standard,
making them somewhat more comprehensible and logical. Additionally, the new statement classes now allow some
"orphaned" statements—which did not fit well into any of the old categories—to be properly classified.

Table 1-1 identifies the SQL2003 statement classes and lists some commands in each class, each of which is fully
discussed later. At this point, the key is to remember the statement class title.

Table 1-1. SQL2003 statement classes
Class Description Example commands

SQL connection
statements Start and end a client connection CONNECT, DISCONNECT

SQL control
statements Control the execution of a set of SQL statements CALL, RETURN

SQL data
statements May have a persistent and enduring effect upon data SELECT, INSERT, UPDATE,

DELETE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL diagnostic
statements Provide diagnostic information and raise exceptions and errors GET DIAGNOSTICS

SQL schema
statements

May have a persistent and enduring effect on a database schema
and objects within that schema ALTER, CREATE, DROP

SQL session
statements Control default behavior and other parameters for a session SET statements like SET

CONSTRAINT

SQL transaction
statements Set the starting and ending point of a transaction COMMIT, ROLLBACK

Those who work with SQL regularly should become familiar with both the old (SQL92) and the new (SQL2003)
statement classes, since both nomenclatures are still used to refer to SQL features and statements.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3 SQL Dialects
The constantly evolving nature of the SQL standard has given rise to a number of SQL dialects among the various
vendors and platforms. These dialects most commonly evolved because the user community of a given database vendor
required capabilities in the database before the ANSI committee created a standard. Occasionally, though, a new
feature is introduced by the academic or research communities due to competitive pressures from competing
technologies. For example, many database vendors are augmenting their current programmatic offerings with Java (as
is the case with DB2, Oracle, and Sybase) or VBScript (as Microsoft is doing). In the future, programmers and
developers will use these programming languages in concert with SQL to build SQL programs.

Many of these dialects include conditional processing capabilities (such as that controlled through IF . . . THEN
statements), control-of-flow functions (such as WHILE loops), variables, and error handling. Because ANSI had not yet
developed a standard for these important features at the time users began to demand them, RDBMS developers and
vendors were free to create their own commands and syntax. In fact, some of the earliest vendors from the 1980s have
variances in the most elementary commands, such as SELECT, because their implementations predate the standards.
ANSI is now refining standards that address these inconsistencies.

Some of these dialects have introduced procedural commands to support the functionality of a much more complete
programming language. For example, these procedural implementations contain error-handling commands, control-of-
flow language, conditional commands, variable handling, arrays, and many other extensions. Although these are
technically divergent procedural implementations, they are called dialects here. The SQL/PSM (Persistent Stored
Module) package provides many features associated with programming stored procedures and incorporates many of the
extensions offered by these dialects.

Some popular dialects of SQL include:

PL/SQL

Found in Oracle. PL/SQL stands for Procedural Language/SQL and contains many similarities to the language
Ada.

Transact-SQL

Used by both Microsoft SQL Server and Sybase Adaptive Server. As Microsoft and Sybase have moved away
from the common platform they shared early in the 1990s, their implementations of Transact-SQL have also
diverged.

PL/pgSQL

The name of the SQL dialect and extensions implemented in PostgreSQL. The acronym stands for Procedural
Language/postgreSQL.

SQLPL

The newest dialect is DB2's SQLPL (SQLProcedural Language), which is based on the standard SQL control
statements. Most of the other dialects predate the standard, meaning you'll find a lot of variations from the SQL
standard. But since SQLPL came after the standard, it is in greater compliance.

If you plan to work extensively with a single database system, you should learn the intricacies of your preferred SQL
dialect or platform.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. SQL History and Implementations
In the early 1970s, the seminal work of IBM research fellow Dr. E. F. Codd led to the development of a relational data
model product called SEQUEL, or Structured English Query Language. SEQUEL ultimately became SQL, or Structured
Query Language.

IBM, along with other relational database vendors, wanted a standardized method for accessing and manipulating data
in a relational database. Although IBM was first to develop relational database theory, Oracle was first to market with
the technology. Over time, SQL proved popular enough in the marketplace to attract the attention of the American
National Standards Institute (ANSI), which released standards for SQL in 1986, 1989, 1992, 1999, and 2003. Since
1986, competing languages have allowed programmers and developers to access and manipulate relational data.
However, few were as easy to learn or as universally accepted as SQL. Programmers and administrators now have the
benefit of learning a single language that, with minor adjustments, is applicable to a wide variety of database platforms,
applications, and products.

SQL in a Nutshell, Second Edition, describes five common implementations of SQL2003:

IBM's DB2 Universal Database Version 8 for Linux, Unix, and Windows

MySQL Version 4

Oracle Database 10g

PostgreSQL Version 7

Microsoft's SQL Server 2000

We also cover Sybase Adaptive Server Enterprise (ASE), but to a lesser degree, in Appendix B.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1 Database Platforms Described in This Book
SQL in a Nutshell, Second Edition, describes the SQL standard and the platform-specific implementations of five leading
RDBMSs:

DB2

IBM's popular DBMS runs on hardware platforms ranging from PCs all the way up to huge mainframes. It runs
on a multitude of operating systems, including the burgeoning Linux OS. DB2 is very popular in corporate
environments, especially those with a healthy investment in IBM software, equipment, or services. This book
covers DB2 Universal Database Version 8.1 for Linux, Unix, and Windows.

MySQL

MySQL is a popular open source DBMS that is known for its blistering performance. It runs on numerous
operating systems, including most Linux variants. To improve performance, it has a slimmer feature set than do
many other DBMSs. This book covers MySQL 4.0.

Oracle

Oracle is a leading RDBMS in the commercial sector. It runs on a multitude of operating systems and hardware
platforms. Its scalable, reliable architecture has made it the platform of choice for many users. SQL in a
Nutshell, Second Edition, covers Oracle Database 10g.

PostgreSQL

PostgreSQL is the most feature-rich open source database platform available. Where MySQL is best known for
its high-speed performance, PostgreSQL is best known for its excellent support for ANSI standards and robust
transaction processing capabilities, as well as rich datatype and database object support. In addition to its full
set of features, PostgreSQL runs on a wide variety of operating systems and hardware platforms. This book
covers PostgreSQL 7.2.

SQL Server

Microsoft SQL Server is a popular RDBMS that runs only on the Windows platform. Its features include ease of
use, an all-inclusive feature set, low cost, and high performance. This book covers Microsoft SQL Server 2000.

In addition to the five databases just mentioned, Sybase Adaptive Server Enterprise (ASE) Version 12.5 is covered
separately in Appendix A. Because Sybase and SQL Server have common roots, the appendix discusses the differences
between the generally usable SQL Server syntax and those specifics and extensions offered by Sybase ASE.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2 Categories of Syntax
To begin to use SQL, you must understand how statements are written. SQL syntax falls into four main categories. Each
category is introduced in the following list and then explained in further detail in the sections that follow:

Identifiers

Describe a user- or system-supplied name for database objects, such as a database, a table, a constraint on a
table, the columns in a table, a view, etc.

Literals

Describe a user- or system-supplied string or value that is not otherwise an identifier or a keyword. Literals may
be strings like "hello", numbers like 1234, dates like "Jan 01, 2002", or Boolean values like TRUE.

Operators

Are symbols specifying an action performed on one or more expressions, most often in DELETE, INSERT,
SELECT, or UPDATE statements. Operators are also used frequently in the creation of database objects.

Reserved words and keywords

Have special meaning to the database SQL parser, such as SELECT, GRANT, DELETE, or CREATE. Reserved
words are words that cannot be used as identifiers within the database platform, usually commands or SQL
statements. Keywords are words that may become reserved some time in the future. You can circumvent the
restriction on using reserved words and keywords as identifiers through quoted identifiers, described in a
moment. This is not recommended! Elsewhere in the book (besides here), we use the term keyword to describe
both concepts.

2.2.1 Identifiers

Keep in mind that RDBMSs are built upon set theory. In ANSI terms, clusters contain sets of catalogs, catalogs contain
sets of schemas, schemas contain sets of objects, and so on. Most database platforms use corollary terms: instances
contain one or more databases; databases contain one or more schemas; schemas contain one or more tables, views,
or stored procedures, and the privileges associated with each object. At each level of this structure, items require a
unique name (that is, an identifier) so that they can be referenced by programs and system processes.This means that
each object (whether a database, table, view, column, index, key, trigger, stored procedure, or constraint) in a RDBMS
must be identified. When issuing the command that creates a database object, you must specify an identifier (i.e., a
name) for that new object.

There are two important categories of rules that experienced programmers keep in mind when choosing an identifier for
a given item:

Naming conventions

Include logical rules of thumb or naming conventions that ultimately create better database structures and data
tracking. These are not so much required by SQL as they are the distilled experience of practiced programmers.

Identifier rules

Are those set by the SQL standard and implemented by the platforms. Such rules include characteristics like
how long a name may be. These identifier conventions are covered for each vendor later in this chapter.

2.2.1.1 Naming conventions

Naming conventions establish a standard baseline for choosing object identifiers. In this section, we show a list of
naming conventions (rules for picking your identifiers) that are based on long years of experience. The SQL standard
has no comment on naming conventions outside of the uniqueness of an identifier, its length, and the characters that
are valid within the identifier:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select a name that is meaningful, relevant, and descriptive

Do not name a table XP03; instead, name it Expenses_2005, showing that it stores expenses for the year
2005. Remember that other people will likely be using the table or database too, perhaps long after you have
gone, and the names should make sense at a glance. Each database vendor has limits on object name size, but
names generally may be long enough to make sense to anyone reading them.

Choose and apply the same case throughout

Use either all uppercase or all lowercase for all objects throughout the database. Some database servers are
case-sensitive, so using mixed-case identifiers might cause problems later.

Use abbreviations consistently

Once an abbreviation has been chosen, it should be used consistently throughout the database. For example, if
EMP is used as an abbreviation for EMPLOYEE, then EMP should be used throughout the database. Do not use
EMP in some places and EMPLOYEE in others.

Use complete, descriptive, meaningful names with underscores for reading clarity

A column name UPPERCASEWITHUNDERSCORES is not as easy to read as
UPPERCASE_WITH_UNDERSCORES.

Do not put company or product names in database object names

Companies get acquired and products change names. These elements are too transitory to be included in
database object names.

Do not use overly obvious prefixes or suffixes

For example, don't use "DB_" as a prefix for a database, and don't prefix every view with "V_". Simple queries
to the system table of the database can tell the DBA or database programmer what type of object an identifier
represents.

Do not fill up all available space for the object name

If the database platform allows a 32-character table name, try to leave at least a few free characters at the
end. Some database platforms sometimes append prefixes or suffixes to table names when manipulating
temporary copies of the tables.

Do not use quoted identifiers

Quoted identifiers are object names stored within double-quotes. (The ANSI standard calls these delimited
identifiers.) Encapsulating an identifier within double-quotes allows you to create names that will be difficult to
use and that may cause you problems later. Quoted identifiers are also case-sensitive. For example, you could
embed spaces, special characters, mixed case characters, or even escape sequences within a quoted identifier,
but because some third-party tools (and even vendor-supplied tools) cannot handle special characters in
names, you should not make extensive use of quoted identifiers. Some platforms allow other delimiting symbols
than double-quotes. For example, SQL Server uses brackets [] to designate quoted identifiers.

There are several benefits to following these naming conventions. First, your SQL code becomes, in a sense, self-
documenting because the chosen names are meaningful and understandable to other users. Second, your SQL code and
database objects are easier to maintain—especially for other users who come after you—because your objects are
consistently named. Finally, maintaining consistency increases database functionality. If the database ever has to be
transferred or migrated to another RDMS, consistent and descriptive naming saves both time and energy. Giving a few
minutes of thought to naming SQL objects in the beginning can prevent problems later on.

2.2.1.2 Identifier rules

Identifier rules are rules for identifying objects, enforced by the database platforms, within the database. These rules
apply to normal identifiers, not quoted identifiers. Rules specified by the SQL2003 standard generally differ somewhat
from those of a specific database vendor. Table 2-1 contrasts the SQL2003 rules with those of the five RDMS platforms
covered in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 2-1. Platform-specific rules for regular object identifiers (excludes quoted
identifiers)

Characteristic Platform Specification

Identifier size SQL2003 128 characters

 DB2 128 characters, depending on the object

 MySQL 64 characters

 Oracle 30 bytes (number of characters depends on the character set); database names
are limited to 8 bytes

 PostgreSQL 31 characters (NAMEDATALEN property minus 1)

 SQL Server 128 characters (temp tables are limited to 116 characters)

Identifier may
contain SQL2003 Any number, character, or underscore

 DB2 Any number, uppercase character, digit, or the underscore character

 MySQL Any number, character, or symbol

 Oracle Any number, character, and the underscore (_), pound (#), and dollar ($) symbols

 PostgreSQL Any number, character, or the underscore (_) symbol

 SQL Server Any number, character, and the underscore (_), at sign (@), pound (#), and dollar
($) symbols

Identifier must
begin with SQL2003 A letter

 DB2 A letter

 MySQL A letter or number (but cannot be composed entirely of numbers)

 Oracle A letter

 PostgreSQL A letter or underscore (_)

 SQL Server A letter, underscore (_), at sign (@), or pound (#)

Identifier cannot
contain SQL2003 Spaces or special characters

 DB2 Spaces or special characters

 MySQL Period (.), slash (/), or ASCII(0) and ASCII(255). Quote (') and double-quote (")
are only allowed in quoted identifiers.

 Oracle Spaces, double-quotes ("), or special characters

 PostgreSQL Double-quote (")

 SQL Server Spaces or special characters

Allows quoted
identifiers SQL2003 Yes

 DB2 Yes

 MySQL Yes

 Oracle Yes

 PostgreSQL Yes

 SQL Server Yes

Quoted identifier
symbol SQL2003 Double-quote (")

 DB2 Double-quote (")

 MySQL Quote (') or double-quote (") in ANSI compatibility mode

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Oracle Double-quote (")

 PostgreSQL Double-quote (")

 SQL Server Double-quote (") or brackets ([]); brackets are preferred

Identifier may be
reserved SQL2003 No, unless as a quoted identifier

 DB2 Yes

 MySQL No, unless as a quoted identifier

 Oracle No, unless as a quoted identifier

 PostgreSQL No, unless as a quoted identifier

 SQL Server No, unless as a quoted identifier

Schema
addressing SQL2003 Catalog.schema.object

 DB2 Schema.object

 MySQL Database.object

 Oracle Schema.object

 PostgreSQL Database.schema.object

 SQL Server Server.database.schema.object

Identifier must be
unique SQL2003 Yes

 DB2 Yes

 MySQL Yes

 Oracle Yes

 PostgreSQL Yes

 SQL Server Yes

Other rules SQL2003 None

 DB2 None

 MySQL May not contain numbers only

 Oracle Database links are limited to 128 bytes and may not be quoted identifiers

 PostgreSQL None

 SQL Server None

Identifiers must be unique within their scope. Thus, in our earlier discussion of the hierarchy of database objects,
database names must be unique on a given instance of a database server, while the names of tables, views, functions,
triggers, and stored procedures must be unique within a given schema. On the other hand, you can have a table and a
stored procedure with the same name since they are different object types. The names of columns, keys, and indexes
must be unique on a single table or view, and so forth. Check with the database platform documentation for more
information — some platforms require unique identifiers where others may not. For example, DB2 requires all index
identifiers to be unique throughout the database, while SQL Server requires that the index identifier be unique only for
the table it depends on.

Remember, quoted identifiers (object names encapsulated within a special delimiter, usually double quotes) may be
used to break some of the identifier rules specified earlier. Specifically, quoted identifiers may be used to bestow a
reserved word as a name, or to allow normally unusable characters and symbols within a name. For example, you
normally can't use the percent sign (%) in a table name. However, you can, if you must, use the percent sign in a table
name so long as you always enclose that table name within double quotes. To name a table expense%%ratios, you
would specify the name in quotes as "expense%%ratios". Again, remember that in SQL2003, such names are
sometimes known as delimited identifiers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Once you have created an object name as a quoted identifier, we recommend that you
always reference it using its special delimiter.

2.2.2 Literals

SQL evaluates literal values as any explicit numeric, character string, temporal value (like a date or time), or Boolean
value that is not an identifier or a keyword. SQL databases allow a variety of literal values in a SQL program. Literal
values are allowed for most of the numeric, character, Boolean, and date datatypes. For example, SQL Server numeric
datatypes include (among others) INTEGER, REAL, and MONEY. Thus, numeric literals can look like:

30

-117

+883.3338

-6.66

$70000

2E5

7E-3

As the example illustrates, SQL Server allows signed or unsigned numerals, in scientific or normal notation. And since
SQL Server has a money datatype, even a dollar sign can be included. SQL Server does not allow other symbols in
numeric literals (besides 0 1 2 3 4 5 6 7 8 9 + - $. E e), so do not include commas (or periods in Europe). Most
databases interpret a comma in a numeric literal as a list item separator. Thus, the literal value 3,000 would be
interpreted by the database as 3 and, separately, 000.

Boolean, character string, and date literals look like:

TRUE

'Hello world!'

'OCT-28-1966 22:14:30:00'

Character string literals should always be enclosed by single quotation marks (' '), the standard delimiter for all
character string literals. Character string literals are not restricted just to the alphabet. In fact, any character in the
character set can be represented as a string literal. All of the following are string literals:

'1998'

'70,000 + 14000'

'There once was a man from Nantucket,'

'Oct 28, 1966'

All of these examples are, in fact, compatible with the CHARACTER datatype. Remember not to confuse the string literal
`1998' with the numeric literal 1998. Once string literals are associated with CHARACTER datatypes, it is poor practice
to use them in arithmetic operations without explicitly converting them to a numeric datatype. Some database products
will perform automatic conversion of string literals containing numbers when compared against any DATE or NUMBER
datatype values.

By doubling the delimiter, you can effectively represent a single quotation mark in a literal string, if necessary. That is,
use two quotation marks each time a single quotation mark is part of the value. This example taken from SQL Server
illustrates the idea:

SELECT 'So he said ''Who''s Le Petomaine?'''

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT 'So he said ''Who''s Le Petomaine?'''

This gives the result:

So he said 'Who's Le Petomaine?'

2.2.3 Operators

An operator is a symbol specifying an action that is performed on one or more expressions. Operators are used most
often in DELETE, INSERT, SELECT, or UPDATE statements, but also are used frequently in the creation of database
objects, such as stored procedures, functions, triggers, and views.

Operators typically fall into these categories:

Arithmetic operators

Supported by all databases

Assignment operators

Supported by all databases

Bitwise operators

Supported by Microsoft SQL Server

Comparison operators

Supported by all databases

Logical operators

Supported by DB2, Oracle, SQL Server, and PostgreSQL

Unary operators

Supported by DB2, Oracle, and SQL Server

2.2.3.1 Arithmetic operators

Arithmetic operators perform mathematical operations on two expressions of any datatypes in the numeric datatype
category. See Table 2-2 for a listing of the arithmetic operators.

Table 2-2. Arithmetic operators
Arithmetic operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modula (SQL Server only); returns the remainder of a division operation as an integer value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In DB2, Oracle, and SQL Server, the + and - operators also can be used to perform
arithmetic operations on date values.

2.2.3.2 Assignment operators

Except in Oracle, which uses :=, the assignment operator (=) assigns a value to a variable or the alias of a column
heading. In SQL Server, the keyword AS may serve as an operator for assigning table- or column-heading aliases.

2.2.3.3 Bitwise operators

Microsoft SQL Server provides bitwise operators as a shortcut to perform bit manipulations between two-integer
expressions (see Table 2-3). Valid datatypes that are accessible to bitwise operators include binary, bit, int, smallint,
tinyint, and varbinary.

Table 2-3. Bitwise operators
Bitwise operator Meaning

& Bitwise AND (two operands)

| Bitwise OR (two operands)

^ Bitwise exclusive OR (two operands)

2.2.3.4 Comparison operators

Comparison operators test whether two expressions are equal or unequal. The result of a comparison operation is a
Boolean value: TRUE, FALSE, or UNKNOWN. Also, note that the ANSI standard behavior for a comparison operation
where one or more of the expressions are NULL is NULL. For example, the expression 23 + NULL returns NULL, as does
the expression Feb 23, 2002 + NULL. See Table 2-4 for a list of the comparison operators.

Table 2-4. Comparison operators
Comparison operator Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

!= Not equal to (not ANSI standard)

!< Not less than (not ANSI standard)

!> Not greater than (not ANSI standard)

Boolean comparison operators are used most frequently in a WHERE clause to filter the rows that qualify for the search
conditions. The following Microsoft SQL Server example uses the greater than or equal to comparison operation:

SELECT *

 FROM Products

 WHERE ProductID >= @MyProduct

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2.3.5 Logical operators

Logical operators are commonly used in a WHERE clause to test for the truth of some condition. Logical operators
return a Boolean value of either TRUE or FALSE. Logical operators also are discussed in SELECT Statement. Not all
database systems support all operators. See Table 2-5 for a list of logical operators.

Table 2-5. Logical operators
Logical

operator Meaning

ALL TRUE if all of a set of comparisons are TRUE

AND TRUE if both Boolean expressions are TRUE

ANY TRUE if any one of a set of comparisons is TRUE

BETWEEN TRUE if the operand is within a range

EXISTS TRUE if a subquery contains any rows

IN TRUE if the operand is equal to one of a list of expressions or one or more rows returned by a
subquery

LIKE TRUE if the operand matches a pattern

NOT Reverses the value of any other Boolean operator

OR TRUE if either Boolean expression is TRUE

SOME TRUE if some of a set of comparisons is TRUE

2.2.3.6 Unary operators

Unary operators perform an operation on only one expression of any of the datatypes of the numeric datatype
category. Unary operators may be used on integer datatypes, though positive and negative may be used on any
numeric datatype (see Table 2-6).

Table 2-6. Unary operators
Unary operator Meaning

+ Numeric value is positive

- Numeric value is negative

~ A bitwise NOT, returns the complement of the number (not in Oracle or DB2)

2.2.3.7 Operator precedence

Sometimes operator expressions become rather complex. When an expression has multiple operators, operator
precedence determines the sequence in which the operations are performed. The order of execution can significantly
affect the resulting value.

Operators have the precedence levels listed below. An operator on a higher level is evaluated before an operator on a
lower level. The following listing denotes operators from highest to lowest precedence:

() (parenthetical expressions)

+, -, ~ (unary operators)

*, /, % (mathematical operators)

+, - (arithmetic operators)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

+, - (arithmetic operators)

=, >, <, >=, <=, <>, !=, !>, !< (comparison operators)

^ (Bitwise Exclusive OR), & (Bitwise AND), | (Bitwise OR)

NOT

AND

ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

= (variable assignment)

Operators are evaluated from left to right when they are of equal precedence. However, parentheses are used to
override the default precedence of the operators in an expression. Expressions within a parentheses are evaluated first,
while operations outside the parentheses are evaluated next.

For example, the following expressions in an Oracle query return very different results:

SELECT 2 * 4 + 5 FROM dual

-- Evaluates to 8 + 5 which yields an expression result of 13.

SELECT 2 * (4 + 5) FROM dual

-- Evaluates to 2 * 9 which yields an expression result of 18.

In expressions with nested parentheses, the most deeply nested expression is evaluated first.

This next example contains nested parentheses, with the expression 5 - 3 in the most deeply nested set of parentheses.
This expression yields a value of 2. Then the addition operator (+) adds this result to 4, which yields a value of 6.
Finally, the 6 is multiplied by 2 to yield an expression result of 12:

SELECT 2 * (4 + (5 - 3)) FROM dual

-- Evaluates to 2 * (4 + 2) which further evaluates to 2 * 6,

--and yields an expression result of 12.

RETURN

2.2.3.8 System delimiters and operators

String delimiters mark the boundaries of a string of alphanumeric characters. System delimiters are those symbols
within the character set that have special significance to your database server. Delimiters are symbols that are used to
judge the order or hierarchy of processes and list items. Operators are those delimiters used to judge values in
comparison operations, including symbols commonly used for arithmetic or mathematical operations. Table 2-7 lists the
system delimiters and operators allowed by SQL.

Table 2-7. SQL delimiters and operators
Symbol Usage Example

+ Addition operator; in SQL Server, also serves as a concatenation
operator

On all database platforms:

SELECT MAX(emp_id) + 1

FROM employee

As a subtraction operator:

SELECT MIN(emp_id) - 1

FROM employee

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

- Subtraction operator; also a range indicator in CHECK constraints

FROM employee

As a range operator, in a CHECK
constraint:

ALTER TABLE authors

ADD CONSTRAINT authors_zip_num

CHECK (zip LIKE '%[0-9]%')

* Multiplication operator

SELECT salary * 0.05 AS 'bonus'

FROM employee;

/ Division operator

SELECT salary / 12 AS 'monthly'

FROM employee;

= Equality operator

SELECT *

FROM employee

WHERE lname = 'Fudd'

<> Inequality operators (!= is a nonstandard equivalent on several
platforms)

On all platforms:

SELECT *

FROM employee

WHERE lname <> 'Fudd'

<

<=

Less-than operator

Less-than or equal-to operator

SELECT lname, emp_id,

 (salary * 0.05) AS bonus

FROM employee

WHERE (salary * 0.05) <= 10000

 AND exempt_status < 3

>

>=

Greater-than operator

Greater-than or equal-to operator

SELECT lname, emp_id,

 (salary * 0.025) AS bonus

FROM employee

WHERE (salary * 0.025) > 10000

 AND exempt_status >= 4

(

)

Expression, function calls, order of operations, and subquery
delimiter

Expression:

SELECT (salary / 12) AS monthly

FROM employee

WHERE exempt_status >= 4

Function call:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function call:

SELECT SUM(travel_expenses)

FROM "expense%%ratios"

Order of operations:

SELECT (salary / 12) AS monthly,

 ((salary / 12) / 2) AS biweekly

FROM employee

WHERE exempt_status >= 4

Subquery:

SELECT *

FROM stores

WHERE stor_id IN

 (SELECT stor_id FROM sales

WHERE ord_date > '01-JAN-2004')

%
Wildcard attribute indicator

(refer toLIKE Operator.)

SELECT *

FROM employee

WHERE lname LIKE 'Fud%'

, List item separator

SELECT lname,

 fname,

 ssn,

 hire_date

FROM employee

WHERE lname = 'Fudd'

. Identifier qualifier separator

SELECT *

FROM scott.employee

WHERE lname LIKE 'Fud%'

' Character string indicators

SELECT *

FROM employee

WHERE lname LIKE 'FUD%'

 OR fname = 'ELMER'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

" Quoted identifier indicators

SELECT expense_date,

 SUM(travel_expense)

FROM "expense%%ratios"

WHERE expense_date

 BETWEEN '01-JAN-2004'

 AND '01-APR-2004'

— Single-line comment delimiter (two dashes followed by a space)

-- Finds all employees like Fudd,

-- Fudge, and Fudston

SELECT *

FROM employee

WHERE lname LIKE 'Fud%'

/*

*/

Beginning multiline comment delimiter

Ending multiline comment indicator

/* Finds all employees like Fudd,

 Fudge, and Fudston */

SELECT *

FROM employee

WHERE lname LIKE 'Fud%'

2.2.4 Keywords and Reserved Words

Just as certain symbols have special meaning and functionality within SQL, certain words and phrases have special
significance. SQL keywords are words whose meanings are so closely tied to the operation of the RDBMS that they
should not be used for any other purpose; generally, they are words used in a SQL statement. (Note that they can be
used as an identifier on most platforms, but they shouldn't be.) For example, the word "SELECT" is a reserved word and
should not be used as a table name.

It is generally a good idea to avoid naming columns or tables after a keyword that occurs
in any major platform, because database applications are frequently converted from one
platform to another.

Reserved words, on the other hand, do not have special significance now, but they probably will in a future release. To
emphasize the fact that keywords should not be used as an identifier, but nevertheless could be, the SQL standard calls
them "nonreserved keywords." Reserved words and keywords are not always words used in SQL statements, but may
be words commonly associated with database technology. For example, CASCADE is used to describe data
manipulations that allow their action, such as a delete or update, to "flow down," or cascade, to any subordinant tables.
Reserved words and keywords are widely published so that programmers will not use them as identifiers that will, at
some later revision, cause a problem.

SQL2003 specifies its own list of reserved words and keywords. In addition, the database platform specify their own list
of reserved words and keywords because they each have their own extensions to the SQL command set. SQL standard
keywords, as well as the keywords in the different vendor implementations, are shown in Appendix B.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3 SQL2003 and Platform-Specific Datatypes
A table can contain one or many columns. Each column must be defined with a datatype that provides a general
classification of the data that the column will store. In real-world applications, datatypes provide some control and
efficiency as to how tables are defined and how the data is stored within the table. Using specific datatypes enables
better, more understandable queries and helps control the integrity of data.

The tricky thing about SQL2003 datatypes is that they do not always map directly to an identical implementation in a
given platform. Although the platforms specify "datatypes" that correspond to the SQL2003 datatypes, these are not
always true SQL2003 datatypes. For example, MySQL's implementation of a BIT datatype is actually identical to a
CHAR(1) datatype value. Nonetheless, each of the platform datatypes is close enough to the standard to be both easily
understandable and job-ready.

The official SQL2003 datatypes (as opposed to platform-specific datatypes) fall into the general categories described in
Table 2-8. (Note that the SQL2003 standard contains a few rarely used datatypes (ARRAY, MULTISET, REF, and ROW)
that are shown only in Table 2-8 and not elsewhere in the book.)

Table 2-8. SQL2003 categories and datatypes

Category

Example
datatypes

and
abbreviations

Description

BINARY
BINARY LARGE
OBJECT
(BLOB)

This datatype stores binary string values in hexadecimal format. Binary string values
are stored without reference to any character set and without any length limit.

BOOLEAN BOOLEAN This datatype stores truth values—either TRUE or FALSE.

CHARACTER
string types

CHAR

CHARACTER
VARYING
(VARCHAR)

These datatypes can store any combination of characters from the applicable
character set. The varying datatypes allow variable lengths, while the other datatypes
allow only fixed lengths. Also, the variable-length datatypes automatically trim trailing
spaces, while the other datatypes pad all open space.

NATIONAL
CHARACTER
(NCHAR)

NATIONAL
CHARACTER
VARYING
(NCHAR
VARYING)

The national character datatypes are designed to support a particular implementation-
defined character set.

CHARACTER
LARGE OBJECT
(CLOB)

CHARACTER LARGE OBJECT and BINARY LARGE OBJECT are collectively referred to as
large object string types.

NATIONAL
CHARACTER
LARGE OBJECT
(NCLOB)

Same as CHARACTER LARGE OBJECT, but supports a particular implementation-
defined character set.

DATALINK DATALINK Defines a reference to a file or other external data source that is not part of the SQL
environment.

INTERVAL INTERVAL Specifies a set of time values or span of time.

COLLECTION
ARRAY

MULTISET

ARRAY was offered in SQL99. MULTISET was added in SQL2003. Whereas an ARRAY
is a set-length, ordered collection of elements, MULTISET is a variable-length,
unordered collection of elements. The elements ARRAY and MULTISET must be of a
predefined datatype.

NUMERIC

INTEGER

(INT)

SMALLINT

BIGINT

NUMERIC(p,s)

DEC[IMAL]
(p,s)

These datatypes store exact numeric values (integers or decimals) or approximate
(floating point) values. INT, BIGINT, and SMALLINT store exact numeric values with a
predefined precision and a scale of zero. NUMERIC and DEC store exact numeric
values with a definable precision and a definable scale. FLOAT stores approximate
numeric values with a definable precision, while REAL and DOUBLE PRECISION have
predefined precisions. You may define a precision (p) and scale (s) for a DECIMAL,
FLOAT, or NUMERIC datatype to indicate the total number of allowed digits in the
number and the number of decimal places, respectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(p,s)

FLOAT(p,s)

REAL

DOUBLE
PRECISION

INTEGER (INT), SMALLINT, and DEC[IMAL] (p,s) are sometimes referred to as exact
numeric types, while FLOAT (p,s), REAL, and DOUBLE PRECISION are sometimes
called approximate numeric types.

TEMPORAL

DATE

TIME

TIME WITH
TIME ZONE

TIMESTAMP

TIMESTAMP
WITH TIME
ZONE

These datatypes handle values related to time. DATE and TIME are self-explanatory.
Datatypes with the WITH TIME ZONE suffix also include a time zone offset. The
TIMESTAMP datatypes store a value that represents the a precise moment in time.
Temporal types are also known as datetime types.

XML XML

Stores XML data and can be used wherever a SQL datatype is allowed, such as a
column of a table, field in a row, etc. Operations on the values of an XML type assume
a tree-based internal data structure. The internal data structure is based on the XML
Information Set Recommendation (Infoset) using a new document information item
called the XML root information item.

Not every database platform supports each and every ANSI SQL datatype. Table 2-9 compares datatypes across the
five platforms. The table is organized by datatype name. Be careful to look for footnotes when reading this table
because some platforms support a datatype of a given name, but implement it in a different or contrary way than the
ANSI standard and/or other vendors.

While platforms may support similarly named datatypes, their implementations can vary.
Please consult the detailed information in this chapter for specific requirements of each
platform's datatypes.

Table 2-9. Comparison of platform-specific datatypes

Vendor datatype DB2 MySQL Oracle PostgreSQL SQL
Server

SQL2003
datatype

BFILE Y none

BIGINT Y Y Y BIGINT

BINARY Y BLOB

BINARY_FLOAT Y FLOAT

BINARY_DOUBLE Y DOUBLE
PRECISION

BIT Y Y Y none

BIT VARYING, VARBIT Y none

BLOB Y Y Y BLOB

BOOL, BOOLEAN Y Y BOOLEAN

BOX Y none

BYTEA Y BLOB

CHAR, CHARACTER Y Y Y Y Y CHARACTER

CHAR FOR BIT DATA Y none

CIDR Y none

CIRCLE Y none

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLOB Y Y CLOB

CURSOR Y none

DATALINK Y DATALINK

DATE Y Y Y Y DATE

DATETIME Y Y TIMESTAMP

DBCLOB Y NCLOB

DEC, DECIMAL Y Y Y Y Y DECIMAL

DOUBLE, DOUBLE PRECISION Y Y Y Y[1] Y FLOAT

ENUM Y none

FLOAT Y Y Y Y DOUBLE
PRECISION

FLOAT4 Y[2] FLOAT(P)

FLOAT8 Y[3] FLOAT(P)

GRAPHIC Y BLOB

IMAGE Y none

INET Y none

INT, INTEGER Y Y Y Y Y INTEGER

INT2 Y SMALLINT

INT4 Y INT,
INTEGER

INTERVAL Y INTERVAL

INTERVAL DAY TO SECOND Y
INTERVAL
DAY TO
SECOND

INTERVAL YEAR TO MONTH Y
INTERVAL
YEAR TO
MONTH

LINE Y none

LONG Y none

LONG VARCHAR Y none

LONGBLOB Y
BINARY
LARGE
OBJECT

LONG RAW Y BLOB

LONG VARGRAPHIC Y none

LONGTEXT Y none

LSEG Y none

MACADDR Y none

MEDIUMTEXT Y none

MEDIUMBLOB Y none

MONEY Y[4] Y none

NATIONAL CHARACTER VARYING, NATIONAL CHAR
VARYING, NCHAR VARYING,NVARCHAR Y Y Y

NATIONAL
CHARACTER
VARYING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NCHAR, NATIONAL CHAR, NATIONAL CHARACTER Y Y NATIONAL
CHARACTER

NCLOB Y NCLOB

NTEXT, NATIONAL TEXT Y NCLOB

NVARCHAR2(N) Y none

NUMBER Y Y Y Y[5] Y none

NUMERIC NUMERIC

OID Y none

PATH Y none

POINT Y none

POLYGON Y none

RAW Y none

REAL Y Y Y Y REAL

ROWID Y none

ROWVERSION Y none

SERIAL, SERIAL4 Y none

SERIAL8, BIGSERIAL Y none

SET Y none

SMALLDATETIME Y none

SMALLINT Y Y Y Y SMALLINT

SMALLMONEY Y none

SQL_VARIANT Y none

TABLE Y none

TEXT Y Y Y none

TIME Y Y TIME

TIMESPAN Y INTERVAL

TIMESTAMP Y Y Y Y TIMESTAMP

TIMETZ Y TIME WITH
TIME ZONE

TINYINT Y none

UNIQUEIDENTIFIER Y none

UROWID Y none

VARBINARY Y BLOB

VARCHAR, CHAR VARYING,

CHARACTER VARYING
Y Y Y[6] Y Y CHARACTER

VARYING(N)

VARCHAR2 Y CHARACTER
VARYING

VARCHAR FOR BIT DATA Y BIT
VARYING

VARGRAPHIC Y NCHAR
VARYING

XMLTYPE Y XML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

XMLTYPE Y XML

[1] Synonym for FLOAT

[2] Synonym for REAL

[3] Synonym for DOUBLE PRECISION

[4] Synonym for DECIMAL(9,2)

[5] Synonym for DECIMAL

[6] Oracle vastly prefers VARCHAR2

Each of the following sections lists platform-specific datatypes, the SQL2003 datatype category (if any), and pertinent
details. Descriptions are provided for non-SQL2003 datatypes.

2.3.1 DB2 Datatypes

As shown below, DB2 supports a rich variety of datatypes, including most of the SQL2003 datatypes:

BIGINT (SQL2003 Datatype: BIGINT)

Stores signed or unsigned integers between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807.
Uses 8 bytes of storage.

BLOB (SQL2003 Datatype: BLOB)

Holds variable-length binary data up to 2,147,483,647 bytes in length.

CHAR(n), CHARACTER(n) (SQL2003 Datatype: CHARACTER(n))

Holds fixed-length character data up to 254 bytes in length. Uses (n) bytes of storage.

CHAR(n) FOR BIT DATA (SQL2003 Datatype: none)

Holds a fixed number of values. Uses (n) bytes of storage.

CLOB (SQL2003 Datatype: CLOB)

Holds variable-length character data up to 2,147,483,647 bytes in length.

DATALINK(n) (SQL2003 Datatype: DATALINK)

Stores a link to a file external to the database. Uses n+54 bytes of storage.

DATE (SQL2003 Datatype: DATE)

Holds a calendar date without time of day. Uses 4 bytes of storage.

DBCLOB(n) (SQL2003 Datatype: NCLOB)

Holds variable-length double-byte character data up to 107,3741,823 characters in length.

DEC(p,s), DECIMAL(p,s) (SQL2003 Datatype: DECIMAL, DECIMAL(p,s))

May have a precision of 1 to 31 and a scale of 0 to 31. Uses the integral part of (p/2)+1, where p is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

May have a precision of 1 to 31 and a scale of 0 to 31. Uses the integral part of (p/2)+1, where p is the
precision bytes storage.

DOUBLE, DOUBLE PRECISION (SQL2003 Datatype: DOUBLE PRECISION)

Holds floating point numbers of -1.79769E+308 through 1.79769E+308. Uses 8 bytes of storage.

FLOAT (SQL2003 Datatype: FLOAT)

A synonym of DOUBLE PRECISION.

FLOAT (p) (SQL2003 Datatype: REAL, DOUBLE PRECISION)

Can range from 1 through 53. If p <= 24, then FLOAT (p) is a synonym for REAL. If 24 < p <= 53 then FLOAT
(p) is a synonym for DOUBLE PRECISION.

GRAPHIC(n) (SQL2003 Datatype: NATIONAL CHARACTER)

Is not an image datatype, but rather holds fixed-length character strings (DBCS) up to 127 characters in length.
Uses n*2 bytes of storage when using double-byte character sets or n bytes of storage when using single-byte
character sets.

INT, INTEGER (SQL2003 Datatype: INTEGER)

Stores signed or unsigned integers between -2,147,483,648 and 2,147,483,647. Uses 4 bytes of storage.

LONG VARCHAR (SQL2003 Datatype: VARCHAR)

Holds variable-length character data up to 32,700 bytes in length. Uses 24 bytes of storage.

LONG VARCHAR FOR BIT DATA (SQL2003 Datatype: BIT VARYING)

Holds variable-length character data up to 32,700 bytes in length. Uses 24 bytes of storage.

LONG VARGRAPHIC (SQL2003 Datatype: none)

Holds variable-length double-byte character strings (DBCS) up to 16,350 characters in length. Uses 24 bytes of
storage.

NUM(p,s), NUMERIC(p,s) (SQL2003 Datatype: NUMERIC, NUMERIC(p,s))

Is a synonym for DECIMAL. Uses the integral part of (p/2)+1, where p is the precision bytes storage.

REAL (SQL2003 Datatype: REAL)

Holds floating point numbers of -3.402E+38 through 3.402E+38. Uses 4 bytes of storage.

SMALLINT (SQL2003 Datatype: SMALLINT)

Stores signed or unsigned integers between -32,768 and 32,767. Uses 2 bytes of storage.

TIME (SQL2003 Datatype: TIME)

Holds the time of day. Uses 3 bytes of storage.

TIMESTAMP (SQL2003 Datatype: TIMESTAMP)

Stores the date and time. Uses 10 bytes of storage.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores the date and time. Uses 10 bytes of storage.

VARCHAR(n), CHAR VARYING(n), CHARACTER VARYING(n) (SQL2003 Datatype: CHARACTER VARYING, CHARACTER
VARYING(n))

Holds variable-length character data up to 32,672 bytes in length. Uses n+4 bytes of storage.

VARCHAR(n) FOR BIT DATA (SQL2003 Datatype: none)

Stores a variable number of values. Uses n+4 bytes of storage.

VARGRAPHIC(n) (SQL2003 Datatype: NCHAR VARYING)

Holds variable-length double-byte character data up to 16,336 characters in length. Uses (n*2)+4 bytes of
storage.

2.3.2 MySQL Datatypes

MySQL numeric datatypes support the following optional attributes:

UNSIGNED

The numeric value is assumed to be non-negative (positive or zero). For fixed-point datatypes like DECIMAL
and NUMERIC, the space normally used to show a positive or negative condition of the numeric value can then
be used as part of the value, providing a little extra numeric range in the column for DECIMAL and NUMERIC
types. (There is no SIGNED optional attribute.)

ZEROFILL

Used for display formatting, this attribute tells MySQL that the numeric value is padded with zeros to its full size
rather than spaces. ZEROFILL automatically forces the UNSIGNED attribute as well.

MySQL also enforces a maximum display size for columns of up to 255 characters. Columns longer than 255 characters
are stored properly, but only 255 characters are displayed. Floating-point numeric datatypes may have a maximum of
30 digits after the decimal point.

The list below shows that MySQL supports most of the SQL2003 datatypes, plus several additional datatypes used to
contain lists of values, as well as datatypes used for binary large objects (BLOBs). Datatypes that extend the ANSI
standard include TEXT, ENUM, SET, and MEDIUMINT. Special datatype attributes that go beyond the ANSI standard
include AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL.

BIGINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 Datatype: BIGINT)

Stores signed or unsigned integers. The signed range is -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. The unsigned range is 0 to 18,446,744,073,709,551,615. BIGINT can perform
imprecise calculations due to rounding issues.

BIT, BOOL (SQL2003 Datatype: none)

Synonyms for TINYINT.

BLOB (SQL2003 Datatype: BLOB)

Stores up to 65,535 characters of data. Support for indexing BLOB columns is found only in MySQL Version
3.23.2 or greater (a feature not found in any other platform covered in this book). In MySQL, BLOBs are
functionally equivalent to the MySQL datatype VARCHAR BINARY (discussed below) with the default upper limit.
BLOBs always require case-sensitive comparisons. They differ from a MySQL VARCHAR BINARY column by not
allowing DEFAULT values and not removing trailing spaces. Do not perform GROUP BY or ORDER BY on BLOB
columns. They also are stored separately from their table, whereas all other datatypes in MySQL are stored in
the table file structure itself.

CHAR(n)[BINARY], CHARACTER(n) [BINARY] (SQL2003 Datatype: CHARACTER(n))

Contains a fixed-length character string of 1 to 255 characters in length. CHAR pads with blank spaces when it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Contains a fixed-length character string of 1 to 255 characters in length. CHAR pads with blank spaces when it
stores values, but trims spaces upon retrieval as ANSI SQL2003 VARCHAR does. The BINARY option allows
binary searches rather than dictionary-order, case-insensitive searches.

DATE (SQL2003 Datatype: DATE)

Stores a date from 1000-01-01 to 9999-12-31 (delimited by quotes). MySQL displays these values by default as
YYYY-MM-DD, though the user may specify some other display format.

DATETIME (SQL2003 Datatype: TIMESTAMP)

Stores date and time values within the range of 1000-01-01 00:00:00 to 9999-12-31 23:59:59.

DECIMAL [(p[,s])] [ZEROFILL] (SQL2003 Datatype: DECIMAL(PRECISION, SCALE))

Stores exact numeric values as if they were strings, using a single character for each digit. Precision is 10 if
omitted, and scale is 0 if omitted.

DOUBLE[(p,s)] [ZEROFILL], DOUBLE PRECISION[(p,s)] [ZEROFILL] (SQL2003 Datatype: DOUBLE PRECISION)

Holds double-precision numeric values and is otherwise identical to the double-precision FLOAT datatype,
except that its allowable range is -1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308.

ENUM ("val1""val2," . . . n) (SQL2003 Datatype: none)

A datatype whose value must be one of those contained in the list of values (expressed as strings but stored as
integers), NULL, or an empty string("") as an error value. Up to 65,535 distinct values are allowed.

FLOAT[(p)] [ZEROFILL], float(p,s) [ZEROFILL] (SQL2003 Datatype: FLOAT(P))

Stores floating-point numbers in the range -3.402823466E+38 to -1.175494351E-38 and 1.175494351E-38 to
3.402823466E+38. FLOAT without a precision, or with a precision of <= 24, is single precision. Otherwise,
FLOAT is double precision. When specified alone, precision can range from 0 to 53. When you specify both
precision and scale, precision may be as high as 255 and the scale may be as high as 253. All FLOAT
calculations in MySQL are done with double precision and may, since FLOAT is an approximate datatype,
encounter rounding errors.

INT[EGER][(n)][UNSIGNED][ZEROFILL][AUTO_INCREMENT] (SQL2003 Datatype: INT, INTEGER)

Stores signed or unsigned integers within the range of -2,147,483,648 to 2,147,483,647 on ISAM tables.
Unsigned, the range is 0 to 4,294,967,295 on ISAM tables. The range of values varies slightly on other types of
tables. AUTO_INCREMENT is available to all of the INT variants. It creates a unique row identity for all new rows
added to the table. (Refer to CREATE/ALTER TABLE Statement for more information on AUTO_INCREMENT.)

LONGBLOB (SQL2003 Datatype: BINARY LARGE OBJECT)

Stores BLOB data up to 4,294,967,295 characters in length. Note that this might be too much information for
some client/server protocols to support.

LONGTEXT (SQL2003 Datatype: CLOB)

Stores TEXT data up to 4,294,967,295 characters in length. Note that this might be too much data for some
client/server protocols to support.

MEDIUMBLOB (SQL2003 Datatype: none)

Stores BLOB data up to 16,777,215 characters in length.

MEDIUMTEXT (SQL2003 Datatype: none)

Stores TEXT data up to 16,777,215 characters in length.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores TEXT data up to 16,777,215 characters in length.

MEDIUMINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 Datatype: none)

Stores signed or unsigned integers within the range of 8,388,608 to -8,388,608. The unsigned range is 0 to
16,777,215.

NCHAR(n) [BINARY], [NATIONAL] CHAR(n) [BINARY] (SQL2003 Datatype: NCHAR(n))

Synonyms for CHAR. The NCHAR datatypes provide UNICODE support beginning in MySQL v4.1.

NUMERIC(p,s) (SQL2003 Datatype: DECIMAL(p,s))

A synonym of DECIMAL.

NVARCHAR(n) [BINARY], [national] VARCHAR(n) [BINARY], NATIONAL CHARACTER VARYING(n) [BINARY] (SQL2003
Datatype: NCHAR VARYING)

Synonyms for VARYING [BINARY]. Holds variable length character strings up to 255 characters in length.
Values are stored and compared as case-insensitive unless the BINARY keyword is used.

REAL(p,s) (SQL2003 Datatype: REAL)

Is a synonym of DOUBLE PRECISION.

SET("val1," "val2," . . . n) (SQL2003 Datatype: none)

Is a CHAR datatype whose value must be equal to zero or more values specified in the list of values. Up to 64
items are allowed in the list of values.

SMALLINT[(n)] [UNSIGNED] [ZEROFILL] (SQL2003 Datatype: SMALLINT)

Stores signed or unsigned integers. The signed range is from -32768 to 32,767. The unsigned range is 0 to
65,535.

TEXT (SQL2003 Datatype: none)

Stores up to 65,535 characters of data. TEXT datatypes are stored separately from their tables, whereas all
other datatypes are stored in their respective table file structures. TEXT is functionally equivalent to VARCHAR
with no specific upper limit (besides the maximum size of the column), and requires case-insensitive
comparisons. TEXT differs from a standard VARCHAR column by not allowing DEFAULT values, and by not
removing trailing spaces. TEXT columns cannot be used in GROUP BY or ORDER BY clauses. In addition, support
for indexing TEXT columns comes only in MySQL Version 3.23.2 or greater.

2.3.3 Oracle Datatypes

As shown below, Oracle supports a rich variety of datatypes, including most of the SQL2003 datatypes.

BFILE (SQL2003 Datatype: DATALINK)

Holds a pointer to a BLOB stored outside the database, but present on the local server, of up to 4 GB in size.
The database streams input (but not output) access to the external BLOB. If you delete a row containing a
BFILE value, only the pointer value is deleted. The actual file structure is not deleted.

BINARY_FLOAT (SQL2003 Datatype: FLOAT)

Holds a 32-bit floating point number.

BINARY_DOUBLE (SQL2003 Datatype: FLOAT)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Holds a 64-bit floating point number.

BLOB (SQL2003 Datatype: BLOB)

Holds a binary large object (BLOB) value of between 8 and 128 terabytes in size, depending on the database
blocksize. In Oracle, large binary objects (BLOBs, CLOBs, and NCLOBs) have the following restrictions:

They cannot be selected remotely.

They cannot be stored in clusters.

They cannot compose a varray.

They cannot be a component of an ORDER BY or GROUP BY clause in a query.

They cannot be used by an aggregate function in a query.

They cannot be referenced in queries using DISTINCT, UNIQUE, or joins.

They cannot be referenced in ANALYZE...COMPUTE or ANALYZE...ESTIMATE statements.

They cannot be part of a primary key or index key.

They cannot be used in the UPDATE OF clause in an UPDATE trigger.

CHAR(n)[BYTE | CHAR], CHARACTER(n)[BYTE | CHAR] (SQL2003 Datatype: CHARACTER(n))

Holds fixed-length character data up to 2,000 bytes in length. BYTE tells Oracle to use bytes for the size
measurement. CHAR tells Oracle to use characters for the size measurement.

CLOB (SQL2003 Datatype: CLOB)

Stores a character large object (CLOB) value of between 8 and 128 terabytes in size, depending on the
database blocksize. See BLOB for a list of restrictions on the use of the CLOB type.

DATE (SQL2003 Datatype: DATE)

Stores a valid date and time within the range of 4712BC-01-01 00:00:00 to 9999AD-12-31 23:59:59.

DECIMAL(p,s) (SQL2003 Datatype: DECIMAL(p,s))

Is a synonym of NUMBER that accepts precision and scale arguments.

DOUBLE PRECISION (SQL2003 Datatype: DOUBLE PRECISION)

Stores floating point values with double precision, the same as FLOAT(126).

FLOAT(n) (SQL2003 Datatype: FLOAT(n))

Stores floating-point numeric values with a binary precision of up to 126.

INTEGER(n) (SQL2003 Datatype: INTEGER)

Stores signed and unsigned integer values with a precision of up to 38. INTEGER is treated as a synonym for
NUMBER.

INTERVAL DAY (n) TO SECOND (x) (SQL2003 Datatype: INTERVAL)

Stores a time span in days, hours, minutes, and seconds where n is the number of digits in the day field (0 to 9
acceptable, 2 is the default) and x is the number of digits used for fractional seconds in the seconds field (0 to 9
acceptable, 6 is the default).

INTERVAL YEAR (n) TO MONTH (SQL2003 Datatype: INTERVAL)

Stores a time span in years and months where n is the number of digits in the year field. The value n can be 0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores a time span in years and months where n is the number of digits in the year field. The value n can be 0
to 9, with a default of 2.

LONG (SQL2003 Datatype: none)

Stores variable-length character data up to 2 gigabytes in size. Please note, however, that LONG is not
scheduled for long-term support by Oracle. Use another datatype, such as CLOB, instead of LONG, whenever
possible.

LONG RAW (SQL2003 Datatype: none)

Stores raw variable-length binary data up to 2 gigabytes in size. LONG RAW and RAW are typically used to store
graphics, sounds, documents, and other large data structures. BLOB is preferred over LONGRAW in Oracle
because BLOB has fewer restrictions on its use. LONGRAW is also deprecated.

NATIONAL CHARACTER VARYING (n), NATIONAL CHAR VARYING (n),

NCHAR VARYING (n) (SQL2003 Datatype: NCHAR VARYING (n))

The same as NVARCHAR2.

NCHAR(n), NATIONAL CHARACTER(n),NATIONAL CHAR(n) (SQL2003 Datatype: NATIONAL CHARACTER)

Holds UNICODE character data of 1 to 2,000 bytes in length. Default size is 1 byte.

NCLOB (SQL2003 Datatype: NCLOB)

Represents a CLOB that supports multibyte and UNICODE values of between 8 and 128 terabytes in size,
depending on the database blocksize. See BLOB for a list of restrictions on the use of the CLOB type.

NUMBER (p,s), NUMERIC (p,s) (SQL2003 Datatype: NUMERIC (p,s))

Stores a number with a precision of 1 to 38 and a scale of -84 to 127.

NVARCHAR2(n) (SQL2003 Datatype: none)

Represents Oracle's preferred UNICODE variable-length character datatype. It can hold 1 to 4,000 bytes.

RAW(n) (SQL2003 Datatype: none)

Stores raw, variable-length binary data up to 2,000 bytes in size. The value n is the specified size of the
datatype. RAW is also deprecated in Oracle 10g. See LONG RAW.

REAL (SQL2003 Datatype: REAL)

Stores floating-point values as single-precision and is the same as FLOAT(63).

ROWID (SQL2003 Datatype: none)

Represents a unique, base-64 identifier for each row in a table, often used in conjunction with the ROWID
pseudocolumn.

SMALLINT (SQL2003 Datatype: SMALLINT)

The same as INTEGER.

TIMESTAMP(n){[WITH TIME ZONE] | [WITH LOCAL TIME ZONE]} (SQL2003 Datatype: TIMESTAMP[WITH TIME ZONE])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A full date and time value where n is the number of digits (0 to 9 are acceptable, 6 is the default) in the
fractional part of the seconds field. WITH TIME ZONE stores whatever time zone you pass to it (the default is
your session time zone) and returns a time value in that same time zone. WITH LOCAL TIME ZONE stores data
in the time zone of the current session and returns data in the time zone of the user's session.

UROWID [(n)] (SQL2003 Datatype: none)

Stores a base-64 value showing the logical address of the row in its table. It defaults to 4,000 bytes in size, but
you may optionally specify its size up to 4,000 bytes.

VARCHAR(n), CHARACTER VARYING(n), CHAR VARYING(n) (SQL2003 Datatype: CHARACTER VARYING(n))

Holds variable-length character data of 1 to 4,000 bytes in size.

Oracle does not recommend using VARCHAR. Oracle has encouraged the use of VARCHAR2
instead for many years.

VARCHAR2(n [BYTE | CHAR]) (SQL2003 Datatype: CHARACTER VARYING(n))

Holds variable-length character data up to 4,000 bytes in length as defined by n. BYTE tells Oracle to use bytes
for the size measurement. CHAR tells Oracle to use characters for the size measurement. If you use CHAR,
Oracle internally must still transform that into some number of bytes, which is then subject to the 4,000-byte
upper limit.

XMLTYPE (SQL2003 Datatype: XML)

Stores XML data within the Oracle database. The XML data is accessed using XPath expressions as well as a
number of built-in XPath functions, SQL functions, and PL/SQL packages. The XMLTYPE datatype is a system-
defined type, so it is usable as an argument in functions, or as a datatype of column in a table or view. When
used in a table, the data can be stored in a CLOB column or object-relationally.

2.3.4 PostgreSQL Datatypes

PostgreSQL database supports most SQL2003 datatypes, plus an extremely rich set of datatypes that store spatial and
geometric data. PostgreSQL sports a rich set of operators and functions especially for the geometric datatypes,
including capabilities such as rotation, finding intersections, and scaling. PostgreSQL also supports additional versions of
existing datatypes that are smaller and take up less disk space than their corresponding primary datatypes. For
example, PostgreSQL offers several variations on INTEGER to accommodate small or large numbers and thereby
consume proportionally less or more space.

BIGSERIAL

See SERIALS.

BIT (SQL2003 Datatype: BIT)

A fixed-length bit string.

BIT VARYING(n), varbit(n) (SQL2003 Datatype: BIT VARYING)

Denotes a variable-length bit string n bits in length.

BOOL, BOOLEAN (SQL2003 Datatype: BOOLEAN)

Stores a logical Boolean (true/false/unknown) value. The keywords TRUE and FALSE are preferred, but
PostgreSQL supports the following valid literal values for the "true" state: TRUE, t, true, y, yes, and 1. Valid
"false" values are: FALSE, f, false, n, no, and 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"false" values are: FALSE, f, false, n, no, and 0.

BOX ((x1, y1), (x2, y2)) (SQL2003 Datatype: none)

Stores the values of a rectangular box in a 2D plane. Values are stored in 32 bytes and are represented as
((x1,y1),(x2,y2)), signifying the opposite corners of the box (upper-right and lower-left corners, respectively).
The outer parentheses are optional.

BYTEA (SQL2003 Datatype: BINARY LARGE OBJECT)

Raw, binary data such as that used to store graphics, sound, or documents. For storage, this datatype requires
4 bytes plus the actual size of the binary string.

CHAR(n), CHARACTER(n) (SQL2003 Datatype: CHARACTER(n))

Contains a fixed-length character string padded with spaces up to a length of n. Attempting to insert a value
longer than n results in an error (unless the extra length is composed of spaces, which are then truncated such
that the result fits in n characters).

CIDR (x.x.x.x/y) (SQL2003 Datatype: none)

Describes an IP-Version 4 network or host address in a 12-byte storage space. The range is any valid IPv4
network address. Data in CIDR datatypes is represented as x.x.x.x/y where the xs are the IP address and y is
the number of bits in the netmask. CIDR does not accept nonzero bits to the right of a zero bit in the netmask.

CIRCLE x, y, r (SQL2003 Datatype: none)

Describes a circle in a 2D plane. Values are stored in 24 bytes of storage space and are represented as: x, y, r.
The x, y value represents the coordinates of the center of the circle, while r represents the length of the radius.
Parentheses or arrow brackets may optionally delimit the values for x, y, and r.

DATE (SQL2003 Datatype: DATE)

Holds a calendar date (year, day, and month) without the time of day in a 4-byte storage space. Dates must be
between 4713 BC and 32767 AD. DATE's lowest resolution, naturally, is to the day.

DATETIME (SQL2003 Datatype: TIMESTAMP)

Holds a calendar date with a specific time of day.

DECIMAL [(p,s)], NUMERIC[(p,s)](SQL2003 Datatype: DECIMAL (PRECISION, SCALE), NUMERIC (p,s))

Stores exact numeric values with a precision (p) as high as 9 and a scale (s) of 0, with no upper limit.

FLOAT4, REAL (SQL2003 Datatype: FLOAT(p))

Stores floating-point numbers with a precision of 8 or less and 6 decimal places.

FLOAT8, DOUBLE PRECISION (SQL2003 Datatype: FLOAT(p), 7 <= p < 16)

Stores floating-point numbers with a precision of 16 or less, and 15 decimal places.

INET (x.x.x.x/y)

Stores an IP-Version 4 network or host address in a 12-byte storage space. The range is any valid IPv4 network
address. The x's represent the IP address, and y is the number of bits in the netmask. The netmask defaults to
32. Unlike CIDR, INET accepts nonzero bits to the right of the netmask.

SMALLINT (SQL2003 Datatype: SMALLINT)

Stores signed or unsigned 2-byte integers within a range of -32,768 to 32,767. INT2 is a synonym.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores signed or unsigned 2-byte integers within a range of -32,768 to 32,767. INT2 is a synonym.

INTEGER (SQL2003 Datatype: INTEGER)

Stores signed or unsigned 4-byte integers within a range of -2,147,483,648 to 2,147,483,647. INT4 is a
synonym.

INT8 (SQL2003 Datatype: none)

Stores signed or unsigned 8-byte integers with a range from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

INTERVAL(p) (SQL2003 Datatype: none)

Holds general-use time-span values within the range of -178,000,000 to 178,000,000 years in a 12-byte
storage space. INTERVAL's lowest resolution is to the microsecond. This is a different datatype than the ANSI
standard, which requires an interval qualifier such as INTERVAL YEAR TO MONTH.

LINE ((x1, y1) , (x2, y2)) (SQL2003 Datatype: none)

Holds line data, without endpoints, in 2D plane values. Values are stored in 32 bytes and are represented as
((x1,y1), (x2,y2)), indicating the start and end points of a line. Parentheses are optional for line syntax.

LSEG ((x1, y1) , (x2, y2)) (SQL2003 Datatype: none)

Holds line segment (LSEG) data, with endpoints, in a 2D plane. Values are stored in 32 bytes and are
represented as ((x1,y1), (x2,y2)). Parentheses are optional for LSEG syntax. To those who are interested, the
"line segment" is what most people traditionally think of as a line. For example, the lines on a playing field are
actually line segments.

In true geometric nomenclature, a line stretches to infinity, having no terminus at either
end, while a line segment has end points. PostgreSQL allows datatypes for both, but they
are functionally equivalent.

MACADDR (SQL2003 Datatype: none)

Holds a value for the MAC address of a computer's network interface card in a 6-byte storage space. MACADDR
accepts a number of industry standard representations, such as:

08002B:010203
08002B-010203
0800.2B01.0203
08-00-2B-01-02-03
08:00:2B:01:02:03

MONEY, DECIMAL(9,2) (SQL2003 Datatype: none)

Stores U.S.-style currency values in the range of (-21,474,836.48 to 21,474,836.47).

NUMERIC [(p, s)], DECIMAL [(p, s)] (SQL2003 Datatype: none)

Stores exact numeric values with a precision (p) and scale (s).

OID (SQL2003 Datatype: none)

Stores unique object identifiers.

PATH ((x1, y1), ...n), Path [(x1, y1), ...n] (SQL2003 Datatype: none)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PATH ((x1, y1), ...n), Path [(x1, y1), ...n] (SQL2003 Datatype: none)

Describes an open and closed geometric path in a 2D plane. Values are represented as [(x1, y1),...] and
consume 4 + 32n bytes of storage space. Each (x,y) value represents a point on the path. Paths are either
open, where the first and last points do not intersect, or closed, where the first and last points do intersect.
Parentheses are used to encapsulate closed paths, while brackets encapsulate open paths.

POINT (x, y) (SQL2003 Datatype: none)

Stores values for a geometric point in a 2D plane in a 16-byte storage space. Values are represented as (x,y).
The point is the basis for all other two-dimensional spatial datatypes supported in PostgreSQL. Parentheses are
optional for point syntax.

POLYGON ((x1, y1), ...n) (SQL2003 Datatype: none)

Stores values for a closed geometric path in a 2D plane using 4 + 32n bytes of storage. Values are represented
as [(x1,y1),...]. POLYGON is essentially a closed path datatype.

SERIAL, SERIAL4 (SQL2003 Datatype: none)

Stores an autoincrementing, unique, integer ID for indexing and cross-referencing. These types store up to 4
bytes of data (a range of numbers from 1 to 2,147,483,647). Tables defined with this datatype cannot be
directly dropped. You must first issue the DROP SEQUENCE command, then follow up with the DROP TABLE
command.

SERIAL8, BIGSERIAL (SQL2003 Datatype: none)

Stores an autoincrementing, unique integer ID for indexing and cross-referencing. It stores up to 8 bytes of
data (a range of numbers from 1 to 9,223,372,036,854,775,807). Tables defined with this datatype cannot be
directly dropped. You must first issue the DROP SEQUENCE command, and then follow up with the DROP TABLE
command.

TEXT (SQL2003 Datatype: CLOB)

Stores large, variable-length, character-string data up to 1 gigabyte. PostgreSQL automatically compresses
TEXT strings, so the disk size may be less than the string size.

TIME [(p)] [WITHOUT TIME ZONE | WITH TIME ZONE] (SQL2003 Datatype: TIME)

Holds the time of day and stores either no time zone (using 8 bytes of storage space) or the time zone of the
database server (using 12 bytes of storage space). The allowable range is from 00:00:00.00 to 23:59:59.99.
The lowest granularity is 1 microsecond. Note that time zone information on most Unix systems is available only
for the years 1902 through 2038.

TIMESPAN (SQL2003 Datatype: none)

Holds a value that represents a specific span of time. The ANSI datatype most like PostgreSQL's TIMESPAN is
INTERVAL.

TIMESTAMP [(p)] [WITHOUT TIME ZONE | WITH TIME ZONE] (SQL2003 Datatype: TIMESTAMP [WITH TIME ZONE |
WITHOUT TIME ZONE])

Stores the date and time and stores either no time zone or the time zone of the database server. The range of
values is from 4713 BC to 1465001 AD. TIMESTAMP uses 8 bytes of storage space per value. The lowest
granularity is 1 microsecond. Note that time zone information on most Unix systems is available only for the
years 1902 through 2038.

TIMETZ (SQL2003 Datatype: TIME WITH TIME ZONE)

Holds the time of day, including the time zone.

VARCHAR(n), CHARACTER VARYING(n) (SQL2003 Datatype: CHARACTER VARYING(n))

Stores variable-length character strings up to a length of n. Trailing spaces are not stored.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores variable-length character strings up to a length of n. Trailing spaces are not stored.

2.3.5 SQL Server Datatypes

The list below shows that Microsoft SQL Server supports most SQL2003 datatypes. SQL Server supports additional
datatypes used to uniquely identify rows of data within a table and across multiple servers, such as
UNIQUEIDENTIFIER, in support of Microsoft's hardware philosophy of "scale-out" (that is, deploying on many Intel-
based servers), rather than "scale-up" (deploying on a single, huge, high-end Unix server or a Windows Data Center
Server).

An interesting side note about SQL Server dates: SQL Server supports dates starting at
the year 1753. You can't store dates prior to that year using any of SQL Server's date
datatypes. Why not? The rationale is that the English-speaking world started using the
Gregorian calendar in 1753 (the Julian calendar was used prior to September, 1753) and
converting dates prior to Julian to the Gregorian calendar can be quite challenging.

BIGINT (SQL2003 Datatype: BIGINT)

Stores signed and unsigned integers between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807
using 8 bytes of storage space. See INT for IDENTITY property rules that also apply to BIGINT.

BINARY[(n)] (SQL2003 Datatype: BLOB)

Stores a fixed-length binary value of 1 to 8,000 bytes in size. BINARY datatypes consume n + 4 bytes of
storage space.

BIT (SQL2003 Datatype: BOOLEAN)

Stores 1, 0, or NULL to indicate "unknown." Up to 8 BIT columns on a single table will be stored in a single
byte. An additional 8 BIT columns consume one more byte of storage space. BIT columns cannot be indexed.

CHAR[(n)], CHARACTER[(n)] (SQL2003 Datatype: CHARACTER(n))

Holds fixed-length character data of 1 to 8,000 characters in length. Any unused space is, by default, padded
with spaces. (You can disable the automatic padding of spaces.) Storage size is n bytes.

CURSOR (SQL2003 Datatype: none)

A special datatype used to describe a cursor as a variable or stored procedure OUTPUT parameter. It cannot be
used in a CREATE TABLE statement. The CURSOR datatype is always nullable.

DATETIME (SQL2003 Datatype: TIMESTAMP)

Holds date and time data within the range of 1753-01-01 00:00:00 through 9999-12-31 23:59:59. Values are
stored in an 8-byte storage space.

DECIMAL (p,s), DEC (p,s), NUMERIC (p,s) (SQL2003 Datatype: DECIMAL (p,s), NUMERIC (p,s))

Stores decimal values up to 38 digits long. The values p and s define precision and scale, respectively. The
default value for scale is 0. The precision of the datatype determines how much storage space it will consume:

Precision 1-9 uses 5 bytes
Precision 10-19 uses 9 bytes
Precision 20-28 uses 13 bytes
Precision 29-39 uses 17 bytes

See INT for IDENTITY property rules that also apply to DECIMAL.

DOUBLE PRECISION (SQL2003 Datatype: none)

A synonym for FLOAT(53).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A synonym for FLOAT(53).

FLOAT [(n)] (SQL2003 Datatype: FLOAT, FLOAT (n))

Holds floating-point numbers in the range -1.79E+308 through 1.79E+308. Precision, represented by n, may be
1 to 53. Storage size is 4 bytes for 7 digits, where n is 1 to 24. Anything larger requires 8 bytes of storage.

IMAGE (SQL2003 Datatype: BLOB)

Stores a variable-length binary value up to 2,147,483,647 bytes in length. This datatype is commonly used to
store graphics, sounds, and files like MS-Word documents and MS-Excel spreadsheets. IMAGE cannot be freely
manipulated. IMAGE and TEXT columns have a lot of constraints on how they can be used. See TEXT for a list of
the commands and functions that work on an IMAGE datatype.

INT [IDENTITY [(seed, increment)] (SQL2003 Datatype: INTEGER)

Stores signed or unsigned integers between -2,147,483,648 and 2,147,483,647 in 4 bytes of storage space. All
integer datatypes, as well as the decimal type, support the IDENTITY property. An identity is an automatically
incrementing row identifier. Refer to the CREATE/ALTER TABLE Statement.

MONEY (SQL2003 Datatype: none)

Stores monetary values in a range from -922,337,203,685,477.5808 to 922,337,203,685,477.5807. Values are
stored in an 8-byte storage space.

NCHAR(n), NATIONAL CHAR(n), NATIONAL CHARACTER(n) (SQL2003 Datatype: NATIONAL CHARACTER (n))

Holds fixed-length UNICODE data up to 4,000 characters in length. NCHAR consumes twice n in storage space.

NTEXT, NATIONAL TEXT (SQL2003 Datatype: NCLOB)

Holds UNICODE text passages up to 1,073,741,823 characters in length. See TEXT for rules about the
commands and functions available for NTEXT.

NUMERIC(p,s) (SQL2003 Datatype: DECIMAL(p,s))

A synonym for DECIMAL. See INT for rules about the IDENTITY property.

NVARCHAR(n), NATIONAL CHAR VARYING(n), NATIONAL CHARACTER VARYING(n) (SQL2003 Datatype: NATIONAL
CHARACTER VARYING(n))

Holds variable-length UNICODE data up to 4,000 characters in length. Storage space consumed is double the
character length (characters * 2) inserted into the field. The system setting SET ANSI_PADDING is always
enabled (ON) for NCHAR and NVARCHAR fields in SQL Server.

REAL, FLOAT(24) (SQL2003 Datatype: REAL)

Holds floating point numbers of -3.40E + 38 through 3.40 E+38 in a 4-byte storage space. REAL is functionally
equivalent to FLOAT(24).

ROWVERSION (SQL2003 Datatype: none)

A unique number within a database that is updated whenever a row is updated. Called TIMESTAMP in earlier
versions.

SMALLDATETIME (SQL2003 Datatype: none)

Holds date and time data within the range of `1900-01-01 00:00' through `2079-06-06 23:59' down to the
nearest minute. (Minutes are rounded down when seconds are 29.998 or less. Otherwise, they are rounded up.)
Values are stored in a 4-byte storage space.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SMALLINT (SQL2003 Datatype: SMALLINT)

Stores signed or unsigned integers between -32,768 and 32,767 in 2 bytes of storage space. See INT for rules
about the IDENTITY property, which applies to this type.

SMALLMONEY (SQL2003 Datatype: none)

Stores monetary values within the range of 214,748.3648 and -214,748.3647. Values are stored in a 4-byte
storage space.

SQL_VARIANT (SQL2003 Datatype: none)

Stores values of other SQL Server-supported datatypes, except TEXT, NTEXT, ROWVERSION, and other
SQL_VARIANTs. It can store up to 8,016 bytes of data and supports NULL and DEFAULT values. SQL_VARIANT
is used in columns, parameters, variables, and return values of functions and stored procedures.

TABLE (SQL2003 Datatype: none)

A special datatype that stores a result set for a later process. It is used solely in procedural processing and
cannot be used in a CREATE TABLE statement. This datatype alleviates the need for temporary tables in many
applications. It can reduce the need for procedure recompiles, thus speeding execution of stored procedures
and user-defined functions.

TEXT (SQL2003 Datatype: CLOB)

Stores very large passages of text up to 2,147,483,647 characters in length. TEXT and IMAGE values are often
more difficult to manipulate than, say, VARCHAR values. For example, you cannot place an index on a TEXT or
IMAGE column. TEXT can be manipulated using the functions DATALENGTH, PATINDEX, SUBSTRING, TEXTPTR,
and TEXTVALID as well as the commands READTEXT, SET TEXTSIZE, UPDATETEXT, and WRITETEXT.

TIMESTAMP (SQL2003 Datatype: TIMESTAMP)

Stores an automatically generated binary number that guarantees uniqueness in the current database and is
therefore different from the ANSI TIMESTAMP datatype. TIMESTAMPs consume 8 bytes of storage space.
ROWVERSION is now preferred over TIMESTAMP to uniquely track each row.

TINYINT (SQL2003 Datatype: none)

Stores unsigned integers between 0 and 255 in 1 byte of storage space. See the entry for INT to see rules
about the IDENTITY property, which applies to this type.

UNIQUEIDENTIFIER (SQL2003 Datatype: none)

Represents a value that is globally unique across all databases and all servers. Values are represented as
xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx, in which each x is a hexadecimal digit in the range 0-9 or a-f. The
only operations allowed against UNIQUEIDENTIFIERs are comparisons and NULL checks. Column constraints
and properties are allowed on UNIQUEIDENTIFIER columns, with the exception of the IDENTITY property.

VARBINARY[(n)] (SQL2003 Datatype: BLOB)

Describes a variable-length binary value up to 8,000 bytes in size. Storage space consumed is equivalent to the
size of the data inserted, plus 4 bytes.

VARCHAR[(n)], CHAR VARYING[(n)], CHARACTER VARYING [(n)] (SQL2003 Datatype: CHARACTER VARYING(n))

Holds fixed-length character data of 1 to 8,000 characters in length. Storage space is the actual size of the
value entered in bytes, not the value of n.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4 Constraints
Constraints allow you to automatically enforce the integrity of data and to filter the data that is placed in a database. In
a sense, constraints are rules that define which data values are valid during INSERT, UPDATE, and DELETE operations.
When a data modification transaction breaks the rules of a constraint, the transaction is rejected.

In the ANSI standard, there are four constraint types: CHECK, PRIMARY KEY, UNIQUE, and FOREIGN KEY. (The RDBMS
platforms may allow more. Refer to different platform sections of the CREATE/ALTER TABLE Statement to find out these
exceptions.)

2.4.1 Scope

Constraints may be applied at the column-level or the table-level:

Column-level constraints

Declared as part of a column definition and apply only to that column.

Table-level constraints

Declared independently from any column definitions (traditionally, at the end of a CREATE TABLE statement)
and may apply to one or more columns in the table. A table constraint is required when you wish to define a
constraint that applies to more than one column.

2.4.2 Syntax

Constraints are defined when you create or alter a table. The general syntax for constraints is shown here:

CONSTRAINT [constraint_name] constraint_type [(column [,...])]

[predicate] [constraint_deferment] [deferment_timing]

The syntax elements are as follows:

CONSTRAINT [constraint_name]

Begins a constraint definition and, optionally, provides a name for the constraint. When you omit
constraint_name, the system will create one for you automatically. On some platforms, like DB2, you may omit
the CONSTRAINT keyword as well. System-generated names are often incomprehensible. It is good practice to
specify human-readable, sensible names for constraints.

constraint_type

Declares the constraint as one of the allowable types: CHECK, PRIMARY KEY, UNIQUE, or FOREIGN KEY. More
information about each type of constraint appears later in this section.

column [,...]

Associates one or more columns with the constraint. Specify the columns in a comma-delimited list. The column
list must be enclosed in parentheses. The column list should be omitted for column-level constraints. Columns
are not used in every constraint. For example, CHECK constraints do not generally use column references.

predicate

Defines a predicate for CHECK constraints.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

constraint_deferment

Declares a constraint as DEFERRABLE or NOT DEFERRABLE. When a constraint is deferrable, you can specify
that it be checked for a rules violation at the end of a transaction. When a constraint is not deferrable, it is
checked for a rules violation at the conclusion of every SQL statement.

deferment_timing

Declares a deferrable constraint as INITIALLY DEFERRED or INITIALLY IMMEDIATE. When set to INITIALLY
DEFERRED, the constraint check time will be deferred until the end of a transaction, even if it is composed of
many SQL statements. In this case, the constraint must also be DEFERRABLE. When set to INITIALLY
IMMEDIATE, the constraint check time is at the end of every SQL statement. In this case, the constraint may be
either DEFERRABLE or NOT DEFERRABLE. The default is INITIALLY IMMEDIATE.

Note that the vendor platforms may have some variations on this syntax. Check different platform sections of
CREATE/ALTER TABLE Statement for more details.

2.4.3 PRIMARY KEY Constraints

A PRIMARY KEY constraint declares one or more columns whose values uniquely identify each record in the table. It is
considered a special case of the UNIQUE constraint. Some rules about primary keys:

Only one primary key may exist on a table at a time.

Columns in the primary key cannot contain datatypes of BLOB, CLOB, NCLOB, or ARRAY.

Primary keys may be defined at the column level for a single column key or at the table level if multiple
columns make up the primary key.

Values in the primary key column(s) must be unique and not NULL.

In a multicolumn primary key, called a concatenated key, the combination of values in all of the key columns
must be unique and not NULL.

Foreign keys can be declared that reference the primary key of a table to establish direct relationships between
tables (or possibly, though rarely, within a single table).

The following ANSI standard code includes the options for creating both a table- and column-level primary key
constraint on a table called distributors. The first example shows a column-level primary-key constraint, while the
second shows a table-level constraint:

-- Creating a column-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) NOT NULL PRIMARY KEY,

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) ,

 phone CHAR(12) ,

 sales_rep INT);

-- Creating a table-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) NOT NULL,

 dist_name VARCHAR(40),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) ,

 phone CHAR(12) ,

 sales_rep INT ,

CONSTRAINT pk_dist_id PRIMARY KEY (dist_id));

In the example showing a table-level primary key, we could easily have created a concatenated key by listing several
columns separated by commas between each one.

2.4.4 FOREIGN KEY Constraints

A FOREIGN KEY constraint defines one or more columns in the table as referencing columns to a UNIQUE or PRIMARY
KEY in another table. (A foreign key can reference a unique or primary key in the same table as the foreign key itself,
but such foreign keys are rare.) Foreign keys can then prevent the entry of data into a table where there is no matching
value in the related table. They are the primary means of identifying the relationship between tables in a relational
database. Some rules about foreign keys:

Many foreign keys may exist on a table at a time.

A foreign key can be declared to reference either the primary key or a unique key of another table to establish a
direct relationship between the two tables.

The full SQL2003 syntax for foreign keys is more elaborate than the general syntax for constraints shown earlier, and is
dependent on whether you are making a table-level or column-level declaration:

-- Table-level foreign key

[CONSTRAINT [constraint_name]]

FOREIGN KEY (local_column [,...])

REFERENCES referenced_table [(referenced_column [,...])]

[MATCH {FULL | PARTIAL | SIMPLE}]

[ON UPDATE {NO ACTION | CASCADE | RESTRICT |

 SET NULL | SET DEFAULT}]

[ON DELETE {NO ACTION | CASCADE | RESTRICT |

 SET NULL | SET DEFAULT}]

[constraint_deferment] [deferment_timing]

-- Column-level foreign key

[CONSTRAINT [constraint_name]]

REFERENCES referenced_table [(referenced_column [,...])]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REFERENCES referenced_table [(referenced_column [,...])]

[MATCH {FULL | PARTIAL | SIMPLE}]

[ON UPDATE {NO ACTION | CASCADE | RESTRICT |

 SET NULL | SET DEFAULT}]

[ON DELETE {NO ACTION | CASCADE | RESTRICT |

 SET NULL | SET DEFAULT}]

[constraint_deferment] [deferment_timing]

Keywords common to a standard constraint declaration are described above, under the "Syntax" section. Keywords
specific to foreign keys are described in the following list:

FOREIGN KEY (local_column [,...])

Declares one or more columns of the table being created or altered and are subject to the foreign key
constraint. This syntax is used only in table-level declarations and is excluded from column-level declarations.
We recommend that the ordinal position and datatype of each column in the local_column list match comparably
with the ordinal position and datatype of the columns in the referenced_column list.

REFERENCES referenced_table [(referenced_column [,...])]

Names the table and, where appropriate, the column(s) that hold the valid list of values for the foreign key. A
referenced_column must already be named in a NOT DEFERRABLE PRIMARY KEY or NOT DEFERRABLE
UNIQUE KEY. The table types must match. For example, if one is a local temporary table then both must be
local temporary tables.

MATCH {FULL | PARTIAL | SIMPLE}

Defines the degree of matching required between the local and referenced columns in foreign key constraints
when NULLs are present.

FULL

Declares that a match is acceptable when: 1) none of the referencing columns are NULL and match all
of the values of the referenced column, or 2) all of the referencing columns are NULL. In general, you
should use MATCH FULL or else ensure that all columns involved have NOT NULL constraints.

PARTIAL

Declares that a match is acceptable when at least one of the referenced column is NULL and the others
match the corresponding referenced columns.

SIMPLE

Declares that a match is acceptable when any of the values of the referencing column are NULL or a
match. This is the default.

ON UPDATE

Specifies that, when an UPDATE operation affects one or more referenced_columns of the primary or unique
key on the referenced table, a corresponding action should be taken to ensure the foreign key does not lose
data integrity. ON UPDATE may be declared independently of or with the ON DELETE clause. When omitted, the
default is ON UPDATE NO ACTION.

ON DELETE

Specifies that when a DELETE operation affects one or more referenced_columns of the primary or unique
key on the referenced table, that a corresponding action should be taken to ensure the foreign key does not
lose data integrity. ON DELETE may be declared independent of or with the ON UPDATE clause. When omitted,
the default for the ANSI standard is ON DELETE NO ACTION.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the default for the ANSI standard is ON DELETE NO ACTION.

NO ACTION | CASCADE | RESTRICT | SET NULL | SET DEFAULT

Defines the action the database takes to maintain data integrity of the foreign key when a referenced primary
or unique key constraint value is changed or deleted.

NO ACTION

Tells the database to do nothing when a primary key or unique key value, referenced by a foreign key,
is changed or deleted.

CASCADE

Tells the database to perform the same action (i.e., DELETE or UPDATE) on the matching foreign key
when a primary key or unique key value is changed or deleted.

RESTRICT

Tells the database to prevent changes to the primary key or unique key value, referenced by the foreign
key.

SET NULL

Tells the database to set the value in the foreign key to NULL when a primary key or unique key value is
changed or deleted.

SET DEFAULT

Tells the database to set the value in the foreign key to the default (using default values you specify for
each column) when a primary key or unique key value is changed or deleted.

As with the code example for primary keys, you can adapt this generic syntax to both column-level and table-level
foreign key constraints. Note that column-level and table-level constraints perform their function in exactly the same
way. They are merely defined at different levels of the CREATE TABLE command. In the following example, we create a
single-column foreign key on the salesrep column referencing the empid column of the employee table. We create
the foreign key two different ways, the first time at the column level, the second time at the table level:

-- Creating a column-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) PRIMARY KEY,

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) ,

 phone CHAR(12) ,

 sales_rep INT NOT

 NULL REFERENCES employee(empid));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NULL REFERENCES employee(empid));

-- Creating a table-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) NOT NULL,

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) ,

 phone CHAR(12) ,

 sales_rep INT ,

CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),

CONSTRAINT fk_empid FOREIGN KEY (sales_rep)

 REFERENCES employee(empid));

2.4.5 UNIQUE Constraints

A UNIQUE constraint, sometimes called a candidate key, declares that the values in one column, or the combination of
values in more than one column, must be unique. Rules concerning unique constraints include:

Columns in a unique key cannot contain datatypes of BLOB, CLOB, NCLOB, or ARRAY.

The column or columns in a unique key may not be identical to those in any other unique keys, or to any
columns in the primary key of the table.

A single NULL value, if the unique key allows NULL values, is allowed.

SQL2003 allows you to substitute the column list, shown in the general syntax diagram for constraints, with the
keyword (VALUE). UNIQUE (VALUE) indicates that all columns in the table are part of the unique key. The
VALUE keyword also disallows any other unique or primary keys on the table.

In the following example, we limit the number of distributors we do business with to only one distributor per ZIP Code.
We also allow one (and only one) "catch-all" distributor with a NULL ZIP Code. This functionality can be implemented
easily using a UNIQUE constraint, either at the column or the table level:

-- Creating a column-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) PRIMARY KEY,

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) UNIQUE ,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 zip CHAR(5) UNIQUE ,

 phone CHAR(12) ,

 sales_rep INT NOT NULL

 REFERENCES employee(empid));

-- Creating a table-level constraint

CREATE TABLE distributors

 (dist_id CHAR(4) NOT NULL,

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2) ,

 zip CHAR(5) ,

 phone CHAR(12) ,

 sales_rep INT ,

CONSTRAINT pk_dist_id PRIMARY KEY (dist_id),

CONSTRAINT fk_emp_id FOREIGN KEY (sales_rep)

 REFERENCES employee(empid),

CONSTRAINT unq_zip UNIQUE (zip));

2.4.6 CHECK Constraints

CHECK constraints allow you to perform comparison operations to ensure that values match specific conditions that you
set out. The syntax for a check constraint is very similar to the general syntax for constraints:

[CONSTRAINT] [constraint_name] CHECK (search_conditions)

[constraint_deferment] [deferment_timing]

Other elements of the constraint are introduced earlier in this section. The following element is unique to the CHECK
constraint:

search_conditions

Specifies one or more search conditions that constrain the values inserted into the column or table, using one or
more expressions and a predicate. Multiple search conditions may be applied to a column in a single check
constraint using the AND and OR operators. (Think of a WHERE clause.)

A check constraint is considered matched when the search conditions evaluate to TRUE or UNKNOWN. Check constraints
are limited to Boolean operations (e.g., =, >=, <=, or <>), though they may include any SQL2003 predicates such as
IN or LIKE. Check constraints may be appended to one another (when checking a single column) using the AND and OR
operators. Some other rules about CHECK constraints:

A column or table may have one or more CHECK constraints.

A search condition cannot contain aggregate functions, except in a subquery.

A search condition cannot use non-deterministic functions or subqueries.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A search condition cannot use non-deterministic functions or subqueries.

A check constraint can only reference like objects. So if a check constraint is declared on a global temporary
table, it cannot then reference a permanent table.

A search condition cannot reference these ANSI functions: CURRENT_USER, SESSION_USER, SYSTEM_USER,
USER, CURRENT_PATH, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and
LOCALTIMESTAMP.

The following example adds a check constraint to the dist_id and zip columns. (This example uses generic code run on
SQL Server.) The ZIP Code must fall into the normal ranges for postal ZIP Codes, while the dist_id values are allowed
to contain either four alphabetic characters or two alphabetic and two numeric characters:

-- Creating column-level CHECK constraints

CREATE TABLE distributors

 (dist_id CHAR(4)

 CONSTRAINT pk_dist_id PRIMARY KEY

 CONSTRAINT ck_dist_id CHECK

 (dist_id LIKE '[A-Z][A-Z][A-Z][A-Z]' OR

 dist_id LIKE '[A-Z][A-Z][0-9][0-9]'),

 dist_name VARCHAR(40),

 dist_address1 VARCHAR(40),

 dist_address2 VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2)

 CONSTRAINT def_st DEFAULT ("CA"),

 zip CHAR(5)

 CONSTRAINT unq_dist_zip UNIQUE

 CONSTRAINT ck_dist_zip CHECK

 (zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),

 phone CHAR(12),

 sales_rep INT

 NOT NULL DEFAULT USER REFERENCES employee(emp_id))

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Foundational Concepts
SQL provides an easy, intuitive way to interact with a database. While the SQL2003 standard does not define the
concept of a "database," it does define all the functions and concepts needed for a user to create, retrieve, update, and
delete data. It is important to know the types of syntax in the SQL2003 standard and the particular platform-specific
syntax guidelines.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1 How to Use This Chapter
When researching a command in this chapter:

1. Read Section 3.2.

2. Check the platform support table.

3. Read the section on SQL2003 syntax and description even if you are looking for a specific platform
implementation.

4. Finally, read the specific platform implementation information.

Any common features between the platform implementations of a command are discussed and compared against the
SQL2003 topic. Thus, the subsection on a platform's implementation of a particular command may not describe every
aspect of that command, since some of its details may be covered in the SQL2003 section. Please note that if there is a
keyword that appears in a command syntax but not in its keyword description, this is because we chose not to repeat
descriptions that appear under the ANSI entry.

If you skip straight to a platform implementation and do not see a discussion of a keyword
or clause that you are interested in, that means it is described (in common across all
supporting platforms) under the SQL2003 entry of the command.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2 SQL Platform Support
Table 3-1 provides a listing of the SQL statements, the platforms that support them, and the degree to which they
support them. The following list offers useful tips for reading Table 3-1, as well as what each abbreviation stands for.
The sections that follow describe the commands from the table in detail:

1. The first column contains the alphabetized SQL commands.

2. The SQL statement class for each command is indicated in the second column.

3. The subsequent columns list the vendor's level of support:

Supported (S)

The platform supports the SQL2003 standard for the particular command.

Supported, with variations (SWV)

The platform supports the SQL2003 standard for the particular command, using vendor-specific code or syntax.

Supported, with limitations (SWL)

The platform supports some but not all of the functions specified by the SQL2003 standard for the particular
command.

Not supported (NS)

The platform does not support the particular command according to the SQL2003 standard.

Remember that even if a specific SQL2003 command is listed as "Not supported," the platform usually has alternative
coding or syntax to enact the same command or function. Therefore, be sure to read the discussion and examples for
each command later in this chapter. Likewise, a few of the commands in Table 3-1 are not found in the SQL2003
standard, and these have been indicated with the term "Non-ANSI" under the heading "SQL2003 class" in the table.

Conversely, a few ANSI commands in the table (such as CREATE DOMAIN and ALTER DOMAIN) are not currently
supported by any of the database platforms covered in this text. Since this book focuses on the implementation of the
SQL language, unsupported ANSI commands are shown in Table 3-1 but are not documented elsewhere in the book.

Table 3-1. Alphabetical quick SQL command reference

SQL2003
Command

SQL2003
class

DB2

v8.1

MySQL

v4.0
Oracle v10g Postgre SQL v7.2

SQL

Server

2000

ALL/ANY/SOME SQL-data S NS S S S

BETWEEN SQL-data S S S S S

ALTER
DATABASE

SQL-
schema SWV SWV SWV SWV SWV

ALTER
DOMAIN

SQL-
schema NS NS NS NS NS

ALTER
FUNCTION

SQL-
schema SWV SWL SWV SWL SWV

ALTER INDEX Non-ANSI SWV SWV SWV SWV SWV

ALTER
METHOD

SQL-
schema SWV NS NS NS NS

ALTER

PROCEDURE

SQL-
schema SWV SWL SWV SWL SWV

ALTER TABLE SQL-
schema SWV SWV SWV SWV SWV

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALTER
TRIGGER Non-ANSI SWV NS T SWV SWV SWV

ALTER TYPE SQL-
schema SWV NS SWV NS NS

ALTER VIEW Non-ANSI SWV NS SWV SWV SWV

CALL SQL-
control SWV NS T SWV NS NS

CLOSE
CURSOR SQL-data SWV NS S S SWV

COMMIT SQL-
transaction S SWV SWV SWV SWV

CONNECT SQL-
connection SWV NS S NS SWV

CREATE
DATABASE Non-ANSI SWV SWV SWV SWV SWV

CREATE
DOMAIN

SQL-
schema NS NS NS NS NS

CREATE
FUNCTION

SQL-
schema SWV SWL SWV SWL SWV

CREATE INDEX Non-ANSI SWV SWV SWV SWV SWV

CREATE
METHOD

SQL-
schema SWV NS NS NS NS

CREATE
PROCEDURE

SQL-
schema S NS S NS S

CREATE ROLE SQL-
schema NS NS SWV NS NS

CREATE
SCHEMA

SQL-
schema SWL NS SWV NS SWL

CREATE TABLE SQL-
schema SWV SWV SWV SWV SWV

CREATE
TRIGGER

SQL-
schema SWV NS SWV SWV SWV

CREATE TYPE SQL-
schema SWV NS SWL SWV NS

CREATE VIEW SQL-
schema SWV NS SWV SWV SWV

DECLARE
CURSOR SQL-data SWL NS SWL SWL SWL

DELETE SQL-data SWV SWV SWV S SWL

DISCONNECT SQL-
connection SWL NS SWL NS SWL

DROP
DATABASE Non-ANSI NS SWV S SWV SWV

DROP DOMAIN SQL-
schema NS NS NS NS NS

DROP
FUNCTION

SQL-
schema SWV SWV SWV SWV SWV

DROP INDEX Non-ANSI SWV SWV SWV SWV SWV

DROP METHOD SQL-
schema SWV NS SWV SWV NS

DROP

PROCEDURE

SQL-
schema SWV NS S NS S

DROP ROLE SQL-
schema NS NS SWV NS NS

DROP TABLE SQL-
schema SWV SWV SWV SWV SWV

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP TABLE schema SWV SWV SWV SWV SWV

DROP TYPE SQL-
schema S NS S S NS

DROP
TRIGGER

SQL-
schema SWV NS SWV SWV SWV

DROP VIEW SQL-
schema S NS S S S

EXCEPT SQL-data SWL NS SWL SWL NS

EXISTS SQL-data S S S S S

FETCH SQL-data SWL NS SWL SWV SWV

GRANT SQL-
schema SWV SWV SWV SWV SWV

IN SQL-data S S SWV S S

INSERT SQL-data SWV SWV SWV S SWV

INTERSECT SQL-data SWL NS SWL SWL NS

IS SQL-data S S S S S

JOIN subclause SQL-data SWL SWV S SWV SWL

LIKE SQL-data S SWV S SWV SWV

MERGE SQL-data S NS S NS NS

OPEN SQL-data SWV NS S NS S

OPERATORS SQL-
schema SWV SWV SWV SWV SWV

ORDER BY SQL-data SWL SWL SWV SWV SWL

RELEASE
SAVEPOINT

SQL-
transaction SWV NS NS NS NS

RETURN SQL-
control SWV NS S SWL S

REVOKE SQL-
schema SWV SWV SWV SWV SWV

ROLLBACK SQL-
transaction S SWL SWV SWL SWV

SAVEPOINT SQL-
transaction SWV NS S NS SWL

SELECT SQL-data
SWV (ANSI
joins sup-
ported)

SWV (ANSI joins
partially
supported)

SWV (ANSI
joins
supported)

SWV (ANSI joins
par-tially sup-
ported)

SWV (ANSI
joins
supported)

SET SQL-
session S S NS S S

SET CATALOG SQL-
session NS NS NS NS NS

SET
COLLATION

SQL-
session NS NS NS NS NS

SET
CONNECTION

SQL-
connection SWL NS NS NS SWL

SET
CONSTRAINT

SQL-
connection NS NS SWV SWV NS

SET
DESCRIPTOR

SQL-
session NS NS NS NS NS

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3 SQL Command Reference

ALL/ANY/SOME Operators

The ALL operator performs a Boolean test of a subquery for the existence of a value in all rows. The ANY operator, and
its synonym SOME, performs a Boolean test of a subquery for the existence of a value in any of the rows tested.

Platform Command

DB2 Supported

MySQL Not supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL2003 Syntax

SELECT ...

WHERE expression comparison {ALL | ANY | SOME} (subquery)

Keywords

WHERE expression

Tests a scalar expression, such as a column, against every value in the subquery, for ALL, and against every
value until a match is found for ANY and SOME. All rows must match the expression to return a Boolean TRUE
value for the ALL operator, while one or more rows must match the expression, for ANY and SOME, to return a
Boolean TRUE value.

comparison

Compares the expression to the subquery. The comparison must be a standard comparison operator like =, <>, !=,
>, >=, <, or <=.

Rules at a Glance

The ALL operator returns a Boolean TRUE value when one of two things happen: either the subquery returns an empty
set (i.e., no records) or every record in the set meets the comparison. ALL returns FALSE when any records in the set
do not match the value comparison. ANY and SOME operators return a Boolean TRUE when at least one record in the
subquery matches the comparison operation, and FALSE when no record matches the comparison operation (or when a
subquery returns an empty result set). If even one return value of the subquery is NULL, then the operation evaluates
as NULL, not as TRUE.

Do not include special clauses like ORDER BY, GROUP BY, CUBE, ROLLUP, WITH, etc. in
your subquery. Refer to SUBQUERY Substatement for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, we want to see which authors currently have no titles:

SELECT au_id

FROM authors

WHERE au_id <> ALL(SELECT au_id FROM titleauthor)

You can use ANY / SOME to perform filtering checks of different kinds. For example, the following query will retrieve
any records from the employees table that exist in the employees_archive table that were located in Anchorage:

SELECT *

FROM employees

WHERE job_lvl = ANY(SELECT job_lvl FROM employees_archive

 WHERE city = 'Anchorage')

The above query returns information about employees who have the same job_lvl as any employee working in
Anchorage, Alaska.

Programming Tips and Gotchas

The ALL and ANY/SOME operators are somewhat difficult to get used to. Most developers find it a lot easier to use
similar functions like IN and EXISTS.

EXISTS is symantically equivalent to the ANY/SOME operator.

Platform Differences

All of the platforms support ALL and ANY/SOME in the manner described above except MySQL, which doesn't support
subqueries until Version 4.0. On pre-Version 4.0 MySQL platforms, consider using the IN operator instead of EXISTS for
ANY/SOME.

Oracle supports one minor variation in that you can supply a list of values instead of a subquery. For example, we can
find all employees who have a job_lvl value equal to 9 or 14:

SELECT * FROM employee

WHERE job_lvl = ALL(9, 14);

DB2 and SQL Server support some additional comparison operators: not greater than (!>) and not less than (!<).

See Also

ALL/ANY/SOME
BETWEEN
EXISTS
SELECT
WHERE

BETWEEN Operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The BETWEEN operator performs a Boolean test of a value against a range of values. It returns TRUE when the value is
included in the range and FALSE when the value falls outside of the range. The results are NULL (unknown) if any of the
range values are NULL.

Platform Command

DB2 Supported

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL2003 Syntax

SELECT ...

WHERE expression [NOT] BETWEEN lower_range AND upper_range

Keywords

WHERE expression

Compares a scalar expression, such as a column, to the range of values bounded by upper_range and
lower_range.

[NOT] BETWEEN lower_range AND upper_range

Compares the expression to the lower_range and upper_range. The comparison is inclusive, meaning that it is
equivalent to saying "where expression is [not] greater than or equal to lower_range and less than or equal to
upper_range."

Rules at a Glance

The BETWEEN operator is used to test an expression against a range of values. The BETWEEN operator may be used
with any datatype except BLOB, CLOB, NCLOB, REF, and ARRAY.

For example, we want to see title_ids that have year-to-date sales between 10,000 and 20,000:

SELECT title_id

FROM titles

WHERE ytd_sales BETWEEN 10000 AND 20000

BETWEEN is inclusive of the range of values listed. In this case, it includes the values of 10,000 and 20,000 in the
search. If you want an exclusive search, then you must use the greater than (>) and less than (<) symbols:

SELECT title_id

FROM titles

WHERE ytd_sales > 10000

 AND ytd_sales < 20000

The NOT operator allows you to search for values outside of the BETWEEN range. For example, you can also find all the
title_ids that were not published during 2002:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

title_ids that were not published during 2002:

SELECT title_id

FROM titles

WHERE pub_date NOT BETWEEN '01-JAN-2003' AND '31-DEC-2003'

Programming Tips and Gotchas

Some coders are very particular about how the keyword AND is used in WHERE clauses. To prevent a casual reviewer
from thinking that the AND used in a BETWEEN operation is a logical AND operator, you might want to use parentheses
to encapsulate the entire BETWEEN clause:

SELECT title_id

FROM titles

WHERE (ytd_sales BETWEEN 10000 AND 20000)

 AND pubdate >= '1991-06-12 00:00:00.000'

Platform Differences

All of the platforms support BETWEEN in the manner described above.

See Also

ALL/ANY/SOME
EXISTS
SELECT
WHERE

CALL Statement

The CALL statement invokes a stored procedure.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

CALL procedure_name ([parameter [,...]])

Keywords

CALL procedure_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies the stored procedure that you want to invoke. It must be a previously defined stored procedure that is
available in the current user context (instance, database, schema, etc.).

(parameter [,...])

Provides values for each input parameter required by the stored procedure. Each parameter listed is required by
the stored procedure in the same ordinal position. Thus, the fifth parameter listed would provide the value for
the fifth argument required by the stored procedure. The parameters must be enclosed in parentheses and
separated by commas. Note that the parentheses are required even if there are no parameter values (e.g.,
even if there are no parameter values, you must still use CALL()). Strings should be in single quotes. If the
stored procedure has only OUT parameters, place host variables or parameter markers within the parentheses.

Rules at a Glance

The CALL statement makes it easy to invoke a stored procedure. Simply provide the name of the stored procedure and
include any parameters used by the stored procedure, enclosing them within parentheses.

This Oracle example creates a simple stored procedure, and then calls it:

CREATE PROCEDURE update_employee_salary

(emp_id NUMBER, updated_salary NUMBER)

IS

BEGIN

 UPDATE employee SET salary = updated_salary

WHERE employee_id =emp_id ;

END;

CALL update_employee_salary(1517, 95000);

Programming Tips and Gotchas

The return status of a called stored procedure can be found, typically, by using GET DIAGNOSTIC. GET DIAGNOSTIC is
not widely supported among the various database platforms, so check the platform documentation for more details.

Many platforms also support an alternative command called EXECUTE to perform the same functionality. In some cases,
you may prefer EXECUTE to CALL, since the former can be used to execute any kind of prepared SQL, including
methods, functions, or batches of SQL code.

DB2

DB2 supports CALL along with DESCRIPTOR capabilities:

CALL procedure_name { [(parameter [,...])] | USING DESCRIPTOR

 descriptor_name }

where:

USING DESCRIPTOR descriptor_name

Identifies a SQL Descriptor Area (SQLDA) structure containing a valid description of the host variables. An
SQLDA is a collection of variables that is required for execution of the SQL DESCRIBE statement. The SQLDA
variables are options that can be used by the PREPARE, OPEN, FETCH, EXECUTE, and CALL statements. Values
in the SQLDA must be set prior to issuing the CALL statement. This is a deprecated feature in DB2. We
recommend that you instead use the standard CALL proc(param, param) syntax.

DB2 allows you to substitute host variables for the procedure name or the parameters, where appropriate. When using
the USING DESCRIPTOR clause, the variables must be string variables of 254 or fewer characters.

On DB2, any return status issued by the called stored procedure is returned to the SQLERRD field of the SQLCA (SQL
Communications Area). You can also use the GET DIAGNOSTIC statement to retrieve the RETURN_STATUS value (-1
indicates error) or row count.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

indicates error) or row count.

MySQL

Not supported.

Oracle

Oracle allows the CALL statement to invoke standalone stored procedures, functions, and methods, as well as stored
procedures and functions contained within a type or package. Following is the Oracle syntax:

CALL [schema.][{type_name | package_name}.]procedure_name@dblink

[(parameter [,...])]

[INTO :variable_name [[INDICATOR] :indicator_name]]

where:

CALL [schema.][{type_name | package_name}.] procedure_name@dblink

Calls the named object. You may fully enumerate the object name, including schema, type, etc., or allow Oracle
to assume the current schema and database instance. If the procedure or function resides in another database,
simply specify the database via a database link name, shown as dblink in the syntax. dblink must refer to a
previously created database link.

INTO :variable_name

Specifies the name of a previously declared variable that will store the value returned when you call a function.
INTO is required, and only usable, when calling a function.

INDICATOR :indicator_name

Retains the condition of the host variable, for example whether the return value is NULL, for functions
precompiled in a Pro*C/C++ routine.

The parameters used in an Oracle CALL statement may not include pseudocolumns or the VALUE or REF functions. You
must use a host variable for any parameter that corresponds to an OUT or IN OUT argument of the called stored
procedure.

PostgreSQL

Not Supported.

SQL Server

Not supported. Instead, use the non-ANSI EXECUTE statement.

See Also

CREATE/ALTER PROCEDURE

CLOSE CURSOR Statement

The CLOSE CURSOR statement closes a server-side cursor created with a DECLARE CURSOR statement.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle Supported

PostgreSQL Supported

SQL Server Supported, with variations

SQL2003 Syntax

CLOSE cursor_name

Keywords

cursor_name

Names a cursor previously created with the DECLARE CURSOR statement.

Rules at a Glance

The CLOSE statement closes a cursor and destroys the cursor result set. All the database platforms release any locks
that were held by the cursor, though this is not specified in the ANSI standard. For example:

CLOSE author_names_cursor;

Programming Tips and Gotchas

You can also close a cursor implicitly using a COMMIT statement or, for cursors defined WITH HOLD, using a ROLLBACK
statement.

DB2

DB2 supports an added optional WITH clause on the CLOSE statement:

CLOSE cursor_name [WITH RELEASE]

where:

WITH RELEASE

Attempts to release all read locks held by the cursor. Note that DB2 is not always able to release all locks since
some locks may be in use by other operations.

The WITH RELEASE clause is ignored on cursors run under isolation level 3 CS or UR, when the cursor is defined in a
method, when the cursor is defined in a function, or when the cursor is defined in a stored procedure that is called by a
function or method. WITH RELEASE may allow phantom read and nonrepeatable read anomalies when run under
isolation levels RS or RR. For a detailed explanation of isolation levels, including phantom reads and nonrepeatable
reads, refer to SET TRANSACTION ISOLATION LEVEL.

PostgreSQL

PostgreSQL supports the ANSI standard syntax. PostgreSQL issues an implicit CLOSE statement for every open cursor
when a transaction is ended with a COMMIT or ROLLBACK statement.

SQL Server

Microsoft SQL Server supports the ANSI standard syntax, and an additional GLOBAL keyword:

CLOSE [GLOBAL] cursor_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CLOSE [GLOBAL] cursor_name

where:

GLOBAL

Identifies the previously defined cursor as a global cursor.

In the ANSI standard behavior, closing a cursor destroys the cursor result set. Locking is a physical feature of each
database platform and thus not a part of the ANSI SQL definition. However, all the database platforms covered here
drop the locks taken up by the cursor. Another physical implementation detail is that SQL Server does not automatically
reallocate memory structures consumed by a cursor to the memory pool. To accomplish such reallocation, you must
issue a DEALLOCATE cursor_name command.

This example from Microsoft SQL Server opens a cursor and fetches a result set of all employees who have a last name
starting with "K":

DECLARE employee_cursor CURSOR FOR

 SELECT lname, fname

 FROM pubs.dbo.employee

 WHERE lname LIKE 'K%'

OPEN employee_cursor

FETCH NEXT FROM employee_cursor

WHILE @@FETCH_STATUS = 0

BEGIN

 FETCH NEXT FROM employee_cursor

END

CLOSE employee_cursor

DEALLOCATE employee_cursor

GO

See Also

DECLARE CURSOR
FETCH
OPEN

COMMIT Statement

The COMMIT statement explicitly ends an open transaction and makes the changes permanent in the database.
Transactions can be opened implicitly as part of an INSERT, UPDATE, or DELETE statement, or opened explicitly with a
START statement. In either case, an explicitly issued COMMIT statement will end the open transaction.

Platform Command

DB2 Supported

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

COMMIT [WORK] [AND [NO] CHAIN]

Keywords

COMMIT [WORK]

Ends the current, open transaction and writes any data manipulated by the transaction to the database. The
optional keyword WORK is noise and has no effect.

AND [NO] CHAIN

AND CHAIN tells the DBMS to treat the next transaction as if it were a part of the preceding transaction. In
effect, the two transactions are separate units of work, but they share a common transaction environment
(such as transaction isolation level). Including the optional NO keyword tells the DMBS to explicitly use the ANSI
default behavior. The COMMIT keyword by itself is functionally equivalent to the statement COMMIT WORK AND
NO CHAIN.

Rules at a Glance

For simple operations, you will execute transactions (that is, SQL code that manipulates or changes data and objects in
a database) without explicitly declaring a transaction. However, all transactions are best managed by explicitly closing
them with a COMMIT statement. Because records and even entire tables can be locked for the duration of a transaction,
it is extremely important that transactions are completed as quickly as possible. Thus, manually issuing a COMMIT
statement with a transaction can help control user concurrency issues and locking problems on the database.

Programming Tips and Gotchas

The most important gotcha to consider is that some database platforms perform automatic and implicit transactions,
while others require explicit transactions. If you assume a platform uses one method of transactions over the other, you
may get bitten. Thus, when moving between database platforms you should follow a standard, preset way of addressing
transactions. We recommend always using explicit transactions with START TRAN, on database platforms that support
it, to begin a transaction, and COMMIT or ROLLBACK to end a transaction.

In addition to finalizing a single or group of data-manipulation operation(s), COMMIT has some interesting effects on
other aspects of a transaction. First, it closes any associated open cursors. Second, any temporary table(s) specified
with ON COMMIT DELETE ROWS (an optional clause of the CREATE TABLE statement) are cleared of data. Third, all
deferred constraints are checked. If any deferred constraints are violated, the transaction is rolled back. Finally, all
locks opened by the transaction are released. Please note that SQL2003 dictates that transactions are implicitly opened
when one of the following statements is executed:

ALTER

CLOSE

COMMIT AND CHAIN

CREATE

DELETE

DROP

FETCH

FREE LOCATOR

GRANT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GRANT

HOLD LOCATOR

INSERT

OPEN

RETURN

REVOKE

ROLLBACK AND CHAIN

SELECT

START TRANSACTION

UPDATE

If you did not explicitly open a transaction when you started one of the commands listed above, the standard dictates
that the DBMS platform open a transaction for you.

DB2

DB2 supports the standard, but not the AND [NO] CHAIN clause.

MySQL

MySQL supports COMMIT and transactions only with InnoDB tables. It does not support the AND [NO] CHAIN clause.

Oracle

Oracle supports the standard, but not the AND [NO] CHAIN clause. In addition, Oracle has a couple of extensions to the
standard clause:

COMMIT [WORK] [{COMMENT 'text' | FORCE 'text' [, int]}];

where:

COMMENT 'text'

Associates a comment with the current transaction where 'text' is a literal string up to 255 characters long. The
text string is stored in the Oracle data dictionary view DBA_2PC_PENDING with the transaction ID, in case
the transaction rolls back.

FORCE 'text' [, int]

Allows an in-doubt distributed transaction to be manually committed, where 'text' is a literal string that identifies
the local or global transaction ID. Transactions can be identified by querying the Oracle data dictionary view
DBA_2PC_PENDING. The optional int parameter is an integer that explicitly assigns a system change number
(SCN) to the transaction. Without int, the transaction commits using the current SCN.

Issuing a COMMIT statement with the FORCE clause will commit only the transaction explicitly identified in the FORCE
clause. It will not affect the current transaction unless it is explicitly identified. The FORCE clause is not usable in
PL/SQL statements.

The following example commits a transaction while associating a comment with the transaction:

COMMIT WORK COMMENT 'In-doubt transaction, Call (949) 555-1234';

PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostgreSQL implements the following syntax:

COMMIT [WORK | TRANSACTION];

In PostgreSQL, both the WORK and TRANSACTION keywords are optional. When you issue a COMMIT, all open
transactions are written to disk and the results of those transactions then become visible to other users. For example:

INSERT INTO sales VALUES('7896','JR3435','Oct 28 1997',25,

 'Net 60','BU7832');

COMMIT WORK;

SQL Server

SQL Server does support the AND [NO] CHAIN clause. SQL Server supports the keyword TRANSACTION as an
equivalent to WORK, as in the following syntax:

COMMIT { [TRAN[SACTION] [transaction_name]] | [WORK] }

Microsoft SQL Server allows the creation of a specific, named transaction using the START TRAN statement. The
COMMIT TRANSACTION syntax allows you to specify an explicit, named transaction to close or to store a transaction
name in a variable. Curiously, SQL Server still commits only the most recently opened transaction, despite the name of
the transaction that is specified.

When you issue COMMIT WORK, SQL Server terminates all open transactions and writes their changes to the database.
You may not specify a transaction name when using COMMIT WORK.

See Also

ROLLBACK
START TRANSACTION

CONNECT

The CONNECT statement establishes a connection to the DBMS and to a specific database within the DBMS.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

SQL Server Supported, with variations

SQL2003 Syntax

CONNECT TO {DEFAULT | {[server_name] [AS connection_name]

 [USER user_name] }

Keywords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEFAULT

Initiates a default session with the server where the user authorization is the default and the current database
is the default. The standard specifies that CONNECT TO DEFAULT is issued implicitly if you start a SQL session
without first issuing a CONNECT statement.

server_name

Establishes a connection to a named server. The server_name may be a string literal enclosed in single-quotes or
a host variable.

AS connection_name

Establishes a connection with the name connection_name shown in single-quotes. The optional connection_name
may be a string literal enclosed in single quotes or a host variable. It is optional only for the first connection
attached to a server. All subsequent sessions must include the AS clause. This is useful for telling user
connections apart when many users, perhaps even a single user, have many open sessions on a given
server_name.

USER user_name

Establishes a connection to the named server under the user_name specified.

Rules at a Glance

Issue the CONNECT statement to open an interactive SQL session with a DBMS. The period between issuing the
CONNECT and DISCONNECT statements is commonly called a session. Typically, you will complete all work on a DBMS
during an explicitly invoked session.

If you do not specify the server name, the connection name, or the username, then the platform DBMS will provide
default values for you. The defaults vary from platform to platform.

To connect to the "houston" server under a specific user ID, you might issue the command:

CONNECT TO houston USER pubs_admin

If the DBMS requires named connections, you might use the following, alternative syntax:

CONNECT TO houston USER pubs_admin AS

 pubs_administrative_session;

If you want just a simple, short-term connection then you might use the default:

CONNECT TO DEFAULT;

Programming Tips and Gotchas

If the CONNECT statement is invoked without explicitly disconnecting, the old session becomes dormant and the new
session becomes active. You can then switch between connections using the SET CONNECTION statement.

The Oracle tool SQL*Plus uses the CONNECT command somewhat differently: to connect a
user to a specific schema.

DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2

DB2 supports a couple of variations to the ANSI standard:

CONNECT { [TO] {[server_name] [IN SHARE MODE |

 IN EXCLUSIVE MODE [ON SINGLE DBPARTITIONNUM] | [RESET] }

[USER user_name] { [USING password] | [NEW password

 CONFIRM password]}

where:

CONNECT

Equates to the SQL statement CONNECT TO DEFAULT, when used alone.

TO server_name

Identifies the server to which the connection will be established. The server_name may be a string literal or a
character datatype variable of 8 or fewer characters (UDB) or 16 or fewer characters (OS/390 or z/OS).

IN SHARE MODE

Establishes a concurrent connection and allows other users to connect to the database. Prevents other users
from connecting in exclusive mode.

IN EXCLUSIVE MODE [ON SINGLE DBPARTITIONNUM]

Acquires an exclusive connection on the application server and prevents any new users from connecting unless
they use the same user_name and password. The optional ON SINGLE DBPARTITIONNUM clause is only usable on
a partitioned database. This option specifies that the coordinator database partition is connected in exclusive
mode, while all other database partitions are connected in share mode.

RESET

Executes a COMMIT statement, then disconnects the session from the server.

USER user_name

Establishes the connection under the named user account. The user_name may be a string literal or a character
datatype variable of 8 or fewer characters in length.

USING password

Specifies the password for the user account of user_name. It may be a string literal or a character datatype
variable of 8 or fewer characters in length.

NEW password CONFIRM password

Specifies a new password that will be assigned to the user account called user_name. It may be a string literal or
a character datatype variable of 18 or fewer characters in length.

For example, we might want to change the password for the user account sam to mephrun using a VARCHAR(8) host
variable, app_server, to store the value of the application server:

CONNECT TO :app_server USER sam NEW 'mephrun' CONFIRM 'mephrun';

MySQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL

Not supported.

Oracle

The CONNECT clause allows a database connection as a specific username. Alternately, a connection can be established
for special privileges with AS SYSOPER or AS SYSDBA. The Oracle syntax is:

CONN[ECT] [[username/password] {AS {SYSOPER | SYSDBA}]]

where:

CONN[ECT] username/password

Establishes a connection to the database instance.

AS { SYSOPER | SYSDBA }

Establishes the connection as one of the two optional system roles.

If another connection is already open, CONNECT commits any open transactions, closes the current session, and opens
the new one.

Oracle also allows the CONNECT statement in its SQL*Plus and iSQL*Plus tools.

PostgreSQL

PostgreSQL does not explicitly support the CONNECT statement. However, it does support the statement SPI_CONNECT
under the Server Programming Interface and PG_CONNECT under the PG/TCL programming package.

SQL Server

SQL Server supports the basic elements of the CONNECT statement within Embedded SQL (inside of C++ or Visual
Basic programs), as in the following:

CONNECT TO [server_name.]database_name [AS connection_name]

USER {login_name[.password] | $integrated}

where:

CONNECT TO server_name.database_name

Specifies the server and database to which you want a connection. You may leave off the server_name if you
wish to default to the local server.

AS connection_name

Names the connection as an alphanumeric string up to 30 characters in length. Symbols are allowed, except for
hyphens (-), but the first character must be a letter. CURRENT and ALL are reserved and may not be used for a
connection_name. You need only define connection names when making more than one connection.

USER {login_name[.password | $integrated]}

Connects the session under the login_name specified using the password provided or using Windows integrated
security. The password is optional when supplying a login name.

For example, we can connect to the server named new_york as the Windows login pubs_admin:

CONNECT TO new_york.pubs USER pubs_admin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To issue the same command under SQL Server standard security:

EXEC SQL CONNECT TO new_york.pubs USER pubs_admin

To issue the same command under Windows integrated security:

EXEC SQL CONNECT TO new_york.pubs USER $integrated

To switch to a different connection, you should use the SET CONNECTION statement.

See Also

SET CONNECTION

CREATE/ALTER DATABASE Statement

The ANSI standard does not actually contain a CREATE DATABASE statement. However, since it is nearly impossible to
operate a SQL database without this command, we've added CREATE DATABASE here. Almost all database platforms
support some version of this command.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

Rules at a Glance

This command creates a new, blank database with a specific name. Most DBMS platforms require the user to possess
administrator privileges in order to create a new database. Once the new database is created, you can populate it with
database objects (such as tables, views, triggers, and so on) and populate the tables with data.

Depending on the platform, CREATE DATABASE may also create corresponding files on the filesystem that contain the
data and metadata of the database.

Programming Tips and Gotchas

Since CREATE DATABASE is not an ANSI command, it is prone to rather extreme variation in syntax between platforms.

DB2

The DB2 statement CREATE DATABASE initializes a new database with a variety of user-defined characteristics, such as
collation and autoconfiguration options. In addition, the statement also creates the three initial tablespaces, system
tables, and recovery logs required by a DB2 database:

CREATE {DATABASE | DB} database_name

[AT DBPARITIONNUM] [ON path_and_drive] [ALIAS database_alias]

[USING CODESET codeset TERRITORY territory]

[COLLATE USING {COMPATIBILTIY | IDENTITY | NLSCHAR | SYSTEM}]

[NUMSEGS int] [DFT_EXTENT_SZ int]

[CATALOG TABLESPACE tablespace_definition]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[CATALOG TABLESPACE tablespace_definition]

[USER TABLESPACE tablespace_definition]

[TEMPORARY TABLESPACE tablespace_definition] [WITH "comments"]

[AUTOCONFIGURE [USING param value [...]]

[APPLY {DB ONLY | DB AND DBM | NONE}]

where:

CREATE {DATABASE | DB} database_name

Creates a database called database_name. The name must be unique from all other database names on either
the local database directory or the system database directory.

AT DBPARITIONNUM

Creates the database on the database partition where the command was issued. This command is used only to
recreate a database that was dropped; it should not be used to create a brand new database. Once the CREATE
DATABASE AT DBPARTITIONNUM statement is issued, the database must be immediately restored to the node.

ON path_and_drive

Specifies the path and drive, up to 205 characters long, to create the database on a Windows or Unix-based
system. When this clause is omitted, the database is created on the default database path declared in the
database manager configuration file dftdbpath parameter.

ALIAS database_alias

Declares an alias for the database within the system database directory.

USING CODESET codeset TERRITORY territory

Declares the codeset and territory used by the database. Once these values are set, they cannot be changed
later.

COLLATE USING {COMPATIBILTIY | IDENTITY | NLSCHAR | SYSTEM}

Specifies the type of collation used for the database. Once set, the collation sequence cannot be changed later.
Options are:

COMPATIBILITY

Uses DB2 v2 collation sequence for backward compatibility.

IDENTITY

Uses the identity collation sequence, where strings are compared byte for byte.

NLSCHAR

Uses the collation sequence unique for the database codeset and territory. This option is currently only
supported with the Thai code page (CP874).

SYSTEM

Uses the collation sequence for the current territory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NUMSEGS int

Specifies the number of segment directories, as int, created to store DAT, IDX, LF, LB, and LBA files for any
default System Managed Space (SMS) tablespaces. This setting does not affect DMS tablespaces, SMS
tablespaces with explicitly defined creation characteristics, or SMS tablespaces created after the database is
created.

DFT_EXTENT_SZ int

Specifies the default extent size, as int, of the tablespaces in the database.

CATALOG TABLESPACE tablespace_definition

Specifies the definition of the tablespace that holds the catalog tables. Details on the syntax for
tablespace_definition are detailed below. When this clause is omitted, the catalog tables will be created in an SMS
tablespace called SYSCATSPACE with the values set by the NUMSEGS and DFT_EXTENT_SZ clauses.

USER TABLESPACE tablespace_definition

Specifies the definition of the tablepace that holds the initial user tablespace. Details on the syntax for
tablespace_definition are detailed below. When this clause is omitted, the user tablespace will be created in an
SMS tablespace called USERSPACE1 with the values set by the NUMSEGS and DFT_EXTENT_SZ clauses.

TEMPORARY TABLESPACE tablespace_definition

Specifies the definition of the tablepace that holds the initial system temporary tablespace. Details on the
syntax for tablespace_definition are detailed below. When this clause is omitted, the user tablespace will be
created in an SMS tablespace called TEMPSPACE1 with the values set by the NUMSEGS and DFT_EXTENT_SZ
clauses.

WITH "comments"

Specifies a description, up to 30 characters in length, for the database within the database directory.

AUTOCONFIGURE [USING param value [...]]

Declares user-defined settings for important database settings such as the buffer pool size. When issued
without the USING clause, DB2 calculates the optimal settings and applies them. The list of param settings and
their possible values are:

mem_percent

Defines the percentage of memory dedicated to the database. The default is 25, but may range from 1-
100. Do not set this to 100 if other applications are running on the server.

workload_type

Defines the database workload as either 'simple', 'mixed', or 'complex', with 'mixed' as the default. The
'simple' workload tunes I/O for transactions, while 'complex' tunes the workload for more CPU intensive
queries. 'Mixed' provides tuning that is effective, though not optimized, for both workloads.

num_stmts

Defines the number of statements per unit of work. The default is 25, but may range from 1-1,000,000.

tpm

Defines the expect number of transactions per minute. The default is 60, but may range from 1-50,000.

admin_priority

Defines whether the database should be tuned for better performance (value = 'performance') or better

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defines whether the database should be tuned for better performance (value = 'performance') or better
recovery time (value = 'recovery'), or the middle ground (value = 'both'), which is the default.

num_local_apps

Defines the number of connected local applications. The default is 0, but may range from 0-5,000.

num_remote_apps

Defines the number of connections by remote applications. The default is 100, but may range from 0-
5,000.

isolation

Defines the transaction isolation level of the applications connecting to the database. The default is RR,
but valid values include RR, RS, CS, and UR. Refer to the entry on SET TRANSACTION ISOLATION
LEVEL for more details on DB2's isolation levels.

bp_resizeable

Defines whether buffer pools may be resized or not. The default is yes, but it may also be set to no.

APPLY {DB ONLY | DB AND DBM | NONE}

Determines the scope of any autoconfiguration parameters set using the AUTOCONFIGURATION clause:

DB ONLY

Applies changes only to the database configuration and buffer pool settings.

DB AND DBM

Applies settings to the database manager configuration, the database configuration, and the buffer pool
settings.

NONE

Displays the recommended settings, but does not apply them.

The tablespace_definition used by DB2 has its own syntax as well:

MANAGED BY

 {SYSTEM USING ('container' [,...]) |

 DATABASE USING ({FILE | DEVICE} 'container' int [,...]) }

 [EXTENTSIZE int] [PREFETCHSIZE int] [OVERHEAD int]

 [TRANSFERRATE int]

where:

MANAGED BY

Defines whether the tablespace is managed by a system managed space (SMS) or a database managed space
(DMS):

SYSTEM USING ('container' [,...])

Defines one or more containers for the SMS of up to 240 bytes in length. The container may be an
absolute or relative directory name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

absolute or relative directory name.

DATABASE USING ({FILE | DEVICE} 'container' int [,...])

Defines one or more containers for the DMS of up to 254 bytes in length. The container may be an
absolute or relative directory name. The type of container (FILE for a filename or DEVICE for a pre-
existing device) and its size (int), plus a suffix of K (kilobytes), M (megabytes), or G (gigabytes) are also
specified. If the file does not exist when specified, DB2 will create one. The device must already exist to
be used.

EXTENTSIZE int

Defines the number of pages, int, that are written to the container before skipping to the next container. (The
size of the pages is determined by the PAGESIZE setting.) Alternately, the extentsize (int) may be declared in
bytes by attaching a suffix of K (kilobytes), M (megabytes), or G (gigabytes) to the integer value.

PREFETCHSIZE int

Defines the number of pages, int, that are read from the tablespace when prefetching data. (The size of the
pages are determined by the PAGESIZE setting.) Alternately, the extent size (int) may be declared in bytes by
attaching a suffix of K (kilobytes), M (megabytes), or G (gigabytes) to the integer value.

OVERHEAD int

Defines the I/O controller overhead, disk seek, and latency time, in milliseconds, int, used to determine the cost
of I/O during query optimization. The value for int should be an average for all containers that belong to the
tablespace.

TRANSFERRATE int

Defines the time to read one page into memory, in milliseconds, int, used to determine the cost of I/O during
query optimization. The value for int should be an average for all containers that belong to the tablespace.

Note that DB2 tablespaces may also be created using the DB2-specific command CREATE TABLESPACE.

On DB2 servers that are enabled to support Lightweight Directory Access Protocol (LDAP), the new database is
automatically registered in the LDAP directory.

DB2 does not support an ALTER DATABASE statement.

The following example creates a database called sales with specifically declared NUMSEGS, DFT_EXTENT_SZ, and
AUTOCONFIGURATION enabled and applied:

CREATE DATABASE sales

NUMSEGS 200 DFT_EXTENT_SZ 1000

WITH "Temporary sales database"

AUTOCONFIGURE APPLY DB ONLY;

The WITH clause adds a description of the sales database to the database directory.

MySQL

In MySQL, CREATE DATABASE essentially creates a new directory that holds the database objects:

CREATE DATABASE [IF NOT EXISTS] database_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where:

CREATE DATABASE database_name

Creates a database and directory of database_name. The database directory appears under the MySQL data
directory. Tables in MySQL then appear as files in the database directory.

IF NOT EXISTS

Avoids an error if the database already exists.

For example, we could create a database called sales_archive on a MySQL server. If the database already exists, we
want to abort the command without causing an error:

 CREATE DATABASE IF NOT EXISTS sales_archive

Any tables that we create in the sales_archive database will now appear as files within the sales_archive directory.

MySQL does not support an ALTER DATABASE statement.

Oracle

Oracle provides an extraordinary level of control over database file structures beyond merely naming the database and
specifying a path for the database files. CREATE and ALTER DATABASE are very powerful commands in Oracle. Some of
the more sophisticated clauses are best used only by experienced DBAs. These commands can be very large and
complex. (ALTER DATABASE alone consumes over 50 pages in the Oracle vendor documentation!)

Novices should be aware that CREATE DATABASE, when run, erases all data in the specified datafiles that are already in
existence. Similarly, all the data in an existing database will be lost.

Following is the syntax to create a new database in Oracle:

CREATE DATABASE [database_name]

{[USER SYS IDENTIFIED BY password | USER SYSTEM IDENTIFIED BY password]}

[CONTROLFILE REUSE]

{[LOGFILE definition [,...]] [MAXLOGFILES int] [[MAXLOGMEMBERS] int]

 [[MAXLOGHISTORY] int] [{ARCHIVELOG | NOARCHIVELOG}] [FORCE LOGGING]}

[MAXDATAFILES int]

[MAXINSTANCES int]

[CHARACTER SET charset]

[NATIONAL CHARACTER SET charset]

[EXTENT MANAGEMENT {DICTIONARY | LOCAL}]

[DATAFILE definition [,...]]

[SYSAUX DATAFILE definition [,...]]

[DEFAULT TABLESPACE tablespace_name

 [DATAFILE file_definition]

 EXTENT MANAGEMENT {DICTIONARY |

 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M] } }]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M] } }]

[[{ BIGFILE | SMALLFILE}] DEFAULT [TEMPORARY] TABLESPACE tablespace_name

 [TEMPFILE file_definition]

 EXTENT MANAGEMENT {DICTIONARY |

 LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M] } }]

[[{ BIGFILE | SMALLFILE}] UNDO TABLESPACE tablespace_name

 [DATAFILE temp_datafile_definition]]

[SET TIME_ZONE = ' { {+ | -} hh:mi | time_zone_region}']

[SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE]

Following is the syntax to alter an existing database:

ALTER DATABASE [database_name]

[ARCHIVELOG | NOARCHIVELOG] |

{MOUNT [{STANDBY | CLONE} DATABASE] |

 OPEN [READ WRITE | READ ONLY

 [RESETLOGS | NORESETLOGS] | [UPGRADE | DOWNGRADE] } |

{ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE

 [SKIP [STANDBY LOGFILE]] |

 SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION | AVAILABILITY |

 PERFORMANCE} |

 REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']

 [FOR logminer_session_name] |

 {COMMIT | PREPARE} TO SWITCHOVER TO

 {{[PHYSICAL | LOGICAL] PRIMARY | STANDBY} [WITH[OUT]

 SESSION SHUTDOWN] [WAIT | NOWAIT]} |

 CANCEL} |

 START LOGICAL STANDBY APPLY [IMMEDIATE] [NODELAY]

 [{INITIAL int | NEW PRIMARY dblink_name | {FINISH |

 SKIP FAILED TRANSACTION] }] |

 {STOP | ABORT} LOGICAL STANDBY APPLY |

 [[NO]PARALLEL int] } |

{RENAME GLOBAL_NAME TO database[.domain[.domain ...]] |

 CHARACTER SET character_set |

 NATIONAL CHARACTER SET character_set |

 DEFAULT TABLESPACE tablespace_name |

 DEFAULT TEMPORARY TABLESPACE {GROUP int | tablespace_name} |

 {DISABLE BLOCK CHANGE TRACKING | ENABLE BLOCK CHANGE TRACKING [USING

 FILE 'file' [REUSE] } |

 FLASHBACK {ON | OFF} |

 SET TIME_ZONE = '{ {+ | -} hh:mi | time_zone_region}' |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SET TIME_ZONE = '{ {+ | -} hh:mi | time_zone_region}' |

 SET DEFAULT {BIGFILE | SMALLFILE} TABLESPACE } |

{ENABLE | DISABLE} { [PUBLIC] THREAD int | INSTANCE 'instance_name' } |

{GUARD {ALL | STANDBY | NONE} } |

{CREATE DATAFILE 'file' [,...] [AS {NEW | file_definition [,...] }] |

 {DATAFILE 'file' | TEMPFILE 'file'} [,...]

 {ONLINE | OFFLINE [FOR DROP | RESIZE int [K | M] |

 END BACKUP | AUTOEXTEND {OFF | ON [NEXT int [K | M] [MAXSIZE

 [UNLIMITED | int [K | M] } |

 {TEMPFILE 'file' | TEMPFILE 'file'} [,...]

 {ONLINE | OFFLINE | DROP [INCLUDING DATAFILES] |

 RESIZE int [K | M] | AUTOEXTEND {OFF | ON [NEXT int [K | M]

 [MAXSIZE [UNLIMITED | int [K | M] } |

 RENAME FILE 'file' [,...] TO 'new_file_name' [,...] } |

{[[NO] FORCE LOGGING] | [[NO]ARCHIVELOG [MANUAL]] |

 [ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY | UNIQUE |

 FOREIGN KEY) [,...]] COLUMNS |

 [ADD | DROP] [STANDBY] LOGFILE

 {{[THREAD int | INSTANCE 'instance_name']} {[GROUP int |

 logfile_name [,...]} [SIZE [K | M]] | [REUSE] |

 [MEMBER] 'file' [REUSE] [,...] TO logfile_name [,...]} |

 ADD LOGFILE MEMBER 'file' [RESUSE] [,...] TO {[GROUP int |

 logfile_name [,...]} |

 DROP [STANDBY] LOGFILE {MEMBER 'file' | {[GROUP int | logfile_name

 [,...]} }

 CLEAR [UNARCHIVED] LOGFILE {[GROUP int | logfile_name [,...]} [,...]

 [UNRECOVERABLE DATAFILE] } |

{CREATE [LOGICAL | PHYSICAL] STANDBY CONTROLFILE AS 'file' [REUSE] |

 BACKUP CONTROLFILE TO

 {'file' [REUSE] | TRACE [AS 'file' [REUSE]] {RESETLOGS |

 NORESETLOGS]} } |

{RECOVER

 {[AUTOMATIC [FROM 'location']] |

 {[STANDBY] DATABASE

 {[UNTIL {CANCEL | TIME date | CHANGE int}] |

 USING BACKUP CONTROLFILE } |

 {{[STANDBY] {TABLESPACE tablespace_name [,...] | DATAFILE

 'file' [,...] } [UNTIL [CONSISTENT WITH] CONTROLFILE]} |

 TABLESPACE tablespace_name [,...] | DATAFILE 'file' [,...]} |

 LOGFILE filename [,...] } [{TEST | ALLOW int CORRUPTION | [NO]PARALLEL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 LOGFILE filename [,...] } [{TEST | ALLOW int CORRUPTION | [NO]PARALLEL

 int}]} |

 CONTINUE [DEFAULT] |

 CANCEL [IMMEDIATE][NOWAIT] }

 {MANAGED STANDBY DATABASE

 {[[NO]TIMEOUT int] [{[NO]DELAY int | DEFAULT DELAY}] [NEXT int]

 [[NO]EXPIRE int] [{[NO]PARALLEL int}] [USING CURRENT LOGFILE]

 [UNTIL CHANGE int]

 [THROUGH

 {ALL ARCHIVELOG | {ALL | LAST | NEXT} SWITCHOVER |

 [[THREAD int] SEQUENCE int] } |

 [CANCEL [IMMEDIATE] [{WAIT | NOWAIT}]] |

 [DISCONNECT [FROM SESSION] [{[NO]PARALLEL int}]

 FINISH [SKIP [STANDBY LOGFILE]] [{WAIT | NOWAIT}]] |

{BEGIN | END} BACKUP} }

The syntax elements in Oracle are as follows:

{CREATE | ALTER} DATABASE database_name

Creates or alters a database with the name database_name. The database name can be up to 8 bytes in length
and may not contain European or Asian characters. You can omit a database name and allow Oracle to create a
database name for you, but beware that Oracle can create some counter-intuitive names.

USER SYS IDENTIFIED BY password

USER SYSTEM IDENTIFIED BY password

Specifies passwords for the SYS and SYSTEM users. You may specify neither or both of these clauses, but not
just one of them.

CONTROLFILE REUSE

Causes existing control files to be reused, enabling you to specify existing files in the CONTROL_FILES
parameter in INIT.ORA. Oracle will then overwrite any information those files may contain. This clause is
normally used when recreating a database. Consequently, you probably don't want to use this clause in
conjunction with MAXLOGFILES, MAXLOGMEMBER, MAXLOGHISTORY, MAXDATAFILES, or MAXINSTANCES.

LOGFILE definition

Specifies one or more logfiles for the database. You may define multiple files all with the same size and
characteristics, using the file parameter, or you may define multiple files, each with its own size and
characteristics. The entire logfile definition syntax is rather ponderous, but offers a great deal of control:

LOGFILE { ('file' [,...]) [SIZE int [K | M]

[GROUP int] [REUSE]} [,...]

where:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where:

LOGFILE ('file' [,...])

Defines one or more files that will act as redo logfiles; file is both the filename and path. Any files
defined in the CREATE DATABASE statement are assigned to redo log thread number 1. When specifying
multiple redo logfiles, each filename should be enclosed in single quotes and separated from the other
names by commas. The entire list should be enclosed in parentheses.

SIZE int [K | M]

Specifies the size of the redo logfile in bytes as an integer value, int. Alternately, you may define the
redo logfile in large units than bytes by appending a K (for kilobytes) or an M (for megabytes).

GROUP int

Defines the integer ID, int, of the redo logfile group. The value may be from 1 to the value of the
MAXLOGFILES clause. An Oracle database must have at least two redo logfile groups. Oracle will create
a redo logfile group for you, at 100 MB each, if you leave off this group ID.

REUSE

Reuses an existing redo logfile.

MAXLOGFILES int

Sets the maximum number of logfiles, int, available to the database being created. The minimum, maximum,
and default for this clause are OS-dependent.

MAXLOGMEMBERS int

Sets the maximum number of members (i.e., copies) for a redo logfile group. The minimum value is 1 while the
maximum and default values for this clause are OS-dependent.

MAXLOGHISTORY int

Sets the maximum number of archived redo logfiles available to a Real Application Cluster. You can use the
MAXLOGHISTORY clause only when Oracle is in ARCHIVELOG mode on a Real Application Cluster. The minimum
value is 0 while the maximum and default values for this clause are OS-dependent.

ARCHIVELOG | NOARCHIVELOG

Defines how redo logs operate. When used with ALTER DATABASE, allows the current setting to be changed.
ARCHIVELOG saves data stored in the redo log(s) to an archiving file, providing for media recoverability.
Conversely, NOARCHIVELOG allows a redo log to be reused without archiving the contents. Both options
provide recoverability, although NOARCHIVELOG (the default) does not provide media recovery.

FORCE LOGGING

Places all instances of the database into FORCE LOGGING mode, in which all changes to the database are
logged, except for changes to temporary tablespaces and segments. This setting takes precedence over any
tablespace- or object-level settings.

MAXDATAFILES int

Sets the initial number of datafiles, int, available to the database being created. Note that the INIT.ORA setting,
DB_FILES, also limits the number of datafiles accessible to the database instance.

MAXINSTANCES int

Sets the maximum number of instances, int, which may mount and open the database being created. The
minimum value is 1 while the maximum and default values for this clause are OS-dependent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

minimum value is 1 while the maximum and default values for this clause are OS-dependent.

CHARACTER SET charset

Controls the language character set in which the data is stored. The value for charset cannot be AL16UTF16. The
value of charset is OS-dependent.

NATIONAL CHARACTER SET charset

Controls the national language character set for data stored in NCHAR, NCLOB, and NVARCHAR2 columns. The
value for charset must be either AL16UTF16 (the default) or UTF8.

EXTENT MANAGEMENT {DICTIONARY | LOCAL}

Creates a locally managed SYSTEM tablespace, otherwise the SYSTEM tablespace will be dictionary managed.
This clause requires a default temporary tablespace. If you omit a DATAFILE clause, you can also omit a default
temporary tablespace because Oracle will create them both for you.

DATAFILE definition

Specifies one or more datafiles for the database. (All these datafiles become part of the SYSTEM tablespace.)
You may repeat filenames to define multiple files all with the same size and characteristics. Alternately, you
may repeat the entire DATAFILE clause, with each occurrence defining one or more files with the same size and
characteristics. The entire datafile definition syntax is rather large, but offers a great deal of control:

DATAFILE {('file1' [,...]) [GROUP int] [SIZE int [K | M] [REUSE]

[AUTOEXTEND [OFF | ON [NEXT int [K | M]

[MAXSIZE [UNLIMITED | int [K | M]] } [,...]

where:

DATAFILE ('file1' [,...])

Defines one or more files that will act as the datafile(s), where file1 is both the filename and path. For
multiple files, each filename should be enclosed in single-quotes and separated by a comma. The entire
list should be enclosed in parentheses.

GROUP int

Defines the integer ID, int, of the datafile group. The value may be from 1 to the value of MAXLOGFILES
clause. An Oracle database must have at least two datafile groups. Oracle will create them for you, at
100 MB each, if you leave off this clause.

SIZE int [K | M]

Specifies the size of the datafile in bytes as an integer value, int. Alternately, you may define the
datafile in large units by appending a K (for kilobytes) or an M (for megabytes).

REUSE

Reuses the existing datafile.

AUTOEXTEND

Enables (ON) the automatic extension of new or existing data or temp files (but does not redo logfiles).
NEXT specifies the next increment of space allocated to the file in bytes, kilobytes (K), or megabytes
(M) when more space is needed.

MAXSIZE [UNLIMITED | int [K | M]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies the maximum disk space allowed for automatic extension of the file. UNLIMITED allows the file
to grow without an upper limit, except of course the total capacity of the drive. Otherwise, you may
define the maximum size limit as an integer, int, in bytes (the default), kilobytes with the keyword K,
and megabytes with the keyword M.

SYSAUX DATAFILE definition

Specifies one or more datafiles for the SYSAUX tablespace. By default, Oracle creates and manages the SYSTEM
and SYSAUX tablespaces automatically. You must use this clause if you have specified a datafile for the SYSTEM
tablespace. If you omit the SYSAUX clause when using Oracle-managed files, then Oracle will create the
SYSAUX tablespace as an online, permanent, locally managed tablespace with a single datafile of 100 MB, using
automatic segment-space management and logging.

BIGFILE | SMALLFILE

Specifies the default file type of a subsequently created tablespace. BIGFILE indicating the tablespace will
contain a single datafile or tempfile of up to 8 exabytes (8 million terabytes) in size, while SMALLFILE indicates
the tablespace is a traditional Oracle tablespace. The default, when omitted, is SMALLFILE.

DEFAULT TABLESPACE tablespace_name

Specifies a default permanent tablespace for the database for all non-SYSTEM users. When this clause is
omitted, the SYSTEM tablespace is the default permanent tablespace for non-SYSTEM users. The EXTENT
MANAGEMENT clause has the same syntax as in the DEFAULT TEMPORARY TABLESPACE clause appearing later.

DEFAULT TEMPORARY TABLESPACE tablespace_name [TEMPFILE file_definition]

Defines the name and location of the default temporary tablespace for the database. Users who are not
explicitly assigned to a temporary tablespace will operate in this one. If you don't create a default temporary
tablespace, Oracle uses the SYSTEM tablespace. Under ALTER DATABASE, this clause allows you to change the
default temporary tablespace.

TEMPFILE file_definition

The tempfile definition is optional when the DB_CREATE_FILE_DEST INIT.ORA parameter is set.
Otherwise, you'll have to define the tempfile yourself. The TEMPFILE definition syntax is otherwise
identical to the DATAFILE definition syntax earlier in this section.

EXTENT MANAGEMENT {DICTIONARY | LOCAL {AUTOALLOCATE | UNIFORM [SIZE int [K | M]}}

Defines the way in which the SYSTEM tablespace is managed. When this clause is omitted, the SYSTEM
tablespace is dictionary-managed. Once created as a locally managed tablespace, it cannot be converted back
to a dictionary-managed tablespace, nor can any new dictionary-managed tablespaces be created in the
database.

DICTIONARY

Specifies that the Oracle data dictionary manages the tablespace. This is the default. The
AUTOALLOCATE and UNIFORM subclauses are not used with this clause.

LOCAL

Declares that the tablespace is locally managed. This clause is optional since all temporary tablespaces
have locally managed extents by default. Use of this clause requires a default temporary tablespace. If
you do not manually create one, Oracle will automatically create one called TEMP of 10 MB size with
autoextend disabled.

AUTOALLOCATE

Specifies that new extents will be allocated as needed by the locally managed tablespace.

UNIFORM [SIZE int [K | M]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that all extents of the tablespace are the same size (UNIFORM), in bytes, as int. The SIZE
clause allows you to configure the size of the extents to your liking in bytes (the default), in kilobytes
using the keyword K, or in megabytes using the keyword M. The default is 1M.

UNDO TABLESPACE tablespace_name [DATAFILE temp_datafile_definition]

Defines the name and location for undo data, creating a tablespace named tablespace_name, but only if you have
set the UNDO_MANAGEMENT INIT.ORA parameter to AUTO. If you don't use this clause, Oracle manages undo
space via rollback segments. (You may also set the INIT.ORA parameter to UNDO_TABLESPACE. If so, the value
of the parameter and the tablespace_name used here must be identical.)

where:

DATAFILE temp_datafile_definition

Creates and assigns the datafile, as you have defined it, to the undo tablespace. Refer to the earlier
section on DATAFILE for the full syntax on this clause. This clause is required if you have not specified a
value for the INIT.ORA parameter DB_CREATE_FILE_DEST.

SET TIME_ZONE = ' { {+ | -} hh:mi | time_zone_region}'

Sets the time zone for the database, either by specifying a delta from Greenwich Mean Time (now called
Coordinated Universal Time) or by specifying a time zone region. (For a list of time zone regions, query the
tzname column of the v$timezone_names view.) If you do not use this clause, Oracle defaults to the operating-
system time zone.

SET DEFAULT TABLESPACE

Sets all tablespaces created by the current CREATE DATABASE or ALTER DATABASE statement as either
BIGFILE or SMALLFILE. When creating databases, this clause also applies to the SYSTEM and SYSAUX
tablespaces.

MOUNT [[{STANDBY} | CLONE] DATABASE]

Mounts a database for users to access. The STANDBY keyword mounts a physical standby database, enabling it
to receive archived redo logs from the primary instance. The CLONE keyword mounts a clone database. This
clause cannot be used with OPEN.

OPEN [READ WRITE | READ ONLY] [RESETLOGS | NORESETLOGS] [UPGRADE | DOWNGRADE]

Opens the database separately from the mounting process. (Mount the database first.) READ WRITE opens the
database in read/write mode, allowing users to generate redo logs. READ ONLY allows reads but disallows
changes to redo logs. RESETLOGS discards all redo information not applied during recovery and sets the log
sequence number to 1. NORESETLOGS retains the logs in their present condition. The optional UPGRADE and
DOWNGRADE clauses tell Oracle to dynamically modify the system parameters as required for database
upgrade or downgrade, respectively. The default is OPEN READWRITE NORESETLOGS.

ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [SKIP [STANDBY LOGFILE]]

Promotes a standby database to the primary database. You can optionally specify a PHYSICAL standby, the
default, or a LOGICAL standby. Use the SKIP clause to immediately promote a physical standby and discard any
data still unapplied by the RECOVER MANAGED STANDBY DATABASE FINISH statement. The clause STANDBY
LOGFILE is noise.

SET STANDBY [DATABASE] TO MAXIMIZE {PROTECTION | AVAILABILITY | PERFORMANCE}

Sets the level of protection for data in the primary database. The old terms PROTECTED and UNPROTECTED
equate to TO MAXIMIZE PROTECTION and MAXIMIZE PERFORMANCE, respectively, where:

PROTECTION

Provides the highest level of data protection, but has the greater overhead and negatively impacts
availability. This setting commits transactions only after all data necessary for recovery has been
physically written in at least one physical standby database that uses SYNC log transport mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

physically written in at least one physical standby database that uses SYNC log transport mode.

AVAILABILITY

Provides the second highest level of data protection, but the highest level of availability. This setting
commits transactions only after all data necessary for recovery has been physically written in at least
one physical or logical standby database that uses SYNC log transport mode.

PERFORMANCE

Provides the highest level of performance, but compromises data protection and availability. This setting
commits transactions before all data necessary for recovery has been physically written to a standby
database.

REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE ['file']

Manually registers redo logfiles from a failed primary server when issued from a standby server. The logfile may
optionally be declared as PHYSICAL or LOGICAL. The OR REPLACE clause allows updates to details for an
existing archivelog entry.

FOR logminer_session_name

Registers the logfile with a single, specific LogMiner session in an Oracle Streams environment.

{COMMIT | PREPARE} TO SWITCHOVER TO {[PHYSICAL | LOGICAL] PRIMARY | STANDBY}

Performs a graceful switchover, moving the current primary database to standby status and promoting a
standby database to primary. (In a RAC environment, all instances other than the current instance have to be
shutdown.) To gracefully switch over, you should issue the command twice, once to prepare the primary and
standby databases to begin exchanging logfiles in advance of the switchover using PREPARE TO SWITCHOVER.
To demote the primary database and switchover of the standby databases, use COMMIT TO SWITCHOVER. The
PHYSICAL clause puts the primary database into physical standby mode. The LOGICAL clause puts the primary
database into logical standby mode. However, you must then issue an ALTER DATABASE START LOGICAL
STANDBY APPLY statement.

WITH[OUT] SESSION SHUTDOWN] [WAIT | NOWAIT]

WITH SESSION SHUTDOWN closes any open application sessions and rolls back any uncommitted transactions
during a switchover of physical databases (but not logical ones). WITHOUT SESSION SHUTDOWN, the default,
causes the COMMIT TO SWITCHOVER statement to fail if it encounters any open application sessions. WAIT
returns control to the console after completion of the SWITCHOVER command, while NOWAIT returns control
before the command completes.

START LOGICAL STANDBY APPLY [IMMEDIATE][NODELAY][{INITIAL int | NEW PRIMARY dblink_name}
| {FINISH | SKIP} FAILED TRANSACTIONS}]

Starts to apply redo logs to the logical standby database. IMMEDIATE tells the Oracle LogMiner to read the redo
data in the standby redo logfiles. NODELAY tells Oracle to ignore a delay for the apply, such as when the
primary database is unavailable or disabled. INITIAL is used the first time you apply logs to the standby
database. NEW PRIMARY is required after a switchover has completed or after a standby database has
processed all redo logs and another standby is promoted to primary. Use SKIP FAILED TRANSACTION to skip
the last transaction and to restart the apply. Use FINISH to apply the data in the redo logs if the primary
database is disabled.

[STOP | ABORT] LOGICAL STANDBY APPLY

Stops the application of redo logs to a logical standby server. STOP performs an orderly stop, while ABORT
performs an immediate stop.

[NO]PARALLEL [int]

[NO]PARALLEL determines whether parallel recovery of media is used. NOPARALLEL is the default and enforces
serial reading of the media. PARALLEL with no int value tells Oracle to choose the degree of parallelism to apply.
Specifying int declares the degree of parallelism to apply.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifying int declares the degree of parallelism to apply.

RENAME GLOBAL_NAME TO database[.domain[.domain ...]]

Changes the global name of the database, where database is the new name of up to 8 bytes in length. The
optional domain specifications identify the database's location in the network. This does not propagate database
name changes to any dependent objects like synonyms, stored procedures, etc.

{DISABLE | ENABLE} BLOCK CHANGE TRACKING [USING FILE 'file'] [REUSE]

Tells Oracle to stop or start tracking the physical location of all database updates, respectively, and maintain
the information in a special file called the block change tracking file. Oracle will automatically create the file as
defined by the DB_CREATE_FILE_DEST parameter, unless you add the USING FILE 'file' clause, where 'file' is
the path and name of the file. REUSE tells Oracle to overwrite an existing block change tracking file of the same
name as 'file'. The USING and REUSE subclauses are only allowed with the ENABLE BLOCK clause.

FLASHBACK {ON | OFF}

Places the database in or out of FLASHBACK mode, respectively. When in flashback mode, an Oracle database
automatically creates and maintains flashback database logs in the flash recovery area. When OFF, the
flashback database logs are deleted and unavailable.

SET TIME ZONE

Specifies the time zone for the server. Refer to the SET TIME ZONE statement for more information.

ENABLE [PUBLIC] THREAD int | DISABLE THREAD int | INSTANCE 'instance_name'

In Real Application Cluster (RAC) environments, you can ENABLE or DISABLE a redo log thread by number (int).
You may optionally specify an instance_name to enable or disable a thread mapped to a specific database
instance of an Oracle Real Application Cluster environment. The instance_name may be up to 80 characters long.
The PUBLIC keyword makes the thread available to any instance. When omitted, the thread is only available
when explicitly requested. To enable a thread, the thread must have at least two redo logfile groups. To disable
a thread, the database must be open but not mounted by an instance using the thread.

GUARD {ALL | STANDBY | NONE}

Protects the data in a database from changes. ALL prevents users other than SYS from making changes.
STANDBY prevents all users other than SYS from making changes in a logical standby. NONE provides normal
security for the database.

CREATE DATAFILE 'file' [,...] [AS {NEW | file_definition}]

Creates a new empty datafile, replacing an existing one. The value 'file' identifies a file (either by filename or file
number) that was lost or damaged without a backup. AS NEW creates a new file in the default filesystem using
an Oracle-supplied name. AS file_definition allows you to specify a filename and sizing details, as defined under
the file_definition section earlier in the list.

DATAFILE 'file' | TEMPFILE 'file' [,...] {ONLINE | OFFLINE [FOR DROP]}
| RESIZE int [K | M] | AUTOEXTEND {OFF | ON [NEXT
int [K | M]} [MAXSIZE [UNLIMITED | int [K | M]]} {END BACKUP [INCLUDING DATAFILES}]

Changes the attributes, such as the size, of one or more existing datafiles or tempfiles. You may alter one or
more files in a comma-delimited list, identified in the value 'file' by filename or file number. Do not mix datafile
and tempfile declarations; only one or the other should appear in this clause at a time, where:

ONLINE

Sets the file online.

OFFLINE [FOR DROP]

Sets the file offline allowing media recovery. FOR DROP is required to take a file offline in
NOARCHIVELOG mode, but does not actually destroy the file. It is ignored in ARCHIVELOG mode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOARCHIVELOG mode, but does not actually destroy the file. It is ignored in ARCHIVELOG mode.

RESIZE int [K | M]

Sets a new size for an existing datafile or tempfile.

END BACKUP

Described later in the list under END BACKUP. Used only with the DATAFILE clause.

DROP INCLUDING DATAFILES

Drops not only the tempfile, but all datafiles on the filesystem associated with the tempfile. Oracle also
adds an entry to the alert log for each file that is erased. Used only with the TEMPFILE clause.

AUTOEXTEND {OFF | ON [NEXT int [K | M] [MAXSIZE [UNLIMITED | int [K | M] }

Described earlier in the list under DATAFILE definition.

RENAME FILE 'file' [,...] TO 'new_file_name' [,...]

Renames a datafile, tempfile, or redo logfile member from the old name, 'file', to the 'new_file_name'. You can
rename multiple files at once by specifying multiple old and new filenames. This command does not rename
files at the operating system level. Rather, it specifies new names that Oracle will use to open the files. You
need to rename at the operating system level yourself.

[NO] FORCE LOGGING

Puts the database into force logging mode (FORCE LOGGING) or takes it out of force logging mode (NO FORCE
LOGGING). In the former, Oracle logs all changes to the database except in temporary tablespaces or
segments. This database-level FORCE LOGGING setting supersedes all tablespace level declarations regarding
force logging mode.

[NO]ARCHIVELOG [MANUAL]

Tells Oracle to create redo logfiles, but the user will handle the archiving of the redo logfiles explicitly. It is used
only with the ALTER DATABASE statement and only for backward compatibility for users with older tape backup
systems. When this clause is omitted, Oracle defaults the redo logfile destination to the LOG_ARCHIVE_DEST_n
initialization parameter.

[ADD | DROP] SUPPLEMENTAL LOG DATA [(ALL | PRIMARY KEY | UNIQUE | FOREIGN KEY) [,...] COLUMNS]

ADD places additional column data into the log stream whenever an update is executed. It also enables minimal
supplemental logging, which ensures that LogMiner can support chained rows and special storage arrangements
like clustered tables. Supplemental logging is disabled by default. You can add the clauses PRIMARY KEY
COLUMNS, UNIQUE KEY COLUMNS, FOREIGN KEY COLUMNS, or ALL (to get all three earlier options), if you
need to enable full referential integrity via foreign keys in another database, such as a logical standby. In either
case, Oracle places either the primary key columns, unique key columns (or where none exist, a combination of
columns that uniquely identify each row), foreign key columns, or all three into the log. DROP tells Oracle to
suspend supplemental logging.

[ADD | DROP] [STANDBY] LOGFILE [THREAD int] [GROUP int] [MEMBER] 'file' [,...]

ADD adds one or more primary or standby redo logfile groups to the specified instance. THREAD assigns the
added files to a specific thread number (int) on a Real Application Cluster. When omitted, the default is the
thread assigned to the current instance. GROUP assigns the redo logfile groups to a specific group within the
thread. MEMBER adds the specified 'file' (or files in a comma-delimited list) to an existing redo logfile group.
DROP LOGFILE MEMBER drops one or more redo logfile members, after issuing an ALTER SYSTEM SWITCH
LOGFILE statement.

CLEAR [UNARCHIVED] LOGFILE GROUP int logfile_name [,...] [UNRECOVERABLE DATAFILE] }

Reinitializes one or more specified online redo logs. Specify the logs in a comma-delimited list. UNARCHIVED
skips archiving the redo logs. UNRECOVERABLE DATAFILE is required when any datafile is offline and the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

skips archiving the redo logs. UNRECOVERABLE DATAFILE is required when any datafile is offline and the
database is in ARCHIVELOG mode.

CREATE {LOGICAL | PHYSICAL} STANDBY CONTROLFILE AS 'file' [REUSE]}

Creates a control file that maintains a logical or physical standby database. REUSE is needed if the file already
exists.

BACKUP CONTROLFILE TO {'file' [REUSE] | TRACE [AS 'file' [REUSE]] [RESETLOGS | NORESETLOGS]

Backs up the current control file of an open or mounted database. TO 'file' identifies a full path and filename for
the control file. TO TRACE writes SQL statements to recreate the control file to a trace file. TO TRACE AS 'file'
writes all the SQL statements to a standard file rather than a trace file. REUSE is needed if the file already
exists. RESETLOGS initializes the trace file with the statement ALTER DATABASE OPEN RESETLOGS, and is only
valid when online logs are unavailable. NORESETLOGS initializes the trace file with the statement ALTER
DATABASE OPEN NORESETLOGS and is only valid when online logs are available.

RECOVER

Controls media recovery for the database, standby database, tablespace, or file. In Oracle, the ALTER TABLE
command is one of the primary means of recovering a damaged or disabled database, file, or tablespace. Use
RECOVER when the database is mounted (in exclusive mode), the files and tablespaces involved are not in use
(offline), and the database is in either an open or closed state. The entire database can be recovered only when
it is closed, but specific files or tablespaces can be recovered in a database that is open.

AUTOMATIC [FROM 'location']

Tells Oracle to automatically generate the name of the next archived redo logfile necessary for continued
operation during recovery. Oracle will prompt you if it cannot find the next file. The FROM 'location' clause tells
Oracle where to find the archived redo logfile group. The following subclauses may be applied to an
automatically recovered database.

STANDBY

Specifies that the database or tablespace to recover is a standby type.

DATABASE {UNTIL {CANCEL | TIME date | CHANGE int} | USING BACKUP CONTROLFILE }

Tells Oracle to recover the entire database. The UNTIL keyword tells Oracle to continue recovery until ALTER
DATABASE...RECOVER CANCEL (CANCEL) is issued, until a specified time is reached (TIME) in the format YYYY-
MM-DD:HH24:MI:SS, or until a specific system change number (CHANGE int) is reached where int is the
number. The clause USING BACKUP CONTROLFILE enables use of the backup, rather than current, control file.

[STANDBY] TABLESPACE tablespace_name [,...] | DATAFILE 'file' [,...]

Recovers one or more specific tablespaces or datafiles, respectively. You may specify more than one tablespace
or datafile using a comma-delimited list. You may also recover a datafile by datafile number, rather than by
name. The tablespace may be in normal or standby mode. The standby tablespace or datafile is reconstructed
using archived redo logfiles copied from the primary database and a control file.

UNTIL [CONSISTENT WITH] CONTROLFILE

Tells Oracle to recover an older standby tablespace or datafile by using the current standby control file.
CONSISTENT WITH are noise words.

LOGFILE filename [,...]

Continues media recovery by applying one or more redo logfiles that you specify in a comma-delimited list.

TEST | ALLOW int CORRUPTION | [NO]PARALLEL int

TEST performs a trial recovery, allowing you to foresee any problems. ALLOW int CORRUPTION tells how many
corrupt blocks (int) to tolerate before causing recovery to abort. Int must be 1 for a real recovery, but may be
any number you chose when paired with TEST. Parallelism is described earlier in the list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

any number you chose when paired with TEST. Parallelism is described earlier in the list.

CONTINUE [DEFAULT]

Determines whether multi-instance recovery continues after interruption. CONTINUE DEFAULT is the same as
RECOVER AUTOMATIC, but does not result in a prompt for a filename.

CANCEL [IMMEDIATE][[NO]WAIT]

Cancels a managed recovery operation at the next archived log boundary, if it was started with the USING
CANCEL clause. The IMMEDIATE keyword cancels the managed recovery in process after the current I/O or
archived log boundary, whichever is first. NOWAIT cancels the recovery immediately without regard to current
work in process, while WAIT allows current work to complete normally.

MANAGED STANDBY DATABASE

Specifies managed physical standby recovery mode on an active component of a standby database. This
command is used for media recovery only and not to construct a new database, using the following parameters:

[NO]TIMEOUT int

TIMEOUT specifies, in minutes (int), how long the foreground managed recovery operation will wait for
the next available redo log before timing out. NOTIMEOUT, the default, tells Oracle to wait indefinitely
for the next redo log, or until the instance is shutdown, or until RECOVER CANCEL is issued.

CANCEL [IMMEDIATE][[NO]WAIT]

Described earlier.

[NO]DELAY int | DEFAULT DELAY int

Tells, in minutes (int), how long Oracle should wait to apply an archived redo log after it has been
selected for recovery. DEFAULT DELAY tells Oracle to use the delay specified by the
LOG_ARCHIVE_DEST_n INIT.ORA parameter. NODELAY tells Oracle to apply the archived redo log
immediately.

NEXT int

Tells Oracle to apply the int next archived redo logs as soon as possible after they have been archived.
Incompatible with FINISH.

[NO]EXPIRE int

Tells Oracle, in minutes (int), when to automatically terminate a managed recovery relative to the time
the recovery started. NOEXPIRE disables a previously set EXPIRE value. Incompatible with FINISH.

USING CURRENT LOGFILE

Invokes real time apply, which allows recovery of redos from standby online logs as they are being
filled, without first requiring that they be archived by the standby database.

UNTIL CHANGE int

Conducts a managed recovery up to (but not including) the specified system change number called int.

THROUGH {ALL ARCHIVELOG | {ALL | LAST | NEXT} SWITCHOVER | [THREAD int] SEQUENCE int}

Tells Oracle when to terminate managed recovery to a standby server. THROUGH ALL ARCHIVELOG, the
default, continues managed recovery until all archivelogs are recovered. THROUGH...SWITCHOVER
controls the termination of managed recovery when Oracle switches over to a secondary standby
server. ALL keeps managed recovery in operation through any switchovers. LAST terminates managed
recovery after receiving the final end-of-redo indicator. NEXT terminates managed recovery after

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

recovery after receiving the final end-of-redo indicator. NEXT terminates managed recovery after
receiving the next end-of-redo indicator. THROUGH...SEQUENCE tells Oracle to terminate managed
recovery when it encounters a specific THREAD number and/or SEQUENCE number.

DISCONNECT [FROM SESSION] [[NO]PARALLEL int]

Causes the managed redo process to occur in the background, leaving the current process available for
other tasks. FROM SESSION are noise words. DISCONNECT is incompatible with TIMEOUT.

FINISH [SKIP [STANDBY LOGFILE]] [{WAIT | NOWAIT}]]

Recovers the current physical standby online redo logfiles in preparation of the standby assuming the
primary database role when the primary database has failed. The FINISH clause, when used without
any other keywords, is known as a terminal recovery. The optional clause SKIP [STANDBY LOGFILE]
allows the standby to prepare for the primary role when standby online redo logfiles are not available.
The FINISH SKIP clause, when used without any other keywords, is known as a terminal incomplete
recovery. WAIT tells Oracle to return control after completing the recovery process, while NOWAIT
returns control immediately. Incompatible with TIMEOUT, DELAY, EXPIRE, and NEXT.

{BEGIN | END} BACKUP

Controls online backup mode for any datafiles. BEGIN places all datafiles into online backup mode. The
database must be mounted and open, in archivelog mode with media recovery enabled. (Note that while the
database is in online backup mode the instance cannot be shutdown, and individual tablespaces cannot be
backed up, taken offline, or made read only.) END takes all datafiles currently in online backup mode out of that
mode. The database must be mounted, but need not be open.

After that long discussion of specific syntax, it's important to establish some Oracle basics.

Oracle allows the use of primary and standby databases. A primary database is a mounted and open database
accessible to users. The primary database then ships its redo logs to a standby database where they are recovered,
thus making the standby database a very up-to-date copy of the primary.

Unique to the Oracle environment is the INIT.ORA file, which specifies the database name and a variety of other options
when creating and starting up the database. You should always define startup parameters, such as the name of any
control files, in the INIT.ORA file to identify the control files or else the database will not start. Starting in Oracle 9.1,
you can use binary parameter files rather than INIT.ORA files.

When a group of logfiles is listed, they are usually shown in parentheses. The parentheses aren't needed when creating
a group with only one member, but this is seldom done. Here's an example using a parenthetical list of logfiles:

CREATE DATABASE publications

LOGFILE ('/s01/oradata/loga01','/s01/oradata/loga02') SIZE 5M

DATAFILE;

The example above creates a database called publications with an explicitly defined logfile clause and an automatically
created datafile. The following example of an Oracle CREATE DATABASE command is much more sophisticated:

CREATE DATABASE sales_reporting

CONTROLFILE REUSE

LOGFILE

 GROUP 1 ('diskE:log01.log', 'diskF:log01.log') SIZE 15M,

 GROUP 2 ('diskE:log02.log', 'diskF:log02.log') SIZE 15M

MAXLOGFILES 5

MAXLOGHISTORY 100

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MAXLOGHISTORY 100

MAXDATAFILES 10

MAXINSTANCES 2

ARCHIVELOG

CHARACTER SET AL32UTF8

NATIONAL CHARACTER SET AL16UTF16

DATAFILE

 'diskE:sales_rpt1.dbf' AUTOEXTEND ON,

 'diskF:sales_rpt2.dbf' AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED

DEFAULT TEMPORARY TABLESPACE temp_tblspc

UNDO TABLESPACE undo_tblspc

SET TIME_ZONE = '-08:00';

This example defines log and data files, as well as all appropriate character sets. We also define a few characteristics for
the database, such as the use of ARCHIVELOG mode and CONTROLFILE REUSE mode, the time zone, maximum number
of instances, datafiles, etc. The example also assumes that the INIT.ORA parameter for DB_CREATE_FILE_DEST has
already been set. Thus, we don't have to define file definitions for the DEFAULT TEMPORARY TABLESPACE and UNDO
TABLESPACE clauses.

When issued by a user with SYSDBA privileges, this statement creates a database and makes it available to users in
either exclusive or parallel mode, as defined by the value of the CLUSTER_DATABASE initialization parameter. Any data
that exists in predefined datafiles is erased. You will usually want to create tablespaces and rollback segments for the
database. (Refer to the vendor documentation for the platform specific commands CREATE TABLESPACE and CREATE
ROLLBACK SEGMENT.)

Oracle has tightened up security around default database user accounts. Many default database user accounts are now
locked and expired during initial installation. Only SYS, SYSTEM, SCOTT, DBSNMP, OUTLN, AURORAJISUTILITY$,
AURORAORBUNAUTHENTICATED, and OSE$HTTP$ADMIN are the same as they were in earlier versions. You must
manually unlock and assign a new password to all locked accounts, as well as assign a password to SYS and SYSTEM
during the initial installation.

In the next example, we add more logfiles to the current database, then add a datafile:

ALTER DATABASE ADD LOGFILE GROUP 3

 ('diskf: log3.sales_arch_log','diskg:log3.sales_arch_log')

SIZE 50M;

ALTER DATABASE sales_archive

CREATE DATAFILE 'diskF:sales_rpt4.dbf'

AUTOEXTEND ON NEXT 25M MAXSIZE UNLIMITED;

We can set a new default temporary tablespace, as shown in the next example:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE sales_tbl_spc_2;

Next, we'll perform a simple full database recovery:

ALTER DATABASE sales_archive RECOVER AUTOMATIC DATABASE;

In the next example, we perform a more elaborate partial database recovery:

ALTER DATABASE RECOVER STANDBY DATAFILE 'diskF:sales_rpt4.dbf'

UNTIL CONTROLFILE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UNTIL CONTROLFILE;

Now, we'll perform a simple recovery of a standby database in managed standby recovery mode:

ALTER DATABASE RECOVER sales_archive MANAGED STANDBY DATABASE;

In the following example, we gracefully switch over from a primary database to a logical standby, and promote the
logical standby to primary:

-- Demotes the current primary to logical standby database.

ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

-- Applies changes to the new standby.

ALTER DATABASE START LOGICAL STANDBY APPLY;

-- Promotes the current standby to primary database.

ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

PostgreSQL

PostgreSQL's implementation of the CREATE DATABASE command creates a database and a file location for the
datafiles:

CREATE DATABASE database_name

 [WITH {[LOCATION = 'dbpath'] [TEMPLATE = tmp_name]

 [ENCODING = enc_value]}]

Where:

WITH LOCATION = 'dbpath'

Specifies the file path where the database will be located. You can leave off this clause to accept the default
location or use the clause WITH LOCATION = DEFAULT. The path must be prepared in advance using the
initlocation command (which is a Unix command, not a SQL statement). In general, PostgreSQL uses
environmental variable names (an environmental variable name is a pathname without slashes). If you want to
specify an absolute file and path name, like /usr/local/pgsql/data01, you must set and compile the server with
the ALLOW_ABSOLUTE_DBPATH parameter.

TEMPLATE = tmp_name

Names a template to use for creating the new database. You can leave off this clause to accept the default
template describing the location of the database files or use the clause TEMPLATE = DEFAULT. The default is to
copy the standard system database template1. You can get a pristine database (one that contains only required
database objects) by specifying TEMPLATE = template0.

ENCODING = enc_value

Specifies the multibyte encoding method to use in the new database using either a string literal (such as
'SQL_ASCII'), an integer encoding number, or DEFAULT for the default encoding.

For example, to create the database sales_revenue in the /home/teddy/private_db directory:

CREATE DATABASE sales_revenue WITH LOCATION =

'/home/teddy/private_db';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'/home/teddy/private_db';

Be careful using absolute file- and pathnames, since they impact security and data integrity issues.

PostgreSQL advises that databases used as templates be treated as read-only. Template databases should not be used
for general purpose "copy database" functionality.

PostgreSQL does not support the ALTER DATABASE command.

SQL Server

SQL Server offers a high degree of control over the OS filesystem structures that hold the database and its objects. The
syntax for Microsoft SQL Server's CREATE DATABASE statement looks like this:

CREATE DATABASE database_name

[ON file_definition [,...]]

[, FILEGROUP filegroup_name file_definition [,...]]

[LOG ON file_definition [,...]]

[COLLATE collation_name]

[FOR LOAD | FOR ATTACH]

Following is the syntax for ALTER DATABASE:

ALTER DATABASE database_name

{ADD FILE file_definition [,...] [TO FILEGROUP filegroup_name]

| ADD LOG FILE file_definition [,...]

| REMOVE FILE file_name

| ADD FILEGROUP filegroup_name

| REMOVE FILEGROUP filegroup_name

| MODIFY FILE file_definition

| MODIFY NAME = new_database_name

| MODIFY FILEGROUP filegroup_name {filegroup_property

| NAME = new_filegroup_name }

| SET {state_option | cursor_option

| auto_option | sql_option |

recovery_option}

 [,...] [WITH termination_option]

| COLLATE collation_name }

Parameter descriptions are as follows:

{CREATE | ALTER} DATABASE database_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a database, or alters an existing database, of database_name. The name cannot be longer than 128
characters. You should limit the database name to 123 characters when no logical filename is supplied, since
SQL Server will create a logical filename by appending a suffix to the database name.

{ON | ADD} file_definition [,...]

Defines the disk file(s) that store the data components of the database for CREATE DATABASE or adds disk
file(s) for ALTER DATABASE. ON is required for CREATE DATABASE only if you wish to provide one or more file
definitions, where the syntax for file_definition is:

{[PRIMARY] ([NEW][NAME = file_name] [, FILENAME = 'os_file_name']

[, SIZE = int [KB | MD | GB | TB]] [, MAXSIZE = { int |

UNLIMITED }] [, FILEGROWTH = int]) } [,...]

where:

PRIMARY

Defines the file_definition as the primary file. Only one is allowed per database. (If you don't define a
primary file, SQL Server defaults primary status to the file that it autocreates, in the absence of any
user-defined file, or to the first file that you define.) The primary file, or groups of files (also called
filegroups), contains the logical start of the database, all the database system tables, and all other
objects not contained in user filegroups.

[NEW]NAME = file_name

Defines the logical name of the file defined by the file_definition for CREATE DATABASE. Use NEWNAME
for ALTER DATABASE to define a new logical name for the file. In either case, the logical name must be
unique within the database. This clause is optional when using FOR ATTACH.

FILENAME = 'os_file_name'

Defines the operating system path and filename for the file defined by file_definition. The file must be in a
non-compressed directory on the filesystem. For raw partitions, specify only the drive letter of the raw
partition.

SIZE = int [KB | MB | GB | TB]

Defines the size of the file defined by the file_definition. This clause is optional, but defaults to the file
size for the primary file of the model database, which is usually very small. Logfiles and secondary
datafiles default to 1MB in size. The value of int defaults to megabytes; however, you can explicitly
define the size of the file using suffixes for kilobyte (KB), megabyte (MB), gigabyte (GB), and terabyte
(TB). Size cannot be smaller than 512KB or the size of the primary file of the model database.

MAXSIZE = { int | UNLIMITED }

Defines the maximum size the file may grow to. Suffixes, as described under the entry for SIZE, are
allowed. The default, UNLIMITED, allows the file to grow until all available disk space is consumed. Not
required for files on raw partitions.

FILEGROWTH = int

Defines the growth increment for the file each time it grows. Suffixes, as described under the entry for
SIZE, are allowed. You may also use the percentage (%) suffix to indicate that the file should grow by
the percentage of the total disk space currently consumed. If you omit the FILEGROWTH clause, the file
will grow in 10% increments, but never less than 64KB. Not required for files on raw partitions.

[ADD] LOG {ON | FILE} file_definition

Defines the disk file(s) that store the log component of the database for CREATE DATABASE or adds disk file(s)
for ALTER DATABASE. You can provide one or more file_definitions for the transaction logs in a comma-delimited
list. Refer to the earlier section under the keyword ON for the full syntax of file_definition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

list. Refer to the earlier section under the keyword ON for the full syntax of file_definition.

REMOVE FILE file_name

Removes a file from the database and deletes the physical file. The file must be emptied of all content first.

[ADD] FILEGROUP filegroup_name file_definition [,...]

Defines any user filegroups and their file definitions used by the database. All database have at least one
primary filegroup (though many databases only use the primary filegroup that comes with SQL Server by
default). Adding filegroups and then moving files to the filegroups can allow you greater control over disk I/O.
(We recommend that you do not add filegroups without careful analysis and testing.)

REMOVE FILEGROUP filegroup_name

Removes a filegroup from the database and deletes all the files in the filegroup. The files and the filegroup must
be empty first.

MODIFY FILE file_definition

Changes the definition of a file. This clause is very similar to the {ADD | ON} FILE clause. For example: MODIFY
FILE (NAME = file_name, NEWNAME = new_file_name, SIZE=...).

MODIFY NAME = new_database_name

Changes the database name from its current name to new_database_name.

MODIFY FILEGROUP filegroup_name {filegroup_property | NAME = new_filegroup_name }

Used with ALTER DATABASE, this clause has two forms. The first form allows you to change a filegroup name,
as in MODIFY FILEGROUP filegroup_name NAME = new_filegroup_name. The second form allows you to specify a
filegroup_property for the filegroup, which must be one of the following:

READONLY

Sets the filegroup to read-only and disallows updates to all objects within the filegroup. READONLY can
only be enabled by users with exclusive database access and cannot be applied to the primary filegroup.

READWRITE

Disables the READONLY property and allows updates to objects within the filegroup. READWRITE can
only be enabled by users with exclusive database access.

DEFAULT

Sets the filegroup as the default filegroup for the database. All new tables and indexes are assigned to
the default filegroup unless explicitly assigned elsewhere. Only one default filegroup is allowed per
database. (By default, the CREATE DATABASE statement sets the primary filegroup as the default
filegroup.)

SET {state_option | cursor_option | auto_option | sql_option | recovery_option} [,...]

Controls a wide variety of behaviors for the database. These are discussed in the rules and information later in
this section.

WITH termination_option

Used after the SET clause, WITH sets the rollback behavior for incomplete transactions whenever the database
is in transition. When omitted, transactions must commit or rollback on their own with the database state
changes. There are two termination_option settings:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROLLBACK AFTER int [SECONDS] | ROLLBACK IMMEDIATE

Causes the database to roll back in int number of seconds, or immediately. SECONDS is a noise word
and does not change the behavior of the ROLLBACK AFTER clause.

NO_WAIT

Causes database state or option changes to fail if a change cannot be completed immediately, without
waiting for the current transaction to independently commit or roll back.

COLLATE collation_name

Defines or alters the default collation used by the database. Collation_name can be either a SQL Server collation
name or a Windows collation name. By default, all new databases receive the collation of the SQL Server
instance. (You can execute the query SELECT * FROM ::fn_helpcollations() to see all the collation names
available.) To change the collation of a database, you must be the only user in the database, no schema bound
objects that depend on the current collation may exist in the database, and the collation change must not result
in the duplication of any object names in the database.

FOR LOAD | FOR ATTACH

Places the database in special startup mode. FOR LOAD is supported only for backward compatibility with
versions earlier than 7.0 and sets the database to a status of loading and "dbo use only." FOR ATTACH creates
the database from a set of pre-existing operating system files, almost always database files created previously.
Because of this, the new database must have the same code page and sort order as the previous database. You
only need the file_definition of the first primary file or those files that have a different path from the last time the
database was attached. In general, you should use the sp_attach_db system stored procedure over the CREATE
DATABASE FOR ATTACH statement unless you need to specify more than 16 file_definitions.

The CREATE DATABASE command should be issued from the master system database. You can, in fact, issue the
command CREATE DATABASE database_name, with no other clauses, to get a very small, default database.

SQL Server uses files, formerly called devices, to act as a repository for databases. Files are grouped into one or more
filegroups, with at least a PRIMARY filegroup assigned to each database. A file is a predefined block of space created on
the disk structure. A database may be stored on one or more files or filegroups. SQL Server also allows the transaction
log to be placed in a separate location from the database using the LOG ON clause. These functions allow sophisticated
file planning for optimal control of disk I/O. For example, we can create a database called sales_report with a data
and transaction logfile:

USE master

GO

CREATE DATABASE sales_report

ON

(NAME = sales_rpt_data, FILENAME =

 'c:\mssql\data\salerptdata.mdf',

 SIZE = 100, MAXSIZE = 500, FILEGROWTH = 25)

LOG ON

(NAME = 'sales_rpt_log',

 FILENAME = 'c:\mssql\log\salesrptlog.ldf',

 SIZE = 25MB, MAXSIZE = 50MB,

 FILEGROWTH = 5MB)

GO

When a database is created, all objects in the model database are copied into the new database. All of the empty space
within the file or files defined for the database is then initialized (i.e., emptied out), which means that creating a new
and very large database can take a while, especially on a slow disk.

A database always has at least a primary datafile and a transaction logfile, but may also have secondary files for both
the data and log components of the database. SQL Server uses default filename extensions: .mdf for primary datafiles,
.ndf for secondary files, and .ldf for transaction logfiles. The following example creates a database called sales_archive

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.ndf for secondary files, and .ldf for transaction logfiles. The following example creates a database called sales_archive
with several very large files that are grouped into a couple of filegroups:

USE master

GO

CREATE DATABASE sales_archive

ON

PRIMARY (NAME = sales_arch1, FILENAME = 'c:\mssql\data\archdata1.mdf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

 (NAME = sales_arch2,

 FILENAME = 'c:\mssql\data\archdata2.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

 (NAME = sales_arch3,

 FILENAME = 'c:\mssql\data\archdat3.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB)

FILEGROUP sale_rpt_grp1

 (NAME = sale_rpt_grp1_1_data,

 FILENAME = ' c:\mssql\data\SG1Fi1dt.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

 (NAME = sale_rpt_grp1_1_data,

 FILENAME = ' c:\mssql\data\SG1Fi2dt.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

FILEGROUP sale_rpt_grp2

(NAME = sale_rpt_grp2_1_data, FILENAME = ' c:\mssql\data\SRG21dt.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

 (NAME = sale_rpt_grp2_2_data, FILENAME = ' c:\mssql\data\SRG22dt.ndf',

 SIZE = 100GB, MAXSIZE = 200GB, FILEGROWTH = 20GB),

LOG ON

 (NAME = sales_archlog1,

 FILENAME = 'd:\mssql\log\archlog1.ldf',

 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%),

 (NAME = sales_archlog2,

 FILENAME = 'd:\ mssql\log\archlog2.ldf',

 SIZE = 100GB, MAXSIZE = UNLIMITED, FILEGROWTH = 25%)

GO

The FOR ATTACH clause is commonly used for situations like a salesperson traveling with a database on a CD. This
clause tells SQL Server that the database is attached from an existing operating-system file structure, such as a DVD-
ROM, CD-ROM, or portable hard drive. When using FOR ATTACH, the new database inherits all the objects and data of
the parent database, not the model database.

The following examples show how to change the name of a database, file, or filegroup:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following examples show how to change the name of a database, file, or filegroup:

-- Rename a database

ALTER DATABASE sales_archive MODIFY NAME = sales_history

GO

-- Rename a file

ALTER DATABASE sales_archive MODIFY FILE

NAME = sales_arch1,

NEWNAME = sales_hist1

GO

-- Rename a filegroup

ALTER DATABASE sales_archive MODIFY FILEGROUP

sale_rpt_grp1

NAME = sales_hist_grp1

GO

There may be times when you want to add new free space to a database, especially if you have not enabled it to auto-
grow:

USE master

GO

ALTER DATABASE sales_report ADD FILE

(NAME = sales_rpt_added01, FILENAME = 'c:\mssql\data\salerptadded01.mdf',

 SIZE = 50MB, MAXSIZE = 250MB, FILEGROWTH = 25MB)

GO

When you alter a database, you can set many behavior options on the database. State options (shown as state_option in
the earlier syntax diagram) control how users access the database. Following is a list of valid state options:

SINGLE_USER | RESTRICTED_USER | MULTI_USER

Sets the number and type of users with access to the database. SINGLE_USER mode allows only one user to
access the database at a time. RESTRICTED_USER mode allows access only members of the system roles
db_owner, dbcreator, or sysadmin. MULTI_USER, the default, allows concurrent database access from all users
who have permission.

OFFLINE | ONLINE

Sets the database to offline (unavailable) or online (available).

READ_ONLY | READ_WRITE

Sets the database to READ_ONLY mode, where no modifications are allowed, or to READ_WRITE mode, where
data modifications are allowed. READ_ONLY databases can be very fast for query intensive operations, since
almost no locking is needed.

Cursor options control default behavior for cursors in the database. In the ALTER DATABASE syntax shown earlier, you
can replace cursor_option with any of the following:

CURSOR_CLOSE_ON_COMMIT { ON | OFF }

When set ON, any open cursors are closed when a transaction commits or rolls back. When set OFF, any open

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When set ON, any open cursors are closed when a transaction commits or rolls back. When set OFF, any open
cursors remain open when transactions are committed and open cursors close when a transaction rolls back
unless the cursor is INSENSITIVE or STATIC. (See DECLARE CURSOR Command later in this chapter for more
details.)

CURSOR_DEFAULT { LOCAL | GLOBAL }

Sets the default scope of all cursors in the database to either LOCAL or GLOBAL. (See DECLARE CURSOR
Command later in this chapter for more details.)

In the SET clause, auto_option controls the automatic file handling behaviors of the database. The following are valid
replacements for auto_option:

AUTO_CLOSE { ON | OFF }

When set ON, the database automatically shuts down cleanly and frees all resources when the last user exits.
When set OFF, the database remains open when the last user exits. The default is OFF.

AUTO_CREATE_STATISTICS { ON | OFF }

When set ON, statistics are automatically created when SQL Server notices they are missing during query
optimization. When set OFF, statistics are not created during optimization. The default is ON.

AUTO_SHRINK { ON | OFF }

When set ON, the database files may automatically shrink. The database periodically looks for an opportunity to
shrink files, though the time is not always predictable. When set OFF, files will shrink only when you explicitly
and manually shrink them. The default is OFF.

AUTO_UPDATE_STATISTICS { ON | OFF }

When set ON, out-of-date statistics are reassessed during query optimization. When set OFF, statistics are
reassessed only by explicitly and manually recompiling them using the SQL Server command UPDATE
STATISTICS.

The sql_options clause controls ANSI compatibility of the database. You can use the standalone SQL Server command
SET ANSI_DEFAULTS ON to enable all the ANSI SQL92 behaviors at one time, rather than using the individual
statements below. In the SET clause, you can replace sql_option with any of the following:

ANSI_NULL_DEFAULT { ON | OFF }

When set ON, the CREATE TABLE statement causes columns with no nullability setting to default to NULL. When
set OFF, the nullability of a column defaults to NOT NULL. The default is OFF.

ANSI_NULLS { ON | OFF }

When set ON, comparisons to null yield UNKNOWN. When set OFF, comparisons to null yield null if both non-
UNICODE values are null. The default is OFF.

ANSI_PADDING { ON | OFF }

When set ON, strings are padded to the same length for insert or comparison operations on VARCHAR and
VARBINARY columns. When set OFF, strings are not padded. The default is ON. (We recommend that you do
not change this!)

ANSI_WARNINGS { ON | OFF }

When set ON, the database warns when problems like "divide by zero" or "null in aggregates" occur. When set
OFF, these warnings are not raised. The default is OFF.

ARITHABORT { ON | OFF }

When set ON, divide-by-zero and overflow errors cause a query or Transact-SQL batch to terminate and roll
back any open transactions. When set OFF, a warning is raised but processing continues. The default is ON. (We

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

back any open transactions. When set OFF, a warning is raised but processing continues. The default is ON. (We
recommend that you do not change this!)

CONCAT_NULL_YIELDS_NULL { ON | OFF }

When set ON, returns a null when a null is concatenated to a string. When set OFF, nulls are treated as empty
strings when concatenated to a string. The default is OFF.

NUMERIC_ROUNDABORT { ON | OFF }

When set ON, an error is raised when a numeric expression loses precision. When set OFF, losses of precision
result in rounding of the result from the numeric expression. The default is OFF.

QUOTED_IDENTIFIER { ON | OFF }

When set ON, double quotation marks identify an object identifier with special characters or one that is a
reserved word (e.g., a table named SELECT). When set OFF, identifiers may not contain special characters or
reserved words and all occurrences of double quotation marks signify a literal string value. The default is OFF.

RECURSIVE_TRIGGERS { ON | OFF }

When set ON, triggers can fire recursively. That is, the actions taken by one trigger may cause another trigger
to fire, and so on. When set OFF, triggers cannot cause other triggers to fire. The default is OFF.

Recovery options control the recovery model used by the database. Use any of the following in place of recovery_option
in the ALTER DATABASE syntax:

RECOVERY { FULL | BULK_LOGGED | SIMPLE }

When set to FULL, database backups and transaction logs provide full recoverability even for bulk operations
like SELECT...INTO, CREATE INDEX, etc. FULL is the default for SQL Server 2000 Standard Edition and
Enterprise Edition. FULL provides the most recoverability, even from a catastrophic media failure, but uses more
space. When set to BULK_LOGGED, logging for bulk operations is minimized. Space is saved and fewer I/Os are
incurred, but risk of data loss is greater than under FULL. When set to SIMPLE, the database can only be
recovered to the last full or differential backup. SIMPLE is the default for SQL Server 2000 Desktop Edition and
Personal Edition.

TORN_PAGE_DETECTION { ON | OFF }

When set ON, SQL Server can detect incomplete I/O operations at the disk level by checking each 512-byte
sector per 8K database page. (Torn pages are usually detected in recovery.) The default is ON.

For example, we may want to change some behavior settings for the sales_report database without actually changing
the underlying file structure:

ALTER DATABASE sales_report SET ONLINE, READ_ONLY,

AUTO_CREATE_STATISTICS ON

GO

This statement puts the database online and in read-only mode. It also sets the AUTO_CREATE_STATISTICS behavior
to ON.

See Also

CREATE SCHEMA
DROP STATEMENT

CREATE/ALTER FUNCTION/PROCEDURE Statements

The CREATE FUNCTION and CREATE PROCEDURE statements are very similar in syntax and coding (as are the
respective ALTER statements).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

respective ALTER statements).

The CREATE PROCEDURE statement creates a stored procedure, which takes input arguments and performs conditional
processing against various objects in the database. According to the ANSI standard, a stored procedure returns no
result set (though it may return a value in an OUTPUT parameter). For example, you might use a stored procedure to
perform all the processes that close an accounting cycle.

The CREATE FUNCTION statement creates a user-defined function (UDF), which takes input arguments and returns a
single value output in the same way as system-supplied functions like CAST() or UPPER(). These functions, once
created, can be called in queries and data-manipulation operations, such as INSERT, UPDATE, and the WHERE clause of
DELETE statements. Refer to Chapter 4 for descriptions of built-in SQL functions and their individual vendor
implementations.

Platform Command

DB2 Supported, with variations

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Supported, with variations

SQL2003 Syntax

Use the following syntax to create a stored procedure or function:

CREATE {PROCEDURE | FUNCTION} object_name

 ([{[IN | OUT | INOUT] [parameter_name] datatype [AS LOCATOR] [RESULT]}

 [,...]])

 [RETURNS datatype [AS LOCATOR]

 [CAST FROM datatype [AS LOCATOR]]

[LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}]

[PARAMETER STYLE {SQL | GENERAL}]

[SPECIFIC specific_name]

[DETERMINISTIC | NOT DETERMINISTIC]

[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]

[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]

[DYNAMIC RESULT SETS int]

[STATIC DISPATCH]

code_block

Use the following syntax to alter a pre-existing UDF or stored procedure:

ALTER {PROCEDURE | FUNCTION} object_name

 [({parameter_name datatype } [,...])]

[NAME new_object_name]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[NAME new_object_name]

[LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}]

[PARAMETER STYLE {SQL | GENERAL}]

[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]

[RETURN NULL ON NULL INPUT | CALL ON NULL INPUT]

[DYNAMIC RESULT SETS int]

[CASCADE | RESTRICT]

Keywords

CREATE {PROCEDURE | FUNCTION} [AS LOCATOR] [RESULT] object_name

Creates a new stored procedure or user-defined function with the name object_name. A user-defined function
returns a value, where a stored procedure, in ANSI SQL, does not.

([IN | OUT| INOUT] [parameter_name] datatype [,...])

Declares one or more parameters to be passed into a stored procedure in a comma-delimited list enclosed in
parentheses. Parameters used with a procedure may pass a value IN, OUT, or both in and out via INOUT.

The syntax for the parameter declaration is:

[{IN | OUT | INOUT}] parameter_name1 datatype,

[{IN | OUT | INOUT}] parameter_name2 datatype,[...]

To provide an optional parameter_name, make sure the name is unique within the stored procedure. The optional AS
LOCATOR subclause is used to validate an external routine with a RETURNS parameter that is a BLOB, CLOB, NCLOB,
ARRAY, or user-defined type. If you need to change the datatype of a RETURNS parameter on the fly, use the CAST
clause (refer to the function, CAST, in Chapter 4). For example, RETURNS VARCHAR(12) CAST FROM DATE.When used
with ALTER, this clause adds parameters to a pre-existing stored procedure. Refer to Chapter 2 for details on datatypes.

RETURNS datatype [AS LOCATOR] [CAST FROM datatype [AS LOCATOR]]

Declares the datatype of the result returned by a function. (This clause is used only in the CREATE FUNCTION
statement and is not used in stored procedures.) The key purpose of a user-defined function is to return a
value.

LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}

Declares the language in which the function is written. Most database platforms do not support all of these
languages, and often support several not mentioned, like Java. When omitted, the default is SQL. When used
with ALTER, this clause changes the existing LANGUAGE value to the value that you declare.

PARAMETER STYLE {SQL | GENERAL}

Indicates, for external routines only, whether certain implicit and automatic parameters are passed, explicitly,
with the options (SQL) or not (GENERAL). (The difference between SQL style and GENERAL style is that SQL
style passes automatic SQL parameters, such as indicators, while the GENERAL style does not automatically
pass parameters.) The default is PARAMETER STYLE SQL. When used with ALTER, this clause changes the
existing PARAMETER STYLE value to the value that you declare.

SPECIFIC specific_name

Uniquely identifies the function generally used with user-defined types.

DETERMINISTIC | NOT DETERMINISTIC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DETERMINISTIC | NOT DETERMINISTIC

States the nature of values returned by a function. (This clause is used only in CREATE and ALTER FUNCTION
statement.) DETERMINISTIC functions always return the same value when given the same parameter values.
NOT DETERMINISTIC functions may return variable results when given the same parameter values. For
example, CURRENT_TIME is not deterministic because it returns a constantly advancing value corresponding to
the time.

NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA

Specifies, in conjunction with the LANGUAGE setting, the type of SQL contained in the user-defined function.
When used with ALTER, this clause changes the existing SQL style value to the value that you declare.

NO SQL

Indicates that no SQL statements of any type are in the function. It is used with a non-SQL LANGUAGE
setting such as LANGUAGE ADA...CONTAINS NO SQL.

CONTAINS SQL

Indicates that SQL statements other than read or modify statements are in the function. This is the
default.

READS SQL DATA

Indicates the function contains SELECT or FETCH statements.

MODIFIES SQL DATA

Indicates the function contains INSERT, UPDATE, or DELETE statements.

RETURN NULL ON NULL INPUT | CALL ON NULL INPUT

These options are for use with a host LANGUAGE that cannot support nulls. The RETURNS NULL ON NULL INPUT
setting causes the function to immediately return a null value if it is passed a null value. The CALL ON NULL
INPUT setting causes the function to handle nulls according to standard rules, for example returning UNKNOWN
when a comparison of two null values occurs. (This clause is used in the CREATE and ALTER PROCEDURE and
FUNCTION statements.) When used with ALTER, this clause changes the existing NULL style value to the value
that you declare.

DYNAMIC RESULT SETS int

Declares that a certain number of cursors, int, can be opened by the stored procedure and that those cursors
are visible after returning from the procedure. When omitted, the default is DYNAMIC RESULT SETS 0. (This
clause is not used in CREATE FUNCTION statements.) When used with ALTER, this clause changes the existing
DYNAMIC RESULT SETS value to the value that you declare.

STATIC DISPATCH

Returns the static values of a user-defined type or ARRAY datatype. Required for non-SQL functions that
contain parameters that use user-defined types or ARRAYS. (This clause is not used in CREATE PROCEDURE
statements.) This clause must be the last clause in the function or procedure declaration before the code_block.

code_block

Declares the procedural statements that handle all processing within the user-defined function or stored
procedure. This is the most important, and usually largest, part of a function or procedure. We assume you're
interested in a user-defined function of LANGUAGE SQL, so note that the code_block may not contain SQL-
Schema statements, SQL-Transaction statements, nor SQL-Connection statements. While we assume that
you're interested in SQL-based UDFs and stored procedures (this is a SQL book after all), you can declare that
the code block is derived externally. The syntax for external code_blocks is:

EXTERNAL [NAME external_routine_name] [PARAMETER STYLE

{SQL | GENERAL}] [TRANSFORM GROUP group_name]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{SQL | GENERAL}] [TRANSFORM GROUP group_name]

where:

EXTERNAL [NAME external_routine_name]

Defines an external routine and assigns a name to it. When omitted, the unqualified routine name is
used.

PARAMETER STYLE [SQL | GENERAL]

Same as for CREATE PROCEDURE.

TRANSFORM GROUP group_name

Transforms values between user-defined types and host variables in a user-defined function or a stored
procedure. When omitted, the default is TRANSFORM GROUP DEFAULT.

NAME new_object_name

Declares the new name to use for a previously defined UDF or stored procedure. This clause is only used with
ALTER FUNCTION and ALTER PROCEDURE statements.

CASCADE | RESTRICT

Allows you to cause changes to CASCADE down to all dependent UDFs or stored procedures, or to RESTRICT a
change from happening if there are dependent objects. We strongly recommend that you do not issue an ALTER
statement against UDFs or stored procedures that have dependent objects. This clause is only used with ALTER
FUNCTION and ALTER PROCEDURE statements.

Rules at a Glance

With a user-defined function (UDF), you declare the input arguments and the single output argument that the function
passes back out. You can then call the user-defined function just as you would any other function, for example, in
SELECT statements, INSERT statements, or the WHERE clause of DELETE statements.

User-defined functions and stored procedures, when referred to generically, are called
routines.

With a stored procedure, you declare the input arguments that go into the stored procedure and the output arguments
that come out from it. You invoke a stored procedure using the CALL statement.

The content of the code_block must conform to the rules of whatever procedural language is supported by the database
platform. Some platforms do not have their own internal procedural language, requiring you to use EXTERNAL
code_block constructs.

For example, you might want build a user-defined function on Microsoft SQL Server that returns the first and last name
of a person as a single string:

CREATE FUNCTION formatted_name (@fname VARCHAR(30),

@lname VARCHAR(30))

RETURNS VARCHAR(60)

AS

BEGIN

 DECLARE @full_name VARCHAR(60)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DECLARE @full_name VARCHAR(60)

 SET @full_name = @fname + ' ' + @lname

 RETURN @full_name

END

You could then use this user-defined function as any other function:

SELECT formatted_name(au_fname, au_lname) AS name, au_id AS id

FROM authors

The SELECT statement in this example will return a result set with the two columns, name and id.

The ANSI statement CREATE METHOD is supported only by DB2 at this time. A method is
essentially a special purpose user-defined function and follows the same syntax.

Stored procedures behave similarly. In the following small example, this Microsoft SQL Server stored procedure
generates a unique 22-digit value (based on elements of the system date and time) and returns it to the calling
process:

-- A Microsoft SQL Server stored procedure

CREATE PROCEDURE get_next_nbr

 @next_nbr CHAR(22) OUTPUT

AS

BEGIN

 DECLARE @random_nbr INT

 SELECT @random_nbr = RAND() * 1000000

SELECT @next_nbr =

 RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))AS

 CHAR(6), 6) +

 RIGHT('0000' + CAST(DATEPART (yy, GETDATE()) AS CHAR(4)), 2) +

 RIGHT('000' + CAST(DATEPART (dy, GETDATE()) AS CHAR(3)), 3) +

 RIGHT('00' + CAST(DATEPART (hh, GETDATE()) AS CHAR(2)), 2) +

 RIGHT('00' + CAST(DATEPART (mi, GETDATE()) AS CHAR(2)), 2) +

 RIGHT('00' + CAST(DATEPART (ss, GETDATE()) AS CHAR(2)), 2) +

 RIGHT('000' + CAST(DATEPART (ms, GETDATE()) AS CHAR(3)), 3)

END

GO

In this next, and final, ANSI SQL2003 example, we change the name of an existing stored procedure:

ALTER PROCEDURE get_next_nbr

NAME 'get_next_ID'

RESTRICT;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RESTRICT;

Programming Tips and Gotchas

A key advantage of a stored procedure or function is the fact that it is precompiled, meaning that once created its query
plans are already stored in the database. Precompiled routines can often (though not always) be cached in database
memory to provide an additional boost in performance. A stored procedure or user-defined function can perform many
statements with a single communication to the server, thus reducing network traffic.

Implementations of user-defined functions and stored procedures vary widely by platform. Some database platforms do
not support internal code_block content. On these platforms, you can only write an external code_block. Be sure to read
about the variations and capabilities on each platform.

If you execute an ALTER PROCEDURE or FUNCTION statement, dependent objects may become invalid after a change
to an object they depend on. Be careful to check all dependencies when altering UDFs or stored procedures on which
other UDFs or stored procedures may depend.

DB2

DB2's implementations of these commands are very close to the ANSI standard. Although the syntax diagrams are
long, much of the usage is identical to the ANSI standard. Consequently, the keyword explanation section that follows
the syntax diagram is relatively short, since many of the clauses are explained in the SQL standard.

DB2 supports several classifications of functions. Each kind of UDF has its own set of allowable syntax, though much of
it is shared across the various kinds of UDF. DB2 allows external scalar functions, external table functions, OLE-DB
external table functions, sourced (or template) functions, and SQL functions. DB2 supports two kinds of stored
procedures: external and SQL.

The following syntax is the full syntax to create any sort of stored procedure or a UDF in DB2. It is grouped together
here to give you a concise list of clause definitions. However, refer to the sections below for greater detail on the
specific allowable syntax for each type of UDF and stored procedure. If you prefer, for example, to see only the
allowable syntax for a SQL user-defined function, then skip to the section below. The total available syntax for UDFs
and stored procedures follows:

CREATE {PROCEDURE | FUNCTION} object_name

 [({[IN | OUT| INOUT] [parameter_name] datatype } [,...])]

RETURNS {datatype | {ROW | TABLE} column_list} [AS LOCATOR]

 [CAST FROM datatype [AS LOCATOR]]

[LANGUAGE {C | JAVA | COBOL | OLE | SQL]

[PARAMETER STYLE {SQL | DB2GENERAL | GENERAL | GENERAL WITH NULLS | JAVA}]

[SPECIFIC specific_name]

[EXTERNAL NAME external_routine_name]

[DETERMINISTIC | NOT DETERMINISTIC]

[[NO] EXTERNAL ACTION]

[NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]

[CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT]

[DYNAMIC RESULT SETS int]

[STATIC DISPATCH]

[SOURCE object_name | AS TEMPLATE]

[INHERIT SPECIAL REGISTERS]

[[NOT] FENCED] [[NOT] THREADSAFE]

[PROGRAM TYPE {SUB | MAIN}]

[[NO] SCRATCHPAD int] [[NO] FINAL CALL]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[[NO] SCRATCHPAD int] [[NO] FINAL CALL]

[{ALLOW | DISALLOW} PARALLEL]

[[NO] DBINFO]

[TRANSFORM GROUP group_name]

[CARDINALITY int]

[PREDICATES (predicate_definition)]

code_block

In addition, use the following syntax to alter a pre-existing UDF or stored procedure, and assign it the characteristics
that you declare:

ALTER {PROCEDURE | FUNCTION} object_name

[EXTERNAL NAME external_routine_name]

[[NOT] FENCED] [[NOT] THREADSAFE]

Following are the parameter descriptions for DB2:

RETURNS {datatype | {ROW | TABLE} column_list}

Allows you to return a single value of datatype, a ROW of values, or a TABLE of values where column_list uses the
syntax column_name1 datatype1, column_name2 datatype2 [,...].

LANGUAGE {C | JAVA | COBOL | OLE | SQL}

Same as the ANSI standard, though DB2 supports other languages than in the ANSI standard. When you
declare a LANGUAGE setting, other options are restricted or made available.

PARAMETER STYLE {SQL | DB2GENERAL | GENERAL | GENERAL WITH NULLS | JAVA}

Similar to the ANSI SQL standard but with a richer variety of choices. PARAMETER STYLE is only used with
external stored procedures or user-defined functions. The various styles determine how parameters are passed,
where:

SQL

Defines that when parameters are passed with the CALL statement, a null indicator for each parameter
and a qualified and specific name for the stored procedure or function are also passed. In addition, the
SQLSTATE and SQL diagnostic string are passed back to DB2.

DB2GENERAL

Available only with the LANGAUGE JAVA clause, the DB2GENERAL clause specifies that the parameters
are passed using the convention defined for Java.

GENERAL

Passes parameters directly from the CALL statement to the stored procedure without using a SQLDA
structure. Nulls are not passed. Only available with LANGUAGE C or COBOL.

GENERAL WITH NULLS

Same as GENERAL, but also passes null indicators.

JAVA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passes parameters using the Java and SQLJ Routines specifications. For example, INOUT and OUT
parameters are passed as a single entry array. Available only with the LANGUAGE JAVA clause. This
clause is mutually exclusive of the DBINFO clause and PROGRAM TYPE clause.

EXTERNAL NAME [external_routine_name]

Registers a new function or procedure using a linked and interfaced external program. When
external_routine_name is omitted, object_name is assumed to be the name of the external program. The method of
linking depends on the LANGUAGE setting.

NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA

Same as the ANSI standard, though certain options are not usable for certain LANGUAGE settings.

INHERIT SPECIAL REGISTERS

Declares that updateable special registers receive their initial value from the invoking process. The invoking
process could be a UDF, a stored procedure, trigger, view, or user issuing a CALL statement.

[[NOT] FENCED] [{THREADSAFE | NOT THREADSAFE}]

Specifies whether (or NOT) the external stored procedure or user-defined function is "safe" to run in DB2's
manager operating environment process or address space. This is used only for external stored procedures.
NOT FENCED procedures tend to be faster, but open the database up to potential risks.

[[NOT] THREADSAFE]

Declares whether the method is safe to run in the same process as other routines (THREADSAFE) or not (NOT
THREADSAFE). When declared THREADSAFE, a procedure is considered safe to run in the same process as
other UDFs and stored procedures. NOT THREADSAFE can only be used with FENCED stored procedures.

PROGRAM TYPE {SUB | MAIN}

Tells whether the external stored procedure should expect parameters in the style of a SUB routine or a MAIN
routine. SUB, the default, declares that the parameters are expected as separate arguments. MAIN declares
that the parameters are expected as an argument counter and argument vector. MAIN also requires that the
external stored procedure is named "main" and that it is built as a shared library, not as a standalone
executable. PROGRAM TYPE MAIN is only valid with LANGUAGE C or COBOL and PARAMETER STYLE GENERAL,
GENERAL WITH NULLS, SQL, or DB2SQL.

[NO] SCRATCHPAD int

Provides a scratch pad for any external function or procedure. A SCRATCHPAD provides a way for a UDF to save
its state from one call to the next. The default is NO SCRATCHPAD. If an int is specified, it represents the size of
the scratch pad in bytes (defaulting to 100 bytes). One scratch pad is initialized per reference to an external
routine.

[NO] FINAL CALL

FINAL CALL causes the routine to invoke two extra times. The first invocation occurs before data is first loaded
so the routine can perform any one-time initialization needed. The second invocation occurs last and allows the
routine to do any cleanup needed. Table functions are always a FINAL CALL. This clause is incompatible with
PARAMETER STYLE JAVA. The clause NO FINAL CALL prevents a final call from happening.

{ALLOW | DISALLOW} PARALLEL

Allows the routine to be split in parallel across multiple CPUs (a.k.a. parallelized) during plan optimization on an
SMP or MPP server, with ALLOW PARALLEL. Otherwise, DB2 enforces the serial processing of a routine on a
single CPU, regardless of how many CPUs exist on the server, with DISALLOW PARALLEL. ALLOW PARALLEL is
the default, unless the routine contains any of these clauses: NOT DETERMINISTIC, EXTERNAL ACTION,
SCRATCHPAD, or FINAL CALL.

[NO] DBINFO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[NO] DBINFO

Tells whether the external stored procedure receives an additional argument (DBINFO) or not (NO DBINFO, the
default) when invoked. The DBINFO argument tells the database name, application ID, application authorization
ID, code page, database release version, and platform. DBINFO is mutually exclusive of LANGAUGE OLD and
PARAMETER STYLE JAVA and DB2GENERAL.

TRANSFORM GROUP group_name

Declares the transform group, group_name, if the routine uses a user-defined structured type for either a
parameter or return datatype.

CARDINALITY int
PREDICATES (predicate_definition)

Used with CREATE FUNCTION to create a user-defined predicate. This option is used when defining user-defined
functions for use with DB2's index extensions. Index extensions are quite complex and not used by the average
DB2 user. Consequently, you should refer to DB2's documentation on index extensions for information on this
clause. In addition, DETERMINISTIC with NO EXTERNAL ACTION clauses are required to use PREDICATES.

DB2 accommodates several kinds of user-defined functions: external scalar, external table, OLE-DB, source/template,
and SQL, and two kinds of stored procedures: external and SQL. Each of these types allows a mix of only some of the
clauses shown above.

DB2 external scalar user-defined functions

This variation of the CREATE FUNCTION statement is used to register a user-defined external scalar function with an
application server. (Remember that scalar functions return a single value each time they are invoked and are valid
wherever SQL expressions are valid.) An external scalar UDF allows the following clauses:

CREATE FUNCTION object_name (parameter_name datatype

 [,...]) [AS LOCATOR]

 RETURNS datatype [AS LOCATOR] [CAST FROM datatype

 [AS LOCATOR]]

 [LANGUAGE {C | JAVA | OLE}] [PARAMETER STYLE

 {SQL | DB2GENERAL | JAVA}]

 [SPECIFIC specific_name]

 [EXTERNAL NAME external_routine_name]

 [DETERMINISTIC | NOT DETERMINISTIC] [STATIC DISPATCH]

 [[NO] EXTERNAL ACTION]

 [NO SQL | CONTAINS SQL | READS SQL DATA]

 [CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT]

 [INHERIT SPECIAL REGISTERS]

 [[NOT] FENCED [{THREADSAFE | NOT THREADSAFE}]]

 [[NO] SCRATCHPAD int] [[NO] FINAL CALL]

 [{ALLOW | DISALLOW} PARALLEL]

 [[NO] DBINFO] [TRANSFORM GROUP group_name]

 [PREDICATES (predicate_definition)]

code_block

The following code is an example of an external scalar UDF, called report_reader.center, that defines the center of a
circle. The statement explicitly declares all option clauses, even those that have identical defaults to the declared
values:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

values:

CREATE FUNCTION report_reader.center (FLOAT, FLOAT, FLOAT)

RETURNS DECIMAL(8,4) CAST FROM FLOAT

SPECIFIC center04

EXTERNAL NAME 'center!focalpt'

LANGUAGE C PARAMETER STYLE SQL DETERMINISTIC FENCED NOT NULL CALL

NO SQL NO EXTERNAL ACTION SCRATCHPAD NO FINAL CALL

DISALLOW PARALLEL

Note that the report_reader.center UDF uses a scratch pad and can accumulate and act on results stored there

DB2 external table user-defined functions

This variation of the CREATE FUNCTION statement is used to register a user-defined external table function with an
application server. (A table function can be used in the FROM clause of a SELECT statement, returning a table to the
SELECT one row at a time.) An external table UDF allows the following clauses:

CREATE FUNCTION object_name (parameter_name datatype }

 [AS LOCATOR] [,...])

 RETURNS TABLE datatype [AS LOCATOR] [,...]]

 [LANGUAGE {C | JAVA | OLE}] [PARAMETER STYLE

 {SQL | DB2GENERAL}]

 [SPECIFIC specific_name] [EXTERNAL NAME external_routine_name]

 [DETERMINISTIC | NOT DETERMINISTIC] [[NO] EXTERNAL ACTION]

 [NO SQL | CONTAINS SQL | READS SQL DATA]

 [CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT]

 [INHERIT SPECIAL REGISTERS] [[NOT] FEDERATED]

 [[NOT] FENCED [{THREADSAFE | NOT THREADSAFE}]]

 [[NO] SCRATCHPAD int] [[NO] FINAL CALL]

 [DISALLOW PARALLEL]

 [[NO] DBINFO] [TRANSFORM GROUP group_name]

 [CARDINALITY int]

code_block

Following is an example external table UDF that retrieves message header information and some message text from
Microsoft Exchange:

CREATE FUNCTION MAIL()

RETURNS TABLE (time_rcvd DATE, subjct VARCHAR(15),

 lngth INTEGER, txt VARCHAR(30))

EXTERNAL NAME 'mail.header!list'

LANGUAGE OLE

PARAMETER STYLE SQL

NOT DETERMINISTIC FENCED CALLED ON NULL INPUT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOT DETERMINISTIC FENCED CALLED ON NULL INPUT

 SCRATCHPAD FINAL CALL

NO SQL

EXTERNAL ACTION DISALLOW PARALLEL

Note that the external function, mail.header!list, should already exist.

DB2 OLE-DB external table user-defined functions

This variation of the CREATE FUNCTION statement registers a user-defined OLE-DB external table function to access
data from an OLE-DB provider. The table function may then be used in the FROM clause of a SELECT statement. This is
useful to link to non-DB2 sources of relational data. An OLE-DB external table UDF allows the following clauses:

CREATE FUNCTION object_name (parameter_name datatype) [,...])

 RETURNS TABLE datatype [,...]] [SPECIFIC specific_name]

 [LANGUAGE OLEDB] [EXTERNAL NAME external_routine_name]

 [DETERMINISTIC | NOT DETERMINISTIC] [[NO] EXTERNAL ACTION]

 [STATIC DISPATCH] [CALLED ON NULL INPUT |

 RETURNS NULL ON NULL INPUT]

 [CARDINALITY int]

code_block

The following example registers an OLE-DB table function that retrieves order information from the Microsoft Access
database called Northwind:

CREATE FUNCTION orders ()

RETURNS TABLE (orderid INTEGER, customerid CHAR(5), employeeid INTEGER,

 orderdate TIMESTAMP, requireddate TIMESTAMP, shippeddate TIMESTAMP,

 shipvia INTEGER, freight DEC(19,4))

LANGUAGE OLEDB

EXTERNAL NAME '!orders!Provider=Microsoft.Jet.OLEDB.3.51;

 Data Source=c:\sqllib\samples\oledb\nwind.mdb';

Note that the connection string is defined in the external name of the function.

DB2 sourced user-defined functions

This variation of the CREATE FUNCTION statement registers a user-defined function that is based on another existing
scalar or column function. This statement can also be used to register a function template with an application server
that acts as a federated server. (A function template is a partial function that has no executable code, but instead uses
it to map to a data source function. Once the mapping is created, the user specifies the function template in queries to
the federated server. The federated server will invoke the data source function and return values that correspond to
those in the RETURNS portion of the template definition.) A source/template UDF allows the following clauses:

CREATE FUNCTION object_name (parameter_name datatype [,...])

 RETURNS datatype [,...]]

 [SOURCE {object_name [input_argument [,...]] |

 [SPECIFIC specific_name]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [SPECIFIC specific_name]]

 [AS TEMPLATE [DETERMINISTIC | NOT DETERMINISTIC]

 [[NO] EXTERNAL ACTION]]

code_block

For example, the following sourced UDF is based on the report_reader.center scalar function created earlier in this
section. The following function, called fn_center, accepts only integer arguments:

CREATE FUNCTION fn_center (INTEGER, INTEGER)

RETURNS FLOAT

SOURCE report_reader.center (INTEGER, FLOAT);

In the next example, using a federated server, we can invoke an Oracle UDF, called statistics in the schema scott, that
returns table statistics as a double-precision floating point value:

CREATE FUNCTION scott.statistics (DOUBLE, DOUBLE)

RETURNS DOUBLE AS TEMPLATE

DETERMINISTIC NO EXTERNAL ACTION;

DB2 SQL user-defined functions

This variation of the CREATE FUNCTION statement defines a SQL scalar, table, or row function. This application shows
the most common form of SQL UDF's in DB2. (Remember a scalar function returns a single value when invoked. A table
function may be used in the FROM clause of a SELECT statement and returns a table. A row function returns a row and
may be used as a transform function.)

A SQL UDF allows the following clauses:

CREATE FUNCTION object_name [(parameter_name datatype [,...])]

RETURNS {datatype | {ROW | TABLE} column_list}

 [SPECIFIC specific_name]

 [LANGUAGE SQL] [DETERMINISTIC | NOT DETERMINISTIC]

 [[NO] EXTERNAL ACTION]

 [CONTAINS SQL | READS SQL DATA] [STATIC DISPATCH]

 [CALLED ON NULL INPUT] [PREDICATES (predicate_definition)]

code_block

Here's an example of a SQL user-defined function that returns a concatenated name from separate fields:

CREATE FUNCTION prod.cust_name

 (in_custno INTEGER)

 RETURNS VARCHAR(31)

 LANGUAGE SQL

 READS SQL DATA

 NO EXTERNAL ACTION

 DETERMINISTIC

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DETERMINISTIC

 RETURN

 SELECT (c.firstnme CONCAT ' '

 CONCAT c.midinit CONCAT '. '

 CONCAT c.lastname)

 AS name

 FROM prod.customer c

 WHERE c.custno = 10;

DB2 external stored procedure

This variation of the CREATE PROCEDURE statement defines an external procedure with a DB2 application server.
Usually, external procedures are written in a non-SQL language like C or Java. An external procedure allows the
following clauses:

CREATE PROCEDURE object_name

 [([IN | OUT | INOUT] parameter_name datatype [,...])]

 [SPECIFIC specific_name] [DYNAMIC RESULT SETS int]

 [NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]

 [DETERMINISTIC | NOT DETERMINISTIC] [CALLED ON NULL INPUT]

LANGUAGE {C | JAVA | COBOL | OLE}

 EXTERNAL NAME external_routine_name

 [INHERIT SPECIAL REGISTERS]

PARAMETER STYLE {SQL | DB2GENERAL | DB2SQL | GENERAL |

 GENERAL WITH NULLS | JAVA}

 [[NOT] FENCED [{THREADSAFE | NOT THREADSAFE}]]

 [PROGRAM TYPE {SUB | MAIN}]

 [[NO] DBINFO]

code_block

Following is an example of an external procedure. In the example, we define a procedure definition in DB2 for a C
program that, when passed an author ID, tells us the total books sold, the total sales in dollars, and the book titles the
specified author wrote:

CREATE PROCEDURE author_sales

 (IN au_id INTEGER, OUT books_sold INTEGER,

 OUT total_sales DOUBLE, OUT title VARCHAR(50))

EXTERNAL NAME 'authors!sales'

DYNAMIC RESULT SETS 1 NOT FENCED

LANGUAGE C PARAMETER STYLE GENERAL

DB2 SQL stored procedure

This variation of the CREATE PROCEDURE statement defines a SQL-based procedure with a DB2 application server. A
SQL procedure allows the following clauses:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL procedure allows the following clauses:

CREATE PROCEDURE object_name [([IN |

 OUT| INOUT] parameter_name datatype [,...])]

 [SPECIFIC specific_name] [DYNAMIC RESULT SETS int]

 [CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]

 [DETERMINISTIC | NOT DETERMINISTIC] [CALLED ON NULL INPUT]

 [INHERIT SPECIAL REGISTERS] [LANGUAGE SQL]

code_block

The following SQL stored procedure returns a customer's record based upon a SOUNDEX function on their name and
state:

CREATE PROCEDURE prod.custlookup

 (IN in_lastname VARCHAR(15),

 IN in_st CHARACTER(2))

 DYNAMIC RESULT SETS 1

 LANGUAGE SQL

 NOT DETERMINISTIC

 CALLED ON NULL INPUT

 MODIFIES SQL DATA

 INHERIT SPECIAL REGISTERS

 P1: BEGIN

 DECLARE cursor1 CURSOR WITH RETURN FOR

 SELECT *

 FROM prod.customer c

 WHERE SOUNDEX (c.lastname) = SOUNDEX (in_lastname)

 AND c.st = UPPER (in_st);

 OPEN cursor1;

 END P1;

DB2 has recently implemented new procedural extensions to SQL. You can now define the code_block for a DB2 UDF or
stored procedure using conditional processing constructs like IF...THEN and WHILE loops (as shown in the examples
above).

RETURNS TABLE is available as a return value for any LANGUAGE. The only clauses allowed are STATIC DISPATCH,
DETERMINISTIC, EXTERNAL ACTION, RETURNS NULL ... | CALLED NULL... ON INPUT, and CARDINALITY.

READ SQL DATA and CONTAINS SQL are the only SQL-style options allowed when you chose LANGUAGE SQL. These
clauses disable the CAST clause and the RETURNS NULL ON NULL INPUT clause. It also makes available (though
optional) the RETURNS {ROW | TABLE} clause, FEDERATED clause, PREDICATES clause, and INHERIT SPECIAL
REGISTERS clause.

ALTER FUNCTION and PROCEDURE on DB2 merely change the characteristics of an existing UDF or stored procedure.
The two examples shown next make a function and a procedure, respectively, NOT FENCED.

ALTER FUNCTION mail() NOT FENCED;

ALTER PROCEDURE employee_pay NOT FENCED;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALTER PROCEDURE employee_pay NOT FENCED;

MySQL

MySQL does not support the ALTER FUNCTION statement, nor does it support the CREATE PROCEDURE and ALTER
PROCEDURE statements.

All user-defined functions created on a MySQL database are, in effect, external function calls:

CREATE [AGGREGATE] FUNCTION function_name

RETURNS {STRING | REAL | INTEGER}

SONAME shared_program_library_name ;

where:

CREATE [AGGREGATE] FUNCTION function_name

Creates an external function with a function_name of not more than 64 characters. The module will be stored in
the mysql2/udf directory, with an extension of .udf. If AGGREGATE is specified, the user-defined function must
return an aggregate value like SUM() or AVG().

RETURNS {STRING | REAL | INTEGER}

Returns either STRING for character data, REAL for floating-point numbers, or INTEGER for whole numbers.

SONAME shared_program_library_name

Names the C/C++ program that performs the processing. This shared_program can be compiled and built into the
MySQL engine, or it can function as an independent, linked program.

Once implemented, a MySQL UDF may be called just like any built-in function, such as ABS() or SOUNDEX().

The implementation of CREATE FUNCTION in MySQL is dependent on procedural code in C/C++ under an operating
system that supports dynamic loading. The C/C++ program is named in the shared_program_library_name option. The
function may be compiled either directly into the MySQL server, making the function permanently available, or as a
dynamically callable program. For example, the code behind the UDF created in the following statement might be found
on a Unix server:

CREATE FUNCTION find_radius RETURNS INT SONAME "radius.so";

Oracle

Oracle supports ALTER and CREATE for both FUNCTION and PROCEDURE object types. (You may also wish to learn
about Oracle packages, which can also be used to create UDFs and stored procedures. Check Oracle's documentation.)
Oracle's CREATE PROCEDURE syntax is as follows:

CREATE [OR REPLACE] {FUNCTION | PROCEDURE} [schema.]object_name

[(parameter1 [IN | OUT | IN OUT] [NOCOPY] datatype] [,...])]]

RETURN datatype

[DETERMINISTIC] [AUTHID {CURRENT_USER | DEFINER}]

[PARALLEL_ENABLE [(PARTITION prtn_name BY {ANY | {HASH | RANGE}

 (column [,...]) [{ORDER | CLUSTER} BY (column [,...])]]

{ [PIPELINED | AGGREGATE] USING [schema.]implementation_type] |

 [PIPELINED] {IS | AS} }

{code_block | LANGUAGE {JAVA NAME external_program_name |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{code_block | LANGUAGE {JAVA NAME external_program_name |

 C [NAME external_program_name]

 LIBRARY lib_name [AGENT IN (argument [,...]) [WITH CONTEXT]

 [PARAMETERS (param [,...])] };

The ALTER FUNCTION and ALTER PROCEDURE statement shown next is used to recompile invalid UDFs or stored
procedures:

ALTER {FUNCTION | PROCEDURE} [schema.]object_name

COMPILE [DEBUG] [compiler_param = value [...]] [REUSE SETTINGS]

Following are the parameter descriptions:

CREATE [OR REPLACE] FUNCTION [schema.]object_name

Creates a new UDF or stored procedure. Use OR REPLACE to replace an existing procedure or UDF without first
dropping it, and then having to reassign all permissions to it. Certain clauses are only used with user-defined
functions, including the RETURN clause, the DETERMINISTIC clause, and the entirety of the USING clause.

[IN | OUT | IN OUT]

Specifies whether a parameter is an input to the function, an output from the function, or both.

NOCOPY

Speeds up performance when an OUT or IN OUT argument is very large, as with a VARRAY or RECORD
datatype.

AUTHID {CURRENT_USER | DEFINER}

Forces the routine to run in the permission context of either the current user or the person who owns the
function, using AUTHID CURRENT_USER or AUTHID DEFINER, respectively.

PARALLEL_ENABLE

Enables the routine to be executed by a parallel query operation on an SMP or parallel-processor server. This
clause is used only for UDFs. (Don't use session state or package variables because they can't be expected to
be shared among parallel execution servers.) Define the behavior of the PARALLEL_ENABLE query operation
using these subclauses, where:

PARTITION prtn_name BY {ANY | {HASH | RANGE} (column [,...])

Defines partitioning of inputs on functions with REF CURSOR arguments. This may benefit table
functions. ANY allows random partitioning. You can restrict partitioning to a specific RANGE or HASH
partition on a comma-delimited column list.

{ORDER | CLUSTER} BY (column [,...])

Orders or clusters parallel processing based on a comma-delimited column list. ORDER BY causes the
rows to be locally ordered on the parallel execution server according to the column list. CLUSTER BY
restricts the rows on the parallel execution server to the key values identified in the column list.

{PIPELINED | AGGREGATE} [USING [schema.] implementation_type]

PIPELINED iteratively returns the results of a table function, instead of the normal serial return of the VARRAY
or nested table result set. This clause is only used for UDFs. The clause PIPELINED USING implementation_type is
for an external UDF that uses a language like C++ or Java. The AGGEGATE USING implementation_type clause
defines a UDF as an aggregate function (a function that evaluates many rows, but returns a single value).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defines a UDF as an aggregate function (a function that evaluates many rows, but returns a single value).

IS | AS

Oracle treats IS and AS equally. Use either one to introduce the code_block.

code_block

Oracle allows a PL/SQL code block for user-defined functions and stored procedures. Alternately, you may use
the LANGUAGE clause for stored procedures written in Java or C.

LANGUAGE {JAVA NAME external_program_name | C [NAME external_program_name] LIBRARY lib_name [AGENT IN
(argument) [WITH CONTEXT] [PARAMETERS (params)] }

Defines the Java or C implementation of the external program. The parameters and semantics of each
declaration are specific to Java and C, not SQL.

ALTER {FUNCTION | PROCEDURE} [schema.]object_name

Recompiles an invalid standalone stored routine. Use CREATE ... OR REPLACE to change the arguments,
declarations, or definition of an existing routine.

COMPILE [DEBUG] [REUSE SETTINGS]

Recompiles the routine. Note that COMPILE is required. (You can see compile errors with the SQL*Plus
command SHOW ERRORS.) The routine is marked valid if no compiler errors are encountered. The following
optional subclauses may also be included with the COMPILE clause, where:

DEBUG

Generates and stores code used by the PL/SQL debugger.

compiler_param = value [...]

Specifies a PL/SQL compiler parameter. Allowable parameters include PLSQL_OPTIMIZE_LEVEL,
PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and NLS_LENGTH_SEMANTICS. Refer to
Oracle's documentation on the PL/SQL compiler for more details.

REUSE SETTINGS

Maintains the existing compiler switch settings and reuses them for recompilation. Normally, Oracle
drops and reacquires compiler switch settings.

In Oracle, UDFs and stored procedures are very similar in composition and structure. The primary difference is that a
stored procedure cannot return a value to the invoking process, while a function may return a single value to the
invoking process.

For example, you can pass in the name of a construction project to the following function to obtain the project's profit:

CREATE OR REPLACE FUNCTION project_revenue (project IN varchar2)

RETURN NUMBER

AS

 proj_rev NUMBER(10,2);

BEGIN

 SELECT SUM(DECODE(action,'COMPLETED',amount,0)) -

 SUM(DECODE(action,'STARTED',amount,0)) +

 SUM(DECODE(action,'PAYMENT',amount,0))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INTO proj_rev

 FROM construction_actions

 WHERE project_name = project;

 RETURN (proj_rev);

END;

In this example, the user-defined function accepts the project name as an argument. Then it processes the project
revenue, behind the scenes, by subtracting the starting costs from the completion payment and adding any other
payments into the amount. The RETURN (proj_rev); line returns the amount to the invoking process.

In Oracle, UDFs cannot be used in the following situations:

In a CHECK constraint or DEFAULT constraint of a CREATE TABLE or ALTER TABLE statement.

In a SELECT, INSERT, UPDATE, or DELETE, the UDF cannot, either directly or indirectly (if invoked by another
routine):

Have an OUT or IN OUT parameter. (Indirect calls may take OUT and IN OUT parameters.)

Terminate the transaction with COMMIT, ROLLBACK, SAVEPOINT, or a CREATE, ALTER, or DROP
statement that implicitly issues a COMMIT or ROLLBACK.

Use session control (SET ROLE) or system control (the Oracle-specific statement ALTER SYSTEM)
statements.

Write to a database (when a component of a SELECT statement or a parallelized INSERT, UPDATE, or
DELETE statement).

Write to the same table that is modified by the statement that calls the UDF.

Note that when you recompile a routine with the ALTER statement, it is marked valid if no compiler errors are
encountered. (It is marked invalid if any errors are encountered.) Perhaps more importantly, any objects that depend
upon the recompiled routine are marked invalid, regardless of whether an error occurs. You can either recompile those
dependent objects yourself, or you can allow Oracle to take some additional time to recompile them at runtime.

By way of example, the following recompiles the project_revenue function and maintains any compiler information for
the PL/SQL debugger:

ALTER FUNCTION project_revenue COMPILE DEBUG;

PostgreSQL

PostgreSQL supports the CREATE FUNCTION statement, but not CREATE PROCEDURE, ALTER FUNCTION, or ALTER
PROCEDURE. Since PostgreSQL does not have an internal procedural language, user-defined functions are usually
external functions, though they may be simple SQL queries. The syntax to use to create a function is:

CREATE [OR REPLACE] FUNCTION function_name

 ([parameter [,...]])

RETURNS datatype

AS {code_block | object_file, link_symbol}

LANGUAGE {C | SQL | PLPGSQL | PLTCL | PLTCLU | PLPERL |

 internal}

[WITH {[ISCACHABLE] [,] [ISSTRICT]}]

where:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where:

CREATE [OR REPLACE] function_name

Creates a new function of the name you provide, or replaces an existing function. OR REPLACE does not enable
you to change the name, input parameters, or output results of an existing function. You must drop and
recreate a function to change any of those settings.

RETURNS datatype

Specifies the type of data required by the function.

AS {code_block | object_file, link_symbol}

Defines the composition of the user-defined function. The code_block can be a string defining the function
(dependent on the LANGUAGE setting), such as an internal function name, the path and name of an object file,
a SQL query, or the text of a procedural language. The definition also can be an object file and link symbol for a
C-language function.

LANGUAGE {C | SQL | PLPGSQL | PLTCL | PLTCLU | PLPERL | internal}

Defines a call to an external program or an internal SQL routine. Since all of the language options, except SQL,
are programs compiled in other languages, they are beyond the scope of this book. However, the LANGUAGE
SQL clause should be used when writing SQL user-defined functions.

Add a new language not installed by default on PostgreSQL by using the CREATE
LANGUAGE statement.

[WITH {[ISCACHABLE] [,] [ISSTRICT]}]

Optimizes PostgreSQL performance by indicating that the function always returns the same value when
provided with the same parameter values. WITH ISCACHABLE is similar to the ANSI setting DETERMINISTIC,
except that this setting then allows the optimizer to pre-evaluate the call of the function. WITH ISSTRICT is
similar to the ANSI setting RETURNS NULL ON NULL INPUT. When omitted, the default behavior is similar to
CALLED ON NULL INPUT. Note that you may include both keywords in a single function declaration.

PostgreSQL also allows function overloading in which the same function name is allowed for different functions, as long
as they accept distinct input parameters.

Whenever you drop an existing function, all dependent objects are invalidated and must be
recompiled.

Here's an example of a simple SQL function in PostgreSQL:

CREATE FUNCTION max_project_nbr

RETURNS int4

AS "SELECT MAX(title_ID) FROM titles AS RESULT"

LANGUAGE 'sql';

In this example, we created a UDF that returns the maximum title_ID from the titles table.

PostgreSQL uses CREATE FUNCTION as a substitute for CREATE PROCEDURE, as well as to define actions for CREATE
TRIGGER.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRIGGER.

SQL Server

SQL Server supports CREATE and ALTER for both types of routines. By default, SQL Server stored procedures can
return result sets and SQL Server UDFs can return single or multirow result sets using the TABLE datatype on RETURNS
arguments, contrary to the ANSI standard. However, this makes SQL Server routines more flexible and powerful. Use
the following syntax to create a user-defined function or stored procedure:

CREATE {FUNCTION | PROCEDURE} [owner_name.]object_name[;int]

([{@parameter datatype [VARYING] [=default] [OUTPUT]} [,...]])

RETURNS {datatype | TABLE]

[WITH {ENCRYPTION | SCHEMABINDING | RECOMPILE |

 RECOMPILE, ENCRIPTION}]

[FOR REPLICATION]

[AS]

 code_block

Use the following syntax to alter an existing user-defined function or stored procedure:

ALTER {FUNCTION | PROCEDURE} [owner_name.]object_name[;int]

([{@parameter datatype [VARYING] [=default] [OUTPUT]} [,...]])

RETURNS {datatype | TABLE]

[WITH {ENCRYPTION | SCHEMABINDING | RECOMPILE |

 RECOMPILE, ENCRIPTION}]

[FOR REPLICATION]

[AS]

 code_block

Following are the parameter descriptions:

CREATE {FUNCTION | PROCEDURE} [owner_name.] object_name[;int]

Creates a new UDF or stored procedure in the current database. For SQL Server stored procedures, you may
optionally specify a version number in the format procedure_name;1, where 1 is an integer indicating the version
number. This facility allows you to have multiple versions of a single stored procedure.

{@parameter datatype [VARYING] [=default] [OUTPUT]} [,...]

Defines one or more input arguments for a UDF or stored procedure. SQL Server parameters are always
declared with an at sign (@) as the first character.

where:

VARYING

Used in stored procedures with a CURSOR datatype parameter. Indicates that the result set is
constructed dynamically by the procedure.

= default

Assigns a default value to the parameter. The default value is used whenever the stored procedure or
UDF is invoked without supplying a value for the parameter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UDF is invoked without supplying a value for the parameter.

OUTPUT

Used for stored procedures, OUTPUT is functionally equivalent to the ANSI OUT clause in the CREATE
FUNCTION statement. The value stored in the return parameter is passed back to the calling procedure
through the return variables of the SQL Server EXEC[UTE] command. Output parameters can be any
datatype except TEXT and IMAGE.

RETURNS {datatype | TABLE}

Allows SQL Server UDFs to return a single datatype value or to return multiple values via the TABLE datatype.
The TABLE datatype is considered inline if it has no accompanying column list and is defined with a single
SELECT statement. If the RETURN clause returns multiple values via the TABLE datatype, and if the TABLE has
defined columns and datatypes, the function is considered a multistatement, table-valued function.

WITH

Allows the assignment of additional characteristics to a SQL Server UDF or stored procedure.

ENCRYPTION

Tells SQL Server to encrypt the column in the system table that stores the text of the function, thus preventing
unwarranted review of the function code. Usable by both UDFs and stored procedures.

SCHEMABINDING

Specifies that the function is bound to a specific database object, such as a table or view. That database object
cannot be altered or dropped as long as the function exists (or maintains the SCHEMABINDING option). Usable
only by UDFs.

RECOMPILE

Tells SQL Server not to store a cache plan for the stored procedure, but instead to recompile the cache plan
each time the stored procedure is executed. This is useful when using atypical or temporary values in the
procedure, but can cause serious degradation in performance. Used only by stored procedures. Note that
RECOMPILE and ENCRYPTION can be invoked together.

FOR REPLICATION

Disables execution of the stored procedure on a subscribing server. It is used primarily to create a filtering
stored procedure that is executed only by SQL Server's built-in replication engine. It is incompatible with
RECOMPILE.

Like tables (see CREATE TABLE), local and global temporary stored procedures may be declared by prefixing a pound
symbol (#) and double-pound symbol (##) to the name of the procedure, respectively. Temporary procedures exist
only for the duration of the user or process session that created them. When that session ends, the temporary
procedure automatically deletes itself.

A SQL Server stored procedure or UDF may have as many as 1,024 input parameters, specified by the at sign (@).
Parameters are defined using SQL Server datatypes. (Parameters of CURSOR datatype must be both VARYING and
OUTPUT.) The user or calling process must supply values for any input parameters. However, a default value can be
supplied for any input parameter to allow the procedure to execute without a user- or process-supplied value. The
default must be a constant or NULL, but it may contain wildcard characters, as discussed later in this chapter in the
section LIKE Operator.

SQL Server requires that one or more user-supplied parameters be declared for a given user-defined function. All SQL
Server datatypes are supported as parameters, except TIMESTAMP. Values returned by the function can be any
datatype except TIMESTAMP, TEXT, NTEXT, or IMAGE. If an inline table value is required, the TABLE option without an
accompanying column list may be used.

The ALTER FUNCTION and ALTER PROCEDURE statements support the full syntax provided
by the corresponding CREATE statements. You can use the ALTER statements to change
any of the attributes of an existing routine without changing permissions or affecting any
dependent objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For UDFs, the code_block is either a single SELECT statement for an inline function, in the format RETURN (SELECT...),
or a series of Transact-SQL statements following the AS clause for a multistatement operation. When using RETURN
(SELECT), the AS clause is optional. Some other rules for SQL Server UDFs:

When using the AS clause, the code_body should be encapsulated in BEGIN...END delimiters.

UDFs cannot make any permanent changes to data or cause other lasting side effects. A number of other
restrictions exist as a result. For example, INSERT, UPDATE, and DELETE statements may modify only TABLE
variables local to a function.

When returning a scalar value, a SQL Server UDF must contain the clause RETURN datatype, where datatype is
the same as that identified in the RETURNS clause.

The last statement of the code_block must be an unconditional RETURN that returns a single datatype value or
TABLE value.

The code_block may not contain any global variables that return a perpetually changing value, such as
@@CONNECTIONS or GETDATE. But it may contain those that return a single, unchanging value, such as
@@SERVERNAME.

The following is an example of a scalar function that returns a single value. Once created, the scalar UDF can then be
utilized in a query just like a system-supplied function. For example:

CREATE FUNCTION metric_volume -- Input dimensions in centimeters.

 (@length decimal(4,1),

 @width decimal(4,1),

 @height decimal(4,1))

RETURNS decimal(12,3) -- Cubic Centimeters.

AS BEGIN

 RETURN (@length * @width * @height)

 END

GO

SELECT project_name,

 metric_volume(construction_height,

 construction_length,

 construction_width)

FROM housing_construction

WHERE metric_volume(construction_height,

 construction_length,

 construction_width) >= 300000

GO

An inline table-valued UDF supplies values via a single SELECT statement using an AS RETURN clause. For example, we
can supply a store ID and find all of their titles:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

can supply a store ID and find all of their titles:

CREATE FUNCTION stores_titles (@stor_id varchar(30))

RETURNS TABLE

AS

RETURN (SELECT title, qty

 FROM sales AS s

 JOIN titles AS t ON t.title_id = s.title_id

 WHERE s.stor_id = @storeid)

Now, let's alter the UDF just a bit by changing the input argument datatype length and adding another condition to the
WHERE clause (indicated in boldface):

ALTER FUNCTION stores_titles

(@stor_id VARCHAR(4))

RETURNS TABLE

AS

RETURN (SELECT title, qty

 FROM sales AS s

 JOIN titles AS t ON t.title_id = s.title_id

 WHERE s.stor_id = @storeid

AND s.city = 'New York')

User-defined functions that return TABLE values are often selected as result set values or are used in the FROM clause
of a SELECT statement, just as a regular table is used. These multi-statement, table-valued functions can have very
elaborate code bodies since the code_block is composed of many Transact-SQL statements that populate a TABLE return
variable.

Here is an example invoking a multistatement, table-valued function in a FROM clause. Notice that a table alias is
assigned, just as for a regular table:

SELECT co.order_id, co.order_price

FROM construction_orders AS co,

 fn_construction_projects('Cancelled') AS fcp

WHERE co.construction_id = fcp.construction_id

ORDER BY co.order_id

GO

For stored procedures, the code_block clause contains one or more Transact-SQL commands, up to a maximum size of
128 MB, delimited by BEGIN and END clauses. Some rules about Microsoft SQL Server stored procedures include:

The code_block allows most valid Transact-SQL statements, but SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL
are prohibited.

Some other commands have restricted usages within stored procedures, including ALTER TABLE, CREATE
INDEX, CREATE TABLE, all DBCC statements, DROP TABLE, DROP INDEX, TRUNCATE TABLE, and UPDATE
STATISTICS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STATISTICS.

SQL Server allows deferred name resolution, meaning that a stored procedure compiles without an error even
though it references an object that has not yet been created. SQL Server creates the execution plan and fails
only when the object is actually invoked, for instance in a stored procedure, if the object still doesn't exist.

Stored procedures can be nested easily in SQL Server. Whenever a stored procedure invokes another stored
procedure, the system variable @@NESTLEVEL is incremented by 1. It is decreased by 1 when the called
procedure completes. Use SELECT @@NESTLEVEL inside a procedure or from an ad hoc query session to find
the current nesting depth.

In the following example, a SQL Server stored procedure generates a unique 22-digit value (based on elements of the
system date and time) and returns it to the calling process:

-- A Microsoft SQL Server stored procedure

CREATE PROCEDURE get_next_nbr

 @next_nbr CHAR(22) OUTPUT

AS

BEGIN

 DECLARE @random_nbr INT

 SELECT @random_nbr = RAND() * 1000000

SELECT @next_nbr =

 RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))

 AS CHAR(6), 6) +

 RIGHT('0000' + CAST(DATEPART (yy, GETDATE())

 AS CHAR(4)), 2) +

 RIGHT('000' + CAST(DATEPART (dy, GETDATE())

 AS CHAR(3)), 3) +

 RIGHT('00' + CAST(DATEPART (hh, GETDATE())

 AS CHAR(2)), 2) +

 RIGHT('00' + CAST(DATEPART (mi, GETDATE())

 AS CHAR(2)), 2) +

 RIGHT('00' + CAST(DATEPART (ss, GETDATE())

 AS CHAR(2)), 2) +

 RIGHT('000' + CAST(DATEPART (ms, GETDATE())

 AS CHAR(3)), 3)

END

GO

See Also

CALL
RETURN

CREATE/ALTER INDEX Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Indexes are special objects built on top of tables that speed many data-manipulation operations, such as SELECT,
UPDATE, and DELETE statements. The selectivity of a given WHERE clause and the available query plans the database
query optimizer can choose from is usually based upon the quality of indexes that have been placed on the table in a
given database.

The CREATE INDEX command is not a part of the ANSI SQL standard, and thus varies greatly among vendors.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

Common Vendor Syntax

CREATE [UNIQUE] INDEX index_name ON table_name

(column_name [, ...])

Keywords

CREATE [UNIQUE] INDEX index_name

Creates a new index named index_name in the current database and schema context. Since indexes are
associated with specific tables (or sometimes views), the index_name need only be unique to the table it is
dependent on. The UNIQUE keyword defines the index as a unique constraint for the table and disallows any
duplicate values into the indexed column or columns of the table. (Refer to Section 2.4.)

ON table_name

Declares the pre-existing table that the index is associated with. The index is dependent upon the table. If the
table is dropped, so is the index.

(column_name [, ...])

Defines one or more columns in the table that are indexed. The pointers derived from the indexed column or
columns enable the database query optimizer to greatly speed up data manipulation operations like SELECT and
DELETE statements. All major vendors support composite indexes, also known as concatenated indexes. These
indexes are used when two or more columns are best searched as a unit—for example, last name and first
name.

Rules at a Glance

Indexes are created on tables to speed data manipulation operations that go against the tables such as those in a
WHERE or JOIN clause. Indexes may also speed other operations, like:

Identifying a MIN() or MAX() value in an indexed column.

Sorting or grouping columns of a table.

Searching based on IS NULL or IS NOT NULL.

Fetching data much more quickly when the indexed data is all that is requested. A SELECT statement that
retrieves data from an index and not directly from the table itself is called a covering query. An index that
answers a query in this way is a covering index.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

answers a query in this way is a covering index.

After creating a table, you can create indexes on columns within the table. It is a good idea to create indexes on
columns that are frequently part of the WHERE clause or JOIN clause of the queries that go against a table. For
example, the following statement creates an index on a column in the sales table that is frequently used in the WHERE
clause of queries against that table:

CREATE INDEX ndx_ord_date ON sales(ord_date);

In another case, we want to set up the pub_name and country as a unique index on the publishers table:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country);

Since the index is unique, any new record entered into the publishers table must have a unique combination of
publisher name and country.

Some vendor platforms allow you to create indexes on views as well as tables.

Programming Tips and Gotchas

Concatenated indexes are most useful when queries address the columns of the index starting from the left. If you omit
left-side columns in a query against a concatenated key, the query may not perform as well. For example, assume that
we have a concatenated index on (last_name, first_name). If we query only by first_name, the concatenated index
that starts with last_name and includes first_name may not be any good to us. Some of the vendor platforms have
advanced their query engines to the point where this is much less of a problem.

Creating an index may take as much as 1.2 to 1.5 times more space than the table
currently occupies. Make sure you have enough room! Most of that space is released after
the index has been created.

You should be aware that there are situations in which too many indexes can actually slow down system performance.
In general, indexes greatly speed lookup operations, especially in SELECT statements, against a table or view.
However, every index you create adds overhead whenever you perform an UPDATE, DELETE, or INSERT operation
because the database must then update all dependent indexes with the values that have changed in the table. As a rule
of thumb, six to twelve indexes are about the most you might want to create on a single table.

In addition, indexes take up extra space within the database. The more columns in an index, the more space it
consumes. This is not usually a problem, but sometimes catches novices off guard when developing a new database.

Most databases use indexes to create statistical samplings, usually just called statistics, so that the query engine can
quickly determine which, if any, index or combination of indexes will be most useful for a query. These indexes are
always fresh and useful when the index is first created, but may become stale and less useful over time as records are
deleted, updated, and inserted within the table. Consequently, indexes, like day-old bread, are not guaranteed to be
useful as they age. You need to be sure to refresh, rebuild, and maintain your databases regularly to keep index
statistics fresh.

DB2

DB2 supports the CREATE INDEX statement, but not the ALTER INDEX statement. (DB2 does have the COMMENT ON
INDEX statement to allow users to update the comment for an index without dropping and recreating the index. Also,
DB2 has a RENAME INDEX statement to rename an index with having to drop and recreate it.) The CREATE INDEX
statement has additional clauses that allow partitioning based upon indexed columns, as well as other clauses that
impact how data is physically arranged on disk:

CREATE [UNIQUE] INDEX index_name

ON table_name ({column_name [ASC | DESC]} [, ...])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON table_name ({column_name [ASC | DESC]} [, ...])

[SPECIFICATION ONLY]

[INCLUDE (column_name [ASC | DESC] [,...])]

[{CLUSTER | EXTEND USING index_extension [(constant [,...])] }]

[PCTFREE int] [MINPCTUSED int]

[[DIS]ALLOW REVERSE SCANS]

[COLLECT [SAMPLED [DETAILED]] STATISTICS]

where:

ASC | DESC

Specifies that the values in the index are kept in either ascending (ASC) or descending (DESC) order. When
ASC or DESC is omitted, ASC is used by default.

SPECIFICATION ONLY

Used to indicate that the value defined by table_name is a nickname; that is, it is the name of a table in a
federated database. A DB2 federated database integrates data from heterogeneous data sources, such as tables
on Oracle or SQL Server, and names them locally within the DB2 database as a nickname. To tell the DB2
optimizer about indexes on one of these nicknamed Oracle or SQL Server tables, create an index against the
nickname and declare SPECIFICATION ONLY. DB2 then knows that the index exists and is available to the
optimizer, but that it does not have to create the index.

INCLUDE (column_name [,...])

Adds extra columns to a unique index for added selectivity, but any such included columns are not counted
towards uniqueness. The main use for INCLUDE columns is to build covering indexes. Any columns added with
the INCLUDE clause count towards the column and byte maximum allowed by DB2. INCLUDE is mutually
exclusive of EXTEND USING and SPECIFICATION ONLY clauses, and cannot be used when indexing temporary
tables.

CLUSTER

Declares that the index is clustered. A clustered index specifically controls the physical arrangement of the rows
in the table to speed query I/O. The cluster factor is maintained and improved dynamically as data is inserted
into the table. Only one clustered index is allowed per table. CLUSTER is mutually exclusive of EXTEND USING
and SPECIFICATION ONLY clauses, and cannot be used with temporary tables or tables in append mode.

EXTEND USING index_extension [(constant [,...])]

Names an index extension that manages the index. The index must be defined on a single column that is either
a structured or a distinct type. One or more constants must be provided for any parameters required by the
type. EXTEND cannot be used on a temporary table. Index extensions are very complex and somewhat
uncommon. Refer to the vendor documentation for more detail.

PCTFREE int

Specifies a percentage (int) of space, which must be an integer of 0 to 99, to leave free on each index page of
the index when it is created. When omitted, the default is 10. This option cannot be used on nicknames or
temporary tables.

MINPCTUSED int

Defines the percentage (int) of free space, which must be an integer of 0 to 99, required on an index page
before DB2 will consider merging index pages together. DB2 recommends a value of 50 or below so that the
database will not spend excessive I/O merging index pages. This clause is usually effective only if background
processes are able to gain an occasional table lock. If this is not possible due to heavy usage, consider using the
DB2 command REORG INDEXES. This option cannot be used on nicknames or temporary tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2 command REORG INDEXES. This option cannot be used on nicknames or temporary tables.

[DIS]ALLOW REVERSE SCANS

Declares that the index can or cannot support scans under the order that the index was created in, with ALLOW
and DISALLOW, respectively. The default is DISALLOW. This option cannot be used on nicknames.

COLLECT [SAMPLED [DETAILED]] STATISTICS

Collects index statistics during index creation. If the SAMPLED and DETAILED clauses are left off, then basic
index statistics are created. The DETAILED clause collects extra statistics information for the index, namely
PAGE_FETCH_PAIRS and CLUSTERFACTOR. The SAMPLED clause tells DB2 that sampling, a shortcut, can be
used on extra statistics information from the DETAILED clause.

DB2 will not create a new index where an identical index exists. DB2 considers an index identical to another when one
index contains the same columns in the same order as the other.

DB2 allows online use of a table while a new index is being created. Read access is always available during the index
creation process, but write access is temporarily locked at the end of the index build process. Use the DB2 command
LOCK TABLE to temporarily lock the table and avoid read access. You should also use the DB2 command RUNSTATS to
update index statistics whenever a great deal of data has changed or after an index is created without the COLLECT
STATISTICS clause included in the statement. The following two index creation examples are functionally the same:

-- collect basic index statistics at index creation

CREATE INDEX ndx_ord_date ON sales(ord_date) COLLECT STATISTICS;

-- collect index statistics after index creation

LOCK TABLE sales IN EXCLUSIVE MODE;

CREATE INDEX ndx_ord_date ON sales(ord_date);

RUNSTATS ON TABLE sales AND INDEX ndx_ord_date;

Now, we'll collect detailed statistics using sampling on the publishers table:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)

COLLECT SAMPLED DETAILED STATISTICS;

You may wish to create an index on a nicknamed object. In the example below, the publishers nickname represents
the current_publishers table:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)

SPECIFICATION ONLY;

The following example shows how to create an extended indextype on a structured type column. The
coordinate_positions UDT requires a literal value to maintain the satellite_images column:

CREATE INDEX satellite_images ON gis_sites(coordinates)

EXTEND USING (coordinate_positions (x'00010010010000100020'));

DB2 also supports a statement called CREATE INDEX EXTENSION. It is used to enable
user-defined indexing on typed tables. Refer to the vendor documentation for more
details.

MySQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL supports a form of the CREATE INDEX statement, but not the ALTER INDEX statement. MySQL indexes are
always stored in B-tree structures on the filesystem. Strings within an index are automatically prefix- and end-space-
compressed. MySQL's CREATE INDEX syntax is:

CREATE [UNIQUE | FULLTEXT] INDEX index_name

 ON table_name (column_name(length) [,...])

where:

FULLTEXT

Creates a full-text search index against a column. Full-text indexes are only supported on MyISAM table types,
CHAR, VARCHAR, or TEXT datatypes, and do not support the (length) clause.

MySQL supports the basic industry standard syntax for the CREATE INDEX statement. Interestingly, MySQL also lets
you build an index on the first length characters of a CHAR or VARCHAR column. MySQL requires the (length) clause for
BLOB and TEXT columns. Specifying a length can be useful when selectivity is sufficient in the first, say, 10 characters
of a column, and in those situations where saving disk space is very important. For example:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name(25),

 country(10))

This example indexes only the first 25 characters of the pub_name column and the first 10 characters of the country
column.

As a general rule, MySQL allows at least 16 keys per table with a total maximum length of at least 256 bytes. This can
vary by storage engine, however.

Oracle

Oracle allows the creation of indexes on tables, partitioned tables, clusters, and index-organized tables, as well as on
scalar type object attributes of a typed table or cluster, and on nested table columns using the CREATE INDEX
statement. Oracle also allows several types of indexes, including normal B-tree indexes, BITMAP indexes (useful for
columns that have each value repeated 100 or more times), partitioned indexes, function-based indexes (based on an
expression rather than a column value), and domain indexes.

Oracle index names must be unique within a schema, not just to the table they are
assigned to.

Oracle also supports the ALTER INDEX statement. It is used to change or rebuild an existing index without forcing the
user to drop and recreate the index. Oracle's CREATE INDEX syntax is:

CREATE [UNIQUE | BITMAP] INDEX index_name

{ON

 {table_name ({column | expression} [ASC | DESC] [,...]) [{INDEXTYPE IS

 index_type [PARALLEL [int] | NOPARALLEL] [PARAMETERS ('values') }] |

 CLUSTER cluster_name |

 FROM table_name WHERE condition [LOCAL partitioning] }

[{LOCAL partitioning | GLOBAL partitioning}]

[physical_attributes_clause] [{LOGGING | NOLOGGING}] [ONLINE]

[COMPUTE STATISTICS] [{TABLESPACE tablespace_name | DEFAULT}]

[{COMPRESS int | NOCOMPRESS}] [{NOSORT | SORT}] [REVERSE]

[{PARALLEL [int] | NOPARALLEL}]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[{PARALLEL [int] | NOPARALLEL}]

The syntax for ALTER INDEX is:

ALTER INDEX index_name

{ {ENABLE | DISABLE} | UNUSABLE | RENAME TO new_index_name | COALESCE |

 [NO]MONITORING USAGE | UPDATE BLOCK REFERENCES |

 PARAMETERS ('ODCI_params') | alter_index_partitioning_clause |

 rebuild_clause |

 [DEALLOCATE UNUSED [KEEP int [K | M | G | T]]

 [ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE 'filename']

 [INSTANCE int])]

 [SHRINK SPACE [COMPACT] [CASCADE]]

 [{PARALLEL [int] | NOPARALLEL}]

 [{LOGGING | NOLOGGING}]

 [physical_attributes_clause] }

where the non-ANSI clauses are:

BITMAP

Creates an index bitmap for each index value, rather than indexing each individual row. Bitmaps are best for
low concurrency tables, like read-intensive tables. BITMAP indexes are incompatible with global partitioned
indexes, the INDEXTYPE clause, or index-organized tables without a mapping table association.

ASC | DESC

Specifies that the values in the index are kept in either ascending (ASC) or descending (DESC) order. When
ASC or DESC is omitted, ASC is used by default. However, be aware that Oracle treats DESC indexes as
function-based indexes, so there is some difference in functionality between ASC indexes and DESC indexes.
You may not use ASC or DESC when also using the INDEXTYPE clause. DESC is ignored on BITMAP indexes.

INDEXTYPE IS index_type [PARAMETERS ('values')]

Creates an index on a user-defined type of index_type. Domain indexes require that the user-defined type
already exists (refer to the CREATE/ALTER TYPE Statement section). If the user-defined type requires
arguments, pass them in using the optional PARAMETERS clause. You may also optionally parallelize the
creation of the type index using the PARALLEL clause (explained below in more detail).

CLUSTER cluster_name

Declares a clustering index based on the specified pre-existing cluster_name. On Oracle, a clustering index
physically co-locates two tables that are frequently queried on the same columns, usually a primary key and a
foreign key. (Clusters are created with the Oracle-specific command CREATE CLUSTER.) You do not declare a
table or columns on a CLUSTER index, since both the tables involved and the columns indexed are already
declared with the previously issued CREATE CLUSTER statement.

GLOBAL partitioning

Includes the full syntax of:

GLOBAL PARTITION BY

 {RANGE (column_list) (PARTITION [partition_name] VALUE LESS THAN

 (value_list) [physical_attributes_clause] [TABLESPACE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (value_list) [physical_attributes_clause] [TABLESPACE

 tablespace_name] [LOGGING | NOLOGGING] } [,...]), |

 HASH (column_list) (PARTITION [partition_name]

 {[TABLESPACE tablespace_name] [[OVERFLOW] TABLESPACE

 tablespace_name] [VARRAY varray_name STORE AS {LOB

 lob_segment_name] [LOB (lob_name) STORE AS [lob_segment_name]

 [TABLESPACE tablespace_name] } } |

 [STORE IN (tablespace_name [,...])] [OVERFLOW STORE IN

 (tablespace_name [,...]), } [,...] }

The GLOBAL PARTITION clause declares that the global index is manually partitioned via either range or hash
partitioning onto partition_name. (The default is to partition the index equally in the same way the underlying table is
partitioned, if at all.) You can specify a maximum of 32 columns, though none may be ROWID. You may also apply the
[NO]LOGGING clause, TABLESPACE clause, and the physical_attributes_clause (defined earlier) to a specific partition. You
cannot partition on ROWID. You may include one or more partitions, along with any attributes, in a comma-delimited
list, according to the following:

RANGE

Creates a range-partitioned global index based on the range of values from the table columns listed in the
column_list.

VALUE LESS THAN (value_list)

Sets an upper bound for the current partition of the global index. The values in the value_list correspond to the
columns in the column_list, both of which are comma-delimited lists of columns. Both lists are prefix-dependent,
meaning that for a table with columns (a, b, c), you could define partitioning on (a, b) or (a, b, c), but not (b,
c). The last value in the list should always be the keyword MAXVALUE.

HASH

Creates hash-partitioned global index assigned rows in the index to each partition based on a hash function of
the values of the columns in the column_list. You may specify the exact tablespace to store special database
objects such as VARRAYs, and LOBs, and for any OVERFLOW of the specified (or default) tablespaces.

LOCAL partitioning

Supports local index partitioning on range-partitioned indexes, list-partitioned indexes, hash-partitioned
indexes, and composite-partitioned indexes. You may include zero or more partitions, along with any attributes,
in a comma-delimited list. When omitted, Oracle generates one or more partitions consistent with those of the
table partition. Index partitioning is done in one of three ways:

Range- and list-partitioned indexes

Applied to regular or equipartitioned tables. Range- and list-partitioned indexes (synonyms for the same
thing) follow the syntax:

LOCAL [(PARTITION [partition_name]

 { [physical_attributes_clause] [TABLESPACE tablespace_name]

 [LOGGING | NOLOGGING] |

 [COMPRESS | NOCOMPRESS] } [,...])]

All of the options are the same as for GLOBAL PARTITION (earlier), except that the scope is for a local
index.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hash-partitioned indexes

Applied to hash-partitioned tables. Hash-partitioned indexes allow you to choose between the earlier
syntax and the optional syntax:

 LOCAL {STORE IN (tablespace_name [,...]) |

 (PARTITION [partition_name [TABLESPACE tablespace_name]] }

to store the index partition on a specific tablespace. When you supply more tablespace names than
index partitions, Oracle will cycle through the tablespaces when it partitions the data.

Composite-partitioned indexes

Composite-partitioned indexes can be applied on composite-partitioned tables using the following
syntax:

LOCAL [STORE IN (tablespace_name [,...])]

PARTITION [partition_name

 {[physical_attributes_clause] [TABLESPACE tablespace_name]

 [LOGGING | NOLOGGING] |

 [COMPRESS | NOCOMPRESS] }

 [{STORE IN (tablespace_name [,...]) |

 (SUBPARTITION [subpartition_name [TABLESPACE

 tablespace_name]) }]

You may use the LOCAL STORE clause shown under the hash-partitioned indexes entry or from the
LOCAL clause under the range- and list-partitioned indexes entry. (When using the LOCAL clause,
substitute the keyword SUBPARTITION for PARTITION.)

physical_attributes_clause

Establishes values for one or more of the following settings: PCTFREE int (discussed here), INITRANS int, and
STORAGE (discussed in theCREATE/ALTER TABLE Statement section). When omitted, Oracle defaults to
PCTFREE 10 and INITRANS 2. The default for MAXTRANS depends on the system block size, according to the
following:

PCTFREE int

Designates the percentage of free space to leave on each block of the index as it is created. This speeds up new
entries and updates on the table. However, PCTFREE is only applied when the index is created. It is not
maintained over time. Therefore, the amount of free space can erode over time as records are inserted,
updated, and deleted from the index. This clause is not allowed on index-organized tables.

INITRANS int

Designates the initial number of concurrent transactions allocated to each data block of the database. The value
may range from 1 to 255. If a physical_attributes_clause is omitted, Oracle defaults to PCTFREE 10 and INITRANS
2.

LOGGING | NOLOGGING

Tells Oracle to log the creation of the index on the redo logfile (LOGGING), or to not log it (NOLOGGING). This
clause also sets the default behavior for subsequent bulk loads using Oracle SQL* Loader. For partitioned
indexes, this clause establishes the default value of all partitions, segments associated with the partitions, and
the defaults used on any partitions or subpartitions later added with an ALTER TABLE...ADD PARTITION
statement. (When using NOLOGGING, we recommend that you take a full backup after the index has been
loaded in case the index must be rebuilt due to a failure.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ONLINE

Allows data manipulation on the table while the index is being created. Even when ONLINE, there is a very small
window at the end of the create index operation where the table will be locked while the index creation
completes. Any changes made to the base table at that time will then be reflected in the newly created index.
ONLINE is incompatible with bitmap, cluster, or parallel clauses. It also cannot be used on indexes on a
UROWID column or on index-organized tables with more than 32 columns in their primary keys.

COMPUTE [STATISTICS]

Collects statistics while the index is created, when it can be done at relatively little cost. Otherwise, you will
have to collect statistics after the index is created.

TABLESPACE tablespace_name | DEFAULT

Assigns the index to a specific tablespace. When omitted, the index is placed on the default tablespace. Use the
DEFAULT keyword to explicitly place an index into the default tablespace. (When local partitioned indexes are
placed in TABLESPACE DEFAULT, the index partition (or subpartition) is placed in the corresponding tablespace
of the base table partition (or subpartition).

COMPRESS [int] | NOCOMPRESS

Enables or disables key compression, respectively. Compression eliminates repeated occurrences of key column
values, yielding a substantial space savings at the cost of speed. The integer value, int, defines the number of
prefix keys to compress. The value can range from 1 to the number of columns in the index for nonunique
indexes, and from 1 to n-1 columns for unique indexes. The default is NOCOMPRESS, but if you specify
COMPRESS without an int value, the default is COMPRESS n (for nonunique indexes) or COMPRESS n-1 (for
unique indexes), where n is the number of columns in the index. COMPRESS can only be used on nonpartitioned
and nonbitmapped indexes.

NOSORT | REVERSE

NOSORT an index to be created quickly for a column that is already sorted in ascending order. If the values of
the column are not in perfect ascending order, the operation aborts, allowing a retry without the NOSORT
option. REVERSE, by contrast, places the index blocks in storage by reverse order (excluding rowid). REVERSE is
mutually exclusive of NOSORT and cannot be used on a bitmap index or an index-organized table. NOSORT is
most useful for creating indexes immediately after a base table is loaded with data in pre-sorted order.

PARALLEL [int] | NOPARALLEL

Allows the parallel creation of the index using multiple server process, each operating on a distinct subset of the
index, to speed up the operation. An optional integer value, int, may be supplied to define the exact number of
parallel threads used in the operation. When omitted, Oracle calculates the number of parallel threads to use.
NOPARALLEL, the default, causes the index to be created serially.

{ENABLE | DISABLE}

Enables or disables a pre-existing function-based index, respectively. You cannot specify any other clauses of
the ALTER INDEX statement with ENABLE or DISABLE.

UNUSABLE

Marks the index (or index partition or subpartition) as unusable. When UNUSABLE, an index (or index partition
or subpartition) may only be rebuilt or dropped and recreated before it can be used.

RENAME TO new_index_name

Renames the index from index_name to new_index_name.

COALESCE

Merges the contents of index blocks used to maintain the index-organized table so that the blocks can be
reused. COALESCE is similar to SHRINK, though COALESCE compacts the segments less densely than does
SHRINK, and it does not release unused space.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SHRINK, and it does not release unused space.

[NO]MONITORING USAGE

Declares that Oracle should clear existing information on index usage and monitor the index, posting
information in the V$OBJECT_USAGE dynamic performance view, until ALTER INDEX ... NOMONITOR USAGE is
executed.

UPDATE BLOCK REFERENCES

Updates all stale guess data block addresses stored as part of the index row on normal or domain indexes of an
index-organized table. The guess data blocks contain the correct database addresses for the corresponding
blocks identified by the primary key. This clause cannot be used with other clauses of the ALTER INDEX
statement.

PARAMETERS ('ODCI_params')

Specifies a parameter string passed, without interpretation, to the ODCI indextype routine of a domain index.
The parameter string, called 'ODCI_params', may be up to 1,000 characters long. Refer to the vendor
documentation for more information on ODCI parameter strings.

alter_index_partitioning_clause

Refer to Oracle partitioned and subpartitioned tables in the CREATE/ALTER TABLE Statement section for more
details.

rebuild_clause

Rebuilds the index or a specific partition (or subpartition) of the index. A successful rebuild marks an UNUSABLE
index as USABLE. The syntax for the rebuild_clause is:

REBUILD {[NO]REVERSE | [SUB]PARTITION partn_name}

 [{PARALLEL [int] | NOPARALLEL}] [TABLESPACE tablespace_name]

 [PARAMETERS ('ODCI_params')] [ONLINE] [COMPUTE STATISTICS]

 [COMPRESS int | NOCOMPRESS] [[NO]LOGGING]

 [physical_attributes_clause]

where:

[NO]REVERSE

Stores the bytes of the index block in reverse order and excludes rows when the index is rebuilt
(REVERSE) or stores the bytes of the index blocks in regular order (NOREVERSE).

DEALLOCATE UNUSED [KEEP int [K | M | G | T]

Deallocates unused space at the end of the index (or at the end of each range- or hash-partition of a partitioned
index) and frees the space for other segments in the tablespace. The optional KEEP keyword defines how many
bytes, int, above the high-water mark the index will keep after deallocation. You can append a suffix to the int
value to indicate that the value equals kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T). When the
KEEP clause is omitted, all unused space is freed.

ALLOCATE EXTENT ([SIZE int [K | M | G | T]] [DATAFILE 'filename'] [INSTANCE int])

Explicitly allocates a new extent for the index using the specified parameters. You may mix and match any of
the parameters. SIZE specifies the amount of next extent. The size of the extents may be in bytes (no suffix),
kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T). DATAFILE allocates an entirely new datafile to
the index extent. INSTANCE, used only on Oracle Real Application Clusters, makes a new extent available to a
freelist group associated with the specified instance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SHRINK SPACE [COMPACT] [CASCADE]

Shrinks the index segments, though only segments in tablespaces with automatic segment management may
be shrunk. Shrinking a segment moves rows in the table, so make sure ENABLE ROW MOVEMENT is also used in
the ALTER TABLE...SHRINK statement. Oracle compacts the segment, releases the emptied space, and adjusts
the high-water mark unless the optional keywords COMPACT and/or CASCADE are applied. The COMPACT
keyword only defragments the segment space and compacts the index, but it does not readjust the high-water
mark nor empty the space immediately. The CASCADE keyword performs the same shrinking operation (with
some restrictions and exceptions) on all dependent objects of the index. The statement ALTER INDEX ...
SHRINK SPACE COMPACT is functionally equivalent to ALTER INDEX ... COALESCE.

By default, Oracle indexes are non-unique. It is also important to know that Oracle's regular B-tree indexes do not
include records that have a null key value.

Oracle does not support indexes on columns with the following datatypes: LONG, LONG RAW, REF (with the SCOPE
attribute), or user-defined datatypes. You may create indexes on functions and expressions, but they cannot allow null
values or aggregate functions. When you create an index on a function, the function, if it has no parameters, should
show an empty set. For example: function_name(). If the function is a UDF, it must be DETERMINISTIC.

Oracle supports a special index structure called an index-organized table (IOT). IOTs combine the table data and
primary key index on a single physical structure, instead of having separate structures for the table and for the index.
IOTs are created using the CREATE TABLE...ORGANIZATION INDEX statement. Refer to CREATE/ALTER TABLE
Statement for more information on making an IOT.

Oracle automatically creates any additional indexes on an index-organized table as secondary indexes. Secondary
indexes do not support the REVERSE clause.

Oracle allows the creation of partitioned indexes and tables with the PARTITION clause. Consequently, Oracle's indexes
also support partitioned tables. The LOCAL clause tells Oracle to create separate indexes for each partition of a table.
The GLOBAL clause tells Oracle to create a common index for all the partitions.

Note that any time an object name is referenced in the syntax diagram, you may optionally supply the schema. This
applies to indexes, tables, etc., but not to tablespaces. You must have the explicitly declared privilege to create an
index in a schema besides the current one.

As an example, you can use a statement such as the following to create an Oracle index that is compressed, created in
parallel, and with compiled statistics, but without logging the creation:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)

COMPRESS 1 PARALLEL NOLOGGING COMPUTE STATISTICS;

As with other Oracle object creation statements, you can control how much space they consume and in what
increments they grow. The following example constructs an index in Oracle on a specific tablespace with specific
instructions for how the data is to be stored:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)

STORAGE (INITIAL 10M NEXT 5M PCTINCREASE 0)

TABLESPACE publishers;

For example, when you create the housing_construction table as a partitioned table on an Oracle server, you should
also create a partitioned index with its own index partitions:

CREATE UNIQUE CLUSTERED INDEX project_id_ind

ON housing_construction(project_id)

GLOBAL PARTITION BY RANGE (project_id)

 (PARTITION part1 VALUES LESS THAN ('H')

 TABLESPACE construction_part1_ndx_ts,

 PARTITION part2 VALUES LESS THAN ('P')

 TABLESPACE construction_part2_ndx_ts,

 PARTITION part3 VALUES LESS THAN (MAXVALUE)

 TABLESPACE construction_part3_ndx_ts);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If in fact the housing_construction table used a composite partition, we could accommodate that here:

CREATE UNIQUE CLUSTERED INDEX project_id_ind

ON housing_construction(project_id)

STORAGE (INITIAL 10M MAXEXTENTS UNLIMITED)

LOCAL (PARTITION part1 TABLESPACE construction_part1_ndx_ts,

 PARTITION part2 TABLESPACE construction_part2_ndx_ts

 (SUBPARTITION subpart10, SUBPARTITION subpart20,

 SUBPARTITION subpart30, SUBPARTITION subpart40,

 SUBPARTITION subpart50, SUBPARTITION subpart60),

 PARTITION part3 TABLESPACE construction_part3_ndx_ts);

In the following example, we could rebuild the project_id_ind index that was created earlier by using parallel
execution processes to scan the old index and build the new index in reverse order:

ALTER INDEX project_id_ind

REBUILD REVERSE PARALLEL;

Similarly, we could split out an additional partition on project_id_ind:

ALTER INDEX project_id_ind

SPLIT PARTITION part3 AT ('S')

INTO (PARTITION part3_a TABLESPACE constr_p3_a LOGGING,

 PARTITION part3_b TABLESPACE constr_p3_b);

PostgreSQL

PostgreSQL allows the creation of ascending-order indexes, as well as UNIQUE indexes. Its implementation also
includes a performance enhancement under the USING clause. PostgreSQL's CREATE INDEX syntax is:

CREATE [UNIQUE] INDEX index_name ON table_name

[USING {BTREE | RTREE | HASH}]

{function_name | (column_name [,...]) }

[WHERE condition]

where:

USING [BTREE | RTREE | HASH | GIST]

Specifies one of three dynamic access methods to optimize performance. Of particular importance is the fact
that the indexes are fully dynamic and do not require periodic refreshes of their statistics. The USING options
are as follows:

BTREE

Uses Lehman-Yao's high-concurrency B-tree structures to optimize the index. This is the default method
when no other is specified. B-tree indexes, the default, can be invoked for comparisons using =, <, <=,
>, and >=. B-tree supports multicolumn indexes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

>, and >=. B-tree supports multicolumn indexes.

RTREE

Uses Guttman's quadratic-split algorithm R-tree structures to optimize the index. R-tree indexes can be
invoked for comparison using <<, &<, &>, >> @, ~=, and &&. R-tree indexes must be single-column
indexes.

HASH

Uses Litwin's linear hashing algorithm to optimize the index. Hash indexes can be invoked for
comparisons using =. Hash indexes must be single-column indexes.

GIST

Uses Generalized Index Search Trees (GISTs) to optimize the index. GIST indexes may be multicolumn.

function_name

Defines a user-defined function, rather than a column from the base table, as the basis of the index values. A
function-based index is mutually exclusive of a regular column-based index.

WHERE condition

Defines a WHERE clause search condition, which is then used to generate a partial index. A partial index
contains entries for a select set of records in the table, not all records of the table. You can get some interesting
effects from this clause. For example, you can pair UNIQUE and WHERE to enforce uniqueness for a subset of
the table rather than for the whole table. The WHERE clause must:

Reference columns in the base table (though they need not be columns of the index itself).

Not make use of aggregate functions.

Not use subqueries.

In PostgreSQL, a column may have an associated operator class based on the datatype of the column. An operator class
specifies the operators for a particular index. Although users are free to define any valid operator class for a given
column, the default operator class is the appropriate operator class for that column type.

In the following example, we create an index using the GIST indextype. We also make sure that uniqueness is only
enforced for publishers outside of the USA:

CREATE UNIQUE INDEX unq_pub_id ON publishers(pub_name, country)

USING GIST

WHERE country <> 'USA';

SQL Server

SQL Server's CREATE INDEX syntax is:

CREATE [UNIQUE] [[NON]CLUSTERED] INDEX index_name

ON {table_name | view_name} (column [ASC | DESC] [,...])

[WITH [PAD_INDEX]

 [[,] FILLFACTOR = int]

 [[,] IGNORE_DUP_KEY]

 [[,] DROP_EXISTING]

 [[,] STATISTICS_NORECOMPUTE]]

 [[,] SORT_IN_TEMPDB]]

[ON filegroup]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[ON filegroup]

where:

[NON]CLUSTERED

Controls the physical ordering of data for the table using either a CLUSTERED or NONCLUSTERED index. The
columns of a CLUSTERED index determine the order in which the records of the table are physically written.
Thus, if you create an ascending clustered index on column A of table Foo, the records will be written to disk in
ascending alphabetical order. The NONCLUSTERED clause, the default, when either value is omitted, creates a
secondary index containing only pointers and has no impact on how the actual rows of the table are written to
disk.

ASC | DESC

Specifies that the values in the index are kept in either ascending (ASC) or descending (DESC) order. When
ASC or DESC is omitted, ASC is used by default.

WITH

Allows the specification of one or more optional attributes for the index.

PAD_INDEX

Specifies that space should be left open on each 8K index page, according to the value established by the
FILLFACTOR setting.

FILLFACTOR = int

Declares a percentage value, int, from 1 to 100 that tells SQL Server how much of each 8K data page should be
filled at the time the index is created. This is useful to reduce I/O contention and page splits when a data page
fills up. Creating a clustered index with an explicitly defined fillfactor can increase the size of the index, but also
speed up processing in certain circumstances.

IGNORE_DUP_KEY

Controls what happens when a duplicate record is placed into a unique index through an insert or update
operation. If this value is set for a column, only the duplicate row is excluded from the operation. If this value is
not set, then all records in the operation (even nonduplicate records) are rejected as duplicates.

DROP_EXISTING

Drops any pre-existing indexes on the table and rebuilds the specified index.

STATISTICS_NORECOMPUTE

Stops SQL Server from recomputing index statistics. This can speed the CREATE INDEX operation, but it may
mean that the index is less effective.

SORT_IN_TEMPDB

Stores any intermediate results used to build the index in the system database, TEMPDB. This increases the
space needed to create the index, but could speed processing if TEMPDB is on a different disk than the table
and index.

ON filegroup

Creates the index on a given pre-existing filegroup. This enables the placing of indexes on a specific hard disk
or RAID device. Issuing a CREATE CLUSTERED INDEX...ON FILEGROUP effectively moves a table to the new
filegroup, since the leaf level of the clustered index is the same as the actual data pages of the table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

filegroup, since the leaf level of the clustered index is the same as the actual data pages of the table.

SQL Server allows the creation of a unique clustered index on a view, effectively materializing the view. This can greatly
speed up data retrieval operations against the view. Once a view has a unique clustered index, nonclustered indexes
also can be added to the view. Note that the view also must be created using the SCHEMABINDING option. Indexed
views are only allowed in SQL Server 2000 Enterprise Edition, unless you add a NOEXPAND hint to the view. Indexed
views support data retrieval, but not data modification. (See the SQL Server section of CREATE/ALTER VIEW
Statement" for specific restrictions on indexed views.)

SQL Server allows up to 249 nonclustered indexes (unique or non-unique) on a table, as well as one primary key index.
Index columns may not be of datatype NTEXT, TEXT, or IMAGE. Concatenated keys may contain up to 16 columns
and/or a total of 900 bytes across all fixed-length columns.

SQL Server automatically parallelizes the creation of the index according to the configuration option max degree of
parallelism.

It is often necessary to build indexes that span several columns—i.e., a concatenated key. Here is an example:

CREATE UNIQUE INDEX project2_ind

ON housing_construction(project_name, project_date)

WITH PAD_INDEX, FILLFACTOR = 80

ON FILEGROUP housing_fg

GO

Adding the PAD_INDEX clause and setting the FILLFACTOR to 80 tells SQL Server to leave the index and data pages
80% full, rather than 100% full. The example also tells SQL Server to create the index on the housing_fg filegroup,
rather than the default filegroup.

See Also

CREATE/ALTER TABLE
DROP

CREATE/ALTER METHOD Statement

The CREATE/ALTER METHOD statements allow the creation of a new database method or the alteration of an already
existing database method. An easy (but loose) way to think of a method is that it is a user-defined function associated
with a user-defined type. For example, a method called Office, of type Address, can accept a VARCHAR input
parameter and passes out a result of Address.

An implicitly defined method is created every time a structured type is created (see CREATE/ALTER TYPE Statement" for
more details). Using a combination of the CREATE TYPE statement and the CREATE METHOD statement creates user-
defined methods.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

{CREATE | ALTER} [INSTANT | STATIC] METHOD method_name

 ([[{IN | OUT | INOUT}] param datatype [AS LOCATOR] [RESULT] [,...])

RETURNS datatype

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RETURNS datatype

FOR udt_name

[SPECIFIC specific_name]

code_body

Keywords

CREATE | ALTER [INSTANT | STATIC] method_name

Creates a new method or alters an existing method and, optionally, specifies it as an INSTANT or STATIC
method.

([IN | OUT | INOUT] param datatype [,...])

Declares one or more parameters to be passed into the method in a comma-delimited list enclosed in
parentheses. Parameters used with a method may pass a value IN, OUT, or both in and out via INOUT. The
syntax for the parameter declaration is:

[{IN | OUT | INOUT}] parameter_name1 datatype,

[{IN | OUT | INOUT}] parameter_name2 datatype,[...]

Make sure the name is unique within the method. When used with ALTER, this clause adds parameters to a pre-existing
method. Refer to Chapter 2 for details on datatypes.

AS LOCATOR

The optional AS LOCATOR clause is used to validate an external routine with a RETURNS parameter that is a
BLOB, CLOB, NCLOB, ARRAY, or user-defined type. In other words, the locator (i.e., a pointer) for the LOB is
returned but not the entire value of the LOB.

RESULT

Designates a user-defined type, but is not needed for standard datatypes.

RETURNS datatype

Declares the datatype of the results returned by a method. The key purpose of a user-defined method is to
return a value. If you need to change the datatype of a RETURNS parameter on the fly, use the CAST clause
(refer to the function CAST). For example, RETURNS VARCHAR(12) CAST FROM DATE.

FOR udt_name

Associates the method with a specific, pre-existing user-defined type, created using CREATE TYPE.

SPECIFIC specific_name

Uniquely identifies the function generally used with user-defined types.

Rules at a Glance

User-defined methods are essentially a different approach to the same output provided by user-defined functions. For
example, consider the following two pieces of code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

example, consider the following two pieces of code:

CREATE FUNCTION my_fcn (order_udt)

RETURNS INT;

CREATE METHOD my_mthd ()

RETURNS INT

FOR order_udt;

Although the code sections for the function and method are different, they do exactly the same thing.

The rules for use and invocation of methods are otherwise the same as for functions.

Programming Tips and Gotchas

The main difficulty with methods is that they are an object-oriented approach to the same sort of functionality provided
by user-defined functions. Since they accomplish the same work, using a different approach, it can be hard to decide
which approach to use.

DB2

DB2 supports both the CREATE METHOD and ALTER METHOD statements:

CREATE [SPECIFIC] METHOD method_name

 ([[{IN | OUT | INOUT}] [param] datatype [AS LOCATOR] [RESULT] [,...])

[RETURNS datatype [{AS LOCATOR | CAST FROM datatype [AS LOCATOR] }]

FOR udt_name

EXTERNAL [NAME 'name'] [TRANSFORM GROUP group_name]

code_body

The syntax for ALTER METHOD is quite a bit simpler:

ALTER METHOD method_name

FOR udt_name

EXTERNAL NAME 'name'

where:

[SPECIFIC] METHOD method_name

Defines the method being created or altered. The optional SPECIFIC keyword identifies a method using the
name assigned (either implicitly or explicitly) using the CREATE TYPE statement. The method must exist in the
named or current schema.

CAST FROM datatype

Returns a different datatype to the invoking statement from the datatype that was returned by the method.

EXTERNAL [NAME 'external_name'] [TRANSFORM GROUP group_name]

Indicates that the statement is registering an external method, rather than creating an internal (SQL) method.
The user-defined type created using the CREATE TYPE statement must be defined with a LANGUAGE other than
SQL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NAME 'name'

Defines the name of the external code that implements the method. The name may be up to 254 characters
long. The name must be appropriate for the type of LANGUAGE associated with the user-defined type. This
clause may also define the name of an internal (SQL) method specification for user-defined types defined with
LANGUAGE SQL.

TRANSFORM GROUP group_name

Specifies a transform group for user-defined structure type transformations when the method is invoked. When
omitted, the transform group DB2_FUNCTION is the default.

The method specification is determined by the LANGUAGE setting of the CREATE TYPE statement associated with the
method. For LANGUAGE SQL, the method specification is SQL. For any other LANGUAGE setting, the method
specification is external.

The following example method, called office_zip, checks to see if a ZIP Code is valid based on the user-defined type
address_type:

CREATE METHOD office (address address_type)

RETURNS INTEGER

FOR address_type

RETURN

(CASE

 WHEN (self..zip = address.zip) THEN 1 -- valid

 ELSE 0 -- invalid

END);

In the next example, the method distance uses and external routine and transform group to process the between two
address_types:

CREATE METHOD distance (address_type)

FOR address_type

EXTERNAL NAME 'addrlib!distance'

TRANSFORM GROUP method_group;

Later, we could change the method so that it uses a different external routine:

ALTER METHOD distance ()

FOR TYPE address_type

EXTERNAL NAME 'newaddrlib!distance_2';

MySQL

Not supported.

Oracle

Not supported.

PostgreSQL

Not supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

Not supported.

See Also

CREATE/ALTER TYPE

CREATE ROLE Statement

CREATE ROLE allows the creation of a named set of privileges that may be assigned to users of a database. When a role
is granted to a user, that user gets all the privileges and permissions of that role. Roles are generally accepted as one
of the best means for maintaining security and controlling privileges within a database.

Platform Command

DB2 Not supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

CREATE ROLE role_name [WITH ADMIN {CURRENT_USER | CURRENT_ROLE}]

Keywords

CREATE ROLE role_name

Creates a new role and differentiates that role from a host DBMS user and other roles. A role can be assigned
any permission that a user can be assigned. The important difference is that a role can then be assigned to one
or more users, thus giving them all the permissions of that role.

WITH ADMIN {CURRENT_USER | CURRENT_ROLE}

Assigns a role immediately to the currently active user or currently active role along with the privilege to pass
the use of the role on to other users. By default, the statement defaults to WITH ADMIN CURRENT_USER.

Rules at a Glance

Using roles for database security can greatly ease administration and user maintenance. The general steps for using
roles in database security are:

1. Assess the needs for roles and pick the role names (e.g., administrator, manager, data_entry, report_writer, etc.).

2. Assign permissions to each role as if it were a standard database user using the GRANT statement. For
example, the manager role might have permissions to read and write from all user tables in a database, while
the report_writer role only has permissions to execute read-only reports against certain reporting tables in the
database.

3. Use the GRANT statement to grant roles to users of the system according to the types of work they will
perform.

Permissions can be disabled using the REVOKE command.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

The main problem with roles is that occasionally a database administrator will provide redundant permissions to a role
and separately to a user. If you ever need to prevent a user's access to the resource in situations like this, you usually
will need to REVOKE the permissions twice. The role must be revoked from the user and then the specific user-level
privilege must also be revoked from the user.

DB2

Not supported.

Instead, DB2 uses operating system groups, so you can achieve similar functionality but you need to:

1. Create an OS group.

2. Grant or revoke permissions to the group.

3. Add users to the group at the OS level.

DB2 allows OS groups to be assigned special admin roles at the instance level using the sysadm_group,
sysctrl_group, and sysmaint_group configuration parameters.

MySQL

Not supported.

Oracle

Although it is not currently supported by the ANSI standard, Oracle also offers an ALTER ROLE statement. Oracle
supports the concept of roles, though Oracle's implementation of the commands is very different from the ANSI SQL
standard:

{CREATE | ALTER} ROLE role_name

 [NOT IDENTIFIED |

 IDENTIFIED {BY password | EXTERNALLY | GLOBALLY |

 USING package_name}]

where:

CREATE | ALTER ROLE role_name

Identifies the name of the new role being created or the pre-existing role being modified.

NOT IDENTIFIED

Declares that no password is needed for the role to receive authorization to the database. This is the default.

IDENTIFIED

Declares that the users of the role must authenticate themselves by the method indicated before the role is
enabled via the SET ROLE command, where:

BY password

Creates a local role authenticated by the string value of password. Only single-byte characters are
allowed in the password even when using a multibyte character set.

EXTERNALLY

Creates an external role that is authenticated by the operating system or a third-party provider. In
either case, the external authentication service will likely require a password.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

either case, the external authentication service will likely require a password.

GLOBALLY

Creates a global role that is authenticated by an enterprise directory service, such as an LDAP directory.

USING package_name

Creates an application role that enables a role only through an application that uses a PL/SQL package
of package_name. If you omit the schema, Oracle assumes that the package is in your schema.

In Oracle, the role is created first, then granted privileges and permissions as if it is a user via the GRANT command.
When users want to get access to the permissions of a role protected by a password, they use the SET ROLE command.
If a password is placed on the role, any user wishing to access it must provide the password with the SET ROLE
command.

Oracle ships with several preconfigured roles. CONNECT, DBA, and RESOURCE are available in all versions of Oracle.
EXP_FULL_DATABASE and IMP_FULL_DATABASE are newer roles used for import and export operations. The GRANT
statement reference has a more detailed discussion of all of the preconfigured roles available in Oracle.

The following example uses CREATE to specify a new role in Oracle, GRANTs it privileges, assigns it a password with
ALTER ROLE, and GRANTs that role to a couple of users:

CREATE ROLE boss;

GRANT ALL ON employee TO boss;

GRANT CREATE SESSION, CREATE DATABASE LINK TO boss;

ALTER ROLE boss IDENTIFIED BY le_grande_fromage;

GRANT boss TO emily, jake;

PostgreSQL

Although PostgreSQL does not support the CREATE ROLE command, it offers a nearly identical facility of its own called
CREATE GROUP. PostgreSQL also offers an ALTER GROUP statement to modify existing groups. In PostgreSQL, a group
and a role are identical:

{CREATE | ALTER} GROUP name

[[WITH] {SYSID int | USER username [,...] }]

[{DROP | ADD} username [,...] }

where:

{CREATE | ALTER} GROUP name

Specifies if a new group (i.e., role) is created or if an existing group is modified where name is the name of the
group to create or modify.

WITH {SYSID int | USER username [,...]

Assigns an explicit group ID to the new group, with the SYSID clause, or assigns a list of one or more pre-
existing users to the group. When omitted, PostgreSQL will create the group using the highest assigned group
ID plus one (starting at 1). The WITH clause is only used with the CREATE GROUP statement.

{DROP | ADD} username

Drops or adds one or more pre-existing users to the group. Used only with the ALTER GROUP clause.

Use the DROP GROUP clause to drop a group you no longer want.

SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

Microsoft SQL Server does not support the CREATE ROLE command, but has the equivalent capability via the system
stored procedure sp_add_role.

See Also

GRANT
REVOKE

CREATE SCHEMA Statement

This statement creates a schema—i.e., a named group of related objects. A schema is a collection of tables, views, and
permissions granted to specific users or roles. According to the ANSI standard, specific object permissions are not
schema objects in themselves and do not belong to a specific schema. However, roles are sets of privileges that do
belong to a schema.

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Supported, with limitations

SQL2003 Syntax

CREATE SCHEMA [schema_name] [AUTHORIZATION owner_name]

[DEFAULT CHARACTER SET char_set_name]

[PATH schema_name [,...]]

 [ANSI CREATE statements [...]]

 [ANSI GRANT statements [...]]

Keywords

CREATE SCHEMA [schema_name]

Creates a schema called schema_name. When omitted, the database will create a schema name for you using the
name of the user who owns the schema.

AUTHORIZATION owner_name

Sets the owner_name as the user who owns the schema. When omitted, the current user is set as the owner.
The ANSI standard allows you to omit either the schema_name or the AUTHORIZATION clause, or to use them
both together.

DEFAULT CHARACTER SET char_set_name

Declares a default character set of char_set_name for all objects created within the schema.

PATH schema_name [,...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PATH schema_name [,...]

Optionally declares a file path and filename for any unqualified routines (i.e., stored procedures, user-defined
functions, user-defined methods) in the schema.

ANSI CREATE statements [...]

Contains one or more CREATE statements. No commas are used between the CREATE statements.

ANSI GRANT statements [...]

Contains one or more GRANT statements to previously defined objects. Usually, the objects were created earlier
in the same CREATE SCHEMA statement, but they may be any previously created object. No commas are used
between the GRANT statements.

Rules at a Glance

The CREATE SCHEMA statement is a container that can hold many other CREATE and GRANT statements. The most
common way to think of a schema is as all of the objects that a specific user owns. For example, the user jake may
own several tables and views including the table, publishers, in his own schema. Meanwhile, the user dylan may own
several other tables and views in his schema, but may also own his own separate copy of the publishers table.

The ANSI standard requires that all CREATE statements are allowed in a CREATE SCHEMA statement. In practice, most
implementations of CREATE SCHEMA only allow three subordinate statements: CREATE TABLE, CREATE VIEW, and
GRANT. The order of the commands is not important, meaning you can grant privileges on tables or views whose
CREATE statements appear later in the CREATE SCHEMA statement.

Programming Tips and Gotchas

It is not required, but is considered a best practice, to arrange the objects and grants within a CREATE SCHEMA
statement in an order that will execute naturally. In other words, CREATE VIEW statements should follow the CREATE
TABLE statements that they depend on, and then GRANT statements should come last.

If your database system uses schemas, we recommend that you always reference your objects by schema and then
object name (as in jake.publishers). If you do not include a schema qualifier, the database platform will typically
assume the default schema for the current user connection.

Some database platforms do not explicitly support the CREATE SCHEMA command. However, they implicitly create a
schema when a user creates database objects. For example, Oracle creates a schema whenever a user is created. The
CREATE SCHEMA command is simply a single-step method of creating all the tables, views, and other database objects
along with their permissions.

DB2

DB2 supports the basic elements of the CREATE SCHEMA statement. It does not support the PATH or DEFAULT
CHARACTER SET clauses:

CREATE SCHEMA [schema_name] [AUTHORIZATION owner_name]

 [ANSI CREATE statements [...]]

 [ANSI GRANT statements [...]]

The syntax and usage is otherwise identical to the ANSI standard.

DB2 creates a schema implicitly whenever a new schema is referenced in a GRANT or CREATE statement.

DB2 does not support an ALTER SCHEMA statement.

MySQL

Not supported.

Oracle

In Oracle, the CREATE SCHEMA does not create a schema—only the CREATE USER statement does that. CREATE
SCHEMA allows a user to perform multiple CREATEs and GRANTs in a previously created schema in one SQL statement:

CREATE SCHEMA AUTHORIZATION schema_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE SCHEMA AUTHORIZATION schema_name

 [ANSI CREATE statements [...]]

 [ANSI GRANT statements [...]]

Note that Oracle only allows ANSI standard CREATE TABLE, CREATE VIEW, and GRANT statements within a CREATE
SCHEMA statement. You should not use any of Oracle's extensions to these commands when using the CREATE
SCHEMA statement.

The following Oracle example places the permissions before the objects within the CREATE SCHEMA statement:

CREATE SCHEMA AUTHORIZATION emily

 GRANT SELECT, INSERT ON view_1 TO sarah

 GRANT ALL ON table_1 TO sarah

 CREATE VIEW view_1 AS

 SELECT column_1, column_2

 FROM table_1

 ORDER BY column_2

 CREATE TABLE table_1(column_1 INT, column_2 CHAR(20));

As the example above shows, the order of the statements within the CREATE SCHEMA statement is unimportant. Oracle
commits the CREATE SCHEMA statement only if all CREATE and GRANT statements in the statement complete
successfully.

PostgreSQL

Not supported.

SQL Server

SQL Server supports the basic CREATE SCHEMA statement without support for the PATH clause or the DEFAULT
CHARACTER SET clause:

CREATE SCHEMA AUTHORIZATION owner_name

 [ANSI CREATE statements [...]]

 [ANSI GRANT statements [...]]

If any statement fails within the CREATE SCHEMA statement, then the entire statement fails.

SQL Server does not require that the CREATE or GRANT statements be in any particular order, except that nested views
must be declared in their logical order. Thus, if view_100 references view_10, then view_10 must appear in the
CREATE SCHEMA statement before view_100.

For example:

CREATE SCHEMA AUTHORIZATION katie

 GRANT SELECT ON view_10 TO public

 CREATE VIEW view_10(col1) AS SELECT col1 FROM foo

 CREATE TABLE foo(col1 INT)

 CREATE TABLE foo

 (col1 INT PRIMARY KEY,

 col2 INT REFERENCES foo2(col1))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 col2 INT REFERENCES foo2(col1))

 CREATE TABLE foo2

 (col1 INT PRIMARY KEY,

 col2 INT REFERENCES foo(col1))

See Also

CREATE/ALTER TABLE
CREATE/ALTER VIEW
GRANT

CREATE/ALTER TABLE Statement

Manipulating tables is one of the most common activities that database administrators and programmers perform when
working with database objects. This section details how to create and modify tables.

The ANSI standard represents a sort of least common denominator among the vendors, though not every option of the
ANSI standard version of CREATE TABLE and ALTER TABLE is offered by each of the vendors. However, the ANSI
standard does represent the basic form that can be used across all of the platforms. In turn, the vendor platforms offer
a variety of extensions and additions to the ANSI standards for CREATE and ALTER TABLE.

Typically, a great deal of consideration goes into the design and creation of a table. This
discipline is known as database design. The discipline of analyzing the relationship of a
table to its own data and to other tables within the database is known as normalization.
We recommend that database programmers and administrators alike study both database
design and normalization principles thoroughly before issuing CREATE TABLE commands.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

The SQL2003 statement CREATE TABLE creates a permanent or temporary table within the database where the
command is issued. The syntax is as follows:

CREATE [{LOCAL TEMPORARY| GLOBAL TEMPORARY}] TABLE table_name

 (column_name datatype attributes [,...]) |

 [column_name WITH OPTIONS options] |

 [LIKE table_name] |

 [REF IS column_name

 {SYSTEM GENERATED | USER GENERATED | DERIVED}]

 [CONSTRAINT constraint_type [constraint_name] [,...]]

[OF type_name [UNDER super_table] [table_definition]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[OF type_name [UNDER super_table] [table_definition]]

[ON COMMIT {PRESERVE ROWS | DELETE ROWS}

The SQL2003 statement ALTER TABLE allows many useful modifications to be made to an existing table without
dropping any existing indexes, triggers, or permissions assigned to it. Following is the ALTER TABLE syntax:

ALTER TABLE table_name

[ADD [COLUMN] column_name datatype attributes]

| [ALTER [COLUMN] column_name SET DEFAULT default_value]

| [ALTER [COLUMN] column_name DROP DEFAULT]

| [ALTER [COLUMN] column_name ADD SCOPE table_name

| [ALTER [COLUMN] column_name DROP SCOPE {RESTRICT | CASCADE}]

| [DROP [COLUMN] column_name {RESTRICT | CASCADE}]

| [ADD table_constraint]

| [DROP CONSTRAINT table_constraint_name {RESTRICT | CASCADE}]

Keywords

[LOCAL | GLOBAL] TEMPORARY

Declares a permanent table or a TEMPORARY table of LOCAL or GLOBAL scope. Local temporary tables are only
accessible to the session that created them and are automatically dropped when the session that created them
terminates. Global temporary tables are accessible by all active sessions, but are automatically dropped when
the session that created them terminates. Do not qualify a temporary table with a schema name.

(column_name datatype attributes [,...])

Defines a comma-delimited list of one or more columns, their datatypes, and any additional attributes such as
nullability. Every table declaration must contain at least one column, which may include:

Column_name

Specifies a name for a column. The name must be a valid identifier according to the rules of the specific
DBMS. Make sure the name makes sense!

Datatype

Associates a specific datatype with the column of column_name. An optional length may be specified for
datatypes that allow user-defined lengths, for example VARCHAR(255). It must be a valid datatype on
the specific DBMS. Refer to Chapter 2 for a full discussion of acceptable datatypes and vendor
variations.

Attributes

Associates specific constraint attributes with the column_name. Many attributes may be applied to a
single column_name, no commas required. Typical ANSI attributes include:

NOT NULL

Tells the column to reject null values or accept null values, when NOT NULL is omitted. Any INSERT or
UPDATE statement that attempts to place a null value in a NOT NULL column will fail and roll back.

DEFAULT expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells the column to use the value of expression when no value is supplied by an INSERT or UPDATE
statement. The expression must be acceptable according to the datatype of the column; for example,
no alphabetic characters may be used in an INTEGER column. Expression may be a string or numeric
literal, but you may also define a user-defined function or system function. SQL2003 allows these
system functions in a DEFAULT expression: NULL, USER, CURRENT_USER, SESSION_USER,
SYSTEM_USER, CURRENT_PATH, CURRENT_DATE, CURRENT_TIME, LOCALTIME,
CURRENT_TIMESTAMP, LOCALTIMESTAMP, ARRAY, or ARRAY[].

COLLATE collation_name

Defines a specific collation, or sort order, for the column it is assigned to. The name of the collation is
platform dependent. If you do not define a collation, the columns of the table default to the collation of
the character set used for the column.

REFERENCES ARE [NOT] CHECKED [ON DELETE {RESTRICT | SET NULL}]

Indicates whether references are to be checked on a REF column defined with a scope clause. The
optional ON DELETE clause tells whether any values in records referenced by a deleted record should
set to NULL or whether the operation should be restricted.

CONSTRAINT constraint name [constraint_type [constraint]]

Assigns a constraint and, optionally a constraint name, to the specific column. Constraint types are
discussed in Chapter 2. Because the constraint is associated with a specific column, the constraint
declaration assumes that the column is the only one in the constraint. After the table is created, the
constraint is treated as a table-level constraint.

column_name [WITH OPTIONS options]

Defines a column with special options, such as a scope clause, a default clause, a column-level constraint, or a
COLLATE clause. For many implementations, the WITH OPTIONS clause is restricted to the creation of typed
tables.

LIKE table_name

Creates a new table with the same column definitions as the pre-existing table of table_name.

REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}

Defines the object identifier column (OID) for a typed table. An OID is necessary for the root table of a table
hierarchy. Based on the option, the REF might be automatically generated by the system (SYSTEM
GENERATED), manually provided by the user when inserting the row (USER GENERATED), or derived from
another REF (DERIVED). Requires the inclusion of a REFERENCES column attribute for column_name.

CONSTRAINT constraint_type [constraint_name] [,...]

Assigns one or more constraints to the table. This option is noticeably different than the CONSTRAINT option at
the column level because column-level constraints are assumed to apply only to the column they are associated
with. Table-level constraints, however, give the option of associating multiple columns with a constraint. For
example, in a sales table you might wish to declare a unique constraint on a concatenated key of store_id,
order_id, and order_date. This can only be done using a table-level constraint. Refer to Chapter 2 for a full
discussion of constraints.

OF type_name [UNDER super_table] [table_definition]

Declares that the table is based upon a pre-existing user-defined type (see CREATE/ALTER TYPE Statement").
In this situation, the table may have only a single column for each attribute of the structured type, plus an
additional column as defined in the REF IS clause. The REF datatype is described in greater detail in the section
CREATE/ALTER TYPE Statement. This clause is incompatible with the LIKE table_name clause.

where:

UNDER super_table [table_definition]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Declares the direct supertable of the currently declared table within the same schema, if any exists. The
table being created is thus a direct subtable of the supertable. You may optionally provide a complete
table_definition of the new subtable, complete with columns, constraints, etc.

ON COMMIT {PRESERVE ROWS | DELETE ROWS}

ON COMMIT PRESERVE ROWS preserves data rows in a temporary table on issuance of a COMMIT statement.
ON COMMIT DELETE ROWS deletes all data rows in a temporary table on COMMIT.

ADD [COLUMN] column_name datatype attributes

Adds a column to a table, along with the appropriate datatype and attributes.

ALTER [COLUMN] column_name SET DEFAULT default_value

Adds a default value to the column if none exists, and resets the default value if a previous one exists.

ALTER [COLUMN] column_name DROP DEFAULT

Completely removes a default from the named column.

ALTER [COLUMN] column_name ADD SCOPE table_name

Adds a scope to the named column. A scope is a reference to a user-defined datatype (see CREATE/ALTER TYPE
Statement").

ALTER [COLUMN] column_name DROP SCOPE [RESTRICT | CASCADE]

Drops a scope from the named column. RESTRICT and CASCADE clauses are defined at the end of this list.

DROP COLUMN column_name [RESTRICT | CASCADE]

Drops the named column from the table. RESTRICT and CASCADE clauses are defined at the end of this list.

ADD table_constraint

Adds a table constraint of the specified name and characteristics to the table.

DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]

Drops a previously defined constraint from the table.

RESTRICT

Tells the DBMS to abort the command if it finds any other objects in the database that depend on the object.

CASCADE

Tells the DBMS to drop any other objects that depend on the object.

Rules at a Glance

The typical CREATE TABLE statement is very simple. Generally, it names the table and any columns contained in the
table. Many table definitions also include a nullability constraint for most of the columns, as in this SQL Server example:

CREATE TABLE housing_construction

 (project_number INT NOT NULL,

 project_date DATE NOT NULL,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 project_date DATE NOT NULL,

 project_name VARCHAR(50) NOT NULL,

 construction_color NCHAR(20) ,

 construction_height DECIMAL(4,1),

 construction_length DECIMAL(4,1),

 construction_width DECIMAL(4,1),

 construction_volume INT)

This example adds a foreign key to the example table:

-- Creating a column-level constraint

CREATE TABLE favorite_books

 (isbn CHAR(100) PRIMARY KEY,

 book_name VARCHAR(40) UNIQUE,

 category VARCHAR(40) ,

 subcategory VARCHAR(40) ,

 pub_date DATETIME NOT NULL,

 purchase_date DATETIME NOT NULL,

 CONSTRAINT fk_categories FOREIGN KEY (category)

 REFERENCES category(cat_name));

The foreign key on the categories column relates it to the cat_name table in the category table. All the vendors
mentioned in this book support this syntax.

Examples for creating a table with each constraint type are shown in Chapter 2. Similarly,
the foreign key could be added after the fact as a multicolumn key including both the
category and subcategory columns:

ALTER TABLE favorite_books ADD CONSTRAINT fk_categories

 FOREIGN KEY (category, subcategory)

 REFERENCES category(cat_name, subcat_name));

Now, we could use an ALTER TABLE statement to drop the constraint altogether:

ALTER TABLE favorite_books DROP CONSTRAINT fk_categories RESTRICT;

Listed here are more full examples from pubs, the sample database that ships with Microsoft SQL Server and Sybase
Adaptive Server:

-- For a Microsoft SQL Server database

CREATE TABLE jobs

 (job_id SMALLINT IDENTITY(1,1) PRIMARY KEY CLUSTERED,

 job_desc VARCHAR(50) NOT NULL DEFAULT 'New Position',

 min_lvl TINYINT NOT NULL CHECK (min_lvl >= 10),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 min_lvl TINYINT NOT NULL CHECK (min_lvl >= 10),

 max_lvl TINYINT NOT NULL CHECK (max_lvl <= 250))

-- For a MySQL database

CREATE TABLE employee

 (emp_id INT AUTO_INCREMENT CONSTRAINT PK_emp_id PRIMARY KEY,

 fname VARCHAR(20) NOT NULL,

 minit CHAR(1) NULL,

 lname VARCHAR(30) NOT NULL,

 job_id SMALLINT NOT NULL DEFAULT 1

 REFERENCES jobs(job_id),

 job_lvl TINYINT DEFAULT 10,

 pub_id CHAR(4) NOT NULL DEFAULT ('9952')

 REFERENCES publishers(pub_id),

 hire_date DATETIME NOT NULL DEFAULT (CURRENT_DATE());

CREATE TABLE publishers

 (pub_id char(4) NOT NULL

 CONSTRAINT UPKCL_pubind PRIMARY KEY CLUSTERED

 CHECK (pub_id IN ('1389', '0736', '0877', '1622', '1756')

 OR pub_id LIKE '99[0-9][0-9]'),

 pub_name varchar(40) NULL,

 city varchar(20) NULL,

 state char(2) NULL,

 country varchar(30) NULL DEFAULT('USA'))

Once you get into the vendor extensions, the CREATE TABLE command is no longer portable between database
platforms. The following is an example of an Oracle CREATE TABLE statement with many storage properties:

CREATE TABLE classical_music_cds

 (music_id INT,

 composition VARCHAR2(50),

 composer VARCHAR2(50),

 performer VARCHAR2(50),

 performance_date DATE DEFAULT SYSDATE,

 duration INT,

 cd_name VARCHAR2(100),

CONSTRAINT pk_class_cds PRIMARY KEY (music_id)

 USING INDEX TABLESPACE index_ts

 STORAGE (INITIAL 100K NEXT 20K),

CONSTRAINT uq_class_cds UNIQUE

 (composition, performer, performance_date)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 USING INDEX TABLESPACE index_ts

 STORAGE (INITIAL 100K NEXT 20K))

TABLESPACE tabledata_ts;

When issuing a CREATE or ALTER statement, we recommend that it be the only statement in your transaction. For
example, do not attempt to create a table and select from it in the same batch. Instead, (1) create the table, (2) verify
the operation, (3) COMMIT, and then (4) perform any subsequent operations against the table.

Table_name is the name for a new or existing table. New table names should start with an alphabetic character and in
general contain no other special symbol besides underscore (_). Length of the name and exact composition is
governed differently according to each vendor.

When creating or altering a table, the list of column definitions is always encapsulated within parentheses and
separated by commas between each new column definition.

Programming Tips and Gotchas

The user issuing the CREATE TABLE command must have the appropriate permissions. Similarly, any user wishing to
ALTER or DROP a table should own the table within his own schema or have adequate permissions to the alter or drop
the table. Since the ANSI standard does not specify the privileges required, expect some variation between vendors.

You can encapsulate a CREATE TABLE or ALTER TABLE statement within a transaction, using a COMMIT or ROLLBACK
statement to explicitly conclude the transaction. We recommend that it be the only command in the transaction.

You can have a great deal of control over the way that the records of a table are physically written to disk through
extensions to the ANSI standard. DB2 and SQL Server use a technique called clustered indexes to control the way that
records are written to disk. Oracle uses a technique that is functionally similar called an index-organized table.

Some databases will lock a table that is being modified by an ALTER TABLE statement. It is wise to issue this command
only on tables that are not in use on a production database.

Some databases will lock the target and source tables when using the CREATE TABLE...LIKE statement.

DB2

DB2 supports a very rich and elaborate set of extensions to the CREATE TABLE statement:

CREATE TABLE table_name

 {(column_name datatype attributes [,...]) |

 OF type_name [{UNDER super_table INHERIT SELECT PRIVILEGES |

 HIERARCHY hierarchy_name}] [table_definition] |

 AS subquery {derived_table_options |

 DEFINITION ONLY [copy_options] } |

 [LIKE table_name] [copy_options] |

 [[(staging_column [,...])]

 FOR table_name PROPAGATE IMMEDIATE] }

[ORGANIZE BY [DIMENSTIONS] (column_name [,...])]

[DATA CAPTURE {NONE | CHANGES}]

[IN tablespace_name [INDEX IN tablespace_name]

 [LONG IN tablespace_name]]

[VALUE COMPRESSION]

[WITH RESTRICT ON DROP]

[NOT LOGGED INITIALLY]

[{REPLICATED | PARTITIONING KEY (column_name [,...])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[{REPLICATED | PARTITIONING KEY (column_name [,...])

 [USING HASHING] }]

[OPTIONS (REMOTE_SERVER 'server_name'

 [, REMOTE_SCHEMA 'schema_name']

 [, REMOTE_TABNAME 'table_name']]

Similarly rich, the DB2 statement ALTER TABLE allows many useful modifications to be made to an existing table
without dropping any existing indexes, triggers, or permissions assigned to it:

ALTER TABLE table_name

{[ADD { {[COLUMN] column_name datatype attributes} |

 table_constraint | partitioning_key | RESTRICT_ON_DROP } |

{[ALTER { {CHECK | FOREIGN KEY} constraint_name constraint_definition] |

 [COLUMN] column_name column_definition } |

{[DROP constraint_type constraint_name] | partitioning_key |

 RESTRICT_ON_DROP } |

 [DATA CAPTURE {NONE | CHANGES [INCLUDE LONGVAR COLUMNS]} |

 [ACTIVATE NOT LOGGED INITIALLY [WITH EMPTY TABLE]] |

 [PCTFREE int] |

 [LOCKSIZE {ROW | TABLE}] |

 [APPEND {ON | OFF}] |

 [[NOT] VOLATILE [CARDINATITY]] |

 [[DE]ACTIVATE VALUE COMPRESSION] } [...] |

SET MATERIALIZED QUERY AS {DEFINITION ONLY | subquery]

The parameters for both commands are as follows:

(column_name datatype attributes [,...])

Defines columns according to the ANSI standard. However, DB2 supports several additional attributes that are
specific to special datatypes on DB2. All the ANSI standard attributes, such as NOT NULL, are supported. Refer
to the section on datatypes in Chapter 2 for more details.

UNDER super_table INHERIT SELECT PRIVILEGES | HIERARCHY hierarchy_name

Similar to the ANSI standard OF clause in the CREATE TABLE command, with two added optional clauses —
INHERIT and HIERARCHY. INHERIT tells DB2 that any user or group with read privileges on the super_table
should also have read privileges on the new subtable. HIERARCHY associates the subtable with a table
hierarchy, where hierarchy_name is the name of the root table of the hierarchy. When omitted, DB2 will generate
its own hierarchy_name.

table_definition

Defines the elements of the typed table, including addition options for columns, an OID column on the root
table, and table constraints.

AS subquery

Materializes the table from the results of a query. You may include a standard column definition list, but the
columns must match the number and datatype of columns retrieved by the subquery.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

columns must match the number and datatype of columns retrieved by the subquery.

derived_table_options

The full syntax for derived_table_options is:

DATA INITIALLY DEFERRED REFRESH {DEFERRED | IMMEDIATE}

[{ENABLE | DISABLE} QUERY OPTIMIZATION]

[MAINTAINED BY {SYSTEM | USER}]

The keywords have the following meanings:

DATA INITIALLY DEFERRED

Defers the insertion of data into the table until a DB2 REFRESH TABLE command is issued.

REFRESH {DEFERRED | IMMEDIATE}

Allows the table to be refreshed only when a DB2 REFRESH TABLE statement is issued (via DEFERRED)
or immediate after any data manipulation operation (via IMMEDIATE).

{ENABLE | DISABLE} QUERY OPTIMIZATION

Enables or disables the derived table for query optimization when DB2 decides optimization is
appropriate. Of course, the table is always available for direct queries.

MAINTAINED BY {SYSTEM | USER}

Declares that the derived table data is maintained automatically by the SYSTEM (the default) or
manually by the USER via the DB2 REFRESH TABLE command. If you select MAINTAINED BY USER, the
table must also be declared as REFRESH DEFERRED.

DEFINITION ONLY [copy options]

Defines the table without populating the table with a query result set.

copy_options

Allows the modification of the DEFINITION ONLY and LIKE clauses. Copy options include:

{INCLUDING | EXCLUDING} [COLUMN] DEFAULTS

Includes or excludes column defaults of the copied table, respectively. INCLUDING is the default for
base tables or temporary tables. Otherwise, EXCLUDING is the default.

{INCLUDING | EXCLUDING} [IDENTITY] [COLUMN ATTRIBUTES]

Includes or excludes column attributes of the copied table, respectively. The IDENTITY attributes of the
column may optionally be copied.

LIKE table_name [copy options]

Copies the entire set of column definitions from an existing table, table_name, though a view or nickname is also
allowed. You may use the copy_options shown previously in the list to alter the default behavior of the LIKE
clause.

[(staging_column [,...])] FOR table_name PROPAGATE IMMEDIATE]

Defines an intermediate table (i.e., a staging table) between the base table(s) that define a derived table and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defines an intermediate table (i.e., a staging table) between the base table(s) that define a derived table and
the derived table itself. (Naturally, this clause should only be used with the AS subquery clause.)

The components of this clause are:

staging_column

Defines one or more staging columns. However, the list of staging columns will always contain two more
columns than the number of columns in the derived table — GLOBALTRANSID and GLOBALTRANSTIME. The
PROPAGATE clause, adds one more column — OPERATIONTYPE — which is used to maintain consistency
in replicated a materialized query table. When omitted, DB2 will create the appropriate staging columns
it needs for the operation.

FOR table_name

Names the table that defines the staging table. table_name must represent a derived table with REFRESH
DEFERRED already existing in the database. Whenever a REFRESH TABLE command is issued, the
contents of the staging table are used to refresh the derived table.

PROPAGATE IMMEDIATE

Specifies that data modifications to the underlying tables cascade immediately to the staging table.

ORGANIZE BY [DIMENSIONS] (column_name [,...])

Defines a cluster or dimension on a column or group of columns, depending on whether the DIMENSIONS
keyword is excluded or included, respectively. In effect, a clustered index is defined with the ORGANIZE BY
clause, while the ORGANIZE BY DIMENSIONS clause is used to create a clustered index on more than one
column (i.e., on a dimension).

DATA CAPTURE {NONE | CHANGES}

Writes extra data to the log in support of inter-database replication. NONE declares that no extra information
will be stored, while CHANGES declares that changes are written to the log. The DATA CAPTURE CHANGES
clause is required on replicated tables. This clause is incompatible when creating subtables.

IN tablespace_name [INDEX IN tablespace_name][LONG IN tablespace_name]

Declares a specific, pre-existing tablespace where the table is placed. This clause is incompatible when creating
a subtable and in System Managed tablespaces. The components of the clause are:

INDEX IN tablespace_name

Declares a separate pre-existing tablespace where the indexes of the table will be placed. When
omitted, the default is the same tablespace as the table data.

LONG IN tablespace_name

Declares a separate pre-existing tablespace where the data of long datatypes (LONG VARCHAR, LONG
VARGRAPHIC, LOB, etc.) for the table will be placed. When omitted, the default is the same tablespace
as the table data.

VALUE COMPRESSION

Enables high compression storage of NULL and 0-length data values.

WITH RESTRICT ON DROP

Restricts the table and its tablespace from being dropped.

NOT LOGGED INITIALLY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Declares that any changes to the data of the table that occur in the same batch as when the table is created are
not logged. On the other hand, all catalog changes and storage changes are logged. This setting can cause the
rollback of an entire batch of work under certain circumstances.

REPLICATED

Declares that the data in the table is replicated on each database partition of the database partition group
where it is defined, in effect copying the data to all database partitions. This clause is incompatible with
PARTITIONING KEY, but is required for derived tables.

PARTITIONING KEY (column_name [,...]) [USING HASHING]

Defines a partitioning key for the table where column_name becomes the partitioning key. The column_name may
not be a long or special datatype — LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK —
or structured or distinct types built upon these datatypes. This clause is incompatible when creating subtables.
When omitted and the table is defined on a database partition group, DB2 will attempt to find a method for
partitioning the table. Otherwise, the table will be placed on a single-partition database partition group. USING
HASHING declares that a hashing algorithm is used to distribute data among the partitions.

OPTIONS (REMOTE_SERVER 'server_name' [, REMOTE_SCHEMA 'schema_name'] [, REMOTE_TABNAME 'table_name']

Defines a remote operation, such as creating, altering, or dropping a table on a federated system. This is called
transparent DDL. Federated systems are quite complex and are outside of the ANSI standard. Refer to the
vendor documentation for more information.

ADD table_constraint

Adds a table-level constraint to an existing table.

ALTER {CHECK | FOREIGN KEY} constraint_name constraint_definition

Alters the attributes of an existing CHECK or FOREIGN KEY of constraint_name and assigns it a new
constraint_definition. You may also apply these additional constraint characteristics:

[NOT] ENFORCED

Changes the constraint to ENFORCED or NOT ENFORCED. Under ENFORCED, the constraint is
automatically enforced by the database. NOT ENFORCED causes the constraint to not be checked during
data modification operations.

{ENABLE | DISABLE} QUERY OPTIMIZATION

Enables or disables query optimization on the constraint.

ALTER [COLUMN] column_name column_definition

Alters a specific column, column_name, in the table. You can change a number of column characteristics
beyond the standard column definition options, including things like SCOPE, COMPRESS, and identity
alterations. Refer to the material later in this section for information on type-related attributes and
other alterable attributes. Some additional characteristics can be changed on a column-by-column basis,
such as:

SET DATA TYPE VARCHAR (int)

Alters the length of the named VARCHAR column to int. The value of int should not increase the
total row length or the total primary key length beyond the allowed maximum.

SET EXPRESSION AS (generation-expression)

Alters the original generated expression, a sort of auto-incrementing identity column, of the
named column to a new generation-expression. The difference between a generated expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

named column to a new generation-expression. The difference between a generated expression
and an identity is that identities are automatically handled by DB2, but generated expressions
give you full control over the values returned by the expression. Generated expressions can be
quite complex and are covered in the vendor documentation. This clause requires the table be
placed in "check pending state," where the data in the table is not verified against constraints,
via DB2's SET INTEGRITY statement. Afterwards, the values must all be checked.

SET INLINE LENGTH int

Alters the inline length of the named structured type column to int, storing the values inline with
the rest of the data in the row.

DROP constraint_type constraint_name

Drops a constraint of constraint_name from the table. The constraint_type may be any of the allowable
types: primary key, foreign key, unique, check, as well as PARTITIONING KEY. You may also substitute
constraint_type with RESTRICT ON DROP, to drop the RESTRICT ON DROP characteristic.

DATA CAPTURE {NONE | CHANGES [INCLUDE LONGVAR COLUMNS] }

Captures extra information to the log in support of replication. Usable with any non-typed table. The
options for DATA CAPTURE are:

NONE

Specifies that no extra information is captured.

CHANGES

Writes extra information to the table in support of replication. This clause is required for
replication. This clause is incompatible with tables that store data on non-catalog partitions. The
INCLUDE LONGVAR COLUMNS clause includes LONG VARCHAR and LONG VARGRAPHIC columns
in the data replication.

ACTIVATE NOT LOGGED INITIALLY [WITH EMPTY TABLE]

Disables logging of any transaction made in the same batch as the ALTER TABLE statements.
Statements that are not logged include INSERT, DELETE, UPDATE, CREATE INDEX, DROP INDEX, or
another ALTER TABLE statement. Logging returns to normal after the current SQL batch completes. The
optional WITH EMPTY TABLE clause tells DB2 to empty the table of data. The data is not recoverable
except through the DB2 RECOVER facility.

PCTFREE int

Declares a percentage of free space, int, that DB2 should leave on each page during load or
reorganization of the table.

LOCKSIZE {ROW | TABLE}

Declares that locks should be taken at a ROW or TABLE level when reading or writing data in the table.
The default is ROW. This clause is only supported in the root table of a typed-table hierarchy.

APPEND {ON | OFF}

Adds all new data to the end of the table when turned ON or puts data in the free space available within
data pages throughout the table when turned OFF. The default is OFF. Setting this value to ON causes
DB2 not to keep any free space information. The APPEND clause is not usable on tables with a clustered
index.

[NOT] VOLATILE [CARDINALITY]

Declares whether the table cardinality varies greatly over time. When set to VOLATILE, tells DB2 to
generally ignore statistics in favor of an index scan because the amount of data in the table change a
great deal. VOLATILE is supported only on normal tables and the root table of a typed-table hierarchy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

great deal. VOLATILE is supported only on normal tables and the root table of a typed-table hierarchy.
NOT VOLATILE tells DB2 that the amount of data in the table is generally static, so that it can use
existing statistics and optimization paths. Adding the optional CARDINALITY keyword tells DB2 that the
amount of data in the table may change but that the table itself is static.

[DE]ACTIVATE VALUE COMPRESSION

Deactivates or activates the compression of NULL and zero-length data values in the table for all
datatypes of BLOB, CLOB, DBLOB, LONG VARCHAR, or LONG VARGRAPHIC.

SET MATERIALIZED QUERY {AS DEFINITION ONLY | subquery}

Alters the properties of a materialized query table. DEFINITION ONLY tells DB2 to consider the table as
a normal table and not a materialized query table. When using DEFINITION ONLY, the materialized
query table cannot be replicated. The subquery clause is any valid subquery used to define a materialized
query table. The subquery redefines a regular table as a materialized query table during query
optimization. When using the subquery clause, the table may not be a typed table, have constraints,
unique indexes, or triggers, or be defined as or referenced in a materialized query table.

DB2 also has a number of special attributes that may be applied to columns over the standard constraints that
the ANSI SQL standard provides. These optional attributes are specific to specific datatypes. The following are
LOB-related attributes:

[NOT] LOGGED

Declares whether changes made to the column are written to the logfile (LOGGED) or not (NOT
LOGGED). The default is LOGGED. However, any LOB values greater than 10 megabytes should not be
logged and those over 1 gigabyte cannot be logged.

[NOT] COMPACT

Compresses the values of LOBs as much as possible, usually by freeing any extra space on the last
group used by the LOB or allowing free space in the last group to go unused. COMPACT takes some
extra processing and I/O overhead. NOT COMPACT is the default.

For example, you might have a table called emp_images, which stores the security ID images of your
employees:

CREATE TABLE emp_images

 (emp_id INT NOT NULL,

 emp_photo_image LONGVARGRAPHIC NOT LOGGED COMPACT)

DB2 supports the following datalink-related attributes:

LINKTYPE URL

Defines a URL as the type of link.

NO LINK CONTROL

Declares that there is no check for file existence.

FILE LINK CONTROL [options]

Declares that file existence will be checked. Additional options may impact the style of check, including:

INTEGRITY [ALL]

Sets the level of checks between the DATALINK value and an actual file. The optional ALL
keyword disables operating system control for deleting or renaming the file.

READ PERMISSION {FS | DB}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

READ PERMISSION {FS | DB}

Sets read permission on the file as either filesystem derived (FS) or database derived (DB).

WRITE PERMISSION {FS | BLOCKED | ADMIN}

Sets write permission on the file as either filesystem derived (FS), no writes allowed
(BLOCKED), or determined by the Data Links Manager (ADMIN). The WRITE PERMISSION
ADMIN clause is based on a passed token. You should further specify [NOT] REQUIRING TOKEN
FOR UPDATE, which details whether a write token is needed to finish a file update operation.

RECOVERY {YES | NO}

Declares that DB2 will support point in time recovery of files referenced by the values in the
column (YES) or not (NO). RECOVERY YES also requires the INTEGRITY ALL clause and either
WRITE PERMISSION BLOCKED or WRITE PERMISSION ADMIN.

ON UNLINK {RESTORE | DELETE}

Declares that DB2 either return the file to its original permissions when the DATALINK value is
changed or deleted (RESTORE) or that the file is deleted when unlinked (DELETE). ON UNLINK
RESTORE requires the INTEGRITY ALL clause and either WRITE PERMISSION BLOCKED or
WRITE PERMISSION ADMIN. ON UNLINK DELETE requires the READ PERMISSION DB clause and
either WRITE PERMISSION BLOCKED or WRITE PERMISSION ADMIN.

MODE DB2OPTIONS

Defines a default group of file link options: INTEGRITY ALL, READ PERMISSION FS, WRITE PERMISSION
FS, and RECOVERY NO.

DB2 supports the following type-related attributes:

SCOPE type_name

Declares the scope of a reference-type column, where type_name is the pre-existing typed table or view.
It is required for columns that will be used as the left operand of a dereference operator or as the
argument of a DEREF function.

INLINE LENGTH int

Declares a maximum byte size, int, for a structured-type column. If the structured type is too long, DB2
will automatically store the structured types in a separate table from the base table, similar to the way
LOB values are stored.

DB2 supports just one storage-related attribute:

COMPRESS SYSTEM DEFAULT

Defines that the system default value for any column is compressed. It should not be used on columns
of DATE, TIME, or TIMESTAMP datatypes. You gain some storage space at the sacrifice of performance.

Use the following DEFAULT-related attributes to set various defaults:

[WITH] DEFAULT {CURRENT SCHEMA | USER | NULL | constant}

Declares a default for the column. That is, whenever an INSERT or UPDATE (or LOAD) statement does
not provide a value for the column, then DB2 will use the default value you specify. WITH is a noise
word. When omitted, NULL is always the default. The options for the DEFAULT clause are:

CURRENT SCHEMA

Inserts the CURRENT SCHEMA system value. The column must have a character datatype of
sufficient length to store CURRENT SCHEMA.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

USER

Inserts the USER system value. The column must have a character datatype of sufficient length
to store USER.

NULL

Inserts a null value, the default.

constant

Can be any constant string, date, or number of 254 characters or fewer.

GENERATED {ALWAYS | BY DEFAULT}

Tells DB2 to generate values for the column, in particular for IDENTITY columns, either every time a
record is inserted in the table (ALWAYS) or whenever a value is not provided for the column (BY
DEFAULT).

AS (expression)

Assigns the default value based on the evaluation of an expression. The expression might be something
like an external user-defined function, a subquery, or a stored procedure. Refer to the ALTER
COLUMN...generated expressions material earlier in this section.

AS IDENTITY [START WITH int | INCREMENT BY int}

Declares that the column is an auto-incrementing identity for a column of a number datatype. Identities
can be either ascending or descending in nature. DB2 allows only one identity column per table. All
identity columns are implicitly NOT NULL. Identities are further defined by these optional
characteristics:

START WITH int

Declares the seed value (i.e., the starting value), int, of the identity column. The default is MINVALUE
for ascending identities and MAXVALUE for descending identities.

INCREMENT BY int

Declares the amount each entry to the identity will increase (if positive) or decrease (if negative). The
default is 1. A negative INCREMENT BY value tells DB2 that the identity is descending in nature.

[NO] {MINVALUE | MAXVALUE} [int]

Declares the value, int, at which the identity either cycles to the beginning or stops generating values.
Both clauses may appear as attributes of an identity. They are not mutually exclusive. NO MINVALUE,
the default minimum value setting, tells DB2 to start ascending identities at the START WITH value or 1,
if omitted. MINVALUE int tells DB2 the lowest allowable value for a descending identity. NO MAXVALUE,
the default maximum value setting, tells DB2 to stop or recycle ascending identities at maximum value
allowed for the datatype. For descending identities, the default is the START WITH value or -1, when
omitted. MINVALUE int tells DB2 the highest allowable value for an ascending identity.

[NO] CYCLE

Declares that DB2 should recycle the identity values (CYCLE) when the maximum value is exceeded on
ascending identities (or the minimum value is decremented on a descending identity) or that DB2
should stop generating identities (NO CYCLE) once the minimum or maximum is reached. NO CYCLE is
the default. DB2 will generate duplicate values under the CYCLE setting.

[NO] CACHE [int]

Tells DB2 to cache some pre-allocated values in memory (CACHE) or not (NO CACHE). You may
optionally tell DB2 how many identity values, int, to cache using CACHE int.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

optionally tell DB2 how many identity values, int, to cache using CACHE int.

[NO] ORDER

Tells DB2 whether identity values must be generated in the order they were requested (ORDER) or not
(NOT ORDER). When omitted, NOT ORDER is the default.

For example, our company has acquired another company with a whole roster of employees. We want to assign
the new employees a new emp_id based on our current highest emp_id identity column value:

CREATE TABLE temp_emp

 (new_emp_id INT NOT NULL GENERATED ALWAYS AS IDENTITY

 (START WITH 500, INCREMENT BY 1, NO CYCLE, CACHE),

 dept VARCHAR (50) NOT NULL,

 mgr_id INT,

 location CHAR(30))

DB2 supports the creation of temporary tables, but not in the CREATE TABLE
statement. Instead, use the DECLARE GLOBAL TEMPORARY TABLE statement
described in the DB2 documentation.

However, be extra careful whenever altering a table. You should generally expect that any procedural objects
that are dependent on the table, such as procedures or functions, will become invalid.

-- Creating a column-level constraint

CREATE TABLE favorite_books

 (isbn CHAR(100) PRIMARY KEY,

 book_name VARCHAR(40) UNIQUE,

 category VARCHAR(40) NULL,

 subcategory VARCHAR(40) NULL,

 pub_date DATETIME NOT NULL,

 purchase_date DATETIME NOT NULL,

 CONSTRAINT fk_categories FOREIGN KEY (category)

 REFERENCES category(cat_name));

In the following example, we alter our example table, favorite_books, to not log SQL changes for replication.
We also assign some free space to the data pages of the table:

ALTER TABLE favorite_books

 PCTFREE 20

 DATA CAPTURE NONE

We also finally decide that although the records in the table change quite frequently, the table structure itself
should be static:

ALTER TABLE favorite_books NO VOLATILE CARDINALITY

MySQL

The MySQL syntax for CREATE TABLE creates a permanent or local temporary table within the database in which the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The MySQL syntax for CREATE TABLE creates a permanent or local temporary table within the database in which the
command is issued.

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table_name

{(column_name datatype attributes

 constraint_type constraint_name [,...])

 [constraint_type [constraint_name] [,...]]

 [MATCH FULL | MATCH PARTIAL]

 [ON {DELETE | UPDATE} {RESTRICT | CASCADE | SET NULL |

 NO ACTION | SET DEFAULT}]

LIKE other_table_name }

{[TYPE = {ISAM | MyISAM | HEAP | BDB | InnoDB | MERGE |

 MRG_MyISAM} |

 AUTO_INCREMENT = int |

 AVG_ROW_LENGTH = int |

 CHECKSUM = {0 | 1} |

 COMMENT = "string" |

 DELAY_KEY_WRITE = {0 | 1} |

 MAX_ROWS = int |

 MIN_ROWS = int |

 PACK_KEYS = {0 | 1} |

 PASSWORD = "string" |

 ROW_FORMAT= { default | dynamic | static | compressed } |

 RAID_TYPE = {1 | STRIPED | RAID0} |

 RAID_CHUNKS = int |

 RAID_CHUNKSIZE = int |

 INSERT_METHOD = {NO | FIRST | LAST} |

 DATA DIRECTORY = "path to directory"

 INDEX DIRECTORY = " path to directory "] }

[[IGNORE | REPLACE] select_statement]

The MySQL syntax for ALTER TABLE allows modifications to a table or even renaming of a table:

ALTER [IGNORE] TABLE table_name

{[ADD [COLUMN] (column_name datatype attributes]

[FIRST | AFTER column_name]]

| [ADD [UNIQUE | FULLTEXT] INDEX [index_name]

| (index_col_name [,...])]

| [ADD PRIMARY KEY (index_col_name [,...])]

| [ALTER [COLUMN] column_name {SET DEFAULT literal |

| DROP DEFAULT}]

| [CHANGE | MODIFY] [COLUMN] old_col_name new_column_name]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

| [CHANGE | MODIFY] [COLUMN] old_col_name new_column_name]

 [FIRST | AFTER column_name]

| [MODIFY] column_name datatype attributes

| [DROP [COLUMN] column_name]

| [DROP PRIMARY KEY]

| [DROP INDEX index_name]

| [{ENABLE | DISABLE} KEYS]

| [RENAME [TO] new_tbl_name]

| [table_options] } [,...]

Keywords and parameters are as follows:

TEMPORARY

Creates a table that persists for the duration of the connection under which it was created. Once that
connection closes, the temporary table is automatically deleted.

IF NOT EXISTS

Prevents an error if the table already exists. A schema specification is not required.

constraint_type

Allows standard ANSI SQL constraints to be assigned at the column or table level. MySQL fully supports these
constraints: primary key, unique, and default (must be a constant). MySQL provides syntax support for check,
foreign key, and references constraints, but they are not functional except on InnoDB tables. MySQL also has
three specialty constraints:

FULLTEXT [INDEX]

Creates a fulltext-search index to facilitate rapid searches of large blocks of text. Note that only MyISAM
tables support FULLTEXT indexes and that they can only be made on CHAR, VARCHAR, and TEXT
columns.

AUTO_INCREMENT

Sets up an integer column so that it automatically increases its value by 1 (starting with a value of 1).
MySQL only allows one AUTO_INCREMENT column per table. When the maximum value is deleted, the
value is reused. When all records are deleted (using DELETE or TRUNCATE), the values may start over.
This option is allowed on ISAM tables, but not MyISAM and InnoDB tables.

[UNIQUE] INDEX

When an INDEX characteristic is assigned to a column, a name for the index also can be included. (A
MySQL synonym for INDEX is KEY.) If a name is not assigned to the primary key, MySQL assigns a
name of column_name plus a numeric suffix (_2, _3,. . .) to make it unique. All table types, except for
the ISAM table type, support indexes on NULL columns, or on BLOB or TEXT datatype columns. Note
that UNIQUE without INDEX is valid syntax on MySQL.

TYPE

Describe how the data should be physically stored. You can convert tables between types using the ALTER
TABLE statement. Only InnoDB and BDB tables offer recoverability with the COMMIT or ROLLBACK statements.
All other table types will result in the loss of data if the database crashes, but are much faster and take up less
space. The default is MyISAM. Following is the list of MySQL table types:

BDB

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BDB

Creates a transaction-safe table with page locking. Tables of this type are based on the BerkeleyDB
transaction processing engine available at http://www.sleepycat.com. BDB maintains logfiles and keeps
track of checkpoints and ROLLBACK and COMMIT statements. BDB tables must have a declared primary
key. Some operations on BDB tables are slower than the same operations on MyISAM tables.

HEAP

Creates a memory resident table that uses hashed indexes. Since they are memory resident, they are
not transaction safe. Any data that they contain will be lost if the server crashes. Think of HEAP tables
as an alternative to temporary tables. If you use HEAP tables, always specify the MAX_ROWS option so
that you do not use all available memory. HEAP tables also do not support BLOB columns, TEXT
columns, AUTO_INCREMENT constraints, ORDER BY clauses, or variable-length record format.

InnoDB

Creates a transaction-safe table with row-level locking. It also provides an independently managed
tablespace, checkpoints, non-locking reads and fast reads from large datafiles for heightened
concurrency and performance. Requires the innodb_data_file_path startup parameter. InnoDB supports all
ANSI constraints including CHECK and FOREIGN KEY. (InnoDB is a separate complete transaction
processing engine available at http://www.innodb.com. Well-known developer web sites like
Slashdot.org run on InnoDB.) InnoDB requires special setup, including a possible recompile of the
MySQL kernel, init file parameters, and the creation of tablespaces. Although InnoDB is included by
default in the binary distributions of MySQL 4.0 and greater, you should check with your DBA to ensure
you can use InnoDB tables.

ISAM

Creates a table in the older ISAM style. ISAM is deprecated as a feature and will probably not be
supported beyond MySQL v5.0.

MERGE | MRG_MyISAM

Collects several identically structured MyISAM tables for use as one table. The MERGE table type
provides some of the performance benefits of a partitioned table. The two keywords, MERGE and
MRG_MyISAM, are synonyms. SELECT, DELETE, and UPDATE statements operate against the collection
of tables as if they were one table. Think of a merge table as the collection, but not as the table(s)
containing the data. Dropping a merge table only removes it from the collection. It does not erase the
table or data from the database. Specify a MERGE table by using the statement UNION=(table1, table2,
...).

MyISAM

Stores data in .MYD files and indexes in .MYI files. MyISAM is based on ISAM code with several
extensions. MyISAM is a binary storage structure that is more portable than ISAM. MyISAM supports
AUTO_INCREMENT columns, compressed tables (with the myisampack utility), and large table sizes.
Under MyISAM, BLOB and TEXT columns can be indexes, and up to 32 indexes are allowed per table.

AUTO_INCREMENT = int

Sets the auto_increment value, int, for the table (MyISAM only).

AVG_ROW_LENGTH = int

Sets an approximate average row length for tables with variable-size records. MySQL uses avg_row_length *
max_rows to decide how big a table may be.

CHECKSUM = {0 | 1}

When set to 1, maintains a checksum for all rows in the table (MyISAM only). Makes processing slower, but is
less prone to corruption.

COMMENT = "string"

Allows a comment of up to 60 characters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Allows a comment of up to 60 characters.

DELAY_KEY_WRITE = {0 | 1}

When set to 1, delays key table updates until the table is closed (MyISAM only).

MAX_ROWS = int

Sets a maximum number of rows to store in the table. The default maximum is 4 GB of space.

MIN_ROWS = int

Sets a minimum number of rows to store in the table.

PACK_KEYS = {0 | 1}

When set to 1, compacts the indexes of the table, making reads faster but updates slower (MyISAM and ISAM
only). By default, only strings are packed. When set to 1, both strings and numeric values are packed.

PASSWORD = "string"

Encrypts the .FRM file with a password, "string", but not the table itself.

ROW_FORMAT = { default | dynamic | static | compressed }

Determines how future rows should be stored in a MyISAM table. DYNAMIC allows the rows to be of variable
sizes (i.e., using VARCHAR) while FIXED expects fixed size columns (i.e., CHAR, INT, etc.).

RAID_TYPE = {1 | STRIPED | RAID0}

Enables tables to cross the 2 gigabyte/4 gigabyte size limit for MyISAM datafiles (but not index files) on
operating systems that don't support very large files. The RAID_TYPE clause is intended as a workaround for
database servers experiencing the aforementioned size limits, so you should not use RAID_TYPE on operating
systems that support larger files. The keywords 1, STRIPED, and RAIDZERO are all synonyms, where STRIPED
is the most commonly seen. The --with-raid init parameter is required. Currently, MySQL handles the
RAID_CHUNKS and RAID_CHUNKSIZE clauses automatically.

RAID_CHUNKS = int

Overrides the default subdirectories used for the RAID_TYPE. MySQL usually creates subdirectories named 00,
01, and 02 in the database directory for all each MyISAM table. Each subdirectory will contain a file called
my_table_name.MYD.

RAID_CHUNKSIZE = int

Sets a chunksize other than the default of 1,024 bytes. As the file size for the MyISAM table grows, MySQL will
allocate additional space in int bytes in a round-robin fashion.

INSERT_METHOD = {NO | FIRST | LAST}

Required for MERGE tables. If no setting is specified for a MERGE table or the value is NO, then INSERTS are
disallowed. FIRST inserts all records to the first table in the collection, while LAST inserts them all to the last
table of the collection

DATA DIRECTORY = "path to directory"

Overrides the default path and directory that MySQL should use for MyISAM table storage.

INDEX DIRECTORY = "path to directory"

Overrides the default path and directory that MySQL should use for MyISAM index storage.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Overrides the default path and directory that MySQL should use for MyISAM index storage.

[IGNORE | REPLACE] SELECT_statement

Creates a table with columns based upon the elements listed in the SELECT statement. The new table will be
populated with the results of the SELECT statement if the statement returns a result set.

ALTER [IGNORE]

The altered table will include all duplicate records unless the IGNORE keyword is used. Otherwise, the
statement will fail if a duplicate row is encountered, the table has a unique index or primary key, and IGNORE is
not used.

{ADD | COLUMN} [FIRST | AFTER column_name]

Adds or moves a column, index, or key to the table. When adding or moving columns, the new column appears
as the last column on the table unless it is placed AFTER another named column.

ALTER COLUMN

Allows the definition or reset of a default value for a column. If you reset a default, MySQL will assign a new
default value to the column.

CHANGE

Renames a column or changes its datatype.

MODIFY

Changes a column's datatype or attributes such as NOT NULL. Existing data in the column is automatically
converted to the new datatype.

DROP

Drops the column, key, or index. A dropped column is also removed from any indexes it participated in. When
dropping a primary key, MySQL will drop the first unique key if no primary key is present.

{ENABLE | DISABLE} KEYS

Enables or disables all non-unique keys on a MyISAM table simultaneously. This can be useful for bulk loads
where you want to temporarily disable constraints until after the load is finished. It also speeds performance by
finishing all index block flushing at the end of the operation.

RENAME [TO] new_tbl_name

Renames a table.

For example:

CREATE TABLE test_example

 (column_a INT NOT NULL AUTO_INCREMENT,

 PRIMARY KEY(column_a),

 INDEX(column_b))

 TYPE=HEAP

IGNORE

SELECT column_b,column_c FROM samples;

This creates a heap table with three columns: column_a, column_b, and column_c. Later on, we could change this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This creates a heap table with three columns: column_a, column_b, and column_c. Later on, we could change this
table to the MyISAM type:

ALTER TABLE example TYPE=MyISAM;

Three operating-system files are created when MySQL creates a MyISAM table: a table definition file with the extension
.FRM, a datafile with the extension .MYD, and an index file with the extension .MYI. The .FRM datafile is used for all
other tables.

The following example creates two base MyISAM tables and then creates a MERGE table from them:

CREATE TABLE message1

 (message_id INT AUTO_INCREMENT PRIMARY KEY,

 message_text CHAR(20));

CREATE TABLE message2

 (message_id INT AUTO_INCREMENT PRIMARY KEY,

 message_text CHAR(20));

CREATE TABLE all_messages

 (message_id INT AUTO_INCREMENT PRIMARY KEY,

 message_text CHAR(20))

 TYPE=MERGE UNION=(message1, message2) INSERT_METHOD=LAST;

The following example renames both a table and a column:

ALTER TABLE employee RENAME AS emp;

ALTER TABLE employee CHANGE employee_ssn emp_ssn INTEGER;

Since MySQL allows the creation of indexes on a portion of a column (for example, on the first ten characters of a
column), you can also build short indexes on very large columns.

MySQL can redefine the datatype of an existing column. To avoid losing any data, the values contained in the column
must be compatible with the new datatype. For example, a date column could be redefined to a character datatype, but
not a character datatype to an integer. Here's an example:

ALTER TABLE mytable MODIFY mycolumn LONGTEXT

MySQL allows some additional flexibility in the ALTER TABLE statement by allowing users to issue multiple ADD, ALTER,
DROP, and CHANGE clauses in a comma-delimited list in a single ALTER TABLE statement. However, be aware that the
CHANGE column_name and DROP INDEX clauses are MySQL extensions not found in SQL2003. MySQL supports the
clause MODIFY column_name to mimic the same feature found in Oracle.

Oracle

The Oracle syntax for CREATE TABLE creates a relational table either by declaring the structure or by referencing an
existing table. You can modify a table after it is created using the ALTER TABLE statement. Oracle also allows the
creation of a relational table that uses user-defined types for column definitions. You can also create an object table
that is explicitly defined to hold a specific UDT, usually a VARRAY or NESTED TABLE type, as well as XMLType tables.

The standard ANSI style CREATE TABLE statement is supported, but Oracle has added many sophisticated extensions to
the command. For example, Oracle allows significant control over the storage and performance parameters of a table.
In both the CREATE TABLE and ALTER TABLE statements, you'll see a great deal of nesting and reusable clauses. To
make this somewhat easier to read, we have broken Oracle's CREATE TABLE statement into three distinct variations
(relational table, object table, and XML table) so that you can more easily follow the syntax.

The CREATE TABLE syntax for a standard relational table, which has no object or XML properties, is as follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name

[({column | attribute} [SORT] [DEFAULT expression] [{column_constraint |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[({column | attribute} [SORT] [DEFAULT expression] [{column_constraint |

 inline_ref_constraint}] |

 {table_constraint_clause | table_ref_constraint} |

 {GROUP log_group (column [NO LOG] [,...]) [ALWAYS] | DATA

 (constraints [,...]) COLUMNS})]

[ON COMMIT {DELETE | PRESERVE} ROWS]

[table_constraint_clause]

{ [physical_attributes_clause] [TABLESPACE tablespace_name]

 [storage_clause] [[NO]LOGGING] |

 [CLUSTER (column [,...])] |

 {[ORGANIZATION

 {HEAP [physical_attributes_clause][TABLESPACE

 tablespace_name][storage_clause]

 [COMPRESS | NOCOMPRESS] [[NO]LOGGING] |

 INDEX [physical_attributes_clause][TABLESPACE

 tablespace_name][storage_clause]

 [PCTTHRESHOLD int] [COMPRESS [int] | NOCOMPRESS]

 [MAPPING TABLE | NOMAPPING][...] [[NO]LOGGING]

 [[INCLUDING column] OVERFLOW

 [physical_attributes_clause][TABLESPACE tablespace_name]

 [storage_clause] [[NO]LOGGING] }] |

 EXTERNAL ([TYPE driver_type]) DEFAULT DIRECTORY directory_name

 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format) }]

 LOCATION ([directory_name:]'location_spec' [,...])

 [REJECT LIMIT {int | UNLIMITED}] } }

[{ENABLE | DISABLE} ROW MOVEMENT]

[[NO]CACHE] [[NO]MONITORING] [[NO]ROWDEPENDENCIES]

[PARALLEL int | NOPARALLEL] [NOSORT] [[NO]LOGGING]]

[COMPRESS [int] | NOCOMPRESS]

[{ENABLE | DISABLE} [[NO]VALIDATE]

 {UNIQUE (column [,...] | PRIMARY KEY | CONSTRAINT constraint_name}]

 [USING INDEX {index_name | CREATE_INDEX_statement}] [EXCEPTIONS INTO]

 [CASCADE] [{KEEP | DROP} INDEX]] |

[partition_clause]

[AS subquery]

The relational table syntax contains a large number of optional clauses. However, the table definition must contain, at a
minimum, either column names and datatypes specifications or the AS subquery clause.

The Oracle syntax for an object table follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE [GLOBAL] [TEMPORARY] TABLE table_name

AS object_type [[NOT] SUBSTITUTABLE AT ALL LEVELS]

[({column | attribute} [DEFAULT expression] [{column_constraint |

 inline_ref_constraint}] |

 {table_constraint_clause | table_ref_constraint } |

 {GROUP log_group (column [NO LOG] [,...]) [ALWAYS] | DATA

 (constraints [,...]) COLUMNS})]

[ON COMMIT {DELETE | PRESERVE} ROWS]

[OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]

[OIDINDEX [index_name] ([physical_attributes_clause] [storage_clause])]

[physical_attributes_clause] [TABLESPACE tablespace_name] [storage_clause]

The Oracle syntax for an XMLType table follows:

CREATE [GLOBAL] [TEMPORARY] TABLE table_name

OF XMLTYPE

[({column | attribute} [DEFAULT expression] [{column_constraint |

 inline_ref_constraint}] |

 {table_constraint_clause | table_ref_constraint } |

 {GROUP log_group (column [NO LOG] [,...]) [ALWAYS] | DATA

 (constraints [,...]) COLUMNS})]

[XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] |

 CLOB [lob_segname] [lob_params]}] [xml_schema_spec]

[ON COMMIT {DELETE | PRESERVE} ROWS]

[OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}]

[OIDINDEX index_name ([physical_attributes_clause] [storage_clause])]

[physical_attributes_clause] [TABLESPACE tablespace_name] [storage_clause]

The Oracle syntax for ALTER TABLE changes the table or column properties, storage characteristics, LOB or VARRAY
properties, partitioning characteristics, and integrity constraints associated with a table and/or its columns. The
statement does other things like move an existing table into a different tablespace, free recuperated space, compact
the table segment, and adjust the "high-water mark."

The ANSI SQL standard uses the ALTER keyword to modify existing elements of a table, while Oracle uses MODIFY to
mean the same thing. Since they are essentially the same thing, please consider the behavior of otherwise identical
clauses (for example, ANSI's ALTER TABLE...ALTER COLUMN to Oracle's ALTER TABLE...MODIFY COLUMN) to be
functionally equivalent.

Oracle's ALTER TABLE syntax is:

ALTER TABLE table_name

-- alter table characteristics

 [physical_attributes_clause] [storage_clause]

 [[NO]LOGGING] [[NO]CACHE] [[NO]MONITORING] [[NO]COMPRESS]

 [SHRINK SPACE [COMPACT] [CASCADE]]

 [UPGRADE [[NOT] INCLUDING DATA] column_name datatype attributes]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [UPGRADE [[NOT] INCLUDING DATA] column_name datatype attributes]

 [[NO]MINIMIZE RECORDS_PER_BLOCK]

 [PARALLEL int | NOPARALLEL]

 [{ENABLE | DISABLE} ROW MOVEMENT]

 [{ADD | DROP} SUPPLEMENTAL LOG

 {GROUP log_group [(column_name [NO LOG] [,...]) [ALWAYS]] |

 DATA ({ALL | PRIMARY KEY | UNIQUE | FOREIGN KEY} [,...]) COLUMNS}]

 [ALLOCATE EXTENT

 [(SIZE int[K|M|G|T]] [DATATILE 'filename'] [INSTANCE int}])]

 [DEALLOCATE UNUSED [KEEP int[K|M|G|T]]]

 [ORGANIZATION INDEX ...

 [COALESCE] [MAPPING TABLE | NOMAPPING] [{PCTTHRESHOLD int]

 [COMPRESS int | NOCOMPRESS]

 [{ ADD OVERFLOW [TABLESPACE tablespace_name] [[NO]LOGGING]

 [physical_attributes_clause]]] |

 OVERFLOW { [ALLOCATE EXTENT (SIZE int [K | M]] [DATAFILE

 'filename'] [INSTANCE int]) |

 [DEALLOCATE UNUSED [KEEP int [K | M]] }]]

 [RENAME TO new_table_name]

-- alter column characteristics

 [ADD (column_name datatype attributes [,...])]

 [DROP { {UNUSED COLUMNS | COLUMNS CONTINUE} [CHECKPOINT int] |

 {COLUMN column_name | (column_name [,...]) } [CHECKPOINT int]

 [{CASCADE CONSTRAINTS | INVALIDATE}] }]

 [SET UNUSED {COLUMN column_name | (column_name [,...]) }

 [{CASCADE CONSTRAINTS | INVALIDATE}]

 [MODIFY { (column_name datatype attributes [,...]) |

 COLUMN column_name [NOT] SUBSTITUTABLE AT ALL LEVELS [FORCE] }]

 [RENAME COLUMN old_column_name TO new_column_name]

 [MODIFY {NESTED TABLE | VARRAY} collection_item [RETURN AS {LOCATOR |

 VALUE}]]

-- alter constraint characteristics

 [ADD CONSTRAINT constraint_name table_constrain_clause]

 [MODIFY CONSTRAINT constraint_name constraint_state_clause]

 [RENAME CONSTRAINT old_constraint_name TO new_constraint_name]

 [DROP { { PRIMARY KEY | UNIQUE (column [,...]) } [CASCADE]

 [{KEEP | DROP} INDEX] |

 CONSTRAINT constraint_name [CASCADE] }]

-- alter table partition characteristics

 [alter partition clauses]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [alter partition clauses]

-- alter external table characteristics

 DEFAULT DIRECTORY directory_name

 [ACCESS PARAMETERS {USING CLOB subquery | (opaque_format) }]

 LOCATION ([directory_name:]'location_spec' [,...])

 [ADD (column_name ...)][DROP column_name ...][MODIFY (column_name ...)]

 [PARALLEL int | NOPARALLEL]

 [REJECT LIMIT {int | UNLIMITED}]

 [PROJECT COLUMN {ALL | REFERENCED}]} }

-- move table clauses

 [MOVE [ONLINE] [physical_attributes_clause]

 [TABLESPACE tablespace_name] [[NO]LOGGING] [PCTTHRESHOLD int]

 [COMPRESS int | NOCOMPRESS] [MAPPING TABLE | NOMAPPING]

 [[INCLUDING column] OVERFLOW

 [physical_attributes_clause] [TABLESPACE tablespace_name]

 [[NO]LOGGING]]]

 [LOB ...] [VARRAY ...] [PARALLEL int | NOPARALLEL]]

-- enable/disable attributes and constraints

 [{ {ENABLE | DISABLE} [[NO]VALIDATE]] {UNIQUE (column [,...]) |

 PRIMARY KEY | CONSTRAINT constraint_name}]

 [USING INDEX {index_name | CREATE_INDEX_statement |

 [TABLESPACE tablespace_name] [physical_attributes_clause]

 [storage_clause]

 [NOSORT] [[NO]LOGGING]] [ONLINE] [COMPUTE STATISTICS]

 [COMPRESS | NOCOMPRESS] [REVERSE]

 [{LOCAL | GLOBAL} partition_clause]

 [EXCEPTIONS INTO table_name] [CASCADE] [{KEEP | DROP} INDEX]] |

 [{ENABLE | DISABLE}] [{TABLE LOCK | ALL TRIGGERS}] }]

The parameters are as follows:

column_constraint

Specifies a column constraint using the syntax found in the description later.

GROUP log_group (column [NO LOG] [,...]) [ALWAYS] | DATA (constraints [,...]) COLUMNS

Specifies a log group rather than a single logfile for the table.

ON COMMIT {DELETE | PRESERVE} ROWS

Declares whether a declared temporary table should keep the data in the table active for the entire session
(PRESERVE) or only for the transaction that the temporary table is created in (DELETE).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(PRESERVE) or only for the transaction that the temporary table is created in (DELETE).

table_constraint_clause

Specifies a table constraint using the syntax found in the description later.

physical_attributes_clause

Specifies the physical attributes of the table using the syntax found in the description later.

TABLESPACE tablespace_name

Specifies the name of the tablespace where the table you are creating will be stored. If omitted, the default
tablespace for the schema owner will be used. See below for specifics. See the Oracle Concepts manual to learn
about tablespaces and their use.

storage_clause

Specifies physical storage characteristics of the table using the syntax found in the description later.

[NO]LOGGING

Specifies that redo log records will be written during object creation (LOGGING) or not (NOLOGGING).
LOGGING is the default. In case of database failure under the NOLOGGING option, the operation cannot be
recovered by applying logfiles, and the object must be recreated. NOLOGGING can speed the creation of
database objects. The LOGGING clause replaces the older RECOVERABLE clause, which is deprecated.

CLUSTER (column [,...])

Declares that the table is part of a clustered index. The column list should correspond, one to one, with the
columns in a previously declared clustered index. Because it uses the clustered indexes space allocation, the
CLUSTER clause is compatible with the physical_attributes_clause, storage_clause, or TABLESPACE clause. Tables
containing LOBs are incompatible with the CLUSTER clause.

ORGANIZATION HEAP

Declares how the data of the table should be recorded to disk. HEAP, the default for an Oracle table, declares
that no order is associated with the storage of rows of data (i.e., the physical order in which records are written
to disk) for this table. The ORGANIZATION HEAP clause allows several optional clauses, described in detail
elsewhere in this list, control storage, logging, and compression for the table.

ORGANIZATION INDEX

Declares how the data of the table should be recorded to disk. INDEX declares that the records of the table are
physically written to disk in the sort order defined by the primary key of the table. Oracle calls this an index-
organized table. A primary key is required. Note that the physical_attributes_clause, the TABLESPACE clause, and
the storage_clause — all described in greater detail elsewhere in this section — as well as the [NO]LOGGING
keyword may all be associated with the new INDEX segment as you create it. In addition, the following
subclauses may also be associated with an ORGANIZATION INDEX clause:

PCTTHRESHOLD int

Declares the percentage, int, of space in each index block preserved for data. Data, on a record by
record basis, that cannot fit in this space will be placed in the overflow segment.

INCLUDING column

Declares the point at which a record is to split between index and overflow portions. All columns that
follow the specified column will be stored in the overflow segment. The column cannot be a primary key
column.

MAPPING TABLE | NOMAPPING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MAPPING TABLE | NOMAPPING

Tells the database to create a mapping of local to physical ROWIDs. This mapping is required to create
a bitmap index on an IOT. Mappings are also partitioned identically if the table is partitioned.
NOMAPPING tells the database not to create the ROWID map.

[INCLUDING column] OVERFLOW

Declares that a record that exceeds the PCTTHRESHOLD value be placed in a segment described in this
clause. The physical_attributes_clause, the TABLESPACE clause, the storage_clause — all described
elsewhere in the list in greater detail — and the [NO]LOGGING keyword may all be associated with a
specific OVERFLOW segment when you create it. The optional INCLUDING column clause defines a
column at which to divide an IOT row into index and overflow portions. Primary key columns are always
stored in the index. However, all non-primary key columns that follow column are stored in the overflow
data segment.

ORGANIZATION EXTERNAL

Declares how the data of the table should be recorded to disk. EXTERNAL declares that the table stores its data
outside of the database and is usually read-only. Its metadata is stored in the database but its data is stored
outside of the database. There are some restrictions on external tables. They cannot be temporary. They cannot
have constraints. They can only have column, datatype, and attribute column-descriptors. LOB and LONG
datatypes are disallowed. No other ORGANIZATION clauses are allowed with EXTERNAL. The following
subclauses may be used with the ORGANIZATION EXTERNAL clause:

TYPE driver_type

Defines the access driver API for the external table. The default is ORACLE_LOADER.

DEFAULT DIRECTORY directory_name

Defines the default directory on the filesystem where the external table resides.

ACCESS PARAMETERS {USING CLOB subquery | (opaque_format) }

Assigns and passes specific parameters to the access driver. Oracle does not interpret this information.
USING CLOB subquery tells Oracle to derive the parameters and their values from a subquery that
returns a single row with a single column of datatype CLOB. The subquery cannot contain an ORDER BY,
UNION, INTERSECT, or MINUS/EXCEPT. The opaque_format clause allows you to list parameters and their
values as described in the ORACLE LOADER section of the "Oracle9i Database Utilities" guide.

LOCATION (directory_name:'location_spec' [,...])

Defines one or more external data sources, usually as files. Oracle does not interpret this information.

REJECT LIMIT {int | UNLIMITED}

Defines the number of conversion errors, int, that are allowed during the query to the external data
source before Oracle aborts the query and returns an error. UNLIMITED tells Oracle to continue with the
query no matter how many errors are encountered. The default is 0.

{ENABLE | DISABLE} ROW MOVEMENT

Specifies that a row may be moved to a different partition or subpartition if required due to an update of the
key (ENABLE) or not (DISABLE). The DISABLE keyword also specifies that Oracle return an error if an update to
a key would require a move.

[NO]CACHE

Buffers a table for rapid reads, while NOCACHE turns off this behavior. Index-organized tables offer CACHE
behavior.

[NO]MONITORING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that modification statistics can be collected for this table (MONITORING) or not (NOMONITORING).
NOMONITORING is the default.

[NO]ROWDEPENDENCIES

Specifies whether a table will use row-level dependency tracking, a feature that applies a system change
number (SCN) greater than or equal to the last time of the transaction affecting the row. The SCN adds 6 extra
bytes of space to each record. Row-level dependency tracking is most useful in replicated environments with
parallel data propagation. NOROWDEPENDENCIES is the default.

PARALLEL int | NOPARALLEL

Allows for the parallel creation of the table by distinct CPUs to speed the operation. It also enables parallelism
for queries and other data-manipulation operations against the table after its creation. An optional integer value
may be supplied to define the exact number of parallel threads used to create the table in parallel, as well as
the parallel threads allowed to service the table in the future. (Oracle calculates the best number of threads to
use in a given parallel operation, so the PARALLEL clause is an optional feature.) NOPARALLEL, the default,
creates the table serially and disallows future parallel queries and data-manipulation operations.

COMPRESS [int] | NOCOMPRESS

Specifies if the table should be compressed or not. On index-organized tables, only the key is compressed; on
heap-organized tables, the entire table is compressed. This can greatly reduce the amount of space consumed
by the table. NOCOMPRESS is the default. In index-organized tables, you can specify the number of prefix
columns, int, to compress. The default value for int is the number of keys in the primary key minus one. You
need not specify an int value on other clauses such as ORGANIZATION. When you omit the int value, Oracle will
apply compression to the entire table.

{ENABLE | DISABLE} [[NO]VALIDATE]] {UNIQUE (column [,...] | PRIMARY KEY | CONSTRAINT constraint_name}

Declares whether the named key or constraint applies to all of the data in the new table. ENABLE specifies that
the key or constraint applies to all new data in the table. DISABLE specifies that the key or constraint is
disabled for the new table, with the following options:.

[NO]VALIDATE

Verifies that all existing data in the table complies with the key or constraint (VALIDATE) or not
(NOVALIDATE). When NOVALIDATE is specified with ENABLE, Oracle does not verify that existing data
in the table complies with the key or constraint, but ensures that new data added to the table does
comply with the constraint.

{UNIQUE (column [,...] | PRIMARY KEY | CONSTRAINT constraint_name}

Declares the unique constraint, primary key, or constraint that is enabled or disabled.

USING INDEX index_name | CREATE_INDEX_statement

Declares the name, index_name, of a pre-existing index (and its characteristics) used to enforce the key
or constraint, or creates a new index, CREATE_INDEX_statement. If neither are declared, Oracle creates a
new index.

EXCEPTIONS INTO

Specifies the name of a table into which Oracle places information about rows violating the constraint.
Run the utlexpt1.sql script before using this keyword to explicitly create this table.

CASCADE

Cascades the disablement/enablement to any integrity constraints that depend on the constraint named
in the clause. Usable only with the DISABLE clause.

{KEEP | DROP} INDEX

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Lets you keep (KEEP) or drop (DROP) an index used to enforce a unique or primary key. You can drop
the key only when disabling it.

partition_clause

Declares partitioning and subpartitioning of a table. Partitioning syntax can be quite complex. Refer to the
material later in this section under Oracle partitioned and subpartitioned tables for the full syntax and examples.

AS subquery

Declares a subquery that inserts rows into the table upon creation. The column names and datatypes used in the
subquery can act as substitutes for column name and attribute declarations for the table.

AS object_type

Declares that the table is based on a pre-existing object type.

[NOT] SUBSTITUTABLE AT ALL LEVELS

Declares whether row objects corresponding to subtypes can be inserted into the type table or not. When this
clause is omitted, the default is SUBSTITUTABLE AT ALL LEVELS.

inline_ref_constraint and table_ref_constraint

Declares a reference constraint used by an object-type table or XMLType table. These clauses are described in
greater detail later in this section under Oracle XMLType and object-type tables.

OBJECT IDENTIFIER IS {SYSTEM GENERATED | PRIMARY KEY}

Declares whether the object ID (OID) of the object-type table is SYTEM GENERATED or based on the PRIMARY
KEY. When omitted, the default is SYSTEM GENERATED.

OIDINDEX [index_name]

Declares an index, and possibly a name for the index, if the OID is system generated. You may optionally apply
a physical_attributes_clause and a storage_clause to the OIDINDEX. If the OID is based on the primary key, then
this clause is unnecessary.

OF XMLTYPE

Declares that the table is based on Oracle's XMLTYPE datatype.

XMLTYPE {OBJECT RELATIONAL [xml_storage_clause] | CLOB [lob_segname] [lob_params]}

Declares how the underlying storage of the XMLTYPE is handled. OBJECT RELATIONAL stores the data in object-
relational columns. This subclause requires an xml_schema_spec and a schema that has been preregistered using
the DBMS_XMLSCHEMA package. CLOB specifies that the XMLTYPE data will be stored in a LOB column. You
may optionally specify the LOB segment name and/or the LOB storage parameters.

xml_schema_spec

Allows you to specify the URL of a registered XML schema and an XML element name. The element name is
required but the URL is optional.

ADD ...

Adds a new column, constraint, overflow segment, or supplemental log group to an existing table.

MODIFY ...

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Changes an existing column, constraint, or supplemental log group on an existing table.

DROP ...

Drops an existing column, constraint, or supplemental log group from an existing table. You can explicitly drop
columns marked as unused from a table with DROP UNUSED COLUMNS; however, Oracle will also drop all
unused columns when any other column is dropped. The INVALIDATE keyword causes any object that depends
on the dropped object to become invalid and unusable until it is recompiled or when it is next used. The
COLUMNS CONTINUE clause is used only when a DROP COLUMN statement failed with an error and you wish to
continue where it left off.

RENAME ...

Renames an existing table, column, or constraint on an existing table.

SET UNUSED ...

Declares a column or columns to be unused. The column or columns are no longer accessible from SELECT
statements, though they still count toward the maximum number of columns allowed per table (1000). SET
UNUSED is the fastest way to render a column unusable within a table, but it is not the best way. Only use SET
UNUSED as a shortcut until you can actually use ALTER TABLE...DROP to drop the column.

COALESCE

Merges the contents of index blocks used to maintain the index-organized table so that the blocks can be
reused. COALESCE is similar to SHRINK, though COALESCE compacts the segments less densely than does
SHRINK and it does not release unused space.

ALLOCATE EXTENT

Explicitly allocates a new extent for the table using the specified parameters. You may mix and match any of
the parameters. The size of the extents may be in bytes (no suffix), kilobytes (K), megabytes (M), gigabytes
(G), or terabytes (T).

DEALLOCATE UNUSED [KEEP int[K | M | G | T]]

Deallocates unused space at the end of the table, LOB segment, partition, or subpartition. The deallocated
space is then usable by other objects in the database. The KEEP keyword tells how much space you want to
have left over after deallocation is complete.

SHRINK SPACE [COMPACT] [CASCADE]

Shrinks the table, index-organized table, index, partition, subpartition, materialized view, or materialized log
view, though only segments in tablespaces with automatic segment management may be shrunk. Shrinking a
segment moves rows in the table, so make sure ENABLE ROW MOVEMENT is also used in the ALTER
TABLE...SHRINK statement. Oracle compacts the segment, releases the emptied space, and adjusts the high-
water mark unless the optional keywords COMPACT and/or CASCADE are applied. The COMPACT keyword only
defragments the segment space and compacts the table row for subsequent release, but it does not readjust
the high-water mark nor empty the space immediately. The CASCADE keyword performs the same shrinking
operation (with some restrictions and exceptions) on all dependent objects of the table, including secondary
indexes on index-organized tables. Used only with ALTER TABLE.

UPGRADE [NOT] INCLUDING DATA

Converts the metadata of object tables and relational tables with object columns to the latest version for each
referenced type. The INCLUDING DATA clause will convert the data to the latest type format (INCLUDING
DATA) or leave it unchanged (NOT INCLUDING DATA).

MOVE ...

Moves the tablespace, index-organized table, partition, or subpartition to a new location on the filesystem.

[NO]MINIMIZE RECORDS_PER_BLOCK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[NO]MINIMIZE RECORDS_PER_BLOCK

Tells Oracle to restrict or leave open the number of records allowed per block. The MINIMIZE keyword tells
Oracle to calculate the maximum number of records per block and set the limit at that number. (Best to do this
when a representative amount of data is already in the table.) This clause is incompatible with nested tables
and index-organized tables. NOMINIMIZE is the default.

PROJECT COLUMN {REFERENCE | ALL}

Determines how the driver for the external data source validates the rows of the external table in subsequent
queries. REFERENCE processes only those columns in the select item list. ALL processes the values in all
columns, even those not in the select item list, and validates rows with full and valid column entries. Under ALL,
rows are rejected when errors occur, even on columns that are not selected. ALL returns consistent results,
while REFERENCE returns varying numbers of rows depending on the columns referenced.

{ENABLE | DISABLE} {TABLE LOCK | ALL TRIGGERS}

Enables or disables table-level locks and all triggers on the table, respectively. ENABLE TABLE LOCK is required
if you wish to change the structure against an existing table, but it is not required when changing or reading the
data of the table.

A global temporary table is available to all user sessions, but the data stored within a global temporary table is visible
only to the session that inserted it. The ON COMMIT clause, which is allowed only when creating temporary tables, tells
Oracle to either truncate the table after each commit against the table (DELETE ROWS) or to truncate the table when
the session terminates (PRESERVE ROWS). For example:

CREATE GLOBAL TEMPORARY TABLE shipping_schedule

 (ship_date DATE,

 receipt_date DATE,

 received_by VARCHAR2(30),

 amt NUMBER)

ON COMMIT PRESERVE ROWS;

The CREATE TABLE statement shown above creates a global temporary table, shipping_schedule, which retains
inserted rows across multiple transactions.

The Oracle physical_attributes_clause

The physical_attributes_clause (as shown in the following code block) defines storage characteristics for an entire local
table, or if the table is partitioned, for a specific partition (discussed later). To declare the physical attributes of a new
table or change the attributes on an existing table, simply declare the new values:

-- physical_attributes_clause

[{PCTFREE int | PCTUSED int | INITRANS int |

 MAXTRANS int | storage_clause}]

where:

PCTFREE int

Defines the percentage of free space reserved for each data block in the table. For example, a value of 10
reserves 10% of the data space for new rows to be inserted.

PCTUSED int

Defines the minimum percentage of space allowed in a block before it can receive new rows. For example, a
value of 90 means new rows are inserted in the data block when the space used falls below 90%. The sum of
PCTFREE and PCTUSED cannot exceed 100.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INITRANS int

Rarely tinkered with; it defines the allocation of from 1 to 255 initial transactions to a data block.

MAXTRANS int

Defines the maximum number of concurrent transactions on a data block.

The Oracle storage_clause and LOBs

The storage_clause controls a number of attributes governing the physical storage of data:

-- storage_clause

STORAGE ([{INITIAL int [K | M]

 | NEXT int [K | M]

 | MINEXTENTS int

 | MAXEXTENTS { int | UNLIMITED}

 | PCTINCREASE int

 | FREELISTS int

 | FREELIST GROUPS int

 | BUFFER_POOL {KEEP | RECYCLE | DEFAULT}] [...])

When delineating the storage clause attributes, enclose them in parentheses and separate them with spaces—for
example, (INITIAL 32M NEXT8M). The attributes are as follows:

INITIAL int [K | M]

Sets the initial extent size of the table in bytes, kilobytes (K), or megabytes (M). Oracle 10g allows [K|M|G|T]
to describe the size allocation in bytes, kilobytes (K), megabytes (M), gigabytes (G), and terabytes (T).

NEXT int [K | M]

Tells how much additional space to allocate after INITIAL is filled.

MINEXTENTS int

Tells Oracle to create a minimum number of extents. By default, only one is created, but more can be created
when the object is initialized.

MAXEXTENTS int

Tells Oracle the maximum extents allowed. This value may be set to UNLIMITED. (Note that UNLIMITED should
be used with caution since a table could grow until it consumes all free space on a disk.)

PCTINCREASE int

Controls the growth rate of the object after the first growth. The initial extent gets allocated as specified. The
second extent is the size specified by NEXT. The third extent is NEXT + (NEXT * PCTINCREASE). When
PCTINCREASE is set to 0, NEXT is always used. Otherwise, each added extent of storage space is PCTINCREASE
larger than the previous extent.

FREELISTS int

Establishes the number of freelists for each group, defaulting to 1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FREELIST GROUPS int

Sets the number of groups of freelists, defaulting to 1.

BUFFER_POOL {KEEP | RECYCLE | DEFAULT}

Specifies a default buffer pool or cache for any non-cluster table where all object blocks are stored. Index-
organized tables may have a separate buffer pool for the index and overflow segments. Partitioned tables
inherit the buffer pool from the table definition unless they are specifically assigned a separate buffer pool.

KEEP

Puts object blocks into the KEEP buffer pool; that is, directly into memory. This enhances performance
by reducing I/O operations on the table. KEEP takes precedence over the NOCACHE clause.

RECYCLE

Puts object blocks into the RECYCLE buffer pool.

DEFAULT

Puts object blocks into the DEFAULT buffer pool. When omitted, DEFAULT is the default buffer pool
behavior.

For example, the table books_sales is defined on the sales tablespace as consuming an initial 8 MB of space, to grow
by no less than 8 MB when the first extent is full. The table has no less than 1 and no more than 8 extents, limiting its
maximum size to 64 MB:

CREATE TABLE book_sales

 (qty NUMBER,

 period_end_date DATE,

 period_nbr NUMBER)

TABLESPACE sales

STORAGE (INITIAL 8M NEXT 8M MINEXTENTS 1 MAXEXTENTS 8);

An example of a LOB table called large_objects with special handling for text and image storage might look like:

CREATE TABLE large_objects

 (pretty_picture BLOB,

 interesting_text CLOB)

STORAGE (INITIAL 256M NEXT 256M)

LOB (pretty_picture, interesting_text)

 STORE AS (TABLESPACE large_object_segment

 STORAGE (INITIAL 512M NEXT 512M)

 NOCACHE LOGGING);

The exact syntax used to define a LOB, CLOB, or NCLOB column is defined by the lob_parameter_clause. LOBs can appear
at many different levels within an Oracle table. For instance, separate LOB definitions could exist in a single table in a
partition definition, a subpartition definition, and at the top table-level. The syntax of lob_parameter_clause follows:

{TABLESPACE tablespace_name] [{ENABLE | DISABLE} STORAGE IN ROW]

 [storage_clause] [CHUNK int] [PCTVERSION int]

 [RETENTION] [FREEPOOLS int]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [RETENTION] [FREEPOOLS int]

[{CACHE | {NOCACHE | CACHE READS} [{LOGGING | NOLOGGING}] }] }

In the lob_parameter_clause, each parameter is identical to those of the wider CREATE TABLE LOB-object level. However,
the following four parameters are unique to LOBs:

{ENABLE | DISABLE} STORAGE IN ROW

Defines whether the LOB value is stored inline with the other columns of the row and the LOB locator (ENABLE),
when it is smaller than approximately 4,000 bytes or less, or outside of the row (DISABLE). This setting cannot
be changed once it is set.

CHUNK int

Allocates int number of bytes for LOB manipulation. int should be a multiple of the database blocksize, otherwise
Oracle will round up. int should also be less than or equal to the value of NEXT, from the storage_clause, or else
an error results. When omitted, the default chunk size is one block. This setting cannot be changed once it is
set.

PCTVERSION int

Defines the maximum percentage, as int, of the overall LOB storage dedicated to maintaining old versions of the
LOB. When omitted, the default is 10%.

RETENTION

Used in place of PCTVERSION on databases in automatic undo mode. RETENTION tells Oracle to retain old
versions of the LOB.

The following example shows our large_objects LOB table with added parameters to control inline storage and
retention of old LOBs:

CREATE TABLE large_objects

 (pretty_picture BLOB,

 interesting_text CLOB)

STORAGE (INITIAL 256M NEXT 256M)

LOB (pretty_picture, interesting_text)

 STORE AS (TABLESPACE large_object_segment

 STORAGE (INITIAL 512M NEXT 512M)

 NOCACHE LOGGING

 ENABLE STORAGE IN ROW

 RETENTION);

The earlier example added parameter values for STORAGE IN ROW and RETENTION. But since we did not set one for
CHUNK, that value is set to the Oracle default for the LOB.

Oracle nested tables

Oracle allows the declaration of a NESTED TABLE in which a table is virtually stored within a column of another table.
The STORE AS clause enables a proxy name for the table within a table, but the nested table must be created initially
as a user-defined datatype. This capability is valuable for sparse arrays of values, but we don't recommend it for day-
to-day tasks. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to-day tasks. For example:

CREATE TYPE prop_nested_tbl AS TABLE OF props_nt;

CREATE TABLE proposal_types

 (proposal_category VARCHAR2(50),

 proposals PROPS_NT)

NESTED TABLE props_nt STORE AS props_nt_table;

This example creates a table called proposal_types along with a nested table called props_nt, which is stored as
props_nt_table.

Oracle compressed tables

Oracle 10g (and Oracle 9i Release 2) allows compression of both keys and entire tables. (Oracle 9i allowed only key
compression.) Although compression adds a tiny bit of overhead, it significantly reduces that amount of disk space
consumed by a table. This is especially useful for databases pushing the envelop in terms of size. Key compression is
handled in the ORGANIZE INDEX clause, while table compression is handled in the ORGANIZE HEAP clause.

Oracle partitioned and subpartitioned tables

Oracle allows tables to be partitioned and subpartitioned. You can also break out LOBs onto their own partition(s). A
partitioned table may be broken into distinct parts, possibly placed on separate disk subsystems to improve I/O
performance, based on four strategies: range, hash, list, and a composite of the first three. Partitioning syntax is quite
elaborate:

{ PARTITION BY RANGE (column [,...]) (PARTITION [partition_name]

 VALUES LESS THAN ({MAXVALUE | value} [,...])

 [table_partition_description]) |

 PARTITION BY HASH (column [,...])

 {(PARTITION [partition_name] [partition_storage_clause] [,...] |

 PARTITIONS hash_partition_qty [STORE IN (tablespace [,...])]

 [OVERFLOW STORE IN (tablespace [,...])]} |

 PARTITION BY LIST (column [,...]) (PARTITION [partition_name]

 VALUES ({MAXVALUE | value} [,...])

 [table_partition_description] |

 PARTITION BY RANGE (column [,...])

 {subpartition_by_list | subpartition_by_hash}

 (PARTITION [partition_name] VALUES LESS THAN

 ({MAXVALUE | value} [,...])

 [table_partition_description]) }

The following example code shows the orders table partitioned by range:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 qty NUMBER,

 cust_shp_id NUMBER)

PARTITION BY RANGE(order_date)

 (PARTITION pre_yr_2000 VALUES LESS THAN

 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),

 PARTITION pre_yr_2004 VALUES LESS THAN

 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'

 PARTITION post_yr_2004 VALUES LESS THAN

 MAXVALUE)) ;

This example creates three partitions on the orders table — one for the orders taken before the year 2000
(pre_yr_2000), one for the orders taken before the year 2004 (pre_yr_2004), and another for the orders taken after the
year 2004 (post_yr_2004) — all based on the range of dates that appear in the order_date column.

The next example creates the orders table based on a hash value in the customer_shipping_id:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER)

PARTITION BY HASH (cust_shp_id)

 (PARTITION shp_id1 TABLESPACE tblspc01,

 PARTITION shp_id2 TABLESPACE tblspc02,

 PARTITION shp_id3 TABLESPACE tblspc03)

ENABLE ROW MOVEMENT;

The big difference in how the records are divided among partitions between the hash partition example and the range
partition example is that the range partition code explicitly defines where each record goes, while the hash partition
example allows Oracle to decide (by applying a hash algorithm) in which partition to place the record. (Note that we
also enabled row movement for the table.)

Examples of list and composite partitioning are shown with the subpartitioning information detailed in the next
paragraph. In addition to breaking tables apart into partitions (for easier backup, recovery, or performance reasons),
you may further break it apart into subpartitions. The subpartition_by_list clause syntax follows:

SUBPARTITION BY LIST (column)

[SUBPARTITION TEMPLATE

 { (SUBPARTITION subpartition_name

 [VALUES {DEFAULT | {val | NULL} [,...] }

 [partitioning_storage_clause]) |

 hash_subpartition_qty }]

For example, we'll recreate the orders table once again, this time using a range-hash composite partition. In a range-

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, we'll recreate the orders table once again, this time using a range-hash composite partition. In a range-
hash composite partition, the partitions are broken apart by range values, while the subpartitions are broken apart by
hashed values. List partitions and subpartitions are broken apart by a short list of specific values. Because you must list
out all the values by which the table is partitioned, the partition value is best taken from a small list of values. In this
example, we've added a column (shp_region_id) that allows four possible regions:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER,

 shp_region VARCHAR2(20))

PARTITION BY RANGE(order_date)

SUBPARTITION BY LIST(shp_region)

 SUBPARTITION TEMPLATE(

 (SUBPARTITION shp_region_north

 VALUES ('north','northeast','northwest'),

 SUBPARTITION shp_region_south

 VALUES ('south','southeast','southwest'),

 SUBPARTITION shp_region_central

 VALUES ('midwest'),

 SUBPARTITION shp_region_other

 VALUES ('alaska','hawaii','canada')

 (PARTITION pre_yr_2000 VALUES LESS THAN

 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),

 PARTITION pre_yr_2004 VALUES LESS THAN

 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'

 PARTITION post_yr_2004 VALUES LESS THAN

 MAXVALUE))

ENABLE ROW MOVEMENT;

This code example not only sends the records of the table to one of three partitions based on the order_date, it
further partitions the records into one of four subpartitions based on the region where the order is being shipped and on
the value of the shp_region column. By using the SUBPARTITION TEMPLATE, you apply the same set of subpartitions
to each partition. You can manually override this behavior by specifying subpartitions for each partition.

You may also subpartition using a hashing algorithm. The subpartition_by_hash clause follows:

SUBPARTITION BY HASH (column [,...])

 {SUBPARTITIONS qty [STORE IN (tablespace_name [,...])] |

 SUBPARTITION TEMPLATE

 { (SUBPARTITION subpartition_name [VALUES {DEFAULT | {val | NULL}

 [,...] } [partitioning_storage_clause]) |

 hash_subpartition_qty }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 hash_subpartition_qty }

The table_partition_description clause referenced in the partitioning syntax (in the earlier section Oracle partitioned and
subpartitioned tables) is, in itself, very flexible and supports precise handling of LOB and VARRAY data:

[segment_attr_clause] [[NO] COMPRESS [int]] [OVERFLOW segment_attr_clause]

[partition_level_subpartition_clause]

[{ LOB { (lob_item [,...]) STORE AS lob_param_clause |

 (lob_item) STORE AS {lob_segname (log_param_clause) |

 log_segname | (log_param_clause) } } |

 VARRAY varray_item {[{[ELEMENT] IS OF [TYPE] (ONLY type_name) |

 [NOT] SUBSTITUTABLE AT ALL LEVELS}] STORE AS LOB { log_segname |

 [log_segname] (log_param_clause) } |

 [{[ELEMENT] IS OF [TYPE] (ONLY type_name) |

 [NOT] SUBSTITUTABLE AT ALL LEVELS}]

The partition_level_subpartition_clause syntax follows:

{SUBPARTITIONS hash_subpartition_qty [STORE IN (tablespace_name [,...])] |

 SUBPARTITION subpartition_name [VALUES {DEFAULT | {val | NULL} [,...]]

 [partitioning_storage_clause] }

The partition_storage_clause (see the earlier section Oracle partitioned and subpartitioned tables), like the table-level
storage_clause defined earlier, defines how elements of a partition (or subpartition) are stored. The syntax follows:

[{TABLESPACE tablespace_name] | [OVERFLOW TABLESPACE tablespace_name] |

 VARRAY varray_item STORE AS LOB log_segname |

 LOB (lob_item) STORE AS { (TABLESPACE tablespace_name) |

 Log_segname [(TABLESPACE tablespace_name)] }]

In this final partitioning example, we'll again recreate the orders table using a composite range-hash partition, this
time with LOB (actually, an NCLOB column) and storage elements:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER,

 shp_region VARCHAR2(20),

 order_desc NCLOB)

PARTITION BY RANGE(order_date)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PARTITION BY RANGE(order_date)

SUBPARTITION BY HASH(cust_shp_id)

 (PARTITION pre_yr_2000 VALUES LESS THAN

 TO_DATE('01-JAN-2000', 'DD-MON-YYYY') TABLESPACE tblspc01

 LOB (order_desc) STORE AS (TABLESPACE tblspc_a01

 STORAGE (INITIAL 10M NEXT 20M))

 SUBPARTITIONS subpartn_a,

 PARTITION pre_yr_2004 VALUES LESS THAN

 TO_DATE('01-JAN-2004', 'DD-MON-YYYY') TABLESPACE tblspc02

 LOB (order_desc) STORE AS (TABLESPACE tblspc_a02

 STORAGE (INITIAL 25M NEXT 50M))

 SUBPARTITIONS subpartn_b TABLESPACE tblspc_x07,

 PARTITION post_yr_2004 VALUES LESS THAN

 MAXVALUE (SUBPARTITION subpartn_1,

 SUBPARTITION subpartn_2,

 SUBPARTITION subpartn_3

 SUBPARTITION subpartn_4))

ENABLE ROW MOVEMENT;

In this somewhat more complex example, we now define the orders table with the added NCLOB table called
order_desc. In the pre_yr_2000 and pre_yr_2004 partitions, we specify that all of the non-LOB data goes to
tablespaces tblspc01 and tblspc02, respectively. However, the NCLOB values of the order_desc column will be
stored in the tblespc_a01 and tblspc_a02, respectively, with their own unique storage characteristics. Note that the
subpartition subpartn_b under partition pre_yr_2004 is also stored in its own tablespace, tblspc_x07. Finally, the
last partition (post_yr_2004) and its subpartitions are stored in the default tablespace for the orders table because
no partition- or subpartition-level TABLESPACE clause overrides the default.

Altering partitioned and subpartition tables

Anything about partitions and subpartitions that is explicitly set by the CREATE TABLE statement may be altered after
the table is created. Many of the clauses shown later are merely repetitions of clauses that are described in the earlier
section about creating partitioned tables; for example, the SUBPARTITION TEMPLATE clause or the MAPPING TABLE
clause. Consequently, these clauses will not be repeated. Altering the partitions and/or subpartitions of an Oracle table
is governed by this syntax:

ALTER TABLE table_name

 [MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]

 [physical_attributes_clause] [storage_clause] [PCTTHRESHOLD int]

 [{ADD OVERFLOW ... | OVERFLOW ...}] [[NO]COMPRESS]

 [{LOB (lob_name) | VARRAY varray_name} [(lob_parameter_clause)]]

 [COMPRESS int | NOCOMPRESS]

 [SET SUBPARTITION TEMPLATE {hash_subpartn_quantity |

 (SUBPARTITION subpartn_name [partn_list]

[storage_clause])}]

 [MODIFY PARTITION partn_name

 { [table_partition_description] |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 { [table_partition_description] |

 [[REBUILD] UNUSABLE LOCAL INDEXES] |

 [ADD [subpartn specification]] |

 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]] |

 [{ADD | DROP} VALUES (partn_value [,...])] |

 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSUED ...}]

 [MODIFY SUBPARTITION subpartn_name {hash_subpartn_attributes |

 list_subpartn_attributes}]

 [MOVE {PARTITION | SUBPARTITION} partn_name

 [MAPPING TABLE] [table_partition_description] [[NO]PARALLEL]

 [update_index_clause]]

 [ADD PARTITION [partn_name] [p table_partition_description]

 [[NO]PARALLEL] [update_index_clause]]

 [COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]]

 [DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL]

 [update_index_clause]]

 [RENAME {PARTITION | SUBPARTITION} old_partn_name TO

new_partn_name]

 [TRUNCATE {PARTITION | SUBPARTITION} partn_name

 [{DROP | REUSE} STORAGE] [[NO]PARALLEL] [update_index_clause]]

 [SPLIT {PARTITION | SUBPARTITION} partn_name {AT | VALUES}

 (value [,...])

 [INTO (PARTITION [partn_name1]

[table_partition_description] ,

 (PARTITION [partn_name2]

[table_partition_description])]

 [[NO]PARALLEL] [update_index_clause]]

 [MERGE {PARTITION | SUBPARTITION} partn_name1 , partn_name2

 [INTO PARTITION [partn_name] [partn_attributes]] [[NO]PARALLEL]

 [update_index_clause]]

 [EXCHANGE {PARTITION | SUBPARTITION} partn_name WITH TABLE table_name

 [{INCLUDING | EXCLUDING} INDEXES] [{WITH | WITHOUT} VALIDATION]

 [[NO]PARALLEL] [update_index_clause] [EXCEPTIONS INTO table_name]]

where:

MODIFY DEFAULT ATTRIBUTES [FOR PARTITION partn_name]

Modifies a wide variety of attributes for the current partition or a specific partition of partn_name. Refer to the
earlier section Oracle partitioned and subpartitioned tables for all the details on partition attributes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET SUBPARTITION TEMPLATE {hash_subpartn_quantity | (SUBPARTITION subpartn_name [partn_list] [storage_clause]) }

Sets a new subpartition template for the table.

MODIFY PARTITION partn_name

Changes a wide variety of physical and storage characteristics, including the storage properties of LOB and
VARRAY columns, of a pre-existing partition or subpartition called partn_name. Additional syntax may be
appended to the MODIFY PARTITION partn_name clause:

{ [table_partition_description] | [[REBUILD] UNUSABLE LOCAL INDEXES] |

 [ADD [subpartn specification]] |

 [COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]

 { [{UPDATE | INVALIDATE} GLOBAL INDEXES] |

 UPDATE INDEXES [(index_name (

 {index_partn | index_subpartn})) [,...]] }] |

 [{ADD | DROP} VALUES (partn_value [,...])] |

 [MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSUED ...}

where:

table_partition_description

Described in the earlier section Oracle partitioned and subpartitioned tables. This clause may be used on
any partitioned table.

[REBUILD] UNUSABLE LOCAL INDEXES

Marks the local index partition as UNUSABLE. Adding the optional REBUILD keyword tells Oracle to
rebuild the unusable local index partition as part of the operation performed by the MODIFY PARTITION
statement. This clause may not be used with any other subclause of the MODIFY PARTITION statement
nor may it be used on tables with subpartitions. This clause may be used on any partitioned table.

ADD [subpartn specification]

Adds a hash or list subpartition specification, as described in the earlier section Oracle partitioned and
subpartitioned tables, to an existing range partition. This clause may be used to define range-hash or
range-list composite partitions only. Oracle populates the new subpartition with rows from other
subpartitions using either the hash function or the list values you specify. We recommend the total
number of subpartitions be set to a power of 2 for optimal load balancing. You may add range-list
subpartitions only if the table does not already have a DEFAULT subpartition. When adding range-list
subpartitions, the list value clause is required but it cannot duplicate values found in any other
subpartition of the current partition. The only storage or physical attribute you may couple with this
clause for both range-hash and range-list subpartitions is the TABLESPACE clause.

COALESCE SUBPARTITION [[NO]PARALLEL] [update_index_clause]

Coalesces the subpartition of a range-hash composite partitioned table. This clause tells Oracle to
distribute the contents of the last hash subpartitions to one or more remaining subpartition in the set,
and then drop the last hash subpartition. Oracle also drops local index subpartitions corresponding to
the subpartition you are coalescing. The update_index_clause is described later in this list. Global indexes
may be updated or invalidated using the syntax {UPDATE | INVALIDATE} GLOBAL INDEXES. In
addition, local indexes, index partitions, or index subpartitions may be updated using the syntax
UPDATE INDEXES (index_name ({index_partn | index_subpartn}].

{ADD | DROP} VALUES (partn_value [,...])

Adds a new value (or values) or drops existing values on an existing list-partitioned table, respectively.
Local and global indexes are not affected by this clause. Values cannot be added to or dropped from a
DEFAULT list partition.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEFAULT list partition.

MAPPING TABLE {ALLOCATE EXTENT ... | DEALLOCATE UNUSUED ...}

Defines a mapping table for a partitioned table that is an IOT. The ALLOCATE EXTENT and DEALLOCATE
UNUSED clauses are described earlier in the syntax description list of the "CREATE TABLE" statement.
This clause may be used on any type of partitioned table, as long as the table is an index-organized
table.

MODIFY SUBPARTITION subpartn_name {hash_subpartn_attributes | list_subpartn_attributes}

Modifies a specific hash or list subpartition according to the subpartition attributes described in the earlier
section Oracle partitioned and subpartitioned tables.

[MOVE {PARTITION | SUBPARTITION} partn_name [MAPPING TABLE] [table_partition_description] [[NO]PARALLEL]
[update_index_clause]]

Moves a specified partition (or subpartition) of partn_name to another partition (or subpartition) described in the
table_partition_description clause, which is described in the earlier section Oracle partitioned and subpartitioned
tables. Moving a partition is I/O intensive, so the optional PARALLEL clause may be used to parallelize the
operation. When omitted, NOPARALLEL is the default. In addition, you may optionally update or invalidate the
local and global index as described in the update_index_clause shown below in this list.

ADD PARTITION [partn_name] [table_partition_description] [[NO]PARALLEL]

Adds a new partition (or subpartition) of partn_name to the table. The ADD PARTITION clause supports all
aspects of creating a new partition or subpartition, via the table_partition_description clause, which is described in
the earlier section Oracle partitioned and subpartitioned tables. Adding a partition may be I/O intensive, so the
optional PARALLEL clause may be used to parallelize the operation. When omitted, NOPARALLEL is the default.
In addition, you may optionally update or invalidate local and global indexes on the table using the
update_index_clause shown earlier in this list.

update_index_clause

Controls the status assigned to indexes once the partitions and/or subpartitions of a table are altered. By
default, Oracle invalidates the entire index(es) of a table, not just those portions of the index on the partition
and/or subpartition being altered. You may update or invalidate global indexes on the table OR update one or
more specific index(es) on the table, respectively, using this syntax:

{ UPDATE | INVALIDATE} GLOBAL INDEXES] |

 UPDATE INDEXES [(index_name ({index_partn|index_subpartn})) [,...] }

COALESCE PARTITION [[NO]PARALLEL] [update_index_clause]

Takes the contents of the last partition of a set of hash partitions and rehashes the contents to one or more of
the other partitions in the set. The last partition is then dropped. Obviously, this is only for use with hash
partitions. The update_index_clause, shown earlier in this list, may be applied to update or invalidate the local
and/or global indexes of the table being coalesced.

DROP {PARTITION | SUBPARTITION} partn_name [[NO]PARALLEL] [update_index_clause]

Drops an existing range or list partition or subpartition of partn_name from the table. The data within the
partition is also dropped. If you want to keep the data, use the MERGE PARTITION clause. If you want to get rid
of a hash partition or subpartition, use the COALESCE PARTITION clause instead. Tables with only a single
partition are not affected by the ALTER TABLE...DROP PARTITION statement; instead, use the DROP TABLE
statement.

RENAME {PARTITION | SUBPARTITION} old_partn_name TO new_partn_name

Renames an existing partition or subpartition of old_partn_name to a new name of new_partn_name.

TRUNCATE {PARTITION | SUBPARTITION} partn_name [{DROP | REUSE} STORAGE] [[NO]PARALLEL]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRUNCATE {PARTITION | SUBPARTITION} partn_name [{DROP | REUSE} STORAGE] [[NO]PARALLEL]
[update_index_clause]

Removes all of the rows of a partition or subpartition of partn_name. If you truncate a composition partition, all
the rows of the subpartition(s) are also dropped. On IOTs, mapping table partitions and overflow partitions are
also truncated. LOB data and index segments, if the table has any LOB columns, are also truncated. Finally,
disable any existing referential integrity constraints on the data, or else delete the rows from the table first,
then truncate the partition or subpartition. The optional DROP STORAGE and REUSE STORAGE subclauses
define whether the space freed by the truncated data is made available for other objects in the tablespace or
still allocated to the original partition or subpartition, respectively.

SPLIT {PARTITION | SUBPARTITION} partn_name {AT | VALUES} (value [,...]) [INTO (PARTITION [partn_name1]
[table_partition_description], (PARTITION [partn_name2] [table_partition_description])] [[NO]PARALLEL] [update_index_clause]
]

Creates from the current partition (or subpartition) of partn_name two new partitions (or subpartitions) called
partn_name1 and partn_name2. These new partitions may have their own complete specification, as defined by the
table_partition_description clause. When omitted, the new partitions inherit all physical characteristics of the
current partition. When splitting a DEFAULT partition, all of the split values go to partn_name1 while all of the
default values go to partn_name2. For IOTs, Oracle splits any mapping table partition in a manner corresponding
to the split. Oracle also splits LOB and OVERFLOW segments, but you may also specify your own LOB and
OVERFLOW storage characteristics, described in the earlier section Oracle partitioned and subpartitioned tables.
Additional syntax for this clause is described below:

{AT | VALUES} (value [,...])

Splits range partitions (using AT) or list partitions (using VALUES) according to the value or values you
specify. The AT (value) clause defines the new noninclusive upper range for the first of the two new
partitions. The new value should be less than the partition bound of the current partition, but greater
than the partition bound of the next lowest partition (if one exists). The VALUES (value1, value2, [,...])
clause defines the values going into the first of the two new list partitions. The first new list partition is
built from value1 and the second is built from the remaining partition values in the current partition of
partn_name. The value list must include values that already exist in the current partition, but it cannot
contain all of the values of the current partition.

INTO

Defines the two new partitions that result from the split. At a minimum, the two PARTITION keywords,
in parentheses, are required. Any characteristics not explicitly declared for the new partitions are
inherited from the current partition of partn_name, including any subpartitioning. There are a few
restrictions to note. When subpartitioning range-hash composition partitioned tables, only the
TABLESPACE value is allowed for the subpartitions. Subpartitioning is not allowed at all when splitting
range-list composite partitioned tables. Any indexes on heap-organized tables are invalidated by default
when the table is split. You must use the update_index_clause to update their status.

[MERGE {PARTITION | SUBPARTITION} partn_name1, partn_name2 [INTO PARTITION [partn_name] [partn_attributes]]
[[NO]PARALLEL] [update_index_clause]]

Merges the contents of two or more partitions or subpartitions of a table into a single new partition. Oracle then
drops the two original partitions. Merged range partitions must be adjacent and are then bound by the higher
boundary of the original two partitions when merged. Merged list partitions need not be adjacent and result in a
single new partition with a union of the two sets of partition values. If one of the list partitions was the DEFAULT
partition, then the new partition will be the default. Merged range-list composite partitions are allowed but may
not have a new subpartition template. Oracle creates a subpartition template from the existing one(s) or, if
none exist, creates a new DEFAULT subpartition. Physical attributes not defined explicitly are inherited from the
table-level settings. By default, Oracle makes all local index partitions and global indexes UNUSABLE unless you
override this behavior using the update_index_clause. (The exception to this rule is with IOTs, which, being index-
based, will remain USABLE throughout the merge operation.) Merge operations are not allowed on hash-
partitioned tables, so use the COALESCE PARTITION clause instead.

EXCHANGE {PARTITION | SUBPARTITION} partn_name WITH TABLE table_name [{INCLUDING | EXCLUDING} INDEXES]
[{WITH | WITHOUT} VALIDATION] [[NO]PARALLEL] [update_index_clause] [EXCEPTIONS INTO table_name]

Exchanges the data and index segments of a nonpartitioned table with a partitioned table, or of a partitioned
table of one type to another partitioned type. The structure of the tables in the exchange must be identical,
including the same primary key. All segment attributes (like tablespaces, logging, and statistics) of the current
partitioned table, called partn_name, and the table it is being exchanged with, called table_name, are exchanged.
Tables containing LOB columns will also exchange LOB data and index segments. Additional syntax details,
which are not previously defined elsewhere in this list, follow:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WITH TABLE table_name

Defines the table that will exchange with the current partition or subpartition.

{INCLUDING | EXCLUDING} INDEXES

Exchanges local index partitions or subpartitions with the table index (on nonpartitioned tables) or the
local index (on hash-partitioned tables), using the INCLUDING INDEXES clause. Alternately, marks all
index partitions and subpartitions as well as regular indexes and partitioned indexes of the exchanged
table to be marked with UNUSABLE status, using the EXLCUDING INDEXES clause.

{WITH | WITHOUT} VALIDATION

Returns errors when any rows in the current table fail to map into a partition or subpartition of the
exchanged table, using the WITH VALIDATION clause. Otherwise, the WITHOUT VALIDATION clause
may be included to skip checking of row mapping between the tables.

EXCEPTIONS INTO table_name

Places the ROWIDs of all rows violating a UNIQUE constraint (in DISABLE VALIDATE state) on the
partitioned table. When omitted, Oracle assumes a table in the current schema called EXCEPTIONS. The
EXCEPTIONS table is defined in the utlexcpt.sql and utlexpt1.sql scripts that ship with Oracle. Refer to
the Oracle documentation if you need these scripts.

There are a couple of notes to remember about altering a partitioned table. First, altering a partition on a table that
serves as the source for one or more materialized views requires that the materialized views be refreshed. Second,
bitmap join indexes defined on the partitioned table being altered will be marked UNUSABLE. Third, several restrictions
apply if the partitions (or subpartitions) are ever spread across tablespaces that use different block sizes. Refer to the
Oracle documentation when attempting these sorts of alterations to a partitioned table.

In the next few examples, assume we are using the orders table partitioned as shown below:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER)

PARTITION BY RANGE(order_date)

 (PARTITION pre_yr_2000 VALUES LESS THAN

 TO_DATE('01-JAN-2000', 'DD-MON-YYYY'),

 PARTITION pre_yr_2004 VALUES LESS THAN

 TO_DATE('01-JAN-2004', 'DD-MON-YYYY'

 PARTITION post_yr_2004 VALUES LESS THAN

 MAXVALUE)) ;

The following statement will mark all of the local index partitions as UNUSABLE in the orders table for the
post_yr_2004 partition:

ALTER TABLE orders MODIFY PARTITION post_yr_2004

 UNUSABLE LOCAL INDEXES;

However, we've decided to now split the orders table partition post_yr_2004 into two all new partitions,
pre_yr_2008 and post_yr_2008. Values that are now less than MAXVALUE will be stored in the post_yr_2008
partition, while values less than `01-JAN-2008' will be stored in pre_yr_2008:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

partition, while values less than `01-JAN-2008' will be stored in pre_yr_2008:

ALTER TABLE orders SPLIT PARITION post_yr_2004

 AT (TO_DATE('01-JAN-2008','DD-MON-YYYY'))

 INTO (PARTITION pre_yr_2008, PARTITION post_yr_2008);

Assuming that the orders table contained a LOB or a VARRAY column, we could further refine the alteration by
including additional details for handling these columns, while also updating the global indexes as the operation
completes:

ALTER TABLE orders SPLIT PARITION post_yr_2004

 AT (TO_DATE('01-JAN-2008','DD-MON-YYYY'))

 INTO

 (PARTITION pre_yr_2008

 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1),

 PARTITION post_yr_2008)

 LOB (order_desc) STORE AS (TABLESPACE order_tblspc_a1))

 UPDATE GLOBAL INDEXES;

Now, assuming the orders table has been grown at the upper end, lets merge together the partitions at the lower end:

ALTER TABLE orders

 MERGE PARTITIONS pre_yr_2000, pre_yr_2004

 INTO PARTITION yrs_2004_and_earlier;

After a few years more, we might want to even get rid of the oldest partition, or if not get rid of it, at least give it a
better name:

ALTER TABLE orders DROP PARTITION yrs_2004_and_earlier;

ALTER TABLE orders RENAME PARTITION yrs_2004_and_earlier TO pre_yr_2004;

Finally, let's truncate a table partition, delete all of its data, and return the empty space for use by other objects in the
tablespace:

ALTER TABLE orders

 TRUNCATE PARTITION pre_yr_2004

 DROP STORAGE;

As the examples illustrate, anything relating to partitioning and subpartitioning that can be created with the Oracle
CREATE TABLE statement can later be changed, augmented, or cut down using the Oracle ALTER TABLE statement.

Organized tables: heaps, IOTs, and external tables

Oracle 10g allows powerful means of controlling the physical storage behavior of tables.

The most useful aspect of the ORGANIZATION HEAP clause is that you can now compress an entire table within Oracle.
This is extremely useful for reducing disk storage costs in database environments with multi-terabyte tables. The
following example creates the orders table in a compressed and logged heap along with a primary key constraint and
storage details:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

storage details:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER,

 shp_region VARCHAR2(20),

 order_desc NCLOB,

CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))

ORGANIZATION HEAP

 COMPRESS LOGGING

PCTTHRESHOLD 2

STORAGE

 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)

OVERFLOW STORAGE

 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)

ENABLE ROW MOVEMENT;

To define the same table using an index-organized table based on the order_date column, we would use this syntax:

CREATE TABLE orders

 (order_number NUMBER,

 order_date DATE,

 cust_nbr NUMBER,

 price NUMBER,

 qty NUMBER,

 cust_shp_id NUMBER,

 shp_region VARCHAR2(20),

 order_desc NCLOB,

CONSTRAINT ord_nbr_pk PRIMARY KEY (order_number))

ORGANIZATION HEAP

 INCLUDING order_date

PCTTHRESHOLD 2

STORAGE

 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)

OVERFLOW STORAGE

 (INITIAL 4M NEXT 2M PCTINCREASE 0 MINEXTENTS 1 MAXEXTENTS 1)

ENABLE ROW MOVEMENT;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ENABLE ROW MOVEMENT;

Finally, we will create an external table that stores our customer shipping information called cust_shipping_external.
The code shown in bold is the opaque_format_spec:

CREATE TABLE cust_shipping_external

 (external_cust_nbr NUMBER(6),

 cust_shp_id NUMBER,

 shipping_company VARCHAR2(25))

ORGANIZATION EXTERNAL

 (TYPE oracle_loader

 DEFAULT DIRECTORY dataloader

 ACCESS PARAMETERS

 (RECORDS DELIMITED BY newline

 BADFILE 'upload_shipping.bad'

 DISCARDFILE 'upload_shipping.dis'

 LOGFILE 'upload_shipping.log'

 SKIP 20

 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'

 (client_id INTEGER EXTERNAL(6),

 shp_id CHAR(20),

 shipper CHAR(25)))

 LOCATION ('upload_shipping.ctl'))

REJECT LIMIT UNLIMITED;

Examining this example, we see that the external table type is ORACLE_LOADER and the default directory is
DATALOADER. The example illustrates the fact that you define the metadata of the table within Oracle and then
describe how that metadata references a data source outside of the Oracle database server itself.

Oracle XMLType and object-type tables

When an Oracle XMLType table is created, Oracle automatically stores the data in a CLOB column, unless you create an
XML schema-based table. (For details on Oracle's XML support, see Oracle's XMLDB Developer's Guide.) The following
code example first creates an XMLType table, distributors, with the implicit CLOB data storage, and followed by a
second code example, suppliers, with a more sophisticated XML-schema definition:

CREATE TABLE distributors OF XMLTYPE;

CREATE TABLE suppliers OF XMLTYPE

XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"

ELEMENT "vendors";

A key advantage of a table based on an XML schema is that you can create B-Tree indexes on them. In the following
example, we create an index on suppliercity:

CREATE INDEX supplier-city-index

ON suppliers

(S."XMLDATA"."ADDRESS"."CITY");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(S."XMLDATA"."ADDRESS"."CITY");

You may similarly create tables using a mix of standard and XMLTYPE columns. In this case, the XMLTYPE column may
store its data as a CLOB, or it may store its data in an object-relational column of a structure determined by your
specification. For example, we'll recreate the distributors table (this time with some added storage specifications) and
the suppliers table with columns of both standard and XMLTYPE:

CREATE TABLE distributors

 (distributor_id NUMBER,

 distributor_spec XMLTYPE)

XMLTYPE distributor_spec

STORE AS CLOB

 (TABLESPACE tblspc_dist

 STORAGE (INITIAL 10M NEXT 5M)

 CHUNK 4000

 NOCACHE

 LOGGING);

CREATE TABLE suppliers

 (supplier_id NUMBER,

 supplier_spec XMLTYPE)

XMLTYPE supplier_spec STORE AS OBJECT RELATIONAL

 XMLSCHEMA "http://www.lookatallthisstuff.com/suppliers.xsd"

 ELEMENT "vendors"

OBJECT IDENTIFIER IS SYSTEM GENERATED

OIDINDEX vendor_ndx TABLESPACE tblspc_xml_vendors;

When creating XML and object tables, you may refer to inline_ref_constraint and table_ref_constraint clauses. The syntax for
an inline_ref_constraint clause is:

{SCOPE IS scope_table |

 WITH ROWID |

 [CONSTRAINT constraint_name] REFERENCES object [(column_name)]

 [ON DELETE {CASCADE | SET NULL}]

 [constraint_state] }

The only difference between an inline reference constraint and a table reference constraint is that inline reference
constraints operate at the column level and table reference constraints operate at the table level, respectively. (This is
essentially the same behavior and coding rule as standard relational constraints like PRIMARY KEY or FOREIGN KEY.)
The syntax for a table_ref_constraint follows:

{SCOPE FOR (ref_col | ref_attr) IS scope_table |

 REF (ref_col | ref_attr) WITH ROWID |

 [CONSTRAINT constraint_name] FOREIGN KEY (ref_col | ref_attr)

 REFERENCES object [(column_name)]

 [ON DELETE {CASCADE | SET NULL}]

 [constraint_state] }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [constraint_state] }

The constraint_state clause contains a number of options that have already been defined earlier in the Oracle CREATE
TABLE statement. However, these options are only applied to the condition of the scope reference:

[NOT] DEFERRABLE

INITIALLY {IMMEDIATE | DEFERRED}

{ENABLE | DISABLE}

{VALIDATE | NOVALIDATE}

{RELY | NORELY}

EXCEPTIONS INTO table_name

USING INDEX {index_name | (create_index_statement) | index_attributes}

Object-type tables are useful for creating tables containing user-defined types. For example, the following code creates
the building_type type:

CREATE TYPE OR REPLACE building_type AS OBJECT

 (building_name VARCHAR2(100),

 building_address VARCHAR2(200));

We can then create a table called offices_object_table that contains the object and defines some of its
characteristics, such as OID information. In addition, we'll create two more tables, based upon building_type, that
reference the object type as an inline_ref_constraint and a table_ref_constraint, respectively:

CREATE TABLE offices_object_table

 OF building_type (building_name PRIMARY KEY)

OBJECT IDENTIFIER IS PRIMARY KEY;

CREATE TABLE leased_offices

 (office_nbr NUMBER,

 rent DEC(9,3),

 office_ref REF building_type

 SCOPE IS offices_object_table);

CREATE TABLE owned_offices

 (office_nbr NUMBER,

 payment DEC(9,3),

 office_ref REF building_type

 CONSTRAINT offc_in_bld REFERENCES offices_object_table);

In these examples, the SCOPE IS clause defines the inline_ref_constraint, while the CONSTRAINT clause defines the
table_ref_constraint.

Oracle ALTER TABLE

When using the Oracle command ALTER TABLE, you are able to ADD, DROP, or MODIFY every aspect of each element
of the table. For example, the syntax diagram shows that the method for adding or modifying an existing column
includes its attributes, but we need to explicitly state that the attributes include any Oracle-specific extensions. So while
the ANSI standard only lets you modify attributes such as DEFAULT or NOT NULL, as well as column-level constraints

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the ANSI standard only lets you modify attributes such as DEFAULT or NOT NULL, as well as column-level constraints
assigned to the column, Oracle also allows you to alter any special characteristics like LOB, VARRAY, NESTED TABLE,
index-organized table, CLUSTER, or PARTITION settings that might exist.

For example, the following code adds a new column to a table in Oracle, and also adds a new, unique constraint to that
table:

ALTER TABLE titles

ADD subtitle VARCHAR2(32) NULL

CONSTRAINT unq_subtitle UNIQUE;

When a foreign key constraint is added to a table, the DBMS verifies that all existing data in the table meets that
constraint. If they do not, the ALTER TABLE fails.

Any queries that use SELECT * return the new columns, even if this was not planned.
Precompiled objects, such as stored procedures, can return any new columns if they use
the %ROWTYPE attribute. Otherwise, a precompiled object may not return any new
columns.

Oracle also allows multiple actions, such as ADD or MODIFY, to multiple columns to be performed by enclosing the
actions within parentheses. For example, the following command adds several columns to a table with a single
statement:

ALTER TABLE titles

ADD (subtitles VARCHAR2(32) NULL,

 year_of_copyright INT,

 date_of_origin DATE);

PostgreSQL

PostgreSQL supports the ANSI standards for CREATE and ALTER TABLE with a couple of extensions that enable you to
quickly build a new table from existing table definitions. Following is the syntax for CREATE TABLE:

CREATE [LOCAL][[TEMP]ORARY TABLE table_name

(column_name datatype attributes [,...]

| CONSTRAINT constraint_name [{NULL | NOT NULL}]

 {[UNIQUE] | [PRIMARY KEY (column_name [,...])] | [CHECK (expression)]

 | REFERENCES reference_table (reference_column [,...])

 [MATCH {FULL | PARTIAL | default}]

 [ON {UPDATE | DELETE}

 {CASCADE | NO ACTION | RESTRICT | SET NULL | SET DEFAULT value}]

 [[NOT] DEFERRABLE] [INITIALLY {DEFERRED | IMMEDIATE}] } [,...]

| [table_constraint][,...]

[WITH[OUT] OIDE]

[INHERITS (inherited_table [,...])]

[ON COMMIT {DELETE | PRESERVE} ROWS]

[AS select_statement]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[AS select_statement]

The PostgreSQL syntax for ALTER TABLE is:

ALTER TABLE [ONLY] table_name [*]

[ADD [COLUMN] column_name datatype attributes [...]]

| [ALTER [COLUMN] column_name

 {SET DEFAULT value | DROP DEFAULT | SET STATISTICS int}]

| [RENAME [COLUMN] column_name TO new_column_name]

| [RENAME TO new_table_name]

| [ADD table_constraint]

| [DROP CONSTRAINT constraint_name RESTRICT]

| [OWNER TO new_owner]

The parameters are as follows:

REFERENCES...MATCH...ON{UPDATE | DELETE} ...

Checks a value inserted into the column against the values of a column in another table. It also can be used as
part of a FOREIGN KEY declaration. The MATCH options are FULL, PARTIAL, and the default where MATCH has
no other keyword. Full match forces all columns of a multicolumn foreign key either to be NULL or to contain a
valid value. The default allows mixed nulls and values. Partial matching is a valid syntax, but is not supported.
The REFERENCES clause also allows several different behaviors to be declared for ON DELETE and/or ON
UPDATE referential integrity as follows:

NO ACTION

Produces an error when the foreign key is violated (the default).

RESTRICT

A synonym for NO ACTION.

CASCADE

Sets the value of the referencing column to the value of the referenced column.

SET NULL

Sets the referencing column value to NULL.

SET DEFAULT value

Sets the referencing column to its declared default value or NULL, if no default value exists.

NOT DEFERRABLE [INITIALLY {DEFERRED | IMMEDIATE}]

The DEFERRABLE option of the REFERENCES clause tells PostgreSQL to defer evaluation of all
constraints to the end of a transaction. NOT DEFERRABLE is the default behavior for the REFERENCES
clause. Similar to the DEFERRABLE clause is the INITIALLY clause. Specifying INITIALLY DEFERRED
checks constraints at the end of a transaction; INITIALLY IMMEDIATE checks constraints after each
statement (the default).

FOREIGN KEY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Can be declared only as a table-level constraint and not as a column-level constraint. All options for the
REFERENCES clause are supported as part of the FOREIGN KEYS clause. The syntax follows:

[FOREIGN KEY (column_name [,...]) REFERENCES...]

WITH[OUT] OIDS

Specifies that rows of the new table should have automatically assigned object IDs (WITH OIDS) or not
(WITHOUT OIDS). The default is WITH OIDS. OIDs are assigned based on a 32-bit counter. Once the counter is
surpassed, the OID numbers cycle over and uniqueness can no longer be guaranteed. We recommend that you
add a unique index to any OID columns you specify to avoid an error with duplicate OIDs on very large tables. A
table with an inherited structure receives the OID setting of its parent table.

INHERITS inherited_table

Specifies a table or tables from which the table you are creating inherits all columns. The newly created table
also inherits functions attached to tables higher in the hierarchy. If any inherited column appears more than
once, the statement fails.

ON COMMIT {DELETE | PRESERVE} ROWS

Used only with temporary tables. This clause controls the behavior of the temporary table after records are
committed to the table. ON COMMIT DELETE ROWS clears the temporary table of all rows after each commit.
This is the default if the ON COMMIT clause is omitted. ON COMMIT PRESERVE ROWS saves the rows in the
temporary table after the transaction has committed.

AS select_statement

Enables you to create and populate a table with data from a valid SELECT statement. The column names and
datatypes do not need to be defined, since they are inherited from the query. The CREATE TABLE...AS
statement has similar functionality to SELECT...INTO, but is more readable.

ONLY

Specifies that only the named table is affected by the ALTER TABLE statement and not any parent or subtables
in a table hierarchy.

OWNER TO new_owner

Changes the owner of the table to the user identified by new_owner.

A PostgreSQL table cannot have more than 1,600 columns. However, you should limit the number of columns to well
below 1,600 for performance reasons. For example:

CREATE TABLE distributors

 (name VARCHAR(40) DEFAULT 'Thomas Nash Distributors',

 dist_id INTEGER DEFAULT NEXTVAL('dist_serial'),

 modtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP);

Unique to PostgreSQL is the ability to create column-level constraints with multiple
columns. Since PostgreSQL also supports standard table-level constraints, the ANSI-
standard approach is still the recommended approach.

PostgreSQL's implementation of ALTER TABLE allows the addition of extra columns using the ADD keyword. Existing
columns may have new default values assigned to them using ALTER COLUMN...SET DEFAULT, while ALTER
COLUMN...DROP DEFAULT allows the complete erasure of a column-based default. In addition, new defaults may be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COLUMN...DROP DEFAULT allows the complete erasure of a column-based default. In addition, new defaults may be
added to columns using the ALTER clause, but only newly inserted rows will be affected by such new default values.
RENAME allows new names for existing columns and tables.

SQL Server

SQL Server offers a plethora of options when defining or altering a table, its columns, and its table-level constraints. Its
CREATE TABLE syntax is:

CREATE TABLE table_name

({column_name datatype [[DEFAULT default_value]

 | {IDENTITY [(seed,increment) [NOT FOR REPLICATION]]]

 [ROWGIDCOL][NULL | NOT NULL]

 | [{PRIMARY KEY | UNIQUE}

 [CLUSTERED | NONCLUSTERED]

 [WITH FILLFACTOR = int] [ON {filegroup | DEFAULT}]]

 | [[FOREIGN KEY]

 REFERENCES reference_table[(reference_column[,...])]

 [ON {DELETE | UPDATE} {CASCADE | NO ACTION}]

 [NOT FOR REPLICATION]

 | [CHECK [NOT FOR REPLICATION] (expression)

 | [COLLATE collation_name]

| column_name AS computed_column_expression }

[,...]

| [table_constraint] [,...])

[ON {filegroup | DEFAULT}]

[TEXTIMAGE_ON {filegroup | DEFAULT}]

The SQL Server version of ALTER TABLE is:

ALTER TABLE table_name

[ALTER COLUMN column_name new_datatype attributes {ADD | DROP} ROWGUIDCOL]

| [ADD [COLUMN] column_name datatype attributes][,...]

| [WITH CHECK | WITH NOCHECK] ADD table_constraint][,...]

| [DROP { [CONSTRAINT] constraint_name | COLUMN column_name }] [,...]

| [{ CHECK | NOCHECK } CONSTRAINT { ALL | constraint_name [,...] }]

| [{ ENABLE | DISABLE } TRIGGER { ALL | trigger_name [,...] }]

The parameters are as follows:

IDENTITY [(seed, increment)]

Creates and populates the column with a monotonically increasing number when applied to an integer column.
The IDENTITY starts counting at the value of seed and increases by the value of increment. When either are
omitted, the default is 1.

NOT FOR REPLICATION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that the values of an IDENTITY or FOREIGN KEY are not replicated to subscribing servers. This helps in
situations in which different servers require the same table structures, but not the exact same data.

ROWGUIDCOL

Identifies a column as a global unique identifier, which ensures no two values are ever repeated across any
number of servers. Only one such column may be identified per table. It does not, however, create the unique
values itself. They must be inserted using the NEWID function.

DEFAULT

Applies to any column except those with a TIMESTAMP datatype or an IDENTITY property. The DEFAULT must
be a constant value such as a character string or a number, and a system function such as GETDATE() or
NULL.

PRIMARY KEY

Defines a primary key constraint for the table. The primary key declaration differs from the ANSI standard by
allowing you to assign the clustered or nonclustered attributes on the primary key index, as well as a starting
fillfactor. (Refer to the CREATE/ALTER INDEX Statement for more information.) The attributes of a primary key
include:

CLUSTERED

Declares that the column or columns of the primary key set the physical sort order of the records in the
table. CLUSTERED is the default when the clustered or nonclustered keywords are omitted.

NONCLUSTERED

Declares that the primary key index maintains pointers to all of the records of the table.

WITH FILLFACTOR = int

Declares that a percentage of space, int, should remain free on each data page when the table is
created. SQL Server does not maintain FILLFACTOR over time. You should rebuild the index on a
regular basis.

ON {filegroup | DEFAULT}

Specifies that the primary key is located either on the pre-existing, named filegroup or is assigned to
the DEFAULT filegroup.

FOREIGN KEY

Checks values as they are inserted into the table against a column in another table in order to maintain
referential integrity. Foreign keys are described in detail in Chapter 2. A foreign key can only reference columns
that are defined as a PRIMARY KEY or UNIQUE index on the referencing table. A referential action may be
specified to take place on the reference_table when the record is deleted or updated, according to the following:

ON {DELETE | UPDATE}

Specifies that an action needs to happen in the local table when either (or both) an UPDATE or DELETE
occur on the referenced table.

CASCADE

Specifies that any DELETE or UPDATE also takes place on the referring table to any records dependent
on the value of the FOREIGN KEY.

NO ACTION

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that no action occur on the referring table when a record on the current table is deleted or
updated.

NOT FOR REPLICATION

Specifies that an IDENTITY property should not be enforced when the data is replicated from another
database. This ensures that data from the published server are not assigned new identity values.

CHECK

Ensures that a value inserted into the specified column of the table is a valid value based on the CHECK
expression. For example, the following shows a table with two column-level CHECK constraints.

CREATE TABLE people

 (people_id CHAR(4)

 CONSTRAINT pk_dist_id PRIMARY KEY CLUSTERED

 CONSTRAINT ck_dist_id CHECK (dist_id LIKE '

 [A-Z][A-Z][A-Z][A-Z]'),

 people_name VARCHAR(40) NULL,

 people_addr1 VARCHAR(40) NULL,

 people_addr2 VARCHAR(40) NULL,

 city VARCHAR(20) NULL,

 state CHAR(2) NULL

 CONSTRAINT def_st DEFAULT ("CA")

 CONSTRAINT chk_st REFERENCES states(state_ID),

 zip CHAR(5) NULL

 CONSTRAINT ck_dist_zip

 CHECK(zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),

 phone CHAR(12) NULL,

 sales_rep empid NOT NULL DEFAULT USER)

GO

The CHECK constraint on the people_id ensures an all-alphabetic ID, while the one on zip ensures an all-numeric
value. The REFERENCES constraint on state performs a look-up on the states table. The REFERENCES constraint is
essentially the same as a CHECK constraint, except that it derives its list of acceptable values from the values stored in
another column. This example illustrates how column-level constraints are named using the CONSTRAINT
constraint_name syntax.

COLLATE

Allows programmers to change, on a column-by-column basis, the sort order and character set that is used by
the column.

TEXTIMAGE_ON {filegroup | DEFAULT}

Controls the placement of text, ntext, and image columns allowing you to place LOB data on the pre-existing
filegroup of your choice. When omitted, these columns are stored in the default filegroup with all other tables
and database objects.

WITH [NO]CHECK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells SQL Server whether the data in the table should be validated against any newly added constraints or keys.
When constraints are added using WITH NOCHECK, the query optimizer ignores them until they are enabled via
ALTER TABLE table_name CHECK CONSTRAINT ALL. When constraints are added using WITH CHECK, the
constraints are checked immediately against all data already in the table.

[NO]CHECK CONSTRAINT

Enables an existing constraint with CHECK CONSTRAINT or disables one with NOCHECK CONSTRAINT.

{ENABLE | DISABLE} TRIGGER { ALL | trigger_name [,...] }

Enables or disables the specified trigger or triggers, respectively. All triggers on the table may be enabled or
disabled by substituting the keyword ALL for the table name, as in ALTER TABLE employee DISABLE TRIGGER
ALL. You may, alternately, disable or enable a single trigger_name or more than one trigger by placing each
trigger_name in a comma-delimited list.

SQL Server allows any column-level constraint to be named by specifying CONSTRAINT constraint_name..., and then the
text of the constraint. Several constraints may be applied to a single column, as long as they are not mutually exclusive
(for example, PRIMARY KEY and NULL).

SQL Server also allows a local temporary table to be created, but not using ANSI syntax. A local temporary table, which
is stored in the tempdb database, requires a prefix of a single pound sign (#) to the name of the table. The local
temporary table is usable by the person or process that created it, and is deleted when the person logs out or the
process terminates. A global temporary table, which is usable to all people and processes that are currently logged in,
can be established by prefixing two pound signs (##) to the name of the table. The global temporary table is deleted
when its process terminates or its creator logs out.

SQL Server also allows the creation of tables with columns that contain a computed value. Such a column does not
actually contain data. Instead, it is a virtual column containing an expression using other columns already in the table.
For example, a computed column could have an expression, such as order_cost AS (price * qty). Computed columns also
can be constants, functions, variables, noncomputed columns, or any of these combined with each other using
operators.

Any of the column-level constraints shown earlier also may be declared at the table level. That is, PRIMARY KEY
constraints, FOREIGN KEY constraints, CHECK constraints, and others may be declared after all the columns have been
defined in the CREATE TABLE statement. This is very useful for constraints that cover more than one column. For
example, a column-level UNIQUE constraint can be applied only to that column. However, declaring the constraint at
the table level allows it to span several columns. Here is an example of both column-level and table-level constraints:

-- Creating a column-level constraint

CREATE TABLE favorite_books

 (isbn CHAR(100) PRIMARY KEY NONCLUSTERED,

 book_name VARCHAR(40) UNIQUE,

 category VARCHAR(40) NULL,

 subcategory VARCHAR(40) NULL,

 pub_date DATETIME NOT NULL,

 purchase_date DATETIME NOT NULL)

GO

-- Creating a table-level constraint

CREATE TABLE favorite_books

 (isbn CHAR(100) NOT NULL,

 book_name VARCHAR(40) NOT NULL,

 category VARCHAR(40) NULL,

 subcategory VARCHAR(40) NULL,

 pub_date DATETIME NOT NULL,

 purchase_date DATETIME NOT NULL,

 CONSTRAINT pk_book_id PRIMARY KEY NONCLUSTERED (isbn)

 WITH FILLFACTOR=70,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WITH FILLFACTOR=70,

 CONSTRAINT unq_book UNIQUE CLUSTERED (book_name,pub_date))

GO

These two commands provide nearly the same results, except that the table-level UNIQUE constraint has two columns,
whereas only one column is included in the column-level UNIQUE constraint.

The following example adds a new CHECK constraint to a table, but does not check to ensure that the existing values in
the table pass the constraint:

ALTER TABLE favorite_book WITH NOCHECK

ADD CONSTRAINT extra_check CHECK (ISBN > 1)

GO

In this example, we further add a new column with an assigned DEFAULT value that is placed in each existing record in
the table:

ALTER TABLE favorite_book ADD reprint_nbr INT NULL

CONSTRAINT add_reprint_nbr DEFAULT 1 WITH VALUES

GO

-- Now, disable the constraint

ALTER TABLE favorite_book NOCHECK CONSTRAINT add_reprint_nbr

GO

See Also

CREATE SCHEMA
DROP

CREATE/ALTER TRIGGER Statement

A trigger is a special kind of stored procedure that fires automatically (hence the term "trigger") when a specific data-
modification statement is executed against a table. The trigger is directly associated with the table and is considered a
dependent object. For example, you might want all of the part_numbers in the sales table to be updated when a
part_number is changed in the products table, thus ensuring that part numbers are always in sync.

ALTER TRIGGER is not an ANSI-supported statement.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server Supported, with variations

SQL2003 Syntax

CREATE TRIGGER trigger_name

{BEFORE | AFTER} {DELETE | INSERT | UPDATE [OF column [,...]}

ON table_name

[REFERENCING {OLD {[ROW] | TABLE} [AS] old_name | NEW

{ROW | TABLE} [AS] new_name}] [FOR EACH { ROW | STATEMENT }]

[WHEN (conditions)]

[BEGIN ATOMIC]

code_block

[END]

Keywords

CREATE TRIGGER trigger_name

Creates a trigger of trigger_name and associates it with a specific table.

BEFORE | AFTER

Declares that the trigger logic is fired either BEFORE or AFTER the data manipulation operation that invoked the
trigger. BEFORE triggers perform their operations before the INSERT, UPDATE, or DELETE operation occurs,
allowing you to do dramatic things like circumvent the data manipulation operation altogether. AFTER triggers
fire after the data manipulation operation has completed, but are useful for after-the-fact operations like
recalculating running totals.

DELETE | INSERT | UPDATE [OF column [,...]]

Defines the data manipulation operation that causes the trigger to fire: DELETE statements, INSERT
statements, or UPDATE statements. You may optionally chose which columns will trigger an update trigger
using UPDATE OF column [,...]. If an update occurs on any columns not in the column list, the trigger will not
fire.

ON table_name

Declares the pre-existing table that the trigger is dependent on.

REFERENCING {OLD {[ROW] | TABLE} [AS] old_name | NEW {ROW | TABLE} [AS] new_name}

Enables aliasing for the old or new ROW or TABLE acted upon by the trigger. Although the syntax shows the
options as exclusive, you may have up to four aliasing references: one for old row, one for old table, one for
new row, and one for new table. The alias OLD refers to the data contained in the table or row before the data
manipulation operation that fired the trigger, while the alias NEW refers to the data that would be contained in
the table or row after the data manipulation operation that fired the trigger. Note that the syntax indicates that
ROW is optional, but TABLE is not. (That is, OLD ROW AS is the same as OLD AS, but for TABLE, the only valid
option is OLD TABLE AS.) INSERT triggers do not have an OLD context, while DELETE triggers do not have a
NEW context. The keyword AS is noise and may be omitted. If the REFERENCING clause specifies either OLD
ROW or NEW ROW, then the FOR EACH ROW clause is required.

FOR EACH { ROW | STATEMENT }

Tells the database to apply the trigger for each row in the table that has changed (ROW) or for each SQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells the database to apply the trigger for each row in the table that has changed (ROW) or for each SQL
statement issued against the table (STATEMENT). For example, a single UPDATE statement will update the
salaries of 100 employees. If you specify FOR EACH ROW, the trigger will execute 100 times. If you specify FOR
EACH STATEMENT, the trigger will execute only once.

WHEN (conditions)

Allows you to define additional criteria for a trigger. For example, you might have a trigger called DELETE
employee, which will fire whenever an employee is deleted. When a trigger fires, if the search conditions
contained in the WHEN clause evaluate to TRUE, the trigger action will fire. Otherwise, the trigger will not fire.

BEGIN ATOMIC | code_block | END

The ANSI standard requires that the code_block should contain only one SQL statement or, for multiple SQL
statements, put them in a BEGIN and END block.

Rules at a Glance

Triggers, by default, fire once at the statement level. That is, a single INSERT statement might insert 500 rows into a
table, but an insert trigger on that table fires only one time. Some vendors allow a trigger to fire for each row of the
data-modification operation. So, a statement that inserts 500 rows into a table that has a row-level insert trigger fires
500 times, once for each inserted row.

In addition to being associated with a specific data-modification statement (INSERT, UPDATE, or DELETE) on a given
table, triggers are associated with a specific time of firing. In general, triggers can fire BEFORE the data-modification
statement is processed, AFTER it is processed, or (when supported by the vendor) INSTEAD OF processing the
statement. Triggers that fire before or instead of the data-modification statement do not see the changes that the
statement renders, while those that fire afterwards can see and act upon the changes that the data-modification
statement renders.

Triggers make use of two pseudotables. They are pseudotables in the sense that they are not declared with a CREATE
TABLE statement, but they exist logically on the database. The pseudotables have different names on the different
platforms, but we'll call them Before and After here. They are structured exactly the same as the table a trigger is
associated with. However, they contain snapshots of the table's data. The Before table contains a snapshot of all the
records in the table before the trigger fired, while the After table contains a snapshot of all the records in the table
after the event occurred that fired the trigger. You can then use comparison operations to compare the data in the table
before and after the event fired the trigger to determine exactly what you want to happen.

Here is an Oracle BEFORE trigger that uses the OLD and NEW pseudotables to compare values. (By way of comparison,
SQL Server uses the DELETED and INSERTED pseudotables in the same way, while DB2 requires that you provide a
REFERENCING clause to give names to the pseudotables.) This trigger creates an audit record before changing an
employee's pay record:

CREATE TRIGGER if_emp_changes

BEFORE DELETE OR UPDATE ON employee

FOR EACH ROW

WHEN (new.emp_salary <> old.emp_salary)

BEGIN

 INSERT INTO employee_audit

 VALUES ('old', :old.emp_id, :old.emp_salary, :old.emp_ssn);

END;

You can also take advantage of capabilities within each database platform to make your triggers more powerful and
easier to program. For example, Oracle has a special IF...THEN clause for use just in triggers. This IF...THEN clause
takes the form: IF DELETING THEN, IF INSERTING THEN, or IF UPDATING THEN. The following example builds an
Oracle DELETE and UPDATE trigger that uses the IF DELETING THEN clauses:

CREATE TRIGGER if_emp_changes

BEFORE DELETE OR UPDATE ON employee

FOR EACH ROW

BEGIN

 IF DELETING THEN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IF DELETING THEN

 INSERT INTO employee_audit

 VALUES ('DELETED', :old.emp_id, :old.emp_salary, :old.emp_ssn);

 ELSE

 INSERT INTO employee_audit

 VALUES ('UPDATED', :old.emp_id, :new.emp_salary, :old.emp_ssn);

 END IF;

END;

This SQL Server example adds a new table called contractor to the database. All records in the employee table that
indicate that the employee is a contractor were moved into the contractor table. Now all new employees inserted into
the employee table will go into the contractor table instead through an INSTEAD OF INSERT trigger:

CREATE TRIGGER if_emp_is_contractor

INSTEAD OF INSERT ON employee

BEGIN

 INSERT INTO contractor

 SELECT * FROM inserted WHERE status = 'CON'

 INSERT INTO employee

 SELECT * FROM inserted WHERE status = 'FTE'

END

GO

Adding triggers to a table that already has data in it does not cause the triggers to fire. A trigger will fire only for data-
modification statements declared in the trigger definition that occur after the trigger is created.

A trigger generally ignores structural changes to tables, such as an added column or an altered datatype on an existing
column, after the trigger has been created unless a table modification directly interferes with the operation of the
trigger. For example, adding a new column to a table will result in any existing trigger ignoring the new column, except
for UPDATE triggers. On the other hand, removing a column from a table that is used by a trigger will cause the trigger
to fail every time it executes.

Programming Tips and Gotchas

One of the key programming issues associated with triggers is the inappropriate and uncontrolled use of nested triggers
and recursive triggers. A nested trigger is a trigger that invokes a data-manipulation operation that causes other
triggers to fire. For example, assume we have three tables, T1, T2, and T3. Table T1 has a BEFORE INSERT trigger
that inserts a record into table T2. Table T2 also has a BEFORE INSERT trigger that inserts a record into table T3.
Although this is not necessarily a bad thing if your logic is well considered and fully thought out, it does introduce two
problems. First, an insert into table T1 requires many more I/O operations and transactions than a simple INSERT
statement against table T1. Second, you can get yourself into hot water if, in fact, table T3 performs an INSERT
operation against table T1. In a case like that, you may have a looping trigger process that can consume all available
disk space and even shut down the server.

Recursive triggers are triggers that can fire themselves; for example an INSERT trigger that performs an INSERT
against its own base table. If the procedural logic within the code_body is not properly constructed, you can cause a
looping trigger error. However, recursive triggers often require setting a special configuration flag before they can be
used on the various database platforms.

DB2

DB2 supports a superset of the ANSI SQL standard for the CREATE TRIGGER statement. It does not support an ALTER
TRIGGER statement. The CREATE TRIGGER syntax is:

CREATE TRIGGER trigger_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TRIGGER trigger_name

{NO CASCADE BEFORE | AFTER | INSTEAD OF}

{[DELETE] | [INSERT] | [UPDATE [OF (column [,...])]}

ON table_name

[REFERENCING

 {OLD[_TABLE] [AS] old_name | NEW[_TABLE]

 [AS] new_name} DEFAULTS NULL]

[FOR EACH { ROW | STATEMENT }]

MODE DB2SQL

[WHEN (conditions)]

code_block

where:

NO CASCADE BEFORE

Declares that the trigger action is applied before the data-modification operation is applied to the table. This
clause also declares that the trigger action will not cause any other triggers to fire.

ON table_name

Specifies the pre-existing table or view that the trigger is associated with. Triggers can be declared on regular
tables, but not on temporary tables, nicknames, catalog tables, or materialized query tables. When creating
triggers on a view, only INSTEAD OF triggers are allowed. The view must be a non-typed view that does not use
the WITH CHECK OPTION clause. The data-modification operation applied to the view should be translated
against the base table to determine whether it will fire the trigger or not.

OLD[_TABLE] [AS] old_name | NEW[_TABLE] [AS] new_name

Defines the alias for the ANSI before and after pseudotables using OLD_TABLE and NEW_TABLE, respectively. If
you leave off the _TABLE keyword, then DB2 assigns the trigger operation as row-level, and allows you to
access the row (singular) data prior to triggering the SQL operation. Adding in the _TABLE keyword declares
that the trigger operation allows you to reference the set (plural) of row data prior to triggering the SQL
operation. OLD and OLD_TABLE may only be used on DELETE or UPDATE triggers. Conversely, NEW and
NEW_TABLE can only be used on INSERT and UPDATE triggers. OLD and NEW may only be specified once each.
OLD_ TABLE and NEW_TABLE may only be specified once each and not on NO CASCADE BEFORE triggers.

DEFAULTS

Inserts default values where they have been created.

FOR EACH { ROW | STATEMENT }

Specifies that the trigger action applies either at the row level or the statement level. The FOR EACH
STATEMENT clause is only allowed on AFTER triggers.

MODE DB2SQL

Declares that the mode of the trigger is DB2 SQL, the only mode currently supported.

WHEN (conditions)

Meets the ANSI SQL standard with the exception that this clause is not allowed on DB2 INSTEAD OF triggers.

DB2 does not prevent a new trigger from being created that has the same definition as an older trigger. Thus, it's
possible to have two (or more) AFTER DELETE triggers on a single table. In a situation like this, DB2 will always fire the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

possible to have two (or more) AFTER DELETE triggers on a single table. In a situation like this, DB2 will always fire the
triggers in the order they were created.

Be careful declaring a BEFORE DELETE trigger on a table with a self-referencing constraint and a delete rule of
CASCADE. Such a trigger may produce results that you did not expect!

DB2 allows the COMMENT ON object_type statement, so that you can provide extra
commentary on any supported DB2 object. For example, you can issue the COMMENT ON
TRIGGER trigger_name statement to add comments on any trigger you add to the database.
You can use this on tables, views, etc.

DB2 does not specifically drop the triggers associated with a table or view when the table or view itself is dropped.
Consequently, you should first issue a DROP TRIGGER statement followed by a DROP TABLE statement to avoid leaving
orphaned triggers behind. Conversely, triggers are not reinstated if a table is dropped and then recreated. The triggers
should be recreated as well.

BEFORE and AFTER triggers are allowed on typed tables at any level of a typed-table hierarchy. Triggers may activate
on rows of subtables. If a SQL statement activates multiple triggers, the triggers will be executed in their creation
order, even if they are attached to different tables in the typed-table hierarchy.

MySQL

Not supported.

Oracle

Oracle supports the ANSI standard for CREATE TRIGGER, with several additions and variations:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF}

{ {[object_event] [database_event] [...] ON {DATABASE | schema.SCHEMA} } |

 {[DELETE] [OR] [INSERT] [OR] [UPDATE [OF column [,...]]] [...]}

 ON {table_name | [NESTED TABLE column_name OF] view_name}

 [REFERENCING {[OLD [AS] old_name] [NEW [AS] new_name]

 [PARENT [AS] parent_name]}

 [FOR EACH ROW] }

[WHEN (conditions)]

code_block

The syntax for ALTER TRIGGER, which allows you to rename, enable, or disable a trigger without dropping and
recreating it, is shown below:

ALTER TRIGGER trigger_name

{ {ENABLE | DISABLE} | RENAME TO new_name |

 COMPILE [compiler_directives] [DEBUG] [REUSE SETTINGS]}

where:

OR REPLACE

Recreates an existing trigger by assigning a new definition to an existing trigger of trigger_name.

object_event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition to the standard data-modification events, Oracle allows triggers to fire based on object events.
object_event operations may be paired with BEFORE and AFTER keywords. An object_event fires the trigger
whenever such an event occurs, according to the following keywords:

ALTER

Fires whenever an ALTER statement (except ALTER DATABASE) is issued.

ANALYZE

Fires whenever Oracle validates the structure of a database object, or collects or deletes statistics on an
index.

ASSOCIATE STATISTICS

Fires whenever Oracle associates a statistics type with a database object.

AUDIT

Fires whenever Oracle tracks a SQL statement or operation against a schema object.

COMMENT

Fires whenever an Oracle comment is added in the data dictionary to a database object.

DDL

Fires whenever Oracle encounters any object_event in this list.

DISASSOCIATE STATISTICS

Fires whenever Oracle disassociates a statistics type from a database object.

DROP

Fires whenever a DROP statement erases a database object from the data dictionary.

GRANT

Fires whenever a user grants privileges or roles to another user or role.

NOAUDIT

Fires whenever the NOAUDIT statement causes Oracle to stop tracking SQL statements or operations
against schema objects.

RENAME

Fires whenever the RENAME statement changes the name of a database object.

REVOKE

Fires whenever a user revokes privileges or roles from another user or role.

TRUNCATE

Fires whenever a TRUNCATE statement is issued against a table or cluster.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Fires whenever a TRUNCATE statement is issued against a table or cluster.

database_event

In addition to the standard data-modification events, Oracle allows triggers to fire based on database events.
Database_event operations may be paired with BEFORE and AFTER keywords. The list of allowable database_event
keywords is:

LOGON

Fires whenever a client application logs on to the database. Valid for AFTER triggers only.

LOGOFF

Fires whenever a client application logs off of the database. Valid for BEFORE triggers only.

SERVERERROR

Fires whenever a server error message is logged. Valid for AFTER triggers only.

SHUTDOWN

Fires whenever an instance of the database is shut down. Valid for BEFORE triggers only with the ON
DATABASE clause only.

STARTUP

Fires whenever an instance of the database is opened. Valid for AFTER triggers with the ON DATABASE
clause.

SUSPEND

Fires whenever a server error causes a transaction to suspend. Valid for AFTER triggers only.

ON {DATABASE | schema.SCHEMA}

Declares that the trigger fires whenever any database user invokes a triggering event with ON DATABASE. The
trigger then fires for events occurring anywhere in the entire database. Otherwise, ON schema.SCHEMA declares
that the trigger fires whenever a user connected as schema invokes a triggering event. The trigger then fires for
events occurring anywhere in the current schema.

ON [NESTED TABLE column_name OF] view_name

Declares that the trigger fires only if the data-manipulation operation applies to the column(s) of the view called
view_name. The ON NESTED TABLE clause is compatible only with INSTEAD OF triggers.

REFERENCING PARENT [AS] parent_name

Defines the alias for the current row of the parent table (i.e., supertable). Otherwise, identical to the ANSI
standard.

ENABLE

Enables a deactivated trigger when used with ALTER TRIGGER. You may alternately use the statement ALTER
TABLE table_name ENABLE ALL TRIGGERS.

DISABLE

Disables an activated trigger when used with ALTER TRIGGER. You may alternately use the statement ALTER
TABLE table_name DISABLE ALL TRIGGERS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TABLE table_name DISABLE ALL TRIGGERS.

RENAME TO new_name

Renames the trigger to new_name, though the state of the trigger remains unchanged when used with ALTER
TRIGGER.

COMPILE [DEBUG] [REUSE SETTINGS]

Compiles a trigger, whether valid or invalid, and all the objects that the trigger depends on. If any the objects
are invalid, then the trigger is invalid. If all of the objects are valid, including the code_body of the trigger, then
the trigger becomes valid. The subclauses of the COMPILE clause are:

DEBUG

Tells the PL/SQL compiler to generate and store the extra information for use by the PL/SQL debugger.

REUSE SETTINGS

Tells Oracle to retain all compiler switch settings, which can save significant time during the compile
process.

compiler_directives

Defines a special value for the PL/SQL compiler in the format: directive = 'value'. The directives are:
PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and
NLS_LENGTH_SEMANTICS. They may each specify a value once in the statement. The directive is valid only for
the unit being compiled.

When referencing values in the OLD and NEW pseudotables, the values must be prefaced with a colon (:), except in the
trigger's WHEN clause, where no colons are used. In this example, we'll call a procedure in the code_body and use both
:OLD and :NEW values as arguments:

CREATE TRIGGER scott.sales_check

BEFORE INSERT OR UPDATE OF ord_id, qty ON scott.sales

 FOR EACH ROW

 WHEN (new.qty > 10)

 CALL check_inventory(:new.ord_id, :new.qty, :old.qty);

Multiple trigger types may be combined into a single trigger command if they are of the same level (row or statement)
and they are on the same table. When triggers are combined in a single statement, the clauses IF INSERTING THEN, IF
UPDATING THEN, and IF DELETING THEN may be used in the PL/SQL block to break the code logic into distinct
segments. An ELSE clause also can be used in this structure.

Following is an example of a database_event-style trigger:

CREATE TRIGGER track_errors

AFTER SERVERERROR ON DATABASE

BEGIN

 IF (IS_SERVERERROR (04030))

 THEN INSERT INTO errors ('Memory error');

 ELSE (IS_SERVERERROR (01403))

 THEN INSERT INTO errors ('Data not found');

 END IF;

END;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In another example, we can create a trigger that is SCHEMA-wide in scope:

CREATE OR REPLACE TRIGGER create_trigger

AFTER CREATE ON scott.SCHEMA

BEGIN

 RAISE_APPLICATION_ERROR (num => -20000, msg =>

 'Scott created an object');

END;

PostgreSQL

PostgreSQL's implementation of CREATE TRIGGER offers a subset of features found in the ANSI standard. On
PostgreSQL, a trigger may fire BEFORE a data-modification operation is attempted on a record and before any
constraints are fired or it may fire AFTER a data-manipulation operation fires (and after constraints have been checked),
making all operations involved in the transaction visible to the trigger. Finally, the trigger may fire INSTEAD OF the
data-modification operation and completely replace the INSERT, UPDATE, or DELETE statement with some other
behavior. The CREATE TRIGGER syntax is:

CREATE TRIGGER trigger_name

{ BEFORE | AFTER }

{ {[DELETE] [OR | ,] [INSERT] [OR | ,] [UPDATE]} [OR ...] }

ON table_name

FOR EACH { ROW | STATEMENT }

EXECUTE PROCEDURE function_name (parameters)

The parameters are:

OR

Declares an additional trigger action. The OR keyword is a synonym for the comma delimiter.

FOR EACH ROW

Explicitly declares that the trigger acts on the row level. This is also the default. Although PostgreSQL does not
reject the STATEMENT keyword, it does not enforce statement-level triggers.

EXECUTE PROCEDURE function_name (parameters)

Executes a previously defined function (created using CREATE FUNCTION) rather than a block of procedural
code. (PostgreSQL does not have its own procedural language.)

The following is an example of a PostgreSQL BEFORE trigger that checks at a row level to ensure that the specified
distributor code exists in the distributors table before inserting or updating a row in the sales table:

CREATE TRIGGER if_dist_exists

BEFORE INSERT OR UPDATE ON sales

FOR EACH ROW

EXECUTE PROCEDURE check_primary_key

 ('dist_id', 'distributors', 'dist_id');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BEFORE and AFTER triggers are supported by the ANSI standard. INSTEAD OF triggers on PostgreSQL completely skip
the data-modification operation that triggered them in favor of code that you substitute for the data-modification
operation.

SQL Server

SQL Server supports the basics of the ANSI standard with the addition of the INSTEAD OF trigger type and a column
change check. It does not support the REFERENCING or WHEN clauses. Its syntax is:

{CREATE | ALTER} TRIGGER trigger_name ON table_name

[WITH ENCRYPTION]

{FOR | AFTER | INSTEAD OF} {[DELETE] [,] [INSERT] [,] [UPDATE]}

[WITH APPEND]

[NOT FOR REPLICATION]

AS

 [IF UPDATE(column) [{AND | OR} UPDATE(column)][...]]

 code_block

where:

{CREATE | ALTER} TRIGGER trigger_name

Creates a new trigger of trigger_name or alters an existing trigger of trigger_name by adding or changing trigger
properties or the trigger code_block. When altering an existing trigger, the permissions and dependencies of the
existing trigger are maintained.

ON table_name

Declares the table or view that the trigger is dependent on. Views may have INSTEAD OF triggers defined on
them, as long as they are updateable and do not have the WITH CHECK clause on them.

WITH ENCRYPTION

Encrypts the text of the CREATE TRIGGER statement as shown in the syscomments table. This option is useful
to protect important intellectual property. WITH ENCRYPTION prevents the trigger from use in a SQL Server
replication scheme.

FOR | AFTER | INSTEAD OF

Tells SQL Server when the trigger should fire. (FOR and AFTER are synonyms.) AFTER specifies that the trigger
fire only after the triggering data-modification statement (and any cascading actions and constraint checks)
have completed successfully. The INSTEAD OF trigger is similar to the ANSI BEFORE trigger in that the code of
the trigger may completely replace the data-modification operation. It specifies that the trigger is executed
instead of the data-modification statement that fired the trigger. INSTEAD OF DELETE triggers cannot be used
when there is a cascading action on the delete. Only INSTEAD OF triggers can access TEXT, NTEXT, or IMAGE
columns.

WITH APPEND

Adds an additional trigger of an existing type to a table or view. This clause is supported for backward
compatibility with earlier versions of the product and can be used only with FOR triggers.

NOT FOR REPLICATION

Prevents data-manipulation operations invoked through SQL Server's built-in replication engine from firing the
trigger.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IF UPDATE(column) [{AND | OR} UPDATE(column)][...]

Allows you to chose the specific columns that fire the trigger. A column-specific trigger fires only on UPDATE
and INSERT operations, but not on DELETE operations. If an UPDATE or INSERT occurs on any columns not in
the column list, the trigger will not fire.

SQL Server allows multiple triggers for a given data-manipulation operation on a table or view. Thus, three UPDATE
triggers are possible on a single table. Multiple AFTER triggers are possible on a given table. Their specific order is
undefined, though the first and last triggers can be explicitly declared using the sp_settriggerorder system stored
procedure. Only one INSTEAD OF trigger is possible per INSERT, UPDATE, or DELETE statement on a given table.

In SQL Server, any combination of triggers is made possible in a single trigger definition statement by separating each
option with a comma. (When doing so, the same code fires for each statement in the combination definition.)

SQL Server implicitly fires in the FOR EACH STATEMENT style of the ANSI standard.

SQL Server instantiates two important pseudotables when a trigger is fired: deleted and inserted. They are equivalent
to the before and after pseudotables, respectively, described earlier in the ANSI Rules at a Glance section. These
tables are identical in structure to the table on which the triggers are defined, except that they contain the old data
before the data-modification statement fired (deleted) and the new values of the table after the data-modification
statement fired (inserted).

The AS IF UPDATE(column) clause tests specifically for INSERT or UPDATE actions on a given column or columns, in the
way the ANSI statement uses the UPDATE(column) syntax. Specify multiple columns by adding separate UPDATE(column)
clauses after the first. Follow the AS IF UPDATE(column) clause with a Transact-SQL BEGIN...END block to allow the
trigger to fire multiple Transact-SQL operations. This clause is functionally equivalent to the IF...THEN...ELSE operation.

In addition to intercepting data modification statements as shown in the ANSI SQL example, SQL Server allows you to
perform other sorts of actions when a data modification operation occurs. In the following example, we've decided that
the table sales_archive_2002 is off limits and that anyone who attempts to alter data in these tables is to be notified
of that restriction:

CREATE TRIGGER archive_trigger

ON sales_archive_2002

FOR INSERT, UPDATE

AS RAISERROR (50009, 16, 10, 'No changes allowed to this table')

GO

SQL Server does not allow the following statements within the Transact-SQL code_block of a trigger: ALTER, CREATE,
DROP, DENY, GRANT, REVOKE, LOAD, RESTORE, RECONFIGURE, or TRUNCATE. In addition, it does not allow any DISK
statements or the UPDATE STATISTICS command.

SQL Server also allows triggers to fire recursively using the recursive triggers setting of the sp_dboption system
stored procedure. Recursive triggers, by their own action, cause themselves to fire again. For example, if an INSERT
trigger on table T1 performs an INSERT operation on table T1, it might perform a recursive operation. Since recursive
triggers can be dangerous, this functionality is disabled by default.

Similarly, SQL Server allows nested triggers up to 32 levels deep. If any one of the nested triggers performs a
ROLLBACK operation, no further triggers execute. An example of nested triggers is a trigger on table T1 firing an
operation against table T2, which also has a trigger that fires an operation against table T3. The triggers cancel if an
infinite loop is encountered. Nested triggers are enabled with the nested triggers setting of the system stored procedure
sp_configure. If nested triggers are disabled, recursive triggers are disabled as well, despite the recursive triggers
setting of sp_dboption.

In the following example, we want to reroute the user activity that occurs on the people table, especially update
transactions, so that changes to records in the people table are instead written to the people_reroute table. (A more
elaborate version of the people table is shown in SQL Server in the CREATE/ALTER TABLE Statement section.) Our
update trigger will record any changes to columns 2, 3, or 4 of the people table and write it to the people_reroute
table. The trigger will also record which user issued the update transaction and the time of the transaction:

CREATE TABLE people

 (people_id CHAR(4),

 people_name VARCHAR(40),

 people_addr VARCHAR(40),

 city VARCHAR(20),

 state CHAR(2),

 zip CHAR(5),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 phone CHAR(12),

 sales_rep empid NOT NULL)

GO

CREATE TABLE people_reroute

 (reroute_log_id UNIQUEIDENTIFIER DEFAULT NEWID(),

 reroute_log_type CHAR (3) NOT NULL,

 reroute_people_id CHAR(4),

 reroute_people_name VARCHAR(40),

 reroute_people_addr VARCHAR(40),

 reroute_city VARCHAR(20),

 reroute_state CHAR(2),

 reroute_zip CHAR(5),

 reroute_phone CHAR(12),

 reroute_sales_rep empidNOT NULL,

 reroute_user sysname DEFAULT SUSER_SNAME(),

 reroute_changed datetime DEFAULT GETDATE())

GO

CREATE TRIGGER update_person_data

ON people

FOR update AS

IF (COLUMNS_UPDATED(people_name)

 OR COLUMNS_UPDATEE(people_addr)

 OR COLUMNS_UPDATED(city))

BEGIN

-- Audit OLD record.

 INSERT INTO people_reroute (reroute_log_type, reroute_people_id,

 reroute_people_name, reroute_people_addr, reroute_city)

 SELECT 'old', d.people_id, d.people_name, d.people_addr, d.city

 FROM deleted AS d

-- Audit NEW record.

 INSERT INTO people_reroute (reroute_log_type, reroute_people_id,

 reroute_people_name, reroute_people_addr, reroute_city)

 SELECT 'new', n.people_id, n.people_name, n.people_addr, n.city

 FROM inserted AS n

END

GO

Note that SQL Server CREATE statements allow deferred name resolution, meaning that a command is processed even
if it refers to a database object that does not yet exist in the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

CREATE?ALTER FUNCTION/PROCEDURE
DELETE
DROP
INSERT
UPDATE

CREATE/ALTER TYPE Statement

The CREATE TYPE statement allows you to create a user-defined type (UDT); that is, a user-defined datatype or "class"
in object-oriented terms. UDTs extend SQL capabilities into the realm of object-oriented programming by allowing
inheritance and other object-oriented features. You can also create something called typed tables with the CREATE
TABLE statement using a previously created type made with the CREATE TYPE statement. Typed tables are based on
UDTs and are equivalent to "instantiated classes" from object-oriented programming.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with variations

SQL Server Not supported

SQL2003 Syntax

CREATE TYPE type_name

[UNDER supertype_name]

[AS [new_udt_name] datatype [attribute] [,...]

 {[REFERENCES ARE [NOT] CHECKED

 [ON DELETE

 {NO ACTION | CASCADE | RESTRICT | SET NULL | SET DEFAULT}]] |

 [DEFAULT value] |

 [COLLATE collation_name] }]

 [[NOT] INSTANTIABLE]

 [[NOT] FINAL]

[REF IS SYTEM GENERATED |

 REF USING datatype

 [CAST {(SOURCE AS REF) | (REF AS SOURCE) WITH identifier}] |

 REF new_udt_name [,...] }]

[CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH identifier]

[method_definition [,...]]

The syntax below alters an existing user-defined datatype:

ALTER TYPE type_name {ADD ATTRIBUTE type_definition |

 DROP ATTRIBUTE type_name}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DROP ATTRIBUTE type_name}

Keywords

{CREATE | ALTER} TYPE type_name

Creates a new type or alters an existing type of type_name.

UNDER supertype_name

Creates a subtype that is dependent upon a single, pre-existing, named supertype. (A UDT can be a supertype
if it is defined as NOT FINAL.)

AS [new_udt_name] datatype [attribute] [,...]

Defines attributes of the type as if they were column declarations in a CREATE TABLE statement without
constraints. You should either define the UDT attribute on an existing datatype, like VARCHAR(10), or on
another, previously created UDT or even on a user-defined domain. Defining a UDT using a predefined datatype
(e.g., CREATE TYPE my_type AS INT) creates a distinct type, while a UDT defined with an attribute definition is a
structured type. The allowable attributes for a structured type are below:

ON DELETE NO ACTION

Produces an error when the foreign key is violated (the default).

ON DELETE RESTRICT

A synonym for NO ACTION.

ON DELETE CASCADE

Sets the value of the referencing column to the value of the referenced column.

ON DELETE SET NULL

Sets the referencing column value to NULL.

ON DELETE SET DEFAULT value

Defines a default value for the UDT when no value is supplied by the user. Follows the rules of a
DEFAULT in the CREATE/ALTER TABLE Statement section.

COLLATE collation_name

Assigns a collation — that is, a sort order — for the UDT. When omitted, the collation of the database
where the UDT was created applies. Follows the rules of a COLLATION in the CREATE/ALTER TABLE
Statement section.

[NOT] INSTANTIABLE

Defines the UDT such that it can be instantiated. INSTANTIABLE is required for typed tables, but not standard
UDTs.

[NOT] FINAL

Required for all UDTs. FINAL means the UDT may have no subtypes. NOT FINAL means the UDT may have
subtypes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subtypes.

REF

Defines either a system-generated or user-generated reference specification — that is, a sort of unique
identifier that acts as a pointer that another type may reference. By referencing a pre-existing type using its
reference specification, new types may inherit properties of pre-existing types. There are three ways to tell the
DBMS how the typed table's reference column gets its values (i.e., its reference specification):

new_udt_name [,...]

Declares the reference specification is provided by another pre-existing UDT called new_udt_name.

IS SYTEM GENERATED

Declares the reference specification is system-generated. (Think of an automatically incrementing
column.) This is the default when the REF clause is omitted.

USING datatype [CAST {(SOURCE AS REF) | (REF AS SOURCE) WITH identifier]

Declares that the user defines the reference specification. You do this by using a predefined datatype
and optionally casting the value. You can CAST (SOURCE AS REF) WITH identifier to cast the value with
the specified datatype to the reference type of the structured type. You can CAST (REF AS SOURCE)
WITH identifier to cast the value for the structured type to the datatype. The WITH clause allows you to
declare an additional identifier for the cast datatype.

CAST {(SOURCE AS DISTINCT) | (DISTINCT AS SOURCE)} WITH identifier method_definition [,...]

Defines one or more pre-existing methods for the UDT. A method is merely a specialized user-defined function
and is created using the CREATE METHOD statement (see CREATE FUNCTION). The method_definition clause is
not needed for structured types since their method(s) are implicitly created. The default characteristics of a
method are LANGUAGE SQL, PARAMETER STYLE SQL, NOT DETERMINISTIC, CONTAINS SQL, and RETURN NULL
ON NULL INPUT.

ADD ATTRIBUTE type_definition

Adds an additional attribute to an existing UDT, using the format described earlier under the AS clause.
Available via the ALTER TYPE statement.

DROP ATTRIBUTE type_name

Drops an attribute from an existing UDT. Available via the ALTER TYPE statement.

Rules at a Glance

You are able to create user-defined types (UDTs) as a way to further ensure data integrity in your database and to ease
the work involved in doing so. An important concept of UDTs is that they allow you to easily create subtypes. Subtypes
are UDTs built upon other UDTs (the supertype). Subtypes inherit the characteristics of their supertypes. The UDT that
subtypes are dependent on is called a parent type or supertype.

Assume, for example, that you want to define a general UDT for phone numbers called phone_nbr. You could then
easily build new subtypes of phone_nbr called home_phone, work_phone, cell_phone, pager_phone, etc. Each of
the subtypes could then inherit the general characteristics of the parent type, but then have characteristics of their
own. In the following example, we create a general root UDT called money and then several subtypes:

CREATE TYPE money (phone_number DECIMAL (10,2))

 NOT FINAL;

CREATE TYPE dollar UNDER money AS DECIMAL(10,2)

 (conversion_rate DECIMAL(10,2)) NOT FINAL;

CREATE TYPE euro UNDER money AS DECIMAL(10,2)

 (dollar_conversion_rate DECIMAL(10,2)) NOT FINAL;

CREATE TYPE pound UNDER euro

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CREATE TYPE pound UNDER euro

 (euro_conversion_rate DECIMAL(10,2)) FINAL;

Programming Tips and Gotchas

The biggest programming gotcha for user-defined types is that they are simply seldom used or well understood by most
database developers and database administrators. Consequently, they can be problematic due to simple ignorance.
They offer, however, a consistent and labor-saving approach for representing commonly reused conceptual elements in
a database, such as address (e.g., street1, street2, city, state, postal code).

DB2

DB2 supports most elements of the ANSI standard with a few specific enhancements. The CREATE TYPE syntax is:

CREATE [DISTINCT] TYPE type_name

[UNDER supertype_name]

[AS [new_udt_name] datatype

[WITH COMPARISONS]

[[NOT] INSTANTIABLE] [INLINE LENGTH int] [WITHOUT COMPARISONS]

 [NOT FINAL] MODE DB2SQL

[REF USING datatype] [CAST {(SOURCE AS REF) | (REF AS SOURCE)}

 WITH identifier }]

[[OVERRIDING] METHOD method_definition [,...]]

The syntax below alters an existing user-defined datatype on DB2:

ALTER TYPE type_name {ADD ATTRIBUTE type_definition |

 DROP ATTRIBUTE type_name [RESTRICT] |

 ADD METHOD method_definition |

 ALTER METHOD method_name [[NOT] FENCED] [[NOT] THREADSAFE] |

 DROP METHOD method_name [RESTRICT] }

The parameters are:

DISTINCT

Defines a distinct type. A distinct type is always sourced from one of the existing datatypes that ships with DB2.
CREATE DISTINCT TYPE generates one or more function to cast between the distinct type and its source type.

WITH COMPARISONS

Generates support for the comparison operators (=, <>, <, <=, >, and >=) for use with a distinct type. This
clause is used only with CREATE DISTINCT TYPE. Even when creating a distinct type, WITH COMPARISONS
should not be used if the source datatype is BLOB, CLOB, DBCLOB, LONG VARCHAR, LONG VARGRAPHIC, or
DATALINK.

INLINE LENGTH int

Defines the maximum length in bytes, int, of a structured type column. When omitted, DB2 calculates the
maximum length itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WITHOUT COMPARISONS

Declares that there are no comparison functions supported for the structure type.

MODE DB2SQL

This is a required clause needed to maintain ANSI compliance.

OVERRIDING

Declares that the method of a subtype overrides a method of the same name on the supertype. This allows
easy reimplementation of methods in subtypes.

METHOD method_definition [,...]

DB2 supports a number of SQL routine characteristics and external routine characteristics on the
method_definition. In short, you must define a method in the CREATE/ALTER TYPE statement, but then you must
also define the implementation of the method using CREATE METHOD. Creating methods are explained in
CREATE/ALTER FUNCTION/PROCEDURE Statements.

ADD METHOD method_definition

Adds a new method, method_definition, to the existing type, type_name. However, the method is not usable until a
CREATE METHOD statement defines the implementation of the method.

ALTER METHOD method_name

Alters a method, but the method must not be LANGUAGE SQL.

[NOT] FENCED

Declares whether the method is safe to run in the database's operating system process (NOT FENCED) or not
(FENCED). NOT FENCED methods can introduce integrity problems when not adequately set up to prevent
errors. This clause is incompatible with NOT THREADSAFE.

[NOT] THREADSAFE

Declares whether the method is safe to run in the same process as other routines (THREADSAFE) or not (NOT
THREADSAFE).

DROP METHOD method_name

Drops an existing method of method_name.

RESTRICT

Disallows an attribute or method from being dropped when the type, type_name, is used in other existing
objects, such as a table, view, column, index extension, etc.

In this example, we create a supertype for employee and a subtype for manager:

CREATE TYPE employee AS

 (last_name VARCHAR(32),

 emp_id INT,

 dept REF(dept),

 salary DECIMAL(10,2))

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 salary DECIMAL(10,2))

MODE DB2SQL;

CREATE TYPE manager UNDER emp AS

 (bonus DECIMAL(10,2))

MODE DB2SQL;

The following example shows a more elaborate type hierarchy for addresses:

CREATE TYPE address_type AS

 (street1 VARCHAR(30),

 street2 VARCHAR(30),

 city VARCHAR(30),

 state VARCHAR(10),

 locality_code CHAR(15))

NOT FINAL

MODE DB2SQL

 METHOD SAMEZIP (addr address_type)

 RETURNS INTEGER

 LANGUAGE SQL

 DETERMINISTIC

 CONTAINS SQL

 NO EXTERNAL ACTION

 METHOD DISTANCE (address_type)

 RETURNS FLOAT

 LANGUAGE C

 DETERMINISTIC

 PARAMETER STYLE SQL

 NO SQL

 NO EXTERNAL ACTION

CREATE TYPE spain_address_type UNDER address_type AS

 (family_name VARCHAR(30))

NOT FINAL

MODE DB2SQL

CREATE TYPE usa_address_type UNDER address_type AS

 (zip VARCHAR(10))

NOT FINAL

MODE DB2SQL

In the above example, we created a type called address_type with two subtypes: spain_address_type and
usa_address_type.

The example that follows shows how to create a distinct type in DB2 used to identify an employee mailstop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example that follows shows how to create a distinct type in DB2 used to identify an employee mailstop.

CREATE DISTINCT TYPE mailstop AS CHAR(5)

WITH COMPARISONS;

In essence, the type mailstop now functions like a regular datatype and may be used to create columns in tables,
variables in stored procedures, etc. The WITH COMPARISONS clause tells DB2 to create the standard pre-existing
system operators for use with the distinct type. Specific functions, such as AVG, MIN, or LENGTH, may not work unless
the CREATE FUNCTION statement is used to register the function for the distinct type.

MySQL

Not supported.

Oracle

Oracle has CREATE TYPE and ALTER TYPE statements, but they are not ANSI standard. Instead of a single CREATE TYPE
statement, Oracle uses CREATE TYPE BODY to define the code that makes up the UDT, while CREATE TYPE defines the
argument specification for the type. The syntax for CREATE TYPE is:

CREATE [OR REPLACE] TYPE type_name

[AUTHID {DEFINER | CURRENT_USER}]

{ [UNDER supertype_name] |

 {AS | IS} [OID 'object_identifier']

 {OBJECT | TABLE OF datatype | VARRAY (limit) OF datatype}] }

 EXTERNAL NAME java_ext_name LANGUAGE JAVA USING data_definition

 { [(attribute datatype [,...] [EXTERNAL NAME 'name'] |

 [[NOT] OVERRIDING] [[NOT] FINAL] [[NOT] INSTANTIABLE]

 [{ {MEMBER | STATIC}

 {function_based | procedure_based} | constructor_clause |

 map_clause } [...]]

 [pragma_clause]] }

Once the type has been declared, you encapsulate all of the UDT logic in the type body declaration. The type_name for
both the CREATE TYPE and CREATE TYPE BODY should be identical. The syntax for the type body is shown below:

CREATE [OR REPLACE] TYPE BODY type_name

{AS | IS}

{{MEMBER | STATIC}

{function_based | procedure_based | constructor_clause}}[...]

[map_clause]

Oracle's implementation of ALTER TYPE enables you to drop or add attributes and methods from the type:

ALTER TYPE type_name

 {COMPILE [DEBUG] [{SPECIFICATION | BODY}]

 [compiler_directives] [REUSE SETTINGS] |

 REPLACE [AUTHID {DEFINER | CURRENT_USER}] AS OBJECT

 (attribute datatype [,...] [element_definition [,...]]) |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (attribute datatype [,...] [element_definition [,...]]) |

 [[NOT] OVERRIDING] [[NOT] FINAL] [[NOT] INSTANTIABLE]

 { {ADD | DROP} { {MAP | ORDER} MEMBER FUNCTION function_name

 (parameter datatype [,...]) } |

 { {MEMBER | STATIC} {function_based | procedure_based} |

 constructor_clause | map_clause } [...] |

 {ADD | DROP | MODIFY} ATTRIBUTE (attribute [datatype] [,...]) |

 MODIFY {LIMIT int | ELEMENT TYPE datatype} }

[{INVALIDATE |

 CASCADE [{ [NOT] INCLUDING TABLE DATA | CONVERT TO SUBSTITUTABLE}]

 [FORCE] [EXCEPTIONS INTO table_name] }]

Parameters for the three statements are as follows:

OR REPLACE

Recreates the UDT if it already exists. Objects that depend on the type are marked as DISABLE after you
recreate the type.

AUTHID {DEFINER | CURRENT_USER}

Determines what user permissions any member functions or procedures are executed under and how external
name references are resolved. (Note that subtypes inherit the permission style of their supertype.) This clause
can only be used with an OBJECT type, not with a VARRAY type or nested table type, according to the following
keywords:

DEFINER

Executes functions or procedures under the privileges of the user who created the UDT. Also specifies
that unqualified object names (object names without a schema definition) in SQL statements are
resolved to the schema where the member functions or procedures reside.

CURRENT_USER

Executes functions or procedures under the privileges of the user who invoked the UDT. Also specifies
that unqualified object names in SQL statements are resolved to the schema of the user who invoked
the UDT.

UNDER supertype_name

Declares that the UDT is a subtype of another, pre-existing UDT. The supertype UDT must be created with the
AS OBJECT clause. A subtype will inherit the properties of the supertype, though you should override or add
new properties to differentiate it from the supertype.

OID 'object_identifier'

Declares an equivalent identical object, of name 'object_identifier', in more than one database. This clause is most
commonly used by those developing Oracle Data Cartridges and is seldom used in standard SQL statement
development.

AS OBJECT

Creates the UDT as a root object type, the top level object in a UDT hierarchy of objects.

AS TABLE OF datatype

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AS TABLE OF datatype

Creates a named nested table type of a UDT called datatype. The datatype cannot be an NCLOB, but CLOB or
BLOB are acceptable. If the datatype is an object type, then the columns of the nested table must match the
name and attributes of the object type.

AS VARRAY (limit) OF datatype

Creates the UDT as an ordered set of elements, all of the same datatype. The limit is an integer of zero or more.
The type name must be a built-in datatype, a REF, or an object type. The VARRAY cannot contain LOB or
XMLType datatypes.

EXTERNAL NAME java_ext_name LANGUAGE JAVA USING data_definition

Maps a Java class to a SQL UDT by specifying the name of a public Java external class, java_ext_name. Once
defined, all objects in a Java class must be Java objects. The data_definition may be SQLData, CustomDatum, or
OraData as defined in the "Oracle9i JDBC Developers Guide." You can map many Java object types to the same
class, but there are two restrictions. First, do not map to the same class two or more subtypes of a common
datatype. Second, subtypes must be mapped to an immediate subclass of the class that their supertype is
mapped to.

datatype

Declares the attributes and datatypes used by the UDT. Oracle does not allow ROWID, LONG, LONG ROW, or
UROWID. Nested tables and varrays do not allow attributes of AnyType, AnyData, or AnyDataSet.

EXTERNAL NAME 'name' [NOT] OVERRIDING

Declares that this method overrides a MEMBER method defined in the supertype (OVERRIDING) or not (NOT
OVERRIDING), the default. This clause is valid only for MEMBER clauses.

MEMBER | STATIC

Describes the way in which subprograms are associated with the UDT as attributes. MEMBER has an implicit first
argument referenced as SELF, as in object_expression.method(). STATIC has no implicit arguments, as in
type_name.method(). The following basis are allowed to call subprograms:

function_based

Declares a subprogram that is function-based using the syntax:

FUNCTION function_name (parameter datatype [,...])

return_clause |java_object_clause}

The function_name cannot be the name of any existing attribute, include those inherited from
supertypes. This clause allows you to define the PL/SQL function-based UDT body without
resorting to the CREATE TYPE BODY statement. The return_clause and java_object_clause are
defined in the following text.

procedure_based

Declares a subprogram that is function-based using the syntax:

PROCEDURE procedure_name (parameter datatype [,...])

{AS | IS} LANGUAGE {java_call_spec | c_call_spec}

Refer to the entry on java and c_call_spec later in this list. This clause allows you to define the PL/SQL
procedure-based UDT body without resorting to the CREATE TYPE BODY statement. The procedure_name
cannot be the name of any existing attribute, include those inherited from supertypes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cannot be the name of any existing attribute, include those inherited from supertypes.

constructor_clause

Declares one or more constructor specifications using the syntax:

[FINAL] [INSTANTIABLE] CONSTRUCTOR FUNCTION datatype

 [([SELF IN OUT datatype ,] {parameter datatype [,...])]

RETURN SELF AS RESULT

 [{AS | IS} LANGUAGE {java_call_spec | c_call_spec}

A constructor specification is a function that returns an initialized instance of a UDT. Constructor
specifications are always FINAL, INSTANTIABLE, and SELF IN OUT, so these keywords are not required.
The java_call_spec and c_call_spec subclauses may be replaced with a PL/SQL code block in the CREATE
TYPE BODY statement. (Refer to the entries on java_call_spec and c_call_spec later in this list.)

map_clause

Declares the mapping or ordering of a supertype using the syntax:

{MAP | ORDER} MEMBER function_based

Refer to the entry on function_based earlier in this list. MAP uses more efficient algorithms for object comparison
and is best in situations when performing extensive sorting or hash joins. MAP MEMBER specifies the relative
position of a given instance in the ordering of all instances of the UDT. ORDER MEMBER specifies the explicit
position of an instance and references a function_based subprogram that returns a NUMBER datatype value.

return_clause

Declares the datatype return format of the SQL UDT using the syntax:

 RETURN datatype [{AS | IS} LANGUAGE {java_call_spec |

 c_call_spec}.

java_object_clause

Declares the return format of the Java UDT using the syntax:

RETURN {datatype | SELF AS RESULT} EXTERNAL [VARIABLE] NAME

 'java_name'

If you use the EXTERNAL clause, the value of the public Java method must be compatible with the SQL returned
value.

pragma_clause

Declares a pragma restriction (that is, an Oracle precompiler directive) for the type using the syntax:

PRAGMA RESTRICT REFERENCES ({DEFAULT | method_name} ,

{RNDS | WNDS |RNPS | WNPS | TRUST}[,...])

This feature is deprecated and should be avoided. It is intended to control how UDTs read and write database
tables and variables. The parameters in the PRAGMA syntax are:

DEFAULT

Applies the pragma to all methods in the type that don't have another pragma in place.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Applies the pragma to all methods in the type that don't have another pragma in place.

method_name

Identifies the exact method to which to apply the pragma.

RNDS

Reads no database state — no database reads allowed.

WNDS

Writes no database state — no database writes allowed.

RNPS

Reads no package state — no package reads allowed.

WNPS

Writes no package state — no package writes allowed.

TRUST

States that the restrictions of the pragma are assumed but not enforced.

java_call_spec

Identifies the Java implementation of a method using the syntax JAVA NAME 'string'. This clause allows
you to define the Java UDT body without resorting to the CREATE TYPE BODY statement.

c_call_spec

Declares a C language call specification using the syntax:

C [NAME name] LIBRARY lib_name [AGENT IN (argument)]

[WITH CONTEXT] [PARAMETERS (parameter [,...]]

This clause allows you to define the C UDT body without resorting to the CREATE TYPE BODY statement.

COMPILE

Compiles the object type specification and body. This is the default when neither a SPECIFICATION clause nor a
BODY clause are defined.

compiler_directives

Defines a special value for the PL/SQL compiler in the format: directive = 'value'. The directives are:
PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and
NLS_LENGTH_SEMANTICS. They may each specify a value once in the statement. The directive is valid only for
the unit being compiled.

DEBUG

Generates and stores additional codes for the PL/SQL debugger. Do not specify both DEBUG and the
compiler_directive PLSQL_DEBUG.

SPECIFICATION | BODY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chooses whether to recompile the SPECIFICATION of the object type (created by the CREATE TYPE statement)
or the BODY (created by the CREATE TYPE BODY statement).

compiler_directives

Defines a special value for the PL/SQL compiler in the format: directive = 'value'. The directives are:
PLSQL_OPTIMIZE_LEVEL, PLSQL_CODE_TYPE, PLSQL_DEBUG, PLSQL_WARNINGS, and
NLS_LENGTH_SEMANTICS. They may each specify a value once in the statement. The directive is valid only for
the unit being compiled.

REUSE SETTINGS

Retains the original value for the compiler_directives mentioned earlier.

REPLACE AS OBJECT

Adds new member subtypes to the specification. This clause is valid only for object types.

[NOT] OVERRIDING

Indicates the method overrides a MEMBER method defined in the supertype. This clause is only valid with
MEMBER methods and is required for methods that define (or redefine using ALTER) a supertype method. NOT
OVERRIDING is the default if this clause is omitted.

ADD

Adds a new MEMBER function, function- or procedure-based subprogram, or attribute to the UDT.

DROP

Drops an existing MEMBER function, function- or procedure-based subprogram, or attribute from the UDT.

MODIFY

Alters the properties of an existing attribute of the UDT.

MODIFY LIMIT int

Increases the number of elements in a VARRAY collection type up to int, as long as int is greater than the
current number of elements in the VARRAY. It is not valid for nested tables.

MODIFY ELEMENT TYPE datatype

Increases the precision, size, or length of a scalar datatype of a VARRAY or nested table. This clause is valid for
any non-object collection type. If the collection is a NUMBER, you may increase its precision or scale. If the
collection is RAW, you may increase its maximum size. If the collection is VARCHAR2 or NVARCHAR2, you may
increase its maximum length.

INVALIDATE

Invalidates all dependent objects without checks.

CASCADE

Cascades the change to all subtypes and tables. By default, the action will be rolled back if any errors are
encountered in the dependent types or tables.

[NOT] INCLUDING TABLE DATA

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converts data stored in the UDT columns to the most recent version of the column's type (INCLUDING TABLE
DATA), the default, or not (NOT INCLUDING TABLE DATA). When NOT, Oracle checks the metadata, but does
not check or update the dependent table data.

CONVERT TO SUBSTITUTABLE

Used when changing a type from FINAL to NOT FINAL. The altered type then can be used in substitutable tables
and columns, as well as in subtypes, instances of dependent tables, and columns.

FORCE

Causes the CASCADE operation to go forward, ignoring any errors found in dependent subtypes and tables. All
errors are logged to a previously created EXCEPTIONS table.

EXCEPTIONS INTO table_name

Logs all error data to a table previously created using the system package called
DBMS_UTILITY.CREATE_ALTER_TYPE_ERROR_TABLE.

In this example, we create a Java SQLJ object type called address_type:

CREATE TYPE address_type AS OBJECT

 EXTERNAL NAME 'scott.address' LANGUAGE JAVA

 USING SQLDATA (street1 VARCHAR(30) EXTERNAL NAME 'str1',

 street2 VARCHAR(30) EXTERNAL NAME 'str2',

 city VARCHAR(30) EXTERNAL NAME 'city',

 state CHAR(2) EXTERNAL NAME 'st',

 locality_code CHAR(15) EXTERNAL NAME 'lc',

 STATIC FUNCTION square_feet RETURN NUMBER

 EXTERNAL VARIABLE NAME 'square_feet',

 STATIC FUNCTION create_addr (str VARCHAR,

 City VARCHAR, state VARCHAR, zip NUMBER)

 RETURN address_type

 EXTERNAL NAME 'create (java.lang.String,

 java.lang.String, java.lang.String, int)

 return scott.address',

 MEMBER FUNCTION rtrims RETURN SELF AS RESULT

 EXTERNAL NAME 'rtrim_spaces () return scott.address')

NOT FINAL;

We could create a UDT using a VARRAY type with four elements:

CREATE TYPE employee_phone_numbers AS VARRAY(4) OF CHAR(14);

In the following example, we alter the address_type that we created earlier by adding a VARRAY called
phone_varray:

ALTER TYPE address_type

 ADD ATTRIBUTE (phone phone_varray) CASCADE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ADD ATTRIBUTE (phone phone_varray) CASCADE;

In this last example, we'll create a supertype and subtype called menu_item_type and entry_type, respectively:

CREATE OR REPLACE TYPE menu_item_type AS OBJECT

(id INTEGER, title VARCHAR2(500),

 NOT INSTANTIABLE

 MEMBER FUNCTION fresh_today

 RETURN BOOLEAN)

NOT INSTANTIABLE

NOT FINAL;

In the above example, we created a type specification (but not the type body) that defines items that may appear on a
menu at a café. Included with the type specification is a subprogram method called fresh_today, a Boolean indicator
that tells whether the menu item is made fresh that day. The NOT FINAL clause that appears at the end of the code
tells Oracle that this type may serve as the supertype (or base type) to other subtypes that we might derive from it. So
now, let's create the entre_type:

CREATE OR REPLACE TYPE entry_type UNDER menu_item_type

(entre_id INTEGER, desc_of_entre VARCHAR2(500),

 OVERRIDING MEMBER FUNCTIOIN fresh_today

 RETURN BOOLEAN)

NOT FINAL;

PostgreSQL

PostgreSQL supports a CREATE TYPE statement used to create a new datatype, but does not support an ALTER TYPE
statement. PostgreSQL's implementation of the CREATE TYPE statement is nonstandard:

CREATE TYPE type_name

 (INPUT = input_function_name,

 OUTPUT = output_function_name,

 INTERNALLENGTH = { int | VARIABLE }

[, DEFAULT = value]

[, ELEMENT = array_element_datatype]

[, DELIMITER = delimiter_character]

 [, PASSEDBYVALUE]

[, ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}]

[, STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}])

The parameters are as follows:

CREATE TYPE type_name

Creates a new user-defined datatype called type_name. The name may not exceed 30 characters in length nor
begin with an underscore.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

begin with an underscore.

INPUT = input_function_name

Declares the name of a previously created function that converts external argument values into a form usable
by the type's internal form.

OUTPUT = output_function_name

Declares the name of a previously created function that converts internal output values to a display format.

INTERNALLENGTH = { int | VARIABLE }

Specifies a numeric value, int, for the internal length of the new type, if the datatype is fixed length. The
keyword VARIABLE declares that the internal length is variable. The default is VARIABLE.

DEFAULT = value

Defines a value for type when it defaults.

ELEMENT = array_element_datatype

Declares that the datatype is an array and that array_element_datatype is the datatype of the array elements. For
example, an array containing integer values would be ELEMENT = INT4. In general, you should allow the
array_element_datatype value to default. The only time you might want to override the default is when creating a
fixed-length UDT composed of an array of multiple identical elements that need to be directly accessible by
subscripting.

DELIMITER = delimiter_character

Declares a character used as a delimiter between output values of an array produced by the type. Only used
with the ELEMENT clause. The default is a comma.

PASSEDBYVALUE

Specifies that the values of the datatype are passed by value and not by reference. The optional clause cannot
be used for types whose value is longer than the DATUM datatype (4 bytes on most operating systems, 8 bytes
on a few others).

ALIGNMENT = {CHAR | INT2 | INT4 | DOUBLE}

Defines a storage alignment for the type. Four datatypes are allowed, with each one equating to a specific
boundary. CHAR equals a 1-byte boundary. INT2 equals a 2-byte boundary. INT4 equals a 4-byte boundary
(the requirement for a variable-length UDT on PostgreSQL). DOUBLE equals an 8-byte boundary.

STORAGE = {PLAIN | EXTERNAL | EXTENDED | MAIN}

Defines a storage technique for variable-length UDTs. (PLAIN is required for fixed-length UDTs.) Four types are
allowed:

PLAIN

Stores the UDT in-line, when declared as the datatype of a column in a table, and uncompressed.

EXTERNAL

Stores the UDT outside of the table without trying to compress it first.

EXTENDED

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stores the UDT as a compressed value if it fits inside of the table. If it is still too long, PostgreSQL will
save the UDT outside of the table.

MAIN

Stores the UDT as a compressed value within the table. There are situations where PostgreSQL cannot
save the UDT within the table because it is just too large. The MAIN storage parameter puts the highest
emphasis on storing UDTs with all other table data.

When you create a new datatype in PostgreSQL, it is available only in the current database. The user who created the
datatype is the owner.

In order to create a new datatype, you must create at least two functions before defining the type (see CREATE/ALTER
FUNCTION/PROCEDURE Statements"). In summary, you must create an INPUT function that provides the type with
external values that can be used by the operators and functions defined for the type. You must also create an OUTPUT
function that renders a usable external representation of the datatype. There are some additional requirements when
creating the input and output functions:

The input function should either take one argument of type OPAQUE or take three arguments of OPAQUE, OID,
and INT4. In the latter case, OPAQUE is the input text of a C string, OID is the element type for array types,
and the INT4 (if known) is the typemod of the destination column.

The output function should either take one argument of type OPAQUE or take two arguments of OPAQUE and
OID. In the latter case, OPAQUE is the datatype itself and the OID is the element type for array types, if
needed.

For example, we can create a UDT called floorplan and use it to define a column in two tables, one called house and
one called condo:

CREATE TYPE floorplan

 (INTERNALLENGTH=12, INPUT=squarefoot_calc_proc,

 OUTPUT=out_floorplan_proc);

CREATE TABLE house

 (house_plan_id int4,

 size floorplan,

 descrip varchar(30));

CREATE TABLE condo

 (condo_plan_id INT4,

 size floorplan,

 descrip varchar(30)

 location_id varchar(7));

SQL Server

Not supported. New datatypes can be added to SQL Server using the non-ANSI system stored procedure sp_addtype.

See Also

CREATE/ALTER FUNCTION/PROCEDURE
DROP

CREATE/ALTER VIEW Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This statement creates a view, also known as a virtual table. A view acts just like a table but is actually defined as a
query. When a view is referenced in a statement, the result set of the query becomes the content of the view for the
duration of that statement. Almost any valid SELECT statement can define the contents of a view, though some
platforms restrict the certain clauses of the SELECT statement and certain set operators.

In some cases, views can be updated, causing the view changes to be translated to the underlying data in the base
tables. Some database platforms support a materialized view; that is, a physically created table that is defined with a
query just like a view.

ALTER VIEW is not an ANSI-supported statement.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

CREATE [RECURSIVE] VIEW view_name {[(column [,...])] |

[OF udt_name [UNDER supertype_name

 [REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}]

 [column_name WITH OPTIONS SCOPE table_name]] }

AS

select_statement [WITH [CASCADED | LOCAL] CHECK OPTION]

Keywords

CREATE VIEW view_name

Creates a new view using the supplied name.

RECURSIVE

Creates a view that derives values from itself. It must have a column clause and may not use the WITH clause.

[(column [,...])]

Names all of the columns in the view. The number of columns declared here must match the number of
columns generated by the select_statement. When omitted, the columns assume the names of the columns that
they come from. This clause is required when one or more of the columns is derived and does not have a base
table column to reference.

OF udt_name [UNDER supertype_name]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defines the view on a UDT rather than on the column clause. The typed view is created using each attribute of
the type as a column in the view. Use the UNDER clause to define a view on a subtype.

REF IS column_name {SYSTEM GENERATED | USER GENERATED | DERIVED}

Defines the object-ID column for the view.

column_name WITH OPTIONS SCOPE table_name

Provides scoping for a reference column in the view. (Since the columns are derived from the type, there is no
column list. Therefore, to specify column options, you must use "column_name WITH OPTIONS...".)

AS select_statement

Defines the exact SELECT statement that provides the data of the view.

[WITH [CASCADED | LOCAL] CHECK OPTION]

Used only on views that allow updates to their base table. It ensures that only data that may be read by the
view may be inserted, updated, or deleted by the view. For example, if a view of employees showed salaried
employees but not hourly employees, it would be impossible to insert, update, or delete hourly employees
through that view. The CASCADED and LOCAL options of the CHECK OPTION clause are used for nested views.
CASCADED performs the check option for the current view and all views it is built on top of. LOCAL performs
the check option only for the current view, even when it is built upon other views.

Rules at a Glance

Views are usually as effective as the queries upon which they are based. That is why it is important to be sure that the
defining SELECT statement is speedy and well-written. The simplest view is based on the entire contents of a single
table:

CREATE VIEW employees

AS

SELECT *

FROM employee_tbl;

A column list also may be specified after the view name. The optional column list contains aliases serving as names for
each element in the result set of the SELECT statement. If you use a column list, then you must provide a name for
every column returned by the SELECT statement. If you don't use a column list, then the columns of the view will be
named whatever the columns in the SELECT statement are called. You will sometimes see complex SELECT statements
within a view that make heavy use of AS clauses for all columns, because that allows the developer of the view to put
meaningful names on the columns without including a column list.

The ANSI standard defines that you must use a column list or an AS clause. However, some vendors allow more
flexibility, so follow these rules for when to use an AS clause:

When the SELECT statement contains calculated columns, such as (salary * 1.04)

When the SELECT statement contains fully qualified column names, such as pubs.scott.employee

When the SELECT statement contains more than one column of the same name (though with separate schema
or database prefixes)

For example, the following two view declarations have the same functional result:

-- using a column-list

CREATE VIEW title_and_authors

 (title, author_order, author, price, avg_monthly_sales,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 (title, author_order, author, price, avg_monthly_sales,

 publisher)

AS

SELECT t.title, ta.au_ord, a.au_lname, t.price, (t.ytd_sales / 12),

 t.pub_id

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

JOIN titles AS t ON t.title_id = ta.title_id

WHERE t.advance > 0;

-- using the AS clause with each column

CREATE VIEW title_and_authors

AS

SELECT t.title AS title, ta.au_ord AS author_order,

 a.au_lname AS author, t.price AS price,

 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

JOIN titles AS t ON t.title_id = ta.title_id

WHERE t.advance > 0

You can alternately change the title of columns using the column list. In this case, we'll change avg_monthly_sales to
avg_sales. Note that the code overrides the default column names provided by the AS clauses (in bold):

CREATE VIEW title_and_authors

 (title, author_order, author, price, avg_sales, publisher)

AS

SELECT t.title AS title, ta.au_ord AS author_order,

 a.au_lname AS author, t.price AS price,

 (t.ytd_sales / 12) AS avg_monthly_sales, t.pub_id AS publisher

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

JOIN titles AS t ON t.title_id = ta.title_id

WHERE t.advance > 0;

ANSI standard view can update the base table(s) it is based upon if it meets the following conditions:

The view does not have UNION, EXCEPT, or INTERSECT operators.

The defining SELECT statement does not contain GROUP BY or HAVING clauses.

The defining SELECT statement does not contain any reference to non-ANSI pseudo-columns such as ROWNUM
or ROWGUIDCOL.

The defining SELECT statement does not contain the DISTINCT clause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The defining SELECT statement does not contain the DISTINCT clause.

The view is not materialized.

This example shows a view named california_authors that allows data modifications to apply only to authors within
the state of California:

CREATE VIEW california_authors

AS

SELECT au_lname, au_fname, city, state

FROM authors

WHERE state = 'CA'

WITH LOCAL CHECK OPTION

The view shown in this example would accept INSERT, DELETE, and UPDATE statements against the base table, but still
maintain that all inserted, updated, or deleted records contain a state of 'CA' using the WITH ... CHECK clause.

The most important rule to remember when updating a base table through a view is that all columns in a table that are
defined as NOT NULL must receive a not null value when receiving a new or changed value. You can do this explicitly by
directly inserting or updating a not null value into the column or by relying on a default value. In addition, views do not
lift constraints on the base table. Thus, the values being inserted or updated into the base table must meet all the
constraints placed on it by unique indexes, primary keys, CHECK constraints, etc.

Programming Tips and Gotchas

Views also can be built upon other views, but this is inadvisable and usually considered bad practice. Depending on the
platform, such a view may take longer to compile, but may offer the same performance as a transaction against the
base table(s). On other platforms, where each view is dynamically created as it is invoked, nested views may take a
long time to return a result set because each level of nesting means another query must be processed before a result
set is returned to the user. So in this worst case scenario, a three-level nested view must make three correlated query
calls before it can return results to the user.

Although materialized views are defined like views, they take up space more like tables. Ensure that you have enough
space available for the creation of materialized views.

DB2

DB2 supports a number of extensions to the ANSI standard CREATE VIEW statement:

CREATE VIEW view_name

{ [(column [,...])] | [OF type_name MODE DB2SQL

 { (REF IS objectid_column_name USER GENERATED

 [UNCHECKED] [, with_options]) |

 UNDER parent_view_name INHERIT SELECT PRIVILEGES

 [(with_options)] }

AS

[WITH common_table_expression [, ...]]

(select_statement)

[WITH {CASCADE | LOCAL} CHECK OPTION]

The ALTER VIEW syntax is:

ALTER VIEW view_name

ALTER [COLUMN] column_name ADD SCOPE type_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Parameters for both statements are as follows:

OF type_name MODE DB2SQL

Declares that the columns of the view are derived from attributes of a structured type called type_name. MODE
DB2SQL indicates the type is DB2's version of a typed view.

REF IS objectid_column_name USER GENERATED

Declares that the object identifier column appears as the first column in the view. That first column in the
SELECT clause of the view must be a REF type. In this case, the objectID is required on the topmost (i.e., root)
view of a view hierarchy. The root view must be a typed view containing the OF clause that is not a subview.
The USER GENERATED clause specifies that the first value of the objectID must be provided by the user. From
then on, the value is maintained by the system.

UNCHECKED

Declares that the user is certain that all values in first column of the SELECT clause are unique and are not null.
Uniqueness may be enforced by a primary key, unique key, unique index, OID-column definition, or an external
method. This setting is usually optional, but is required for views in a typed hierarchy.

UNDER parent_view_name INHERIT SELECT PRIVILEGES

Declares that the view is a subview of the previously declared view parent_view_name. The child and parent views
must be in the same schema. The parent view must have been declared with the REF clause and must be
sourced from a structured type. The parent view named cannot have any subviews of the same structured type
as the view being created. The INHERIT SELECT PRIVILEGES clause entitles any user or role with SELECT
privileges on the parent view to also have SELECT privileges on all subviews.

with_options

Declares additional options for specific columns of the view. Multiple options are allowed by placing a comma
between each option. The full syntax of the with_options clause is:

{column_name WITH OPTIONS {READ ONLY | SCOPE typed_name} [,...] } [,...]

The parameters are:

READ ONLY

Specifies that a column is read-only.

SCOPE type_name

Specifies the scope of a reference type column where type_name is the name of the typed table or view. A scope
is required for any column serving as the left operand of a dereference operator or as the argument of the
DEREF function.

WITH common_table_expression

Associates a common table expression with the SELECT statement of the view. This clause is incompatible with
typed views.

WITH {CASCADE | LOCAL} CHECK OPTION

Declares that any rows inserted or updated through the view must conform to the definition of the view. Any
row that couldn't also be returned by the view cannot, therefore, be inserted or updated through it. When
omitted, no checking of inserted or updated data is done beyond the constraints that exist on the source table.
WITH CHECK OPTION is not allowed for read-only views, views with an INSTEAD OF trigger, or views that
reference a nicknamed source, NODENUMBER or PARTITION functions, non-deterministic functions, or functions
with external actions. The following WITH CHECK OPTION options are available:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with external actions. The following WITH CHECK OPTION options are available:

CASCADE

Causes the search conditions of the current view to inherit the search conditions of any updateable view
that the current view is based on. With this option, the current view has its own WHERE clause implicitly
appended with an AND keyword to the WHERE clause of the view it depends on.

LOCAL

Applies the search conditions of the current view to any views that depend on it.

ALTER [COLUMN] column_name ADD SCOPE type_name

Allows you to add scope characteristics to an existing view.

The SELECT statement of a view should be a standard SELECT statement and cannot contain any of the following:

Temporary tables

Parameter markers

Referenced host variables

You can get around the limitation on parameterized views by making a user-defined function based on a SQL table.

A typed view or subview must follow some specific rules:

The SELECT statement of the view cannot reference DBPARTITIONNUM or HASHEDVALUE functions, functions
with external actions, or any non-deterministic function.

The view can contain a single SELECT statement. More SELECT statements can be added by using a UNION ALL
clause between each one. (DB2 refers to a query with multiple SELECT statements as having multiple
branches.)

Branches should not cross hierarchies.

Branches of a typed view should not contain GROUP BY or HAVING clauses.

The root view should contain the UNCHECKED clause if it contains branches.

The following is an example including types, a typed table, and a view hierarchy, built around people_type and
emp_type:

CREATE TYPE people_type

 AS (name VARCHAR(20), address VARCHAR(100))

 MODE DB2SQL

 CAST (SOURCE AS REF) WITH people_func;

CREATE TYPE emp_type

 UNDER people_type

 AS (title VARCHAR(20), salary DECIMAL(8,2))

 MODE DB2SQL

 CAST (SOURCE AS REF) WITH emp_func;

CREATE TABLE people

 OF people_type

 (REF IS people_oid USER GENERATED);

INSERT INTO people (people_oid, name, address)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSERT INTO people (people_oid, name, address)

 VALUES (people_func('0'), 'Sammy', '123 Lane');

CREATE TABLE emp

 OF emp_type

 UNDER people INHERIT SELECT PRIVILEGES;

INSERT INTO emp (people_oid, name, address, title, salary)

 VALUES (emp_func('1'), 'Josh', '123 Street', 'Director', 1000);

CREATE VIEW people_view

 OF people_type

 MODE DB2SQL

 (REF IS people_view_oid USER GENERATED)

 AS SELECT people_func (VARCHAR(people_oid)), name, address

 FROM ONLY (people);

CREATE VIEW emp_view

 OF emp_type

 MODE DB2SQL

 UNDER people_view INHERIT SELECT PRIVILEGES

 AS SELECT emp_func (VARCHAR(people_oid)), name,

 address, title, salary

 FROM emp;

SELECT *

 FROM people_view;

PEOPLE_VIEW_OID NAME ADDRESS

--------------- ----- ---------------

x'30' Sammy 123 Lane

x'31' Josh 123 Street

SELECT *

 FROM emp_view;

PEOPLE_VIEW_OID NAME ADDRESS TITLE SALARY

--------------- ---- ---------------- -------------------- ----------

x'31' Josh 123 Street Director 1000.00

The WITH CHECK OPTION clause can be tricky because you are, in effect, telling the views to combine WHERE clauses
either from upward in the dependency chain (via CASCADE) or downward in the dependency chain (via LOCAL).
Consider the following:

V1 sourced from table T
V2 sourced from V1 WITH check_opn CHECK OPTION
V3 sourced from V2
V4 sourced from V3 WITH check_opn CHECK OPTION
V5 sourced from V4

The following table shows the search conditions against which inserted or updated rows are checked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following table shows the search conditions against which inserted or updated rows are checked.

Note that if you create a view (or any other object, for that matter) with a schema name
that does not already exist in the database, DB2 will implicitly create a schema of that
name.

MySQL

Not supported.

Oracle

Oracle supports extensions to the ANSI standard to create object-oriented views, XMLType views, and views that
support LOB and object types:

CREATE [OR REPLACE] [[NO] FORCE] VIEW view_name

 {[(column [,...]) [constraint_clause] |

 [OF type_name {UNDER parent_view |

 WITH OBJECT IDENTIFIER {DEFAULT | (attribute [,...]) }

 [(constraint_clause)]] |

 [OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT

 {element | xml_schema_url # element}]

 WITH OBJECT IDENTIFIER {DEFAULT | (attribute [,...]}]

AS

(select statement)

[WITH [READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]]]

Oracle's implementation of the ALTER VIEW statement supports added capabilities, such as adding, dropping, or
modifying constraints associated with the view. In addition, the ALTER VIEW statement will explicitly recompile a view
that is invalid, enabling you to locate recompile errors before runtime. This recompiling feature enables you to
determine if a change in a base table negatively impacts any dependent views:

ALTER VIEW view_name

 {ADD constraint_clause |

 MODIFY CONSTRAINT constraint_clause [NO]RELY] |

 DROP {PRIMARY KEY | CONSTRAINT constraint_clause |

 UNIQUE (column [,...])} }

COMPILE

The parameters are:

OR REPLACE

Replaces any existing view of the same view_name with the new view.

[NO] FORCE

The FORCE clause creates the view regardless of whether the base tables exist or the user creating the view
has privileges to the base tables, views, or functions defined in the view. The FORCE clause also creates the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

has privileges to the base tables, views, or functions defined in the view. The FORCE clause also creates the
view regardless of errors that occur during view creation. The NO FORCE clause creates the view only if the
base tables and proper privileges are in place.

constraint_clause

Allows you to specify constraints (see CREATE TABLE) on views for CREATE VIEW. Using ALTER VIEW, this
clause also allows you to affect a named, pre-existing constraint. You can define the constraint at the view
level, similar to a table-level view, or at the column or attribute level. Note that although Oracle allows you to
define constraints on a view, it doesn't yet enforce them. Oracle supports constraints on a view in DISABLE and
NOVALIDATE modes.

OF type_name

Declares that the view is an object view of type_name. The columns of the view correspond directly to the
attributes returned by type_name, where type_name is a previously declared type (see CREATE TYPE). You do not
specify column names for object and XMLType views.

UNDER parent_view

Specifies a subview based on a pre-existing parent_view. The subview must be in the same schema as the parent
view, the type_name must be an immediate subtype of the parent_view, and one subview is allowed.

WITH OBJECT IDENTIFIER {DEFAULT | (attribute [,...]) }

Defines the root object view as well as any attribute of the object type used to identify each row of the object
view. The attributes usually correspond to the primary key columns of the base table and must uniquely identify
each row of the view. This clause is incompatible with subviews and dereferenced or pinned REF keys. The
DEFAULT keyword uses the implicit object identifier of the base object table or view.

OF XMLTYPE [[XMLSCHEMA xml_schema_url] ELEMENT {element | xml_schema_url # element] WITH OBJECT IDENTIFIER
(attribute [,...])

Specifies that the view will return XMLType instances. Specifying the optional xml_schema_url as a pre-registered
XMLSchema and element name further constrains the returned XML as an element in that XMLSchema. The
WITH OBJECT IDENTIFIER clause specifies the identifier that uniquely identifies each row of the XMLType view.
One or more attributes may use non-aggregate functions like extractValue() to obtain the identifiers from the
resultant XMLType.

WITH READ ONLY

Ensures the view is used only to retrieve data and not to modify it.

WITH CHECK OPTION [CONSTRAINT constraint_name]

Forces the view to accept only inserted and updated data that can be returned by the view's SELECT statement.
Alternately, you can specify a single CHECK OPTION constraint_name that exists on the base table that you want
to enforce. If the constraint is not named, Oracle names the constraint SYS_Cn, where n is an integer.

ADD constraint_clause

Adds a new constraint to the view. Oracle supports constraints only in DISABLE and NOVALIDATE mode.

MODIFY CONSTRAINT constraint_clause [NO]RELY

Changes the RELY or NORELY setting of an existing view constraint. (RELY and NORELY are explained under
CREATE TABLE.)

DROP {PRIMARY KEY | CONSTRAINT constraint_clause | UNIQUE (column [,...])}

Drops an existing constraint on a view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COMPILE

Recompiles the view.

Any dblinks in the view's SELECT statement must be declared using the CREATE DATABASE LINK...CONNECT TO
statement. Views containing flashback queries will have their AS OF clause evaluated at each invocation of the view, not
when the view is compiled.

In this example, we create a view that has an added constraint:

CREATE VIEW california_authors (last_name, first_name,

 author_ID UNIQU RELY DISABLE NOVALIDATE,

 CONSTAINT id_pk PRIMARY KEY (au_id) RELY DISABLE NOVALIDATE)

AS

SELECT au_lname, au_fname, au_id

FROM authors

WHERE state = 'CA';

We might also wish to create an object view on an Oracle database and schema. This example creates the type and the
object view:

CREATE TYPE inventory_type AS OBJECT

(title_id NUM(6),

 warehouse wrhs_typ,

 qty NUM(8));

CREATE VIEW inventories OF inventory_type

WITH OBJECT IDENTIFIER (title_id)

AS

SELECT i.title_id, wrhs_typ(w.wrhs_id, w.wrhs_name,

 w.location_id), i.qty

FROM inventories i

JOIN warehouses w ON i.wrhs_id = w.wrhs_id;

You could recompile the inventory_type view like this:

ALTER VIEW inventory_type COMPILE:

An updateable view in Oracle cannot contain any of the following:

The DISTINCT clause

UNION, INTERSECT, or MINUS

Joins that cause inserted or updated data to affect more than one table

Aggregate or analytic functions

GROUP BY, ORDER BY, CONNECT BY, or START WITH clauses

Subqueries or collection expressions in the SELECT item list (Subqueries are acceptable in the SELECT
statement's WHERE clause.)

Update pseudocolumns or expressions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Update pseudocolumns or expressions

There are some restrictions on how subviews and materialized views can be defined in Oracle:

The subview must use aliases for ROWID, ROWNUM, or LEVEL pseudocolumns.

The subview cannot query CURRVAL or NEXTVAL pseudocolumns.

The subview cannot contain the SAMPLE clause.

The subview evaluates all columns of a SELECT * FROM... statement at compile time. Thus, any new columns
added to the base table will not be retrieved by the subview until the view is recompiled.

Note that older versions of Oracle supported partitioned views. This feature has been deprecated. You should use
explicitly declared partitions instead.

PostgreSQL

PostgreSQL supports a no-frills subset of the ANSI standard:

CREATE VIEW view_name [(column [,...])]

AS select_statement

PostgreSQL's CREATE VIEW does not support some of the more complex options that other vendors do. However, it
does allow views to be built on tables and other defined class objects. PostgreSQL views are built only upon other
tables, not upon other views. PostgreSQL views are always read-only and cannot be used to perform data modifications
on the underlying base tables.

SQL Server

SQL Server supports some extensions to the ANSI standard, but does not offer object views or subviews:

CREATE VIEW view_name [(column [,...])]

[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA} [,...]]

AS

select_statement

[WITH CHECK OPTION]

SQL Server's implementation of ALTER VIEW allows you to change an existing view without affecting the permissions or
dependent objects of the view:

ALTER VIEW view_name [(column [,...])]

[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA} [,...]]

AS

select_statement

[WITH CHECK OPTION]

The parameters are as follows:

ENCRYPTION

Encrypts the text of the view in the syscomments table. This option is usually invoked by software vendors
who want to protect their intellectual capital.

SCHEMABINDING

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SCHEMABINDING

Binds the view to a specific schema, meaning that all objects in the view must be referenced by their full name
(both owner and object name). The view and any tables referenced in the view SELECT clause must be fully
qualified, as in pubs.scott.employee. Views created with SCHEMABINDING (and tables referenced by these
views) must have the schema binding dropped (via ALTER VIEW) before they may be dropped or altered.

VIEW_METADATA

Specifies that SQL Server return metadata about the view (rather than the base table) to calls made from
DBLIB or OLEDB APIs. Views created or altered with VIEW_METADATA enable their columns to be updated by
INSERT and UPDATE INSTEAD OF triggers.

WITH CHECK OPTION

Forces the view to accept only inserted and updated data that can be returned by the view's SELECT statement.

The SELECT clause of a SQL Server view cannot:

Have the COMPUTE, COMPUTE BY, INTO, or ORDER BY clauses (ORDER BY is allowed if you use SELECT TOP)

Reference a temporary table

Reference a table variable

Reference more than 1,024 columns, including those referenced by subqueries

Here, we define a SQL Server view with both ENCRYPTION and CHECK OPTION:

CREATE VIEW california_authors (last_name, first_name, author_id)

WITH ENCRYPTION

AS

 SELECT au_lname, au_fname, au_id

 FROM authors

 WHERE state = 'CA'

WITH CHECK OPTION

GO

SQL Server allows multiple SELECT statements in a view, as long as they are linked with UNION or UNION ALL clauses.
SQL Server also allows functions and hints in the SELECT statement of a view. A SQL Server view is updateable if all of
the items in the following list are true.

The SELECT statement has no aggregate functions

The SELECT statement does not contain TOP, GROUP BY, DISTINCT, or UNION

The SELECT statement has no derived columns (see SUBQUERY)

The FROM clause of the SELECT statement references at least one table

SQL Server allows indexes to be created on views (see CREATE INDEX). By creating a unique, clustered index on a
view, you cause SQL Server to store a physical copy of the view on the database. Changes to the base table are
automatically updated in the indexed view. Indexed views consume extra disk space, but provide a boost in
performance. Indexed views must be built using the SCHEMABINDING clause.

SQL Server also allows the creation of local partitioned views and distributed partitioned views. A local partitioned view
is a partitioned view where all views are present on the same SQL Server. A distributed partitioned view is a partitioned
view where one or more views are located on remote servers.

Partitioned views must very clearly derive their data from different sources, with each distinct data source joined with a
UNION ALL statement to the next. Furthermore, all columns of the partitioned views should be selected and identical.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UNION ALL statement to the next. Furthermore, all columns of the partitioned views should be selected and identical.
(The idea is that you have split the data out logically by means of a frontend application. SQL Server then recombines
the data through the partitioned view.) This example shows how the data in the view comes from three separate SQL
Servers:

CREATE VIEW customers

AS

--Select from a local table on server 'New_York'

SELECT *

FROM sales_archive.dbo.customers_A

UNION ALL

SELECT *

FROM houston.sales_archive.dbo.customers_K

UNION ALL

SELECT *

FROM los_angeles.sales_archive.dbo.customers_S

Note that each remote server (New_York, houston, and los_angeles) has to be defined as a remote server on all of the
SQL Servers using the distributed partitioned view. Partitioned views can greatly boost performance because they can
split I/O and user loads across many machines. But they are also difficult to plan, create, and maintain. Be sure to read
the vendor documentation for complete details about all the permutations available with partitioned views.

When altering an existing view, SQL Server acquires and holds an exclusive schema lock on the view until the alteration
is finished. ALTER VIEW drops any indexes that might be associated with a view. You must manually recreate them
using CREATE INDEX.

See Also

CREATE/ALTER TABLE
DROP
SELECT
SUBQUERY

DECLARE CURSOR Command

The DECLARE command is one of four commands used in cursor processing, along with FETCH, OPEN, and CLOSE.
Cursors allow you to process queries one row at a time, rather than in a complete set. The DECLARE CURSOR command
specifies the exact records to be retrieved and manipulated one row at a time from a specific table or view.

In other words, cursors are especially important for relational databases because databases are set-based, while most
client-centric programming languages are row-based. This is important for two reasons. First, cursors allow
programmers to program using methodologies supported by their favorite row-based programming language. Second,
cursors run counter to the default behavior of some relational database platforms, which operate on a set of records
and, on those specific platforms, may be noticeably slower than standard set-based operations.

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

SQL2003 Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

DECLARE cursor_name [{SENSITIVE | INSENSITIVE | ASENSITIVE}]

[[NO] SCROLL] CURSOR [{WITH | WITHOUT} HOLD]

 [{WITH | WITHOUT} RETURN}]

FOR select_statement

[FOR {READ ONLY | UPDATE [OF column [,...]]}]

Keywords

DECLARE cursor_name

Gives the cursor a unique name in the context in which it is defined — for example, in the database or schema
where it is created. The name must be unique, meaning that no other cursors may share the same name.

SENSITIVE | INSENSITIVE | ASENSITIVE

Defines the manner in which the cursor interacts with the source table and the result set retrieved by the cursor
query, where:

SENSITIVE

Tells the database to operate directly against the result set, such that the cursor will see changes to its
result set as it moves through the records.

INSENSITIVE

Tells the database to create a temporary but separate copy of the result set, so that all changes made
against the result set by other operations are invisible to the cursor.

ASENSITIVE

Allows the database implementation to determine whether to make a copy of the result set.
ASENSITIVE is the SQL2003 default.

[NO] SCROLL

Tells the database not to enforce processing one row at a time, using FETCH NEXT, but that all forms of the
FETCH clause are allowed against the result set. NO SCROLL enforces processing one row at a time.

{WITH | WITHOUT} HOLD

Tells the cursor to remain open when a transaction encounters the COMMIT statement. Conversely, WITHOUT
HOLD tells the cursor to close when the transaction encounters a COMMIT statement. (A cursor that uses WITH
HOLD can only be and is always closed with a ROLLBACK statement or a CLOSE CURSOR statement.)

{WITH | WITHOUT} RETURN

Used only in a stored procedure, the WITH RETURN clause tells the database to return the result set, if it is still
open, when the stored procedure terminates. With the WITHOUT RETURN clause, which is the default behavior,
all open cursors are implicitly closed when the stored procedure terminates.

FOR select_statement

Defines the underlying SELECT statement that determines the rows in the result set of the cursor. As with a
regular SELECT statement, the results of the query may be sorted according to an ORDER BY clause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

regular SELECT statement, the results of the query may be sorted according to an ORDER BY clause.

FOR {READ ONLY | UPDATE [OF column [,...]] }

Specifies that the cursor is not updateable in any way, using FOR READ ONLY. This is the default when the
cursor is defined with SCROLL or INSENSITIVE properties or the query contains an ORDER BY clause or is
against an non-updateable table. Alternately, you can specify FOR UPDATE OF column1, column2 [,...], defining
the columns where you want to execute UPDATE statements. You can leave off a column list on the FOR
UPDATE OF to include all columns in the cursor.

Rules at a Glance

The DECLARE CURSOR command enables the retrieval and manipulation of records from a table one row at a time. This
provides row-by-row processing, rather than the traditional set processing offered by SQL.

At the highest level, these steps are followed when working with a cursor:

Create a cursor using DECLARE.

Open the cursor using OPEN.

Operate against the cursor using FETCH.

Dismiss the cursor using CLOSE.

The DECLARE CURSOR command works by specifying a SELECT statement. Each row returned by the SELECT statement
may be individually retrieved and manipulated. In this Oracle example, the cursor is declared in the declaration block
along with some other variables. The cursor is then opened, fetched against, and then closed in the BEGIN...END block
that follows:

DECLARE

 CURSOR title_price_cursor IS

 SELECT title, price

 FROM titles

 WHERE price IS NOT NULL;

 title_price_val title_price_cursor%ROWTYPE;

 new_price NUMBER(10,2);

BEGIN

 OPEN title_price_cursor;

 FETCH title_price_cursor INTO title_price_val;

 new_price := "title_price_val.price" * 1.25

 INSERT INTO new_title_price

 VALUES (title_price_val.title, new_price)

 CLOSE title_price_cursor;

END;

Because this example uses PL/SQL, much of the code is beyond the scope of this book. However, the DECLARE block
clearly shows that the cursor is declared. In the PL/SQL execution block, the cursor is initialized with the OPEN
command, values are retrieved with the FETCH command, and the cursor finally is terminated with the CLOSE
command.

The SELECT statement is the heart of your cursor, so it is a good idea to test it thoroughly before embedding it in the
DECLARE CURSOR statement. The SELECT statement may operate against a base table or a view. For that matter,
read-only cursors may operate against non-updateable views. The SELECT statement can have subclauses like ORDER
BY, GROUP BY, and HAVING if it is not updating the base table. If the cursor is FOR UPDATE, then it is a good idea to
exclude these clauses from the SELECT statement.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exclude these clauses from the SELECT statement.

Local cursors are sometimes used as output parameters of stored procedures. Thus, a stored procedure could define
and populate a cursor and pass that cursor to a calling batch or stored procedure.

In this simple DB2 example, we'll declare a cursor that looks at department numbers, names, and manager numbers
for all departments in the admin_group 'X01':

EXEC SQL

DECLARE dept_cursor CURSOR

FOR SELECT dept_nbr, dept_name, mgr_nbr

 FROM department

 WHERE admin_group = 'X01'

 ORDER BY dept_name ASC, dept_nbr DESC, mgr_nbr DESC;

In this next example from Microsoft SQL Server, a cursor from the publishers table is declared and opened. The cursor
takes the first record from publishers that matches the SELECT statement and inserts it into another table; it then
moves to the next record and the next, until all records are processed. Finally, the cursor is closed and deallocated
(DEALLOCATE is used only with Microsoft SQL Server):

DECLARE @publisher_name VARCHAR(20)

DECLARE pub_cursor CURSOR

FOR SELECT pub_name FROM publishers

 WHERE country <> 'USA'

OPEN pub_cursor

FETCH NEXT FROM pub_cursor INTO @publisher_name

WHILE @@FETCH_STATUS = 0

BEGIN

 INSERT INTO foreign_publishers VALUES(@publisher_name)

END

CLOSE pub_cursor

DEALLOCATE pub_cursor

In this example, you see how the cursor moves through a set of records. (The example was intended only to
demonstrate this concept, since there is actually a better way to accomplish the same task, namely an
INSERT...SELECT statement.)

Programming Tips and Gotchas

Most platforms do not support dynamically executed cursors. Rather, cursors are embedded within an application
program, stored procedure, user-defined function, etc. In other words, the various statements for creating and using a
cursor are usually used only in the context of a stored procedure or other database-programming object, not in a
straight SQL script.

For ease of programming and migration, don't use the SCROLL clause or the various sensitivity keywords. Some
platforms support only forward-scrolling cursors, so you can avoid headaches later by just sticking to the simplest form
of cursor.

Cursors behave differently on the various database platforms when crossing a transaction boundary — for example,
when a set of transactions is rolled back in the midst of a cursor. Be sure to get familiar with exactly how each database
platform behaves in these circumstances.

MySQL does not support server-side cursors in the ANSI SQL style, but does support extensive C-programming
extensions that provide the same functionality.

DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2 supports the basic DECLARE CURSOR statement along with some variations on the WITH HOLD and WITH RETURN
clauses, as in the following example:

DECLARE cursor_name CURSOR

[WITH HOLD] [WITH RETURN [{TO CALLER | TO CLIENT}]]

FOR select_statement

where:

WITH RETURN [{TO CALLER | TO CLIENT}]

Used only in a stored procedure, the WITH RETURN clause tells the database to return the result set, if it is still
open, when the stored procedure terminates. (DB2 will accept WITH RETURN on cursors outside of a stored
procedure, but it has no effect.) It has these options:

TO CALLER

Returns the result set to the caller, such as another stored procedure or process on the database
server. It will also return the result set to a client, if that is what called the stored procedure. This is the
default behavior for cursors embedded in DB2 external stored procedures.

TO CLIENT

Returns the result set to the client application, bypassing any intermediate processes such as nested
stored procedures. This clause cannot be used to return result sets to functions or methods.

FOR select_statement

Defines the underlying SELECT statement that determines the rows in the result set of the cursor. The SELECT
statement cannot include parameters, but can include host variables, as long as they have been declared before
the cursor. You may also use a prepared SELECT statement as the select_statement, using the DB2 PREPARE
command.

DB2 provides syntax to explicitly declare a cursor as read-only or updateable as part of the SELECT statement rather
than as part of the DECLARE CURSOR statement.

When not specified, the updateability of a cursor is implicitly determined according to a variety of rules that improve
locking. First of all, a cursor is assumed to be read-only if it is not deleteable. A DB2 cursor is deleteable when it has
the FOR UPDATE clause plus:

The FROM clause of the SELECT statement references only one base table or deleteable view.

The SELECT statement does not contain a VALUES clause, a DISTINCT clause, a GROUP BY clause, a HAVING
clause, an ORDER BY clause, a FOR READ ONLY clause, or UNION, EXCEPT, or INTERSECT clauses.

The SELECT statement is free of column functions in the select item list.

The columns of a DB2 cursor are updateable when it meets the requirements to be deleteable plus:

The columns are resolved to columns in the base table or view.

The LANGLEVEL bind option is MIA, SQL92E, or the columns are referenced in the FOR UPDATE clause of the
select_statement.

A DB2 cursor may also be updateable if it is statically defined or has the SQL-standard
bind option (MIA) applied to LANGLEVEL. The LANGLEVEL setting MIA indicates that the
cursor runs under SQL92 rules. The setting SQL92E indicates that the cursor runs under
the SQL92 entry-level rules. And the setting SAA1 indicates that the cursor runs under the
DB2 common (old) rules. LANGLEVEL is assigned using the DB2 PREP command.

DB2 also allows cursors to be ambiguous. An ambiguous cursor is considered updateable
unless the BLOCKING bind option is ALL, whence it is considered read-only. A cursor is
ambiguous when all these conditions are true:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ambiguous when all these conditions are true:

The select_statement doesn't include a FOR READ ONLY or FOR UPDATE clause.

The language level setting (LANGLEVEL) is set to the value SAA1.

The select_statement is dynamically prepared.

The cursor is otherwise deleteable.

There are a couple things to be careful of with DB2 cursors:

System function values, such as those returned by CURRENT DATE, CURRENT
TIME, or CURRENT TIMESTAMP, are determined when a cursor is opened and not
when the FETCH statement is executed. Therefore, any of these values would be
identical for every record in the result set, since the values are determined once
when the cursor is opened.

If a LANGUAGE other than SQL (such as Java) is used for the stored procedure,
the default behavior is WITH RETURN TO CALLER.

MySQL

Not supported.

Oracle

Oracle has a rather interesting implementation of cursors. In reality, all Oracle data modification statements (INSERT,
UPDATE, DELETE, and SELECT) implicitly open a cursor. For example, a C program accessing Oracle would not need to
issue a DECLARE CURSOR statement to retrieve data on a record-by-record basis because that is the implicit behavior
of Oracle. Because of this behavior, DECLARE CURSOR is something you use only in PL/SQL constructs, like stored
procedures, and not something you would use in a script that is purely SQL.

Since cursors can only be used in stored procedures and user-defined functions on Oracle,
they are documented in the Oracle PL/SQL reference material, not in the SQL reference
material.

Oracle utilizes a variation of the DECLARE CURSOR statement that supports parameterized inputs, as in the following
syntax:

DECLARE CURSOR cursor_name [(parameter datatype [,...])]

IS select_statement

[FOR UPDATE [OF column_name [,...]]}]

where:

parameter datatype [,...]IS select_statement

Defines the select_statement used to retrieve the cursor result set. It serves the same purpose as the ANSI
SQL2003 FOR select_statement clause.

FOR UPDATE [OF column_name]

Defines the cursor or specific columns of the cursor as updateable. Otherwise, the cursor is assumed to be
read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

read-only.

In Oracle, variables are not allowed in the WHERE clause of the SELECT statement unless they are first declared as
variables. The parameters are not assigned at the DECLARE; instead, they are assigned values at the OPEN command.
This is important since any system function will return an identical value for all rows in the cursor result set.

PostgreSQL

PostgreSQL does not support the WITH clauses. It does allow you to return result sets in BINARY rather than text
format. Although the compiler will not cause errors with many of the ANSI keywords, PostgreSQL's implementation of
DECLARE CURSOR is more limited than it might first appear:

DECLARE cursor_name [BINARY] [INSENSITIVE] [SCROLL] CURSOR

FOR select_statement

[FOR {READ ONLY | UPDATE [OF column_name [,...]]}]

where:

BINARY

Forces the cursor to retrieve binary-formatted data rather than text-formatted data.

INSENSITIVE

Indicates that data retrieved by the cursor is unaffected by updates from other processes or cursors. However,
this is PostgreSQL's default behavior, so adding or leaving this keyword off has no effect.

SCROLL

Allows multiple rows to be retrieved by a single FETCH operation. However, this is PostgreSQL's default
behavior, so adding or leaving off this keyword has no effect.

FOR {READ-ONLY | UPDATE}

Indicates that a cursor is opened using read-only mode or updateable mode, respectively. However, PostgreSQL
only supports read-only cursors. That means that the FOR READ-ONLY clause has no effect, while the FOR
UPDATE (column_name) clause produces an informational error message.

PostgreSQL closes any existing cursor when a newly declared cursor is created with the same name. Binary cursors
tend to be faster because PostgreSQL stores data as binary on the backend. However, user applications are only text
aware. Therefore, you would have to build in binary handling for any BINARY cursors.

PostgreSQL allows cursors only within a transaction. You should enclose a cursor within a BEGIN and COMMIT or
ROLLBACK transaction block.

PostgreSQL does not support an explicit OPEN cursor statement. Cursors are considered open when they are declared.
So to declare and open a cursor in PostgreSQL, you could use code like this:

DECLARE pub_cursor CURSOR

FOR SELECT pub_name FROM publishers

 WHERE country <> 'USA';

SQL Server

SQL Server supports the ANSI standard, as well as a good many extensions that provide flexibility in how a cursor
scrolls through a result set and manipulates data, as in the following syntax:

DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR

 [LOCAL | GLOBAL] [FORWARD_ONLY | SCROLL]

 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]

 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]

 [TYPE_WARNING]

FOR select_statement

[FOR {READ ONLY | UPDATE [OF column_name [,...]]}]

The parameters are as follows:

LOCAL | GLOBAL

Scopes the cursor for either the local Transact-SQL batch or makes the cursor available to all Transact-SQL
batches issued by the current session via OPEN and FETCH statements, respectively. A global cursor name can
be referenced by any stored procedure, function, or Transact-SQL batch executed in the current session. A
global cursor is implicitly deallocated at disconnect, but a local cursor must be manually deallocated. The LOCAL
and GLOBAL keywords are optional. The default behavior, if neither is specified, is defined by the default to local
database property.

INSENSITIVE | FORWARD_ONLY | SCROLL

Determines how the cursor will move through the result set, with three options:

INSENSITIVE

Creates the result set as a table in TEMPDB. Changes to the base table are not reflected in the cursor
result set. Not compatible with SQL Server extensions to the DECLARE CURSOR command like LOCAL,
GLOBAL, STATIC, KEYSET, DYNAMIC, FAST_FORWARD, etc. Can only be used in a SQL92-style
DECLARE CURSOR statement, such as DECLARE sample CURSOR INSENSITIVE FOR select_statement FOR
UPDATE.

FORWARD_ONLY

Indicates that the cursor must scroll from the first to the last record in the result set and that FETCH
NEXT is the only supported form of the FETCH statement. The cursor is assumed to be DYNAMIC unless
STATIC or KEYSET are used. FAST_FORWARD is mutually exclusive of FORWARD_ONLY.

SCROLL

Enables all FETCH options (ABSOLUTE, FIRST, LAST, NEXT, PRIOR, and RELATIVE). Otherwise, only FETCH
NEXT is available. If DYNAMIC, STATIC, or KEYSET are used, the cursor defaults to SCROLL behavior.
FAST_FORWARD is mutually exclusive of SCROLL.

STATIC | KEYSET | DYNAMIC | FAST_FORWARD

Determines how records are manipulated in the result set. These settings are incompatible with the FOR READ
ONLY and FOR UPDATE clauses. There are four options:

STATIC

Makes a temporary copy of the result set data and stores it in tempdb. Modifications made to the source
table or view do not show up when processing the cursor. STATIC cursors cannot modify data in the
source table or view.

KEYSET

Makes a temporary copy of the result set with membership and fixed row order (also known as a
keyset) in tempdb. The keyset correlates the data in the cursor result set to the base table or view such

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

keyset) in tempdb. The keyset correlates the data in the cursor result set to the base table or view such
that the cursor can see changes made to the underlying data. Rows that have been deleted or updated
show an @@FETCH_STATUS of -2 (unless the update was done using UPDATE...WHERE CURRENT OF,
in which case they are fully visible), while rows inserted by other users are not visible at all.

DYNAMIC

Determines the records in the cursor result set as each FETCH operation is executed. Thus, DYNAMIC
cursors see all changes made to the base table or view, even those by other users. Because the result
set may be in constant flux, DYNAMIC cursors do not support FETCH ABSOLUTE.

FAST_FORWARD

Creates a FORWARD_ONLY, READ_ONLY cursor that quickly reads through the entire cursor result set
at one time.

READ_ONLY | SCROLL_LOCKS | OPTIMISTIC

Determines concurrency and positional update behavior for the cursor. These settings are incompatible with
FOR READ ONLY and FOR UPDATE. The allowable parameters include:

READ_ONLY

Prevents updates to the cursor and disallows the cursor from being referenced in UPDATE or DELETE
statements that contain WHERE CURRENT OF.

SCROLL_LOCKS

Ensures that positional updates and deletes succeed by locking the cursor result set rows as they are read into
the cursor. The locks are held until the cursor is closed and deallocated. SCROLL_LOCKS is mutually exclusive
of FAST_FORWARD.

OPTIMISTIC

Ensures that positional updates and deletes succeed unless the row benig updated or deleted in the cursor
result set has changed since it was read into the cursor. SQL Server accomplishes this by comparing a
timestamp, or a checksum value when no timestamp exists, on the columns. It does not lock the rows in the
cursor result set. OPTIMISTIC is mutually exclusive of FAST_FORWARD.

TYPE_WARNING

Warns the user when the cursor is implicitly converted from one type to another — for example from SCROLL to
FORWARD_ONLY.

FOR {READ ONLY |

Identifies the cursor as read only using the ANSI standard syntax. This keyword is not compatible with the other
type identifiers shown previously. It should only be used with INSENSITIVE, FORWARD_ONLY, and SCROLL.

FOR UPDATE [OF column_name [,...]]}

Allows updates to columns in the cursor using UPDATE and DELETE statements with the WHERE CURRENT OF
clause. If FOR UPDATE is used without a column list, then all columns in the cursor are updateable. Otherwise,
only those columns listed are updateable.

Microsoft SQL Server allows two basic forms of syntax for the DECLARE CURSOR
statement. The syntax forms are not compatible! The basic forms of syntax are SQL92
compatible and Transact-SQL extensions. You cannot mix keywords of the two forms
together.

The SQL-92 compatibility syntax for DECLARE CURSOR is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SQL-92 compatibility syntax for DECLARE CURSOR is:

DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR

FOR select_statement

[FOR { READ ONLY | UPDATE [OF column_name [,...]] }]

While the Transact-SQL extensioned syntax for DECLARE CURSOR is:

DECLARE cursor_name CURSOR

[LOCAL | GLOBAL] [FORWARD_ONLY | SCROLL]

[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]

[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]

[TYPE_WARNING]

FOR select_statement

[FOR UPDATE [OF column_name [,...]]]

The SQL92 compatability syntax is supported to enable your code to be more transportable. The Transact-SQL
extensions syntax enables you to define cursors using the same cursor types that are available in popular database
APIs like ODBC, OLE-DB, and ADO, but may only be used in SQL Server stored procedures, user-defined functions,
triggers, and ad hoc queries.

If you do define a Transact-SQL extension cursor but do not define concurrency behavior using the OPTIMISTIC,
READ_ONLY, or SCROLL_LOCKS keywords, then:

The cursor defaults to READ-ONLY if the cursor is defined as FAST_FORWARD, STATIC, or the user has
insufficient privileges to update the base table or view.

The cursor defaults to OPTIMISTIC if the cursor has been defined as DYNAMIC or KEYSET.

Note that variables may be used in the select_statement of a SQL Server cursor, but the variables are evaluated when the
cursor is declared. Thus, a cursor containing the column based on the system function GETDATE() will have the same
date and time for every record in the cursor result set.

In the following SQL Server example, we use a KEYSET cursor to change blank spaces to dashes in the phone column
of the authors table:

SET NOCOUNT ON

DECLARE author_name_cursor CURSOR LOCAL KEYSET TYPE_WARNING

 FOR SELECT au_fname FROM pubs.dbo.authors

DECLARE @name varchar(40)

OPEN author_name_cursor

FETCH NEXT FROM author_name_cursor INTO @name

WHILE (@@fetch_status <> -1)

BEGIN

-- @@fetch_status checks for 'record not found' conditions and errors

 IF (@@fetch_status <> -2)

 BEGIN

 PRINT 'updating record for ' + @name

 UPDATE pubs.dbo.authors

 SET phone = replace(phone, ' ', '-')

 WHERE CURRENT OF author_name_cursor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHERE CURRENT OF author_name_cursor

 END

 FETCH NEXT FROM author_name_cursor INTO @name

END

CLOSE author_name_cursor

DEALLOCATE author_name_cursor

GO

See Also

CLOSE CURSOR
FETCH
OPEN

DELETE Statement

The DELETE statement erases records from a specified table or tables. DELETE statements acting against tables are
sometimes called search deletes. The DELETE statement may also be used in conjunction with a cursor. DELETE
statements acting upon the rows of a cursor are sometimes called positional deletes.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Supported, with limitations

SQL2003 Syntax

DELETE FROM { table_name | ONLY (table_name) }

[{ WHERE search_condition | WHERE CURRENT OF cursor_name }]

Keywords

FROM table_name

Identifies the table, called table_name, from which rows will be deleted. The table_name assumes the current
schema if one is not specified. You may alternately specify a single table view name. FROM is mandatory,
except in the DELETE...WHERE CURRENT OF statement. When not using the ONLY clause, do not enclose the
table_name in parentheses.

ONLY (table_name)

Restricts cascading of the deleted records to any subtables of the target table or view. ONLY effects only typed
(object-oriented) tables and views. If used with a non-typed table or view, it is ignored and does not cause an
error. If ONLY is used, you must enclose the table_name in parentheses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

error. If ONLY is used, you must enclose the table_name in parentheses.

WHERE search_condition

Defines search criteria for the DELETE statement using one or more search_condition clauses to ensure that only
the target rows are deleted. Any legal WHERE clause is acceptable. Typically, these criteria are evaluated
against each row of the table before the deletion occurs.

WHERE CURRENT OF cursor_name

Restricts the DELETE statement to the current row of a defined and opened cursor called cursor_name.

Rules at a Glance

The DELETE statement erases rows from a table or view. Space released by erased rows will be returned to the
database where the table is located, though it may not happen immediately.

A simple DELETE statement that erases all records in a given table has no WHERE clause, as in the following:

DELETE FROM sales;

You can use any valid WHERE clause to filter records that you do not want to delete. All three of the following examples
show valid DELETE statements, and since all are search deletes, they all include the FROM clause:

DELETE FROM sales

WHERE qty IS NULL;

DELETE FROM suppliers

WHERE supplierid = 17

 OR companyname = 'Tokyo Traders';

DELETE FROM distributors

WHERE postalcode IN

 (SELECT territorydescription FROM territories);

In some cases, you may wish to delete a specific row that is being processed by a declared and open cursor:

DELETE titles WHERE CURRENT OF title_cursor;

The above query assumes that you have declared and opened a cursor named title_cursor. Whichever row the cursor
is on will be deleted when the command, shown above, is executed. Note that in the positional delete shown earlier, the
FROM clause is not required.

Programming Tips and Gotchas

It is rare to issue a DELETE statement without a WHERE clause, because this results in deleting all rows from the
affected table. You should first issue a SELECT statement with the same WHERE clause you intend to use on the DELETE
statement. That way you can be sure exactly which records will be deleted.

If it becomes necessary to remove all the rows in a table, you should consider using the non-ANSI TRUNCATE TABLE
statement. In those databases that support the command, TRUNCATE TABLE is usually a faster method to physically
remove all rows. TRUNCATE TABLE is faster than DELETE because the deletion of individual records is not logged. On
some platforms, this makes rollback of a TRUNCATE statement impossible. The reduction of logging overhead saves
considerable time when erasing a large number of records. On some database platforms, all foreign keys on the table
must be dropped before issuing a TRUNCATE statement.

DB2

DB2 supports the ANSI standard, with the addition of transaction isolation control and the ability to assign an alias to
the table from which records will be deleted, as in the following:

DELETE FROM { table_name | ONLY (table_name) } [AS alias]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DELETE FROM { table_name | ONLY (table_name) } [AS alias]

[WHERE {search_conditions | CURRENT OF cursor_name}]

[WITH { RR | RS | CS | UR }]

The parameters are:

AS alias

Allows the target table_name to use an alias. This is especially useful for correlated subqueries. (Note that DB2
has a special object called an alias that may be created with the DB2 CREATE ALIAS statement. In this case, the
term "alias" represents what the ANSI SQL standard calls a correlation name, something akin to a simple
nickname for the table or view.)

WITH {RR | RS | CS | UR}

Controls transaction isolation level for the update statement. RR is repeatable read, RS is read stability, CS is
cursor stability, and UR is uncommitted read. See the SET TRANSACTION Statement section for full details on
these transaction isolation levels.

On DB2, the target may be a table, updateable view, or nickname. As the ANSI standard dictates, rows will be deleted
from any subtables of the target table unless you use the ONLY keyword. If ONLY is used, you must enclose the
table_name in parentheses.

If you use ONLY in combination with WHERE CURRENT OF, then the SELECT statement that defined the cursor must use
the FROM ONLY clause as well. For example:

DECLARE CURSOR emp_cursor FOR

 SELECT name, address

 FROM ONLY (employee);

DELETE FROM ONLY (employee)

 WHERE CURRENT OF emp_cursor;

The previous code assumes that employee is the base table, with subtables below it. The cursor will only select rows
that are contained in employee and not the other types contained in the subtables (e.g., parttime, salaried,
student). Similarly, deletes will only take place at this level of the hierarchy as well.

MySQL

MySQL allows a number of extensions over the ANSI standard, but does not support the WHERE CURRENT OF clause,
as in the following:

DELETE [LOW_PRIORITY] [QUICK] [table_name[.*] [,...]]

{FROM table_name[.*] [,...] | [USING table_name[.*] [,...]] }

[WHERE search_condition]

[ORDER BY clause]

[LIMIT nbr_of_rows]

The parameters are:

LOW PRIORITY

Delays the execution of DELETE until no other clients are reading from the table.

QUICK

Prevents the storage engine from merging index leaves during the delete operation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Prevents the storage engine from merging index leaves during the delete operation.

DELETE table_name [,...]

Enables you to delete from more than one table at a time. Tables listed before the FROM clause, assuming one
or more tables appear in the FROM clause, will be the target of the delete operation. If more than one table
appears before the FROM clause, then all matching records in all tables will be deleted.

FROM table_name[.*]

Specifies the table or tables where records will be deleted. (The .* clause is an option to improve compatibility
with MS-Access.) If tables are listed before the FROM clause, then the table or tables in the FROM clause are
assumed to be used to support a join or lookup operation.

USING table_name[.*] [,...]

Substitute the table or tables before the FROM clause with those after the FROM clause.

ORDER BY clause

Specifies the order that rows will be deleted in. This is useful only in conjunction with LIMIT.

LIMIT nbr_of_row

MySQL also can place an arbitrary cap on the number of records deleted before control is passed back to the
client using the LIMIT nbr_of_rows clause.

MySQL allows deletion from more than one table at a time. For example, the following two DELETE statements are
functionally equivalent:

DELETE orders FROM customers, orders

WHERE customers.customerid = orders.customerid

 AND orders.orderdate BETWEEN '19950101' AND '19951231'

DELETE FROM orders USING customers, orders

WHERE customers.customerid = orders.customerid

 AND orders.orderdate BETWEEN '19950101' AND '19951231'

In the examples above, we delete all orders made by customers during the year 1995. Note that you cannot use ORDER
BY or LIMIT clauses in a multitable delete like those shown above.

You can also delete records in orderly batches using the ORDER BY clause in conjunction with the LIMIT clause:

DELETE FROM sales

WHERE customerid = 'TORTU

ORDER BY customerid

LIMIT 5

MySQL exhibits several behaviors that speed up the delete operation. For example, MySQL returns the number of
records deleted when it completes the operation. However, MySQL will return zero as the number of deleted records
when you delete all records from a table because it is faster for MySQL to return zero than to count the rows deleted. In
AUTOCOMMIT mode, MySQL will even substitute a TRUNCATE statement for a DELETE statement without a WHERE
clause because TRUNCATE is faster.

Note that the speed of a MySQL delete operation is directly related to the number of indexes on the table and the
available index cache. You can speed up delete operations by executing the command against tables with few or no
indexes or by increasing the size of the index cache.

Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle allows you to delete rows from tables, views, materialized views, nested subqueries, and partitioned views and
tables, as follows:

DELETE [FROM]

 {table_name | ONLY (table_name)} [alias]

 [{PARTITION (partition_name) |

 SUBPARTITION (subpartition_name)}] |

 (subquery [WITH {READ ONLY |

 CHECK OPTION [CONSTRAINT constraint_name]}]) |

 TABLE (collection_expression) [(+)] }

[WHERE search_condition]

[RETURNING expression [,...] INTO variable [,...]]

The parameters are:

table_name [alias]

Specifies the table, view, materialized view, or partitioned table or view where records will be deleted. You may
optionally prepend a schema identifier to the table_name or append a database link. Otherwise, Oracle will
assume the user's default schema and the local database server. You may optionally apply an alias to the
table_name. The alias is required if the target table references an object type attribute or method.

PARTITION partition_name

Applies the delete operation to the named partition, rather than to the entire table You are not required to
name a partition when deleting from a partitioned table, but it can, in many cases, help reduce the complexity
of the WHERE clause.

SUBPARTITION subpartition_name

Applies to a named subpartition, rather than to the entire table.

(subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name] }])

Specifies that the target for deletion is a nested subquery, not a table, view, or other database object. The
parameters of this clause are:

subquery

Describes the SELECT statement that makes up the subquery. The subquery can be any standard
subquery, though it may not contain an ORDER BY clause.

WITH READ ONLY

Specifies that the subquery cannot be updated.

WITH CHECK OPTION

Tells Oracle to abort any changes to the deleted table that would not appear in the result set of the
subquery.

CONSTRAINT constraint_name

Tells Oracle to further restrict changes based upon a specific constraint identified by constraint_name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells Oracle to further restrict changes based upon a specific constraint identified by constraint_name.

TABLE (collection_expression) [(+)]

Informs Oracle that the collection_expression should be treated like a table though it may, in fact, be a subquery,
a function, or some other collection constructor. In any case, the value returned by the collection_expression must
be a nested table or VARRAY.

RETURNING expression

Retrieves the rows affected by the command, where DELETE normally only shows the number of rows deleted.
The RETURNING clause can be used when the target is a table, a materialized view, or a view with a single base
table. When used for single-row deletes, the RETURNING clause stores values from the row deleted by the
statement, defined by expression, into PL/SQL variables and bind variables. When used for a multirow delete, the
RETURNING clause stores the values of the deleted rows, defined by expression, into bind arrays.

INTO variable

Specifies the variables into which the values returned as a result of the RETURNING clause are stored. There
must be a corresponding variable for every expression in the RETURNING clause.

When you execute a DELETE statement, Oracle releases space from the target table (or the base table of a target view)
back to the table or index that owned the data.

When deleting from a view, the view cannot contain a set operator, the DISTINCT keyword, joins, an aggregate
function, an analytic function, a subquery in the SELECT list, a collection expression in the SELECT list, a GROUP BY
clause, an ORDER BY clause, a CONNECT BY clause, or a START WITH clause.

Here's an example where we delete records from a remote server:

DELETE FROM scott.sales@chicago;

In the following query, we delete from a derived table that is a collection expression:

DELETE TABLE(SELECT contactname FROM customers

 c WHERE c.customerid = 'BOTTM') s

WHERE s.region IS NULL OR s.country = 'MEXICO';

Here's an example where we delete from a partition:

DELETE FROM sales PARTITION (sales_q3_1997)

WHERE qty > 10000;

Finally, in the example below, we use the RETURNING clause to look at the values that are deleted:

DELETE FROM employee

WHERE job_id = 13

 AND hire_date + TO_YMINTERVAL('01-06') =< SYSDATE;

RETURNING job_lvl

INTO :int01;

The previous example deletes records from the employee table and returns the job_lvl values into the predefined
:into1 variable.

PostgreSQL

PostgreSQL uses the DELETE command to remove rows and any defined subclasses from the table. It is otherwise
identical to the ANSI standard, as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

identical to the ANSI standard, as follows:

DELETE [FROM] [ONLY] table_name

[WHERE search_condition | WHERE CURRENT OF cursor_name]

When deleting rows from only the table specified, use the optional ONLY clause. Otherwise, PostgreSQL will also delete
records from any explicitly defined subtable.

To delete all records from the titles table:

DELETE titles

To delete all records in the authors table where the last name starts with "Mc":

DELETE FROM authors

WHERE au_lname LIKE 'Mc%'

To delete all titles with an old ID number:

DELETE titles WHERE title_id >= 40

To delete all titles that have no sales:

DELETE titles WHERE ytd_sales IS NULL

To delete all records in one table based on the results of a subquery against another table (in this case, the records that
have a match concerning "computers" in the titles table are erased from the titleauthor table):

DELETE FROM titleauthor

WHERE title_id IN

 (SELECT title_id

 FROM titles

 WHERE title LIKE '%computers%')

DISCONNECT

SQL Server

Microsoft SQL Server allows records to be deleted both from tables and from views that describe a single table. SQL
Server also allows a second FROM clause to allow JOIN constructs, as in the following example:

DELETE [TOP number [PERCENT]] [FROM] table_name [[AS] alias]

[FROM table_source [,...]]

[[{INNER | CROSS | [{LEFT | RIGHT | FULL] OUTER}]

 JOIN joined_table ON condition][,...]

[WHERE search_condition | WHERE CURRENT OF [GLOBAL] cursor_name]

[OPTION (query_hint[,...n])]

The syntax elements are as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DELETE table_name

Allows the deletion of records from the named table or view filtered by the WHERE clause. You can delete
records from a view providing the view is based on one table and contains no aggregate functions and no
derived columns. If you leave off the server name, database name, or schema name when naming the table or
view, SQL Server assumes the current context. An OPENDATASOURCE or OPENQUERY function, as described in
the SELECT Statement section may be referenced instead of a table or view.

TOP number [PERCENT]

Specifies that only the number of rows are deleted by the statement. If PERCENT is specified, only the first
number percent of the rows are retrieved. If the number is an expression, such as a variable, it must be enclosed
in parentheses. The expression should be of FLOAT datatype with a range of 0 to 100 when using PERCENT.
When not using PERCENT, the expression should by of BIGINT datatype.

FROM table_source

Names an additional FROM clause that correlates records from the table in the first FROM clause using a JOIN
rather than forcing you to use a correlated subquery. One or more tables may be listed in the second FROM
clause.

[{INNER | CROSS | [{LEFT | RIGHT | FULL] OUTER}] JOIN joined_table ON condition][,...]

Specifies one or more JOIN clauses, in conjunction with the second FROM clause. You may use any of the join
types that SQL Server supports. Refer to the JOIN Subclause and SELECT Statement sections for more
information.

GLOBAL cursor_name

Specifies that the delete operation should occur on the current row of an open global cursor. This clause is
otherwise the same as the standard for WHERE CURRENT OF.

OPTION (hint [,...])

Replaces elements of the default query plan with your own. Because the optimizer usually picks the best query
plan for any query, we strongly discourage you from placing optimizer hints into your queries.

The primary addition to DELETE that SQL Server offers over and above the ANSI standard is a second FROM clause. The
second FROM allows the use of the JOIN statement and makes it quite easy to delete rows from the table in the first
FROM by correlating rows of a table declared in the second FROM. For example, you can use a rather complex subquery
to erase all the sales records of computer books with this command:

DELETE sales

WHERE title_id IN

 (SELECT title_id

 FROM titles

 WHERE type = 'computer')

But SQL Server allows a more elegant construction using a second FROM clause and a JOIN clause:

DELETE s

FROM sales AS s

INNER JOIN titles AS t ON s.title_id = t.title_id

 AND type = 'computer'

The following example deletes all rows with an order_date of 2003 or earlier in batches of 2,500:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example deletes all rows with an order_date of 2003 or earlier in batches of 2,500:

WHILE 1 = 1

BEGIN

 DELETE TOP (2500)

 FROM sales_history WHERE order_date <= '20030101'

 IF @@rowcount < 2500 BREAK

END

The TOP clause should be used in favor of the old SET ROWCOUNT statement because the TOP clause is open to many
more query optimization algorithms. (Prior to SQL Server 2005, the SET ROWCOUNT statement was often used with
data modification transactions to process large numbers of rows in batches, thus preventing the transaction log from
filling up and ensuring that row locks would not escalate to a full table lock.)

See Also

INSERT
SELECT
TRUNCATE TABLE
UPDATE

DISCONNECT Statement

The DISCONNECT statement terminates one or more connections created between the current SQL process and the
database server.

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Not supported

SQL Server Supported, with limitations

SQL2003 Syntax

DISCONNECT {CURRENT | ALL | connection_name | DEFAULT}

Keywords

CURRENT

Closes the currently active user connection.

ALL

Closes all open connections for the current user.

Rules at a Glance

DISCONNECT is used to disconnect a named SQL session (connection_name), the CURRENT connection, the DEFAULT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DISCONNECT is used to disconnect a named SQL session (connection_name), the CURRENT connection, the DEFAULT
connection, or ALL connections held by the user. For example, we can disconnect a single session called new_york:

DISCONNECT new_york

In the next example, we might want to disconnect all currently open sessions for the current user process:

DISCONNECT ALL

Programming Tips and Gotchas

DISCONNECT is not universally supported across platforms. Do not build cross-platform applications based on
DISCONNECT unless you've made provisions to disconnect SQL sessions using each platform's preferred disconnection
methodology.

DB2

DB2 supports the ANSI standard for DISCONNECT in embedded SQL only. DISCONNECT can drop one or more
connections only after a commit or rollback operation succeeds for the sessions to be dropped. You can also use the
RELEASE statement to place a connection in a disconnect-pending condition.

MySQL

Not supported.

Oracle

Oracle allows DISCONNECT only in its ad hoc query tool, SQL*Plus, using this syntax:

DISC[ONNECT]

In this usage, the command ends the current session with the database server but otherwise allows work in SQL*Plus
to continue. For example, a programmer can continue to edit the buffer, save run files, and so on. However, you must
establish a new connection to issue any SQL commands. Exiting SQL*Plus and returning to the filesystem requires the
EXIT or QUIT commands. For example, to end the current connection with an Oracle server:

DISCONNECT;

PostgreSQL

Not supported. Instead, every programming interface supports a disconnect operation; for example, SPI_FINISH is
available under the Server Programming Interface, and PG_CONNECT is available under the PL/TCL programming
package.

SQL Server

Microsoft SQL Server supports the ANSI syntax for DISCONNECT in Embedded-SQL (ESQL) only, not within its ad hoc
querying tool, SQL Query Analyzer. To disconnect cleanly from Microsoft SQL Server in an ESQL program, use the
DISCONNECT ALL statement.

See Also

CONNECT

DROP Statements

All of the database objects created with CREATE statements may be destroyed using complementary DROP statements.
On some platforms, a ROLLBACK statement after a DROP statement will recover the dropped object. However, on other

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

On some platforms, a ROLLBACK statement after a DROP statement will recover the dropped object. However, on other
database platforms, the DROP statement is irreversible and permanent, so it is advisable to use the command with
care.

Platform Command

DB2 Supported, with variations

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

SQL2003 Syntax

Currently, the SQL2003 standard supports the ability to drop a lot of object types that are largely unsupported by most
vendors. The ANSI SQL2003 syntax follows this format:

DROP {object_type} object_name {RESTRICT | CASCADE}

Keywords

DROP object_type object_name

Irreversibly and permanently destroys the specified object, called object_name, of the type identified. The
object_name does not need a schema identifier, but the current schema is then assumed. ANSI SQL2003
supports a long list of object types, each created with their own corresponding CREATE statement. CREATE
statements covered in this book with corresponding DROP statements include:

DOMAIN SCHEMA

FUNCTION TABLE

METHOD TRIGGER

PROCEDURE TYPE

ROLE VIEW

RESTRICT | CASCADE

Prevents the DROP from taking place if any dependent objects exist (RESTRICT), or causes all dependent
objects to also be dropped (CASCADE). This clause is not allowed with some forms of DROP, like DROP
TRIGGER, but is mandatory for others, like DROP SCHEMA. To further explain, DROP SCHEMA RESTRICT will
only drop an empty schema. Otherwise, if the schema contains objects, the operation will be prevented. In
contrast, DROP SCHEMA CASCADE will drop a schema and all objects contained therein.

Rules at a Glance

For rules about the creation or modification of each of the object types, refer to the corresponding CREATE/ALTER
statements.

The DROP statement destroys a pre-existing object. The object is permanently destroyed, and all users who had access
to the object immediately lose the ability to access the object.

The object may be qualified — that is, you may fully specify the schema where the dropped object is located. For
example:

DROP TABLE scott.sales_2004 CASCADE;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP TABLE scott.sales_2004 CASCADE;

The above statement would not only drop the table scott.sales_2004, but also any views, triggers, or constraints built
on it. On the other hand, a DROP statement may include an unqualified object name, and then the current schema
context is assumed. For example:

DROP TRIGGER before_ins_emp;

DROP ROLE sales_mgr;

Although not required by the SQL2003 standard, most implementations cause the DROP command to fail if the
database object is in use by another user.

Programming Tips and Gotchas

DROP will only work when it is issued against a pre-existing object of the appropriate type where the user has
appropriate permissions, usually the DROP TABLE permission. (Refer to the GRANT Statement section for more
information.) The SQL standard requires only that the owner of an object may drop it, but most database platforms
allow variations on that requirement. For example, the database superuser can usually drop any object on the database
server.

With some vendors, the DROP command fails if the database object has extended properties. For example, Microsoft
SQL Server will not drop a table that is replicated unless you first remove the table from replication.

It is important to be aware that most vendors do not notify you if the DROP command
creates a dependency problem. Thus, if a table that is used by a few views and by stored
procedures elsewhere in the database is dropped, no warning is issued. Those other
objects simply return failures when they are accessed. To prevent this problem, you may
wish to use the RESTRICT syntax where it is available.

You may have noticed that the ANSI standard does not support certain common DROP commands like DROP DATABASE
and DROP INDEX, even though every vendor covered in this book (and just about every one in the market) supports
these commands. The exact syntax for each of these commands is covered in the platform-specific sections below.

DB2

DB2 does not support the CASCADE option. It supports many of the ANSI object types in addition to many of its own
object types, as follows:

DROP {BUFFERPOOL | EVENT MONITOR | [SPECIFIC] FUNCTION |

 FUNCTION MAPPING | INDEX | INDEX EXTENSION |

 [SPECIFIC] METHOD | NICKNAME | DATABASE PARTITION GROUP |

 PACKAGE | [SPECIFIC] PROCEDURE | SCHEMA | SEQUENCE | SERVER |

 TABLE [HIERARCHY] | TABLESPACE[S] | TRANSFORM[S]

 [{ALL | group_name}] FOR | TRIGGER | [DISTINCT] TYPE |

 TYPE MAPPING | USER MAPPING FOR {authorization_name | USER} SERVER |

 VIEW [HIERARCHY] | WRAPPER } object_name [RESTRICT]

The rules for DB2's DROP statements are less consistent than the ANSI standard's rules, so the full syntax of each
DROP variant is shown below:

BUFFERPOOL bufferpool_name

Drops the named bufferpool as long as no tablespaces are assigned to it. Memory is recovered immediately, but
disk space may be recovered at the next connection to the database.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EVENT MONITOR event_monitor_name

Drops the named event monitor as long as the event monitor is not set ON.

[SPECIFIC] FUNCTION function_name [(datatype [,...])] [RESTRICT]

Drops the named user-defined function. DB2 allows multiple functions of the same name. To drop these, use
the syntax DROP FUNCTION function_name (data type [,...]), providing data type identifiers sufficient to uniquely
identify the user-defined function. Use the optional SPECIFIC keyword to identify functions by the unique name
assigned to each at creation time. You may drop a function while it is in use without causing the user to
experience a failure (until they try to access it later). However, you cannot drop a function that is a component
of a package, triggers, views, etc. Here are examples of all three syntaxes:

DROP FUNCTION sales_summary_1992

DROP FUNCTION sales_summary (int, float)

DROP SPECIFIC FUNCTION products.inventory_level

FUNCTION MAPPING function_mapping_name

Drops the named function mapping.

INDEX [EXTENSION] index_name [RESTRICT]

Drops the named index or, optionally, an index extension, as long as it is not a primary key or unique
constraint. You should use ALTER TABLE to drop a primary key or unique constraint. RESTRICT is mandatory
when dropping an index extension.

[SPECIFIC] METHOD method_name [(datatype [,...])]

[FOR type_name][RESTRICT]

Drops the named method body or specific method body, except those implicitly created by CREATE TYPE. The
method specification remains as part of the definition of the subject type, unless removed with ALTER TYPE
DROP METHOD. You may alternately use the syntax DROP METHOD method_body_name (data type1 [,...]) to
further identify the method via datatypes. The FOR type_name clause must be specified when SPECIFIC is not
specified in order to name the type where the method will be dropped. All dependencies on a method must be
dropped before the method can be dropped.

NICKNAME nickname

Drops the named nickname. Certain other dependent objects are also dropped, including materialized query
tables, index specifications, views (not dropped but marked inoperable), and packages (not dropped but marked
inoperable).

DATABASE PARTITION GROUP db_prtn_name

Drops the named database partition group, and all tablespaces and subordinant objects defined under it (such
as tables, packages, constraints, etc.) are dropped or marked inoperable. You should drop any tablespaces from
the database partition group first. For example:

DROP TABLESPACE sales_2004

DROP TABLESPACE sales_2003

DROP DATABASE PARTITION GROUP sales_archive_0304

PACKAGE package_name [VERSION version_id]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Drops the named package of schema_name.package_id. You may also optionally add the clause VERSION version_id
after the package_id to further identify the package.

[SPECIFIC] PROCEDURE procedure_name [(datatype1 [,...])] [RESTRICT]

Drops the named procedure or specific procedure. DB2 allows multiple procedures with the same name, each
distinguished by their different datatype usage. You may alternately identify the procedure to drop via the
syntax DROP PROCEDURE procedure_name (datatype [,...]) syntax.

SCHEMA schema_name RESTRICT

Drops the named schema. The RESTRICT keyword requires that the schema be empty before it can be dropped.

SEQUENCE sequence_name [RESTRICT]

Drops the named sequence from the server. However, you cannot drop a sequence created for an IDENTITY
column using the DROP SEQUENCE statement.

SERVER server_name

Drops the definition of a named data source from the catalog as well as all nicknames for objects residing on
the remote server. In addition, index specifications, user-defined functions, user-defined type mappings, and
user mappings dependent on the remote server are dropped. Packages and function mappings dependent on
the remote server are invalidated.

TABLE [HIERARCHY] table_name

Drops the named base table, declared temporary table, materialized query table, or staging table from the
server. Indexes, constraints, materialized query tables, and staging tables that reference a dropped table are
also dropped. Subtables of a typed table are not automatically dropped and must be dropped before the parent
table can be dropped. Views, packages, and triggers that reference the dropped table are rendered inoperable.
Any DATALINK columns are unlinked, though asynchronously. The HIERARCHY option is used to drop a named
type table hierarchy (i.e., both the parent table and all of its subtables). In this syntax, the object_name is the
name of the root table in the typed table hierarchy. A table cannot be dropped if it has the RESTRICT ON DROP
attribute.

TABLESPACE[S] tablespace_name [,...]

Drops one or more named tablespaces and all objects from those tablespaces, unless a table stored in the
tablespace spans the tablespace to be dropped and at least one of the tablespaces spanned, or the table has
the RESTRICT ON DROP property. The TABLESPACE keyword and the TABLESPACES keyword are synonyms.

TRANSFORM[S] {ALL | group_name} FOR type_name

Drops all transform groups for a user-defined datatype using the syntax DROP TRANSFORM ALL FOR
datatype_name. Note that only the transform group and not the user-defined datatype are dropped. Alternately,
use the syntax DROP TRANSFORM transform_group_name FOR datatype_name to drop a single transform group
from a user-defined datatype. For example:

DROP TRANSFORM sales_calcs FOR orders

TRIGGER trigger_name

Drops the named trigger. This may also cause certain packages to be marked invalid.

[DISTINCT] TYPE type_name [RESTRICT]

Drops the named user-defined type or, with the optional DISTINCT keyword, drops the named distinct type.
Using the optional RESTRICT keyword prevents the type from being dropped, if the type has any dependency
such as being used in a table definition or in a view, has subtypes, etc.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TYPE MAPPING type_mapping_name

Drops the named user-defined type mapping, though no other subordinant objects are dropped.

USER MAPPING FOR {user_name | USER} SERVER server_name

Drops the user mapping to a federated server for a named user. If no server is specified, all user mappings are
dropped for the named user. For example, the user Dylan no longer needs the oracle50 data source:

DROP USER MAPPING FOR dylan SERVER oracle50

VIEW [HIERARCHY] view_name

Drops the named view from the schema. If the view is a parent object, then all subviews must be dropped
before the parent view. Other objects that directly or indirectly depend on the view, such as triggers or
materialized query tables, are marked inoperable. The optional HIERARCHY keyword tells DB2 to drop a parent
typed view and all of its subviews.

WRAPPER wrapper_name

Drops the named wrapper as well as any server definitions, user-defined function mappings, and user-defined
datatype mappings. This can cause a cascading action when dropping a server definition because objects
dependent on the server definition (things like user mappings and nicknames) are also dropped. If the server
definition results in a nickname being dropped, then objects dependent on the nickname (like views or
packages) become inoperable.

RESTRICT

Optionally allowed on FUNCTION, SPECIFIC FUNCTION, METHOD, SPECIFIC METHOD, PROCEDURE, SPECIFIC
PROCEDURE, SEQUENCE, TYPE, and DISTINCT TYPE. Mandatory for INDEX EXTENSION and SCHEMA. Like the
ANSI standard, RESTRICT prevents the object from being dropped if a dependant object exists. The RESTRICT
behavior is the default.

If you do not specify a schema along with the object name when performing a drop, DB2 will assume the current
schema in dynamic SQL statements. DB2 will apply the QUALIFIER precompile/bind option for static SQL statements.

MySQL

MySQL supports a very limited number of objects via the CREATE/ALTER statement. Consequently, the syntax for DROP
is also limited, as in the following:

DROP { DATABASE | [TEMPORARY] TABLE | INDEX } object_name [,...]

 [ON table_name]

[IF EXISTS] object_name [,...] [RESTRICT |CASCADE]

The syntax elements are:

DATABASE database_name

Drops the named database, including all the objects it contains, such as tables and indexes. The DROP
DATABASE command removes all database and table files from the filesystem, as well as two-digit
subdirectories. MySQL will return a message showing how many files were erased from the database directory.
(Files of these extentions are erased: .BAK, .DAT, .frm, .HSH, .ISD, .ISM, .MRG, .MYD, .MYI, .dm, and .fm.) If
the database is linked, both the link and the database are erased. You may only drop one database at a time.
RESTRICT and CASCADE are not valid on DROP DATABASE.

[TEMPORARY] TABLE table_name [,...]

Drops one or more named tables, with table names separated from each other by commas. MySQL erases each
table's definition and deletes the three table files from the filesystem (.frm, .MYD, and .MYI). Issuing this
command causes MySQL to commit all active transactions. The TEMPORARY keyword drops only temporary
tables without committing running transactions or checking access rights.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tables without committing running transactions or checking access rights.

INDEX index_name ON table_name

Drops the named index from the named table on Version 3.22 or later. This command doesn't do anything on
versions earlier than 3.22, but on 3.22 it actually executes an ALTER TABLE...DROP INDEX command behind
the scenes. You cannot use RESTRICT, CASCADE, or IF EXISTS with a DROP INDEX statement.

RESTRICT | CASCADE

Acts as noise. These keywords do not generate an error by MySQL, nor do they do anything.

IF EXISTS

Prevents an error message when attempting to drop an object that does not exist. Usable in MySQL Version
3.22 or later.

MySQL supports only the ability to drop a database, a table (or tables), or an index from a table. Although the DROP
statement will not fail with the RESTRICT and CASCADE optional keywords, they also don't do anything. You can use
the IF EXISTS clause to prevent MySQL from returning an error message by trying to delete an object that doesn't
exist.

Oracle

Oracle supports most of the ANSI keywords for the DROP statements, as well as many additional keywords
corresponding to objects uniquely supported by Oracle, as follows:

DROP {CLUSTER | CONTEXT | DATABASE | DATABASE LINK | DIMENSION |

 DIRECTORY | FUNCTION | INDEX | INDEXTYPE | JAVA |

 LIBRARY | MATERIALIZED VIEW | MATERIALIZED VIEW LOG |

 OPERATOR | OUTLINE | PACKAGE | PROCEDURE | PROFILE |

 ROLE | ROLLBACK SEGMENT | SEQUENCE | SYNONYM | TABLE |

 TABLESPACE | TRIGGER | TYPE | TYPE BODY | USER | VIEW }

 object_name

The rules for Oracle DROP statements are less consistent than the ANSI standard's rules, so the full syntax of each
DROP variant is shown below:

CLUSTER cluster_name [INCLUDING TABLES [CASCADE CONSTRAINTS]]

Drops the named cluster from the database. (Note that this drops a cluster; it does not uncluster a specific
table from a cluster.) INCLUDING TABLES drops all tables that belong to the cluster. CASCADE CONSTRAINTS
drops all referential integrity constraints that refer to the tables in the cluster. DROP CLUSTER will fail without
CASCADE CONSTRAINTS when tables outside of the cluster have constraints (like a primary or foreign key) that
refer to tables in the cluster. For example:

DROP CLUSTER hr INCLUDE TABLES CASCADE CONSTRAINTS;

CONTEXT namespace

Drops the named context from the database. Users currently in the namespace are unaffected, but will be
unable to access the context when they next attempt to use that context. For example:

DROP CONTEXT hr_context

DATABASE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DATABASE

Drops a database from the Oracle server.

[PUBLIC] DATABASE LINK database_link_name

Drops the named database link from the database. You must include the PUBLIC keyword to drop a public
database link. Note that the database link cannot be schema qualified. For example, to drop the database link
called hq.southeast.tenn:

DROP DATABASE LINK hq.southeast.tenn;

DIMENSION dimension_name

Drops the named dimension. This does not invalidate materialized views built on the dimension, though they
may execute more slowly and query requests may be rewritten.

DIRECTORY directory_name

Drops the named directory object from the database. This should not be used on directories containing files
accessed by PL/SQL or OCI programs. For example, you could drop the image_files directory:

DROP DIRECTORY image_files;

FUNCTION function_name

Drops the named function, as long as it is not a component of a package. If you want to drop a function from a
package, use the CREATE PACKAGE...OR REPLACE statement to redefine the package without the function you
want to be rid of. Any local objects that depend on or call the function are invalidated and any statistical types
associated with the function are disassociated.

INDEX index_name [FORCE]

Drops a named index or domain index from the database. Dropping an index invalidates all objects that depend
on the parent table, including views, packages, functions, and stored procedures. Dropping an index invalidates
cursors and execution plans that use the index, and will force a hard parse of the affected SQL statements when
they are next executed.

Non-IOT indexes are secondary objects and can be dropped and recreated without any loss of user data. IOTs, because
they combine both table and index data in the same structure, cannot be dropped and recreated in this manner. IOTs
should be dropped using the DROP TABLE syntax.

When you drop a partitioned index, all partitions are dropped. When you drop a composite-partitioned index, all index
partitions and subpartitions are dropped. When you drop a domain index, any statistics associated with the domain
index are removed and any statistic types are disassociated. The optional keyword FORCE applies only when dropping
domain indexes. FORCE allows you to drop a domain index marked IN PROGRESS, or to drop a domain index when its
indextype routine invocation returns an error. For example:

DROP INDEX ndx_sales_salesperson_quota;

INDEXTYPE indextype_name [FORCE]

Drops the named indextype along with any associated statistic types. Oracle also drops any statistics collected
with the statistics type. The optional keyword FORCE drops the indextype even when it is currently referenced by
one or more domain indexes and marks the applicable domain indexes as INVALID. If you do not use FORCE on
an indextype that is referenced by one or more domain indexes, the statement will fail. For example:

DROP INDEXTYPE imageindextype FORCE;

JAVA {SOURCE | CLASS | RESOURCE} "java_object_name"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JAVA {SOURCE | CLASS | RESOURCE} "java_object_name"

Drops the named Java source, Java class, or Java resource schema object. SOURCE drops the named Java
source schema object and all Java class schema objects derived from it. CLASS drops the named Java class
schema object. RESOURCE drops the named Java resource schema object. For example, to drop the Java
source MyJavaSource and all dependent schema objects:

DROP JAVA SOURCE "MyJavaSource";

LIBRARY library_name

Drops the named external procedure library.

{MATERIALIZED VIEW | SNAPSHOT} mview_name

Drops the named materialized view. You can use the keyword SNAPSHOT as an alternative to MATERIALIZED
VIEW for backward compatibility. You must have privileges to drop the table plus views and indexes that make
up the materialized view. Note that if you drop a parent table, any materialized views built upon it are not
automatically dropped. But Oracle will return an error when a refresh is attempted on a materialized view
whose parent table has been dropped. For example, we can drop a materialized view called
salespeople_at_quota:

DROP MATERIALIZED VIEW salespeople_at_quota;

{MATERIALIZED VIEW | SNAPSHOT} LOG ON parent_table_name

Drops the named materialized view log that resides on the parent table (also known as the master table). You
can use the statement DROP SNAPSHOT as an alternative to DROP MATERIALIZED VIEW for backward
compatibility. RowID, primary key, and subquery materialized views can no longer be fast refreshed after the
materialized view log has been dropped.

OPERATOR operator_name FORCE

Drops the named user-defined operator from the database. The optional keyword FORCE allows you to drop the
operator even if it is referenced by other schema objects such as triggers, packages, user-defined functions,
and so forth. In that case, the dependent objects become invalid. Dropping a user-defined operator with
dependents without the FORCE keyword will result in an error.

OUTLINE outline_name

Drops the named stored outline from the database. The optimizer will generate new query plans for any SQL
statements that used the stored outline after it is dropped.

PACKAGE [BODY] package_name

Drops the named package body and specification. The optional keyword BODY drops only the body of the
package, but leaves the specification unaltered. This option is useful if you do not want to invalidate dependent
objects, though you cannot call any components of the package until the package body is recreated. Otherwise,
if you drop both body and specification, Oracle invalidates all dependent objects. (Note that if you want to drop
a single object from a package, you should use the statement CREATE PACKAGE [BODY]...OR REPLACE.) The
following examples drop first the package body and specification of the sales_quota_calc package, and then
drop only the body of the regional_sales_calc package:

DROP PACKAGE sales_quota_calc;

DROP PACKAGE BODY regional_sales_calc;

PROCEDURE procedure_name

Drops the named stored procedure. Any dependent objects are invalidated when you drop a stored procedure.
Dependent objects will fail with an error if they are accessed before you recreate the stored procedure. If you
recreate the stored procedure, and a dependent object is accessed, the dependent object will be recompiled.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

recreate the stored procedure, and a dependent object is accessed, the dependent object will be recompiled.

PROFILE profile_name [CASCADE]

Drops the named profile. The optional keyword CASCADE removes the profile from any users who were granted
the profile. CASCADE is only required if the profile has been granted to one or more users. Users who no longer
have a profile are then assigned the DEFAULT password. For example, the following statement drops the
web_user profile and removes it from all users:

DROP PROFILE web_user CASCADE;

ROLE role_name

Drops the named role, removes it from the database, and revokes it from all users and roles where it has been
granted. No new sessions can use the role, but sessions that are currently running under the role are not
affected. For example, the following statement drops the sales_mgr role:

DROP ROLE sales_mgr:

ROLLBACK SEGMENT rbseg_name

Drops the named rollback segment and returns its space to the tablespace where the rollback segment was
assigned. The rollback segment must be on-line and may not be the SYSTEM rollback segment. (Note that in
Automatic Undo Management mode, you can only drop rollback segments. You cannot create or alter them.) For
example, the following statement drops the rollback segment named rbseg_sales_tblspc:

DROP ROLLBACK SEGMENT rbseg_sales_tblspc;

SEQUENCE sequence_name

Drops the named sequence. (Note that the only way to restart a sequence is to drop it and recreate it.)

[PUBLIC] SYNONYM synonym_name [FORCE]

Drops the named private or PUBLIC synonym. (Note that the only way to redefine a synonym is to drop it and
recreate it.) You cannot specify a schema when dropping a PUBLIC synonym. Materialized views become invalid
when you drop their synonym. The optional keyword FORCE allows you to drop a synonym even if it has
dependent tables or user-defined types. Otherwise, you cannot drop a synonym with dependent tables or user-
defined types. Oracle discourages the use of FORCE. For example, you could drop the public synonym called
users:

DROP PUBLIC SYNONYM users;

TABLE table_name [CASCADE CONSTRAINTS] [PURGE]

Drops the named table, erases all of its data, drops all indexes and triggers built from the table (even those in
other schemas), and invalidates all permissions and all dependent objects (like views, stored procedures, etc.).
On partitioned tables, Oracle drops all their partitions (and subpartitions). On index-organized tables, Oracle
drops all dependent mapping tables. Statistic types associated with a dropped table are disassociated.
Materialized view logs built on a table are also dropped when the table is dropped.

The DROP TABLE statement is effective for standard tables, index-organized tables, and object tables. The table being
dropped is only moved to the recycling bin, unless you add the optional keyword PURGE, which tells Oracle to
immediate free all space consumed by the table. (Oracle also supports a non-ANSI SQL command called PURGE that
lets you remove tables from the recycling bin outside of the DROP TABLE statement.) DROP TABLE erases only the
metadata of an external table. You must use an external operating system command to drop the file associated with an
external table and reclaim its space.

Use the optional CASCADE CONSTRAINTS clause to drop all referential integrity constraints elsewhere in the database
that depend on the primary or unique key of the dropped table. You cannot drop a table with dependent referential
integrity constraints without using the CASCADE CONSTRAINTS clause. The following example drops the job_desc

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

integrity constraints without using the CASCADE CONSTRAINTS clause. The following example drops the job_desc
table in the emp schema, then drops the job table and all referential integrity constraints that depend on the primary
key and unique key of the job table:

DROP TABLE emp.job_desc;

DROP TABLE job CASCADE CONSTRAINTS;

TABLESPACE tablespace_name [INCLUDING CONTENTS [AND DATAFILES] [CASCADE CONSTRAINTS]

Drops the named tablespace (preferably when it is offline), deleting all datafiles and tempfiles. Oracle-managed
datafiles and tempfiles in the tablespace are deleted from the filesystem, but datafiles and tempfiles managed
by the OS can also be deleted by including the optional clause INCLUDING CONTENTS AND DATAFILES. Note
that you cannot drop a tablespace when it contains a domain index, objects created by a domain index, data
needed to roll back uncommitted transactions, or the SYSTEM tablespace. The optional clause INCLUDING
CONTENTS drops all contents of the tablespace, and is required for any tablespace that contains database
objects. The optional clause AND DATAFILES also drops associated operating system files. The optional clause
CASCADE CONSTRAINTS drops all external referential integrity constraints that depend on the primary or
unique keys of tables within the tablespace and is required when such dependencies exist. The first of the
following examples drops the tablespace sales_tblspc and all dependent referential integrity constraints, while
the second example drops the tablespace sales_images_tblspc and all associated operating system files:

DROP TABLESPACE sales_tblspc

 INCLUDING CONTENTS CASCADE CONSTRAINTS;

DROP TABLESPACE sales_image_tblspc

 INCLUDING CONTENTS AND DATAFILES;

TRIGGER trigger_name

Drops the named trigger from the database.

TYPE [BODY] type_name [{FORCE | VALIDATE}]

Drops the specification and body of the named object type, nested table type, or VARRAY, as long as they have
no type or table dependencies. You must use the optional FORCE keyword to drop a supertype, a type with an
associated statistics type, or a type with any sort of dependencies. All subtypes and statistic types are then
invalidated. Oracle will also drop any public synonyms associated with a dropped type. The optional BODY
keyword tells Oracle to drop only the body of the type while keeping its specification intact. Use the optional
VALIDATE keyword when dropping subtypes to check for stored instances of the named type in any of its
supertypes. Oracle then performs the drop only if no stored instances are found. For example:

DROP TYPE salesperson_type;

USER user_name [CASCADE]

Drops the named user from the database. By default, Oracle will not drop a user whose schema still owns
objects. The optional keyword CASCADE tells Oracle to also remove all of the user's objects, as well as
applicable dependent objects. Oracle does not drop objects from other users' schemas that reference those in
the dropped schema, though it does invalidate them. For example, the following statement drops the user cody
and all of his objects:

DROP USER cody CASCADE;

VIEW view_name [CASCADE CONSTRAINTS]

Drops the named view and marks as invalid any views, subviews, synonyms, or materialized views that refer to
the dropped view. Use the optional clause CASCADE CONSTRAINTS to drop all referential integrity constraints
that depend on the view. Otherwise, the DROP statement will fail if dependent referential integrity constraints
exist. For example, the following statement drops the active_employees view in the hr schema:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

exist. For example, the following statement drops the active_employees view in the hr schema:

DROP VIEW hr.active_employees;

In all of the syntax shown above, object_name can be replaced with [schema_name.]object_name. If you leave off the
schema name, the default schema of the user session is assumed. Thus, the following DROP statement drops the
specified view from the sales_archive schema:

DROP VIEW sales_archive.sales_1994;

However, if your personal schema is scott, then the following command is assumed to be against scott.sales_1994:

DROP VIEW sales_1994;

PostgreSQL

PosgreSQL does not support the RESTRICT or CASCADE optional keywords supported by the ANSI standard. It supports
a wide variety of DROP variants, as follows:

DROP { AGGEGATE | DATABASE | FUNCTION | GROUP | INDEX |

 LANGUAGE | OPERATOR |RULE | SEQUENCE | TABLE | TRIGGER |

 TYPE | USER | VIEW } object_name

Following is the full syntax for each variant:

AGGEGATE aggregate_name ({datatype | *})

Drops the user-defined aggregate function. The value for datatype is the datatype of the existing aggregate
function, but you may substitute an asterisk (*) to match any input datatype. For example, we can drop an
aggregate function called sales_avg we made using PostgreSQL's CREATE AGGREGATE statement:

DROP AGGREGATE sales_avg(int4);

DATABASE database_name

Drops the named database and erases the operating system directory containing all of the database's data. This
command can only be executed by the database owner while connected to a database other than the target
database. For example, we can drop the sales_archive database:

DROP DATABASE sales_archive;

FUNCTION function_name ([datatype1 [,...])

Drops the named user-defined function. Since PostgreSQL allows multiple functions of the same name
distinguished only by the various input parameters they require, you must specify one or more datatypes to
uniquely identify the user-defined function you wish to drop. PostgreSQL does not perform any kind of
dependency checks on other objects that might reference a dropped user-defined function. (They will fail when
invoked against an object that no longer exists.) For example:

DROP FUNCTION median_distribution (int, int, int, int);

GROUP group_name

Drops the named group, though it does not affect users who were in the group. This is similar to DROP ROLE on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Drops the named group, though it does not affect users who were in the group. This is similar to DROP ROLE on
other database platforms.

INDEX index_name [,...]

Drops one or more named indexes that you own. For example:

DROP INDEX ndx_titles, ndx_authors;

[PROCEDURAL] LANGUAGE language_named

Drops the named user-defined procedural language. You can optionally enclose the name in single quotes. Note
that PostgreSQL does not check to see if any user-defined functions or triggers written in the named language
still exist in the database. For example:

DROP LANGUAGE php;

OPERATOR operator_id ({left_datatype | NONE }, {right_datatype | NONE })

Drops a named user-defined operator where the value of left_datatype is the operator's left argument and
right_datatype is the operator's right argument. NONE may be substituted for either argument when there is no
argument in that position. (PostgreSQL does not check for any dependent access methods or operator classes
that rely on the dropped operator. You should check for them and drop them manually to avoid errors when
they are invoked.) For example, the first of the following statements drops the power operator, and the second
drops the unary negation operator:

DROP OPERATOR ^ (int4, int4);

DROP OPERATOR ! (NONE, bool);

RULE rule_name [,...]

Drops one or more named rules from the database. PostgreSQL then immediately stops enforcing the rules and
erases historical data about the rules. For example:

DROP RULE phone_rule;

SEQUENCE seq_name [,...]

Drops one or more named sequences from the database. Since the current version of PostgreSQL treats
sequences as special tables, the DROP SEQUENCE statement works very much like the DROP TABLE statement.

TABLE table_name [,...]

Drops one or more existing tables from the database, as well as any indexes or triggers specified for the table.
For example, you can drop more than one table in a single statement:

DROP TABLE authors, titles;

TRIGGER trigger_name ON table_name

Drops the named trigger from the database. Since PostgreSQL requires that trigger names be unique only on
the table they are attached to, it is possible to have many triggers called, say, insert_trigger or
delete_trigger, each on a different table. For example:

DROP TRIGGER insert_trigger ON authors;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DROP TRIGGER insert_trigger ON authors;

TYPE type_name [,...]

Drops one or more pre-existing user-defined types from the database. PostgreSQL does not check to see what
impact the DROP TYPE command might have on any dependent objects like functions, aggregates, or tables.
You must check dependent objects manually. (Do not remove any of the built-in types that ship with
PostgreSQL!) Note that PostgreSQL's implementation of types differs from the ANSI standard. Refer to the
CREATE/ALTER TYPE Statement section for more information.

USER user_name

Drops the named user from the current database. This command does not drop any objects owned by the user,
such as tables or views, but will fail if the user owns any databases. For example:

DROP USER emily;

VIEW view_name [,...]

Drops one or more pre-existing views from the database.

Note that PostgreSQL drop operations do not allow you to specify the target database where the operation will take
place (except for DROP DATABASE). Therefore, you should execute any drop operation from the database where the
object you want to drop is located.

SQL Server

SQL Server supports several standard variants of the DROP statement. SQL Server's main difference compared to the
ANSI DROP statement is the ability to drop multiple objects with a single statement:

DROP { DATABASE | DEFAULT | FUNCTION | INDEX | PROCEDURE |

 RULE | STATISTICS | TABLE | TRIGGER | TYPE | VIEW } object_name

Following is the full syntax for each variant:

DATABASE database_name [,...]

Drops the named database(s) and erases all disk files used by the database(s). This command may only be
issued from the master database. Replicated databases must be removed from their replication schemes
before they can be dropped, as must log shpping databases. You cannot drop a database while it is in use, nor
can you drop system databases (master, model, msdb, or tempdb). For example, we can drop the
northwind and pubs databases with one command:

DROP DATABASE northwind, pubs

GO

DEFAULT default_name [,...]

Drops one or more user-defined defaults from the current database. Note that this does not drop DEFAULT
constraints, only user-defined defaults created with the CREATE DEFAULT statement. (You can drop default
constraints using the statement ALTER TABLE...DROP CONSTRAINT.) When dropping a default from a column,
null values will be inserted into columns that accept null. Otherwise, if a column does not accept nulls, an error
is raised and no values are entered into the column. If a column or user-defined datatype being dropped is
bound, then you must first unbind it using the SQL Server system stored procedure sp_unbindefault. In the
following two examples, we first drop a user-defined default and then unbind and drop the user-defined default:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following two examples, we first drop a user-defined default and then unbind and drop the user-defined default:

DROP DEFAULT sales_date_default

GO

EXEC sp_unbindefault

'sales.ord_date'

DROP DEFAULT order_date_default

GO

FUNCTION [schema.]function_name [,...]

Drops one or more user-defined functions from the current database.

INDEX table_or_view_name.index_name [,...]

Drops one or more indexes from tables or indexed views in the current database and returns space to the
database. This statement should not be used to drop a PRIMARY KEY or UNIQUE constraint. Instead, drop these
constraints using the ALTER TABLE...DROP CONSTRAINT statement. When dropping a clustered index from a
table, all non-clustered indexes are rebuilt. When dropping a clustered index from a view, all non-clustered
indexes are dropped.

PROCEDURE procedure_name [,...]

Drops one or more stored procedures from the current database. SQL Server allows multiple versions of a
single procedure via a version number, but these versions cannot be dropped individually. You must drop all
versions of a stored procedure at once. System procedures (those with an sp_ prefix) are dropped from the
master database if they are not found in the current user database. For example:

DROP PROCEDURE calc_sales_quota

GO

RULE rule_name [,...]

Drops one or more user-defined rules from the current database. Existing data in columns governed by a rule
are not checked when the rule is dropped. You may need to unbind the rule first using the SQL Server system
stored procedure sp_unbindefault. In the following two examples, we first drop a user-defined rule, and then
unbind and drop the user-defined rule:

DROP RULE phone_rule

GO

EXEC sp_unbindrule 'authors.phone'

DROP RULE phone_rule

GO

STATISTICS table_or_view_name.statistics_name [,...]

Drops statistics on one or more collections from a table or indexed view in the current database. Dropping
statistics can have a big impact on query performance, since they help the query optimizer choose the best
query plan. (Statistics are created with the CREATE INDEX and CREATE STATISTICS statements. You can
update statistics with the UPDATE STATISTICS statement or retrieve information about them with the statement
DBCC SHOW_STATISTICS.) For example, we'll create statistics on two columns in two separate tables and then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBCC SHOW_STATISTICS.) For example, we'll create statistics on two columns in two separate tables and then
drop the statistics:

CREATE STATISTICS title_stats ON sales (title_id, ord_num)

 WITH SAMPLE 30 PERCENT

GO

CREATE STATISTICS zip_stats ON stores (zip)

 WITH FULLSCAN

GO

DROP STATISTICS sales.title_stats, stores.zip_stats

GO

TABLE table_name

Drops a named table and all data, permissions, indexes, triggers, and constraints specific to that table. (The
table_name may be a fully qualified table name like pubs.dbo.sales or a simple table name, like sales, if the
current database and owner are correct.) Views, functions, and stored procedures that reference the table are
not dropped or marked as invalid, but will return an error when their procedural code encounters the missing
table. Be sure to drop these yourself! You cannot drop a table referenced by a FOREIGN KEY constraint without
first dropping the constraint. Similarly, you cannot drop a table used in replication without first removing it from
the replication scheme. Any user-defined rules or defaults are unbound when the table is dropped. They must
be rebound if the table is recreated.

TRIGGER trigger_name [,...]

Drops one or more triggers from the current database.

TYPE type_name [,...]

Drops one or more user-defined types from the current database.

VIEW view_name [,...]

Drops one or more views from the database, including indexed views, and returns all space to the database.

See Also

CALL
CONSTRAINTS
CREATE/ALTER FUNCTION/PROCEDURE/METHOD
CREATE SCHEMA
CREATE/ALTER TABLE
CREATE/ALTER VIEW
DELETE
DROP
GRANT
INSERT
RETURN
SELECT
SUBQUERY
UPDATE

EXCEPT Set Operator

The EXCEPT set operator retrieves the result sets of two or more queries including all the records retrieved by the first
query that are not also found in subsequent queries. Whereas JOIN clauses are used to return the rows of two or more
queries that are in common, EXCEPT is used to filter out the records that are present in only one of multiple, but
similar, tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

similar, tables.

EXCEPT is in a class of keywords called a set operator. Other set operators include INTERSECT and UNION. (MINUS is
Oracle's equivilent to the EXCEPT keyword. EXCEPT is the ANSI standard.) All set operators are used to simultaneously
manipulate the result set of two or more queries, hence the term "set operators."

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported,with limitations

PostgreSQL Supported, with limitations

SQL Server Not supported

SQL2003 Syntax

There are technically no limits to the number of queries that you may combine with the EXCEPT operator. The general
syntax is:

{SELECT statement1 | VALUES (expr1 [,...]) }

EXCEPT [ALL | DISTINCT]

[CORRESPONDING [BY (column1, column2, ...)]]

{SELECT statement2 | VALUES (expr2 [,...]) }

EXCEPT [ALL | DISTINCT]

[CORRESPONDING [BY (column1, column2, ...)]]

...

Keywords

VALUES (expr1 [,...])

Generates a derived result set with explicitly declared values as expression1, expression2, etc. It is essentially a
SELECT statement result set without the SELECT...FROM syntax. This is known as a row constructor, since the
rows of the result set are manually constructed. According to the ANSI standard, mutliple, hand-coded rows in a
row constructor must be enclosed in parentheses and separated by commas.

EXCEPT

Determines which rows will be excluded from the single result set.

ALL

Considers duplicate rows from all result sets.

DISTINCT

Drops duplicate rows from all result sets prior to the EXCEPT comparison. Columns containing a NULL value are
considered duplicates. (If neither ALL nor DISTINCT are used, DISTINCT behavior is the default.)

CORRESPONDING [BY] (column1, column2, ...)

Specifies that only columns with the listed names are returned, even if one or both queries use the asterisk
shortcut.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rules at a Glance

There is only one significant rule to remember when using EXCEPT:

The order, number, and datatypes of columns should be of the same category in all queries

The datatypes do not have to be identical, but they must be compatible. For example, CHAR and VARCHAR are
compatible datatypes. By default, the result set will default to the largest datatype size of each column in each ordinal
position. For example, a query retrieving from columns containing a VARCHAR(10) and a VARCHAR(15) column will use
the VARCHAR(15) datatype and size.

Programming Tips and Gotchas

None of the platforms support the CORRESPONDING [BY column1, column2, ...] clause.

On platforms that do not support EXCEPT, you might substitute a NOT IN subquery.
However, NOT IN subqueries have different NULL handling and, on some database
platforms, produce different result sets.

According to the ANSI standard, the UNION and EXCEPT set operators evaluate with equal precedence. However, the
INTERSECT set operator evaluates first before the other set operators. We recommend that you explicitly control the
precedence of set operators, using parentheses as a general best practice.

According to the ANSI standard, only one ORDER BY clause is allowed in the entire query. Include it at the end of the
last SELECT statement. In order to avoid column and table ambiguity, be sure to alias each column for each table with
the same respective alias. For example:

SELECT au_lname AS 'lastname', au_fname AS 'firstname'

FROM authors

EXCEPT

SELECT emp_lname AS 'lastname', emp_fname AS 'firstname'

FROM employees

ORDER BY lastname, firstname

Also, while each of your column lists may list columns with correspondingly compatible datatypes, there may be some
variation in behavior across the DBMS platforms with regard to varying length of the columns. For example, if the
au_lname column in the previous example's first query is markedly longer than the emp_lname column in the second
query, each platform may apply different rules as to which length is used for the final result. In general, though, the
platforms will choose the longer (and less restrictive) column size for use in the result set.

Each DBMS may apply its own rules as to which column name is used if the names vary across column lists. In general,
the column names of the first query are used.

DB2

DB2 supports the EXCEPT and EXCEPT ALL keywords of the ANSI standard, plus the VALUES extension:

{ SELECT statement1 | VALUES (expression1, expression2 [,...]) }

EXCEPT [ALL]

{ SELECT statement2 | VALUES (expression1, expression2 [,...]) }

EXCEPT [ALL]

...

where:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

where:

VALUES

Allows you to specify one or more hand-coded rows to include in the final result set. (This is known as a row
constructor.) The VALUES clause must specify the exact same number of columns as the queries in the EXCEPT.

Although EXCEPT DISTINCT is not supported, EXCEPT is the functional equivalent. The CORRESPONDING clause is not
supported. In addition, the datatypes LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, and the
structured types are not usable with EXCEPT, but are useable with EXCEPT ALL.

When the result set has the same column name for a given column across all SELECT statements, then that name is
used as the final column name returned by the statement. If, however, the given column is named differently in
different SELECT statements, then you must rename the column in each query using the same AS alias_name.

If multiple set operations are used in a single query, those enclosed in parentheses are evaluated first. Then, the
queries are evaluated in left-to-right order. However, all INTERSECT operations are performed before any UNION and
EXCEPT operations.

For example:

(SELECT empno

 FROM employee

 WHERE workdept LIKE 'E%'

 EXCEPT

 SELECT empno

 FROM emp_act

 WHERE projno IN ('IF1000', 'IF2000', 'AD3110'))

UNION

VALUES ('AA0001'), ('AB0002'), ('AC0003')

The example above retrieves all IDs for all employees from the employee table who are in any department that starts
with "E," then it excludes any employee IDs from the employee accounts (emp_act) table representing employees
working in the projects IF1000, IF200', and AD3110. Finally, it adds in three extra employee IDs — AA0001,
AB0002, and AC0003 using the UNION set operator.

MySQL

EXCEPT is not supported in MySQL. However, you can use the NOT IN or NOT EXISTS operations as alternatives.

Oracle

Oracle does not support the EXCEPT set operator. However, it has an alternative set operator, MINUS, with identical
functionality.

<SELECT statement1>

MINUS

<SELECT statement2>

MINUS

...

MINUS DISTINCT and MINUS ALL are not supported. MINUS is the functional equivalent of MINUS DISTINCT. Oracle
does not support MINUS on queries under the following circumstances:

Queries containing columns of LONG, BLOB, CLOB, BFILE, or VARRAY datatypes

Queries containing the FOR UPDATE clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Queries containing the FOR UPDATE clause

Queries containing TABLE collection expressions

If the first query in a set operation contains any expressions in the select item list, then include AS clauses to associate
aliases with those expressions. Also, only the last query in the set operation may contain an ORDER BY clause.

For example, you could generate a list of all store IDs that do not have any records in the sales table:

SELECT stor_id FROM stores

MINUS

SELECT stor_id FROM sales

The MINUS command is functionally similar to a NOT IN query. The following query would retrieve the same results as
the earlier query:

SELECT stor_id FROM stores

WHERE stor_id NOT IN

 (SELECT stor_id FROM sales)

PostgreSQL

PostgreSQL supports the EXCEPT and EXCEPT ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

EXCEPT [ALL]

<SELECT statement2>

EXCEPT [ALL]

...

PostgreSQL does not support EXCEPT or EXCEPT ALL on queries with a FOR UPDATE clause. PostgreSQL does not
support the CORRESPONDING clause. EXCEPT DISTINCT is not supported, but EXCEPT is the functional equivalent.

The first query in the set operation may not contain an ORDER BY clause or a LIMIT clause. Subsequent queries in the
EXCEPT or EXCEPT ALL set operation may contain these clauses, but such queries must be enclosed in parentheses.
Otherwise, the right-most occurence of ORDER BY or LIMIT will be applied to the entire set operation.

PostgreSQL evaluates SELECT statements in a multi-EXCEPT statement from top to bottom unless you use parentheses
to change the evaluation hierarchy of the statements.

Normally, duplicate rows are eliminated from the two result sets, unless you add the ALL keyword. For example, you
could find all titles in the authors table that have no records in the sales table:

SELECT title_id

FROM authors

EXCEPT ALL

SELECT title_id

FROM sales;

SQL Server

EXCEPT is not supported. However, you can use NOT IN or NOT EXISTS operations in conjunction with a correlated
subquery as alternatives. The following queries are examples of how you can achieve EXCEPT functionality using NOT
EXISTS and NOT IN:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXISTS and NOT IN:

SELECT DISTINCT a.city

FROM pubs..authors AS a

WHERE NOT EXISTS

 (SELECT *

 FROM pubs..publishers AS p

 WHERE a.city = p.city)

SELECT DISTINCT a.city

FROM pubs..authors AS a

WHERE a.city NOT IN

 (SELECT p.city

 FROM pubs..publishers AS p

 WHERE p.city IS NOT NULL)

In general, NOT EXISTS is faster than NOT IN. In addition, there is a subtle issue with NULLs that differentiates the IN
and NOT IN operators and the EXISTS and NOT EXISTS set operator. In order to get around this different handling of
NULLs, simply add the IS NOT NULL clause to the WHERE clause, as we have in the preceding example.

See Also

INTERSECT
SELECT
UNION

EXISTS Operator

The EXISTS operator tests a subquery for the existence of rows.

Platform Command

DB2 Supported

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL2003 Syntax

SELECT ...

WHERE [NOT] EXISTS (subquery)

The parameters and keywords are as follows:

WHERE [NOT] EXISTS

Tests the subquery for the existence of one or more rows. If even one row satisfies the subquery clause, it
returns a Boolean TRUE value. The optional NOT keyword returns a Boolean TRUE value when the subquery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

returns a Boolean TRUE value. The optional NOT keyword returns a Boolean TRUE value when the subquery
returns no matching rows.

subquery

Retrieves a result set based on a fully formed subquery.

Rules at a Glance

The EXISTS operator checks a subquery for the existence of one or more records against the records in the parent
query.

For example, we want to see if we have any jobs where no employee is filling the position:

SELECT *

FROM jobs

WHERE NOT EXISTS

 (SELECT * FROM employee

 WHERE jobs.job_id = employye.job_id)

This example tests for the absence of records in the subquery using the optional NOT keyword. The next example looks
for specific records in the subquery to retrieve the main result set:

SELECT au_lname

FROM authors

WHERE EXISTS

 (SELECT *

 FROM publishers

 WHERE authors.city = publishers.city)

This query returns the last name of authors who live in the same city as their publishers. Note that the asterisk in the
subquery is acceptable, since the subquery only needs to return a single record to provide a Boolean TRUE value.
Columns are irrelevant in these cases. The first example selects only a single column. The key point is whether a row
exists.

Programming Tips and Gotchas

EXISTS, in many queries, does the same thing as ANY. EXISTS is usually most effective with correlated subqueries.

EXISTS is symantically equivalent to the ANY operator.

The EXISTS subquery usually searches for only one of two things. Your first option is to use the asterisk wildcard (e.g.,
SELECT * FROM...) so that you are not retrieving any specific column or value. In this case, the asterisk means "any
column." The second option is to select only a single column in the subquery (e.g., SELECT au_id FROM...). Some
individual database platforms allow a subquery against more than one column (e.g., SELECT au_id, au_lname FROM...).
However, this feature is rare and should be avoided on code that needs to be transportable across platforms.

Platform Differences

All of the platforms support EXISTS in the manner described above.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

ALL/ANY/SOME
SELECT
WHERE

FETCH Statement

The FETCH statement is one of four commands used in cursor processing, along with DECLARE, OPEN, and CLOSE.
Cursors allow you to process queries one row at a time, rather than as a complete set. FETCH positions a cursor on a
specific row and retrieves that row from the result set.

Cursors are especially important in relational databases because they are set-based, while most client-centric
programming languages are row-based. So cursors allow you to perform operations a single row at a time, to better fit
what a client program can do, rather than operate on a whole set of records at once.

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

FETCH [{ NEXT | PRIOR | FIRST | LAST |

 { ABSOLUTE | RELATIVE int } }

 FROM] cursor_name

[INTO variable1 [, ...]]

Keywords

NEXT

Tells the cursor to return the record immediately following the current row, and increments the current row to
the row returned. FETCH NEXT is the default behavior for FETCH. It retrieves the first record if FETCH is
performed as the first fetch against a cursor.

PRIOR

Tells the cursor to return the record immediately preceding the current row and decrements the current row to
the row returned. FETCH PRIOR does not retrieve a record if it is performed as the first fetch against the cursor.

FIRST

Tells the cursor to return the first record in the cursor, making it the current row.

LAST

Tells the cursor to return the last record in the cursor, making it the current row.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ABSOLUTE int

Tells the cursor to return the int record from the cursor record set counting from the top (if int is a positive
integer), or the int record counting from the bottom (if int is a negative integer), making the returned record the
new current record of the cursor. If int is 0, no rows are returned. If the value of int moves the cursor past the
end of the cursor result set, then the cursor is positioned after the last row (for a positive int) or before the first
row (for a negative int).

RELATIVE int

Tells the cursor to return the record int rows after the current record (if int is positive) or int rows before the
current record (if int is negative), making the returned record the new current row of the cursor. If int is 0, the
current row is returned. If the value of int moves the cursor past the end of the cursor result set, then the
cursor is positioned after the last row (for a positive int) or before the first row (for a negative int).

[FROM] cursor_name

Tells the name of the OPEN cursor where you want to retrieve rows. The cursor must be previously created and
instantiated using the DECLARE and OPEN clauses. FROM is optional, but encouraged.

INTO variable1[, ...]

Stores data from each column in the open cursor into a local variable. Each column in the cursor must have a
corresponding variable of a matching datatype in the INTO clause. Each column value is directly related to the
variables in ordinal positions.

Rules at a Glance

At the highest level, a cursor must be:

1. Created using DECLARE

2. Opened using OPEN

3. Operated against using FETCH

4. Dismissed using CLOSE

By following these steps, you create a result set similar to that of a SELECT statement, except that you can operate
against each individual row within the result set separately. For example, assume you've created and opened a cursor
on a DB2 database called employee_cursor containing three columns:

DECLARE employee_cursor CURSOR FOR

SELECT lname, fname, emp_id

FROM employee

WHERE hire_date >= '2005-02-15';

OPEN employee_cursor;

You can now retrieve values from the cursor using FETCH:

FETCH FROM employee_cursor

INTO :emp_last_name, :emp_first_name, :emp_id

The FETCH statement allows you to position the current row within the cursor. Since you have not yet accessed the
cursor in this example, you will be given the first record in the result set. You can then use any procedural code you
want to operate against the values in that row.

Each database platform has its own rules about how variables are used. For example, DB2
requires a colon as a prefix on each variable, as shown in the earlier example; SQL Server
requires an at sign (@), PostgreSQL and Oracle have no prefix, and so forth. Meanwhile,
the SQL standard says that a colon prefix is necessary for languages that are embedded,
like C or COBOL, but no prefix is needed for procedural SQL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A cursor rests either directly on a row, before the first row, or after the last row. When a cursor is resting directly in a
row, then that row is known as the current row. You can use cursors to position an UPDATE or DELETE statement in the
current row using the WHERE CURRENT OF clause.

It is important to remember that a cursor result set does not wrap around. Thus if you have a result set containing 10
records and tell the cursor to move forward 12 records, it will not wrap back around to the beginning and continue its
count from there. Instead, the default cursor behavior is to stop after the last record in the result set when scrolling
forward, and to stop before the first record when scrolling back. For example, on SQL Server:

FETCH RELATIVE 12 FROM employee_cursor

INTO @emp_last_name, @emp_first_name, @emp_id

When fetching values from the database into variables, make sure that the datatypes and number of columns and the
variables match. Otherwise, you'll get an error. For example:

FETCH PRIOR FROM employee_cursor

INTO @emp_last_name, @emp_id

The above example will fail since the employee_cursor contains three columns while the fetch operation has only two
variables.

Programming Tips and Gotchas

The most common errors encountered with the FETCH statement are a mismatch of variables to the values in the
cursor, whether that is in the exact number, order, or datatype. So take a little time to make sure you remember
exactly what values are in the cursor and what their datatypes are.

Typically, the database will lock at least the current row and possibly all rows held by the cursor. According to the ANSI
standard, cursor locks are not held through ROLLBACK or COMMIT operations, although this varies from platform to
platform.

Although the FETCH statement is detailed in isolation here, it should always be managed as a group with the DECLARE,
OPEN, and CLOSE statements. For example, every time you open a cursor, the server consumes memory. If you forget
to close your cursors, you could create memory management problems. So make sure that every declared and opened
cursor is eventually closed.

Cursors are also often used in stored procedures or batches of procedural code. The reason for this is because
sometimes you need to perform actions on individual rows rather than on entire sets of data at a time. But because
cursors operate on individual rows and not sets of data, they are often much slower than other means of accessing your
data. Just make sure that you perform strong analysis on your approach. Many challenges, such as a convoluted
DELETE operation or a very complex UPDATE, can be solved by using clever WHERE and JOIN clauses instead of
cursors.

DB2

DB2 cursors are implicitly forward-only cursors that always scroll forward one record at a time. A DB2 cursor, when
compared to the ANSI standard, is essentially a FETCH NEXT 1 cursor. DB2 does not support keywords like PRIOR,
ABSOLUTE, and RELATIVE. DB2 FETCH syntax is:

FETCH [FROM] cursor_name

{ [INTO variable1 [, ...]] |

 [USING DESCRIPTOR descriptor_name] }

where:

USING DESCRIPTOR descriptor_name

Identifies a previously created SQLDA (SQL Descriptor Area) called descriptor_name to contain zero or more of
the retrieved values from the FETCH statement.

When saving fetched values INTO variables, DB2 allows LOB values to be inserted into regular host variables such as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When saving fetched values INTO variables, DB2 allows LOB values to be inserted into regular host variables such as
VARCHAR (when they are big enough to hold the value), locator variables, or file-reference variables.

When saving fetched values with the USING DESCRIPTOR clause, you should remember several rules about descriptor
areas:

SQLN indicates the number of SQLVAR occurrences in the SQLDA.

SQLDABC indicates the number of bytes of storage allocated in the SQLDA.

SQLD indicates the number of variables used in the SQLDA when processing the statement. SQLD must be set
to a value greater than or equal to zero and less than or equal to SQLN.

SQLVAR indicates the attributes of the variables. The descriptor needs enough storage to hold all SQLVAR
occurrences. Use this formula to calculate the size of SQLDABC: it must be greater than or equal to 16 + SQLN*
(n), where n is the length of SQLVAR occurrences.

When LOB or structured type result columns must be accommodated, use two SQLVAR entries for every select
item (or column returned from the result table).

For example, the following FETCH statement uses an SQLDA:

FETCH employee_cursor USING DESCRIPTOR :sqlda2

In the above example, the descriptor :sqlda2 and the cursor employee_cursor must already exist.

MySQL

Not supported.

Oracle

Oracle cursors are implicitly forward-only cursors that always scroll forward one record at a time. An Oracle cursor,
when compared to the ANSI standard, is essentially a FETCH NEXT 1 cursor. Oracle cursors must either insert the
retrieved values into matching variables, or use the BULK COLLECT clause to insert all of the records of the result set
into an array. Oracle does not support keywords like PRIOR, ABSOLUTE, and RELATIVE. However, Oracle does support
both forward-only and scrollable cursors in the database via the Oracle Call Interface (OCI). OCI also supports features
like PRIOR, ABSOLUTE, and RELATIVE for read-only cursors whose result set is based on a read consistent snapshot.

Oracle's FETCH syntax is:

FETCH cursor_name

{ INTO variable_name1 [,...] | BULK COLLECT INTO

 [collection_name [,...] [LIMIT int] }

where:

BULK COLLECT INTO collection_name

Retrieves the entire rowset, or a specified number of rows (see LIMIT), into a client-side array or collection
variable named collection_name.

LIMIT int

Limits the number of records fetched from the database when using the BULK statement. The int value is a
nonzero integer (or a variable representing an integer value).

Oracle supports dynamic SQL-based cursors whose text can be built at runtime. Oracle also supports cursor_names that
may be any allowable variable, parameter, or host-array type. In fact, you may also use user-defined or %ROWTYPE
record variables for the INTO clause as well. This allows you to construct flexible, dynamic cursors in a template-like
structure.

For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example:

DECLARE

 TYPE namelist IS TABLE OF employee.lname%TYPE;

 names namelist;

 CURSOR employee_cursor IS SELECT lname FROM employee;

BEGIN

 OPEN employee_cursor;

 FETCH employee_cursor BULK COLLECT INTO names;

 ...

 CLOSE employee_cursor;

END;

Oracle FETCH often is paired with a PL/SQL FOR loop (or other kind of loop) to cycle through all the rows in the cursor.
You should use the cursor attributes %FOUND or %NOTFOUND to detect the end of the rowset. For example:

DECLARE

 TYPE employee_cursor IS REF CURSOR RETURN employee%ROWTYPE;

 employee_cursor EmpCurTyp;

 employee_rec employee%ROWTYPE;

BEGIN

 LOOP

 FETCH employee _cursor INTO employee_rec;

 EXIT WHEN employee _cursor%NOTFOUND;

 ...

 END LOOP;

CLOSE employee_cursor;

END;

This example uses a standard PL/SQL loop with an EXIT clause to end the loop when there are no more rows in the
cursor to process.

PostgreSQL

PostgreSQL supports both forward and backward scrolling cursors. It covers the ANSI standard except ABSOLUTE,
FIRST, or LAST. The syntax for FETCH in PostgreSQL is:

FETCH { [FORWARD | BACKWARD | ABSOLUTE | RELATIVE] }

 { [int | ALL | NEXT | PRIOR] }

{ IN | FROM } cursor_name

[INTO :variable1 [,...]]

where:

FORWARD

Tells PostgreSQL that the cursor scrolls forward. This is the default if no other mode is defined.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells PostgreSQL that the cursor scrolls forward. This is the default if no other mode is defined.

BACKWARD

Tells PostgreSQL that the cursor scrolls backward.

ABSOLUTE

Allowed as a keyword, but not supported in functionality.

RELATIVE

Allowed as a keyword, but not supported in functionality.

int

A signed integer that indicates how many records to scroll forward (if positive) or backward (if negative).

ALL

Retrieves all records remaining in the cursor.

NEXT

Retrieves the next single record.

PRIOR

Retrieves the previous single record.

IN | FROM cursor_name

Defines the previously declared and opened cursor where data is retrieved.

INTO variable

Assigns a cursor value to a specific variable. As with ANSI cursors, the values retrieved by the cursor and the
variables must match in number and datatype.

PostgreSQL cursors must be used with transactions explicitly declared using BEGIN, and must be closed with COMMIT
or ROLLBACK.

The following PostgreSQL statement retrieves five records from the employee table and displays them:

FETCH FORWARD 5 IN employee_cursor;

It is important to note that PostgreSQL also supports a separate command, MOVE, to move to a specific cursor position.
It differs from FETCH only by not returning values into variables:

MOVE { [FORWARD | BACKWARD | ABSOLUTE | RELATIVE] }

 { [int | ALL | NEXT | PRIOR] }

{ IN | FROM } cursor_name

For example, the following code declares a cursor, skips forward five records, and then returns the values in the sixth
record:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

record:

BEGIN WORK;

 DECLARE employee_cursor CURSOR FOR SELECT * FROM employee;

 MOVE FORWARD 5 IN employee_cursor;

 FETCH 1 IN employee_cursor;

 CLOSE employee_cursor;

COMMIT WORK;

The above code will return a single row from the employee_cursor result set.

SQL Server

SQL Server supports a variation of FETCH that is very close to the ANSI standard:

FETCH [{ NEXT | PRIOR | FIRST | LAST |

 { ABSOLUTE | RELATIVE int } }

 [FROM] [GLOBAL] cursor_name

[INTO @variable1 [, ...]]

The differences between SQL Server's implementation and the ANSI standard are very small. First, SQL Server allows
you to use variables in place of the int and cursor_name values. Second, SQL Server allows the declaration and use of
GLOBAL cursors that can be accessed by any user or session, not just the one that created it.

There are some rules that apply to how you use the FETCH command based upon how you issued the DECLARE
CURSOR command:

When you declare a SCROLL SQL-92 cursor, all FETCH options are supported. In all other SQL-92 cursors, only
NEXT is the only option supported. (There is also an alternate Transact-SQL style DECLARE CURSOR
statement.)

DYNAMIC SCROLL cursors support all FETCH options except ABSOLUTE.

FORWARD-ONLY and FAST_FORWARD only support FETCH NEXT.

KETSET, STATIC, and SCROLL cursors (and DYNAMIC, FORWARD-ONLY, and FAST_FORWARD are not defined),
all FETCH options are supported.

SQL Server also requires a DEALLOCATE statement, in addition to CLOSE, to release
memory consumed by a cursor.

Here's a full example that goes from declaring and opening a cursor to initiating several fetches and then finally closing
and deallocating the cursor:

DECLARE @vc_lname VARCHAR(30), @vc_fname VARCHAR(30), @i_emp_id CHAR(5)

DECLARE employee_cursor SCROLL CURSOR FOR

 SELECT lname, fname, emp_id

 FROM employee

 WHERE hire_date <= 'FEB-14-2004'

OPEN employee_cursor

-- Fetch the last row in the cursor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- Fetch the last row in the cursor.

FETCH LAST FROM employee_cursor

-- Fetch the row immediately prior to the current row in the cursor.

FETCH PRIOR FROM employee_cursor

-- Fetch the fifth row in the cursor.

FETCH ABSOLUTE 5 FROM employee_cursor

-- Fetch the row that is two rows after the current row.

FETCH RELATIVE 2 FROM employee_cursor

-- Fetch values eight rows prior to the current row into variables.

FETCH RELATIVE -8 FROM employee_cursor

INTO @vc_lname, @vc_fname, @i_emp_id

CLOSE employee_cursor

DEALLOCATE employee_cursor

GO

Remember that in SQL Server you must not only CLOSE the cursor, but you must also DEALLOCATE it. In some rare
cases, you might wish to reopen a closed cursor. You can reuse any cursor that you have closed but not deallocated.
The cursor is permanently destroyed only when it is deallocated.

See Also

CLOSE
DECLARE CURSOR
OPEN

GRANT Statement

The GRANT statement assigns privileges to users and roles, which allows them to access and use database objects (that
is, object privileges).

In addition, most database platforms use the GRANT statement to authorize users and roles to create database objects
and execute stored procedures, functions, and so on (particularly usage privileges).

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

The SQL2003 syntax for GRANT includes only the assignment of object privileges and roles to a specific user:

GRANT { {object privilege [,...] | role [,...]} }

[ON database_object_name]

[TO grantee [,...]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[TO grantee [,...]]

[WITH HIERARCHY OPTION] [WITH GRANT OPTION] [WITH ADMIN OPTION]

[FROM { CURRENT_USER | CURRENT_ROLE }]

Keywords

object privilege

Grants one or more privileges for a SQL statement. Multiple privileges may be granted at one time, as long as
commas separate them. Do not combine ALL PRIVILEGES with other privileges, but the remainder may be
combined in any order. Valid privileges are:

ALL PRIVILEGES

Indicates a shorthand for every privilege the grantor has available to grant. Grants all privileges
currently assigned to the grantor to the named users and/or for the specified database objects. This is
generally not a recommended approach, since it can encourage sloppy permissioning.

EXECUTE

Grants the privileges to execute any ANSI SQL routine. An ANSI routine is any stored procedure, user-
defined function, or user-defined method.

{SELECT | INSERT | UPDATE | DELETE}

Grants the specific privilege for a given user on the specified database object, such as a table or view.
You may add a parenthetical list of the columns of a given table on which the privilege will be granted
(except for the DELETE statement).

REFERENCES

Grants the privilege to use the column(s) in any constraint or assertion, not just a foreign key. The
REFERENCES clause also allows you to define column-specific details (by including a parenthetical,
comma-delimited list) for statements like INSERT, SELECT, and so on. Finally, REFERENCES grants the
privilege to create or drop foreign key constraints referencing the database object as a parent object.

TRIGGER

Grants the privilege of creating a trigger to operate on a specific table and its columns.

UNDER

Grants the privilege to create subtypes or typed tables.

USAGE

Grants privileges to use a domain, user-defined type, character set, collation, sequence, or translation.

role

Grants a specific, predefined role from the named grantee identified in the FROM clause. For example, the
database administrator might want to create a role called Reporter that has read-only access to several tables.
By granting this role to a user, that user then receives all of the read-only permissions granted to the Reporter
role. Users can have a role assigned to them and receive all of the permissions already assigned to that role.

ON database_object_name

Grants privileges on the specified, predefined database object identified by database_object_name, which may be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Grants privileges on the specified, predefined database object identified by database_object_name, which may be
one of the following:

{[TABLE] object_name | DOMAIN object_name |

 COLLATION object_name | CHARACTER SET object_name |

 TRANSLATION object_name | SPECIFIC ROUTINE routine_name}

TO grantee

Assignes the privilege to the named user(s) or role(s), designated as grantee. You can assign privileges to
multiple users and/or roles, as long as commas separate them. Alternately, privileges may be granted to
PUBLIC, meaning that all users (including those that will be created in the future) have the specified privileges.

WITH HIERARCHY OPTION

Bestows the WITH HIERARCHY OPTION privilege, enabling the grantee to SELECT not only from the named
table, but also from all of its subtables. This applies to privilege grants only.

WITH GRANT OPTION

Enables the grantee to further grant the privileges to other users. This applies to privilege grants only.

WITH ADMIN OPTION

Bestows the ability to assign a role. The ability to assign role responsibilities is separate from the ability to grant
privileges to other users or roles.

FROM { CURRENT_USER | CURRENT_ROLE}

Names the user who is granting the specified privilege(s), either the CURRENT_USER or the CURRENT_ROLE.
This clause is optional and assumes the current user context.

Rules at a Glance

You may grant many privileges on a single object with one statement, but do not mix the ALL PRIVILEGES privilege
with the individual SQL statement keywords in a single GRANT statement. You can grant a specific privilege on a
specific database object to a single user using:

GRANT privilege_name ON object_name TO grantee_name

For example:

GRANT SELECT ON employee TO Dylan;

You can grant a specific privilege on a specific object to all users via the PUBLIC user. When a grant is issued to
PUBLIC, that means everyone has permission to the object without the need for a grant specifically to the object. For
example:

GRANT SELECT ON employee TO PUBLIC;

When granting privileges to multiple grantees, simply place a comma between each:

GRANT SELECT ON employee TO Dylan, Matt

The previous example shows that you may grant privileges to multiple users, in this case Dylan and Matt, and to the
PUBLIC user in a single GRANT statement. When granting privileges on a table, the privileges may extend to the column
level by showing a list of columns enclosed in parentheses after the table name. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

level by showing a list of columns enclosed in parentheses after the table name. For example:

GRANT SELECT ON employee(emp_id, emp_fname, emp_lname, job_id)

TO Dylan, Matt

The previous example shows that Dylan and Matt now have select privileges on several columns of the employee
table.

Programming Tips and Gotchas

Depending on the specific database implementation, views may or may not have independent access privileges from
their base tables.

Note that all of the optional WITH clauses control extensions to the base privilege(s) granted in the statement. Thus,
the following command grants the privilege to SELECT records from the employee table:

GRANT SELECT ON employee TO Dylan;

but the following command grants the privilege to SELECT records from the employee table and also to grant that
SELECT privilege to other users.

GRANT SELECT ON employee TO Dylan

WITH GRANT OPTION;

Similarly, you can use the REVOKE statement to revoke only the WITH GRANT OPTION, the individual SELECT privilege,
or both.

Most of the platforms isolate privileges at the user and role level. Thus, an individual user who is a member of two roles
may have an individual set of permissions four times — once for themselves, once for PUBLIC, and once with each of
the roles for which they have permission. In this situation, you should be very careful. In order to remove a specific
privilege completely from such a user, you have to revoke the user's privileges directly, and then in both roles.

DB2

DB2 offers many options in its implementation of the GRANT command. It is important to note that privileges on
database objects (such as SELECT privileges on a specific table) are handled by the command, as are a variety of other
privileges:

GRANT { [database_privilege [,...] ON DATABASE] |

 [CONTROL ON INDEX index_name] |

 [{BIND | CONTROL | EXECUTE} ON PACKAGE package_name] |

 [EXECUTE ON [SPECIFIC] {FUNCTION | METHOD {* | FOR} | PROCEDURE}

 object_name] |

 [{ALTERIN | CREATEIN | DROPIN} ON SCHEMA schema_name] |

 [ON SEQUENCE sequence_name] |

 [PASSTHRU ON SERVER server_name] |

 [object_privilege [,...] ON [TABLE] object_name] }

TO [{USER |GROUP}]

 { grantee_name [,...] | group_name [,...] | PUBLIC }]

[WITH GRANT OPTION] | [USE OF TABLESPACE tablespace_name]

The parameters are as follows:

database_privileges

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

database_privileges

Grants one or more privileges that apply to the entire database, rather than to a single object. The database
privileges are:

BINDADD

Grants the authority to create packages. The user who creates a package always has the CONTROL
privilege on that package even when BINDADD is revoked at a later date.

CONNECT

Grants the authority to access the specified database.

CREATETAB

Grants the authority to create a base table. The user who created the base table always has the
CONTROL privilege on the table even if CREATETAB is revoked at a later date.

CREATE_EXTERNAL_ROUTINE

Grants the privilege to register external routines. This is somewhat dangerous since external threads
can have adverse side effects. The routine will continue to exist once created, even if the
CREATE_EXTERNAL_ROUTINE privilege is revoked for the user. (For more information, check on the
THREADSAFE clause of the CREATE or ALTER routine statements in the DB2 documentation.)

CREATE_NOT_FENCED_ROUTINE

Grants the authority to create routines that are not fenced into a specific user process. That is, the
routines may execute within the database manager's process. CREATE_NOT_FENCED_ROUTINE is a
superset of CREATE_EXTERNAL_ROUTINE. Consequently, you automatically are granted the latter
privilege when assigned the former. Read the description of CREATE_EXTERNAL_ROUTINE for more
information.

DBADM

Grants superuser authority, including the ability to create any object, and including all privileges against
all objects in the database, even the ability to grant those privileges to other users.

IMPLICIT_SCHEMA

Grants the authority to create a schema implicitly, though this privilege does not impact the ability to
create a schema or any objects within a schema explicitly.

LOAD

Grants the authority to explicitly LOAD the specified database. SYSADM and DBADM, who automatically
possess this privilege, need no other explicitly granted privileges to load a database. But other users
with LOAD privilege must have, at a minimum, INSERT privileges on tables they wish to load.

QUIESCE_CONNECT

Grants the privilege to access the specified database while it is quiesced.

CONTROL ON INDEX index_name

Grants the privilege to drop an index, once created, of the specified index_name. This is the explicit CONTROL
privilege for indexes. It is automatically granted to the creator of any index.

{BIND | CONTROL | EXECUTE} ON PACKAGE package_name

Grants the privileges associated with packages. Note that RUN and PROGRAM are acceptable synonyms for
EXECUTE and PACKAGE, respectively. The package privileges are:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXECUTE and PACKAGE, respectively. The package privileges are:

BIND

Grants the authority to bind or rebind the specified package. Since any SQL statements in the package
are checked at bind time, the user must also have statement permissions on each object referenced by
the package.

CONTROL

Grants the authority to rebind, drop, or execute the specified package, as well as to grant BIND and
EXECUTE privileges to other users. Users granted the CONTROL privilege automatically receive BIND
and EXECUTE as well. CONTROL is automatically granted to the creator of a package.

EXECUTE

Grants the authority to execute the specified package.

EXECUTE ON [SPECIFIC] {FUNCTION | METHOD {* | FOR} | PROCEDURE} object_name

Grants privileges on an ANSI routine (i.e., user-defined function, user-defined method, or stored procedure).
The elements of this clause are as follows:

FUNCTION [schema.]function_name

Specifies that the user is granted execution privileges on a specific function. A SPECIFIC function name
may be specified. DB2 also supports functions without names. In this case, FUNCTION [(param [,...])]
should be used, including any and all parameters of the function. If schema is not included, the current
schema is assumed. You may substitute an asterisk (*) for a specific function name to grant a user the
execution privilege on all functions in the current or specified schema.

METHOD { * | FOR type_name}

Specifies that the user is granted rights to execute all methods of type_name, even those that have not
yet been created. The optional FOR type_name clause names the type where the specified method is
found. A SPECIFIC method name may be specified. DB2 also supports methods without names. In this
case, METHOD [(param [,...])] should be used, including any and all parameters of the function.
Alternately, the asterisk (*) can be used to specify that all types in the schema are granted to the user.

PROCEDURE [schema.]procedure_name

Specifies that the user be granted execute privileges on all stored procedures in the specified schema,
even those created in the future. If schema is not included, the current schema is assumed. You may
substitute an asterisk (*) for a specific stored procedure name to grant a user the execution privilege
on all stored procedures in the current or specified schema.

{ALTERIN | CREATEIN | DROPIN} ON SCHEMA schema_name

Grants privileges associated with manipulating a schema (that is, a user-owned set of objects). Only users with
SYSADM, DBADM, or WITH GRANT OPTION permissions for all privileges for the specified schema may issue this
command. The elements are as follows:

ALTERIN

Grants the authority to alter or comment on objects in a schema defined by ON SCHEMA schema_name.

CREATEIN

Grants the authority to create objects in a schema defined by ON SCHEMA schema_name.

DROPIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Grants the authority to drop objects in the schema defined by ON SCHEMA schema_name.

{ALTER | USAGE} ON SEQUENCE sequence_name TO PUBLIC

Grants privileges on a sequence in an explicit or current schema (USAGE) or the privilege to execute the ALTER
SEQUENCE statement (ALTER).

PASSTHRU ON SERVER server_name

Grants the privilege to access an external data source named server_name using pass-through mode.

object_privilege

Represents privileges for a variety of statements on tables, views, and nicknamed tables or views. Object
privileges may be combined in any order:

ALL [PRIVILEGES]

Provides a shorthand for every privilege the grantor has available to grant. The PRIVILEGES keyword is
optional. It grants all privileges currently assigned to the granting user for the specified database
objects, including SELECT, INSERT, UPDATE, and DELETE privileges. With ALL, you have privileges to
add columns to a table, create or drop primary keys or unique constraints, create or drop foreign keys,
create or drop check constraints, create triggers on a table, add or change comments on a table,
change a nicknamed column name or datatype, or add, rest, or drop a nicknamed column name.
However, granting ALL is generally not a good approach since it can encourage sloppy coding.

ALTER

The privilege to add or alter columns, constraints, comments, or triggers on a specified table or view.
ALTER also permits the use of nicknames on column names or datatypes or to change a column option
for a nickname.

CONTROL

Grants a large number of privileges to the specific user or role (or PUBLIC) for the specified object.
When you grant CONTROL on a table, that includes the privileges for ALTER, DELETE, INSERT, INDEX,
REFERENCES, SELECT, and UPDATE. When you grant CONTROL on a view, that includes DELETE,
INSERT, SELECT, and UPDATE. On nicknames, CONTROL includes ALTER, INDEX, and REFERENCES.

The grantee has the ability to grant these aforementioned privileges to others, who may drop the
specified table, view, or nickname. They may execute the RUNSTATS utility on tables and indexes, as
well as execute the SET INTEGRITY command on tables, materialized views, and staging tables.

INDEX

The ability to create an index against a table, or to create an index specification on a nickname. (The
creator of an index retains CONTROL privileges on the indexes they create, even if the INDEX privilege
is later revoked.)

{SELECT | INSERT | UPDATE | DELETE}

Grants the specific privilege to a given user for the specified database object, such as a table or view. In
some cases, these privileges also extend to utilities with similar behavior. For example, the INDEX
privilege also includes the use of the IMPORT utility. You may add a parenthetical list of the columns on
a given table where the privilege is granted. The UPDATE privilege may be assigned down to the column
level by including a parentheses-encapsulated list of column or columns made available to the user.

REFERENCES

Grants the privilege to create or drop foreign key constraints referencing the database object as a
parent object. The REFERENCES privilege may be assigned down to the column level by including a
parentheses-encapsulated list of column or columns made available to the grantee.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TO { [USER | GROUP]} grantee_name

Names the user or users who will gain the specified privilege or privileges. When both a user and group
exist with the same name, use the optional USER or GROUP keywords to control whether the privileges
are granted to the user or to the group. PUBLIC may also be used to grant privileges to the PUBLIC
role. Multiple grantees can be listed; separate them with a comma between each.

WITH GRANT OPTION

Entitles the grantee to assign the granted privilege(s) to other users.

USE OF TABLESPACE tablespace_name

Grants the privilege of specifying or defaulting new tables to the specified tablespace_name. In effect, it enables
the USE privilege on that tablespace.

In situations when a group and a user of the same name exist, you must use either GROUP or KEYWORD to inform DB2
whether you want the privileges assigned to the group or to the user. If you do not, DB2 will return an error and abort
the GRANT statement. For example, to grant CONNECT and BINDADD permissions to the user emily and the group
datareaders:

GRANT CONNECT, BINDADD ON DATABASE TO USER emily,

 GROUP datareaders

To give the user Dylan, and all users who are members of the Admin role, control over a specific index:

GRANT CONTROL ON INDEX emp_ndx TO dylan, admin;

You can give a user rights on a package to execute it and bind (or rebind it), without the privilege to drop it (via
CONTROL) as follows:

GRANT BIND, EXECUTE ON PACKAGE d02.sales_processing

 TO USER dylan

The following example grants a user a variety of privileges on the sales table, as well as the privilege to pass those
privileges on to other users:

GRANT DELETE, INSERT, SELECT, UPDATE ON sales TO USER sam

WITH GRANT OPTION

Similarly, you can give another user privileges on a specific object (a view in this case) that includes only specific
columns in the object:

GRANT UPDATE (sales_qty, sales_discount) ON sales TO USER jake

DB2 also has privileges at the instance level that aren't managed with the GRANT
statement. Most importantly, there are three database manager configuration parameters
(SYSADM_GRP, SYSCTRL_GRP, and SYSMAINT_GRP) that control administrative rights to
the instance. You control these privileges using the DB2 UPDATE DATABASE MANAGER
CONFIGURATION statement. For example:

ATTACH DB2;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ATTACH DB2;

UPDATE DATABASE MANAGER CONFIGURATION

 USING

 sysadm_group 'DB2GRP'

 IMMEDIATE;

DETACH;

MySQL

MySQL provides additional access privileges, primarily relating to object manipulation within a database. GRANT in
MySQL is available from Version 3.22.11 and on. The syntax is as follows:

GRANT [{ ALL [PRIVILEGES] |

 {SELECT | INSERT | UPDATE} [(column_name [,...])] | DELETE |

 REFERENCES [(column_name [,...])] } |

[USAGE] | [{ALTER | CREATE | DROP}] | [FILE] | [INDEX] | [PROCESS] |

 [RELOAD] | [SHUTDOWN] | [CREATE TEMPORARY TABLES] | [LOCK TABLES] |

 [REPLICATION CLIENT] | [REPLICATION SLAVE] | [SHOW DATABASES] |

 [SUPER] }[,...]

ON {table_name | * | *.* | database_name.*}

{TO grantee_name [IDENTIFIED BY 'password']} [,...]

[WITH GRANT OPTION]

where:

ALL [PRIVILEGES]

Grants a user all applicable privileges that apply at the current level on one or more objects in the database,
with the exception of WITH GRANT OPTION. For example, GRANT ALL ON *.* grants all privledges, except
WITH GRANT OPTION, globally.

SELECT | INSERT | UPDATE | DELETE

Grants the ability to read, write, modify, and erase data from tables (and possibly from specific columns of a
table), respectively. Column-level permissions are allowed on SELECT, INSERT, and UPDATE, but not DELETE.
Granting column-level permissions can slow down MySQL somewhat, since more permission checking is
required.

REFERENCES

Remains unimplemented.

USAGE

Creates a "no privilege" user account for use in creating a user that has no privileges.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a "no privilege" user account for use in creating a user that has no privileges.

ALTER | CREATE | DROP

Grants the ability to alter, drop, or create tables and other database objects. When using the CREATE syntax,
you are not required to specify an ON clause to identify a specific table.

FILE

Grants the ability to load data from, or write data to, files using the SELECT INTO and LOAD DATA commands.

INDEX

Grants the ability to create or drop indexes.

PROCESS

Grants the ability to view running processes using SHOW FULL PROCESSLIST.

RELOAD

Grants the ability to invoke the FLUSH and RESET commands.

SHUTDOWN

Grants usage of the mysqladmin shutdown command to kill the server process.

CREATE TEMPORARY TABLES

Grants the ability to create temporary tables.

LOCK TABLES

Grants the use of the MySQL command LOCK TABLES on tables where the user has SELECT privileges.

REPLICATION CLIENT

Grants a user the privilege to see metadata about replication slaves and masters.

REPLICATION SLAVE

Grants a replication slave the right to read binlogs from a replication master.

SHOW DATABASES

Grants the user the privilege to execute the MySQL command SHOW DATABASES.

SUPER

Grants the user the privilege of one connection even if the max_connections threshold is reached. Users with
SUPER privileges can also execute important MySQL commands like CHANGE MASTER, KILL, mysqladmin debug,
PURGE [MASTER] LOGS, and SET GLOBAL.

ON {table_name | * | *.* | database_name.*}

Grants privileges from the specified table_name, from all tables within the current database using an asterisk (*),
from all tables in all databases with *.*, or from all tables in the specified database_name with database_name.*.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TO grantee_name [IDENTIFIED BY 'password'] [,...]

Names the user or users who will gain the specified privilege. You may enter multiple users separated by
commas. When granting privileges to a new user, you may also optionally set the new password for the new
named user at the same time using the IDENTIFIED BY clause.

WITH GRANT OPTION

Entitles the grantee to assign the granted privilege to other users.

Since MySQL is focused on speed, you can implement server-wide features that provide high-speed performance. For
example, you can enable the SKIP_GRANT_TABLES startup option to disable checks for privileges. This can speed up
queries, but obviously no permission checking is done. This means that all users have full access to all resources in the
database.

The following are access privileges that are usable with tables: SELECT, INSERT, UPDATE, DELETE, CREATE, DROP,
GRANT, INDEX, and ALTER. At the column level, you can apply INSERT, UPDATE, and SELECT.

In any situation, the host, table, database, and column names may each be up to 60 characters in size. The username
(a.k.a. the grantee_name) may be up to 16 characters.

MySQL also supports the possibility of granting rights to a specific user on a specific host if the grantee_name is in the
form USER@HOST. Wildcards can be included in the hostname of a grantee_name to provide the access privilege to a
large number of users at one time. Also, a missing hostname is the same as the "%" wildcard. For example:

GRANT SELECT ON employee TO katie@% IDENTIFIED BY 'audi',

 annalynn IDENTIFIED BY 'cadillac',

 cody@us% IDENTIFIED BY 'bmw';

The preceding GRANT statement grants read privileges on the employee table to the user katie explicitly at any
hostname. Similarly, the GRANT statements grants read privileges to the user annalynn implicitly at any hostname.
And finally, the GRANT statement grants read privileges to the user cody explicitly at any hostname starting with "US".

The grantee_name must be 16 or fewer characters. When specifying the user, password protection may be enforced by
including the IDENTIFIED BY clause.

The following example grants permissions to three users with passwords:

GRANT SELECT ON employee TO dylan IDENTIFIED BY 'porsche',

 kelly IDENTIFIED BY 'mercedes',

 emily IDENTIFIED BY 'saab';

In MySQL, if you grant permissions to a user that doesn't exist, it creates that user. The two statements that follow
create a user and password with global privileges and another user that has no privileges (the USAGE privilege):

GRANT SELECT ON *.* TO tony IDENTIFIED BY 'humbolt';

GRANT USAGE ON sales.* TO alicia IDENTIFIED BY 'dakota';

Failing to include the IDENTIFIED BY clause on a GRANT statement that creates a new
user will create a user without a password. This practice is insecure and dangerous.

If you do create a new user using the GRANT command, and you forget to specify a password, you can, and probably
should, set a password using the SET PASSWORD command.

MySQL also allows you to issue grants on remote hosts, specified with @hostname, and include the wildcard character
percent (%). For example, the following grant provides all permissions on all tables of the current database across all
hosts in the notforprofit.org domain to the user annalynn:

GRANT ALL ON * TO annalynn@'%.notforprofit.org';

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GRANT ALL ON * TO annalynn@'%.notforprofit.org';

Privileges are written directly to system tables at four different levels:

Global level

Global privileges apply to all databases on a given server and are stored in the mysql.user system table.

Database level

Database privileges apply to all tables in a given database and are stored in the mysql.db system table.

Table level

Table privileges apply to all columns in a given table and are stored in the mysql.tables_priv system table.

Column level

Column privileges apply to single columns in a given table and are stored in the mysql.columns_priv system
table.

Because of the usage and system tables involved, you may grant redundant permissions at different levels. For
example, you could grant a user SELECT privileges on a specific table, and then grant global SELECT privileges on that
same table to all users of the database. You would then have to revoke those privileges separately to ensure the user
no longer had the privilege of SELECTing from the table.

The system tables are also somewhat unprotected, so it is possible to change permissions by issuing INSERT, UPDATE,
and DELETE statements against the tables rather than by using GRANT or REVOKE. Normally, all privileges are read into
memory when MySQL starts. Database, table, and column privileges issued by a GRANT statement are available
immediately and take effect right away. User privileges issued by a GRANT statement are noticed immediately and take
effect the next time the user connects. If you directly modify permissions in the system tables, none of the changes are
noticed until you restart MySQL, or until you issue a FLUSH PRIVILEGES command.

Oracle

Oracle's implementation of the GRANT statement supports an enormous number of variations and permutations. The
syntax is as follows:

GRANT { [object_privilege] [,...] |

 [system_privilege] [,...] |

 [role] [,...] }

[ON { [schema_name.][object] [,...] |

 [DIRECTORY directory_object_name] |

 [JAVA [{ SOURCE | RESOURCE }] [schema_name.][object] }

TO {{grantee_name [,...] | role_name [,...] | PUBLIC}

 [WITH { GRANT | HIERARCY } OPTION]

[IDENTIFIED BY password][WITH ADMIN OPTION];

You can grant multiple privileges with a single invocation of the command, but they must all be of the same type
(object, system, or role).

For example, you could grant a user three object privileges on a single table in one GRANT statement, and then issue a
separate grant of two system privileges to a role, and yet a third grant of several roles to a user, but not all of them in
one GRANT statement.

Following are the parameters to Oracle's GRANT statement:

object_privilege

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Grants the specified privileges to the specified grantee_name or role on the named schema object (for example, a
table or view). You may combine several object privileges, schema objects, or grantees in a single statement.
However, you may not grant system privileges or roles in the same statement as object privileges. The object
privileges are:

ALL [PRIVILEGES]

Grants all available privileges on a named schema object and is available for use on tables.

ALTER

Grants the privilege to change an existing table using the ALTER TABLE statement, and is available for
use on tables and sequences.

DEBUG

Grants access to a table through a debugger. The access granted applies to any triggers on the table or
to information on SQL that directly references the table and is available for use on tables, views,
procedures, functions, packages, Java objects, and types.

EXECUTE

Grants the privilege to execute a stored procedure, user-defined function, or a package, and is available
for use on procedures, functions, packages, Java objects, libraries, types, indextypes, and user-defined
operators.

INDEX

Grants the privilege to create indexes on a table.

{ ON COMMIT REFRESH | QUERY REWRITE }

Grants the privilege to create a refresh-on-commit materialized view or to create a materialized view for
query rewrite on the specified table. It is available for materialized views only.

{ READ | WRITE }

Grants the privilege to read and write files against a named directory including full path name of the
operating system directory. Since Oracle has the ability to store files outside of the database, the Oracle
server process must run under a user context with privileges on the applicable directories. You can
enable Oracle to enforce security on individual users via this security mechanism. Note that WRITE is
only useful in connection with an external table, such as a logfile or an error file.

REFERENCES

Grants the privilege to define referential integrity constraints, and is available for use on tables.

{SELECT | INSERT | DELETE | UPDATE}

Grants the privilege to execute each of the respective SQL commands against the named schema object
and is available for use on tables, views, sequences (SELECT only), and materialized views (SELECT
only). Note that you must grant SELECT privileges to a user or role that requires DELETE privileges. You
can grant column-level privileges, as a parentheses-encapsulated list following the object name, only
when granting INSERT, REFERENCES, or UPDATE object privileges on a table or view.

UNDER

Grants the privilege to create a subview under the named view and is available for use on views and
types only.

system_privilege

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

system_privilege

Grants the specified Oracle system privilege to one or more users or roles. For example, you could grant the
CREATE TRIGGER privilege or the ALTER USER privilege. In each case, issuing a grant for a system privilege
empowers the user or role to execute the command of the same name. Refer to Table 3-2 later in this section
for a full list of system privileges.

role

Grants a role to the user or to another role. In addition to user-defined roles, there are a number of system
roles that come predefined with Oracle:

CONNECT, RESOURCE, and DBA

Provided for backward compatibility with older versions of Oracle. Do not use these roles in current or
newer versions of Oracle since they may be dropped in the future.

DELETE_CATALOG_ROLE, EXECUTE_CATALOG_ROLE, and SELECT_CATALOG_ROLE

Grant members of these roles the privilege deleting, executing, and selecting from data dictionary views
and packages.

EXP_FULL_DATABASE and IMP_FULL_DATABASE

Grant members of these roles the privilege of executing the import and export utilities.

AQ_USER_ROLE and AC_ADMINISTRATOR_ROLE

Grant members of these roles the privilege to use or administrate Oracle's Advanced Queuing
functionality.

SNMPAGENT

Assigned only to Oracle Enterprise Manager and Intelligent Agent.

RECOVERY_CATALOG_OWNER

Grants the privilege to create users who own their own recovery catalog.

HS_ADMIN_ROLE

Grants the privilege to access areas of the data dictionary used to support Oracle's heterogeneous
services feature

ON schema_name

Grants the named privilege to a user or role on an object in the schema. Database objects include tables, views,
sequences, stored procedures, user-defined functions, packages, materialized views, user-defined types,
libraries, indextypes, user-defined operators, or a synonym for any of these. If you do not include the schema
name, Oracle assumes the schema of the current user.

Oracle also supports two additional keywords for special cases:

DIRECTORY

Grants privileges on a directory object, which is an Oracle object corresponding to a filesystem directory.

JAVA

Grants privileges on a Java SOURCE or a RESOURCE schema object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TO {grantee_name | role_name | PUBLIC} [WITH { GRANT | HIERARCY } OPTION]

Names the user or role who will get the specified privilege. PUBLIC may also be used to revoke privileges
granted to the PUBLIC role. Multiple grantees can be listed with a comma between each, as in the following:

WITH GRANT OPTION

Enables the grantee to grant the specific privilege(s) to other users or to PUBLIC, but not to roles.

WITH HIERARCHY OPTION

Enables the grantee to receive privileges on all sub-objects when granted privileges on a parent object.
This includes sub-objects created in the future. You can use this option only when granting the SELECT
object privilege.

IDENTIFIED BY password [WITH ADMIN OPTION]

Establishes or changes a password that the grantee must use to enable a role being granted.

WITH ADMIN OPTION

Enables the grantee to exercise control over a role that you are granting to that grantee. First, this
clause enables the grantee to grant and revoke the role to and from other users or non-GLOBAL roles.
It further allows the grantee to drop the role, or to change the authorization needed to access a role.

Grants to users take effect right away. Grants to roles take effect right away, assuming the roles are enabled.
Otherwise, a grant to a role takes effect as the role is enabled. Note that you can grant roles to users and to other roles
(including PUBLIC). For example:

GRANT sales_reader TO sales_manager;

To grant privileges on a view, you must have the specific privilege and the WITH GRANT OPTION on all of the base
tables for the view.

Any time you want a privilege available to all users, simply grant it to PUBLIC:

GRANT SELECT ON work_schedule TO public;

However, there are some restrictions when granting system privileges and roles:

A privilege or role should not appear more than once in the GRANT statement.

Roles cannot be granted to themselves.

Roles cannot be granted recursively. That is, you couldn't grant the role sales_reader to sales_manager and
then grant sales_manager to sales_reader.

You can grant multiple privileges of the same type in a single statement. However, the grants must be on the same
type of objects:

GRANT UPDATE (emp_id, job_id), REFERENCES (emp_id),

ON employees

TO sales_manager;

As an aside, granting any of the object permissions on a table allows the user (or role) to lock the table in any lock
mode using Oracle's LOCK TABLE statement.

Nearly every supported Oracle feature or command is assignable with a GRANT command (as shown in Table 3-2).
Privileges can be granted not only on database objects (such as tables and views) and system commands (such as
CREATE ANY TABLE), but also on schema objects (such as DIRECTORY, JAVA SOURCE, and RESOURCE).

The ANY option, shown in Table 3-2, grants the privilege to execute a given statement against objects of a specific type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ANY option, shown in Table 3-2, grants the privilege to execute a given statement against objects of a specific type
owned by any user within the schema. Without the ANY option, the user can only execute the statement against objects
in their own schema. A more complete list of Oracle system privileges is shown in Table 3-2.

Table 3-2. Oracle system privileges
Options Description

CREATE
CLUSTER Grants privilege to create a cluster in the grantee's own schema.

{CREATE |
ALTER | DROP}
ANY CLUSTER

Grants privilege to create, alter, or drop a cluster in any schema, respectively.

{CREATE |
DROP} ANY
CONTEXT

Grants privilege to create or drop any context namespace, respectively.

ALTER
DATABASE Grants privilege to alter the database.

ALTER SYSTEM Grants privilege to issue ALTER SYSTEM statements.

AUDIT SYSTEM Grants privilege to issue AUDIT sql_statements statements.

CREATE
DATABASE
LINK

Grants privilege to create private database links in grantee's own schema.

CREATE PUBLIC
DATABASE
LINK

Grants privilege to create public database links.

DROP PUBLIC
DATABASE
LINK

Grants privilege to drop public database links.

DEBUG
CONNECT
SESSION

Grants privilege to connect the current session to the Java Debug Wire Protocol (JDWP) debugger.

DEBUG ANY
PROCEDURE

Grants the privilege to debug all PL/SQL objects in the database, similar to granting DEBUG on all
procedures, functions, and packages.

CREATE
DIMENSION Grants privilege to create dimensions in the grantee's own schema.

{CREATE |
ALTER | DROP
} ANY
DIMENSION

Grants privilege to create, alter, or drop dimensions in any schema.

{CREATE |
DROP} ANY
DIRECTORY

Grants privilege to create or drop directory database objects.

CREATE ROLE Grants the privilege to create a database role.

GRANT ANY
ROLE Grants the privilege to grant a role to other users.

CREATE
INDEXTYPE Grants privilege to create an indextype in the grantee's own schema.

{CREATE |
DROP |
EXECUTE } ANY
INDEXTYPE

Grants privilege to create, alter, drop, or execute an indextype in any schema.

{CREATE |
ALTER | DROP}
ANY INDEX

Grants privilege to create, alter, or drop an index in any schema or an index on any table in any
schema.

{CREATE |
DROP} ANY
LIBRARY

Grants privilege to create or drop external procedure/function libraries in any schema.

CREATE
MATERIALIZED
VIEW

Grants privilege to create a materialized view in the grantee's own schema.

{CREATE |
ALTER | DROP}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ALTER | DROP}
ANY
MATERIALIZED
VIEW

Grants privilege to create, alter, or drop materialized views in any schema.

GLOBAL QUERY
REWRITE

Enables rewrite using a materialized view, or creates a function-based index, when materialized
view or index reference tables or views are in any schema.

QUERY
REWRITE

Enables rewrite using a materialized view, or creates a function-based index, when that materialized
view or index references tables and views that are in the grantee's own schema.

ON COMMIT
REFRESH

Creates a refresh-on-commit materialized view on any table in the database or alters any refresh-
on-demand materialized view into a refresh-on-commit materialized view.

FLASHBACK
ANY TABLE

Grants the privilege to issue a SQL flashback query on any table, view, or materialized view in any
schema. This privilege is not required for DBMS_FLASHBACK procedures.

CREATE
OPERATOR Grants privilege to create an operator and its bindings in the grantee's own schema.

{CREATE |
DROP |
EXECUTE} ANY
OPERATOR

Grants privilege to create, drop, or execute an operator and its bindings in any schema.

{CREATE |
DROP | ALTER}
ANY OUTLINE

Grants privilege to create, alter, or drop outlines that can be used in any schema that uses outlines.

SELECT ANY
OUTLINE Grants the privilege to clone private outlines from public ones.

CREATE
PROCEDURE Grants privilege to create stored procedures, functions, and packages in grantee's own schema.

{CREATE |
ALTER | DROP |
EXECUTE} ANY
PROCEDURE

Grants privilege to create, alter, drop, or execute stored procedures, functions, and packages in any
schema.

{CREATE |
ALTER | DROP}
PROFILE

Grants privilege to create, alter, or drop profiles.

ALTER
RESOURCE
COST

Sets costs for session resources.

{ALTER |
DROP} ANY
ROLE

Grants privilege to create, alter, drop, or grant roles in the database.

{CREATE |
ALTER | DROP}
ROLLBACK
SEGMENT

Grants privilege to create, alter, or drop rollback segments.

CREATE
SEQUENCE Grants privilege to create sequences in grantee's own schema.

{CREATE |
ALTER | DROP |
SELECT} ANY
SEQUENCE

Grants privilege to create, alter, drop, or select sequence in any schema in the database.

CREATE
SESSION Grants privilege to connect to the database.

ALTER
SESSION Grants privilege to issue ALTER SESSION statements.

RESTRICTED
SESSION Logs on after the instance is started using the SQL*Plus STARTUP RESTRICT statement.

CREATE
SNAPSHOT Grants privilege to create snapshots in grantee's own schema.

{CREATE |
ALTER | DROP}
ANY SNAPSHOT

Grants privilege to create, alter, or drop snapshots (a.k.a. materialized views) in any schema.

CREATE
SYNONYM Grants privilege to create synonyms in grantee's own schema.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{CREATE |
DROP} ANY
SYNONYM

Grants privilege to create or drop private synonyms in any schema.

{CREATE |
DROP} PUBLIC
SYNONYM

Grants privilege to create or drop public synonyms.

CREATE ANY
TABLE

Grants privilege to create tables in any schema. The owner of the schema containing the table must
have a space quota on the tablespace to contain the table.

ALTER ANY
TABLE Grants privilege to alter any table or view in the schema.

BACKUP ANY
TABLE Uses the export utility to incrementally export objects from the schema of other users.

DELETE ANY
TABLE Deletes rows from tables, table partitions, or views in any schema.

DROP ANY
TABLE Grants privilege to drop or truncate tables or table partitions in any schema.

INSERT ANY
TABLE Grants privilege to insert rows into tables and views in any schema.

LOCK ANY
TABLE Grants privilege to lock tables and views in any schema.

UPDATE ANY
TABLE Grants privilege to update rows in tables and views in any schema.

SELECT ANY
TABLE Grants privilege to queries tables, views, or snapshots in any schema.

{CREATE |
ALTER | DROP}
TABLESPACE

Grants privilege to create, alter, or drop tablespaces.

MANAGE
TABLESPACE Grants privilege to take tablespaces offline and online, and begins and ends tablespace backups.

UNLIMITED
TABLESPACE

Grants privilege to use an unlimited amount of any tablespace. This privilege overrides any specific
quotas assigned. If you revoke this privilege from a user, the user's schema objects remain, but
further tablespace allocation is denied unless authorized by specific tablespace quotas. You cannot
grant this system privilege to roles.

CREATE
TRIGGER Grants privilege to create a database trigger in grantee's own schema.

{CREATE |
DROP} ANY
TRIGGER

Grants privilege to create or drop database triggers in any schema.

ALTER ANY
TRIGGER Grants privilege to enable, disable, or compile database triggers in any schema.

ADMINISTER
DATABASE
TRIGGER

Grants privilege to create a trigger on DATABASE. (You also must have the CREATE TRIGGER or
CREATE ANY TRIGGER privilege.)

CREATE TYPE Grants privilege to create object types and object-type bodies in grantee's own schema.

{CREATE |
ALTER | DROP}
ANY TYPE

Grants privilege to create, alter, or drop object types and object-type bodies in any schema.

EXECUTE ANY
TYPE

Uses and references object types and collection types in any schema, and invokes methods of an
object type in any schema if you make the grant to a specific user. If you grant EXECUTE ANY TYPE
to a role, users holding the enabled role will not be able to invoke methods of an object type in any
schema.

UNDER ANY
TYPE Creates subtypes under any parent object type, such as a table or view.

CREATE USER

Grants privilege to create users. This privilege also allows the creator to:

Assign quotas on any tablespace

Set default and temporary tablespaces

Assign a profile as part of a CREATE USER statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Assign a profile as part of a CREATE USER statement

ALTER USER

Grants the privilege to alter any user. This privilege authorizes the grantee to:

Change another user's password or authentication method

Assign quotas on any tablespace

Set default and temporary tablespaces

Assign a profile and default roles

BECOME USER Grants privilege to become another user (required by any user performing a full database import).

DROP USER Grants privilege to drop users.

CREATE VIEW Grants privilege to create views in grantee's own schema.

{CREATE |
DROP} ANY
VIEW

Grants privilege to create or drop views in any schema.

UNDER ANY
VIEW Creates subview under any parent view.

ANALYZE ANY Analyzes any table, cluster, or index in any schema.

AUDIT ANY Audits any object in any schema using AUDIT schema_objects statements.

COMMENT ANY
TABLE Allows comments on any table, view, or column in any schema.

EXEMPT
ACCESS
POLICY

Circumvents fine-grained access control. Generally, this is ill-advised since the user can then bypass
any application-driven security policies.

FORCE ANY
TRANSACTION

Forces the commit or rollback of any in-doubt distributed transaction in the local database and
induces the failure of a distributed transaction.

FORCE
TRANSACTION

Forces the commit or rollback of grantee's own in-doubt distributed transactions in the local
database.

GRANT ANY
PRIVILEGE Grants any system privilege.

GRANT ANY
OBJECT
PRIVILEGE

Grants any object privilege available.

RESUMABLE Enables resumable space allocations.

SELECT ANY
DICTIONARY Allows the user to query any data dictionary object in the SYS schema.

SYSDBA

Provides the user with RESTRICTED SESSION permission as well as authorizes the user to:

Perform STARTUP and SHUTDOWN operations

ALTER DATABASE

Open, mount, back up, or change character set

CREATE DATABASE

ARCHIVELOG and RECOVERY

SYSOPER

Provides the user with RESTRICTED SESSION permission as well as authorizes the user to:

Performs STARTUP and SHUTDOWN operations

ALTER DATABASE, OPEN/MOUNT/BACKUP

ARCHIVELOG and RECOVERY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Any of the privileges shown in Table 3-2 containing the ANY keyword have special meaning. In effect, ANY gives a user
the privilege to execute the specified command or operation in any schema. If you want to include all user schemas,
but exclude the SYS system schema, keep the O7_DICTIONARY_ACCESSIBILITY initialization parameter at its default
value of FALSE.

PostgreSQL

PostgreSQL supports a subset of the ANSI GRANT commands supporting object privileges against database objects such
as tables. It does not support any of the WITH options available under the ANSI standard nor specialty features like
USAGE and UNDER. PostgreSQL's GRANT syntax is as follows:

GRANT { ALL [PRIVILEGES]

| SELECT

| INSERT

| DELETE

| UPDATE

| RULE

| REFERENCES

| TRIGGERS

| USAGE } [,...]

ON [TABLE] { object_name } [,...]

TO {grantee_name | GROUP group_name | PUBLIC } [,...]

where:

ALL [PRIVILEGES]

Grants all privileges the grantor has available to grant. Using ALL is generally not a recommended approach,
since it can encourage sloppy permissioning.

{SELECT | INSERT | DELETE | UPDATE}

Grants the specific privilege to a given user on the specified database object, such as a table or view. For
column-level privileges, you may add a parenthetical list of the columns of a given table. The permission then
applies only to the columns of the table that are named.

RULE

Grants the privilege to create or drop a rule on a table or view.

REFERENCES

Grants the privilege to create or drop foreign key constraints referencing the database object as a parent
object.

TRIGGERS

Grants the privilege of creating a trigger to operate on a specific table and its columns.

USAGE

Grants privileges to use these objects: CHARACTER SET, COLLATION, TRANSLATION, and DOMAIN (user-
defined datatype).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON [TABLE] object_name

Specifies the object to which permissions are granted. The optional TABLE keyword is noise. You may grant
permissions on more than one object at a time by specifying a comma-delimited list of object names.

TO {grantee_name | GROUP group_name | PUBLIC } [,...]

Names the user or role, or multiples thereof, that receive the specified privileges. In PostgreSQL, PUBLIC is a
synonym for all users. PostgreSQL allows permissions to be assigned to a GROUP (essentially a role), provided
it is a valid, pre-existing group_name.

Multiple privileges may be granted at one time, as long as commas separate them. Do not combine ALL [PRIVILEGES]
with other privileges, but the remainder may be combined in any order.

PostgreSQL does not support the WITH clauses or column-level permissions. Currently, if you want column-level
permissions, you must set those up using a view showing only the columns of a table that you want a user to access.

Under PostgreSQL, the creator of an object has all privileges on the object, though they may revoke their own
privileges on an object. However, the privilege for the creator of an object to assign privileges on that object cannot be
revoked. Similarly, the right to drop an object is permanently assigned to the creator of the object, and cannot be
revoked. Users other than the creator of an object do not have permissions on an object until specifically granted.

PostgreSQL's implementation of GRANT behaves as if WITH GRANT OPTION is always enabled. Any user granted
privilege to a table is able to grant their privileges to other users.

PostgreSQL's support for the GRANT statement is elementary. In the following examples, INSERT privileges are granted
on the publishers table to the PUBLIC role and SELECT and UPDATE privileges are granted on the sales table to the
users Emily and Dylan:

GRANT INSERT ON publishers TO PUBLIC;

GRANT SELECT, UPDATE ON sales TO emily, dylan;

SQL Server

SQL Server's implementation of GRANT offers few variations from the ANSI standard. It does not support the ANSI
standard's FROM clause, nor the HIERARCHY or ADMIN options. But it does offer the ability to grant specific system
privileges and to grant them under another user's security context. The syntax is as follows:

GRANT { [object_privilege] [,...] |

 [system_privilege] }

[ON { [object] [(column [,...])]]

TO {grantee_name [,...] | role [,...] | PUBLIC | GUEST }

[WITH GRANT OPTION]

[AS {group | role}]

where:

object_privileges

Grants privileges for a variety of operations, which may all be combined (with the exception of the ALL
[PRIVILEGES] privilege) in any order, as follows:

ALL [PRIVILEGES]

Grants all privileges currently assigned to the named users and/or for the specified database objects. This is
generally not a recommended approach since it can encourage sloppy programming. ALL can only be used by
members of the SYSADMIN and DB_OWNER system roles, or by the object owner.

{SELECT | INSERT | DELETE | UPDATE}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Grants the specific privilege to a given user on the specified database object, such as a table or view. For
column-level privileges, add a parenthetical list of columns of the table. The privileges will then be assigned only
for the named columns.

REFERENCES

Grants the privilege to create or drop foreign key constraints referencing the database object as a parent
object.

EXECUTE

Grants the privilege to execute a stored procedure, user-defined function, or extended stored procedure.

system_privileges

Grants one of the following privileges, each giving the ability to execute the corresponding statement:

CREATE DATABASE
CREATE DEFAULT
CREATE FUNCTION
CREATE PROCEDURE
CREATE RULE
CREATE TABLE
CREATE VIEW
BACKUP DATABASE
BACKUP LOG

The privilege to issue a CREATE statement also implies the privilege to issue the equivalent ALTER or DROP statement.

ON { [object] [(column [,...])]

Specifies the object for which a privilege is granted. This clause is not required when granting system privileges.
If the object is a table or view, you may optionally grant privileges on specific columns. You may grant SELECT,
INSERT, UPDATE, DELETE, and REFERENCES privileges on a table or view. You may grant only SELECT and
UPDATE privileges on the columns of a table, view, or a user-defined function. You may grant EXECUTE
privileges on a stored procedure or extended stored procedure. You may also grant REFERENCES privileges on
user-defined functions. REFERENCES privileges are also required on functions or views created using the WITH
SCHEMABINDING clause.

TO {grantee_name [,...] | role [,...] | PUBLIC | GUEST }

Names the user or role who will gain the privilege being granted. Multiple grantees can be listed in a comma-
separated list. Use the keyword PUBLIC to grant privileges to the PUBLIC role, a role that implicitly includes all
users. SQL Server also supports the role known as GUEST, a role used by all users who do not have any other
user account in the database. Because SQL Server allows two different security models (one based on the
database and one based on the Windows operating system), you may be granting privileges to a SQL Server
user, a Windows user, a Windows group, or a SQL Server database role. The grantee name may be any of
these.

WITH GRANT OPTION

Enables the grantee to further grant the given permission to other users or roles. You may use WITH GRANT
OPTION only when granting object permissions.

AS {group | role}

Specifies an alternative user or group that has the authority in the current database to execute the GRANT
command. You can use the AS clause to grant privileges as if the granting session is part of a different group or
role context from the current one.

Privileges may not be granted in any database other than the current database, nor may privileges be granted in more
than one database at a time.

SQL Server has a somewhat different security model than the other platforms described
here (and somewhat different from the ANSI standard). As with the ANSI standard, SQL
Server uses the GRANT command to assign specific privileges to a user or role, and the
REVOKE command to remove those permissions. SQL Server augments these commands
with the DENY command, using essentially the same syntax as REVOKE.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

with the DENY command, using essentially the same syntax as REVOKE.

DENY, under SQL Server, allows DBAs to declare certain privileges as strictly off-limits to a
user or role. Any privileges that have been denied must be revoked before they can be
granted. As such, DENY takes precedence over GRANT and REVOKE. DENY can be used to
effectively take away any permission from an individual that might otherwise inherit
permissions from membership in any Windows groups or SQL Server database roles.

SQL Server applies precedence to permissions. Thus, if a user has a privilege granted at the user level, but the
permission is revoked at the group level (when the user is a member of a group), the permission is revoked at both
levels.

SQL Server also contains a number of fixed system roles with preset privileges on both objects and commands. The
SQL Server system roles are:

SYSADMIN

Can perform any activity on the server and has access to all objects.

SERVERADMIN

Can set server configuration options as well as shut down and restart the server.

SETUPADMIN

Can start up procedures and linked servers.

SECURITYADMIN

Can read error logs, change passwords, administrate logins, and grant CREATE DATABASE permissions.

PROCESSADMIN

Can administrate processes running on the SQL Server.

DBCREATOR

Can create, alter, and drop databases.

DISKADMIN

Can administrate disks and files.

BULKADMIN

Can perform BCP operations and execute the BULK INSERT statement (and regular INSERT statement) against
tables in the database.

The SYSADMIN system role can grant any permission in any database on the server. Members of the DB_OWNER and
DB_SECURITYADMIN system roles can grant any permission on any statement or object in databases they own.
Members of the DB_DDLADMIN system role, the SYSADMIN system role, and the database owner may grant system
privileges.

Members of the system roles may add other logins or users to their roles, but not via a GRANT statement. Instead, to
add a user to a system role, you must use a SQL Server system stored procedure called sp_addsrvrolemember.

In addition to the server-wide system roles, there are a number of database-wide system roles. That is, the previous
system roles have privileges that span every database on the server, whereas the following system roles exist in every
database and have privileges within the scope of a specific database, as follows:

DB_OWNER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Can perform all the functions of the other database system roles, plus perform other maintenance and
configuration tasks for the database.

DB_ACCESSADMIN

Can add or remove Windows and SQL Server users and groups to the database.

DB_DATAREADER

Can read data from all user tables in the database.

DB_DATAWRITER

Can read, add, change, or delete data from all user tables in the database.

DB_DDLADMIN

Can add, change, and drop objects in the database, as well as run all DDL statements.

DB_SECURITYADMIN

Can administrate SQL Server roles and users as well as statement and object permissions throughout the
database.

DB_BACKUPOPERATOR

Can perform backups of the database.

DB_DENYDATAREADER

Denies permission to read data in the database.

DB_DENYDATAWRITER

Denies permission to change data in the database.

Like the server-wide system roles, database-wide system roles cannot be granted to a user via the GRANT statement.
Instead, you must use a SQL Server system stored procedure called sp_addrolemember.

In the following example, the CREATE DATABASE and CREATE TABLE system privileges are granted to the users emily
and sarah. Next, numerous permissions are granted on the titles table to the editors group. The editors are then able
to grant permission to others:

GRANT CREATE DATABASE, CREATE TABLE TO emily, sarah

GO

GRANT SELECT, INSERT, UPDATE, DELETE ON titles

TO editors

WITH GRANT OPTION

GO

The following example grants permissions to the database user sam and the Windows user jacob:

GRANT CREATE TABLE TO sam, [corporate\jacob]

GO

The following example shows how to grant permissions using the optional AS keyword. In this example, the user emily

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following example shows how to grant permissions using the optional AS keyword. In this example, the user emily
owns the sales_detail table and she grants SELECT privileges to the sales_manager role. The user kelly, who is a
member of the sales_manager role, wants to grant SELECT privileges to sam, but cannot because the permissions
were granted to the sales_manager role and not to her explicitly. kelly can use the AS clause to get around this
hurdle:

-- Initial grant

GRANT SELECT ON sales_detail TO sales_manager

WITH GRANT OPTION

GO

-- Kelly passes the privilege to Sam as a member of the

 sale_manager role

GRANT SELECT ON sales_detail TO sam AS sales_manager

GO

See Also

REVOKE

IN Operator

The IN operator provides a way to delineate a list of values, either explicity listed or from a subquery, and compare a
value against that list in a WHERE or HAVING clause. In other words, it gives you a way to say "Is value A in this list of
values?"

Platform Command

DB2 Supported

MySQL Supported

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Supported

SQL2003 Syntax

{WHERE | HAVING | {AND | OR} }

 value [NOT] IN ({comp_value1, comp_value2 [,...] | subquery })

Keywords

{WHERE | HAVING | {AND | OR} } value

Permitted under either the WHERE or HAVING clauses. The IN comparison may also be a part of a AND or OR
clause in a multicondition WHERE or HAVING clause. value may be of any datatype, but is usually the name of a
column of the table referenced by the transaction, or perhaps a host variable when used programmatically.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOT

Optionally tells the database to look for a result set that contains values that are not in the list.

IN ({comp_value1, comp_value2 [,...] | subquery })

Defines the list of comparative values (hence, comp_value) to compare against. Each comp_value must be of the
same or compatible datatype as the initial value. They are also governed by standard datatype rules. For
example, string values must be delimited by quotes, while integer values need none. As an alternative to listing
specific values, you may use parentheses to enclose a subquery that returns one or more values of a
compatible datatype.

In the following example, generated on SQL Server, we look for all employees in the employee table of the HR
database who have a home state of Georgia, Tennessee, Alabama, or Kentucky:

SELECT *

FROM hr..employee

WHERE home_state IN ('AL','GA','TN','KY')

Similarly, we can look for all employees in the HR database who are authors in the PUBS database:

SELECT *

FROM hr..employee

WHERE emp_id IN (SELECT au_id FROM pubs..authors)

You can also use the NOT keyword to return a result set based upon the absense of a value. In the following case, the
company headquarters is located in New York, and many workers commute in from neighboring states. We want to see
all such workers:

SELECT *

FROM hr..employee

WHERE home_state

 NOT IN ('NY','NJ','MA','CT','RI','DE','NH')

Note that Oracle, while fully supporting the ANSI functionality, extends the functionality of
the IN operator by allowing multiple argument matches. For example, the following
SELECT...WHERE ...IN statement is acceptable on Oracle:

SELECT *

FROM hr..employee e

WHERE (e.emp_id, e.emp_dept) IN

((242, 'sales'), (442, 'mfg'), (747, 'mkt))

See Also

ALL/ANY/SOME
BETWEEN
EXISTS
LIKE
SELECT
SOME/ANY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INSERT Statement

The INSERT statement adds rows of data to a table or view.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported

SQL Server Supported, with variations

The INSERT statement allows rows to be written to a table through one of several methods:

The first method is to insert one or more rows using the DEFAULT values specified for a column via the CREATE
TABLE or ALTER TABLE statements.

The second and most common method is to declare the actual values to be inserted into each column of the
record.

The third method, which populates a table with many records at a time, is to insert the result set of a SELECT
statement.

SQL2003 Syntax

INSERT INTO [ONLY] {table_name | view_name} [(column1 [,...])]

[OVERRIDE {SYSTEM | USER} VALUES]

{DEFAULT VALUES | VALUES (value1 [,...]) | SELECT_statement }

Keywords

[ONLY]

Used on typed tables only, this optional keyword ensures that the values inserted into table_name do not insert
into any subtables.

{table_name | view_name} [(column1 [,...])]

Declares the updateable target table or view into which the records will be inserted. You must have INSERT
privileges on the table or, at a minimum, on the columns that will receive the inserted values. If no schema
information is included, as in scott.employee, then the current schema and user context are assumed. You
may optionally include a list of the columns in the target table or view that will receive data.

OVERRIDE {SYSTEM | USER} VALUES

Requires the SYSTEM keyword when inserting a literal value into a column that would otherwise be given a
system-generated value, such as autogenerated sequence number. The OVERRIDE USER VALUES clause does
the converse, by inserting system-supplied values even if a user has provided literal values to insert.

DEFAULT VALUES

Inserts all values declared via the DEFAULT column characteristic on the target table where they exist, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inserts all values declared via the DEFAULT column characteristic on the target table where they exist, and
NULLs where they do not exist. (Of course, the DEFAULT column characteristic can specify NULL as a value
too.) This operation inserts a single record. It might encounter an error depending on how the PRIMARY KEY
constraint or UNIQUE constraint is constructed on the target table, assuming such constraints exist.

VALUES (value1 [,...])

Specifies the actual values to be inserted into the target table. The number of values must match the exact
number of columns in the column list. Furthermore, the values must be datatype- and size-compatible with the
columns of the target table. Each value in the value list corresponds to the column with the same ordinal
number in the column list. Thus, the first column will get its data from the first value, the second column from
the second value, and so on until all columns are satisfied. You may also optionally use the keywords DEFAULT
to insert a column's default value and NULL to insert a null value.

SELECT_statement

Inserts rows retrieved via the SELECT statement into the target table or target view. The values retrieved by
the fully formed SELECT statement's select item list correspond directly to the columns of the column list. The
target table or view may not be referenced in the SELECT statement's FROM or JOIN clauses.

Rules at a Glance

You may insert values into tables and into views built upon a single source table. The INSERT . . . VALUES statement
adds a single row of data to a table using literal values supplied in the statement. In the following example, a new row
in the authors table is inserted for the author Jessica Rabbit:

INSERT INTO authors (au_id, au_lname, au_fname, phone,

 address, city, state, zip, contract)

VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT,

 '1717 Main St', NULL, 'CA', '90675', 1)

Every column in the table is assigned a specific, literal value except the phone column, which is assigned the default
value (as defined during the CREATE TABLE or ALTER TABLE statement), and the city column, which is set to NULL.

An important concept to remember is that you may skip columns in the table and set them to NULL, assuming they
allow NULL values. Inserts that leave some columns NULL are called partial INSERTs. Here is a partial INSERT that
performs the same work as the preceding example:

INSERT INTO authors (au_id, au_lname, au_fname, phone, contract)

VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT, 1)

The INSERT statement, combined with a nested SELECT statement, allows a table to be quickly populated with one or
more rows from the result set of the SELECT statement. When using INSERT . . . SELECT between a target table and a
source table, it is important to ensure that the datatypes returned by the SELECT statement are compatible with the
datatypes in the target table. For example, to load data from the sales table into the new_sales table:

INSERT INTO sales (stor_id, ord_num, ord_date, qty, payterms,

 title_id)

SELECT

 CAST(store_nbr AS CHAR(4)),

 CAST(order_nbr AS VARCHAR(20)),

 order_date,

 quantity,

 SUBSTRING(payment_terms,1,12),

 CAST(title_nbr AS CHAR(1))

FROM new_sales

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM new_sales

WHERE order_date >= 01-JAN-2005

-- retrieve only the newer records

You must specify the columns in the table that receive data by enclosing their names in parentheses, in a comma-
delimited list. This column_list can be omitted, but all columns that are defined for the table are then assumed, in
their ordinal position. Any column with an omitted value will be assigned its default value (according to any DEFAULT
column setting on the table) or, if no DEFAULT column setting exists, NULL. The columns in the column list may be in
any order, but you may not repeat any column in the list. Furthermore, the columns and their corresponding value
entries must agree in terms of datatype and size.

The first of the following two examples leaves off the column list, while the second uses only DEFAULT values:

INSERT INTO authors

VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT,

 '1717 Main St', NULL, 'CA', '90675', 1)

INSERT INTO temp_details

DEFAULT VALUES

The first statement would succeed only as long as all the values in the value list correspond correctly with the datatypes
and size limitations of the columns of the target table. Any inconsistencies would generate an error. The second
statement would succeed only as long as defaults were declared for the columns of the target table, or those columns
allowed NULL values.

Executing an INSERT statement without a column list is a "worst practice," since the
statement may fail if the target table ever changes.

Programming Tips and Gotchas

INSERT statements will always fail under the following circumstances:

When a datatype mismatch occurs between a column and its value

When a column is defined as not NULL and the insertion value is NULL

When a duplicate value is inserted into a UNIQUE or PRIMARY KEY constraint

When the inserted values do not meet the requirements of a CHECK constraint

When an inserted value is constrained by a FOREIGN KEY constraint because the value is not derived from the
declared primary key of another table

The most common error encountered when executing INSERT statements is a mismatch between the number of
columns and the number of values. Accidentally leave out a value that corresponds to a column, and you are likely to
encounter an error that will cause the statement to fail.

INSERT statements also fail when an inserted value is of a datatype that is a mismatch with the column of the target
table. For example, an attempt to insert a string like "Hello world" into an integer column would fail. On the other hand,
some database platforms automatically and implicitly convert certain datatypes. For example, SQL Server will
automatically convert a date value to a character string for insertion into a VARCHAR column.

Another common problem encountered with the INSERT statement is a size mismatch between a value and its target
column. For example, inserting a long string into a CHAR(5) target column, or inserting a very large integer into a
TINYINT column, can cause problems. Depending on the platform you are using, the size mismatch may cause an
outright error and rollback of the transaction or the database server may simply trim the extra data. Either result is
undesirable. Similarly, a problem can arise when an INSERT statement attempts to insert a NULL value into a target
column that does not accept NULL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

column that does not accept NULL.

Most problems with INSERT statements occur because the programmer does not know the
target table very well. Make sure you understand the target table or view before writing
elaborate INSERT statements.

DB2

DB2 supports the ANSI standard form of INSERT, with the exception of the OVERRIDE clause, and includes some added
syntax to control transaction isolation settings:

INSERT INTO table_name [(column1 [,...])]

{VALUES | VALUES (value1 [,...]) | SELECT_statement }

[WITH { RR | RS | CS | UR }

where:

INSERT INTO table_name [(column1 [,...])]

Identifies the target table, view, or nickname on the DB2 server. The target table or view may be a standard or
typed table or view. The view may be based on a SELECT statement containing a UNION ALL clause, as long as
the inserted row matches the check constraint(s) of exactly one table.

WITH

Controls transaction isolation level for the update statement. RR is repeatable read, RS is read stability, CS is
cursor stability, and UR is uncommitted read. See SET TRANSACTION ISOLATION LEVEL for full details on ANSI
transaction isolation levels.

DB2 strictly enforces these rules:

Values inserted must be compatible with the column datatype

Integer and string values must not exceed the storage capability of the target column

Inserted values must pass any check or unique constraints

Values inserted into a foreign key column must exist in a corresponding primary key elsewhere in the database

DB2 supports identity columns; that is, columns that automatically generate a monotonically increasing value. When
inserting into an identity column, DB2 generates a new value for the identity column. Identity columns are defined as
either GENERATED ALWAYS or GENERATED BY DEFAULT upon creation. If defined as GENERATED ALWAYS, you should
not specify a value for the column — leave it to default. If defined as GENERATED BY DEFAULT, you may insert your
own value (explicitly or via a subquery), or you can allow DB2 to generate the value for you. In the following examples,
assume the emp_id column is an identity column with the GENERATED ALWAYS property:

INSERT INTO employee (emp_id, emp_lname, emp_fname)

VALUES (DEFAULT, :var_lname, :var_fname)

INSERT INTO employee (emp_lname, emp_fname)

VALUES (:var_lname, :var_fname)

Both of the example statements shown above will work without error.

MySQL

MySQL supports several INSERT syntax options that engender MySQL's reputation for high speed:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL supports several INSERT syntax options that engender MySQL's reputation for high speed:

INSERT [LOW_PRIORITY | DELAYED] [IGNORE]

[INTO] [[database_name.]owner.] table_name [(column1 [,...])]

{VALUES (value1 [,...]) | SELECT_statement |

 SET column1=value1, column2=value2 [,...]}

where:

LOW_PRIORITY

Defers the execution of INSERT until no other clients are reading from the table. This could result in a long wait.
LOW_PRIORITY should not be used with MyISAM tables because it disables concurrent inserts.

DELAYED

Allows the client to continue at once, even if the INSERT has not yet completed.

IGNORE

Tells MySQL not to attempt to insert records that would duplicate a value in a primary key or unique key;
otherwise, without this clause, the INSERT fails when such duplication occurs. If a duplicate is encountered
while the IGNORE clause is in use, the duplicate records are ignored while all the other records are inserted.

SET column=value

An alternate syntax that allows you to specify values for target columns by name.

MySQL does not support the ANSI standard DEFAULT VALUES and OVERRIDE clauses.

MySQL trims any portion of a value that has a size or datatype mismatch. Thus, inserting "10.23 X" into a decimal
datatype column will cause "...X" to be trimmed from the inserted value. If you attempt to insert a numeric value into a
column that is beyond the range of the column, MySQL will trim the value. Inserting an illegal time or date value in a
column will result in a zero value for the target column. Inserting the string "Hello World" into a CHAR(5) column will
result in the value being trimmed to just the five characters in "Hello". This string trimming feature applies to CHAR,
VARCHAR, TEXT, and BLOB columns.

Oracle

Oracle's implementation of the INSERT statement allows data insertion into a given table, view, partition, subpartition,
or object table. It also supports additional extensions such as inserting records into many tables at once and conditional
inserts. The syntax is:

-- standard INSERT statement

INSERT [INTO] {table_name [[SUB]PARTITION (prtn_name)] |

 (subquery) [WITH {READ ONLY | CHECK OPTION

 [CONSTRAINT constr_name] }] |

 TABLE (collection) [(+)] } [alias]

 [(column1 [,...])]

{VALUES (value1[,...]) [RETURNING expression1 [,...]

 INTO variable1 [,...]] |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INTO variable1 [,...]] |

 SELECT_statement [WITH {READ ONLY |

 CHECK OPTION [CONSTRAINT constr_name]} }

-- conditional INSERT statement

INSERT {[ALL | FIRST]} WHEN condition

 THEN standard_insert_statement

ELSE standard_insert_statement

where:

INSERT [INTO]

Inserts one or more rows into a single table, view, materialized view, or subquery. The INTO keyword is
optional. You insert a single row using the VALUES clause and many rows using a subquery.

table_name [[SUB]PARTITION (prtn_name)]

Identifies the target into which you will insert data. The target may be a table, view, materialized view, or a
subquery. To enable you to fully qualify the target, table_name can expand to [schema.]table_name[@db_link].

You may optionally identify the schema and remote address (via @db_link) of the target, but the current schema and
local database are assumed if you do not otherwise specify. You may optionally identify the PARTITION or
SUBPARTITION, through the prtn_name parameter, into which the record(s) will be inserted, as long as the target is not
an object table or object view.

subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constr_name] }]

Instructs Oracle to insert records into the base table or tables of the subquery, where the subquery is a normally
formed SELECT statement. Essentially, you're using a subquery to construct a view on-the-fly, and the effect is
the same as inserting into a view. This is your primary means for inserting values into multiple tables at one
time. All of the columns defined by the subquery, across all tables, must have a corresponding value to insert or
else a failure will occur. Multitable inserts must use the subquery format. The following options apply to when
using subqueries:

WITH READ ONLY

Indicates the subqueried table or view cannot be updated until the statement completes.

WITH CHECK OPTION [CONSTRAINT constr_name]

Indicates that you cannot insert rows into the table or view that would not pass the constr_name check
constraint.

TABLE (collection) [(+)] } [alias]

Tells Oracle that the collection should be treated like a standard target (i.e., a table or view), whether it be a
subquery, a column, a function, or a collection constructor. In any event, the table collection must return a
nested table or VARRAY set of values. Since constructions can be very long, you can provide an optional alias.
Aliases are not allowed in multitable insert operations.

[(column1 [,...])

Specifies the target columns into which data will be inserted. If you leave off the columns, Oracle assumes that
the VALUES clause or columns of the subquery will perfectly match the columns of the target. Oracle will return
an error if you do not insert a value for any columns marked as NOT NULL that do not have a defined, default
value.

VALUES (value1[,...]) [RETURNING expression1 [,...] INTO variable1 [,...]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Inserts values into the target table or tables. As with the ANSI standard, there must be a matching value for
every column, though the value can be DEFAULT, or, if the column accepts nulls, the value can be the literal
NULL. DEFAULT is not allowed when inserting into a view. On multitable insert operations, the VALUES clause
must return a corresponding value for every item in the select list of the subquery. The syntax is as follows:

RETURNING expression1

Retrieves the rows inserted by the operation. The expression returned by the statement is often a value
being inserted, but could be another value. For example, you might use the returning clause to find the
value of an automatically generated primary key. Single row operations store the results into host
variables or PL/SQL variables, while multirow operations store them in bind arrays. You can use
RETURNING against tables, views with a single base table, and materialized views. The RETURNING
clause is not allowed with multitable insert operations.

INTO variable1

Specifies the variables that will hold the values returned as a result of the RETURNING clause. You must
declare a corresponding host variable or PL/SQL variable for each expression in the RETURNING clause.
You cannot use the INTO clause to hold a LONG datatype, with remote objects, on views that have
INSTEAD OF triggers, or with parallel INSERT, UPDATE, or DELETE statements.

ALL

Performs a multitable INSERT statement. ALL is used only with the subquery format. Without a WHEN clause,
ALL unconditionally inserts all the data retrieved by the subquery into the tables defined. ALL, with a WHEN
clause, performs conditional insert operations that tell Oracle to evaluate all WHEN clauses regardless of the
results of any other WHEN operation. Each time a WHEN clause evaluates as TRUE, Oracle executes the
corresponding INTO clause. Multitable inserts are not parallelized on index-organized tables or bitmap indexed
tables. They are not allowed at all when:

The target is a view or materialized view

The target is a remote table

The INSERT command uses a table collection expression

The table needs more than 999 total target columns

The subquery uses a sequence

FIRST

Tells Oracle to evaluate the WHEN clauses in order and, when it finds the first TRUE expression, execute the
corresponding INTO clause and skip all other WHEN clauses.

WHEN condition THEN standard_insert_statement

Sets a condition and, when the condition is TRUE, executes the THEN insert clause. The value of condition is
evaluated for each column returned in the result set of the subquery. Up to 127 WHEN clauses are allowed.

ELSE standard_insert_statement

Executes when no WHEN clause evaluates as TRUE.

Oracle allows the standard INSERT operations as described under the ANSI implementation, such as INSERT...SELECT
and INSERT...VALUES. But it has a great many special variations.

When inserting into tables that have assigned sequences, but sure to use the sequence_name.nextval function call to
insert the next logical number in the sequence. For example, assume you want to use the authors_seq sequence to
set the value of au_id when inserting a new row into the authors table:

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES (authors_seq.nextval, 'Rabbit', 'Jessica', 1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VALUES (authors_seq.nextval, 'Rabbit', 'Jessica', 1)

When retrieving values during an INSERT operation, check for a one-for-one match between the expressions in the
RETURNING clause and the variables of the INTO clause. The expressions returned by the clause do not necessarily
have to be those mentioned in the VALUES clause. For example, the following INSERT statement places a record into
the sales table, but places a completely distinct value into a bind variable:

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1)

RETURNING hire_date INTO :temp_hr_dt;

Notice that the RETURNING clause returns the hire_date even though hire_date is not one of the values listed in the
VALUES clause. (In this example, it is reasonable to assume a default value was established for the hire_date column.)

An unconditional multitable INSERT statement into a lookup table that contains a list of all the approved jobs in our
company looks like this:

INSERT ALL

 INTO jobs(job_id, job_desc, min_lvl, max_lvl)

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 INTO jobs(job_id+1, job_desc, min_lvl, max_lvl)

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 INTO jobs(job_id+2, job_desc, min_lvl, max_lvl)

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 INTO jobs(job_id+3, job_desc, min_lvl, max_lvl)

 VALUES(job_id, job_desc, min_lvl, max_lvl)

SELECT job_identifier, job_title, base_pay, max_pay

FROM job_descriptions

WHERE job_status = 'Active';

And just to make things more complex, Oracle allows multitable INSERT statements that are conditional:

INSERT ALL

 WHEN job_status = 'Active' INTO jobs

 WHEN job_status = 'Inactive' INTO jobs_old

 WHEN job_status = 'Terminated' INTO jobs_cancelled

 ELSE INTO jobs

SELECT job_identifier, job_title, base_pay, max_pay

FROM job_descriptions;

Note that in the above example, you would have to follow each INTO clause with a VALUES clause if you were skipping
NOT NULL columns in the target table. The following example shows this syntax:

INSERT FIRST

 WHEN job_status = 'Active'

 INTO jobs

 VALUES(job_id, job_desc, min_lvl, max_lvl)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 WHEN job_status = 'Inactive'

 INTO jobs_old

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 WHEN job_status = 'Terminated'

 INTO jobs_cancelled

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 WHEN job_status = 'Terminated'

 INTO jobs_outsourced

 VALUES(job_id, job_desc, min_lvl, max_lvl)

 ELSE INTO jobs

 VALUES(job_id, job_desc, min_lvl, max_lvl)

SELECT job_identifier, job_title, base_pay, max_pay

FROM job_descriptions;

Notice that in the above example, the FIRST clause also tells Oracle to execute the first occurance of job_status =
'Terminated' by inserting the records into the jobs_cancelled table and skipping the jobs_outsourced INSERT operation.

Oracle allows you to insert data into a table, partition, or view (also known as the target) using a regular or direct-path
INSERT statement. Under a regular insert, Oracle maintains referential integrity and reuses free space in the target.
Under direct-path, Oracle appends data at the end of the target table without filling in any free space gaps elsewhere in
the table. This method bypasses the buffer cache and writes directly to the datafiles; hence the term "direct-path."

Oracle allows the use of hints to circumvent default query optimization for INSERT
statements. For example, you can use the APPEND hint to ensure that an INSERT uses a
direct-path insert. Refer to the platform documentation for more details on hints that are
usable with INSERT.

Direct-path enhances performance on long, multirecord insert operations. However, the following is a list of restrictions
that cause an INSERT statement to perform a regular INSERT, instead of direct-path:

Altering the data in the target with an UPDATE or DELETE statement before the INSERT statement in a single
transaction. (UPDATE and DELETE are allowed after the direct-path INSERT statement.)

The INSERT statement is or may become distributed.

The target contains a LOB or object datatype column.

The target has a clustered index or index-organized table.

The target has triggers or referential integrity constraints.

The target is replicated.

The ROW_LOCKING initialization parameter is set to INTENT.

In addition, Oracle will not allow you to query (e.g., using SELECT) a table later in the same transaction after you
perform a direct-path INSERT into that table until a COMMIT has been performed.

Oracle allows you to use parallel direct-path inserts into multiple tables, but you may only use subqueries to insert the
data into the tables, not a standard VALUES clause.

Inserting LOBs and BFILEs is tricky. You should initilize such values to NULL before
inserting. RAW columns are also tricky. If you insert a regular string into a RAW column,
all future queries against the column will be forced to use a table scan.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

all future queries against the column will be forced to use a table scan.

PostgreSQL

PostgreSQL supports the ANSI standard for the INSERT statement. It does not support the ANSI SQL clause OVERRIDE
SYSTEM GENERATED VALUES, but is otherwise identical in syntax and behavior. Refer to SQL2003 Syntax, earlier, for
the syntax and usage.

PostgreSQL attempts to perform automatic datatype coercion when the expressions in the
VALUE clause or the select item list of a subquery do not match the datatypes defined for
the target table or view.

SQL Server

SQL Server supports a few extensions to the ANSI standard for INSERT. It supports several rowset functions (explained
below), as well as the capability to insert the results from stored procedures and extended procedures directly into the
target table. SQL Server's syntax is:

INSERT [INTO] table_name [(column1 [,...])

{[DEFAULT] VALUES |

VALUES (variable1 [,...]) |

SELECT_statement |

EXEC[UTE] proc_name { [[@param =] value {[OUTPUT]} [,...]] }

where:

INSERT INTO table_name

Tells SQL Server that the target is either a table, a view, or a rowset function. When inserting into a view, an
INSERT cannot affect more than one of the base tables in the view, if there are more than one. Rowset
functions allow SQL Server to source data from special or external data sources such as XML streams, full-text
search file structures (a special structure in SQL Server used to store things like MS Word documents and MS
PowerPoint slideshows within the database), or external data sources (like an MS-Excel spreadsheet). Examples
are shown later in this section. SQL Server currently supports the following rowset_functions for the INSERT
statement:

OPENQUERY

Executes a pass-through INSERT against a linked server. This is an effective means of performing a
nested INSERT against a data source that is external to SQL Server. The data source must first be
declared as a linked server.

OPENROWSET

Executes a pass-through INSERT statement against an external data source. This is similar to
OPENDATASOURCE, except that OPENDATASOURCE only opens the data source, it does not actually
pass through an INSERT statement. OPENROWSET is intended for occasional, ad hoc usage only.

column1 [,...]

Identifies one or more columns in the target table. The list must be enclosed in parentheses, and commas must
separate each item in the list. SQL Server automatically provides values for IDENTITY columns, TIMESTAMP
columns, and columns with DEFAULT constraints.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

columns, and columns with DEFAULT constraints.

DEFAULT

Tells the INSERT statement simply to create a new record using all of the default values specified for the target
table.

EXEC[UTE] proc_name { [[@param =] value {[OUTPUT]} [,...]] }

Tells SQL Server to execute a dynamic Transact-SQL statement, a stored procedure, a Remote Procedure Call
(RPC), or an extended stored procedure and store the results in a local table. Proc_name is the name of the
stored procedure you wish to execute. You may optionally include any of the parameters of the stored
procedure, as identified by @param (the at sign is required), assign a value to the parameter, and optionally
designate the parameter as an OUTPUT parameter. The columns returned by the result set must match the
datatype of the columns in the target table.

Although SQL Server automatically assigns values to IDENTITY columns and TIMESTAMP columns, it does not do so for
UNIQUEIDENTIFIER columns. With either of the former datatype columns, you may simply skip them in the columns and
values lists. However, you cannot do that with a UNIQUEIDENTIFIER column. You must use the NEWID() function to
obtain and insert a globally unique ID (GUID):

INSERT INTO guid_sample (global_ID, sample_text, sample_int)

VALUES (NEWID(), 'insert first record','10000')

GO

When migrating between platforms, remember that inserting an empty string ('') into a SQL Server TEXT or VARCHAR
column results in a zero-length string. This is not the same as a null value, as some platforms interpret it.

An example of the INSERT...EXEC statements, below, first creates a temporary table called #ins_exec_container.
Then, the INSERT operation retrieves a listing of the c:\temp directory and stores it in the temporary table, while the
second INSERT executes a dynamic SELECT statement:

CREATE TABLE #ins_exec_container (result_text

 VARCHAR(300) NULL)

GO

INSERT INTO #ins_exec_container

EXEC master..xp_cmdshell "dir c:\temp"

GO

INSERT INTO sales

EXECUTE ('SELECT * FROM sales_2002_Q4')

GO

This functionality can be very useful in stored procedures where you wish to build business logic using Transact-SQL
stored procedures, for example, to determine the state of objects in the database or outside of the database, and then
act on those results using Transact-SQL.

SQL Server allows the use of hints to circumvent default query optimization for INSERT
statements. This type of tuning is only recommended for the most advanced users. Refer
to the vendor documentation for more details on hints that are usable with INSERT.

INTERSECT Set Operator

The INTERSECT set operator retrieves the rows of two or more queries where the rows of the result sets are identical in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The INTERSECT set operator retrieves the rows of two or more queries where the rows of the result sets are identical in
both the first and second (and possibly more) queries. In some ways, INTERSECT is a lot like an INNER JOIN operation.

INTERSECT is in a class of keywords called set operators. Other set operators include EXCEPT and UNION. All set
operators are used to simultaneously manipulate the result set of two or more queries; hence the term "set operators."

Platform Command

DB2 Supported with limitations

MySQL Not supported

Oracle Supported with limitations

PostgreSQL Supported with limitations

SQL Server Not supported

SQL2003 Syntax

There is technically no limit to the number of queries that you may combine with the INTERSECT set operator. The
general syntax is:

<SELECT statement1>

INTERSECT [ALL | DISTINCT]

[CORRESPONDING [BY (column1, column2, ...)]]

<SELECT statement2>

INTERSECT [ALL | DISTINCT]

[CORRESPONDING [BY (column1, column2, ...)]]

...

Keywords

ALL

Includes duplicate rows from all result sets.

DISTINCT

Drops duplicate rows from all result sets prior to the INTERSECT comparison. Columns containing a NULL value
are considered duplicates. (If neither ALL nor DISTINCT are used, DISTINCT behavior is the default.)

CORRESPONDING

Specifies that only columns with the same name in both queries are returned, even though both queries use the
asterisk shortcut.

BY

Specifies that only the named columns are returned, even if more columns with corresponding names exist in
the queries. Must be used with the CORRESPONDING keyword.

Rules at a Glance

There is only one significant rule to remember when using INTERSECT:

The order and number of columns must be the same in all queries. The datatypes of corresponding
columns must also be compatible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

columns must also be compatible.

The datatypes do not have to be identical, but they should be compatible. For example, CHAR and VARCHAR are
compatible datatypes. By default, the result set will default to the largest of each column in each ordinal position.

Programming Tips and Gotchas

None of the platforms support the ANSI CORRESPONDING [BY column1, column2, ...] clause.

On platforms that do not support INTERSECT, substitute a query using FULL JOIN.

The ANSI standard evaluates INTERSECT as higher priority than other set operators, while some platforms vary in how
they evaluate set operator precedence. You can explicitly control the precedence of set operators using parentheses.
Otherwise, the DBMS might evaluate them from leftmost to rightmost expression or from first to last expression.

According to the standard, only one ORDER BY clause is allowed in the entire query. Include it at the end of the last
SELECT statement. In order to avoid column and table ambiguity, be sure to alias each column of each table with the
same respective alias. For example:

SELECT a.au_lname AS 'lastname', a.au_fname AS 'firstname'

FROM authors AS a

INTERSECT

SELECT e.emp_lname AS 'lastname', e.emp_fname AS 'firstname'

FROM employees AS e

ORDER BY lastname, firstname

Also, while your column datatypes may be compatible throughout the queries in the INTERSECT, there may be some
variation in behavior across the DBMS platforms with regard to varying length of the columns. For example, if the
au_lname column in the first query is markedly longer than the emp_lname column in the second query, each
platform may apply different rules as to which length is used for the final result. In general, though, the platforms will
choose the longer (and less restrictive) column size for use in the result set.

Each DBMS may apply its own rules as to which column name is used if the columns across the tables have different
names. In general, the column names from the first query are used.

DB2

DB2 supports the INTERSECT and INTERSECT ALL keywords of the ANSI standard, plus the VALUES extension:

{SELECT statement1 | VALUES (expr1 [,...]) }

INTERSECT [ALL]

[CORRESPONDING [BY (column1, column2, ...)]]

{SELECT statement2 | VALUES (expr2 [,...]) }

INTERSECT [ALL]

[CORRESPONDING [BY (column1, column2, ...)]]

...

Although ANSI's INTERSECT DISTINCT is not supported, INTERSECT is the functional equivalent. The CORRESPONDING
clause is not supported.

When using INTERSECT (but not INTERSECT ALL), the datatypes LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB,
DBCLOB, DATALINK and structured types are not usable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DBCLOB, DATALINK and structured types are not usable.

When the same column name is used across queries, then that name is used in the final result set. If, however, the
queries use different names for a column, then DB2 generates a new column name for the final result. That column is
then unusable in the ORDER BY and FOR UPDATE clauses.

If multiple set operations are used in a single query, those enclosed in parentheses are evaluated first. Then, the
queries are evaluated in left-to-right order. However, all INTERSECT operations are performed before any UNION and
EXCEPT operations. For example:

SELECT empno

FROM employee

WHERE workdept LIKE 'E%'

INTERSECT

(SELECT empno

 FROM emp_act

 WHERE projno IN ('IF1000', 'IF2000', 'AD3110')

UNION

 VALUES ('AA0001'), ('AB0002'), ('AC0003'))

The example above retrieves all employee IDs from the employee table for employees who are in any department that
starts with "E." However, employee IDs are returned only if they also exist in the employee accounts table, named
emp_act, or have projects of IF1000, IF2000, or AD3110.

MySQL

Not supported.

Oracle

Oracle supports the INTERSECT and INTERSECT ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

INTERSECT

<SELECT statement2>

INTERSECT

...

Oracle does not support the CORRESPONDING clause. The INTERSECT DISTINCT is not supported, but INTERSECT is
the functional equivalent. Oracle does not support INTERSECT on queries under the following circumstances:

Queries with columns of LONG, BLOB, CLOB, BFILE, or VARRAY datatypes

Queries contain FOR UPDATE clause or TABLE collection expressions

If the first query in the set operation contains any expressions in the select item list, then include the AS keyword to
associate an alias with the column resulting from the expression. Also, only the first query in the set operation may
contain an ORDER BY clause.

For example, you could find all store IDs that also have sales:

SELECT stor_id FROM stores

INTERSECT

SELECT stor_id FROM sales

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostgreSQL

PostgreSQL supports the INTERSECT and INTERSECT ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

INTERSECT [ALL]

<SELECT statement2>

INTERSECT [ALL]

...

PostgreSQL does not support INTERSECT or INTERSECT ALL on queries with a FOR UPDATE clause. PostgreSQL does
not support the CORRESPONDING clause. The INTERSECT DISTINCT is not supported, but INTERSECT is the functional
equivalent.

The first query in the set operation may not contain an ORDER BY clause or a LIMIT clause. Subsequent queries in the
INTERSECT or INTERSECT ALL set operation may contain these clauses, but such queries must be enclosed in
parentheses. Otherwise, the rightmost occurance of ORDER BY or LIMIT will be assumed to apply to the entire set
operation. For example, you could find all authors who are also employees and whose last last name starts with "P":

SELECT a.au_lname

FROM authors AS a

WHERE a.au_lname LIKE 'P%'

INTERSECT

SELECT e.lname

FROM employee AS e

WHERE e.lname LIKE 'W%';

SQL Server

Not supported. However, you can use NOT IN or NOT EXISTS operations in conjunction with a correlated subquery as
alternatives. Refer to the EXCEPT Set Operator section for examples.

See also

EXCEPT
SELECT
UNION

IS Operator

The IS operator determines whether a value is NULL or not.

Platform Command

DB2 Supported

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

{WHERE | {AND | OR} } expression IS [NOT] NULL

Keywords

WHERE | {AND | OR} expression IS NULL

Returns a Boolean value of TRUE if the expression is NULL, and FALSE if the expression is not NULL. The expression
evaluated for NULL can be preceded by a the WHERE keyword or AND or OR keywords.

NOT

Inverses the predictate. The statement will instead return a Boolean TRUE if the value of expression is not NULL,
and FALSE if the value of expression is NULL.

Rules at a Glance

Because the value of NULL is unknown, you cannot use comparison expressions to determine if a value is NULL. For
example, the expressions X = NULL and X <> NULL cannot be resolved because no value can equal, or not equal, an
unknown.

Instead, you must use the IS NULL operator. Be sure that you do not put the word NULL within quote marks, because if
you do that, the DBMS will interpret the value as the word "NULL" and not the special value of NULL.

Programming Tips and Gotchas

Some platforms support the use of a comparison operator to determine if an expression is NULL. However, all platforms
covered by this book now support the ANSI IS [NOT] NULL syntax.

Sometimes, checking for NULL will make your WHERE clause only slightly more complex. For example, rather than a
simple predicate to test the value of stor_id:

SELECT stor_id, ord_date

FROM sales

WHERE stor_id IN (6630, 7708)

you need to add a second predicate to accomodate the possibility that stor_id might be NULL:

SELECT stor_id, ord_date

FROM sales

WHERE stor_id IN (6630, 7708)

 OR stor_id IS NULL

See Also

SELECT
WHERE

JOIN Subclause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JOIN subclause enables you to retrieve rows from two or more logically related tables. You are able to define many
different join conditions and types of joins, though the types of joins supported by the different platforms vary greatly.

Platform Command

DB2 Supported, with limitations

MySQL Supported, with variations

Oracle Supported

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

SQL2003 Syntax

FROM table [AS alias] {CROSS JOIN |

{ [NATURAL] [join_type] JOIN joined_table [AS alias]

 { ON join_condition1 [{AND|OR} join_condition2] [...]] |

 USING (column1 [,...]) } }

[...]

Keywords

FROM table

Defines the first table or view in the join.

NATURAL

Specifies that the join (either inner or outer) should be assumed on the tables using all columns of identical
name shared between the two tables. Consequently, you should not specify join conditions using the ON or
USING clauses. The query will fail if you issue a natural join on two tables that do not contain any columns with
the same name(s).

join_type JOIN joined_table

Specifies the type of JOIN and the second (and any subsequent) table in the join. You may also define an alias
on any of the joined_tables. The join types are:

CROSS JOIN

Specifies the complete cross product of two tables. For each record in the first table, all the records in
the second table are joined, creating a huge result set. This command has the same effect as leaving off
the join condition, and is also known as a "Cartesian Product." Cross joins are not advisable or
recommended.

[INNER] JOIN

Specifies that unmatched rows in either table of the join should be discarded. If no join type is explicitly
defined in the ANSI style, then this is the default.

LEFT [OUTER] JOIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that all records be returned from the table on the left side of the join statement. If a record
returned from the left table has no matching record in the table on the right side of the join, it is still
returned. Columns from the right table return NULL values when there is no matching row. It is a good
idea to configure all your outer joins as left outer joins, rather than mixing left and right outer joins,
wherever possible for consistency.

RIGHT [OUTER] JOIN

Specifies that all records be returned from the table on the right side of the join statement, even if the
table on the left has no matching record. Columns from the left table return NULL values when there is
no matching row.

FULL [OUTER] JOIN

Specifies that all rows from both tables be returned, regardless of whether a row from one table
matches a row in the other table. Any columns that have no value in the corresponding joined table are
assigned a NULL value.

UNION JOIN

Specifies that all the columns of both tables and every row of both table will be returned. Any columns
that have no value in the corresponding joined table are assigned a NULL value.

AS alias

Specifies an alias or shorthand for the joined table. The AS keyword is optional when specifying an alias.

ON join_condition

Joins together the rows of the table shown in the FROM clause to the rows of the table declared in the
JOIN clause. You may have multiple JOIN statements, all based on a common set of values. These
values are usually contained in columns of the same name and datatype appearing in both tables being
joined. These columns, or possibly a single column from each table, are called the join key or common
key. Most—but not all—of the time, the join key is the primary key of one table and a foreign key in
another table. As long as the data in the columns match, the join can be performed.

Joins can also be performed using the WHERE clause. This technique is sometimes called a
theta join.

Join_conditions are syntactically depicted in the following form (note that join types are intentionally excluded in this
example):

FROM table_name1

JOIN table_name2

 ON table_name1.column1 = table_name2.column2

 [{AND|OR} table_name1.column3 = table_name2.column4]

 [...]

JOIN table_name3

 ON table_name1.columnA = table_name3.columnA

 [{AND|OR} table_name1.column3 = table_name2.column4]

 [...]

[JOIN...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Use the AND operator and the OR operator to issue a JOIN with multiple conditions. It is also a good idea to use
brackets around each pair of joined tables if more than two tables are involved. This makes reading the query much
easier.

USING (column [,...])

Assumes an equality condition on one or more named columns that appear in both tables. The column (or
columns) must exist, as named, in both tables. Writing a USING clause is a little quicker than writing ...ON
table1.columnA = table2.columnA, but the results are functionally equivalent.

Rules at a Glance

Joins enable you to retrieve records from two (or more) logically related tables in a single result set. You can use an
ANSI JOIN (detailed here) to perform this operation, or something called a theta join. Theta joins, which use the
WHERE clause to establish the filtering criteria, are the "old" way to do join operations.

For example, you might have a table called employee that tracks information about everyone employed in your
company. The employee table, however, doesn't have extensive information about the job an employee holds.
Instead, the employee table holds only a job_id. All information about the job, such as description and title, are
stored in a table called job. Using a JOIN, you can easily return columns from both tables in a single set of records. The
following sample queries illustrate the difference between a theta and an ANSI JOIN:

/* Theta join */

SELECT emp_lname, emp_fname, job_title

FROM employee, jobs

WHERE employee.job_id = jobs. job_id;

/* ANSI join */

SELECT emp_lname, emp_fname, job_title

FROM employee

JOIN jobs ON employee.job_id = jobs.job_id;

Whenever you reference multiple columns in a single query, the columns must be unambiguous. In other words, the
columns must either be unique to each table, or they must be referenced with a table identifier. In the example above,
both tables have a job_id column, so references to job_id must be qualified with a table identifier. The columns in the
query that don't exist in both tables don't need to be qualified by table identifiers. However, queries like this are often
very hard to read. The following variation of the previous ANSI join is in better form, because it uses the short, and
easy to read, alias e to refer to the table:

SELECT e.emp_lname, e.emp_fname, j.job_title

FROM employee AS e

JOIN jobs AS j ON e.job_id = j.job_id;

Previous examples were limited to equi-joins — joins using equality and an equal sign (=). However, most other
comparison operators are allowed. You can perform joins on >, <, >=, <=, <> , and so forth.

You cannot join on large object binary datatypes (i.e., BLOB) or other large object datatypes (e.g., CLOB, NLOB, etc.).
Other datatypes are usually allowed in a join comparison.

Following are examples of each type of join:

CROSS JOIN

Following are some cross join eamples. The first is a theta join that simply leaves off the join conditions. The
second is written using the CROSS JOIN clause. The final query is similar in concept to the first, with a JOIN
clause that omits the join conditions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clause that omits the join conditions.

SELECT *

FROM employee, jobs;

SELECT *

FROM employee

CROSS JOIN jobs;

SELECT *

FROM employee

JOIN jobs;

INNER JOIN

Following is an inner join written using the newer syntax:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

INNER JOIN publishers AS p ON a.city = p.city

ORDER BY a.au_lname DESC

There are lots of authors in the authors table, but very few of them have a city that matches the city of the publishers
in the publishers table. For example, the above query executed in the pubs database on a SQL Server produces
results like the following:

first name last name publisher

--------------- -------------------- ------------------

Carson Cheryl Algodata Infosystems

Bennet Abraham Algodata Infosystems

The join is called an inner join because only those records that meet the join condition in both tables are said to be
"inside" the join. You could also issue the same query, on platforms that support it, by substituting the USING clause for
the ON clause:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

INNER JOIN publishers AS p USING (city)

ORDER BY a.au_lname DESC

The results for the above query would be the same.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LEFT [OUTER] JOIN

It is a good idea to configure all your outer joins as left outer joins, for greater consistency, rather than mixing
left and right outer joins.

In the following example, we can show a LEFT OUTER JOIN by asking for the publisher for each author (we could also
substitute the USING clause for the ON clause, as shown in the example for INNER JOIN shown earlier):

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

LEFT OUTER JOIN publishers AS p ON a.city = p.city

ORDER BY a.au_lname DESC

In the above example, every author will be returned along with the publisher's name, where there is a match, or a
NULL value, where there is no match. For example, in the SQL Server pubs database, the query above returns:

first name last name publisher

--------------- -------------------- ----------------

Yokomoto Akiko NULL

White Johnson NULL

Stringer Dirk NULL

Straight Dean NULL

...

All of the data is returned in the lefthand columns (those from the authors table) and any column on the righthand side
(those from the publishers table) that does not have a match returns a NULL value. The result set shows NULL values
where no data matches in the join.

RIGHT [OUTER] JOIN

RIGHT OUTER JOIN is essentially the same as a LEFT OUTER JOIN, except everything is weighted toward the
table on the right side of the query. For example, the following query executed in the pubs database on a SQL
Server:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

RIGHT OUTER JOIN publishers AS p ON a.city = p.city

ORDER BY a.au_lname DESC

returns the following result set:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

returns the following result set:

first name last name publisher

---------------- ---------------- ------------------------

Carson Cheryl Algodata Infosystems

Bennet Abraham Algodata Infosystems

NULL NULL New Moon Books

NULL NULL Binnet & Hardley

All of the data is returned on the righthand side of the query (hence the term "right outer join") and any columns from
the left-hand side that do not have a match return a NULL value. The result set shows NULL values where no data
matches in the join.

NATURAL [INNER | {LEFT | RIGHT}[OUTER]] JOIN

Natural joins are a substitute for the ON or USING clause, so do not use NATURAL with the ON or USING
clauses. For example:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

NATURAL RIGHT OUTER JOIN publishers AS p

ORDER BY a.au_lname DESC

The preceding query will work as the earlier examples, but only if both tables possess a column called city and that is
the only column that they hold in common. You could similarly perform any of the other types of joins (INNER, FULL,
OUTER) using the NATURAL prefix.

FULL [OUTER] JOIN

Specifies that all rows from either table be returned, regardless of matching records in the other table. The
result set shows NULL values, where no data matches in the join. Note that the OUTER keyword is optional. If
we take our earlier example query and render it as a FULL JOIN, it looks like this:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

FULL JOIN publishers AS p ON a.city = p.city

ORDER BY a.au_lname DESC

The result set returned by the query is actually the accumulation of the result sets of issuing separate INNER, LEFT, and
RIGHT join queries (some records have been excluded for brevity):

first name last name publisher

-------------------- -------------------- --------------------

Yokomoto Akiko NULL

White Johnson NULL

Stringer Dirk NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Stringer Dirk NULL

...

Dull Ann NULL

del Castillo Innes NULL

DeFrance Michel NULL

Carson Cheryl Algodata Infosystems

Blotchet-Halls Reginald NULL

Bennet Abraham Algodata Infosystems

NULL NULL Binnet & Hardley

NULL NULL Five Lakes Publishin

NULL NULL New Moon Books

...

NULL NULL Scootney Books

NULL NULL Ramona Publishers

NULL NULL GGG&G

As you can see above, with the FULL JOIN you get some records with the NULLs on the right and data on the left (LEFT
JOIN), some with all data (INNER JOIN), and some with NULLs on the left and data on the right (RIGHT JOIN).

Programming Tips and Gotchas

If an explicit join_type is omitted, then an INNER JOIN is assumed. Note that there are many types of joins, each with
their own rules and behaviors, described in the "Rules at a Glance."

In general, you should favor the JOIN clause over the WHERE clause for describing join expressions. This not only keeps
your code cleaner, making it easy to differentiate join conditions from search conditions, but you also avoid the
possibility of buggy behavior resulting from some platform-specific implementations of outer joins specified using the
WHERE clause.

In general, we do not recommend the use of labor-saving keywords like NATURAL, since the subclause will not
automatically update itself when the structure of the underlying tables change. Consequently, statements using these
constructs may fail when a table change is introduced without also changing the query.

Not all join types are supported by all platforms, so refer to the sections below for full details on platform-specific join
support.

Joins involving more than two tables can be difficult. When joins involve three or more
tables, it is a good idea to think of the query as a series of two table joins.

DB2

DB2 supports INNER and OUTER joins using the ON condition clause. It does not support CROSS or NATURAL join
sytax, nor the USING clause. DB2's JOIN clause syntax is:

FROM table [AS alias]

{ {[INNER] | [{LEFT | RIGHT | FULL} [OUTER]]}

 JOIN joined_table [AS alias]

 { ON join_condition1 [{AND|OR} join_condition2] [...]] }

[...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[...]

Refer to the "Rules at a Glance" section for examples.

MySQL

MySQL supports most ANSI syntax, except that natural joins are only supported on outer joins, not on inner joins.
MySQL's JOIN syntax is:

FROM table [AS alias]

{[STRAIGHT_JOIN joined_table] |

{ {[INNER] | | [CROSS] |

 [NATURAL] [{LEFT | RIGHT | FULL} [OUTER]]}

 JOIN joined_table [AS alias]

 { ON join_condition1 [{AND|OR} join_condition2] [...]] |

 USING (column1 [,...]) } } }

[...]

where:

STRAIGHT_JOIN

Forces the optimizer to join tables in the exact order they appear in the FROM clause.

The STRAIGHT_JOIN keyword is functionally equivalent to JOIN, except that it forces the join order from left to right.
This option was supplied because MySQL might, rarely, join the tables in the wrong order.

Refer to the Rules at a Glance section for examples.

Oracle

Oracle fully supports the entire ANSI standard JOIN syntax. However, Oracle only began to support ANSI standard JOIN
syntax in Version 9. Consequently, any older Oracle SQL code exclusively uses WHERE clause joins. Oracle's old syntax
for outer theta joins included adding (+) to column names on the side opposite of the outer table. Oracle's old syntax
for outer joins comes from the fact that the table supplying the null value rows in effect has null value rows added to it.
Oracle represents this by appending the expression "(+)" to the column name on the opposite side of the direction of
the join.

For example, the following query does a RIGHT OUTER JOIN on the authors and publishers tables. The old Oracle
syntax looks like this:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors a, publishers p

WHERE a.city(+) = p.city

ORDER BY a.au_lname DESC

while the same query in the ANSI syntax would look like:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

while the same query in the ANSI syntax would look like:

SELECT a.au_lname AS 'first name',

 a.au_fname AS 'last name',

 p.pub_name AS 'publisher'

FROM authors AS a

RIGHT OUTER JOIN publishers AS p ON a.city = p.city

ORDER BY a.au_lname DESC

Refer to the Rules at a Glance section for more JOIN examples.

Oracle is unique in offering partitioned outer joins, which are useful for filling gaps in result sets due to sparse data
storage. For example, assume we store production records in a manufacturing table keyed on day and product_id. The
table holds a row showing quantity produced for each product for any day on which it is made, but there are no rows
for the days it is not produced. This is considered sparse data, since a list of all rows will not show every day for every
product. For calculation and reporting purposes, it's very useful to create result sets where each product has a row for
every day, whether or not it was manufactured. Partition outer join makes it simple to do that, since it lets you define a
logical partition and apply an outer join to each partition value. Here is the manufacturing example, which does a
partitioned outer join with a times table to make sure each product_id has the full set of dates in a specified time
range:

SELECT times.time_id AS time, product_id AS id, quantity AS qty

FROM manufacturing

PARTITION BY (product_id)

RIGHT OUTER JOIN times

ON (manufacturing.time_id = times.time_id)

WHERE manufacturing.time_id

BETWEEN TO_DATE('01/10/05', 'DD/MM/YY')

 AND TO_DATE('06/10/05', 'DD/MM/YY')

ORDER BY 2, 1;

Following is the output from this query:

time id qty

--------- ------ ---

01-OCT-05 101 10

02-OCT-05 101

03-OCT-05 101

04-OCT-05 101 17

05-OCT-05 101 23

06-OCT-05 101

01-OCT-05 102

02-OCT-05 102

03-OCT-05 102 43

04-OCT-05 102 99

05-OCT-05 102

06-OCT-05 102 87

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

06-OCT-05 102 87

To get these results without using a partitioned outer join would require more complex and less efficient SQL.

PostgreSQL

PostgreSQL fully supports the ANSI standard. Refer to the Rules at a Glance section for examples.

SQL Server

SQL Server supports INNER, OUTER, and CROSS joins using the ON clause. SQL Server does not support NATURAL join
sytax, nor the USING clause. SQL Server's JOIN syntax is:

FROM table [AS alias]

{ {[INNER] | | [CROSS] | [{LEFT | RIGHT | FULL} [OUTER]]}

 JOIN joined_table [AS alias]

 { ON join_condition1 [{AND|OR}

 join_condition2] [...]] }

[...]

Refer to the Rules at a Glance section for examples.

See Also

SELECT
WHERE

LIKE Operator

The LIKE operator enables specified string patterns in SELECT, INSERT, UPDATE, and DELETE statements to be
matched, specifically in the WHERE clause. A specified pattern may include special wildcard characters. The specific
wildcards supported vary from platform to platform.

Platform Command

DB2 Supported

MySQL Supported, with variations

Oracle Supported

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

WHERE expression [NOT] LIKE string_pattern

 [ESCAPE escape_sequence]

Keywords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE expression LIKE

Returns a Boolean TRUE when the value of expression matches the string_pattern. The expression may be a
column, a constant, a host variable, a scalar function, or a concatenation of any of these. It should not be a
user-defined type, nor should it be certain types of LOBs.

NOT

Inverses the predictate. The statement returns a Boolean TRUE if the value of expression does not contain the
string_pattern, and FALSE if the value of expression contains the string_pattern.

ESCAPE escape_sequence

Allows you to search for the presence of characters that would normally be interpreted as wildcards.

Rules at a Glance

Matching string patterns is easy with LIKE, but there are a couple of simple rules to remember:

All characters, including trailing and leading spaces, are important.

Differing datatypes may be compared using LIKE, but they store string patterns differently. In particular, be
aware of the differences between CHAR, VARCHAR, and DATE datatypes.

Using LIKE may negate indexes or force the DBMS to use alternative, less optimal indexes than a straight
comparison operation.

The ANSI standard currently supports two wildcard operators that are supported by all of the platforms covered in this
book:

%

Matches any string.

_ (underscore)

Matches any single character.

The first query in the following example retrieves any city record with "ville" in its name. The second query returns
authors with a first name not like Sheryl or Cheryl (or Aheryl, Bheryl, Dheryl, 2heryl, and so forth).

SELECT * FROM authors

WHERE city LIKE '%ville%';

SELECT * FROM authors

WHERE au_fname NOT LIKE '_heryl';

Some of the platforms support additional wildcard symbols. These are described in the platform-specific sections that
follow.

Use of the ESCAPE clause allows you to look for wildcard characters in the strings stored in your database. Using this
mechanism, you designate a character as your escape character, typically a character that does not otherwise appear in
the pattern string. For example, you might designate the tilde (~) because you know it never appears in the pattern
string. Any wildcard character preceded by the escape sequence is then not treated as a wildcard, but rather as the
character itself. For example, to look through the comments column of the sales_detail table (on SQL Server) to see
whether any customers have mentioned a newly introduced discount:

SELECT ord_id, comment

FROM sales_detail

WHERE comment LIKE '%~%%' ESCAPE '~'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this case, the first and last % are interpreted as wildcards. But the second % character is interpreted as just that, a
% character, because it is preceded by the designated escape sequence.

Programming Tips and Gotchas

The usefulness of LIKE is based on the wildcard operators that it supports. LIKE returns a Boolean TRUE value when the
comparison finds one or more matching values.

The default case sensitivity of the DBMS is very important to the behavior of LIKE. For example, Microsoft SQL Server is
not case-sensitive by default (though it can be configured that way). Thus, Microsoft SQL Server will evaluate the
strings DAD and dad to be equal. Oracle, on the other hand, is case-sensitive. Thus, on Oracle, a comparison of DAD and
dad would show them to be unequal. Here's an example query to better illustrate this point:

SELECT *

FROM authors

WHERE lname LIKE 'LARS%'

This query on Microsoft SQL Server would find authors whose last names are stored as 'larson' or 'lars,' even though the
search was for uppercase 'LARS%'. Oracle would not find 'Larson' or 'Lars', because Oracle performs case-sensitive
comparisons.

DB2

DB2 supports the ANSI SQL2003 syntax for LIKE. It supports the percent (%) and underscore (_) wildcards. It
supports ESCAPE sequences.

DB2 is case sensitive, so its implementation of LIKE is completely case sensitive. You should use a function like UPPER
or TRANSLATE to ensure that differently cased values are always evaluated uniformly. In addition, DB2 will implicitly
convert the code page of either the string_pattern or the escape_sequence to that of the expression, as long as none of them
are defined as FOR BIT DATA.

MySQL

MySQL supports the ANSI syntax for LIKE. It supports the percent (%) and underscore (_) wildcards. It also supports
the ESCAPE clause.

MySQL also supports the special functions of REGEXP and RLIKE, plus NOT REGEXP and NOT RLIKE for the evaluation of
regular expressions. MySQL, after Version 3.23.4, is not case sensitive by default.

Oracle

Oracle supports the ANSI syntax for LIKE. It supports the percent (%) and underscore (_) wildcards. It supports
ESCAPE sequences. Oracle's LIKE syntax is as follows:

WHERE expression [NOT] {LIKE | LIKEC | LIKE2 |

 LIKE4} string_pattern

[ESCAPE escape_sequence]

The Oracle-specific syntax elements have the following meanings:

LIKEC

Uses UNICODE complete characters.

LIKE2

Uses UNICODE USC2 codepoints.

LIKE4

Uses UNICODE UCS4 codepoints.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Uses UNICODE UCS4 codepoints.

Since Oracle is case sensitive, you should enclose the expression, the string_pattern, or both, with the UPPER function.
That way, you are always comparing apples to apples.

PostgreSQL

PostgreSQL supports the ANSI syntax for LIKE. It supports the percent (%) and underscore (_) wildcards. It supports
ESCAPE sequences.

PostgreSQL is case sensitive by default. PostgreSQL provides the keyword ILIKE for case-insensitive pattern matching.
You can also use the operator ~~ as an equivalent to LIKE, and ~~* for ILIKE, as well as !~~ and !~~* for NOT LIKE
and NOT ILIKE, respectively. These are all extensions to the ANSI SQL2003 standard.

For example, the following queries are functionally the same:

SELECT * FROM authors

WHERE city LIKE '%ville';

SELECT * FROM authors

WHERE city ~~ '%ville';

Since these queries are in lowercase, you might run into a case-sensitivity problem. That is, the queries are looking for
a lowercase '%ville', but the table might contain uppercase (and unequal) values of 'BROWNSVILLE', 'NASHVILLE', and
'HUNTSVILLE'. You can get around this as shown below:

-- convert the values to upper case

SELECT * FROM authors

WHERE city LIKE UPPER('%ville');

-- perform the pattern match using case insensitivity

SELECT * FROM authors

WHERE city ~~* '%ville';

SELECT * FROM authors

WHERE city ILIKE '%ville';

Although beyond the scope of this text, you should be aware that PostgreSQL also supports POSIX regular expressions.
See the platform documentation for details.

SQL Server

SQL Server supports the ANSI syntax for LIKE. It supports ESCAPE sequences. It supports the following additional
wildcard operators:

[]

Matches any value in the specified set, as in [abc], or any range, as in [k-n].

[^]

Matches any characters not in the specified set or range.

Using SQL Server's additional wildcard operators, you have some added capabilities. For example, you can retrieve any
author with a last name like Carson, Carsen, Karson, or Karsen:

SELECT * FROM authors

WHERE au_lname LIKE '[CK]ars[eo]n'

Or you can retrieve any author with a last name that ends in "arson" or "arsen," but not Larsen or Larson:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Or you can retrieve any author with a last name that ends in "arson" or "arsen," but not Larsen or Larson:

SELECT * FROM authors

WHERE au_lname LIKE '[A-Z^L]ars[eo]n'

Remember that when performing string comparisons with LIKE, all characters in the
pattern string are significant, including all leading and trailing blank spaces.

See Also

SELECT, UPDATE, DELETE
WHERE

MERGE Statement

The MERGE statement is sort of like a CASE statement for DML operations. It combines UPDATE and INSERT statements
into a single atomic statement with either/or functionality.

Basically, MERGE examines the records of a source table and a target table. If the records exist in both the source and
target tables, based upon predefined conditions, then records in the target table are updated with the values of the
records in the source table. If records do not exist in the target table that do exist in the source table, then they are
inserted into the target table. The MERGE statement was added in the SQL2003 release of the ANSI standard.

Platform Command

DB2 Supported

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

MERGE INTO {object_name | subquery} [[AS] alias]

USING table_reference [[AS] alias]

ON search_condition

WHEN MATCHED

 THEN UPDATE SET column = { expression | DEFAULT } [, ...]

 WHEN NOT MATCHED

 THEN INSERT [(column [, ...])] VALUES (expression [, ...])

Keywords

MERGE INTO {object_name | subquery}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MERGE INTO {object_name | subquery}

Declares the target object of the merge operation. The target object may be a table or updateable view of
object_name, or the target object may be a nested table subquery rather than an explicitly declared table or
updateable view.

[AS] alias

Provides an optional alias for the target table.

USING table_reference

Declares the source table, view, or subquery of the merge operation.

ON search_condition

Specifies the condition or conditions on which a match between the source and target table are evaluated. The
syntax is essentially the same as the ON subclause of the JOIN clause. For example, when merging records
from the new_hire_emp table into the emp table the clause might look like ON emp.emp_id =
new_hire_emp.emp_id.

WHEN MATCHED THEN UPDATE SET column = { expression | DEFAULT } [, ...]

Declares that if a record from the source table has a matching record in the target table (based on the
search_condition), then one or more specified columns of the target table are updated with the indicated value of
expression.

WHEN NOT MATCHED THEN INSERT [(column [, ...])] VALUES (expression [, ...]

Declares that if a record from the source table does not have a matching record in the target table (based on
the search_condition), then a new record is inserted into the target table using one or more specified columns
using the value of expression.

Rules at a Glance

The rules for using MERGE are straightforward:

The WHEN MATCHED and WHEN NOT MATCHED clauses are required, but may not be specified more than once.

The target table can be a standard updateable table, an updateable view, or an updateable subquery.

If the table_reference is a subquery, enclose it in parentheses.

The search_condition clause should not contain any references to stored procedures or user-defined functions.

The search_condition clause may contain multiple elements using the AND or OR operators.

If the column list is omitted from the WHEN NOT MATCHED clause, then a column list of all the columns in the
target table, in ordinal position, is assumed.

Other important rules used by the MERGE statement are self-evident. For example, the columns referenced in
the WHEN MATCHED clause must be updateable.

Programming Tips and Gotchas

The MERGE statement has sometimes been nicknamed the "upsert" statement. That is because it allows, in a single
operation, a set of records to be either inserted into a table or, if they already exist, updated with new values.

The only tricky aspect of the MERGE statement is simply getting used to the idea of either/or processing of the INSERT
and UPDATE statements.

Assume that we have two tables. The EMP table contains all employees of the company who have successfully
completed the mandatory 90-day probationary period at the start of their employment. Employees in the EMP table can
also have several statuses, such as active, inactive, and terminated. Any new hire to the company is recorded in the
NEW_HIRE table. After 90 days, they are moved into the EMP table like all other regular employees. However, since

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NEW_HIRE table. After 90 days, they are moved into the EMP table like all other regular employees. However, since
our company hires college interns every summer, it's very likely that some of our new hires will actually have a record
in the EMP table from last year with a status of inactive. Using pseudocode, the business problem is summarized as:

For each record in the NEW_HIRE table

 Find the corresponding record in the EMP table

 If the record exists in the EMP table

 Update existing data in the EMP table

 Else

 Insert this record into the EMP table

 End If

End For

We could write a rather lengthy stored procedure that will examine all the records of the NEW_HIRE table and then
conditionally perform INSERT statements for the entirely new employees or UPDATE statements for the returning
college interns. But the following ANSI standard MERGE statement makes this process much easier:

MERGE INTO emp AS e

 USING (SELECT * FROM new_hire) AS n

 ON e.empno = n.empno

WHEN MATCHED THEN

 UPDATE SET

 e.ename = n.ename,

 e.sal = n.sal,

 e.mgr = n.mgr,

 e.deptno = n.deptno

WHEN NOT MATCHED THEN

 INSERT (e.empno, e.ename, e.sal, e.mgr, e.deptno)

 VALUES (n.empno, n.ename, n.sal, n.mgr, n.deptno);

As you can see, the MERGE statement is very useful for data loading operations.

DB2

DB2 supports the ANSI standard for the MERGE statement.

MySQL

Not supported.

Oracle

Oracle supports the MERGE statement with only the tiniest variations, which are almost entirely evident by comparing
the Oracle syntax diagram against the ANSI standard syntax diagram:

MERGE INTO [schema.] {object_name | subquery} [alias]

USING [schema.]table_reference [alias]

ON (search_condition)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ON (search_condition)

WHEN MATCHED THEN

 UPDATE SET column = { expression | DEFAULT } [, ...]

WHEN NOT MATCHED THEN

 INSERT (column [, ...]) VALUES (expression [, ...]

The differences between the ANSI standard and Oracle's implementation include:

The Oracle implementation does not allow the AS keyword with assigning an alias to the target or source table.

Oracle requires parentheses around the search_condition clause.

The WHEN NOT MATCHED clause requires an insert column list, while the ANSI standard makes it optional.

Refer to the examples in the earlier "Rules at a Glance" and "Programming Tips and Gotchas" for more information.

PostgreSQL

Not supported.

SQL Server

Not supported.

See Also

INSERT
JOIN
SELECT
SUBQUERY
UPDATE

OPEN Statement

The OPEN statement is one of four commands used in cursor processing, along with DECLARE, FETCH, and CLOSE.
Cursors allow you to process queries one row at a time, rather than in a complete set. The OPEN statement opens a
pre-existing server cursor created with the DECLARE CURSOR statement.

Cursors are especially important on relational databases because databases are set-based, while most client-centric
programming languages are row-based. So cursors allow programmers and databases to perform operations a single
row at a time, while the default behavior of a relational database is to operate on a whole set of records.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

SQL Server Supported

SQL2003 Syntax

OPEN cursor_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OPEN cursor_name

Keywords

OPEN cursor_name

Identifies and opens the previously defined cursor created with the DECLARE CURSOR command.

Rules at a Glance

At the highest level, a cursor must be:

1. Created using DECLARE

2. Opened using OPEN

3. Operated against using FETCH

4. Dismissed using CLOSE

By following these steps, you create a result set similar to that of a SELECT statement, except that you can operate
against each individual row within the result set. For example, assume, on a DB2 database, that you've created a cursor
called employee_cursor, containing three columns:

DECLARE CURSOR employee_cursor FOR

SELECT lname, fname, emp_id

FROM employee

WHERE hire_date >= 'FEB-14-2004';

Having created the cursor, you can now open the cursor and fetch data from it into some host variables:

OPEN employee_cursor;

FETCH NEXT FROM employee_cursor

INTO :emp_last_name, :emp_first_name, :emp_id

The FETCH statement allows you to position the current row within the result set retrieved by the the cursor. If you
haven't accessed the cursor yet, you will be given the first record in the result set. You can then use any procedural
code you want to operate against the values in that row.

The following generic SQL example opens a cursor and fetches all the author firstname and author lastname values
from the authors table:

DECLARE employee_cursor CURSOR FOR

 SELECT au_lname, au_fname

 FROM pubs.dbo.authors

 WHERE lname LIKE 'K%'

OPEN employee_cursor

FETCH NEXT FROM employee_cursor

BEGIN

 FETCH NEXT FROM employee_Cursor

END

CLOSE employee_cursor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Programming Tips and Gotchas

The most common error encountered with the OPEN statement is failing to close the cursor properly. Although the
OPEN statement is detailed in isolation here, it should always be managed as a group with the DECLARE, FETCH, and
CLOSE statements. Although you will not get an error message for failing to close a cursor, the cursor may continue to
consume memory, locks, and other resources on the server as long as it is open. For example, if you forget to close
cursors, you could be creating a headache somewhat similar to a memory leak — each cursor consumes memory until it
is closed. Even if you no longer use a cursor, it is still taking up memory that the database server might otherwise be
using elsewhere. So take a little extra time to make sure that every declared and opened cursor is eventually closed.

Cursors are often used in stored procedures and in batches of procedural code. They are useful when you need to
perform actions on individual rows rather than on entire sets of data at a time. But because cursors operate on
individual rows and not on sets of data, they are often much slower than other means of accessing data. Just make sure
that you perform strong analysis on your approach. Many challenges, such as a convoluted DELETE operation or a very
complex UPDATE, can be solved by using clever WHERE and JOIN clauses instead of cursors.

DB2

DB2 supports the ANSI standard for OPEN with a couple of additions:

OPEN cursor_name [USING {variable_name1 [,...] | DESCRIPTOR descriptor_name}]

The DB2 specific syntax elements are:

USING {variable_name1 [,...] | DESCRIPTOR descriptor_name}

Supplies a list of variables for any parameters in the prepared SELECT statement. If the DECLARE CURSOR
statement used a prepared SELECT statement with variables, you cannot use the USING clause. (If you use
USING and there are no parameters, then USING is ignored.) The USING clause elements are as follows:

variable_name1 [,...]

Specifies a host variable or variables. As you would expect, each variable corresponds to a parameter of the
same ordinal position. DB2 locator variables and file reference variables are allowable, in addition to host
variables. Host variables are used for static SQL.

DESCRIPTOR descriptor_name

Identifies a descriptor area (SQLDA) containing a valid description of the dynamic SQL variable(s). Descriptor
variables are used for dynamic SQL.

For example, the following DB2 code declares several host (called hostvarxxx) and dynamic variables (defined with
the PREPARE statement), and then uses them in a cursor called dynamic_cursor:

EXEC SQL BEGIN DECLARE SECTION;

 static short hostvar_int;

 char hostvar_vchar64[65];

 char statement_str[200];

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE statement_name

 FROM :statement_str;

EXEC SQL DECLARE dynamic_cursor CURSOR

 FOR statement_name;

EXEC SQL OPEN dynamic_cursor

 USING :hostvar_int, :hostvar_vchar64;

MySQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL

Not supported.

Oracle

Oracle fully supports the ANSI standard. Plus, Oracle allows parameters to be passed directly into the cursor when it is
opened. Do this using the following format:

OPEN cursor_name parameter1 [,...]

PostgreSQL

PostgreSQL does not have an OPEN CURSOR statement. Instead, PostgreSQL implicitly opens a cursor when it is
created by the DECLARE statement.

SQL Server

In addition to the standard OPEN statement, SQL Server allows global cursors using the following syntax:

OPEN [GLOBAL] cursor_name

where:

cursor_name

Specifies the name of the cursor, or is a string variable containing the name of the cursor, created earlier with
the DECLARE CURSOR statement.

GLOBAL

Enables the cursor to be referenced by multiple users, even if they have not explicitly been assigned
permissions to the cursor. Otherwise, a local cursor is assumed.

SQL Server allows you to declare several different kinds of cursors. If a cursor is INSENSITIVE or STATIC, then the
OPEN statement creates a temporary table to hold the result set of the cursor. Similarly, if the declared cursor has the
KEYSET option, then a temporary table is automatically created to hold the keyset.

See Also

CLOSE CURSOR
DECLARE CURSOR
FETCH
SELECT

ORDER BY Clause

The ORDER BY clause specifies the sort order of the result set retrieved by a SELECT statement.

Platform Command

DB2 Supported, with limitations

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with limitations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

ORDER BY {sort_expression [COLLATE collation_name]

 [ASC | DESC]} [,...]

Keywords

ORDER BY

Specifies the order in which rows should be returned by a query. You should not anticipate a specific ordering if
you exclude the ORDER BY clause, even if you specify a GROUP BY clause and it appears that a sort has been
done.

sort_expression

Specifies an item in the query that will help determine the order of the result set. You can have multiple
sort_expressions, and they are usually column names or column aliases from the query. However, they may also
be expressions like (salary * 1.02). SQL92 allowed the use of ordinal positions for sort_expressions. This
functionality has been deprecated, and should not be used in SQL2003 queries.

COLLATE collation_name

Overrides the default collation of the sort_expression, and applies the collation_name to the sort expression for the
purposes of the ORDER BY clause.

[ASC | DESC]

Specifies that the sort_expression should be returned in either ascending order (ASC) or descending order
(DESC).

Rules at a Glance

The ORDER BY clause should reference columns as they appear in the select item list of the SELECT statement,
preferably using their alias, if one exists. For example:

SELECT au_fname AS first_name, au_lname AS last_name

FROM authors

ORDER BY first_name, last_name

The ORDER BY clause uses a major-to-minor sort ordering. This means that the result set is ordered by the first column
referenced, equal values in the first column are then ordered by the second column, equal values in the second column
are then ordered by the third column, and so forth.

The individual aspects of a column's ordering — COLLATE and ASC/DESC — are independent of the other columns in the
ORDER BY clause. Thus, you could order a result set in ascending order by one column, and then flip the next column
and order it in descending order:

SELECT au_fname AS first_name, au_lname AS last_name

FROM authors

ORDER BY au_lname ASC, au_fname DESC

NULLs are always grouped together (i.e., considered equal) for the purposes of sorting. Depending on your platform,
NULLs will be clumped together at the top or at the bottom of the result set. The following query on SQL Server:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NULLs will be clumped together at the top or at the bottom of the result set. The following query on SQL Server:

SELECT title, price

FROM titles

ORDER BY price, title

provides this result set (edited for brevity):

title price

-- -------

Net Etiquette NULL

The Psychology of Computer Cooking NULL

The Gourmet Microwave 2.9900

You Can Combat Computer Stress! 2.9900

Life Without Fear 7.0000

Onions, Leeks, and Garlic: Cooking Secrets of the Me 20.9500

Computer Phobic AND Non-Phobic Individuals: Behavior 21.5900

But Is It User Friendly? 22.9500

You can force NULLs to appear at the top or bottom of the result set using ASC or DESC. Of course, all the non-NULL
rows of the result set are also ordered in ascending or descending order too.

The ANSI standard for ORDER BY also supports the use of columns for the sort_expression that are not referenced in the
select item list. For example, the following query is valid under SQL2003:

SELECT title, price

FROM titles

ORDER BY title_id

Looking at the example above, you can see that although the query does not select title_id, column is the primary
sort_expression. The result set is returned in title_id order even though that column is not selected.

Programming Tips and Gotchas

When using set operators (UNION, EXCEPT, INTERSECT), only the last query may have an ORDER BY clause. You
should not use ORDER BY in subqueries of any type.

A number of behaviors that were supported in SQL92 are deprecated in SQL2003. You should avoid these usages:

References to table aliases

For example, ORDER BY e.emp_id should be changed to ORDER BY emp_id. If there is an ambiguous column
name, then use an alias to compensate.

References to ordinal position

Use explicitly defined column aliases to compensate.

You may sort not only on columns, but also on expressions involving columns or even literals:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You may sort not only on columns, but also on expressions involving columns or even literals:

SELECT SUBSTRING(title,1,55) AS title, (price * 1.15) as price

FROM titles

WHERE price BETWEEN 2 and 19

ORDER BY price, title

When sorting on expressions from the select item list, you should use aliases to make the ORDER BY sort_expression
column references easier!

DB2

DB2 supports the ANSI syntax, except for the COLLATE option. It also has the ORDER OF extension:

ORDER BY {ORDER OF table_name | sort_expression

 [{ASC | DESC}] }

where:

ORDER OF table_name

Tells DB2 to order the rows of a parent table as they are ordered in the subquery. To understand this concept
more fully, remember that DB2 supports ordering at the subquery level. However, the ordered subquery does
not return ordered result set unless the ORDER BY ORDER OF clause is used. The table_name must be the name
of a table referenced in the parent query. For example:

SELECT qty, price, order_nbr

FROM

 (SELECT order_nbr, qty, price FROM sales_Q1_2005

 UNION

 SELECT order_nbr, qty, price FROM sales_Q2_2005

 ORDER BY price, qty, order_nbr) AS ytd_sales

ORDER BY ORDER OF ytd_sales

DB2 still supports SQL92 functions, such as ordering by ordinal position. By default, DB2 sorts NULL values as higher
than all other values.

Another example of order subqueries follows. First, we will create a view called best that returns the top five best
selling books from the sales table, and then we will find the top five authors in order:

CREATE VIEW best(title) AS

 SELECT title FROM sales

 ORDER BY sold

 FETCH FIRST 5 ROWS ONLY

SELECT author

FROM best JOIN authors ON best.title = author.title

ORDER BY ORDER OF best

DB2 does not support ORDER BY on columns of the following datatypes: LONG VARCHAR, CLOB, LONG VARGRAPHIC,
DBCLOB, BLOB, and DATALINK. DB2 also does not support ordering by structure types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL

MySQL supports the ANSI standard, except for the COLLATE option.

You should not attempt to ORDER BY columns of the BLOB datatype because only the first bytes, defined by the
max_sort_length setting, are used in the sort. By default, MySQL sorts NULL values as lowest (first) for ASC order and
highest (last) for DESC order.

Oracle

Oracle supports the ANSI syntax, except for the COLLATE option. It also supports the SIBLINGS and NULLS {FIRST |
LAST} options. Oracle's ORDER BY syntax is:

ORDER [SIBLINGS] BY

 {sort_expression [ASC | DESC] [NULLS {FIRST | LAST}]} [,...]

where the Oracle-specific keywords are:

ORDER [SIBLINGS] BY sort_expression

Sorts the result set of the query in order of the sort_expressions. A sort_expression may be a column name, an
alias, an integer indicating a column's ordinal position, or another expression (e.g., salary * 1.02). The ORDER
SIBLINGS BY clause tells Oracle to preserve any ordering specified by a hierarchical query clause (CONNECT
BY), and to use the sort expression order for ordering of siblings in the hierarchy.

NULLS {FIRST | LAST}

NULLS FIRST and NULLS LAST specify that the records containing NULLs should appear either first or last,
respectively. By default, Oracle places NULLs last for ascending order sorts, and first for descending order sorts.

You can emulate the behavior of the COLLATE option for a single session by using the NLSSORT function with the
NLS_SORT parameter. You can explicitly emulate the behavior of the COLLATE option for all sessions on the server by
using the NLS_SORT initialization parameter or, implicitly, with the NLS_LANGUAGE initialization parameter.

Oracle continues to support deprecated SQL92 features such as sorting by ordinal position. You should not perform an
ORDER BY on any LOB column, nested table, or VARRAY.

PostgreSQL

PostgreSQL supports the ANSI SQL2003 standard, with the exception of the COLLATE option. It also supports the
USING extension:

ORDER BY {sort_expression1 [ASC | DESC | USING operator]} [,...]

where:

USING operator

Specifies a specific comparison operator. Thus, you may sort by >, <, =, >=, <=, and so forth. Ascending
order is the same as specifying USING <, while descending order is the same as USING >.

PostgreSQL sorts NULLs as the highest values. Thus, NULLs will appear at the end when sorting in ascending order, and
at the beginning when sorting in descending order.

SQL Server

SQL Server supports the ANSI standard including the COLLATE option. For example, the following query retrieves
author firstnames from the authors table in the SQL_Latin1 collation:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

author firstnames from the authors table in the SQL_Latin1 collation:

SELECT au_fname

FROM authors

ORDER BY au_fname

COLLATE SQL_Latin1_general_cp1_ci_as

SQL Server continues to support the deprecated SQL92 features of the ORDER BY clause, including the ability to specify
ORDER BY columns by their ordinal positions.

By default, SQL Server sorts NULL values higher than all other values.

You should not use TEXT, IMAGE, or NTEXT columns as sort_expressions on SQL Server.

See Also

SELECT

RELEASE SAVEPOINT Statement

The RELEASE SAVEPOINT statement eliminates one or more previously created savepoints in the current transaction.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

RELEASE SAVEPOINT savepoint_name

Keywords

savepoint_name

Represents a named savepoint (or target specification) created earlier in the transaction with the SAVEPOINT
statement. The savepoint_name must be unique within the transaction.

Rules at a Glance

Use the RELEASE SAVEPOINT statement within a transaction to destroy a named savepoint. Any savepoints that were
created after the named savepoint will also be destroyed.

To illustrate the behavior of savepoints, the following example code inserts a few records, creates a savepoint named
first_savepoint, and then releases it:

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1);

SAVEPOINT first_savepoint;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SAVEPOINT first_savepoint;

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('277-27-2777', 'Fudd', 'E.P.', 1);

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('366-36-3636', 'Duck', 'P.J.', 1);

RELEASE SAVEPOINT first_savepoint;

COMMIT;

In this example, the first_savepoint savepoint is destroyed and then all three records are inserted into the authors
table.

In the next example, we perform the same action but with more savepoints:

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1);

SAVEPOINT first_savepoint;

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('277-27-2777', 'Fudd', 'E.P.', 1);

SAVEPOINT second_savepoint;

INSERT authors (au_id, au_lname, au_fname, contract)

VALUES ('366-36-3636', 'Duck', 'P.J.', 1);

SAVEPOINT third_savepoint;

RELEASE SAVEPOINT second_savepoint;

COMMIT;

In the earlier example, when we release the savepoint called second_savepoint, the database actually releases
second_savepoint and third_savepoint, since third_savepoint was issued after second_savepoint.

Once released, a savepoint name can be reused.

Programming Tips and Gotchas

Issuing either a COMMIT or full ROLLBACK statement will destroy all open savepoints in a transaction. Issuing a
ROLLBACK TO SAVEPOINT statement returns the transaction to its state at the specified savepoint. Thus, any
savepoints declared afterwards are nullified.

DB2

DB2 supports the RELEASE SAVEPOINT statement fully with one optional keyword:

RELEASE [TO] SAVEPOINT savepoint_name

where:

TO

An optional noise word.

MySQL

Not supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Not supported.

Oracle

Not supported.

PostgreSQL

Not supported.

SQL Server

Not supported.

See Also

ROLLBACK
SAVEPOINT

RETURN Statement

The RETURN statement terminates processing within a SQL-invoked function (as opposed to a host-invoked function) or
stored procedure and returns the routine's result value.

Some vendors use RETURNS instead of RETURN (the SQL standard).

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported

PostgreSQL Supported, with limitations

SQL Server Supported

SQL2003 Syntax

RETURN return_parameter_value | NULL

Keywords

return_parameter_value

Represents a value returned by the routine code, and can be any sort of a wide variety of values.

NULL

Terminates the function without returning an actual value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Terminates the function without returning an actual value

Rules at a Glance

Use the RETURN statement within procedural code to terminate processing. For example, you might create a user-
defined function that takes a complex and often-used CASE expression and, when passed a parameter, returns a single,
easy-to-understand expression value.

Programming Tips and Gotchas

Although the RETURN statement is categorized as a separate command within SQL, it is deeply intertwined with the
CREATE FUNCTION and CREATE PROCEDURE statements. Consequently, the RETURN statement is almost always found
embedded in one of these other commands. Check each statement's section in this book, or your vendor
documentation, to get a more complete understanding of each platform's implementation of RETURN within the context
of each statement.

DB2

DB2 uses the RETURN statement to exit a routine and, in a procedure, return any integer value. In a user-defined
function, the RETURN statement returns the actual value that is calculated by the function. DB2 also allows query-based
results to be returned by the statement, as in the following:

RETURN [{expression | NULL | WITH table_name

 (column [,...]) [AS (select_statement)] }] select_statement

where:

expression

Returns a literal or variable to the client or calling program.

NULL

Returns a null value of the datatype defined in the return clause for the calling user-defined function or method.

WITH table_name (column [,...])

Acts as a common table expression (in other words, an ad hoc view) with each column keyword defining a
column of the subsequent select_statement.

AS (select_statement) select_statement

Specifies the record or records to be returned from the function executing the RETURN statement. The number
of columns in the record(s) retrieved by the second select_statement must match the number of columns in the
WITH clause. This clause is not allowed in stored procedures.

If RETURN is used in a procedure, the value of expression must be an integer, but not in a user-defined function. The
NULL and WITH columns AS select_statement clauses can be used with user-defined functions and methods, but not
stored procedures. Here's a simple example of RETURN:

BEGIN

...<some SQL code>...

GOTO ERROR_HANDLER

... <some SQL code>...

SUCCESS: RETURN 0

ERROR_HANDLER: RETURN -200

END

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you need to check the RETURN value of a stored procedure that is called by another stored procedure, use the GET
DIAGNOSTICS statement to find it. Refer to the DB2 documentation for more information on GET DIAGNOSTICS.

MySQL

Not supported. All procedural code in MySQL is written in C or C++. You can use C or C++ programming techniques to
return value(s) to the client.

Oracle

Oracle supports the ANSI standard syntax for RETURN, excluding the NULL keyword. (Oracle does support the return of
a NULL value, just not using the ANSI syntax.) Oracle allows the RETURN clause only in user-defined functions and
user-defined operators. The returned value cannot be a LONG, LONG RAW, or REF datatype in the CREATE OPERATOR
statement. PL/SQL user-defined functions fully support Boolean datatypes internally, but you cannot invoke a Boolean
UDF from a SQL statement. Therefore, just use INT (0 or 1) or VARCHAR2 ('TRUE' or 'FALSE') to hold Boolean values.

This example creates a function. The function returns the value that is stored in the proj_rev variable to the calling
session:

CREATE FUNCTION project_revenue (project IN varchar2)

RETURN NUMBER

AS

 proj_rev NUMBER(10,2);

BEGIN

 SELECT SUM(DECODE(action,'COMPLETED',amount,0) -

 SUM(DECODE(action,'STARTED',amount,0) +

 SUM(DECODE(action,'PAYMENT',amount,0)

 INTO proj_rev

 FROM construction_actions

 WHERE project_name = project;

 RETURN (proj_rev);

END;

PostgreSQL

PostgreSQL supports the ANSI standard syntax for RETURN, excluding the NULL keyword:

RETURNS return_parameter_value | NULL

PostgreSQL allows you to define user-defined functions using either SQL code or C/C++. (PostgreSQL does not
currently allow stored procedures, though you can duplicate their functionality with user-defined functions). For the
purposes of this discussion, we are only interested in SQL functions.

The output allowed by the return_parameter_value may be a base type, complex type, SETOF type, OPAQUE modifier, or
the same as the type of an existing column. The SETOF type modifier is used to return a set of items via the RETURNS
statement, rather than a single data value. The OPAQUE modifier indicates the RETURNS statement does not return a
value. OPAQUE can only be used within triggers.

SQL Server

SQL Server supports the RETURN statement with this syntax:

RETURN [return_integer_value]

The RETURN command is typically used in stored procedures or user-defined functions. The command causes an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The RETURN command is typically used in stored procedures or user-defined functions. The command causes an
immediate and complete exit from the program and, optionally, returns an integer value upon exit. SQL Server
procedures implicitly return a zero value if no RETURN clause is supplied in the procedure definition. Any commands
that follow the RETURN statement are ignored.

The RETURN statement in the following function returns an integer representing the calculated value:

CREATE FUNCTION metric_volume -

 Input dimensions in centimeters.

 (@length decimal(4,1),

 @width decimal(4,1),

 @height decimal(4,1))

RETURNS decimal(12,3) -- Cubic Centimeters.

AS

BEGIN

 RETURN (@length * @width * @height)

END

GO

REVOKE

This example creates a function that returns a calculated value, the metric volume of a space, to the calling session.

See Also

CREATE/ALTER FUNCTION PROCEDURE
CREATE/ALTER TRIGGER

REVOKE Statement

The REVOKE statement takes two main forms. The first form of the statement removes specific statement permissions
from a user, group, or role. The second form of the statement removes access permissions to specific database objects
or resources.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

The SQL2003 syntax for REVOKE takes this general form:

REVOKE { [special_options] | {privilege [,...] | role [,...]} }

ON database_object_name

FROM grantee_name [,...]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM grantee_name [,...]

[GRANTED BY {CURRENT_USER | CURRENT_ROLE}]

{CASCADE | RESTRICT}

Keywords

special_options

Allows the use of one of three optional special_options:

GRANT OPTION FOR

Undoes the WITH GRANT OPTION privilege assigned to a user, meaning that the user can no longer
grant privileges to other users on the object but their own privileges on the object are still intact. (This
clause is valid to revoke a privilege, but not to revoke a role.) Refer to the GRANT Statement section for
more details.

HIERARCHY OPTION FOR

Undoes the WITH HIERARCHY OPTION privilege that allows a user to SELECT not only from the named
table, but also all of its subtables. (This clause is valid to revoke a privilege, but not to revoke a role.)

ADMIN OPTION FOR

Undoes the ability to grant a role to other users. (This clause is valid to revoke a privilege, but not to
revoke a role.)

privilege

Revokes privileges for a variety of statements, which may all be combined in any order:

ALL PRIVILEGES

Revokes all privileges currently assigned to the named users and/or for the specified database objects.
Generally not a recommended approach, since it can encourage sloppy coding.

EXECUTE

Revokes the privileges to execute a routine (i.e., a stored procedure, user-defined function, or method).

{SELECT | INSERT | UPDATE | DELETE}

Revokes the specific privilege for a given user on the specified database object, such as a table or view.
You may add a parenthetical list of the columns on a given table where the privilege will be revoked for
SELECT, INSERT, and UPDATE privileges.

REFERENCES

Revokes the user's privilege to create any constraints or assertions referencing the database object as a
parent object. You may add a parenthetical list of the columns on a given table where the privilege will
be revoked.

TRIGGER

Revokes the user's ability to create triggers on the specified tables. As a side effect of the revoke, any
triggers that depend on the privilege are also dropped.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UNDER

Revokes the privilege to create subtypes or typed tables.

USAGE

Revokes privileges to use a domain, user-defined type, character set, collation, or translation.

role

Revokes a specific, pre-defined role from the named grantee identified FROM clause. For example, the database
administrator might want to create a role called Reporter that has read-only access to several tables. When
the role is granted to the user, the user is able to do all of the actions the role may do. See the GRANT
Statement section for more details.

ON database_object_name

Revokes privileges on a specific, predefined database object identified by the database_object_name provided.
SQL2003 does not include support for system privileges but many implementations provide a variation of this
clause to revoke such privileges. (The ON subclause is not used at all when revoking system privileges or roles.)
The database_object_name may be one of the following:

{ [TABLE] object_name | DOMAIN object_name |

 COLLATION object_name |

 CHARACTER SET object_name | TRANSLATION object_name |

 TYPE object_name | [SPECIFIC] {ROUTINE | FUNCTION |

 PROCEDURE | METHOD}

 object_name }

FROM grantee_name

Names the user(s) or role(s) who will lose the specified privilege. The PUBLIC keyword may also be used to
revoke privileges granted to the PUBLIC global user list. Multiple grantees can be listed with a comma between
each.

FROM { CURRENT_USER | CURRENT_ROLE }

Optionally used to specify who granted the privilege to the user in the first place. For example, when using
...FROM CURRENT_USER, the privilege are revoked only if the current user granted the privilege. Otherwise, the
statement would fail. When omitted, CURRENT_USER is the default.

RESTRICT | CASCADE

Limits a revoke operation to only the specified privilege (RESTRICT) or causes the specified privilege and all
dependent privileges to be revoked (CASCADE), and possibly cause objects that depend on the privilege to be
dropped. Note that REVOKE...RESTRICT will fail if dependent privileges exist. The dependent privileges must be
revoked first.

Rules at a Glance

A specific privilege on a specific database object can be revoked for a single user using REVOKE privilege_name ON
object_name FROM grantee_name RESTRICT. A specific privilege on a specific object may be revoked from all users via the
PUBLIC global user list.

When revoking privileges from multiple grantees, simply place a comma between each. You may also revoke privileges
from one or more grantees and the PUBLIC role in a single REVOKE statement. (PUBLIC is described in detail under the
GRANT Statement section. When a grant is issued to PUBLIC, that means everyone has permissions to the object
without the need for a grant specifically to the object.)

When revoking privileges on a table, the privileges may extend to the column level by showing a list of columns
enclosed in parentheses after the table name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

enclosed in parentheses after the table name.

Programming Tips and Gotchas

Most of the platforms isolate privileges at the user and role level. (Remember, a role is a group of privileges.) Thus, an
individual user who is assigned two roles may have an individual set of permissions three times. In this situation, you
would have to revoke the user's privileges directly and remove the user from both roles to completely negate their
permissions.

An important aspect about REVOKE (and its sister command GRANT) is that certain elements of the command are
geared toward object-level permissions, while other options of the command are more oriented toward roles or
administrative privileges. Generally, these operations are never combined. The differences in object-level permissions
and administrative privileges are fully explained under each database platform section below. For example, you might
want to revoke certain object-level privileges for a given role (salespeople) or individual user (e_fudd and
prince_edward):

REVOKE SELECT ON TABLE authors FROM salespeople RESTRICT;

REVOKE ALL PRIVILEGES ON TABLE sales FROM e_fudd,

 prince_edward CASCADE;

A lot of table-level privileges can even be assigned down to the column level. Those privileges can be revoked:

REVOKE INSERT(au_id, au_fname, au_lname)

 ON authors FROM e_fudd;

The special option clauses (GRANT OPTION, HIERARCHY OPTION, and ADMIN OPTION) all exist to allow you to revoke
the ability of users to pass privileges or roles on to other users. However, these clauses do not prevent the first group
of users themselves from exercising those privileges. For example, we no longer want anyone in the role manager to
grant their UPDATE privileges to other users:

REVOKE GRANT OPTION FOR UPDATE ON sales FROM manager CASCADE;

You can also remove role privileges from a user with the REVOKE command:

REVOKE manager FROM e_fudd CASCADE;

A common best practice is to keep REVOKE and GRANT statements as self-contained and logical as possible. Under this
practice, you should avoid using the CASCADE and ALL PRIVILEGES clauses because they perform work for you that
may not be immediately evident within the scope of the command.

DB2

DB2 offers a variety of additional options in its implementation of the REVOKE command:

REVOKE { [database_privileges [,...] ON DATABASE] |

[CONTROL ON INDEX index_name] |

[{BIND | CONTROL | EXECUTE} ON PACKAGE package_name] |

[{ALTERIN | CREATEIN | DROPIN} ON SCHEMA schema_name] |

 [PASSTHRU ON SERVER server_name] |

 [EXECUTE ON [SPECIFIC] {FUNCTION | PROCEDURE |

 METHOD} routine_name] |

 [object_privilege [,...] ON [TABLE] object_name] |

 [{ALTER | USAGE} ON SEQUENCE sequence_name] |

 [USE OF TABLESPACE tablespace_name] } }

[FROM [{USER |GROUP}] { grantee_name [,...] |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[FROM [{USER |GROUP}] { grantee_name [,...] |

 group_name [,...] | PUBLIC }]

[RESTRICT]

where:

database_privileges

Revokes one or more privileges that apply to the entire database. The database privileges are:

BINDADD

Grants the authority to create packages.

CONNECT

Grants the authority to access the database. When CONNECT is revoked, all other explicitly granted
privilege still exist, but are disabled until CONNECT privileges are regranted.

CREATETAB

Grants the authority to create tables.

CREATE_NOT_FENCED

Grants the authority to create functions that are not fenced into a specific user process; that is, they
may execute within the database manager's process.

DBADM

Grants the superuser authority, meaning the ability to create any object, fully access any object created
by other users, and grant those privileges to other users.

IMPLICIT_SCHEMA

Grants the authority to implicitly create a schema, though this privilege doesn't impact the ability to
explicitly create a schema or any objects within a schema.

LOAD

Grants the authority to explicitly LOAD a database.

CONTROL ON INDEX index_name

Revokes the privilege to drop an index, once created, of the specified index_name. If you leave off the FROM
clause, the current user context is assumed.

{ BIND | CONTROL | EXECUTE} ON PACKAGE package_name

Revokes the privileges associated with packages. Note that RUN and PROGRAM are acceptable synonyms for
EXECUTE and PACKAGE, respectively. If you leave off the FROM clause, the current user is assumed if all
privileges are user-level (GRANTEETYPE of U) or the current group is assumed if all the privileges are group-
level (GRANTEETYPE of G). If the privileges are a mix of user- and group-level, an error will result. The package
privileges are:

BIND

Grants the authority to bind or rebind the specified package. CONTROL privileges must also be revoked,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Grants the authority to bind or rebind the specified package. CONTROL privileges must also be revoked,
if the grantee has them, to properly remove BIND privileges.

CONTROL

Grants the authority to drop the specified package, as well as the authority to extend privileges to other
grantees.

EXECUTE

Grants the authority to execute a package. Like BIND, CONTROL privileges must also be revoked, if the
grantee has them, to properly remove EXECUTE privileges.

{ ALTERIN | CREATEIN | DROPIN } ON SCHEMA schema_name

Revokes the privileges associated with manipulating a schema (that is, a user-owned set of objects). Unlike
some of the other optional clauses of this DB2 command, the ON SCHEMA syntax requires the FROM clause.
Using this command does not supercede any specific privileges granted within a schema. Thus, you might
revoke privileges on a user or group using the ON SCHEMA clause but the user or group might still be able to do
any number of other activities within that schema because of other grant statements.

ALTERIN

Grants the authority to alter or comment on objects in a schema defined by ON SCHEMA schema_name.

CREATEIN

Grants the authority to create objects in a schema defined by ON SCHEMA schema_name.

DROPIN

Grants the authority to drop objects in the schema defined by ON SCHEMA schema_name.

PASSTHRU ON SERVER server_name

Revokes the privilege to access an external data source of server_name using pass-through mode.

EXECUTE ON

Revokes privileges on an ANSI routine (i.e., a user-defined function, user-defined method, or stored
procedure). The elements of this clause are as follows:

[SPECIFIC] FUNCTION function_name

Specifies that the user loses execution privileges on a specific function. A SPECIFIC function name may be
specified. DB2 also supports functions without names. In this case, FUNCTION [(param [,...])] should be used,
including any and all parameters of the function. If routine_name is not included, the current schema is assumed.
You may substitute an asterisk (*) for a specific function name to revoke from a user the execution privilege
on all functions in the current or specified schema.

PROCEDURE [schema.]procedure_name

Specifies that the user loses execute privileges on all stored procedures in the specified schema, even those
created in the future. If schema is not included, the current schema is assumed. You may substitute an asterisk (
*) for a specific stored procedure name to revoke the execution privilege from a user on all stored procedures
in the current or specified schema.

[SPECIFIC] METHOD method_name

Specifies that the user loses rights to execute all methods of routine_name, even those that have not yet been
created. A SPECIFIC method name may be specified. DB2 also supports methods without names. In this case,
METHOD [(param [,...])] can be used, including any and all parameters of the function. Alternately, the asterisk

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

METHOD [(param [,...])] can be used, including any and all parameters of the function. Alternately, the asterisk
(*) can be used to specify that all types in the schema are revoked from the user.

object_privilege

Revokes privileges for a variety of statements on tables, views, and nicknamed tables or views. These may be
combined in any order:

ALL [PRIVILEGES]

Revokes all privileges currently assigned to the named users and/or for the specified database objects
as a shorthand for every privilege the grantor has available to grant. The PRIVILEGES keyword is
optional. We do not recommended this approach since it can encourage sloppy programming.

ALTER

Revokes the privilege to add or alter columns, constraints, comments, or triggers on a specified table or
view and restricts the ability to change nicknamed column names or datatypes or to change a column
option for a nickname.

CONTROL

Revokes the ability to drop the table or view or execute a RUNSTATS utility against it.

INDEX

Revokes the ability to create an index against a table or an index specification on a nickname.

{SELECT | INSERT | UPDATE | DELETE}

Revokes the specific privilege for a given user on the specified database object, such as a table or view.
You may add a parenthetical list of the columns on a given table where the privilege will be revoked for
the SELECT, INSERT, and UPDATE statements.

REFERENCES

Revokes the user's privilege to create or drop referencing constraints (such as CHECK or FOREIGN KEY)
referencing the database object as a parent object.

{ALTER | USAGE} ON SEQUENCE sequence_name

Revokes privileges on a sequence in an explicit schema or the current schema (USAGE), or the privilege
to execute the ALTER SEQUENCE statement (ALTER).

USE OF TABLESPACE tablespace_name

Revokes the USE privilege on a tablespace. Note that the user might be able to continue to make tables
in the specified tablespace if rights on the tablespace are granted to PUBLIC, or if the user is in a group
(such as DBADM) that also has privileges in the specified tablespace.

FROM { [USER | GROUP]} grantee_name

Names the user or users who will lose the specified privilege. When both a user and group exist with the
same name, use the optional GROUP or USER keywords to control where the privileges will be dropped.
PUBLIC may also be used to revoke privileges granted to the PUBLIC role. Multiple grantees can be
listed with a comma between each.

RESTRICT

Identical to the ANSI usage, except that RESTRICT is required on SCHEMA and FUNCTION privileges.

DB2 supports a number of privileges, as described above, through a specific user. In the following example, the
user emily loses the create table (CREATETAB) privilege:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

user emily loses the create table (CREATETAB) privilege:

REVOKE CREATETAB ON DATABASE FROM emily

This revokes the privilege of creating tables from user emily.

The following statement revokes the privilege of creating packages from the group student. The FROM GROUP
clause should always be used when a user and group exist with the same name.

REVOKE BINDADD ON DATABASE FROM GROUP student

The first command in the next example revokes the privilege to drop the index upkcl_auidind from the user
dylan and the group of users called editors, while the second command revokes the tablespace privileges of
the user sam.

REVOKE CONTROL ON INDEX upkcl_auidind

FROM USER dylan, GROUP editors

REVOKE USE OF TABLESPACE futures FROM USER sam

The next example revokes the ability to execute the package publications by both the group editors and the
user jake.

REVOKE EXECUTE

ON PACKAGE publications

FROM GROUP editors, USER jake

REVOKE CREATEIN ON SCHEMA pubs FROM anna

The next example revokes the ability of user anna to create new objects in the schema pubs, while the second
command revokes the privilege to pass through to data source east.

REVOKE PASSTHRU ON SERVER east FROM USER anna

Specific object-level privileges are also easy to grant and revoke. In some cases, you can issue the same
command in several ways, depending upon whether you include a lot of the optional keywords. For example,
the following two commands do the same thing:

REVOKE UPDATE ON employee FROM sam

REVOKE UPDATE ON TABLE employee FROM USER sam

In both of the examples above, the user sam loses the privilege to update the employee table. You can also
combine object-level privileges and users and/or groups in a single command. For example, the following
command revokes all the write privileges (INSERT, UDPATE, DELETE) from the users katie and jake, as well as
from the group editors:

REVOKE INSERT, UPDATE, DELETE ON employee FROM USER katie,

USER jake, GROUP editors

DB2 ships with the PUBLIC group, which includes all users. In addition, there are several levels of system
privileges on a DB2 installation whose privileges cannot be modified:

SYSADM

Issues system administration privileges (the highest level of authority). Users with this level have all
privileges in all databases.

DBADM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Issues database-wide privileges. Users with this level have all privileges in a specific database, though
they cannot execute operations that require administrative access to system resources (such as the
DB2 statement CREATE TABLESPACE).

SYSCTRL

Issues system control privileges without data access privileges. Users with this level have the ability to
create, modify, and drop databases and tablespaces, and are able to halt instances or databases.

SYSMAINT

Issues system control privileges without data access privileges (at a lower level than SYSCTRL). Users
with this level have the ability to update database configuration files, issue backups and restores, and
monitor a database.

Users can be granted and revoked these system-level privileges, but the privileges of the specific scope of each
system-level privilege (system-wide, database-wide, etc.) cannot be altered.

MySQL

The REVOKE statement rolls back permissions previously granted to one or more users. MySQL supports many of the
standard keywords of the ANSI standard. Notable exceptions for support include TRIGGER, EXECUTE, and UNDER.
MySQL also has a nice shortcut to allow global assignment or revocation of privileges. Please refer back to the ANSI
standard description for those elements of the command not described below:

REVOKE [{ ALL [PRIVILEGES] |

 {SELECT | INSERT | UPDATE} [(column_name [,...])] | DELETE |

 REFERENCES [(column_name [,...])] } |

[USAGE] | [{ALTER | CREATE | DROP}] | [FILE] | [INDEX] | [PROCESS] |

 [RELOAD] | [SHUTDOWN] | [CREATE TEMPORARY TABLES] | [LOCK TABLES] |

 [REPLICATION CLIENT] | [REPLICATION SLAVE] | [SHOW DATABASES] |

 [SUPER] }[,...]

ON {table_name | * | *.* | database_name.*}

FROM user_name [,...]

where:

ALL [PRIVILEGES]

Synonymous with ALL PRIVILEGES. On MySQL, this includes all privileges that apply at the level indicated by
the ON clause, except the GRANT OPTION. (This includes privileges like SELECT, INSERT, UPDATE, DELETE, and
others.)

SELECT | INSERT | UPDATE | DELETE

Revokes the ability to read, write, modify, and erase data from tables (and possibly from specific columns of a
table), respectively.

REFERENCES

Unimplemented.

USAGE

Revokes all of a user's privileges.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

{ALTER | CREATE | DROP} ON table_name

Revokes the ability to alter, create, or drop tables and other database objects.

FILE

Revokes the ability to load data from or write data to files using the SELECT INTO and LOAD DATA commands.

INDEX

Revokes the ability to create or drop indexes.

PROCESS

Revokes the ability to view running processes using SHOW FULL PROCESSLIST.

RELOAD

Revokes the ability to invoke the FLUSH command.

SHUTDOWN

Revokes usage of the mysqladmin shutdown command to kill the server process.

CREATE TEMPORARY TABLES

Revokes the ability to create temporary tables.

LOCK TABLES

Revokes the use of the MySQL command LOCK TABLES on tables where the user has SELECT privileges.

REPLICATION CLIENT

Revokes the privilege to see metadata about replication slaves and masters.

REPLICATION SLAVE

Revokes the right to read binlogs of a replication master from a replication slave.

SHOW DATABASES

Revokes the privilege to execute the MySQL command SHOW DATABASES.

SUPER

Revokes the user privilege of opening one connection even if the max_connections threshold is reached. Also
revokes from the users the privileges to execute these MySQL commands: CHANGE MASTER, KILL, mysqladmin
debug, PURGE [MASTER] LOGS, and SET GLOBAL.

ON {table_name | * | *.*| database_name.*}

Removes privileges from the specified table_name, from all tables within the current database with * , from all
tables in the specified database_name with database_name.*, or from all tables in all databases with *.*

FROM

Removes the privileges of one or more users, separated by commas. Usernames may also include an
@host_name suffix, if you wish to restrict the revocation to a specific host computer.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

@host_name suffix, if you wish to restrict the revocation to a specific host computer.

REVOKE has size limitations. Usernames cannot be longer than 16 characters, while host, database, and database
object names can be up to 60 characters in size. Usernames may also be linked to a specific host. Refer to the GRANT
command for more details.

MySQL's implementation of REVOKE does not explicitly roll back permissions on objects
that are dropped. Thus, it is necessary to explicitly REVOKE permissions on a table, even if
the table is dropped. For example, let's say you drop a table without issuing a REVOKE on
the existing permissions. If you later recreate the table, all of the old permissions will still
be in place. Similarly, a user's privileges still persist in the database, even after the user
has been dropped.

It is also important to note that MySQL allows multiple levels of permissions. Thus, a user might have access to a table
from a table-level grant and have an additional set of permissions to the same table because they have been give
global database or server-wide permissions. This means you need to be careful when revoking permissions because
global level permissions might continue to provide permissions to a user when you thought you had revoked them!

The first command shown below revokes all privileges on the sales table for users emily and dylan, while the second
command revokes select privileges for the user kelly in the current database:

REVOKE ALL PRIVILEGES ON sales FROM emily, dylan;

REVOKE SELECT ON * FROM kelly;

The first command below removes kelly's ability to grant privileges to other users on the sales table, while the second
command removes privileges that the user sam has in the pubs database:

REVOKE GRANT OPTION ON sales FROM kelly;

REVOKE ALL ON pubs.* FROM sam;

Oracle

The REVOKE command not only immediately revokes object and system privileges, it also revokes a role from a user
(or a role from another role). Refer to the GRANT statement for more information on the specific object and system
privileges supported by the REVOKE command.

The two forms of the REVOKE command, REVOKE object_privilege and REVOKE
system_privilege, are mutually exclusive. Do not attempt to do both operations in a single
statement. Since the complete syntax for both forms of the command are extremely long,
refer to the GRANT Statement section for more details on the different object_privileges and
system_privileges.

Oracle provides an interesting twist on privileges. While other database platforms typically allow a user to have more
than one context for a set of privileges (based on the individual user and again for any groups that they are a member
of), Oracle takes this one step further. A user may also have many grantors who have given them permission on a
specific object. When this is the case, ALL grantors must revoke the privilege to effectively rid the user of the privilege.
If even one grantor doesn't do this, then the user still has the privilege. Use the following syntax with REVOKE:

REVOKE { [object_privilege] [,...]|

 [system_privilege] |

 [role] }

[ON { [schema_name.][object] |

 [DIRECTORY directory_object_name] |

 [JAVA [{ SOURCE | RESOURCE }] [schema_name.][object] }]

FROM {grantee_name [,...] | role_name [,...] | PUBLIC}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM {grantee_name [,...] | role_name [,...] | PUBLIC}

[CASCADE [CONSTRAINTS]] [FORCE];

where:

object_privilege

Revokes the specified privileges for a given user, grantee_name, or role against the named schema object, for
example, a table or view.

ALL [PRIVILEGES]

Revokes all granted privileges on a named schema object. Since ALL also includes the REFERENCES
privilege, you must include the CASCADE clause (see REFERENCES below).

ALTER

Revokes the privilege to change an existing table using the ALTER TABLE statement.

EXECUTE

Revokes the privilege to execute a stored procedure, user-defined function, or package.

INDEX

Revokes the privilege to create indexes on a table.

REFERENCES

Revokes the privilege to define referential integrity constraints. Requires that the CASCADE
CONSTRAINTS clause also be used.

{ SELECT | INSERT | DELETE | UPDATE}

Revokes the privilege to execute each of the respective SQL commands against the named schema
object. Note that DELETE privileges are dependent on SELECT privileges.

system_privilege

Revokes the specified Oracle system privilege from a given user, grantee_name, or role against the named
system privilege such as CREATE TRIGGER or ALTER USER. Do not use the ON clause with the REVOKE
system_privileges variation of the statement. Because there are so many and varied system privileges, please
refer to the section under Oracle's implementation in the GRANT Statement section for a full list of system
privileges.

role

Revokes a user from the named role or one role from another role.

ON

Revokes the named privilege for a given user or role from the named object. Objects include tables, views,
sequences, stored procedures, user-defined functions, packages, materialized views, user-defined types,
libraries, indextypes, user-defined operators, or a synonym for any of these. If you do not include the schema
name, Oracle assumes the schema of the current user. For example, you could revoke SELECT privileges for a
given user on the scott.authors table. Oracle also supports two additional keywords for special cases:

DIRECTORY directory_object_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Identifies a directory object from which the privileges are revoked.

JAVA [{ SOURCE | RESOURCE }] [schema_name.][object] }

Identifies a Java source or a resource schema object from which the privileges are revoked.

FROM {grantee_name | role_name | PUBLIC}

Names the user or role who will lose the specified privilege. PUBLIC may also be used to revoke privileges
granted to the PUBLIC role. Multiple grantees can be listed with a comma between each.

CASCADE [CONSTRAINTS]

Drops any referential integrity constraints that depend on the privilege being revoked in the first place. This
clause is needed only when the REFERENCES or ALL [PRIVILEGES] clauses are used.

[FORCE]

Required to revoke EXECUTE object privileges on user-defined type objects with type or table dependencies.

Oracle automatically cascades the revocation from the defined grantee_name to all users that received their privileges
from the grantee. In addition, any objects created by the grantee that depend on the privilege (such as stored
procedures, triggers, views, and packages that depend on a SELECT privilege against a certain table) will become
invalid.

Users who are granted the GRANT ANY ROLE system privilege may revoke any role. The REVOKE command can only
revoke privileges specifically granted with the GRANT command, not privileges available through roles or the operating
system. In a case like this, you must use the REVOKE command to drop the privilege from the role. All users assigned
to the role will then lose the privilege.

The following is an example of revoking a role from specific grantee and revoking a system privilege from a role:

REVOKE read-only FROM sarah;

REVOKE CREATE ANY SEQUENCE,

 CREATE ANY DIRECTORY FROM read_only;

Here's an example that revokes a REFERENCES privilege and cascades the revoked privileges:

REVOKE REFERENCES

ON pubs_new_york.emp

FROM dylan

CASCADE CONSTRAINTS;

The following example grants all privileges on a specific table, and then revokes a privilege:

GRANT ALL PRIVILEGES ON emp TO dylan;

REVOKE DELETE, UPDATE ON emp FROM dylan;

PostgreSQL

PostgreSQL offers base-level features of the REVOKE statement, primarily for revoking privileges on specific tables,
views, and sequences. It does not offer the ANSI standard special options like HIERARCY OPTION FOR or ADMIN
OPTION FOR. The syntax is as follows:

REVOKE { [GRANT OPTION FOR] |

privileges [,...] }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

privileges [,...] }

ON {object_name} [,...]

FROM {grantee_name [,...] | PUBLIC | GROUP group_name}

[{CASCADE | RESTRICT}]

where:

GRANT OPTION FOR

Revokes the privilege of a user to grant privileges to other users.

privileges

Revokes privileges for a variety of statements, which may be combined in any order:

ALL PRIVILEGES

A shorthand for every privilege the grantor has available to grant. Revokes all privileges currently
assigned to the named users and/or for the specified database objects. Generally not a recommended
approach, since it can encourage sloppy coding.

{SELECT | INSERT | DELETE | UPDATE}

Revokes the specific privilege for a given user on the specified database object, such as a table or view.
You may add a parenthetical list of the columns on a given table where the privilege will be revoked.

REFERENCES

Revokes the user's privilege to create or drop foreign key constraints that reference the database object
as a parent object.

RULE

Revokes the user's privilege to create or drop a rule on a table or view.

USAGE

Revokes privileges to use a domain, user-defined type, or character set, as opposed to the UNDER
privilege, which controls the ability to create these objects.

FROM grantee_name [,...] | PUBLIC | GROUP group_name

Names the user or role who will lose the specified privilege. PUBLIC may also be used to revoke privileges
granted to the PUBLIC role (a role that implicitly includes all users). Multiple grantees can be listed with a
comma between each.

CASCADE | RESTRICT

Limits a revoke operation to only the specified privilege (RESTRICT) or causes the specified privilege and all
dependent privileges to be revoked (CASCADE). Only used with the GRANT OPTION FOR clause.

PostgreSQL's implementation of REVOKE is relatively straightforward. The only issue to be aware of is that PostgreSQL
treats the term GROUP as a synonym for ROLE. For example, the following removes some privileges from the PUBLIC
group and from the READ-ONLY group:

REVOKE ALL PRIVILEGES ON employee FROM public;

REVOKE SELECT ON jobs FROM read-only;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REVOKE SELECT ON jobs FROM read-only;

PostgreSQL does not support privileges on individual columns within a table or view. In order to work around this
limitation, you can create a view with only the columns in question and GRANT or REVOKE privileges to and from that
view.

When revoking the GRANT OPTION FOR clause, you should pay extra attention to dependencies. If you revoke a user's
privilege with the RESTRICT keyword, the statement will fail if other users depend on the revokee. If you revoke a
user's privilege with the CASCADE keyword, the statement will revoke privileges not only for the revokee, but for all
users that depend on the revokee.

SQL Server

SQL Server implements the REVOKE statement as a means to undo any permission settings for a given user. This is
significant because SQL Server supports an extension statement called DENY which explicity disallows a user from a
specific resource. REVOKE, in SQL Server, can be used to undo permissions granted to a user with GRANT. If you want
to explicitly prevent a user from having a certain privilege, you must use the DENY statement.

SQL Server does not support the HIERARCHY OPTION and ADMIN OPTION clauses of the ANSI standard. Although the
ADMIN OPTION clause is not supported, a couple of administrative privileges (CREATE and BACKUP) are supported in
SQL Server's version of REVOKE. Use the following syntax:

REVOKE [GRANT OPTION FOR]

{ [object_privilege] [,...]|

 [system_privilege] }

[ON [object] [(column [,...])]]|

{TO | FROM} {grantee_name [,...] | role [,...] | PUBLIC | GUEST }

[CASCADE]

[AS {group_name | role_name}]

where:

GRANT OPTION FOR

Revokes the privilege of a user to grant a specific privilege to other users.

object_privilege

Revokes privileges for a variety of statements, which may be combined in any order:

ALL PRIVILEGES

Revokes all privileges currently assigned to the named users and/or for the specified database objects.
We do not recommend this approach, since it can encourage sloppy programming.

{SELECT | INSERT | DELETE | UPDATE}

Revokes the specific privilege for a given user on the specified database object, such as a table or view.
You may add a parenthetical list of the columns on a given table where the privilege will be revoked.

REFERENCES

Revokes the user's privilege to create or drop foreign key constraints that reference the database object
as a parent object.

RULE

Revokes the user's privilege to create or drop a rule on a table or view.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Revokes the user's privilege to create or drop a rule on a table or view.

EXECUTE

Revokes privileges to execute a stored procedure, user-defined function, or extended stored procedure.

system_privilege

Revokes the privilege to execute any of the following statements: CREATE DATABASE, CREATE DEFAULT,
CREATE FUNCTION, CREATE PROCEDURE, CREATE RULE, CREATE TABLE, CREATE VIEW, BACKUP DATABASE,
and BACKUP LOG.

ON object [(column [,...])]

Removes the privilege for the user on the named object. If the object is a table or view, you may optionally
revoke privileges on specific columns. You may revoke SELECT, INSERT, UPDATE, DELETE, and REFERENCES
privileges on a table or view. You may revoke only SELECT and UPDATE privileges on the columns of a table or
view. You may revoke EXECUTE privileges on a stored procedure, user-defined function, or extended stored
procedure.

{TO | FROM} grantee_name | role | PUBLIC | GUEST

Names the user or role who will lose the specified privilege. PUBLIC may also be used to revoke privileges
granted to the PUBLIC role (a role that implicitly includes all users). Multiple grantees can be listed with a
comma between each. SQL Server also supports the role known as GUEST, an account used by all users who do
not have a user account in the database.

CASCADE

Revokes privileges on users who received their permissions under the WITH GRANT OPTION clause. Required
when using the GRANT OPTION FOR clause.

AS {group_name | role_name}

Defines the authority by which the privilege is revoked. In certain circumstances, a user may need to
temporarily assume the privileges of a group to revoke the specified privileges. To accommodate this scenario,
you can use the AS clause to assume the authority of a given group.

tHe two forms of the REVOKE command, REVOKE object_privilege and REVOKE system_privilege, are mutually exclusive.
Do not attempt to do both operations in a single statement. The key syntactical difference between them is that you
should not include the ON clause when revoking system privileges. For example, to drop a system privilege:

REVOKE CREATE DATABASE, BACKUP DATABASE FROM dylan, katie

If commands were granted to a user WITH GRANT OPTION enabled, the privilege should be revoked using both WITH
GRANT OPTION and CASCADE together. For example:

REVOKE GRANT OPTION FOR

SELECT, INSERT, UPDATE, DELETE ON titles

TO editors

CASCADE

GO

REVOKE can only be used in the current database. Consequently, the CURRENT_USER and CURRENT_ROLE options in
the ANSI variations are always implied. REVOKE also is used to disable any DENY settings.

SQL Server additionally supports the DENY statement. DENY is syntactically the same as
REVOKE. However, it is conceptually different in that REVOKE neutralizes a user's
privileges, while DENY explicitly prohibits a user's privileges. Use the DENY statement to
keep a user or role from accessing a privilege, even a privilege granted through a role or
an explicit permission.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You must use REVOKE to remove previously granted OR denied privileges. For example, the user kelly took an
extended leave of absence for maternity leave. During that time, her permissions on the employee table where denied.
Now that she's returned, we'll lift the denied privileges:

DENY ALL ON employee TO Kelly

GO

REVOKE ALL ON employee TO Kelly

GO

In this example, the REVOKE command did not remove her privileges; rather, it neutralized the DENY statement.

See Also

GRANT

ROLLBACK Statement

The ROLLBACK statement undoes a transaction to its beginning or to a previously declared SAVEPOINT. ROLLBACK also
closes any open cursors.

Platform Command

DB2 Supported

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Supported, with variations

SQL2003 Syntax

ROLLBACK [WORK]

[AND [NO] CHAIN]

[TO SAVEPOINT savepoint_name]

Keywords

WORK

An optional keyword, but basically just noise.

AND [NO] CHAIN

AND CHAIN tells the DBMS to end the current transaction, but to share the common transaction environment
(such as transaction isolation level) with the next transaction. AND NO CHAIN simply ends the transaction (and
is effectively the same as not including the clause at all).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

is effectively the same as not including the clause at all).

TO SAVEPOINT savepoint_name

Allows the transaction to be rolled back to a named savepoint (that is, a partial rollback) rather than rolling
back the entire transaction. The savepoint_name may be a literal expression or a variable. If no savepoint of
savepoint_name is active, the statement will return an error. When the TO SAVEPOINT clause is omitted, all
cursors are closed. When the TO SAVEPOINT clause is included, only the cursors that were open within the
savepoint are closed.

In addition to undoing a single data-manipulation operation such as an INSERT, UPDATE, or DELETE statement (or a
batch of them), the ROLLBACK statement undoes transactions up to the last issued START TRANSACTION, SET
TRANSACTION, or SAVEPOINT statement.

Rules at a Glance

ROLLBACK is used to undo a transaction. It can be used to undo explicitly declared transactions that are started with a
START TRAN statement or implicitly with a transaction-initiating statement. It can also be used to undo implicit
transactions that are started without a START TRAN statement. ROLLBACK is mutually exclusive of the COMMIT
statement.

Most people associate commands like INSERT, UPDATE, and DELETE with the term "transaction." However, transactions
encompass a wide variety of commands. This list of commands varies from platform to platform, but generally includes
any command that alters data or database structures and is logged to the database logging mechanism. According to
the ANSI standard, all SQL statements can be undone with ROLLBACK.

Programming Tips and Gotchas

The most important gotcha to consider is that some database platforms perform automatic and implicit transations,
while others require explicit transactions. If you assume a platform uses one method of transactions over the other, you
may get bitten. Thus, when moving between database platforms, you should follow a standard, preset way of
addressing transactions. We recommend staying with explicit transactions using SET TRAN or START TRAN to begin a
transaction, and COMMIT or ROLLBACK to end a transaction.

DB2

DB2 supports the basic ANSI form of the statement. It does not support the [AND [NO] CHAIN] clause. (Also note that
DB2 does not support the START TRANSACTION statement, so all transactions in DB2 start implicitly.) DB2's ROLLBACK
syntax is as follows:

ROLLBACK [WORK] [TO SAVEPOINT savepoint_name]

A number of DB2 SET statements are not covered by transaction control and, thus, cannot be rolled back. These
include: SET CONNECTION, SET CURRENT DEFAULT TRANSFORM GROUP, SET CURRENT DEGREE, SET CURRENT
EXPLAIN MODE, SET CURRENT EXPLAIN SNAPSHOT, SET CURRENT PACKAGESET, SET CURRENT QUERY
OPTIMIZATION, SET CURRENT REFRESH AGE, SET EVENT MONITOR STATE, SET PASSTHRU, SET PATH, SET SCHEMA,
and SET SERVER OPTION.

DB2 issues an implicit rollback any time a unit of work terminates abnormally.

When a regular (non-savepoint) rollback occurs on DB2, all locks held by the unit of work are released, open cursors
are closed, LOB locators are freed, and in some cases, caching is impacted. When a rollback to savepoint occurs on
DB2, locks and LOB locators are preserved, and dynamically prepared SQL is still valid (though it will have to be parsed
again). Rollback to savepoint involving cursors is a bit more complicated. If a cursor depends on DDL in the savepoint,
it will be marked invalid. If a cursor is referenced in the savepoint but does not contain DDL used by the savepoint, the
cursor will remain open and the cursor pointer will be positioned before the next row. In all other cases, the cursor
remains unaffected.

MySQL

MySQL supports only the simplest rollback mechanism and, even then, you must declare any table you might issue a
ROLLBACK against to be transaction safe. (A transaction safe table is one declared with the InnoDB or BDB property.
Refer to CREATE TABLE for more information.)

ROLLBACK [TO SAVEPOINT savepoint_name]

MySQL allows you to issue transaction control statements like COMMIT or ROLLBACK against non-transaction safe
tables, but it will simply ignore them and autocommit as usual. In the case of ROLLBACK against a non-transaction safe
table, changes will not be rolled back.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

table, changes will not be rolled back.

MySQL, by default, runs in AUTOCOMMIT mode, causing all data modifications to automatically be written to disk. You
can set AUTOCOMMIT off by issuing the command SET AUTOCOMMIT=0. You can also control the autocommit behavior
on a statement-by-statement basis using the BEGIN or BEGIN WORK command:

BEGIN;

SELECT @A:=SUM(salary) FROM employee WHERE job_type=1;

BEGIN WORK;

UPDATE jobs SET summmary=@A WHERE job_type=1;

COMMIT;

MySQL automatically issues an implicit COMMIT upon the completion of any of these statements: ALTER TABLE, BEGIN,
CREATE INDEX, DROP DATABASE, DROP TABLE, RENAME TABLE, and TRUNCATE.

MySQL supports partial rollbacks using savepoints with Version 4.0.14.

Oracle

Oracle supports the ANSI standard form of the ROLLBACK statement with the addition of the FORCE clause:

ROLLBACK [WORK] {[TO [SAVEPOINT] savepoint_name] |

 [FORCE 'text']};

ROLLBACK clears all data modifications made to the current open transaction (or to a specific, existing savepoint). It
also releases all locks held by the transaction, erases all savepoints, undoes all the changes of the current transaction,
and ends the current transaction.

ROLLBACK ... TO SAVEPOINT rolls back just that portion of the transaction after the savepoint, erases all savepoints
that followed, and releases all table- and row-level locks taken after the savepoint. Refer to the SAVEPOINT Statement
section for more information.

Oracle's implementation closely follows the SQL standard with the exception of the FORCE option. ROLLBACK FORCE
rolls back an in-doubt, distributed transaction. You must have the FORCE TRANSACTION privilege to issue a
ROLLBACK...FORCE statement. FORCE cannot be used with TO [SAVEPOINT]. ROLLBACK...FORCE affects the
transaction named in 'text' and not the current transaction, where 'text' must be equal to the local or global transaction
ID of the transaction you want to rollback. (These transactions and their ID names are detailed in the Oracle system
view DBA_2PC_PENDING.)

For example, you might want to roll back your current transaction to the salary_adjustment savepoint. These two
commands are equivalent:

ROLLBACK WORK TO SAVEPOINT salary_adjustment;

ROLLBACK TO salary_adjustment;

In the following example, you roll back an in-doubt distributed transaction:

ROLLBACK FORCE '45.52.67'

PostgreSQL

PostgreSQL supports the basic form of ROLLBACK, but it does not support savepoints.

{ROLLBACK | ABORT} [WORK | TRANSACTION];

ROLLBACK clears all data modifications made to the current open transaction. It will return an error if no transaction is
currently open. PostgreSQL supports both the WORK option and the TRANSACTION option. It does not support rolling
back to a savepoint. PostgreSQL supports ABORT as a synonym of ROLLBACK.

SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

SQL Server supports both the WORK and TRAN keywords. The only difference between them is that the ROLLBACK
WORK statement doesn't allow rolling back of a named transaction or to a specific savepoint.

ROLLBACK { [WORK] | [TRAN[SACTION]

 [transaction_name | savepoint_name]] }

If ROLLBACK is issued alone without the WORK or TRAN keywords, it rolls back all current open transactions.
ROLLBACK normally frees locks, but it does not free locks when rolling back to a savepoint.

SQL Server allows you to name a specific transaction_name in addition to a specific savepoint_name. You may reference
them explicitly, or you may use variables within Transact-SQL.

ROLLBACK TRANSACTION, when issued in a trigger, undoes all data modifications, including those performed by the
trigger, up to the point of the ROLLBACK statement. Nested triggers are not executed if they follow a ROLLBACK within
a trigger; however, any statements within the trigger that follow the rollback are not impacted by the rollback.
ROLLBACK behaves similarly to COMMIT with regard to nesting, resetting the @@TRANCOUNT system variable to zero.
(Refer to the COMMIT Statement section for more information on transaction control within a SQL Server nested
trigger.)

Following is a Transact-SQL batch using COMMIT and ROLLBACK in Microsoft SQL Server. In the example, the code
inserts a record into the sales table. If the insertion fails, the transaction is rolled back; if the insertion succeeds, the
transaction is committed:

BEGIN TRAN -- initializes a transaction

-- the transaction itself

INSERT INTO sales

VALUES('7896','JR3435','Oct 28 1997',25,'Net 60','BU7832')

-- some error-handling in the event of a failure

IF @@ERROR <> 0

BEGIN

 -- raises an error in the event log and skips to the end

 RAISERROR 50000 'Insert of sales record failed'

 ROLLBACK WORK

 GOTO end_of_batch

END

-- the transaction is committed if no errors are detected

COMMIT TRAN

-- the GOTO label that enables the batch to skip to

-- the end without committing

end_of_batch:

GO

SAVEPOINT sales1

See Also

COMMIT
RELEASE SAVEPOINT
SAVEPOINT

SAVEPOINT Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This command breaks a transaction into logical breakpoints. Multiple savepoints may be specified within a single
transaction. The main benefit of the SAVEPOINT command is that transactions may be partially rolled back to a
savepoint marker using the ROLLBACK command.

Platform Command

DB2 Supported, with variations

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

SQL Server Supported, with limitations

SQL2003 Syntax

SAVEPOINT savepoint_name

Keywords

SAVEPOINT savepoint_name

Establishes a savepoint named savepoint_name within the current transaction.

Some vendors allow duplicate savepoint names within a transaction, but this is not recommended by the ANSI
standard.

SQL2003 supports the statement RELEASE SAVEPOINT savepoint_name, enabling an existing savepoint to be eliminated.
Refer to the RELEASE SAVEPOINT Statement section for more information about eliminating an existing savepoint.

Rules at a Glance

Savepoints are established within the scope of the entire transaction in which they are defined. Savepoint names should
be unique within their scope. Furthermore, make sure you use BEGIN and COMMIT statements prudently, because
accidentally placing a BEGIN statement too early or a COMMIT statement too late can have a dramatic impact on the
way transactions are written to the database. Always make sure to provide easy-to-understand names for your
savepoints because you'll be referencing them later in your programs.

Programming Tips and Gotchas

Generally, reusing a savepoint name won't produce an error or warning. A duplicate savepoint name will render the
previous savepoint with the same name useless. So be careful when naming savepoints!

When a transaction is initiated, resources (namely, locks) are expended to ensure transactional consistency. Make sure
that your transaction runs to completion as quickly as possible so that the locks are released for others to use.

DB2

DB2 supports a more elaborate version of SAVEPOINT than is specified in the ANSI standard.

SAVEPOINT savepoint_name [UNIQUE]

ON ROLLBACK RETAIN CURSORS [ON ROLLBACK RETAIN LOCKS]

where:

SAVEPOINT savepoint_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SAVEPOINT savepoint_name

Establishes a savepoint named savepoint_name within the current transaction.

UNIQUE

Indicates that the savepoint is intended to be unique and that the savepoint name cannot be reused or
overwritten. (Supported only on DB2 for OS/390.)

ON ROLLBACK RETAIN CURSORS

Specifies that open cursors remain open when rolling back to the savepoint. (More details are given in the
ROLLBACK Statement section.)

ON ROLLBACK RETAIN LOCKS

Specifies that locks are retained when rolling back to the named savepoint. This behavior is the default when
the clause is omitted. (More details are given in the ROLLBACK Statement section.)

An important note about DB2 is that savepoints cannot be nested. An error will occur any time you issue a savepoint
where an active savepoint already exists.

DB2 implicitly releases any savepoints within the transaction if it is committed.

In the following example, we set the sales_processing savepoint without explicitly retaining locks:

SAVEPOINT sales_processing ON ROLLBACK RETAIN CURSORS;

However, since retaining locks is the default, the next example is essentially redundant:

SAVEPOINT sales_processing ON ROLLBACK RETAIN

CURSORS ON ROLLBACK RETAIN LOCKS;

MySQL

Not supported.

Oracle

Oracle fully supports the ANSI implementation.

SAVEPOINT savepoint_name

The following example performs several data modifications, and then rolls back to a savepoint:

INSERT INTO sales

VALUES('7896','JR3435','Oct 28 1997',25,'Net 60','BU7832');

SAVEPOINT after_insert;

UPDATE sales SET terms = 'Net 90'

WHERE sales_id = '7896';

SAVEPOINT after_update;

DELETE sales;

ROLLBACK TO after_insert;

PostgreSQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PostgreSQL

Not supported.

SQL Server

SQL Server does not support the SAVEPOINT command. Instead, it uses the SAVE command:

SAVE TRAN[SACTION] savepoint_name

In addition, rather than declaring the literal name of the savepoint, you can optionally reference a variable containing
the name of the savepoint. If you use a variable, it must be of the CHAR, VARCHAR, NCHAR, or NVARCHAR datatype.

SQL Server allows you to have many different named savepoints in a single transaction. However, be careful. Since SQL
Server supports multiple savepoints in a single transaction, it might appear that SQL Server fully supports nested
savepoints. In fact, it does not. Any time you issue a commit or savepoint in SQL Server, it only commits or rolls back
to the last open savepoint.

When the ROLLBACK TRAN savepoint_name command is executed, SQL Server rolls the transaction back to the specified
savepoint, then continues processing with the next valid Transact-SQL command following the ROLLBACK statement.
Finally, the transaction must ultimately be concluded with a COMMIT or a final ROLLBACK statement.

See Also

COMMIT
ROLLBACK

SELECT Statement

The SELECT statement retrieves rows, columns, and derived values from one or many tables of a database.

Platform Command

DB2
Supported, with variations

(ANSI joins supported)

MySQL
Supported, with variations

(ANSI joins partially supported)

Oracle
Supported, with variations

(ANSI joins supported)

PostgreSQL
Supported, with variations

(ANSI joins partially supported)

SQL Server
Supported, with variations

(ANSI joins supported)

SQL2003 Syntax

The full syntax of the SELECT statement is powerful and complex, but can be broken down into these main clauses:

SELECT [{ALL | DISTINCT}] select_item [AS alias] [,...]

FROM [ONLY | OUTER]

 {table_name [[AS] alias] | view_name [[AS] alias]} [,...]

[[join_type] JOIN join_condition]

[WHERE search_condition] [{AND | OR | NOT} search_condition [...]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[WHERE search_condition] [{AND | OR | NOT} search_condition [...]]

[GROUP BY group_by_expression{group_by_columns | ROLLUP group_by_columns |

 CUBE group_by_columns | GROUPING SETS (grouping_set_list) |

 () | grouping_set , grouping_set_list}

 [HAVING search_condition]]

[ORDER BY {order_expression [ASC | DESC]} [,...]]

Keywords

Each of the keywords shown below, except the select_item clause, is discussed in greater detail in the "Rules at a
Glance" section that follows:

[ALL | DISTINCT] select_item

Retrieves values that compose the query result set. Each select_item may be a literal, an aggregate or scalar
function, a mathematic calculation, a parameter or variable, or a subquery, but a select_item is most commonly
a column from a table or view. A comma must separate each item in a list of such items.

The schema or owner name should be prefixed to a column when extracted from a context outside of the current user.
If the table is owned by another user, then that user must be included in the column reference. For example, assume
the user jake needs to access data in the schema katie:

SELECT emp_id

FROM katie.employee;

You can use the asterisk (*) shorthand to retrieve all columns in every table or view shown in the FROM clause. It's a
good idea to use this shortcut on single-table queries only.

ALL, the default behavior, returns all records that meet the selection criteria. DISTINCT tells the database to filter out
any duplicate records, thus retrieving only one instance out of many identical records.

AS alias

Replaces a column heading (when in the select_item clause) or a table name or view name (when in the FROM
clause) with a shorter heading or name. This clause is especially useful for replacing cryptic or lengthy names
with short, easy to understand names or mnemonics, or when the column is only derived data so you don't end
up with a column called ORA000189x7/0.02. It is also very useful in self-joins and correlated subqueries
where a single query references the same table more than once. When multiple items appear in the select_item
clause or FROM clause, make sure to place the commas after an AS alias clauses. Be careful to always use an
alias uniformly once you introduce it into the query.

FROM table_name

Serves to list all tables and/or views from which the query retrieves data. Separate table and view names using
commas. The FROM clause also allows you to assign aliases to long table/or view names or subqueries using the
AS clause. Using shorter aliases instead of longer table or view names simplifies coding. (Of course, this might
thwart the DBA's carefully planned naming conventions, but the alias only lasts for the duration of the query.
Refer to the following section on "Rules at a Glance.") FROM clauses may contain a subquery (refer to the
SUBQUERY Substatement section).

ONLY

Specifies that only the rows of the named table or view, and no rows in subtables or subviews, will be retrieved
in the result set. When using ONLY, be sure to enclose the table_name or view_name within parentheses. ONLY is
ignored if the table or view has no subtables or subviews.

OUTER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Specifies that the rows of the named table or view, along with the rows and columns of any and all subtables or
subviews, will be retrieved in the result set. Columns of the subtables (or subviews) will be appended to the
right, in subtable hierarchy order according to depth of the subtable. In extensive hierarchies, subtables with
common parents are appended in creation order of their types. When using OUTER, be sure to enclose the
table_name or view_name within parentheses. OUTER is ignored if the table or view has no subtables or subviews.

JOIN join_condition

Joins together the result set of the table shown in the FROM clause to another table that shares a meaningful
relationship based on a common set of values. These values are usually contained in columns of the same name
and datatype that appear in both tables being joined. These columns, or possibly a single column from each
table, are called the join key or common key. Most—but not all—of the time, the join key is the primary key of
one table and a foreign key in another table. As long as the data in the columns match, the join can be
performed. (Note that joins can also be performed using the WHERE clause. This technique is sometimes called
a theta join.)

Join_conditions are most commonly depicted in the form:

JOIN table_name2 ON table_name1.column1 <comparison operator>

 table_name2.column2

JOIN table_name3 ON table_name1.columnA <comparison operator>

 table_name3.columnA

[...]

When the comparison_operator is the equal sign (=), a join is said to be an equijoin. However, the comparison operation
could be any acceptable comparison operation like <, >, <=, >=, or even <>.

Use the AND operator to issue a JOIN with multiple conditions. You can also use the OR operator to specify alternate
join conditions.

If an explicit join_type is omitted, then an INNER JOIN is assumed. Note that there are many types of joins, each with
their own rules and behaviors, described in the "Rules at a Glance" (and in more detail in the JOIN Subclause section).
Note that an alternate approach to the join condition, via the USING clause, exists:

USING (column_name [,...])

Acts as an alternative to the ON clause. Instead of describing the conditions of the join, simply provide a
column_name (or column names separated by commas) that appears in both tables. The database then evaluates
the join based on the column (or columns) of column_name that appear in both tables. (The column names must
be identical in both tables.) In the following example, the two queries produce identical results:

SELECT emp_id

FROM employee

LEFT JOIN sales USING (emp_id, region_id);

SELECT emp_id

FROM employee AS e

LEFT JOIN sales AS s

 ON e.emp_id = s.emp_id

 AND e.region_id = s.region_id;

WHERE search_condition

Filters unwanted data from the result set of the query, returning only those records that satisfy the search
conditions. A poorly written WHERE clause can ruin the performance of an otherwise useful SELECT statement,
so the nuances of the WHERE clause must be mastered thoroughly. Search_conditions are syntactically depicted in
the form:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the form:

WHERE [schema.[table_name.]]column operator value

WHERE clauses usually compare the values contained in a column of the table. The values of the column are compared
using an operator of some type (refer to Chapter 2 for more detail). For example, a column might equal (=) a given
value, be greater than (>) a given value, or be BETWEEN a range of values.

WHERE clauses may contain many search conditions concatenated together using the AND or OR Boolean operators.
Parentheses can be used to impact the order of precedence of the search conditions. WHERE clauses can contain
subqueries (refer to the SUBQUERY Substatement section).

GROUP BY group_by_expression

Used in queries that utilize aggregate functions such as AVG, COUNT, COUNT DISTINCT, MAX, MIN, and SUM to
group result sets into the categories you define in the group_by_expression. The group_by_expression of the GROUP
BY clause has an elaborate syntax of its own:

[GROUP BY group_by_expression

where group_by_expression is:

{ (grouping_column [,...]) | ROLLUP (grouping_column [,...]) |

 CUBE (grouping_column [,...]) | GROUPING SETS (grouping_set_list) |

 () | grouping_set , grouping_set_list}

Refer below to the subsection The GROUP BY clause in the "Rules at a Glance" section for examples and more
information on ROLLUP, CUBE, and GROUPING SETS.

HAVING search_condition

Adds search conditions on the results of the GROUP BY clause in a manner similar to the WHERE clause.
HAVING does not affect the rows used to calculate the aggregates. HAVING clauses may contain a subquery.
(Refer to the SUBQUERY Substatement section for more information).

ORDER BY order_expression [ASC | DESC]

Sorts the result set in either ascending (ASC) or descending (DESC) order using the order_expression specified.
The order_expression is a list of columns, separated by commas, that you want to sort by.

Rules at a Glance

Each clause of the SELECT statement has a specific use. Thus, it is possible to speak individually of the FROM clause,
the WHERE clause, the GROUP BY clause, and so forth. You can get more details and examples of SELECT statements
by looking up the entries for each clause of the statement. However, not every query needs every clause. At a
minimum, a query needs a SELECT item list and a FROM clause. Because the SELECT clause is so important and offers
so many options, we've divided "Rules at a Glance" into the following detailed subsections:

Aliases and WHERE clause joins

The JOIN clause

The WHERE clause

The GROUP BY clause

The HAVING clause

The ORDER BY clause

Aliases and WHERE clause joins

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Aliases and WHERE clause joins

Columns may need to be prefixed with the database, schema, and table name, particularly when there may be the
same column name in one or more tables of the query. For example, (on an Oracle database) both the jobs table and
scott's employee table contain the job_id column. Note that the following examples join the employee and jobs
table using the WHERE clause:

SELECT scott.employee.emp_id,

 scott.employee.fname,

 scott.employee.lname,

 jobs.job_desc

FROM scott.employee,

 jobs

WHERE scott.employee.job_id = jobs.job_id

ORDER BY scott.employee.fname,

 scott.employee.lname

You can also use aliases to write a query more simply and easily:

SELECT e.emp_id,

 e.fname,

 e.lname,

 j.job_desc

FROM scott.employee AS e,

 jobs AS j

WHERE e.job_id = j.job_id

ORDER BY e.fname,

 e.lname

These two queries also illustrate some important rules about WHERE clause joins:

1. Use commas to separate multiple elements in a select_item list, tables in the FROM clause, and items in the
order_expression.

2. Use the AS clause to define aliases.

3. Use aliases consistently throughout the SELECT statement once you define them.

In general, you should favor the JOIN clause (explained in a moment) over the WHERE clause for describing join
expressions. This not only keeps your code cleaner, making it easy to differentiate join conditions from search
conditions, it also allows you to avoid the possibility of counter-intuitive behavior that results from using the WHERE
clause for outer joins in some implementations.

The JOIN clause

To perform the same query as in the previous example using an ANSI-style join, list the first table and the keyword
JOIN, followed by the table to be joined. Once the second table is typed in, type the keyword ON and the join condition
that would have been used in the old style query. The next example shows the query now in ANSI style.

SELECT e.emp_id, e.fname, e.lname, j.job_desc

FROM scott.employee AS e

JOIN jobs AS j ON e.job_id = j.job_id

ORDER BY e.fname, e.lname;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY e.fname, e.lname;

Alternately, you could use the USING clause. Instead of describing the conditions of the join, simply provide one or
more column_names (separated by commas) that appears in both of the joined tables. The database then evaluates the
join based on the column (or columns) of column_name that appear in both tables. (The column names must be identical
in both tables.) In the following example, the two queries produce identical results, one using the ON clause and one
using the USING clause:

SELECT emp_id

FROM employee

LEFT JOIN sales USING (emp_id, region_id);

SELECT emp_id

FROM employee AS e

LEFT JOIN sales AS s

 ON e.emp_id = s.emp_id

 AND e.region_id = s.region_id;

You can specifiy several different types of joins in ANSI style:

Cross join

Specifies the complete cross product of two tables. For each record in the first table, all the records in the
second table are joined, creating a potentially huge result set. (Of course, the result set would be small if both
tables had only four records each, but imagine if they had four million!) This command has the same effect as
leaving off the join condition and is also known as a "Cartesian Product." We do not recommend using cross
joins.

Inner join

Specifies that unmatched rows in either table of the join should be discarded. If no join type is explicitly defined
in the ANSI style, then this is the default.

Left [outer] join

Specifies that all records be returned from the table on the left side of the join statement. If a record returned
from the left table has no matching record in the table on the right side of the join, it is still returned. Columns
from the right table return NULL values. Many professionals recommend configuring outer joins as left joins
wherever possible for consistency.

Right [outer] join

Specifies that all records be returned from the table on the right side of the join statement, even if the table on
the left has no matching record. Columns from the left table return NULL values.

Full [outer] join

Specifies that all rows from either table be returned, regardless of matching records in the other table. The
result set shows NULL values where no matching data exists in the join.

Not all joins are supported by all platforms, so refer to the JOIN Subclause section for full
details on platform-specific join support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The WHERE clause

A poorly written WHERE clause can ruin an otherwise beautiful SELECT statement, so the nuances of the WHERE clause
must be mastered thoroughly. This is an example of a typical query and a multipart WHERE clause:

SELECT a.au_lname,

 a.au_fname,

 t2.title,

 t2.pubdate

FROM authors a

JOIN titleauthor t1 ON a.au_id = t1.au_id

JOIN titles t2 ON t1.title_id = t2.title_id

WHERE (t2.type = 'business' OR t2.type = 'popular_comp')

 AND t2.advance > 5500

ORDER BY t2.title

In examining this query, the parentheses impact the order of processing for the search conditions. Use parentheses to
move search conditions up or down in precedence just like you would in an algebra equation.

On some platforms, the database's default collation (also known as sort order) impacts
how the WHERE clause filters results for a query. For example, SQL Server is (by default)
dictionary-order and case-insensitive, making no differentiation between "Smith," "smith,"
and "SMITH." But Oracle uses dictionary-order and is case-sensitive, finding the values
"Smith," "smith," and "SMITH" to be unequal.

The WHERE clause offers many more specific capabilities than the preceding example illustrates. The list below
references some of the more common capabilities of the WHERE clause. Refer to the WHERE Clause section for full
details and examples.

NOT

Inverts a comparison operation using the syntax WHERE NOT expression. Thus, you might use WHERE NOT
LIKE... or WHERE NOT IN... in a query.

Comparison operators

Compare any set of values using the operations <, >, <>, >=, <=, and =. For example:

WHERE emp_id = '54123'

IS NULL or IS NOT NULL conditions

Search for any NULL or NOT NULL values using the syntax WHERE expression IS [NOT] NULL.

AND

Merges multiple conditions, returning only those records that meet all conditions, using the AND operator. The
maximum number of multiple conditions is determined by each platform. For example:

WHERE job_id = '12' AND job_status = 'active'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

OR

Merges alternative conditions, returning records that meet any of the conditions, using the OR operator. For
example:

WHERE job_id = '13' OR job_status = 'active'

LIKE

Tells the query to use a pattern-matching string contained within quotation marks. The wildcard symbols
supported by each platform are detailed in the LIKE Operator section. All platforms support the percent sign
(%) for a wildcard symbol. For example, to find any phone number starting with the 415 area code:

WHERE phone LIKE '415%'

EXISTS

Used only with subqueries, EXISTS tests to see whether the subquery data exists. It is typically much faster
than WHERE IN subqueries. For example, the following query finds all authors who are also employees:

SELECT au_lname FROM authors WHERE EXISTS (SELECT last_name FROM employees)

BETWEEN

Performs a range check to see if a value is in between two values (inclusive of those two values). For example:

WHERE ytd_sales BETWEEN 4000 AND 9000.

IN

Performs a test to see if an expression matches any one value out of a list of values. The list may be literal, as
in WHERE state IN ('or', 'il','tn','ak'). The list of values may also be derived using a subquery:

WHERE state IN (SELECT state_abbr FROM territories).

SOME | ANY

Functions the same as the EXISTS operation, though with a slightly different syntax. For example, the following
query finds all authors who are also employees:

SELECT au_lname FROM authors WHERE au_lname = SOME(SELECT last_name FROM employees)

ALL

Performs a check to see if all records in the subquery match the evaluation criteria. It returns TRUE when the
subquery returns zero rows. For example:

WHERE city = ALL (SELECT city FROM employees WHERE emp_id = 54123)

The GROUP BY clause

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The GROUP BY clause

The GROUP BY clause (and the HAVING clause) is needed only in queries that utilize aggregate functions.

The GROUP BY clause is used to report an aggregated value for one or more rows returned by a SELECT statement
based on one or more non-aggregated columns called grouping columns. For example, here is a query that counts up
how many people we hired per year from the year 1999 to 2004:

SELECT hire_year, COUNT(emp_id) AS 'nbr_emps'

FROM employee

WHERE status = 'ACTIVE'

 AND hire_year BETWEEN 1999 AND 2004

GROUP BY hire_year;

The results are:

hire_year nbr_emps

--------- --------

1999 27

2000 17

2001 13

2002 19

2003 20

2004 32

Queries using aggregate functions provide many types of summary information. The most common aggregate functions
include:

AVG

Returns the average of all non-NULL values in the specified column(s).

AVG DISTINCT

Returns the average of all unique, non-NULL values in the specified column(s).

COUNT

Counts the occurrences of all non-NULL values in the specified column(s).

COUNT DISTINCT

Counts the occurrences of all unique, non-NULL values in the specified column(s).

COUNT(*)

Counts every record in the table.

MAX

Returns the highest non-NULL value in the specified column(s).

MIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MIN

Returns the lowest non-NULL value in the specified column(s).

SUM

Totals all non-NULL values in the specified column(s).

SUM DISTINCT

Totals all unique, non-NULL values in the specified column(s).

Some queries that use aggregates return a sole value. Single value aggregates are known as a scalar aggregates.
Scalar aggregates do not need a GROUP BY clause. For example:

--Query

SELECT AVG(price)

FROM titles

--Results

14.77

Queries that return both regular column values and aggregate function values are commonly called vector aggregates.
Vector aggregates use the GROUP BY clause and return one or many rows. There are a few rules to follow when using
GROUP BY:

Place GROUP BY in the proper clause order—after the WHERE clause and before the ORDER BY clause.

Include all non-aggregate columns in the GROUP BY clause.

Do not use a column alias in the GROUP BY clause, though table aliases are acceptable.

For example, let's suppose you need to know the total purchase amount of several purchases, with an Order_Details
table that looks like this:

OrderID ProductID UnitPrice Quantity

----------- ----------- ------------------- --------

10248 11 14.0000 12

10248 42 9.8000 10

10248 72 34.8000 5

10249 14 18.6000 9

10249 51 42.4000 40

10250 41 7.7000 10

10250 51 42.4000 35

10250 65 16.8000 15

...

The following example will give you the results:

SELECT OrderID, SUM(UnitPrice * Quantity) AS 'Order Amt'

FROM order_details

WHERE orderid IN (10248, 10249, 10250)

GROUP BY orderid

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GROUP BY orderid

The results are:

OrderID Order Amt

----------- ----------------

10248 440.0000

10249 1863.4000

10250 1813.0000

We could further refine the aggregations by using more than one grouping columns. Considering the following query
retrieving the average price of our products, grouped first by name and then by size:

SELECT name, size, AVG(unit_price) AS 'avg'

FROM product

GROUP BY name, size

The results are:

Name Size avg

------------ ------ -----------------------

Flux Capacitor small 900

P32 Space Modulator small 1400

Transmorgrifier medium 1400

Acme Rocket large 600

Land Speeder large 6500

In addition, the GROUP BY clause supports a number of very important subclauses:

GROUP BY [{ROLLUP | CUBE}] ([grouping_column [,...]]) [, grouping set list]

Groups the aggregate values of the result set by one or more grouping columns. (Without ROLLUP or CUBE, the
GROUP BY (grouping_column [,...]) clause is the most simplest and common form of the GROUP BY clause.)

ROLLUP

Produces subtotals for each set of grouping columns as a hierarchical result set. It adds subtotal and
grand total rows into the result sets in a hierarchical fashion. ROLLUP operations return one row per
grouping column where NULL appears in the grouping column to show the subtotaled or totaled
aggregate value (illustrated in a moment).

CUBE

Produces subtotals and cross-tabulated totals for all grouping columns. In a sense, the CUBE clause
enables you to quickly return multidimensional result sets from standard relational tables without a lot
of programmatic work. CUBE is especially useful when working with large amounts of data. Like
ROLLUP, CUBE provides subtotals of the grouping columns but it also includes subtotal rows for all
possible combinations of the grouping columns specified in the query.

GROUP BY GROUPING SETS [{ROLLUP | CUBE}] ([grouping_column [,...]]) [, grouping set list]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enables aggregated groups on several different sets of grouping columns within the same query. This is
especially useful when you want to return only a portion of an aggregated result set. The GROUPING SETS
clause also lets you select which grouping columns to compare, whereas CUBE returns all of the grouping
columns and ROLLUP returns a hierarchical subset of the grouping columns. As the syntax shows, the ANSI
standard also allows GROUPING SETS to be paired with ROLLUP or CUBE.

Consider the following clauses and the result sets they return, shown in Table 3-3.

Table 3-3. GROUP BY syntax variations
GROUP BY syntax Returns the following sets

GROUP BY (col_A, col_B, col_C) (col_A, col_B, col_C)

GROUP BY ROLLUP (col_A, col_B, col_C)

(col_A, col_B, col_C)

(col_A, col_B)

(col_A)

()

GROUP BY CUBE (col_A, col_B, col_C)

(col_A, col_B, col_C)

(col_A, col_B)

(col_A)

(col_B, col_C)

(col_B)

(col_C)

()

GROUP BY GROUPING SETS

((col_A, col_B),

(col_A, col_C), (col_C))

Subquery:

SELECT *

FROM stores

WHERE stor_id IN

 (SELECT stor_id FROM sales

 WHERE ord_date > '01-JAN-2004')

Each type of GROUP BY clause returns a different set of aggregated values and, in the case of ROLLUP and CUBE, totals
and subtotals.

The concepts of ROLLUP, CUBE, and GROUPING SETS are much more intuitive when explained by example. In the
following example, we query for data summarizing the number of sales_orders by order_year and by
order_quarter:

SELECT order_year AS year, order_quarter AS quarter,

 COUNT (*) AS orders

FROM order_details

WHERE order_year IN (2003, 2004)

GROUP BY ROLLUP (order_year, order_quarter)

ORDER BY order_year, order_quarter;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY order_year, order_quarter;

The results are:

year quarter orders

---- ------- ------

NULL NULL 648 -- the grand total

2003 NULL 380 -- the total for year 2003

2003 1 87

2003 2 77

2003 3 91

2003 4 125

2004 NULL 268 -- the total for year 2004

2004 1 139

2004 2 119

2004 3 10

Adding grouping columns to the query provides more details (and more subtotaling) in the result set. We'll modify the
previous example by adding a region to the query (but since the number of rows increases, we'll only look at the first
and second quarter):

SELECT order_year AS year, order_quarter AS quarter, region,

 COUNT (*) AS orders

FROM order_details

WHERE order_year IN (2003, 2004)

 AND order_quarter IN (1,2)

 AND region IN ('USA', 'CANADA')

GROUP BY ROLLUP (order_year, order_quarter)

ORDER BY order_year, order_quarter;

The results are:

year quarter region orders

---- ------- ------ ------

NULL NULL NULL 183 -- the grand total

2003 NULL NULL 68 -- the subtotal for year 2003

2003 1 NULL 36 -- the subtotal for all regions in q1 of 2003

2003 1 CANADA 3

2003 1 USA 33

2003 2 NULL 32 -- the subtotal for all regions in q2 of 2004

2003 2 CANADA 3

2003 2 USA 29

2004 NULL NULL 115 -- the subtotal for year 2004

2004 1 NULL 57 -- the subtotal for all regions in q1 of 2004

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2004 1 NULL 57 -- the subtotal for all regions in q1 of 2004

2004 1 CANADA 11

2004 1 USA 46

2004 2 NULL 58 -- the subtotal for all regions in q2 of 2004

2004 2 CANADA 4

2004 2 USA 54

The GROUP BY CUBE clause is useful for performing multidimensional analysis on aggregated data. Like GROUP BY
ROLLUP, it returns subtotals. But unlike GROUP BY ROLLUP, it returns subtotals combining all of the grouping columns
named in the query. (As you will see, it also has the potential to increase the number of rows returned in the result
set.)

In the following example, we query for data summarizing the number of sales_orders by order_year and by
order_quarter:

SELECT order_year AS year, order_quarter AS quarter,

 COUNT (*) AS orders

FROM order_details

WHERE order_year IN (2003, 2004)

GROUP BY CUBE (order_year, order_quarter)

ORDER BY order_year, order_quarter;

The results are:

year quarter orders

---- ------- ------

NULL NULL 648 -- the grand total

NULL 1 226 -- the subtotal for q1 of both years

NULL 2 196 -- the subtotal for q2 of both years

NULL 3 101 -- the subtotal for q3 of both years

NULL 4 125 -- the subtotal for q4 of both years

2003 NULL 380 -- the total for year 2003

2003 1 87

2003 2 77

2003 3 91

2003 4 125

2004 NULL 268 -- the total for year 2004

2004 1 139

2004 2 119

2004 3 10

The GROUP BY GROUPING SETS clause lets you aggregate on more than one group in a single query. For each group
set, the query returns subtotals with the grouping column marked as NULL. While the CUBE and ROLLUP clauses place
predefined subtotals into the result set, the GROUPING SETS clause allows you to control what subtotals to add to the
query. The GROUPING SETS clause does not return a grand total.

Using a similar example query to the ones shown with ROLLUP and CUBE, this time we chose to subtotal by year and
quarter and separately by year:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

quarter and separately by year:

SELECT order_year AS year, order_quarter AS quarter, COUNT (*) AS orders

FROM order_details

WHERE order_year IN (2003, 2004)

GROUP BY GROUPING SETS ((order_year, order_quarter), (order_year))

ORDER BY order_year, order_quarter;

The results are:

year quarter orders

---- ------- ------

2003 NULL 380 -- the total for year 2003

2003 1 87

2003 2 77

2003 3 91

2003 4 125

2004 NULL 268 -- the total for year 2004

2004 1 139

2004 2 119

2004 3 10

Another way to think of GROUPING SETS is to consider them to be like a UNION ALL of more than one GROUP BY query
that references different parts of the same data. You can tell the database to add subtotals to a GROUPING SET by
simply adding in the ROLLUP or CUBE clause according to how you would like subtotaling to occur.

GROUPING SETS can also be concatenated to concisely generate large combinations of groupings. Concatenated
GROUPING SETS yield the cross-product of groupings from each of the sets within a GROUPING SET list. Concatenated
GROUPING SETS are compatible with CUBE and ROLLUP. Concatenated GROUPING SETS, since they perform a cross-
product of all GROUPING SETS, will generate a very large number of final groupings from even a small number of
concatenated groupings.

Table 3-4. GROUP BY syntax variations
GROUP BY syntax Returns the following sets

GROUP BY (col_A, col_B, col_C) (col_A, col_B, col_C)

... ...

GROUP GY GROUPING SETS (col_A, col_B) (col_Y, col_Z)

(col_A, col_Y)

(col_A, col_Z)

(col_B, col_Y)

(col_B, col_Z)

In the example in Table 3-4, the concatenated GROUPING SETS yield a large number of final groupings. You can
imaging how large the result set would be if the concatenated GROUPING SETS contained a large number of groupings!
However, the information returned can be very valuable and hard to reproduce.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The HAVING clause

The HAVING clause adds search conditions on the result of the GROUP BY clause. HAVING works very much like the
WHERE clause, but applies to the GROUP BY clause. The HAVING clause supports all the same search conditions as the
WHERE clause shown earlier. For example, using the same query as before, we now want to find only those jobs that
have more than three people:

--Query

SELECT j.job_desc "Job Description",

 COUNT(e.job_id) "Nbr in Job"

FROM employee e

JOIN jobs j ON e.job_id = j.job_id

GROUP BY j.job_desc

HAVING COUNT(e.job_id) > 3

--Results

Job Description Nbr in Job

-- -----------

Acquisitions Manager 4

Managing Editor 4

Marketing Manager 4

Operations Manager 4

Productions Manager 4

Public Relations Manager 4

Publisher 7

Note that the ANSI standard does not require that an explicit GROUP BY clause appear with a HAVING clause. For
example, the following query against the employee table is valid because it has an implied GROUP BY clause:

SELECT COUNT(dept_nbr)

FROM employee

HAVING COUNT(dept_nbr) > 30;

Although the earlier code example is valid, this application for the HAVING clause is rather rare.

The ORDER BY clause

A result set can be sorted through the ORDER BY clause, in accordance with the database's sort order. Each column of
the result set may be sorted in either ascending (ASC) or descending (DESC) order. (Ascending order is the default.) If
no ORDER BY clause is specified, most implementations return the data according to the physical order of data within
the table or according to the order of an index utilized by the query. However, when no ORDER BY clause is specified,
there is no guarantee on the order of the result set. Following is an example of a SELECT statement with an ORDER BY
clause on SQL Server:

SELECT e.emp_id "Emp ID",

 e.fname "First",

 e.lname "Last",

 j.job_desc "Job Desc"

FROM employee e,

 jobs j

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 jobs j

WHERE e.job_id = j.job_id

 AND j.job_desc = 'Acquisitions Manager'

ORDER BY e.fname DESC,

 e.lname ASC

The results are:

Emp ID First Last Job Desc

--------- --------------- --------------- --------------------

MIR38834F Margaret Rancé Acquisitions Manager

MAS70474F Margaret Smith Acquisitions Manager

KJJ92907F Karla Jablonski Acquisitions Manager

GHT50241M Gary Thomas Acquisitions Manager

After the result set is pared down to meet the search conditions, the result set is sorted by the authors' first names in
descending order. Where the authors' first names are equal, the results are sorted in ascending order by last name.

You may write an ORDER BY clause using columns in the table that do not appear in the
select list. For example, you might query all emp_ids from the employee table, yet
ORDER BY the employee's first and last name.

Programming Tips and Gotchas

Once an alias has been assigned to a table or view in the FROM clause, use it exclusively for all other references to that
table or view within the query (in the WHERE clause, for example). Do not mix references to the full table name and the
alias within a single query. You should avoid mixed references for a couple of reasons. First, it is simply inconsistent and
makes code maintenance more difficult. Second, some database platforms return errors on SELECT statements
containing mixed references. (Refer to the SUBQUERY Substatement section for special instructions on aliasing within a
subquery.)

MySQL, PostgreSQL, and SQL Server support certain types of queries that do not need a FROM clause. Use these types
of queries with caution since the ANSI standard requires a FROM clause. Queries without a FROM clause must be
manually migrated to either the ANSI standard form or to a form that also works on the target database. Certain
platforms do not support the ANSI style JOIN clause. Refer to the entry for each clause to fully investigate the varying
degrees of support among the different database vendors for all the options of the SELECT command.

DB2

DB2 supports all of the typical clauses of the ANSI standard SELECT statement, such as WHERE, FROM, GROUP BY,
HAVING, and ORDER BY. DB2 supports all of the subclauses of the GROUP BY clause, including concatenated
GROUPING SETS. Plus, DB2 supplements the most common clauses with its own SELECT INTO clause and FETCH FIRST
clause:

SELECT { [ALL | DISTINCT] } select_item [AS alias] [,...]

[INTO host_variable [,...]]

FROM [ONLY | OUTER] {table_name | view_name | TABLE ({function_name |

 subquery}) [AS alias] [,...] }

[[join type] JOIN table2]

[WHERE search_condition] [{AND | OR | NOT} search_condition [,...]]

[GROUP BY group_by_expression [HAVING search_condition]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[GROUP BY group_by_expression [HAVING search_condition]]

[ORDER BY order_expression [ASC | DESC]]

[FETCH FIRST {n} {ROW | ROWS} ONLY]

where:

INTO host_variable [,...]

Assigns the values returned by the query to the host variable(s). An error will occur if the SELECT statement
returns more than one row in the result set. The values of each select_item are assigned in ordinal position to the
declared host_variables. A warning is given if there are fewer host variables than values returned by the SELECT
statement.

TABLE ({function_name | subquery})

Specifies that the query will return a function result set or the results of a fully declared subquery. When
making a table function call, the column names of the table function specified in the RETURNS clause of the
CREATE FUNCTION statement are analogous the columns of the table. Note that the function call, along with its
parameters and the subquery, must be enclosed in parentheses. For example, the following query takes data
from an international retail web site and returns the conversions between foreign currencies and the U.S. dollar:

SELECT column1

FROM TABLE (curr_conv(CURRENCY, CONVERSION_RATE)) AS data;

GROUP BY group_by_expression

DB2 fully supports the ANSI standard GROUP BY clause, including ROLLUP, CUBE, and GROUPING SETS.

FETCH FIRST {n} {ROW | ROWS} ONLY

Sets a maximum number of rows that will be retrieved by the query. This clause is used to tell the database
that you do not want more than n rows, where n is any positive integer of 1 or greater, regardless of how many
might be retrieved by the database. This can improve performance, since potentially large result sets may be
trimmed to a more manageable size.

DB2 supports four possible join types: INNER, LEFT OUTER, RIGHT OUTER, and FULL OUTER:

INNER JOIN

Retrieves those records of both table1 and table2 where there are matching values in both tables according to
the join condition. Note that the syntax FROM table1, table2 with join conditions in the WHERE clause is
semantically equivalent to an inner join.

LEFT [OUTER] JOIN

Retrieves all records in the leftmost table (i.e., table1) and matching records in the rightmost table (i.e., table2).
If there isn't a matching record in table2, NULL values are substituted for that table's columns. You can use this
type of join to retrieve all the records in a table even when there are no counterparts in the joined table. For
example:

SELECT j.job_id, e.lname

FROM jobs j

LEFT OUTER JOIN employee e ON j.job_id = e.job_id

ORDER BY j.job_id

RIGHT [OUTER] JOIN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RIGHT [OUTER] JOIN

Retrieves all records in the rightmost table regardless of whether there is a matching record in the leftmost
table. A right join is the same as a left join, except that the optional table is on the left.

FULL [OUTER] JOIN

Specifies that all rows from both tables be returned, regardless of whether a row from one table
matches a row in the other table. Any columns that have no value in the corresponding joined table are
assigned a NULL value.

DB2 places some restrictions on using an ORDER BY clause or a FETCH FIRST clause in any SELECT statement
used in a subquery. First, a SELECT statement containing an ORDER BY clause or a FETCH FIRST clause must
always be enclosed in parentheses, even when used in a set operation. Second, a SELECT statement containing
an ORDER BY clause or a FETCH FIRST clause will return an error if it is the primary query of a view or a
materialized query table, since views and materialized query tables cannot be inherently ordered.

The FETCH FIRST clause can be used to do some interesting things beyond merely limiting the total number of
records returned by a result set. For example, the following query does not limit the total number of records
returned by the query; instead, it limits only the number of records used in the subquery. In this example, we
will return all the titles of the top 10 employees, based on their salaries:

SELECT jobs.job_desc

FROM jobs

WHERE jobs.job_desc IN

 (SELECT employee.job_desc

 FROM employee

 ORDER BY salary DESC

 FETCH FIRST 10 ROWS ONLY);

In the example above, only the first 10 rows of the employee table will be used, but the parent query might possibly
return any number of rows. Also remember that the ordering in the subquery has no impact on the ordering of the final
result set.

MySQL

MySQL's implementation of SELECT includes partial JOIN support, the INTO clause, the LIMIT clause, and the
PROCEDURE clause. MySQL does not support subqueries prior to Version 4.0.

SELECT [DISTINCT |

 DISTINCTROW | ALL]

 [STRAIGHT_JOIN][{SQL_SMALL_RESULT | SQL_BIG_RESULT}][SQL_BUFFER_RESULT]

 [HIGH_PRIORITY]

select_item AS alias [,...]

[INTO {OUTFILE | DUMPFILE} 'file_name' options]

[FROM table_name AS alias [,...]

 [{ USE INDEX (index1 [,...]) | IGNORE INDEX (index1 [,...]) }]

[join type][JOIN table2] [ON join_condition]

[WHERE search_condition]

[GROUP BY {unsigned_integer | column_name | formula}

 [ASC | DESC] [,...]]

[HAVING search_condition]

[ORDER BY {unsigned_integer | column_name | formula}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[ORDER BY {unsigned_integer | column_name | formula}

 [ASC | DESC] [,...]]

[LIMIT [[offset_position,] number_of_rows]]

[PROCEDURE procedure_name (param [,...])]

[{FOR UPDATE | LOCK IN SHARE MODE}] ;

where:

STRAIGHT_JOIN

Forces the optimizer to join tables in the exact order they appear in the FROM clause.

SQL_SMALL_RESULT | SQL_BIG_RESULT

Tells the optimizer to expect a small or large result set on a GROUP BY clause or a DISTINCT clause,
respectively. MySQL builds a temporary table when a query has a DISTINCT or GROUP BY clause, and these
optional clauses tell MySQL to build a fast temporary table in memory (for SQL_SMALL_RESULT) or a slower,
disk-based temporary table (for SQL_BIG_RESULT) to process the worktable.

SQL_BUFFER_RESULT

Forces the result set into a temporary table so that MySQL can free table locks earlier and speed the result set
to the client.

HIGH_PRIORITY

Gives the query a higher priority than statements that modify data within the table. This should be used only for
special, high-speed queries.

select_item

Retrieves the expressions or columns listed. Columns may be in the format [database_name.]
[table_name.]column_name. If the database or table names are left out, then MySQL assumes the current
database and table.

FROM ... USE INDEX | IGNORE INDEX

Indicates the table from which rows will be retrieved. The table may be described as [database_name.]
[table_name]. MySQL will treat the query as a join if more than one table appears in the FROM clause. The
optional FORCE INDEX and USE INDEX (index1, index2, ...), and IGNORE INDEX (index1, index2, ...) clauses
enable you to tell MySQL to use or ignore specific indexes on a table, respectively.

INTO {OUTFILE | DUMPFILE}'file_name'

Writes the result set of the query to a file named 'file_name' on the host filesystem with the OUTPUT option. The
file_name must not already exist. The DUMPFILE option writes a single continuous line of data without column
terminations, line terminations, or escape characters. This option is used mostly for BLOB files. Specific rules for
using this clause are detailed below.

LIMIT [[offset_position,] number_of_rows]

Constrains the number of rows returned by the query, starting at the offset_position and returning
number_of_rows. If only one integer is supplied, then the specified number of records is returned, and a default
offset (or starting position) of zero is assumed.

PROCEDURE procedure_name (param [,...])

Names a procedure that processes the data in the result set. The procedure is an external procedure, usually
C++, not an internal database stored procedure.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

C++, not an internal database stored procedure.

{FOR UPDATE | LOCK IN SHARE MODE}

Issues either a write lock on the rows returned by the query (FOR UPDATE) for its exclusive use (provided the
table is of InnoDB or BDB type) or issues read locks on the rows returned by the query (LOCK IN SHARE) such
that other users may see the rows, but may not modify them.

Keep a couple of rules in mind when using the INTO clause. First, the output file cannot already exist since overwrite
functionality is not supported. Second, any file created by the query will be readable by everyone that can connect to
the server. (When using SELECT...INTO OUTFILE, you can then turn around and use the MySQL command LOAD DATA
INFILE to quickly load the data.)

You can use the following options to better control the content of the output file when using SELECT...INTO OUTFILE:

ESCAPED BY

FIELDS TERMINATED BY

LINES TERMINATED BY

OPTIONALLY ENCLOSED BY

The following example illustrates the use of these optional commands via a MySQL query that returns a result set in a
comma-delimited output file:

SELECT job_id, emp_id, lname+fname

INTO OUTFILE "/tmp/employees.text"

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

LINES TERMINATED BY "\n"

FROM employee;

MySQL also allows SELECT statements without a FROM clause when performing simple arithmetic. For example, the
following queries are valid on MySQL:

SELECT 2 + 2;

SELECT 565 - 200;

SELECT (365 * 2) * 52;

MySQL is very fluid in the way it supports joins. You can use several different syntaxes to perform a join. For example,
you can explicitly declare a join in a query using the JOIN clause, but then show the join condition in the WHERE clause.
The other platforms force you to pick one method or the other and do not allow you to mix them in a single query.
However, we think it's bad practice to mix methods, so our examples use ANSI JOIN syntax.

MySQL supports the following types of JOIN syntax:

FROM table1, table2

FROM table1 {

 [CROSS] JOIN table2 |

 STRAIGHT_JOIN table2 |

 INNER JOIN table2 [{ON join_condition |

 USING (column_list)}] |

 LEFT [OUTER] JOIN table2 {ON join_condition |

 USING (column_list)} |

 NATURAL [LEFT [OUTER]] JOIN table2 |

 RIGHT [OUTER] JOIN table2 [{ON join_condition |

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RIGHT [OUTER] JOIN table2 [{ON join_condition |

 USING (column_list)}]|

 NATURAL [RIGHT [OUTER]] JOIN table2 }

where:

[CROSS] JOIN table2

Retrieves all records from both table1 and table2. Refer to the JOIN Subclause section on "Joins" for more
information.

STRAIGHT_JOIN table2

Retrieves all records of both table1 and table2 as any other JOIN statement would, with some special behavior.
Normally, MySQL evaluates the table order of a join operation based on choices made by the query optimizer.
However, the optimizer can occasionally choose an ineffective table order. The STRAIGHT_JOIN keyword forces
the optimizer to evaluate the tables in the order listed in the query.

INNER JOIN

Retrieves those records of both table1 and table2 where there are matching values in both tables according to
the join condition. Note that the syntax FROM table1, table2 is semantically equivalent to an inner join. When
using FROM table1, table2, be sure include the join condition(s) in the WHERE clause.

NATURAL

Shortcuts the need to declare a join condition by assuming a USING clause that names all columns that exist in
both tables. (An example of the USING clause appears later.)

LEFT [OUTER] JOIN

Retrieves all records in the leftmost table (i.e., table1) and matching records in the rightmost table (i.e., table2).
If there isn't a matching record in table2, NULL values are substituted for that table's columns. You can use this
type of join to retrieve all records in a table even when there are no counterparts in the joined table.

RIGHT [OUTER] JOIN

Retrieves all records in the rightmost table regardless of whether there is a matching record in the leftmost
table. A RIGHT JOIN is nothing more than a LEFT JOIN written from the opposite direction. As a best practice,
write all outer join queries as either LEFT or RIGHT OUTER JOIN queries, but do not use both types, since they
require a shift in thinking to understand at first glance.

MySQL offers an interesting alternative to the ANSI SQL standard for querying tables — the HANDLER statement. The
HANDLER statement works a lot like SELECT, except that HANDLER provides very rapid data reads that circumvent the
SQL query engine in MySQL. However, since the HANDLER statement is not a SQL statement, refer to the MySQL
documentation for more information.

Oracle

Oracle allows a very large number of extensions to the ANSI SELECT statement. For example, since both nested tables
and partitioned tables are allowed in Oracle (see CREATE TABLE), the SELECT statement allows queries to those types
of structures.

[WITH query_name AS (subquery) [,...]]

SELECT { {[ALL | DISTINCT]} | [UNIQUE]} [optimizer_hints]

 select_item [AS alias] [,...]

[INTO {variable [,...] | record}]

FROM {[ONLY] {[schema.][table_name| view_name |

 materialized_view_name]}[@database_link]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 materialized_view_name]}[@database_link]

 [AS [OF] {SCN | TIMESTAMP} expression] |

 subquery [WITH

 {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}] |

 [[VERSIONS BETWEEN {SCN | TIMESTAMP} {exp | MINVALUE AND

 {exp | MAXVALUE}] AS OF {SCN | TIMESTAMP} expression] |

 TABLE (nested_table_column) [(+)]

 {[PARTITION (partition_name) |

 SUBPARTITION (subpartition_name)]}

 [SAMPLE [BLOCK] [sample_percentage] [SEED (seed_value)]} [AS alias]

 [,...]

[[join_type] JOIN join_condition [PARTITION BY expression [,...]]]

[WHERE search_condition]

 [{AND | OR} search_condition [,...]]

 [[START WITH value] CONNECT BY [PRIOR] condition]]

[GROUP BY group_by_expression [HAVING search_condition]]

[MODEL model_clause]

[ORDER [SIBLINGS] BY order_expression {[ASC | DESC]}

 {[NULLS FIRST | NULLS LAST]}]

[FOR UPDATE [OF [schema.][table.]column] [,...]

 {[NOWAIT | WAIT (integer)]}]

Unless otherwise noted, the clauses shown above follow the ANSI standard. Similarly, elements of the clauses are
identical to the ANSI standard unless otherwise noted. For example, Oracle's GROUP BY clause is nearly identical to the
ANSI standard, including its component elements like ROLLUP, CUBE, GROUPING SETS, concatenated GROUPING SETS,
and the HAVING clause.

WITH query_name AS (subquery) [,...]

References a named query. Oracle allows you to assign names to subqueries. You can then reference the
subquery in multiple places by specifying only its name. (Oracle optimizes this process by treating the subquery
as a nested table subquery or a temporary table.)

ALL | DISTINCT | UNIQUE

ALL and DISTINCT are identical to the ANSI ALL and DISTINCT clauses (see the ANSI SQL syntax earlier).
UNIQUE is a synonym for DISTINCT. DISTINCT cannot be used on LOB columns.

optimizer_hint

Overrides the default behavior of the query optimizer with user-specified behaviors. For example, hints can
force Oracle to use an index that it might not otherwise use or to avoid an index that it might otherwise use.
Refer to the vendor documentation for more information about optimizer hints.

select_item

May be an expression or a column from a named query, table, view, or materialized view in the format
[schema.][table_name.] column_name. If you omit the schema, Oracle assumes the context of the current schema.
Oracle also allows for named queries (explained under the WITH keyword above) that may be referenced much
like a nested table subquery (refer to the SUBQUERY Substatement section). Oracle refers to named queries as
subquery factoring. In addition to named queries, Oracle also supports subqueries and the asterisk (*),

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subquery factoring. In addition to named queries, Oracle also supports subqueries and the asterisk (*),
shorthand for all columns, in the select_item list.

INTO {variable [, ...] | record}

Retrieves the result set values into PL/SQL variables or into a PL/SQL record.

FROM [ONLY]

Identifies the table, view, materialized view, partition, or subquery from which the result set is retrieved. The
ONLY keyword is optional and only applies to views belonging to a hierarchy. Use ONLY when you want to
retrieve records from a named view only, and not from any of its subviews.

AS [OF] {SCN | TIMESTAMP} expression

Implements SQL-driven flashback whereby system change numbers (or timestamps) are applied to each object
in the select_list. Records retrieved by the query are only those that existed at the specific system change
number (SCN) or time. (This feature can also be implemented at a session-level using the DBMS_FLASHBACK
built-in package.) SCN expression must equal a number while TIMESTAMP expression must equal a timestamp
value. Flashback queries cannot be used on linked servers.

subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}]

Mentioned separately because Oracle allows you extra ways to control a subquery. WITH READ ONLY indicates
that the target of the subquery cannot be updated. WITH CHECK OPTION indicates any update to the target of
the subquery must produce rows that would be included in the subquery. WITH CONSTRAINT creates a CHECK
OPTION constraint of constraint_name on the table. Note that WITH CHECK OPTION and WITH CONSTRAINT are
usually used in INSERT...SELECT statements.

VERSIONS BETWEEN {SCN | TIMESTAMP} {exp | MINVALUE AND {exp | MAXVALUE}] AS OF {SCN | TIMESTAMP}
expression]

Specifies a special kind of query using a flashback_query_clause to retrieve the history of changes made to data
from a table, view, or materialized view. The VERSIONS_XID pseudocolumn shows the identifier corresponding
to the transaction that made the change. A flashback_query_clause requires that you specify an SCN (system
change number) or a TIMESTAMP value for each object in the select_item list. (Implement SQL-driven session-
level flashback using the Oracle DBMS_FLASHBACK package.)

The optional subclause VERSIONS BETWEEN is used to retrieve multiple versions of the data specified, using either an
upper and lower boundary of an SCN (a number) or TIMESTAMP (a timestamp value), or by using the MINVALUE and
MAXVALUE keywords. Without this clause, only one past version of the data is returned. (Oracle also provides several
version query pseudocolumns for additional versioning information.)

The AS OF clause, discussed earlier in this list, determines the SCN or moment in time from which the database issues
the query when used with the VERSIONS clause.

You cannot use flashback queries with the VERSIONS clause against temporary tables, external tables, tables in a
cluster, or views.

TABLE

Required when querying a hierarchically declared nested table.

PARTITION

Restricts a query to the specified partition of the table. In essence, rows are retrieved only from the named
partition, not the entire table.

SUBPARTITION

Restricts a query to the specified subpartition of the table. I/O is reduced because the rows are retrieved only
from the named subpartition instead of the entire table.

SAMPLE [BLOCK] [sampling_percentage] [SEED (seed_value)]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Tells Oracle to select records from a random sampling of rows, as either a percentage of rows or blocks, within
the result set rather than from the entire table. BLOCK tells Oracle to use block sampling rather than row
sampling. The sampling percentage, telling Oracle the total block or row percentage to be included in the
sample, may be anywhere between .000001 and 99. The optional SEED clause is used to provide limited
repeatability. By specifying a seed value, Oracle will attempt to return the same sample from one execution of
the query to the next. The seed value can be between 0 and 4294967295. When SEED is omitted, the resulting
sample will change from one execution of the query to the next. Sampling may be used only on single-table
queries.

JOIN

Merges the result sets of two or more tables in a single query. Described in detail below.

PARTITION BY expression [,...]

Defines a special kind of query called a partitioned_outer_join that extends the conventional outer join syntax by
applying a right or left outer join to a partition of one or more rows specified by the expression. This is especially
useful for querying sparse data along a particular dimension of data thereby returning rows that otherwise
would be omitted from the result set. For an example, see the "Oracle" subsection under JOIN Subclause. The
PARTITION BY clause can be used on either side of an outer join, resulting in a UNION of the outer joins of each
of the partitions in the partitioned result set and the table on the other side of the join. (When this clause is
omitted, Oracle treats the entire result set as a single partition.) PARTITION BY is not allowed with FULL OUTER
JOIN.

WHERE ... [[START WITH value] CONNECT BY [PRIOR] condition]

Filters records returned in the result set. Oracle allows the use of hierarchical information within tables, whose
filtering can be controlled with the START WITH clause. START WITH identifies the rows that will serve as the
parent rows in the result set. CONNECT BY identifies the relationship condition between the parent rows and
their child rows. The PRIOR keyword is used to identify the parent rows instead of the child rows.

Hierarchical queries use the LEVEL pseudocolumn to identify the root node (1), the child nodes (2), the grandchild
nodes (3), and so forth. Other pseudocolumns available in hierarchical queries are CONNECT_BY_ISCYCLE and
CONNECT_BY_ISLEAF. Hierarchical queries are mutually exclusive of the ORDER BY and GROUP BY clauses. Do not use
those clauses in a query containing START WITH or CONNECT BY. You can order records from siblings of the same
parent table by using the ORDER SIBLINGS BY clause.

ORDER [SIBLINGS] BY order_expression {NULLS FIRST | NULLS LAST]}

Sorts the result set of the query in order of order_expression. The order_expression may be the column names,
their aliases, or integers indicating their ordinal position. The ORDER SIBLINGS BY clause is used when
querying hierarchical tables with the CONNECT BY clause. ORDER SIBLINGS BY tells Oracle to preserve any
ordering specified in the CONNECT BY clause and applies the ordering only to siblings (i.e., rows of equal level
in the hierarchy). NULLS FIRST and NULLS LAST specify that the records containing NULLs should appear either
first or last, respectively.

FOR UPDATE [OF [schema.]...

Locks the rows of the result set so that other users cannot lock or update them until you're finished with your
transaction. FOR UPDATE cannot be used in a subquery, in queries using DISTINCT or GROUP BY, or in queries
with set operators or aggregate functions. Child rows in a hierarchical table are not locked when issued against
the parent rows. The OF keyword is used to lock only the selected table or view. Otherwise, Oracle locks all the
tables or views referenced in the FROM clause. When using OF, the columns are not significant, though real
column names and not aliases must be used. The NOWAIT and WAIT keywords tell Oracle to either return
control immediately if a lock already exists or to wait integer seconds before returning control to you,
respectively. If neither NOWAIT nor WAIT is specified, Oracle waits until the rows become available.

Unlike some other database platforms, Oracle does not allow a SELECT statement without a FROM clause. The following
query, for example, is invalid:

SELECT 2 + 2;

In order to work around this, Oracle has provided a special-purpose table called dual. Any time you want to write a
query that does not retrieve data from a user-created table, such as to perform a calculation, use FROM dual. All of the
following queries are valid:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

following queries are valid:

SELECT 2 + 2

FROM dual;

SELECT (((52-4) * 5) * 8)

FROM dual;

Oracle's implementation of SELECT is quite straightforward if you want to retrieve data from a table. For example,
Oracle allows the use of named queries. A named query is, in a sense, an alias to an entire query that can save you
time when writing a complex multi-subquery SELECT statement. For example:

WITH pub_costs AS

 (SELECT pub_id, SUM(job_lvl) dept_total

 FROM employees e

 GROUP BY pub_id),

avg_costs AS

 (SELECT SUM(dept_total)/COUNT(*) avg

 FROM employee)

SELECT * FROM pub_costs

WHERE dept_total > (SELECT avg FROM avg_cost)

ORDER BY department_name;

In this example, we create two named subqueries — pub_costs and avg_costs — which are later referenced in the
main query. The named queries are effectively the same as subqueries; however, subqueries must be written out in
their entirety each time they're used while named queries need not.

Oracle allows you to select rows from a single partition of a partitioned table (using the PARTITION clause) or to
retrieve only a statistical sampling of the rows, as a percentage of rows or blocks, of a results set using SAMPLE. For
example:

SELECT *

FROM sales PARTITION (sales_2004_q3) sales

WHERE sales.qty > 1000;

SELECT *

FROM sales SAMPLE (12);

Flashback queries are a feature of Oracle that enable retrieval of point-in-time result sets. For example, you could find
out what everyone's salary was yesterday before a big change was applied to the database:

SELECT job_lvl, lname, fname

FROM employee

 AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY);

Another interesting Oracle extension of the standard query format is the hierarchic query. Hierarchic queries return the
results of queries against hierarchically designed tables in the order you define. For example, the following query
returns the names of the employees, their position in the hierarchy (represented by the position in the org_char
column), the employee ID, the manager ID, and their job ID:

SELECT LPAD(' ',2*(LEVEL-1)) || lname AS org_chart,

 emp_id, mgr_id, job_id

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 emp_id, mgr_id, job_id

FROM employee

START WITH job_id = 'Chief Executive Officer'

CONNECT BY PRIOR emp_id = mgr_id;

ORG_CHART EMPLOYEE_ID MANAGER_ID JOB_ID

-------------- ----------- ---------- ------------------------

Cramer 101 100 Chief Executive Officer

 Devon 108 101 Business Operations Mgr

 Thomas 109 108 Acquisitions Manager

 Koskitalo 110 108 Productions Manager

 Tonini 111 108 Operations Manager

 Whalen 200 101 Admin Assistant

 Chang 203 101 Chief Financial Officer

 Gietz 206 203 Comptroller

Buchanan 102 101 VP Sales

 Callahan 103 102 Marketing Manager

In the previous query, the CONNECT BY clause defines the hierarchical relationship of the emp_id value as the parent
row equal to the mgr_id value in the child row, while the START WITH clause specifies where in the hierarchy the
result set should begin.

Oracle supports the following types of JOIN syntax (refer to the JOIN Subclause section for more details):

FROM table1 {

 CROSS JOIN table2 |

 INNER JOIN table2 [{ON join_condition |

 USING (column_list)}] |

 LEFT [OUTER] JOIN table2 [{ON join_condition

 | USING (column_list)}] |

 NATURAL [LEFT [OUTER]] JOIN table2 |

 RIGHT [OUTER] JOIN table2 [{ON join_condition

 | USING (column_list)}]|

 NATURAL [RIGHT [OUTER]] JOIN table2

 FULL [OUTER] JOIN table2 }

[CROSS] JOIN

Retrieves all records of both table1 and table2. This is syntactically the same as FROM table1, table2 with no join
conditions in the WHERE clause.

INNER JOIN

Retrieves those records of both table1 and table2 where there are matching values in both tables according to
the join condition. Note that the syntax FROM table1, table2 with join conditions in the WHERE clause is
semantically equivalent to an inner join.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

semantically equivalent to an inner join.

NATURAL

Shortcuts the need to declare a join condition by assuming a USING clause containing all columns that are in
common between the two joined tables. (Be careful if columns have the same name but not the same datatype
or the same sort of values!) LOB columns cannot be referenced in a natural join. Referencing a LOB or
collection column in a NATURAL JOIN will return an error.

LEFT [OUTER] JOIN

Retrieves all records in the leftmost table (i.e., table1) and matching records in the rightmost table (i.e., table2).
If there isn't a matching record in table2, NULL values are substituted for that table's columns. You can use this
type of join to retrieve all the records in a table, even when there are no counterparts in the joined table. For
example:

SELECT j.job_id, e.lname

FROM jobs j

LEFT OUTER JOIN employee e ON j.job_id = e.job_id

ORDER BY d.job_id

RIGHT [OUTER] JOIN

Retrieves all records in the rightmost table regardless of whether there is a matching record in the leftmost
table. A right join is the same as a left join, except that the optional table is on the left.

FULL [OUTER] JOIN

Specifies that all rows from both tables be returned, regardless of whether a row from one table matches a row
in the other table. Any columns that have no value in the corresponding joined table are assigned a NULL value.

ON join_condition

Declares the condition(s) that join the result set of two tables together. This takes the form of declaring the
columns in table1 and table2 that must match the join condition. When multiple columns must be compared, use
the AND clause.

USING (column_list)

Acts as an alternative to the ON clause. Instead of describing the conditions of the join, simply provide a column
name (or columns separated by commas) that appears in both tables. The column names must be identical in
both tables and cannot be prefixed with a table name or alias. USING cannot be used on LOB columns of any
type. The following two queries produce identical results. One is written with a USING clause and the other
specifies join conditions using ANSI syntax:

SELECT column1

FROM foo

LEFT JOIN poo USING (column1, column2);

SELECT column1

FROM foo

LEFT JOIN poo ON foo.column1 = poo.column1

AND foo.column2 = poo.column2;

Note that older Oracle syntax for joins centered around the WHERE clause and outer joins were described using a (+)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that older Oracle syntax for joins centered around the WHERE clause and outer joins were described using a (+)
marker. ANSI join syntax only became available with Oracle 9i Release 1. Therefore, you will often see existing code
using the old syntax. For example, the following query is semantically equivalent to the earlier example of a left outer
join.

SELECT j.job_id, e.lname

FROM jobs j, employee e

WHERE j.job_id = e.job_id (+)

ORDER BY d.job_id

This older syntax is sometimes problematic and more difficult to read. You are strongly advised to use the ANSI
standard syntax.

Partitioned outer joins

Partitioned outer joins are useful for retrieving sparse data that might otherwise not be easily seen in a result set. (The
ANSI standard describes partitioned outer joins, but Oracle is the first to support them.) For example, our product
table keeps track of all products we produce, while the manufacturing table shows when we produce them. Since
we're not continuously making every product at all times, the joined data between the two tables may be sparse at
times:

SELECT manufacturing.time_id AS time, product_name AS name,

 quantity AS qty

FROM product

PARTITION BY (product_name)

RIGHT OUTER JOIN times ON (manufacturing.time_id =

 product.time_id)

WHERE manufacturing.time_id

 BETWEEN TO_DATE('01/10/05', 'DD/MM/YY')

 AND TO_DATE('06/10/05', 'DD/MM/YY')

ORDER BY 2, 1;

returns the following:

time name qty

--------- ---------- ----------

01-OCT-05 flux capacitor 10

02-OCT-05 flux capacitor

03-OCT-05 flux capacitor

04-OCT-05 flux capacitor

05-OCT-05 flux capacitor

06-OCT-05 flux capacitor 10

06-OCT-05 flux capacitor 8

01-OCT-05 transmorgrifier 10

01-OCT-05 transmorgrifier 15

02-OCT-05 transmorgrifier

03-OCT-05 transmorgrifier

04-OCT-05 transmorgrifier 10

04-OCT-05 transmorgrifier 11

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

04-OCT-05 transmorgrifier 11

05-OCT-05 transmorgrifier

06-OCT-05 transmorgrifier

The example query and result set show that partitioned outer joins are useful for retrieving result sets that might
otherwise be hard to query due to sparse data.

Flashback queries

Oracle 10g also supports flashback queries — queries that keep track of previous values of the result requested by the
SELECT statement. In the following set of example code, we'll issue a regular query on a table, change the values in the
table with an UPDATE statement, and then query the flashback version of the data. First, the regular query:

SELECT salary FROM employees

WHERE last_name = 'McCreary';

The results are:

SALARY

3800

Now, we'll change the value in the employees table and query the table to confirm the current value:

UPDATE employees SET salary = 4000

WHERE last_name = 'McCreary ';

SELECT salary FROM employees

WHERE last_name = 'McCreary ';

The results are:

SALARY

4000

Finally, we'll perform a flashback query to see what the salary value was in the past:

SELECT salary FROM employees

AS OF TIMESTAMP (SYSTIMESTAMP - INTERVAL '1' DAY)

WHERE last_name = 'McCreary';

The results are:

SALARY

3800

If we wanted to be more elaborate, we could find out all of the values of salary for a given time period, say, the last

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If we wanted to be more elaborate, we could find out all of the values of salary for a given time period, say, the last
two days:

SELECT salary FROM employees

VERSIONS BETWEEN TIMESTAMP

 SYSTIMESTAMP - INTERVAL '1' MINUTE AND

 SYSTIMESTAMP - INTERVAL '2' DAY

WHERE last_name = 'McCreary';

The results are:

SALARY

4000

3800

The MODEL clause

Oracle Database 10g features a powerful new clause, called MODEL, which enables spreadsheet-like result sets from a
SELECT statement. The MODEL clause, in particular, is designed to alleviate the need for developers to extract data
from the database and put it into a spreadsheet, like Microsoft Excel, for further manipulation. It creates a
multidimensional array in which cells can be referenced by dimension values. For instance, you might dimension an
array on product and time, specifying column values that you wish to access via combinations of those two dimensions.
You can then write rules that are similar in concept to spreadsheet formulas, that are executed in order to change
values in your model, or that create new values, and perhaps even new rows, in your model.

Syntactically, the MODEL clause appears after the GROUP BY and HAVING clauses and before the ORDER BY clause.
The earlier syntax diagram for Oracle's SELECT statement shows the position of the clause, and the syntax details are
presented here:

MODEL model_clause

model_clause ::= [options] [return] [reference_models] main_model

options ::= [{IGNORE|KEEP} NAV] [UNIQUE {DIMENSION|SINGLE REFERENCE}]

return ::= RETURN {UPDATED|ALL} ROWS

reference_models ::= reference_model [reference_model...]

reference_model ::= REFERENCE model_name ON (subquery) model_columns

 [options]

model_columns ::= [partition [alias]]

 DIMENSION BY (column[, column...])

 MEASURES (column[, column...])

partition ::= PARTITION BY (column[, column...])

column ::= {column_name|expression} [AS alias]

main_model ::= [MAIN model_name] model_columns [options] rules

rules ::= [RULES [UPSERT|UPDATE] [{AUTOMATIC|SEQUENTIAL} ORDER]]

 [ITERATE (count) [UNTIL (termination_condition)]]

 (rule[, rule...])

rule ::= [UPSERT|UPDATE] cell_reference [ordering] = expression

cell_reference ::= measure[multi_column_for_loop|dimension_indexes]

multi_column_for_loop ::= FOR (dimension[, dimension...]) IN (dimension_values)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

multi_column_for_loop ::= FOR (dimension[, dimension...]) IN (dimension_values)

dimension_values ::= ({subquery|dimension_value[, dimension_value...]})

dimension_value ::= (literal[, literal...])

dimension_indexes ::= index[, index...]

index ::= {condition|expression|single_column_for_loop}

single_column_for_loop ::= FOR dimension {in_for_options|like_for_options}

in_for_options ::= IN ({subquery|literal[, literal...]})

like_for_options ::= [LIKE pattern] FROM start_literal TO end_literal

 {INCREMENT|DECREMENT} diff_literal

ordering ::= ORDER BY (order_column[, order_column...])

order_column ::= {expression|alias} [ASC|DESC] [NULLS FIRST|NULLS_LAST]

The parameters of this MODEL clause are as follows:

{IGNORE|KEEP} NAV

Specifies whether null or absent values (NAV) are retained as nulls (KEEP), or whether they are replaced with
suitable defaults (IGNORE): zero for numeric types, 1-Jan-2000 for date types, an empty string for character
types, and null for anything else.

UNIQUE {DIMENSION|SINGLE REFERENCE}

Specifies the scope within which the database ensures that a given cell reference points to a unique data value.
Use DIMENSION to require that each possible cell reference, whether on the left or right side of a rule,
represent a single value. Use SINGLE REFERENCE to perform that check only for those cell references that
appear on the right-hand side of a rule.

RETURN {UPDATED|ALL} ROWS

Specifies whether all rows are returned from model processing, or whether only updated row are returned.

reference_model

Defines a reference model on which you cannot perform calculations, but containing values that you can
reference from within your main query.

model_name ON (subquery)

Specifies the name and rowsource for a reference model.

alias

Specifies an alias for a partition.

DIMENSION BY (column[, column...])

Specifies the dimensions for a model. Values from these columns represent the set of index values that are
used to identify cells in the multidimensional addressing space.

MEASURES (column[, column...])

Specifies the values associated with each unique combination of dimensions (e.g., with each cell of the model).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PARTITION BY [(]column[, column...][)]

Splits a model into independent partitions based on the columns given. You can not partition reference models.

main_model

Represents the model on which you perform work. Rows from your containing SELECT feed into this model,
rules are applied, and the resulting rows are returned.

MAIN model_name

Begins the definition of the main model, and also gives that model a name.

RULES [UPSERT|UPDATE]

Specifies whether rules may both create new cells and update existing cells (UPSERT), or whether they much
only update existing cells (UPDATE). If you want your model to be able to create new rows in your result set,
specify UPSERT. The default is UPSERT. You can also control this behavior on a rule-by-rule basis; see rule in
the syntax.

{AUTOMATIC|SEQUENTIAL} ORDER

Specifies whether the optimizer determines the order in which rules are evaluated (AUTOMATIC), or whether
rules are evaluated in the order in which you list them (SEQUENTIAL). The default is SEQUENTIAL.

ITERATE (count)

Requests that entire set of rules be evaluated repeatedly, count times. The default is to evaluate the set of rules
just once.

UNTIL (termination_condition)

Specifies a condition that, when met, causes iteration to cease. You must still specify a count, which serves as
somewhat of a safeguard against infinite loops.

measure[...]

Is a reference to one of the measures listed in the MEASURES clause. When you reference a measure, the
square-brackets are part of the syntax. You must specify all dimensions, either via a subquery or by listing
them, and the specific value of the measure associated with those dimensions will be returned, or referenced.

multi_column_for_loop

A for-loop iterating over multiple dimensions at one time. The easiest way to picture this is to think of a
subquery from which each row represents a specific combination of dimensions.

dimension_indexes

A list of values, whether from columns or expressions, that collectively identify a unique cell in the model.

single_column_for_loop

A for-loop iterating over one dimension.

IN ({subquery|literal[, literal...]})

The source of values for a for-loop may be a subquery, or it may be a specific list of literal values.

LIKE pattern

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Allows you to insert dimension values into a pattern. Use a percent-sign to mark the location at which you want
dimension values to be inserted. For example, use FOR x LIKE 'A%B' FROM 1 TO 3 INCREMENT 1 to generate values
such as 'A1B', 'A2B', 'A3B'.

FROM start_literal TO end_literal {INCREMENT|DECREMENT} diff_literal

Defines the starting and ending for-loop values, and also the difference between each subsequent value as the
loop iterates from start to end.

ORDER BY (order_column[, order_column...])

Imposes an order of evaluation with respect to the cells referenced from the left side of a rule. Use this clause if
you want a rule to be applied to cells in order. Otherwise, you have no guarantee as to the order in which the
rule is applied to the cells that it affects.

Following is a list of functions that have been designed specifically for use in the MODEL clause:

CV() or CV(dimension_column)

Returns the current value of a dimension column. May be used only on the right-hand side of an expression in a
rule. When the CV() form is used, the dimension column is determined implicitly based on the function call's
position in a list of dimension values.

PRESENTNNV(measure[dimension, dimension...], not_null, was_null)

Returns either not_null or was_null, depending on whether the specified measure was null when model processing
began. This function may be used only from the right-hand side of a rule expression.

PRESENTV(measure[dimension, dimension...], did_exist, didnt_exist)

Returns either did_exist or didnt_exist, depending on whether the specified measure existed when model
processing began. This function may be used only from the right-hand side of a rule expression. Be aware that
whether a measure existed is a completely separate question from whether that measure was null.

ITERATION_NUMBER

Returns zero on the first iteration through the rules, 1 on the second iteration, and so forth. This is useful when
you want to base rule calculations on the number of iterations.

The following example demonstrates that the MODEL clause gives a normal SELECT statement the ability to construct a
multidimensional array as a result set and calculate inter-row and inter-array values interdependently. The newly
calculated values are returned as part of the SELECT statement's result set:

ELECT SUBSTR(region,1,20) country, SUBSTR(product,1,15) product,

 year, sales

FROM sales_view

WHERE region IN ('USA','UK')

MODEL RETURN UPDATED ROWS

 PARTITION BY (region)

 DIMENSION BY (product, year)

 MEASURES (sale sales)

 RULES (

 sales['Bounce',2006] = sales['Bounce',2005] + sales['Bounce',2004],

 sales['Y Box', 2006] = sales['Y Box', 2005],

 sales['2_Products',2006] = sales['Bounce',2006]

 + sales['Y Box',2006])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 + sales['Y Box',2006])

ORDER BY region, product, year;

In this example, a query against the SALES_VIEW materialized view returns the sum of sales over the course of a few
years for the regions USA and UK. The MODEL clause then falls between the WHERE clause and the ORDER BY clause.
Since SALES_VIEW currently holds data for the years 2004 and 2005, we provide it rules to calculate figures for the
year 2006.

The subclause RETURN UPDATED ROWS, limits the result set to the rows that were created or updated by the query.
Next, the example defines the logical divisions of the data using data elements from the materialized view and using the
PARTITION BY, DIMENSION BY, and MEASURES subclauses. The RULES subclause then references individual measures
of the model by referring to combinations of different dimension values much like a spreadsheet macro references
worksheet cells with specific lookups and references to ranges of values.

PostgreSQL

PostgreSQL supports a straightforward implementation of the SELECT statement. It supports JOIN and subquery
applications. PostgreSQL also allows the creation of new temporary or permanent tables using the SELECT...INTO
syntax.

SELECT [ALL | DISTINCT [ON (select_item [,...])]]

[AS alias [(alias_list)]] [,...]

[INTO [[TEMP]ORARY] [TABLE] new_table_name]

[FROM [ONLY] table1[.*] [,...]]

[[join type]JOIN table2 {[ON join_condition] |

 [USING (column_list)]}

[WHERE search_condition]

[GROUP BY group_by_expression]

[HAVING having_condition]

[ORDER BY order_by_expression [{ASC | DESC

 | USING operator][,...] }]

[FOR UPDATE [OF column [,...]]

[LIMIT {count | ALL}][OFFSET [number_of_records]]]

where:

[ALL | DISTINCT [ON (select_item [,...]]]

Supports the ALL and DISTINCT keywords of the ANSI SQL standard, where ALL (the default) returns all rows
(including duplicates) and DISTINCT eliminates duplicate rows. In addition, DISTINCT ON eliminates duplicates
on only one the specified select_items, not on all of the select_items in the query (example below).

select_item

Includes the standard elements of a select_item list supported by the ANSI SQL standard. In addition to the
asterisk (*) shorthand to retrieve all rows, you can use table_name.* to retrieve all rows from an individual table.

AS alias [(alias_list)]

Creates an alias or a list of aliases for one or more columns (or tables in the FROM clause). AS is required for
select_item aliases, but not for FROM table aliases. (Some other database platforms treat the AS as an option
when declaring an alias.)

INTO [[TEMP]ORARY] [TABLE] new_table_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a new table from the result set of the query. Both TEMP and TEMPORARY are acceptable usages to
create a temporary table that is automatically dropped at the end of the session. Otherwise, the command
creates a permanent table. Permanent tables created with this statement must have new, unique names but
temporary tables may have the same name as an existing table. If you create a temporary table with the same
name as an existing permanent table, the temporary table is used to resolve all operations against that table
name while in the same session as the one that created it. Other sessions will continue to see the existing
permanent table.

FROM [ONLY] table1 [,..]

Specifies one or more source tables where the data resides. (Be sure to specify a join condition or a theta
WHERE clause so that you don't get a Cartesian product of all records in all tables.) PostgreSQL allows
inheritance in child tables of declared parent tables. Use the ONLY keyword to suppress rows from the child
tables of your source table. (You can turn off this default inheritance globally with the command SET
SQL_Inheritance TO OFF.) PostgreSQL also supports nested table subqueries (see the SUBQUERY Substatement
section). The FROM clause is not needed when used for computation:

SELECT 8 * 40;

PostgreSQL will also include an implicit FROM on SELECT statements that include schema-identified columns. For
example, the following query is acceptable (though not recommended):

SELECT sales.stor_id WHERE sales.stor_id = '6380';

GROUP BY group_by_expression

Allows group_by_expressions that can be the column name or the ordinal number of the column (as determined by
its position in the select_item list). An example illustrates this concept under the ORDER BY entry just below.

ORDER BY order_by_expression

Allows order_by_expressions that can be the column name, its alias, or the ordinal number of the column (as
determined by its position in the select_item list.) For example, the following two queries are functionally
identical:

SELECT stor_id, ord_date, qty AS quantity

FROM sales

ORDER BY stor_id, ord_date DESC, qty ASC;

SELECT stor_id, ord_date, qty

FROM sales

ORDER BY 1, 2 DESC, quantity;

In single table SELECT statements, you may also order by columns of the table that do not appear in the select_item list.
For example:

SELECT *

FROM sales

ORDER BY stor_id, qty;

ASC and DESC are ANSI standard. If not specified, ASC is the default. PostgreSQL sorts NULL values as higher than any
other value, causing NULL values to appear at the end of ASC sorts and at the beginning of DESC sorts.

FOR UPDATE OF column [,...] LIMIT {count | ALL}][OFFSET [number_of_records]]]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Limits the number of rows returned by the query to the maximum specified by the integer count. The optional
OFFSET keyword tells PostgreSQL to skip number_of_records before starting to return rows. You should make
sure you have an ORDER BY clause when using LIMIT or you may get an unexpected result set. (PostgreSQL
7.0 and greater treat LIMIT/OFFSET as a hint and use it to create optimal, possibly very different query plans.)

PostgreSQL supports a handy variation of the DISTINCT clause — DISTINCT ON (select_item [,...]). This variation allows
you to pick and choose the exact columns that are considered for elimination of duplications. PostgreSQL chooses the
result set in a manner much like it does for ORDER BY. You should include an ORDER BY clause so that there's no
unpredictability as to which record is returned. For example:

SELECT DISTINCT ON (stor_id), ord_date, qty

FROM sales

ORDER BY stor_id, ord_date DESC;

The above query retrieves the most recent sales report for each store based on the most recent order date. However,
there would be no way to predict what single record would have been returned without the ORDER BY clause.

PostgreSQL supports only these types of JOIN syntax (refer to the JOIN Subclause section for more details):

FROM table1 [,...] {

 CROSS JOIN table2 |

 [INNER] JOIN table2 [{ON join_condition |

 USING (column_list)}] |

 LEFT [OUTER] JOIN table2 [{ON join_condition |

 USING (column_list)}] |

 NATURAL [LEFT [OUTER]] JOIN table2 |

 RIGHT [OUTER] JOIN table2 [{ON join_condition |

 USING (column_list)}]|

 NATURAL [RIGHT [OUTER]] JOIN table2

 FULL [OUTER] JOIN table2 }

where:

[CROSS] JOIN

Retrieves all records of both table1 and table2. This is syntactically the same as FROM table1, table2. The results
are a Cartesian product (usually a very bad thing!).

INNER JOIN

Retrieves those records of both table1 and table2 where there are matching values in both tables according to
the join condition. Note that the syntax FROM table1, table2 is semantically equivalent to an inner join without a
join condition (i.e., a Cartesian product). When using FROM table1, table2, be sure include the join condition(s) in
the WHERE clause. If you leave out a join type, PostgreSQL assumes you want an inner join.

NATURAL

Shortcuts the need to declare a join condition by assuming a USING clause that names all columns that
have the same name in both tables. (Be careful if columns have the same name but not the same
datatype or the same sort of values!) NATURAL is mutually exclusive of a specified join condition via ON
or USING.

LEFT [OUTER] JOIN

Retrieves all records in the leftmost table (i.e., table1) and matching records in the rightmost table (i.e., table2).
If there isn't a matching record in table2, NULL values are substituted. You can use LEFT OUTER JOIN to find all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If there isn't a matching record in table2, NULL values are substituted. You can use LEFT OUTER JOIN to find all
the records in a table even when there are no counterparts in the joined table. For example:

SELECT j.job_id, e.lname

FROM jobs j

LEFT OUTER JOIN employee e ON j.job_id = e.job_id

ORDER BY d.job_id

RIGHT [OUTER] JOIN

Retrieves all records in the rightmost table regardless of whether there is a matching record in the leftmost
table. Analogous to a LEFT JOIN.

FULL [OUTER] JOIN

Retrieves all records in the inner join in addition to all records that have no matching records on both the left
and right sides.

ON join_condition

Declares the condition(s) that join the result set of two (or more) tables together. This takes the form of
declaring the columns in table1 and table2 that must be equal. When multiple columns must be compared, use
the AND clause.

SQL Server

SQL Server supports most of the basic elements of the ANSI SELECT statement, including all of the various join types.
SQL Server offers several variations on the SELECT statement, including optimizer hints, the INTO clause, the TOP
clause, GROUP BY variations, COMPUTE, and WITH OPTIONS.

SELECT {[ALL | DISTINCT] | [TOP number [PERCENT]

 [WITH TIES]]} select_item [AS alias]

[INTO new_table_name]

[FROM {[rowset_function | table1 [,...]} [AS alias]]

[[join type]JOIN table2 {[ON join_condition]]

[WHERE search_condition]

[GROUP BY {grouping_column [,...]| ALL}] [WITH { CUBE | ROLLUP }]

[HAVING search_condition]

[ORDER BY order_by_expression [ASC | DESC]]

[COMPUTE {aggregation (expression)} [,...]

 [BY expression [,...]]]

[FOR {BROWSE | XML { RAW | AUTO | EXPLICIT}

 [, XMLDATA][, ELEMENTS][, BINARY base64]]

[OPTION (<hint> [,...])]

where:

TOP number [PERCENT][WITH TIES]

Specifies that only the number of rows are retrieved in the query result set. If PERCENT is specified, only the
first number percent of the rows are retrieved. WITH TIES is used only for queries with an ORDER BY clause.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

first number percent of the rows are retrieved. WITH TIES is used only for queries with an ORDER BY clause.
This variation specifies that additional rows are returned from the base result set using the same value in the
ORDER BY clause, appearing as the last of the TOP rows.

INTO new_table_name

Creates a new table from the result set of the query. You can use this command to create temporary or
permanent tables. (Refer to SQL Server's rules for creating temporary or permanent tables in the
CREATE/ALTER TABLE Statement section.) The SELECT . . . INTO command quickly copies the rows and
columns queried from other table(s) into a new table using a non-logged operation. Since it is not logged, it is
not affected by COMMIT and ROLLBACK statements.

FROM {[rowset_function | table1 [,...]]}

Supports the standard behavior of the ANSI SQL FROM clause, including nested table subqueries. In addition,
SQL Server supports a set of extensions called rowset_functions. Rowset functions allow SQL Server to source
data from special or external data sources such as XML streams, full-text search file structures (a special
structure in SQL Server used to store things like MS Word documents and MS PowerPoint slide shows within the
database), or external data sources (like an MS Excel spreadsheet).

Examples are shown below. (Please see the SQL Server documentation for the full description of the available FROM
{[rowset_function | table1 [,...]]} options). Among the many possibilities, SQL Server currently supports the following
rowset_functions:

CONTAINSTABLE

Returns a derived table from a specified table that contains at least one full-text index TEXT or NTEXT column.
The records derived are based upon either a precise, fuzzy, weighted-match, or proximity-match search. The
derived table is then treated like any other FROM data source.

FREETEXTTABLE

Similar to CONTAINSTABLE except that records are derived based upon a meaning search of 'freetext_string'.
FREETEXTTABLE is more useful for ad hoc queries against full-text tables, but less accurate than
CONTAINSTABLE.

OPENDATASOURCE

Provides a means of sourcing data external to SQL Server via OLE DB without declaring a linked server, such as
an MS Excel spreadsheet or a Sybase Adaptive Server database table. It is intended for the occasional ad hoc
query. If you frequently retrieve result sets from external data sources, then you should declare a linked server.

OPENQUERY

Executes a pass-through query against a linked server. It is an effective means of performing a nested table
subquery against a data source that is external to SQL Server. The data source must first be declared as a
linked server.

OPENROWSET

Executes a pass-through query against an external data source. It is similar to OPENDATASOURCE, except that
OPENDATASOURCE only opens the data source; it does not actually pass through a SELECT statement.
OPENROWSET is intended for occasional, ad hoc usage only.

OPENXML

Provides a query-able, table-like view to an XML string.

GROUP BY [ALL] (group_by_expression) [WITH {CUBE | ROLLUP}]

Supports the ANSI SQL standard with some variations. The first noticeable difference is in syntax. Where the
ANSI standard clause is GROUP BY [{CUBE | ROLLUP}] (grouping_column [,...]), SQL Server uses GROUP BY
[ALL] (group_by_expression) [WITH {CUBE | ROLLUP}].

GROUP BY ALL tells SQL Server to provide group_by categories even when the matching aggregation is NULL. Normally,
SQL Server does not return a category whose aggregation is NULL. It must be used only in conjunction with a WHERE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server does not return a category whose aggregation is NULL. It must be used only in conjunction with a WHERE
clause. WITH {CUBE | ROLLUP} tells SQL Server to perform additional higher-level aggregates of the summary
categories. In the simplest terms, ROLLUP produces subtotals for the categories, while CUBE produces cross-tabulated
totals for the categories.

The GROUPING function can be used to help differentiate normally occurring NULLs from
the NULLs generated by ROLLUP and CUBE behavior.)

This example groups royalty and aggregate advance amounts. The GROUPING function
is applied to the royalty column.

USE pubs

SELECT royalty, SUM(advance) 'total advance',

 GROUPING(royalty) 'grp'

 FROM titles

 GROUP BY royalty WITH ROLLUP

The result set shows two NULL values under royalty. The first NULL represents the group of null values from this
column in the table. The second NULL is in the summary row added by the ROLLUP operation. The summary row shows
the total advance amounts for all royalty groups and is indicated by 1 in the grp column.

Here is the result set:

royalty total advance grp

--------- --------------------- ---

NULL NULL 0

10 57000.0000 0

12 2275.0000 0

14 4000.0000 0

16 7000.0000 0

24 25125.0000 0

NULL 95400.0000 1

ORDER BY

Functions normally as specified by the ANSI SQL standard. However, you should remember that SQL Server
allows a variety of collations that can affect how the result set is evaluated. Thus, under certain collations
"SMITH" and "smith" might evaluate and sort differently. Also note that you cannot ORDER BY columns of TEXT,
NTEXT, or IMAGE datatype.

COMPUTE {aggregation (expression)} [,...] [BY expression [,...]]]

Generates additional aggregations, usually totals, that appear at the end of the result set. BY (expression) adds
in subtotals and control breaks to the result set. COMPUTE and COMPUTE BY can be used simultaneously in the
same query. COMPUTE BY must be coupled with an ORDER BY clause, though the expression used by COMPUTE
BY can be a subset of the order_by_expression. The aggregation may be any of these function calls: AVG, COUNT,
MAX, MIN, STDEV, STDEVP, VAR, VARP, and SUM. Examples are shown later in this section.

COMPUTE, in any form, does not work with the DISTINCT keyword or with TEXT, NTEXT, or IMAGE datatypes.

FOR {BROWSE | XML { RAW | AUTO | EXPLICIT} [, XMLDATA][, ELEMENTS][, BINARY BASE64]]

FOR BROWSE is used to allow updates to data retrieved in a DB-Library browse mode cursor. (DB-Library is the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FOR BROWSE is used to allow updates to data retrieved in a DB-Library browse mode cursor. (DB-Library is the
original access methodology for SQL Server and has since been supplanted by OLE DB in most applications.)
FOR BROWSE can only be used against tables with a unique index and a column with the TIMESTAMP datatype.
FOR BROWSE cannot be used in UNION statements or when a HOLDLOCK hint is active.

FOR XML

Used to extract the result set as an XML document to the SQL Server 2000 client only. You must further define
the resulting XML document as either RAW, AUTO, or EXPLICIT. RAW transforms each returned row into a
generic XML element with the <row/> element tag. AUTO transforms the results into a simple, nested XML tree.
EXPLICIT transforms the resulting XML tree into an explicitly defined shape. However, the query must be
written such that the desired nesting information is specified explicitly. You may optionally attach a few extra
control features.

XMLDATA

Returns the schema appended to the XML document. ELEMENTS returns the columns as subelements instead of
mapping them to XML attributes.

BINARY BASE6

Returns the binary data in base64-encoded format. (Binary is the default format for AUTO mode, but must be
declared for RAW and EXPLICIT.) FOR XML cannot be used in any sort of subquery, in conjunction with a
COMPUTE clause, BROWSE clause, in the definition of a view, in the result set of a user-defined function, or in a
cursor. Aggregations and GROUP BY are mutually exclusive of FOR XML AUTO.

OPTION (hint [,...])

Replaces elements of the default query plan with your own. Because the optimizer usually picks the best query
plan for any query, you are strongly discouraged from placing optimizer hints into your queries.

Here's an example of SQL Server's SELECT...INTO capability. This example creates a table called
non_mgr_employees using SELECT...INTO. The table contains the emp_id, first name, and last name of each non-
manager from the employee table, joined with their job description taken from the jobs table:

--QUERY

SELECT e.emp_id, e.fname, e.lname,

 SUBSTRING(j.job_desc,1,30) AS job_desc

INTO non_mgr_employee

FROM employee e

JOIN jobs AS j ON e.job_id = j.job_id

WHERE j.job_desc NOT LIKE '%MANAG%'

ORDER BY 2,3,1

The newly created and loaded table non_mgr_employee now can be queried like any other table.

SELECT...INTO should be used only in development or non-production code because it is
not logged or recoverable.

Many of SQL Server's extensions to the ANSI SELECT statement involve the GROUP BY clause. For example, the GROUP
BY ALL clause causes the aggregation to include NULL valued results to be included when they would normally be
excluded. The following two queries are essentially the same except for the ALL keyword, yet they produce very
different result sets:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

different result sets:

-- standard GROUP BY

SELECT type, AVG(price) AS price

FROM titles

WHERE royalty <= 10

GROUP BY type

ORDER BY type

-- Results

type price

------------ -------

business 17.3100

mod_cook 19.9900

popular_comp 20.0000

psychology 13.5040

trad_cook 17.9700

Compared to:

-- Using GROUP BY ALL

SELECT type, AVG(price) AS price

FROM titles

WHERE royalty = 10

GROUP BY ALL type

ORDER BY type

-- Results

type price

------------ -------

business 17.3100

mod_cook 19.9900

popular_comp 20.0000

psychology 13.5040

trad_cook 17.9700

UNDECIDED NULL

COMPUTE has a number of permutations that can impact the result set retrieved by the query. The following example
shows the sum of book prices broken out by type of book and sorted by type and then price:

--Query

SELECT type, price

FROM titles

WHERE type IN ('business','psychology')

 AND price > 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AND price > 10

ORDER BY type, price

COMPUTE SUM(price) BY type

--Results

type price

------------ ---------------------

business 11.9500

business 19.9900

business 19.9900

 sum

 =====================

 51.9300

type price

------------ ---------------------

psychology 10.9500

psychology 19.9900

psychology 21.5900

 sum

 =====================

 52.5300

The COMPUTE clause behaves differently if you do not include BY. The following query retrieves the grand total of prices
and advances for books over $16.00:

--Query

SELECT type, price, advance

FROM titles

WHERE price > $16

COMPUTE SUM(price), SUM(advance)

--Result

type price advance

------------ --------------------- ---------------------

business 19.9900 5000.0000

business 19.9900 5000.0000

mod_cook 19.9900 .0000

popular_comp 22.9500 7000.0000

popular_comp 20.0000 8000.0000

psychology 21.5900 7000.0000

psychology 19.9900 2000.0000

trad_cook 20.9500 7000.0000

 sum

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 sum

 =====================

 165.4500

 sum

 =====================

 41000.0000

You could even use COMPUTE BY and COMPUTE in the same query to produce subtotals and grand totals. (For the sake
of brevity, we'll show an example query, but not the result set.) In this example, we find the sum of prices and
advances by type for business and psychology books over $16.00:

SELECT type, price, advance

FROM titles

WHERE price > $16

 AND type IN ('business','psychology')

ORDER BY type, price

COMPUTE SUM(price), SUM(advance) BY type

COMPUTE SUM(price), SUM(advance)

Don't forget that you must include the ORDER BY clause with a COMPUTE BY clause! (You do not need an ORDER BY
clause with a simple COMPUTE clause without the BY keyword.) There are many permutations you can perform in a
single query — multiple COMPUTE and COMPUTE BY clauses, GROUP BY with a COMPUTE clause, and even with an
ORDER BY statement. It's actually fun to tinker around with the different ways you can build queries using COMPUTE
and COMPUTE BY. It's not theme park fun, but what'dya want? This is a programming book!

SQL Server also includes the FOR XML clause that converts the standard result set output into an XML document. This is
very useful for web database applications. You can execute queries with FOR XML directly against the database or
within a stored procedure. For example, we can retrieve one of our earlier example queries as an XML document:

SELECT type, price, advance

FROM titles

WHERE price > $16

 AND type IN ('business','psychology')

ORDER BY type, price

FOR XML AUTO

The results aren't particularly pretty, but they're very usable:

XML_F52E2B61-18A1-11d1-B105-00805F49916B

--

<titles type="business " price="19.9900"

advance="5000.0000"/><titles type="business " price="19.9900" advance="5000.0000"/>

<titles type="psychology" price="19.9900" advance="2000.0000"/><titles

type="psychology" price="21.5900" advance="7000.000

If you wanted the XML schema and/or XML elements fully tagged in the output, you could simply append the XMLDATA
and ELEMENTS keywords to the FOR XML clause. The query would look like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and ELEMENTS keywords to the FOR XML clause. The query would look like this:

SELECT type, price, advance

FROM titles

WHERE price > $16

 AND type IN ('business','psychology')

ORDER BY type, price

FOR XML AUTO, XMLDATA, ELEMENTS

SQL Server also implements a number of other enhancements to support XML. For example, the OPENXML rowset
function can be used to insert an XML document into a SQL Server table. SQL Server also includes system stored
procedures that can help you prepare and manipulate XML documents.

SEE ALSO

JOIN
WHERE

SET Statement

The SET statement assigns a value to a runtime variable. The variables may be platform-specific system variables or
user-defined variables.

Platform Command

DB2 Supported

MySQL Supported

Oracle Not supported

PostgreSQL Supported

SQL Server Supported

SQL2003 Syntax

SET variable = value

Keywords

variable

Denotes a system or user-defined variable.

value

Denotes a string or numeric value appropriate to the system or user-defined variable.

Rules at a Glance

Variable values are set for the duration of the session. The value assigned to the variable must match the datatype of
the variable. For example, you cannot assign a string value to a variable that is declared as with a numeric datatype.
The actual command to create a variable varies from platform to platform. For example, DB2, Oracle, and SQL Server
use the DECLARE statement to declare a variable name and datatype, but other platforms may use other means of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

use the DECLARE statement to declare a variable name and datatype, but other platforms may use other means of
creating a variable.

The value assigned to a variable does not have to be a literal value. It may be a dynamic value that is derived from a
subquery. For example, we assign the maximum employee ID to the emp_id_var variable in the following example:

DECLARE emp_id_var CHAR(5)

SET emp_id_var = (SELECT MAX(emp_id)

 FROM employees WHERE type = 'F')

In this example, an employee type of 'F' indicates that the employee is a full-time, salaried employee.

Programming Tips and Gotchas

The SET statement is easily transportable between the database platforms. Only Oracle uses a consistently different
scheme for assigning a value to a variable. In the following example, we declare a variable on SQL Server called
emp_id_var and assign a value to it:

DECLARE emp_id_var CHAR(5)

SET emp_id_var = '67888'

Now, we will perform the same action on an Oracle server:

DECLARE emp_id_var CHAR(5);

emp_id_var := '67888';

DB2

DB2 supports the basic form of SET, assigning values to local variables, output parameters, or special registers. It
allows a single SET statement to set multiple variable values at one time. It also assigns values to the columns of a
base table in a trigger. The command cannot set both types of variables in a single statement.

SET variable = { value | NULL | DEFAULT } [,...]

The DB2 syntax elements are as follows:

variable

Identifies the target variable. SQL variables must be declared before they are used. A variable may also identify
a column in the base table of a trigger.

value

Describes the value of the variable in a datatype-appropriate format. When assigning values to columns in a
trigger, you may also use references to OLD and NEW correlation names. For more information on this concept,
refer to the DB2 platform specifics in the CREATE/ALTER TRIGGER Statement section.

NULL

Specifies a NULL value for columns or variables that allow NULL values.

DEFAULT

Assigns the default value to columns created with the WITH DEFAULT clause or the IDENTITY clause. This
option assigns NULL to columns that allow NULL and are not defined with a default or identity clause.

To set a single variable value:

SET new_var.order_qty = 125;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET new_var.order_qty = 125;

When setting multiple values with a single statement, the number of variables on the left side of the equal sign must
equal the number of values on the right side of the equal sign. To set multiple variables in a single statement:

SET new_var.order_qty = 125, new_var.discount = 4;

When using the SET variable = SELECT... variation, the values returned in the result set of the SELECT statement must
exactly match the variables item for item in ordinal position and datatype. If the SELECT statement does not return any
rows, then null values are assigned to the variables. You can also use the SELECT INTO statement to assign multiple
variable values with a single statement.

MySQL

SET, as a keyword in MySQL, has several uses. First, SET is a MySQL datatype that allows multiple values each
separated by a comma. In addition, SET may assign a value to a user variable. That latter use is described here, and
the syntax for it is:

SET @variable = value [,...]

When setting multiple values in a single statement, set each value separately with a comma between:

SET new_var.order_qty = 125, new_var.discount = 4;

In addition, MySQL allows the use of SELECT to assign values to variables in the same fashion as that described under
the ANSI description of SET. However, there are some weaknesses when using the SELECT method for assigning values
to variables. The primary problem is that values are not assigned immediately within the SELECT statement. Thus, for
the following example:

SELECT (@new_var := row_id) AS a,

 (@new_var + 3) AS b

FROM table_name;

the @new_var variable will not possess the newly selected value of row_id + 3. It will retain the value from the
beginning of the statement. For this reason, it is a best practice to assign only one value to a variable at a time.

Oracle

The SET clause is not supported as the method of assigning values to variables. Instead, user-defined variables are
simply assigned a value using the assignment indicator :=. The basic syntax is shown here:

variable := value

PostgreSQL

The PostgreSQL command SET is used to set a runtime variable.

SET variable { TO | = } { value | DEFAULT }

The runtime variable may be set to a string literal designated by value. Using the DEFAULT keyword sets the runtime
variable to its default value. PostgreSQL v7.2 supports these runtime variables:

CLIENT_ENCODING NAMES

Sets multibyte client encoding on PostgreSQL installations built with multibyte support

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sets multibyte client encoding on PostgreSQL installations built with multibyte support

DATESTYLE

Sets the style used to display dates and times. Supported styles include:

ISO

Depicts date and time as YYYY-MM-DD HH:MM:SS (the default ISO 8601 style).

SQL

Depicts the Oracle/Ingres style of date and time, not the date and time style mandated by ANSI SQL.

Postgresql

Depicts the long-time date and time format in PostgreSQL, though no longer the default.

German

Depicts the date and time as dd.mm.yyyy.

You can further qualify the SQL and Postgresql styles using the keywords as European, US, and NonEuropean, which
give dates in the forms dd/mm/yyyy, mm/dd/yyyy, and mm/dd/yyyy, respectively. For example: SET DATESTYLE = SQL,
European.

SEED

Sets the internal random number generator seed. The value may be any floating-point number between 0 and 1
multiplied by 231-1. This value can also be set via the PostgreSQL setseed function. For example:

SELECT setseed(value);.

SERVER_ENCODING

Sets multibyte server encoding on servers built with multibyte support.

Here is an example for setting the date and time format to the Oracle and European style:

SET DATESTYLE TO sql, European;

SQL Server

SQL Server supports SET for variable assignments, provided the variables have previously been created with the
DECLARE statement, and to define values for cursor variables in SQL Server. (SQL Server also uses the SET statement
for a variety of other purposes, such as enabling or disabling session flags like SET NOCOUNT ON.) The platform-
specific syntax is:

SET { { @variable = value}

 | { @cursor_variable = { @cursor_variable | cursor_name

 | { CURSOR [FORWARD_ONLY | SCROLL]

 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]

 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]

 [TYPE_WARNING]

FOR select_statement

 [FOR { READ ONLY | UPDATE [OF column_name [,...]] }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [FOR { READ ONLY | UPDATE [OF column_name [,...]] }

] } } } }

The command does not support the DEFAULT keyword, but otherwise supports all the syntax of the ANSI command.
The value for server_name must reference a connection named in a previous CONNECT statement, either as a literal or
as a variable.

SET CONNECTION Statement

The SET CONNECTION statement allows users to switch between several open connections on one or more database
servers.

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Supported, with limitations

SQL2003 Syntax

SET CONNECTION {DEFAULT | connection_name}

Keywords

connection_name

Names the connection of the current session. If the connection_name is different from the current session
connection name, then the connection context is switched to the connection_name.

DEFAULT

Switches to the default connection from any other connection. This enables rapid switching to the default
connection without knowing its name.

Description

This command does not end a connection. Instead, it switches from the current connection to the connection named
(making it the current connection), or from the current connection to the default connection. When switching between
connections, the old connection becomes dormant (without committing any changes), while the new connection
becomes active.

Rules at a Glance

SET CONNECTION does not create a connection. It merely switches your connection context. Use the CONNECT
command to create a new connection; use DISCONNECT to terminate a connection.

Programming Tips and Gotchas

The SET CONNECTION command is not frequently used, since many users connect programmatically via ODBC, JDBC,
or some other connectivity method. However, on those platforms that support SET CONNECTION, the command can be
very useful for rapidly changing connection properties without terminating any existing connections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

very useful for rapidly changing connection properties without terminating any existing connections.

DB2

DB2 supports the following basic form of SET CONNECTION:

SET CONNECTION server_name

The DB2 command does not support the DEFAULT keyword, but is otherwise compatible with the ANSI command. The
value for server_name must reference a connection created by a previous CONNECT statement.

Following is a fully embedded SQL program in DB2 that shows CONNECT and SET CONNECTION:

EXEC SQL CONNECT TO SQLNUTSHELL;

/* Opens connection to SQLNUTSHELL. The connection will now

 execute statements referencing objects at SQLNUTSHELL */

EXEC SQL CONNECT TO DB2DEV;

/* Opens connection to SQLNUTSHELL. The connection will now

 execute statements referencing objects at DB2DEV */

EXEC SQL SET CONNECTION SQLNUTSHELL;

/* Now move back to the SQLNUTSHELL connection and execute

 statements referencing objects at SQLNUTSHELL. The

 connection to DB2DEV is still available, only dormant. */

MySQL

Not supported.

Oracle

Not supported.

PostgreSQL

Not supported.

SQL Server

SQL Server supports SET CONNECTION, but only in embedded SQL, not within its ad hoc querying tool, SQL Query
Analyzer. Although SQL Server supports the full SQL2003 syntax within SQL embedded in other programs, such as a
C++ program, it is not used very often. Most prefer the SQL Server specific command USE instead. The platform-
specific syntax is:

SET CONNECTION connection_name

The command does not support the DEFAULT keyword, but is otherwise the same as the ANSI command. The value for
connection_name must reference a connection named in a previous CONNECT statement, either as a literal or as a
variable.

Here is a full TSQL program in SQL Server that shows CONNECT, DISCONNECT, and SET CONNECTION:

EXEC SQL CONNECT TO chicago.pubs AS chicago1 USER sa;

EXEC SQL CONNECT TO new_york.pubs AS new_york1 USER read-only;

-- opens connections to the servers named "chicago" and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

-- opens connections to the servers named "chicago" and

 "new_york"

EXEC SQL SET CONNECTION chicago1;

EXEC SQL SELECT name FROM employee INTO :name;

-- sets the chicago1 connection as active and performs work

 within that session

EXEC SQL SET CONNECTION new_york1;

EXEC SQL SELECT name FROM employee INTO :name;

-- sets the new_york1 connection as active and performs work

 within that session

EXEC SQL DISCONNECT ALL;

-- Terminates all sessions. You could alternately use two

-- DISCONNECT commands, one for each named connection.

See Also

CONNECT
DISCONNECT

SET CONSTRAINT Statement

The SET CONSTRAINT statement defines, for the current transaction, whether a deferrable constraint checks after each
DML statement or when the transaction is finally committed. If the session is not currently in an open transaction, the
setting applies to the next transaction.

Platform Command

DB2 Not supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Not supported

SQL2003 Syntax

SET CONSTRAINT {constraint_name [,...] | ALL} {DEFERRED | IMMEDIATE}

Keywords

{constraint_name [,...] | ALL}

Names one or more deferrable constraints where the setting will apply. The keyword ALL sets the constraint
mode for all deferrable constraints of the current transaction.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEFERRED

Checks the conditions specified by the deferrable constraint when the transaction is committed, rather than
when the DML statements are issued.

IMMEDIATE

Checks the conditions specified by the deferrable constraint immediately after each DML statement is issued,
rather than when the transaction is committed.

Rules at a Glance

SET CONSTRAIN defines a value for the constraint mode of all deferrable constraints of the current transaction. If the
session is not currently in a transaction, then the SET CONSTRAINT statement applies to the next transaction issued
during the session.

The following example sets all deferrable constraints to be checked immediately following the issuance of each DML
statement:

SET CONSTRAINT ALL IMMEDIATE;

The next example sets two constraints to defer their data modification until the transaction is committed:

SET CONSTRAINT scott.hr_job_title, scott.emp_bonus DEFERRED:

Programming Tips and Gotchas

Constraints, when they are defined, may be specified as DEFERRABLE or NOT DEFERRABLE. The SET CONSTRAINT
statement will fail if it is issued against a specific constraint that was defined as NOT DEFERRABLE.

DB2

Not supported.

MySQL

Not supported.

Oracle

Oracle supports the ANSI standard exactly as described, except that SET CONSTRAINT is allowed, as well as SET
CONSTRAINTS.

PostgreSQL

PostgreSQL supports the ANSI standard syntax exactly as it is described. Currently, PostgreSQL only allows SET
CONSTRAINT against foreign key constraints, not check and unique constraints, which are always considered
IMMEDIATE.

SQL Server

Not supported.

SET PATH Statement

The SET PATH statement changes the value of the CURRENT PATH setting to one or more schemas.

Platform Command

DB2 Supported, with variations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2 Supported, with variations

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

SET PATH schema_name [,...]

Keywords

schema_name [,...]

Defines one or more schemas as the current path.

Rules at a Glance

SET PATH defines one or more schemas used to qualify an unqualified routine name (that is, functions, procedures, and
methods).

The following example sets the current path (i.e., schema name) for unqualified objects to scott:

SET PATH scott;

Then, whenever a routine is referenced during the current session, it will assume the scott schema if no schema is
identified.

Programming Tips and Gotchas

When referencing multiple schema names, all the schemas must belong to the current database. (The schemas cannot
be on a remote database.)

SET PATH does not apply the schema to unqualified objects like tables or views. It only applies to routines.

DB2

DB2 supports several variations on the ANSI standard:

SET {[CURRENT] PATH | CURRENT_PATH} =

 {schema_name | SYSTEM PATH | USER | CURRENT PATH | CURRENT_PATH} [,...]

where:

SET {[CURRENT] PATH | CURRENT_PATH} =

Sets the path, with a slight variation in syntax from the ANSI standard. Note that the equal sign (=) is required.

schema_name

Defines one or more user-specified paths as the current path. The schema_name may be a literal, a host
variable, or a string constant.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SYSTEM PATH

Defines the system schemas of SYSIBM, SYSFUN, and SYSPROC as the current path.

USER

Defines the value of the USER special register as the current path.

{CURRENT PATH | CURRENT_PATH}

Defines the value of the CURRENT PATH special register before the SET PATH statement was executed as the
current path.

The following example sets the schema scott and the DB2 system schemas as the current path:

SET PATH = scott, SYSTEM PATH

MySQL

Not supported.

Oracle

Not supported.

PostgreSQL

Not supported.

SQL Server

Not supported.

See Also

SET SCHEMA

SET ROLE Statement

The SET ROLE statement enables and disables specific roles for the current session.

Platform Command

DB2 Not supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

SET ROLE {NONE | role_name}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SET ROLE {NONE | role_name}

Keywords

NONE

Assigns the CURRENT ROLE role to the current session.

role_name

Associates the set of privileges associated with the named role with the current session.

Rules at a Glance

When a user session is opened using the CONNECT statement, issuing the SET ROLE statement grants that session the
privileges associated with a role. The SET ROLE command can be issued only outside of a transaction.

The value for role_name must reference a valid user role existing on the server. You may specify the role name either as
a literal or through a variable.

Programming Tips and Gotchas

Sessions are created using the CONNECT statement, while roles are created using the CREATE ROLE statement.

Most database platforms offer some method of setting or changing the role used during a user session. SET ROLE is the
ANSI standard approach to setting the role used during a user session, but it is not widely supported by the different
database platforms. Check your platform to find an analogous command supported by your specific vendor.

DB2

Not supported. DB2 does not yet support roles.

MySQL

SET ROLE is not supported. An analogous method to control connection settings in MySQL is controlled in the [client]
section of the .my.cnf configuration file in the home directory. For example:

 [client]

host=server_name

user=user_name

password=client_password

To rapidly change between user roles, you can reassign host, user, and password connection properties by assigning
new values to MYSQL_HOST, USER (for Windows only), and MYSQL_PWD (though MYSQL_PWD is insecure in that other
users can view this file), respectively.

Oracle

When a user initiates a connection, Oracle explicitly assigns roles to the user. The role(s) under which the session is
operating can be changed with the SET ROLE command, assuming the user has permissions to the role. Oracle uses the
MAX_ENABLED_ROLES initialization parameter (in the INIT.ORA file) to control the maximum number of roles that can
be enabled concurrently. The Oracle syntax is:

SET ROLE { role_name [IDENTIFIED BY password] [,...]

| [ALL [EXCEPT role_name [,...]]

| NONE } ;

Options for the SET ROLE command include:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Options for the SET ROLE command include:

role_name

Declares a valid role name already created within Oracle to which the user has been granted permissions. Any
roles not specified are unavailable throughout the current session. You can enable multiple roles by providing a
list; place a comma between each role listed.

IDENTIFIED BY password

If the role_name has a password, that password must be specified using this clause.

ALL

Enables all roles that are granted to the current user, including roles that are granted through other roles, but
cannot be used with the IDENTIFIED BY clause.

EXCEPT

Specifies a list of roles to exclude from a SET ROLE ALL command.

NONE

Disables all roles, including the default role.

Roles with passwords may be accessed only through the statement SET responsibility role_name IDENTIFIED BY password.
For example, to enable the specific roles read_only and updater, identified by the passwords editor and
red_marker, respectively, for the current session:

SET ROLE

 read_only IDENTIFIED BY editor,

 updater IDENTIFIED BY red_marker;

To enable all roles except the read_write role:

SET ROLE ALL EXCEPT read_write;

PostgreSQL

SET ROLE is not supported. However, the ANSI SQL command SET SESSION AUTHORIZATION is supported and can
achieve somewhat similar results.

SQL Server

Not supported.

See Also

CONNECT
DISCONNECT
SET SESSION AUTHORIZATION

SET SCHEMA Statement

The SET SCHEMA statement changes the value of the CURRENT SCHEMA setting to a user-specified schemas.

Platform Command

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2 Supported, with variations

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

SQL Server Not supported

SQL2003 Syntax

SET SCHEMA schema_name [,...]

Keywords

schema_name [,...]

Defines one or more schema as the current path.

Rules at a Glance

SET SCHEMA defines a user-defined schema to use to qualify an unqualified object, such as a table or view.

The following example sets the current schema for unqualified objects to scott:

SET SCHEMA scott;

Then, whenever an object is referenced during the current session, it will assume the scott schema, if no schema is
identified.

Programming Tips and Gotchas

The SET SCHEMA statement cannot assign a schema from a remote database as the CURRENT SCHEMA.

SET SCHEMA does not apply the schema to unqualified routines like functions, procedures, and methods. It only applies
to database objects like tables and views.

DB2

DB2 supports several variations on the ANSI standard:

SET [CURRENT] SCHEMA = {schema_name | USER } [,...]

where:

SET [CURRENT] SCHEMA =

Sets the path, with a slight variation in syntax from the ANSI standard. Note that the equal sign (=) is required.

schema_name

Defines a user-specified schema, of no more than 30 bytes in length, as the current schema. The schema_name
may be a literal, a host variable, or a string constant.

USER

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Defines the value of the USER special register as the current path.

The DB2 implementation is otherwise the same as the ANSI standard.

MySQL

Not supported.

Oracle

Not supported.

PostgreSQL

Not supported.

SQL Server

Not supported.

See Also

SET PATH

SET SESSION AUTHORIZATION Statement

The SET SESSION AUTHORIZATION statement sets the user identifier for the current session.

Platform Command

DB2 Not supported

MySQL Not supported

Oracle Not supported

PostgreSQL Supported

SQL Server Not supported

SQL2003 Syntax

SET SESSION AUTHORIZATION username

Keywords

username

Sets the session user and the current user of the SQL session to the context of username, where username may
be a literal, a parameter, or a host variable.

Rules at a Glance

This command allows you to switch between users and to run under their permissions.

Programming Tips and Gotchas

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Some platforms allow you to use special shortcut keywords, like SESSION USER and CURRENT USER. SESSION USER
and CURRENT USER are usually the same thing — the username of the currently active session provided by the client.
However, SESSION USER and CURRENT USER can diverge in a session when SETUID functions and other similar
mechanisms are invoked.

Superuser permissions are required to invoke this command, but you will still be able to switch back to the initial user
session even if the current user session does not normally have permission to run SET SESSION AUTHORIZATION.

You might also wish to check the value of the SESSION_USER and CURRENT_USER functions with this SQL statement:

SELECT SESSION_USER, CURRENT_USER;

Normally, you should issue SET SESSION AUTHORIZATION before any transactions to set the session and current user
values for all transactions that follow. It must be issued as the only command in its transaction batch.

DB2

Not supported. Similar functionality is achieved with the CONNECT statement or by logging off the server and
reconnecting.

MySQL

Not supported. You must disconnect your session from MySQL, and then reconnect to utilize another set of user
privileges.

Oracle

Not supported. Similar functionality is achieved using the CONNECT statement or by logging off the server and
reconnecting.

PostgreSQL

PostgreSQL supports the ANSI standard for this command. The only difference, and it is a minor one, is that the ANSI
standard does not allow this command during a transaction, while PostgreSQL does not care one way or the other.

SQL Server

Not supported. Similar functionality is achieved with the CONNECT statement or by logging off the server and
reconnecting.

See Also

CONNECT
GRANT
SESSION_USER

SET TIME ZONE Statement

The SET TIME ZONE statement changes the current session's time zone if it needs to be different from the default time
zone.

Platform Command

DB2 Not supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with limitations

SQL Server Not supported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

SET TIME ZONE {LOCAL | INTERVAL {+ | -}'00:00' [HOUR TO MINUTE]}

Keywords

LOCAL

Sets the current session's time zone to that of the local server.

INTERVAL

Sets an increase (with +) or decrease (with -) over the default time.

INTERVAL

Specifies the time zone offset from Coordinated Universal Time (UTC) in terms of hours and minutes.

HOUR TO MINUTE

Specifies the datatype of the TIME ZONE value.

Rules at a Glance

This is a relatively simple command that sets the user session time zone to that of the server (LOCAL), or sets the time
zone in relation to Coordinated Universal Time (UTC) (formerly Greenwich Mean Time or GMT). Thus, an INTERVAL of 2
would advance the time zone two hours greater than UTC, while an INTERVAL of -6 would reduce the time zone by six
hours from UTC to the United States central time zone.

Programming Tips and Gotchas

Like most SET commands, SET TIME ZONE can be executed only outside of an explicit transaction. In other words, you
do not need to encapsulate the command within a START or BEGIN TRAN and a COMMIT TRAN statement.

DB2

Not supported.

MySQL

Not supported.

Oracle

In Oracle9i and higher, you can use the following ALTER SESSION command to set the session time zone:

ALTER SESSION

 SET TIME_ZONE = {'[+ | -] hh:mm'

 | LOCAL

 | DBTIMEZONE

 | 'region'}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 | 'region'}

Use LOCAL to revert back to your session's original default time zone. Use DBTIMEZONE to set your session time zone
to be the database time zone. Use 'region' to specify a time zone region name such as EST or PST. Use an offset such as
'-5:00' to specify your time zone in terms of an hour and minute displacement from UTC. A displacement of '-5:00'
means that your time is five hours behind UTC time (e.g., 5:00 A.M. your time is 10:00 A.M. UTC time).

To retrieve a list of valid time zone region names, issue the following query:

SELECT tzname FROM v$timezone_names;

Both of the following commands set the time zone to Eastern Standard Time. The first command does this by specifying
the appropriate displacement from UTC, while the second command specifies the time zone region name:

ALTER SESSION SET TIME_ZONE = '-5:00';

ALTER SESSION SET TIME_ZONE = 'EST';

Oracle's time zone support is complex. Steven Feuerstein's Oracle PL/SQL Programming (O'Reilly), contains a good
explanation of it in the chapter on datetime datatypes.

PostgreSQL

PostgreSQL allows a session's time value to be set to the server default by interchangeably using the LOCAL or
DEFAULT clauses:

SET TIME ZONE {'timezone' | LOCAL | DEFAULT };

There are some variations from the ANSI standard:

'timezone'

Specifies a time zone by name. The possible values for time zone depends on the operating system. For
example, the file /usr/share/zoneinfo contains the database of time zones for Linux servers.

LOCAL / DEFAULT

Sets the current-session time values to those of the default time zone as determined by the local server.

For example, 'PST8PDT' is a valid time zone for California on Linux systems, while 'Europe/Rome' is a valid time zone for
Italy on Linux and other systems. If you specify an invalid time zone, the command sets the time zone to UTC.

If increasing the time zone over UTC, the plus sign is optional. If an invalid time zone is specified, UTC is used as the
time zone.

The following example sets the PostgreSQL time zone to Pacific Standard Time:

SET TIME ZONE 'PST8PDT';

Next, the time for the current session is returned to the server's default time zone:

SET TIME ZONE LOCAL;

SQL Server

Not supported.

SET TRANSACTION Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SET TRANSACTION statement controls many characteristics of data modification, primarily the read/write
characteristics and isolation level of a transaction.

Platform Command

DB2 Not supported

MySQL Supported, with variations

Oracle Supported, with limitations

PostgreSQL Supported

SQL Server Supported, with variations

SQL2003 Syntax

SET [LOCAL] TRANSACTION [READ ONLY | READ WRITE]

 [ISOLATION LEVEL {READ COMMITTED | READ UNCOMMITTED |

 REPEATABLE READ | SERIALIZABLE}

 [DIAGNOSTIC SIZE int]

Keywords

LOCAL

Changes transaction settings for the current session on the local server and only the local server. Otherwise,
the transaction settings for the next transaction are changed, even if the transaction runs on a remote server.

READ ONLY

Sets the next upcoming transaction as a read-only transaction. Once the next transaction is complete,
transaction behavior reverts to the default settings.

READ WRITE

Sets the next upcoming transaction so it may perform transactions that read and write data.

ISOLATION LEVEL

Sets the isolation level for the next transaction in the session.

READ COMMITTED

Allows a transaction to read rows written by other transactions only when they have been committed.

READ UNCOMMITTED

Allows a transaction to read rows which have been written, but not committed, by other transactions.

REPEATABLE READ

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

All sessions can see records that are committed before their first transaction was begun. Other open sessions
can see or change only committed rows in the user's current session before their transactions were begun.
Consequently, later transactions can add records that might then be visible to the transactions of earlier
sessions, but the other sessions must requery to see those records.

SERIALIZABLE

All sessions can see records that are committed before their transaction was begun. Other open sessions can
see but cannot insert or update records within other user sessions until those transaction are completed. This is
the most restrictive isolation level and the default for SQL2003.

DIAGNOSTIC SIZE int

Designates the specific number of error messages, int, to capture for a transaction. The GET DIAGNOSTICS
statement retrieves these error messages.

Rules at a Glance

When issued, SET TRANSACTION sets the properties of the next upcoming transaction. Because of this, SET
TRANSACTION is an interim statement that should be issued after one transaction completes and before the next
transaction starts. (To begin a transaction and set its characteristics at the same time, use START TRANSACTION.)
More than one option may be applied with this command but only one access mode, isolation level, and diagnostic size
may be specified at a time.

The isolation level of a transaction specifies the degree of isolation a transaction has from other concurrently running
sessions. The isolation level controls:

Whether rows read and updated by your database session are available to other concurrently running database
sessions.

Whether the update, read, and write activity of other database sessions can affect your database session.

If you are unfamiliar with isolation levels, be sure to read the SQL2003 Syntax section under SET TRANSACTION
Statement, since the explanation for isolation levels is offered only in that section.

Programming Tips and Gotchas

The ISOLATION LEVEL clause controls a number of behaviors and anomalies in a transaction concerning concurrent
transactions, particularly the following:

Dirty reads

Occur when a transaction reads the altered records of another transaction before the other transaction has
completed. This allows a data modification to occur on a record that might not be committed to the database.

Nonrepeatable reads

Occur when one transaction reads a record while another modifies it. So if the first transaction attempts to
reread the record, it can't find it.

Phantom records

Occur when a transaction A reads a group of records, but transaction B adds or changes the data so that more
records satisfy the query issued by the transaction A. Thus, transaction A possibly reads in the records of
transaction B as if they were committed to the database, when in fact the records from transaction B may still
be rolled back. Since transaction A is reading records that are not yet permanent, these are called phantom
records.

Table 3-5 shows the impact of various isolation level settings on the anomalies just listed.

Table 3-5. Isolation level and anomaly impact
Isolation level Dirty reads Nonrepeatable reads Phantom records

READ UNCOMMITTED Allowed Allowed Allowed

READ COMMITTED Not allowed Allowed Allowed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REPEATABLE READ Not allowed Not allowed Allowed

SERIALIZABLE Not allowed Not allowed Not allowed

DB2

Not supported. DB2 supports all isolation levels, but not through the SET TRANSACTION statement. Isolation levels are
controlled instead through the program preparation process and in server-level settings issued by the database
administrator.

Although DB2 supports the ANSI isolation levels, it uses different names for them. DB2 also allows users to set the
isolation for specific statements, including SELECT, DELETE, INSERT, and UPDATE. DB2 uses the following names for
the various isolation levels:

CS

Specifies cursor stability (serializable) as the isolation level.

NC

Specifies no commit as the isolation level. Not supported by DB2.

RR

Specifies repeatable read as the isolation level.

RS

Specifies read stability (read committed) as the isolation level.

UR

Specifies uncommitted read (read uncommitted) as the isolation level.

DB2 also supports two statements, CHANGE ISOLATION LEVEL and SET CURRENT ISOLATION, that change the way
that DB2 isolates data from other processes while a database is being accessed.

MySQL

MySQL allows you to set the transaction isolation level for the next individual transaction, the whole session, or globally
across the server, as follows:

SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL

[READ UNCOMMITTED |READ COMMITTED | REPEATABLE READ

 | SERIALIZABLE]

By default, MySQL sets the isolation level for the transaction that immediately follows the statement.

GLOBAL

Sets the transaction isolation for all subsequent transactions across all user sessions or system threads.

SESSION

Sets the transaction isolation level for all subsequent transactions of the current session.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRANSACTION ISOLATION LEVEL

Sets a specific transaction isolation level, as described in earlier in the SET TRANSACTION Statement section.

When omitted, MySQL defaults to the REPEATABLE READ isolation level.

The SUPER privilege is required to set a GLOBAL transaction isolation level. You can also set the default isolation level
via the MYSQL command line executable using the -transaction-isolation='' switch. Following is an example that sets the all
subsequent threads (both user and system threads) to a serializable transaction isolation level:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Oracle

Oracle allows you to set a transaction as read-only or read-write, set the transaction isolation level, or specify a specific
rollback segment for your transactions.

SET TRANSACTION { [READ ONLY | READ WRITE]

| [ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE}]

| [USE ROLLBACK SEGMENT segment_name]

| NAME 'transaction_name'};

where:

READ ONLY

Sets the next transaction as read-only and serializable. This option is not available to the user SYS. The only
statements permitted in read-only sessions are SELECT, ALTER SESSION, ALTER SYSTEM, LOCK TABLE, and
SET ROLE.

READ WRITE

The default transaction style in Oracle. It allows transactions to read and write data.

READ COMMITTED

The default transaction isolation level in Oracle. The same as the ANSI standard.

SERIALIZABLE

Sets the transaction isolation level to the ANSI serializable level and requires the COMPATIBLE init parameter to
be set to 7.3.0 or higher.

USE ROLLBACK SEGMENT segment_name

Sets the next read-write transaction to be written to a specific Oracle rollback segment identified by
segment_name. Because it applies only to the current transaction, USE ROLLBACK SEGMENT should be the first
statement in the transaction. This option is not compatible with the READ ONLY option. The rollback segment
must already exist or else this statement will fail.

NAME

Assigns a name of 255 characters or less to the current transaction. This option is useful in distributed
transaction processing environments, for two-phase commits, because it lets you easily identify which local
transactions belong to a single distributed transaction.

The USE ROLLBACK SEGMENT variant can be useful for performance tuning by allowing you to direct long-running
transactions to rollback segments large enough to hold them, while small transactions could be directed to small
rollback segments that might be small enough to be retained in cache.

The SET TRANSACTION statement should be the first statement in any SQL batch, though Oracle treats it virtually the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The SET TRANSACTION statement should be the first statement in any SQL batch, though Oracle treats it virtually the
same as the START TRANSACTION statement. So one could be substituted for the other.

In the following example, the query reports from a bi-weekly process on the Chicago server while avoiding impact from
any other users who might be updating or inserting records:

SET TRANSACTION READ ONLY NAME 'chicago';

SELECT prod_id, ord_qty

FROM sales

WHERE stor_id = 5;

In another case, late-night batch processing might create a huge transaction that would overflow all but the rollback
segment created to support that one transaction:

SET TRANSACTION USE ROLLBACK SEGMENT huge_tran_01;

PostgreSQL

SET TRANSACTION in PostgreSQL impacts the new transaction you are beginning only. Consequently, you may have to
issue this statement before each new transaction.

SET TRANSACTION ISOLATION LEVEL {READ COMMITTED | SERIALIZABLE};

where:

READ COMMITTED

Sets the transaction isolation level to the ANSI level READ COMMITTED. This is the default.

SERIALIZABLE

Sets the transaction isolation level to the ANSI level SERIALIZABLE.

By default, PostgreSQL supports the READ COMMITTED transaction isolation level. You can set the default transaction
isolation level for all transactions in the session by using either of the following commands:

SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL

{ READ COMMITTED | SERIALIZABLE }

SET default_transaction_isolation =

 { 'read committed' | 'serializable' }

Of course, you can then override the isolation level of any subsequent transaction using the SET TRANSACTION
statement.

For example, you can set the next transaction to the serializable transaction isolation level:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Alternately, you could set all the transactions in an entire session to serializable:

SET SESSION CHARACTERISTICS AS TRANSACTION

 ISOLATION LEVEL SERIALIZABLE;

SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

SET TRANSACTION in SQL Server sets the isolation level for an entire session. All queries that follow a SET
TRANSACTION statement run under the isolation level set by the statement until it is otherwise changed.

SET TRANSACTION ISOLATION LEVEL

{ READ COMMITTED

| READ UNCOMMITTED

| REPEATABLE READ

| SERIALIZABLE}

where:

READ COMMITTED

Sets the transaction isolation level to the ANSI level READ COMMITTED. This is the default.

READ UNCOMMITTED

Sets the transaction isolation level to the ANSI level READ UNCOMMITTED. This has the same effect as the
NOLOCK optimizer hint.

REPEATABLE READ

Sets the transaction isolation level to the ANSI level REPEATABLE READ.

SERIALIZABLE

Sets the transaction isolation level to the ANSI level SERIALIZABLE. Similar results can be achieved in SQL
Server using the HOLDLOCK optimizer hint.

For example, the following command lowers the transaction isolation level for all SELECT statements during the session
from READ COMMITTED to REPEATABLE READ:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

GO

See Also

COMMIT
ROLLBACK

START TRANSACTION Statement

The START TRANSACTION statement allows you to perform all the functions of SET TRANSACTION while also initiating a
new transaction.

Platform Command

DB2 Not supported

MySQL Supported, with limitations

Oracle Not supported

PostgreSQL
Not supported;

see BEGIN TRAN below

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server
Not supported;

see BEGIN TRAN below

SQL2003 Syntax

START TRANSACTION [READ ONLY | READ WRITE]

 [ISOLATION LEVEL {READ COMMITTED | READ UNCOMMITTED |

 REPEATABLE READ | SERIALIZABLE}

 [DIAGNOSTIC SIZE int]

According to the ANSI standard, the only difference between SET and START is that SET is considered outside of the
current transaction, while START is considered the beginning of a new transaction. Thus, SET TRANSACTION settings
apply to the next transaction, while START TRANSACTION settings apply to the current transaction

While only MySQL supports the START TRANSACTION statement, three of the vendors (MySQL, PostgreSQL, and SQL
Server) support a similar command, BEGIN [TRAN[SACTION]] and its synonym BEGIN [WORK]. BEGIN TRANSACTION
declares an explicit transaction, but it does not set isolation levels.

Rules at a Glance

The only significant rule of the START TRANSACTION statement is that you must use this statement to control the
access mode, isolation level, or diagnostic size of the current transaction. Once a new transaction starts, you must
either issue new values for the setting(s) or rely on the default.

Most database platforms allow you to implicitly control transactions, using what is commonly called autocommit mode.
In autocommit mode, the database treats each statement as a transaction in and of itself, complete with an implicit
BEGIN TRAN and COMMIT TRAN statement.

The alternative to autocommit mode is to manually control each transaction explicitly. Under explicit transaction control,
you declare each new transaction with the START TRANSACTION statement. A new transaction may also start implicitly
any time a transaction-initiating statement is issued, such as INSERT, UPDATE, DELETE, or SELECT. The transaction is
not committed or rolled back until either COMMIT or ROLLBACK statements are explicitly issued.

Some platforms, namely DB2 and Oracle, do not support the explicit declaration of a new transaction using START
TRANSACTION, but they do support explicitly committing, savepointing, and rolling back a transaction. Other platforms,
such as MySQL, PostgreSQL, and SQL Server, allow you to both explicitly declare a transaction with START
TRANSACTION and to explicitly commit, savepoint, and roll back the transaction.

Programming Tips and Gotchas

Many of the platforms discussed in this book run in autocommit mode by default. Therefore, it is a good rule of thumb
to only use explicitly declared transactions if you intend to do so for all transactions in a session. In other words, do not
mix implicitly declared transactions and explicitly declared transactions in a single session. Each transaction that is
explicitly declared can only be made permanent with the COMMIT statement. Similarly, any transaction that fails or
needs to be discarded must be explicitly undone with the ROLLBACK statement.

Be sure to issue START in a pair with either COMMIT or ROLLBACK. Otherwise, the DBMS
may not complete the transaction(s) until it encounters COMMIT or ROLLBACK. Omitting
timely COMMITs (or ROLLBACKs) could lead potentially to huge or poorly planned
transactions.

It is a good idea to issue an explicit rollback or commit after one or a few statements because long-running transactions
can lock up resources, thus preventing other users from accessing those resources. And don't forget to commit (or roll
back)! Long-running or very large transaction batches can fill up the rollback segments or transaction logs of a
database, even if those files are small.

DB2

Not supported. Transactions in DB2 are started implicitly.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Not supported. Transactions in DB2 are started implicitly.

MySQL

MySQL normally runs in autocommit mode, which means changes are automatically saved to disk when completed. If a
change fails for any reason, it is automatically rolled back.

MySQL supports START TRANSACTION, but it is merely a synonym for BEGIN. You can suspend autocommit for one or
several statements using the BEGIN syntax:

BEGIN [WORK]

where:

BEGIN

Marks the beginning of one or more transactions.

WORK

An optional keyword with no effect.

Issuing the following command can disable autocommit mode for all sessions and threads:

SET AUTOCOMMIT=0

Once you have disabled autocommit, the COMMIT statement is required to store any and every data modification to
disk, and the ROLLBACK statement is required to undo changes made during a transaction. Disabling autocommit is
only effective with "transaction-safe tables" such as InnoDB or BDB tables. Disabling autocommit on non-transaction
safe tables has no effect — autocommit will still be enabled.

Earlier versions of MySQL use an update log. However, the update log does not support
ANSI transactions unless the tables are defined as InnoDB or BDB.

Transactions are stored in the binary log in a single write operation when the COMMIT statement is issued. Here's an
example:

BEGIN;

 SELECT @A := SUM(salary)

 FROM employee

 WHERE type=1;

 UPDATE payhistory SET summmary=@A WHERE type=1;

COMMIT;

Rollbacks issued against non-transactional tables fail with the error ER_WARNING_NOT_COMPLETE_ROLLBACK,
but transaction safe tables will be restored as expected.

Oracle

Not supported. Transactions in Oracle are started implicitly. Refer to SET TRANSACTION on the Oracle platform for
more information about how Oracle controls individual transactions.

PostgreSQL

The PostgreSQL syntax is:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The PostgreSQL syntax is:

BEGIN [WORK | TRANSACTION]

where:

BEGIN

Marks the beginning of one or more transactions.

WORK

An optional keyword with no effect.

TRANSACTION

An optional keyword with no effect.

PostgreSQL normally runs in autocommit mode where each data modification statement or query is its own transaction.
PostgreSQL applies an implicit COMMIT for a transaction that completes without an error. PostgreSQL also automatically
issues a ROLLBACK statement at the end of a statement that fails. The BEGIN statement allows explicit COMMIT or
ROLLBACK of a transaction, which may then consist of multiple statements.

Manually coded transactions are much faster in PostgreSQL than are autocommitted transactions. The SET
TRANSACTION ISOLATION LEVEL should be set to SERIALIZABLE just after the BEGIN statement to bolster the
transaction isolation. PostgreSQL allows many data-modification statements (INSERT, UPDATE, DELETE) within a BEGIN
. . . COMMIT block. However, when the COMMIT command is issued, either all or none of the transaction takes place,
depending on the success or failure of the command.

BEGIN has a separate usage on database platforms that support their own procedural
language, namely Oracle and SQL Server. In these platforms, BEGIN, without the keyword
TRANSACTION, is used to mark a new block of procedural code. For this reason, you are
advised to include the TRANSACTION keyword for any transactions you write on
PostgreSQL. Otherwise, you will face some complicated migration issues, should you ever
move your code to Oracle or SQL Server.

Following is an example of BEGIN TRANSACTION in PostgreSQL:

BEGIN TRANSACTION;

 INSERT INTO jobs(job_id, job_desc, min_lvl, max_lvl)

 VALUES(15, 'Chief Operating Officer', 185, 135)

COMMIT;

SQL Server

Microsoft SQL Server supports the BEGIN TRANSACTION statement rather than the ANSI START TRANSACTION
statement. It also supports a couple of extensions that facilitate transaction backup and recovery. The Microsoft SQL
Server syntax is:

BEGIN TRAN[SACTION] [transaction_descriptor

 [WITH MARK ['log_descriptor']]]

where:

TRAN[SACTION]

Marks the beginning of a transaction. SQL Server allows either TRAN or TRANSACTION.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Marks the beginning of a transaction. SQL Server allows either TRAN or TRANSACTION.

transaction_descriptor

An up to 32-character name used to identify a transaction, or it can be a variable string datatype (CHAR,
NCHAR, VARCHAR, or NVARCHAR) variable up to 32 characters in size. When working with nested transactions,
only name the outermost transaction.

WITH MARK log_descriptor

Tells SQL Server to place a mark of name log_descriptor in the transaction log. This allows SQL Server to restore
a transaction log up to the specified log_descriptor. In a sense, this allows point in time recovery based on the
name of the mark for database set to FULL recovery mode. WITH MARK must be used in conjunction with a
named transaction.

When nesting transactions, only the outermost BEGIN . . . COMMIT or BEGIN . . . ROLLBACK pair should reference the
transaction name (if it has one). In general, we recommend avoiding nested transactions.

Here is a SQL Server set of INSERT statements, all performed as a single transaction:

BEGIN TRANSACTION

 INSERT INTO sales VALUES('7896','JR3435','Oct 28 2003',25,

 'Net 60','BU7832')

 INSERT INTO sales VALUES('7901','JR3435','Oct 28 2003',17,

 'Net 30','BU7832')

 INSERT INTO sales VALUES('7907','JR3435','Oct 28 2003',6,

 'Net 15','BU7832')

COMMIT

GO

If, for any reason, any one of these INSERT statements had to wait for completion, they would all have to wait since
they are treated as a single transaction.

See Also

COMMIT
ROLLBACK

SUBQUERY Substatement

A subquery is a nested query. Subqueries may appear in various places within a SQL statement.

Platform Command

DB2 Supported

MySQL Supported with limitations

Oracle Supported

PostgreSQL Supported

SQL Server Supported

SQL supports the following types of subquery:

Scalar subqueries

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Scalar subqueries

Subqueries that retrieve a single value. These are the most widely supported type of subquery among the
various database platforms.

Table subqueries

Subqueries that retrieve more than one values. This type of subquery retrieves more than a row of values.

Nested table subqueries

Subqueries that retrieve more than one column and more than one row.

Scalar and vector subqueries can, on some platforms, appear as part of the expression in a SELECT list of items,
WHERE clause, and HAVING clause. Nested table subqueries tend to appear in the FROM clause of SELECT statements.

A correlated subquery is a subquery that is dependent upon a value in an outer query. Consequently, the inner query is
executed once for every record retrieved in the outer query. Since subqueries can be nested many layers deep, a
correlated subquery may reference any level in the main query higher than its own level.

Different rules govern the behavior of a subquery depending on which clause it appears in. The level of support
amongst the database platforms also varies. Some platforms support subqueries in all clauses mentioned earlier
(SELECT, FROM, WHERE and HAVING), while others support subqueries in only one or two of the clauses.

Subqueries are usually associated with the SELECT statement. Since subqueries may appear in the WHERE clause, they
can be used in any SQL statement that supports a WHERE clause, including SELECT, INSERT...SELECT, DELETE, and
UPDATE statements.

SQL2003 Syntax

Scalar, table, and nested table subqueries are represented in the generalized syntax below:

SELECT column1, column2, ... (scalar subquery)

FROM table1, ... (nested table subquery)

 AS subquery_table_name]

WHERE foo = (scalar subquery)

 OR foo IN (table subquery)

Correlated subqueries are more complex because the value of such subqueries is dependent on values retrieved in their
main queries. For example:

SELECT column1

FROM table1 AS t1

WHERE foo IN

 (SELECT value1

 FROM table2 AS t2

 WHERE t2.pk_identifier = t1.fk_identifier)

Note that the IN clause is for example purposes only. Any comparison operator may be used).

Keywords

scalar subquery

Includes a scalar subquery in the SELECT item list or in the WHERE or HAVING clause of a query.

nested table subquery

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Includes a nested table subquery only in the FROM clause in conjunction with the AS clause.

table subquery

Includes a table subquery only in the WHERE clause with operators such as IN, ANY, SOME, EXISTS, or ALL that
act upon multiple values. Table subqueries return one or more rows containing a single value.

Rules at a Glance

Subqueries allow you to return one or more values and nest them inside a SELECT, INSERT, UPDATE, or DELETE
statement, or inside another subquery. Subqueries can be used wherever expressions are allowed. Subqueries also can
often be replaced with a JOIN statement. Depending on the DBMS, subqueries may perform less quickly than joins.

Subqueries are always enclosed in parentheses.

Subqueries may appear in a SELECT clause with an item list containing at least one item, a FROM clause for referencing
one or more valid tables or views, and in WHERE and HAVING clauses.

Scalar subqueries can return only a single value. Certain operators in a WHERE clause expect only one value, such as
=, <, >, >=, <=, and <> (or !=). If a subquery returns more than one value against an operator that expects a single
value, the entire query will fail. On the other hand, table subqueries may return multiple values, but are usable only
with multivalue expressions like [NOT] IN, ANY, ALL, SOME, or [NOT] EXISTS.

Nested table subqueries may appear only in the FROM clause and should be aliased by the AS clause. The result set
returned by the nested table subquery, sometimes called a derived table, offers similar functionality to a view (see
CREATE VIEW). Every column returned in the derived table need not be used in the query, though they can all be acted
upon by the outer query.

Correlated subqueries typically appear as a component of a WHERE or HAVING clause in the outer query (and, less
commonly, in the SELECT item list) and are correlated through the WHERE clause of the inner query (that is, the
subquery). (Correlated subqueries can also be used as nested table subqueries, though this is less common.) Be sure to
include a WHERE clause in such a subquery that evaluates based on a correlating value from the outer query. (The
example for a correlated query in the earlier ANSI syntax diagram illustrates this requirement.) It is important to
specify a table alias, called a correlation name, using the AS clause or other alias shortcut for every table referenced in
a correlated query, both in the outer and inner query. Correlation names avoid ambiguity and help the DBMS quickly
resolve the tables involved in the query.

All ANSI-compliant subqueries comply with the following short list of rules:

A subquery cannot include an ORDER BY clause.

A subquery cannot be enclosed in an aggregate function. The following query is invalid: SELECT foo FROM table1
WHERE sales >= AVG(SELECT column1 FROM sales_table...). You can get around this limitation by performing the
aggregation in the subquery rather than in the outer query.

Programming Tips and Gotchas

For most all vendor platforms, subqueries should not reference large object datatypes (e.g., CLOB or BLOB on Oracle
and IMAGE or TEXT on SQL Server), or array datatypes (such as TABLE or CURSOR on SQL Server).

The platforms all support subqueries, but not every vendor supports every type of subquery. Table 3-6 tells you
whether your platform supports each type of subquery.

Table 3-6. Platform-specific subquery support
Platform DB2 MySQL Oracle PostgreSQL SQL Server

Scalar subquey in SELECT item list ચ ચ ચ X ચ

Scalar subquey in WHERE/HAVING clause ચ ચ ચ ચ ચ

Vector subquery in WHERE/HAVING clause ચ ચ ચ ચ ચ

Nested table in FROM clause ચ ચ ચ ચ ચ

Correlated subquery in WHERE/HAVING clause ચ ચ ચ ચ ચ

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Subqueries are not relegated to SELECT statements only. They may also be used in INSERT, UPDATE, and DELETE
statements that include a WHERE clause. Subqueries are often used for the following purposes:

To identify the rows inserted into the target table using an INSERT...SELECT statement, CREATE
TABLE...SELECT statement, or SELECT...INTO.

To identify the rows of a view or materialized view in a CREATE VIEW statement.

To identify value(s) assigned to existing rows using an UPDATE statement.

To identify values for conditions in WHERE and HAVING clauses of SELECT, UPDATE, and DELETE statements.

To build a view of a table(s) on the fly (i.e., nested table subqueries).

Examples

This section shows subquery examples that are equally valid on DB2, MySQL, Oracle, PostgreSQL, and SQL Server.

A simple scalar subquery is shown in the SELECT item list of the following query:

SELECT job, (SELECT AVG(salary) FROM employee) AS "Avg Sal"

FROM employee

Nested table subqueries are functionally equivalent to querying a view. In the following, we query the education level
and salary in a nested table subquery, and then perform aggregations on the values in the derived table in the outer
query.

SELECT AVG(edlevel), AVG(salary)

FROM (SELECT edlevel, salary

 FROM employee) AS emprand

GROUP BY edlevel

Remember that this query may fail, depending on the platform, without the AS clause to
associate a name with the derived table.

The following query shows a standard table subquery in the WHERE clause expression. In this case, we want all project
numbers for employees in the department 'A00':

SELECT projno

FROM emp_act

WHERE empno IN

 (SELECT empno

 FROM employee

 WHERE workdept = 'A00')

The above subquery is executed only once for the outer query.

In the next example, we want to know the names of employees and their level of seniority. We get this result set
through a correlated subquery:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

through a correlated subquery:

SELECT firstname, lastname,

 (SELECT COUNT(*)

 FROM employee senior

 WHERE employee.hiredate > senior.hiredate) as senioritype

FROM employee

Unlike the previous subquery, this subquery is executed one time for every row retrieved by the outer query. In a query
like this, the total processing time could be very long, since the inner query may potentially execute many times for a
single result set.

Correlated subqueries depend on values retrieved by the outer query before being able to complete the processing of
the inner query. They are tricky to master, but offer unique programmatic capabilities. The following example returns
information about orders where the quantity sold in each order is less than the average quantity in other sales for that
title:

SELECT s1.ord_num, s1.title_id, s1.qty

FROM sales AS s1

WHERE s1.qty <

 (SELECT AVG(s2.qty)

 FROM sales AS s2

 WHERE s2.title_id = s1.title_id)

For this example, you can accomplish the same functionality using a self join. However, there are situations in which a
correlated subquery may be the only easy way to do what you need.

The next example shows how a correlated subquery might be used to update values in a table:

UPDATE course SET ends =

 (SELECT min(c.begins) FROM course AS c

 WHERE c.begins BETWEEN course.begins AND course.ends)

WHERE EXISTS

 (SELECT * FROM course AS c

 WHERE c.begins BETWEEN course.begins AND course.ends)

Similarly, you can use a subquery to determine which rows to delete. This example uses a correlated subquery to delete
rows from one table based on related rows in another table:

DELETE FROM course

WHERE EXISTS

 (SELECT * FROM course AS c

 WHERE course.id > c.id

 AND (course.begins BETWEEN c.begins

 AND c.ends OR course.ends BETWEEN c.begins AND c.ends))

DB2

DB2 supports the ANSI standard subquery types. It allows scalar subqueries in the SELECT item list, nested table
subqueries in the FROM clause, and scalar and vector subqueries in the expressions of WHERE and HAVING clauses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

subqueries in the FROM clause, and scalar and vector subqueries in the expressions of WHERE and HAVING clauses.
DB2 allows correlated subqueries in the SELECT item list and in WHERE and HAVING clauses.

MySQL

MySQL supports nested table subqueries as select items and in the WHERE clause.

Oracle

Oracle supports ANSI standard subqueries, though it uses a different nomenclature. In Oracle, a nested table subquery
that appears in the FROM clause is called an inline view. That makes plenty of sense because nested table subqueries
are basically views built on the fly. Oracle calls a subquery that appears in the WHERE clause and HAVING clause of a
query a nested subquery. Oracle allows correlated subqueries in the SELECT item list and in the WHERE and HAVING
clauses.

PostgreSQL

PostgreSQL supports ANSI standard subqueries in the FROM, WHERE, and HAVING clauses. However, subqueries
appearing in a HAVING clause cannot include ORDER BY, FOR UPDATE, and LIMIT clauses. PostgreSQL does not
currently support subqueries in the SELECT item list.

SQL Server

SQL Server supports ANSI standard subqueries. Scalar subqueries can be used almost anywhere a standard expression
is allowed. Subqueries in SQL Server cannot include the COMPUTE or FOR BROWSE clauses. They can include the
ORDER BY clause if the TOP clause is also used.

See Also

DELETE
INSERT
SELECT
UPDATE
WHERE

TRUNCATE TABLE Statement

The TRUNCATE TABLE statement, a non-ANSI statement, irrevocably removes all rows from a table without logging the
individual row deletes. It quickly erases all the records in a table without altering the table structure, taking little or no
space in the redo logs or transaction logs. However, since a truncate operation is not logged, the TRUNCATE TABLE
statement cannot be rolled back once it is issued.

Platform Command

DB2 Not supported

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

Defacto Standard Syntax

Officially, TRUNCATE TABLE is not an ANSI standard command. However, it is a commonly supported statement
standard that follows this format:

TRUNCATE TABLE table_name

Keywords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keywords

table_name

The name of any valid table within the current database or schema context.

Rules at a Glance

The TRUNCATE TABLE statement has the same effect on a table as a DELETE statement with no WHERE clause; both
erase all rows in a given table. However, there are two important differences. TRUNCATE TABLE is faster and it is non-
logged, meaning it cannot be rolled back if issued in error. Plus, TRUNCATE TABLE does not activate triggers, while the
DELETE statement does.

This command should be issued manually. We strongly encourage you not to place it into automated scripts or
production systems that contain irreplaceable data. It cannot be paired with transaction control statements such as
BEGIN TRAN or COMMIT.

Programming Tips and Gotchas

Because the TRUNCATE TABLE statement is not logged, it is generally used only in development databases. Use it in
production databases with caution!

We strongly advise that you do not write TRUNCATE TABLE statements into the stored
procedures or functions of a production application because most platforms do not log the
operation nor can they recover an improperly issued TRUNCATE statement.

The TRUNCATE TABLE command will fail if another user has a lock on the table at the time the statement is issued.
TRUNCATE TABLE does not activate triggers, but it will work when they are present. However, it won't work when
foreign key constraints are in place on a given table.

DB2

As of Version 8, DB2 does not support the TRUNCATE TABLE statement.

MySQL

MySQL supports a basic format for the TRUNCATE TABLE statement starting in Version 3.23:

TRUNCATE TABLE name

MySQL achieves the results of a TRUNCATE TABLE command by dropping and recreating the affected table. Since
MySQL stores each table in a file called table_name.frm, the table_name.frm file must exist in the directory containing
the database files for the command to work properly.

For example, to remove all data from the publishers table:

TRUNCATE TABLE publishers

Oracle

Oracle allows a table or an indexed cluster (but not a hash cluster) to be truncated. Oracle's syntax is:

TRUNCATE { CLUSTER [owner.]cluster

 | TABLE [owner.]table [{PRESERVE | PURGE} MATERIALIZED VIEW LOG]}

[{DROP | REUSE} STORAGE]

TRUNCATE TABLE was first introduced by Oracle, and other platforms soon added support for the statement. Oracle has
added more features to this statement than are commonly implemented by other vendors. Oracle's syntax elements are
as follows:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

as follows:

CLUSTER | TABLE

Specifies whether an index cluster or a table will be truncated. An index cluster is a physical construct that
stores related rows of two tables next to each other physically on disk to speed up joins by lowering I/O.
SNAPSHOT LOG and STORAGE options are not available when truncating an index cluster.

PRESERVE MATERIALIZED VIEW LOG

Maintains any snapshot logs when a master table is truncated.

PURGE MATERIALIZED VIEW LOG

Clears out any snapshot logs.

DROP STORAGE

Causes the disk space freed by the deleted rows to be deallocated.

REUSE STORAGE

Causes the space allocated to a table to remain allocated to that table, though empty.

For example:

TRUNCATE TABLE scott.authors

 PRESERVE SNAPSHOT LOG REUSE STORAGE

This example command erases all records in the table scott.authors. It also maintains the existing snapshot log and
allows the table to keep and reuse the storage space already allocated to it.

PostgreSQL

PostgreSQL varies little from the defacto industry standard, but does add the optional TABLE keyword:

TRUNCATE [TABLE] name

The TABLE component of the command is optional. For example, the following command erases all the records in the
authors table on a PostgreSQL database:

TRUNCATE authors

SQL Server

SQL Server supports the defacto industry standard.

See Also

DELETE

UNION Set Operator

The UNION set operator combines the result sets of two or more queries, showing all the rows returned by each of the
queries as one, single result set.

UNION is in a class of keyword called a set operator. Other set operators include INTERSECT and EXCEPT/MINUS.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UNION is in a class of keyword called a set operator. Other set operators include INTERSECT and EXCEPT/MINUS.
(EXCEPT and MINUS are functually equivalent. EXCEPT is the ANSI standard.) All set operators are used to
simultaneously manipulate the result sets of two or more queries; hence the term "set operators."

Platform Command

DB2 Supported, with limitations

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported, with limitations

SQL Server Supported, with limitations

SQL2003 Syntax

There are technically no limits to the number of queries that you may combine with the UNION statement. The general
syntax is:

<SELECT statement1>

UNION [ALL | DISTINCT]

<SELECT statement2>

UNION [ALL | DISTINCT]

...

Keywords

UNION

Determines which result sets will be combined into a single result set. Duplicate rows are, by default, excluded.

ALL

Combines duplicate rows from all result sets.

DISTINCT

Eliminates duplicate rows from the final result set. Columns containing a NULL value are considered duplicates.
(If neither ALL nor DISTINCT are used, DISTINCT behavior is the default.)

Rules at a Glance

There is only one significant rule to remember when using UNION: the order, number, and datatype of columns should
be the same in all queries.

The datatypes do not have to be identical, but they should be compatible. For example, CHAR and VARCHAR are
compatible datatypes. By default, the result set will default to the largest of two (or more) compatible datatypes, and a
query that unions three CHAR columns (CHAR(5), CHAR(10), and CHAR(12)) will display the results in the CHAR(12)
format with extra space padded onto the smaller column results.

Programming Tips and Gotchas

Even though the ANSI standard calls for INTERSECT to take precedence over other set operators in a single statement,
many platforms evaluate all set operators with equal precedence. Explicitly control the precedence of set operators
using parentheses. Otherwise, the DBMS is likely to evaluate them from leftmost to rightmost expression.

Depending on the platform, DISTINCT can incur a significant performance cost, since it often adds a second pass
through the results to winnow out duplicate records. ALL can be specified in any instance where no duplicate records
are expected (or where duplicate records are OK) for faster results.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are expected (or where duplicate records are OK) for faster results.

According to the ANSI standard, only one ORDER BY clause is allowed in the entire query. Include it at the end of the
last SELECT statement. In order to avoid column and table ambiguity, be sure to alias each column for each table with
the same respective alias. However, for column naming purposes, only the alias in the first query is used to each
column in the SELECT...UNION query. For example:

SELECT au_lname AS "lastname", au_fname AS "firstname"

FROM authors

UNION

SELECT emp_lname AS "lastname", emp_fname AS "firstname"

FROM employees

ORDER BY lastname, firstname

Also, while your query may have compatible datatyped columns throughout the queries in the UNION, there may be
some variation in behavior across the DBMS platforms, especially with regard to varying length of the columns. For
example, if the au_lname column in the first query is markedly longer than the emp_lname column in the second
query, each platform may apply different rules as to which length is used. In general, though, the platforms will choose
the longer (and less restrictive) column size for use in the result set.

Each DBMS may apply its own rules as to which column name is used if the columns across the tables have different
names. In general, the column names of the first query are used.

DB2

DB2 supports the UNION and UNION ALL keywords of the ANSI standard, plus the VALUES clause:

<SELECT statement1>

UNION [ALL]

<SELECT statement2>

UNION [ALL]

...

[VALUES (expression1, expression2,

 ...)] [, (expression1, expression2, ...)] [,...]

where:

VALUES

Allows you to specify one or more sets of hand-coded values as records in the combined result set. Each set of
hand-coded values must contain the exact same number of columns as the queries in the UNION. Separate
rows of hard-coded values in the record set using commas.

Although UNION DISTINCT is not supported, UNION is the functional equivalent. The CORRESPONDING clause is not
supported.

The datatypes LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, DATALINK, and structured types are not
usable in a UNION (but are usable in UNION ALL).

If the result set has the same column name across tables, that name is used. If, however, the tables have different
column names, DB2 generates a new column name. That column is then unusable in the ORDER BY clause or the FOR
UPDATE clause.

If multiple set operations are used in a single query, those enclosed in parentheses are evaluated first. Then, the
queries are evaluated in left-to-right order. However, all INTERSECT operations are performed before any UNION and
EXCEPT operations. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EXCEPT operations. For example:

SELECT empno

FROM employee

WHERE workdept LIKE 'E%'

UNION

SELECT empno

FROM emp_act

WHERE projno IN ('IF1000', 'IF2000', 'AD3110')

UNION

VALUES ('AA0001'), ('AB0002'), ('AC0003')

The example above retrieves all employee IDs from the employee table that are in any department that starts with "E,"
as well as any employee IDs from the employee accounts (emp_act) table working in the projects 'IF1000', 'IF2000',
and 'AD3110', and always includes employee IDs 'AA0001', 'AB0002', and 'AC0003'.

MySQL

Not supported

Oracle

Oracle supports the UNION and UNION ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

UNION [ALL]

<SELECT statement2>

UNION [ALL]

...

Oracle does not support the CORRESPONDING clause. UNION DISTINCT is not supported, but UNION is the functional
equivalent. Oracle does not support UNION or UNION ALL on queries under the following circumstances:

Queries containing columns of LONG, BLOB, CLOB, BFILE, or VARRAY datatype.

Queries containing a FOR UPDATE clause or a TABLE collection expression.

If the first query in the set operation contains any expressions in the select item list, then include the AS statement to
associate an alias with the column. Also, only the last query in the set operation may contain an ORDER BY clause. For
example, you could find out all unique store IDs without duplicates using this query:

SELECT stor_id FROM stores

UNION

SELECT stor_id FROM sales;

PostgreSQL

PostgreSQL supports the UNION and UNION ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<SELECT statement1>

UNION [ALL]

<SELECT statement2>

UNION [ALL]

...

PostgreSQL does not support UNION or UNION ALL on queries with a FOR UPDATE clause. PostgreSQL does not support
the CORRESPONDING clause. UNION DISTINCT is not supported, but UNION is the functional equivalent.

The first query in the set operation may not contain an ORDER BY clause or a LIMIT clause. Subsequent queries in the
UNION or UNION ALL set operation may contain these clauses, but such queries must be enclosed in parentheses.
Otherwise, the rightmost occurrence of ORDER BY or LIMIT will be assumed to apply to the entire set operation.

For example, we could find all authors and all employees whose last name starts with "P":

SELECT a.au_lname

FROM authors AS a

WHERE a.au_lname LIKE 'P%'

UNION

SELECT e.lname

FROM employee AS e

WHERE e.lname LIKE 'W%';

SQL Server

SQL Server supports the UNION and UNION ALL set operators using the basic ANSI SQL syntax:

<SELECT statement1>

UNION [ALL]

<SELECT statement2>

UNION [ALL]

...

SQL Server does not support the CORRESPONDING clause. UNION DISTINCT is not supported, but UNION is the
functional equivalent.

You can use SELECT...INTO with UNION or UNION ALL, but INTO may only appear in the first query of the union.
Special keywords, such as SELECT TOP and GROUP BY...WITH CUBE, are usable with all queries in a union. However,
be sure to include them with all queries in the union. If you use SELECT TOP or GROUP BY...WITH CUBE in only one
query, the operation will fail.

Each query in a union must contain the same number of columns. The datatypes of the columns do not have to be
identical, but they must implicitly convert. For example, mixing VARCHAR and CHAR columns is acceptable. When
returning data, SQL Server uses the larger of the two columns when evaluating the size of the columns returned in the
result set. Thus, if a SELECT...UNION statement has a CHAR(5) column and a CHAR(10) column, it will display the data
of both columns as a CHAR(10) column. Numeric columns are converted to and displayed as the most precise datatype
in the union.

For example, the following query unions the results of two independent queries that use GROUP BY...WITH CUBE:

SELECT ta.au_id, COUNT(ta.au_id)

FROM pubs..titleauthor AS ta

JOIN pubs..authors AS a ON a.au_id = ta.au_id

WHERE ta.au_id >= '722-51-5454'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE ta.au_id >= '722-51-5454'

GROUP BY ta.au_id WITH CUBE

UNION

SELECT ta.au_id, COUNT(ta.au_id)

FROM pubs..titleauthor AS ta

JOIN pubs..authors AS a ON a.au_id = ta.au_id

WHERE ta.au_id < '722-51-5454'

GROUP BY ta.au_id WITH CUBE

See also

EXCEPT
INTERSECT
MINUS
SELECT

UPDATE Statement

The UPDATE statement changes existing data in a table. Use great caution when issuing an UPDATE statement without
a WHERE clause, since the statement then affects every row in the entire table.

Platform Command

DB2 Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

SQL Server Supported, with variations

SQL2003 Syntax

UPDATE [ONLY] {table_name | view_name}

SET {{column_name = { ARRAY [array_val [,...]] | DEFAULT |

 NULL | scalar_expression},

 column_name = { ARRAY | DEFAULT |

 NULL | scalar_expression}

 [,...] }

 | ROW = row_expression }

[WHERE search_condition | WHERE CURRENT OF cursor_name]

Keywords

ONLY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Restricts cascading of the updated values to any subtables of the target table or view. ONLY effects only typed
(object-oriented) tables and views. If used with a nontyped table or view, it causes an error.

table_name | view_name

The target table or view of the update statement. You need appropriate permissions on the target according to
the rules of the platform. Updates against views often have special rules. Generally, it is only advisable to
perform an UPDATE against a view if the view is representative of a single table.

SET

Assigns a specific value to a column or row.

column_name

Used in conjunction with SET, as in SET column1= 'foo'. Allows you to set a new value for the specified column.
You can update as many columns as you like in one statement, though you cannot update the same column
more than once in a single statement.

ARRAY [array_val [,...]]

Assigns the column to an array value or to an empty array (using ARRAY[]). This behavior is not widely
supported by DBMS platforms.

NULL

Sets the column to NULL.

DEFAULT

Sets the column to its default value as defined by a DEFAULT specification.

scalar_expression

Sets the column to any single value expression, such as a literal string or numeric value, a scalar function, or a
scalar subquery.

ROW

Used in conjunction with SET is a mutually exclusive option to SET column_name, as in SET ROW =
ROW('foo','bar'). This behavior is not widely supported by DBMS platforms.

row_expression

Used to set a value for each and every column in the table.

WHERE search_condition

Defines search criteria for the UPDATE statement using the search_condition to ensure that only the target rows
are updated. Any legal WHERE clause is acceptable. Typically, these criteria are evaluated against each row of
the table before the update is applied. If the search criteria is a subquery, the subquery is executed on each
row — potentially a long-running process.

WHERE CURRENT OF cursor_name

Restricts the UPDATE statement to the current row of a defined and opened cursor called cursor_name.

Rules at a Glance

The UPDATE statement can be used to modify the value of one or more columns of a table or view at a time. Typically,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The UPDATE statement can be used to modify the value of one or more columns of a table or view at a time. Typically,
you will update the values in one or more rows at a time. The new values must be scalar (except in row expressions
and arrays). That is, the new value must have a single, constant value at the time the transaction is executed, though it
can be literal or derived from a function call or subquery.

A basic UPDATE statement without a WHERE clause looks like this:

UPDATE authors

SET contract = 0

Without a WHERE clause, all authors in the authors table have their contract status set to zero (meaning they don't
have a contract any more). Similarly, values can be adjusted mathematically with an UPDATE statement:

UPDATE titles

SET price = price * 1.1

This UPDATE statement would increase all book prices by 10%.

You can set multiple values in one statement as here, where we set all author last name and first names to uppercase
letters:

UPDATE authors SET au_lname = UPPER(au_lname),

 au_fname = UPPER(au_fname);

Adding a WHERE clause to an UPDATE statement allows records in the table to be modified selectively:

UPDATE titles

SET type = 'pers_comp',

 price = (price * 1.15)

WHERE type = 'popular_com';

The above query makes two changes to any record of the type 'popular_com'. The command increases their price by
15% and alters their type to 'pers_comp'.

You can also invoke functions or subqueries to derive the values used in an UPDATE statement. In some cases, you
may wish to update the specific row that is being processed by a declared and open cursor. The following example
shows both concepts:

UPDATE titles SET ytd_sales = (SELECT SUM(qty)

 FROM sales

 WHERE title_id = 'TC7777')

WHERE CURRENT OF title_cursor;

This query assumes that you have declared and opened a cursor named title_cursor and that it is processing titles
with an ID of TC7777.

Sometimes you need to update values in a given table based on the values stored in another table. For example, if you
need to update the publication date for all the titles written by a certain author, you might find the author and list of
titles first through subqueries:

UPDATE titles

SET pubdate = 'Jan 01 2002'

WHERE title_id IN

 (SELECT title_id

 FROM titleauthor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FROM titleauthor

 WHERE au_id IN

 (SELECT au_id

 FROM authors

 WHERE au_lname = 'White'))

Programming Tips and Gotchas

The UPDATE statement alters values in existing records of a table or view. If you update a view, the view should include
all necessary (NOT NULL) columns, or else the statement may fail. Columns with a DEFAULT value can usually be safely
omitted.

The SET ROW clause is not widely supported among DBMS platforms. Avoid this clause. The WHERE CURRENT OF
clause is more commonly implemented on DBMS platforms, but must be used in conjunction with a cursor. Make sure
you understand the use and functionality of cursors before using this clause.

In an interactive user session, it is good practice to issue a SELECT statement using the same WHERE clause before
issuing the actual UPDATE statement. This precaution enables you to check all rows in the result set before actually
performing the UPDATE, helping ensure that you don't alter anything you don't mean to.

DB2

DB2 supports most of the standard structures found in the ANSI standard. It includes transaction control features using
a transaction isolation level clause (the WITH clause), as well as typed table and view modification, but does not include
the SET ROW clause.

UPDATE [ONLY] ({table_name | view_name}) AS alias

SET { {column_name1 = { DEFAULT | NULL | expression },

 column_name2 = { DEFAULT | NULL | expression }

 [,...] } |

 { (column_name1[..attribute_name],

 column_name2[..attribute_name][,...]) =

 ({DEFAULT | NULL | expression},

 {DEFAULT | NULL | expression}[,...]) |

 SELECT statement }

[WHERE {search_conditions | CURRENT OF cursor_name}]

[WITH { RR | RS | CS | UR }]

where:

AS alias

Specifies an alias for the target table or view. This is useful for UPDATE statements that involve lengthy WHERE
clauses or correlated subqueries.

..attribute_name

Specifies the attribute_name when updating a column that is a structured type.

WITH

Controls the transaction isolation level for the update statement (RR is repeatable read, RS is read stability, CS
is cursor stability, and UR is uncommitted read). See SET TRANSACTION for details on DB2's transaction
isolation levels.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isolation levels.

The UPDATE statement must have only one value assignment per column. A column value can be set only once in an
UPDATE statement. If any values of the update violate a constraint on the table or otherwise cause an error, then none
of the columns are updated. When updating the value of an identity column to the current identity value, just use
DEFAULT for that column. (DB2 fully supports updates on structure types, but they are neither commonly used nor
quick and easy to explain. Refer to the DB2 documentation for more details on updating structured types.) DB2 allows
parenthetical SET clauses where multiple target columns and values are assessed at once (see example later).

DB2 not only allows updates against standard tables and views, but also against typed (object-oriented) tables and
views. (Refer to CREATE TABLE and CREATE TYPE for more details on these.) There are some special rules for updating
against typed tables and views:

The object ID column is not updateable.

..attribute_name must be used in conjunction with a column_name that was previously defined as a user-defined
structured type. The attribute_name must be an attribute of the structured type identified as column_name.

Updating the column distribution statistics of a typed table requires specification of the subtable that first
introduced the column.

Multiple attribute assignments on the same structured type column occur in left-to-right order for a SET clause
in parentheses, or else in the order specified in the SET clause.

The same column may appear many times in a single UPDATE statement as long as each appearance sets a
value for a specific attribute_name.

Updating the URL value of DATALINK columns is the same as deleting and then re-inserting them. Updating a
DATALINK column with NULL is the same as deleting it. Updating the comment value of a DATALINK without relinking
requires passing an empty string for the URL value.

Here are two examples that show how DB2 updates multiple values at once using the standard SET clause:

UPDATE employee

SET job=NULL, salary=0, bonus=0, comm=0

WHERE workdept = 'E21'

 AND job <> 'MANAGER'

This statement could also be written using a parenthetical SET clause, as follows:

UPDATE employee

SET (job, salary, bonus, comm) = (NULL, 0, 0, 0)

WHERE workdept = 'E21'

 AND job <> 'MANAGER'

Here is an example of a DB2 update against a base table on a type called circles. The circles attributes are owner,
radius, X-axis center, and Y-axis center. Since the column C is defined as a type of circle, the UPDATE statement is
changing the attributes of a single column:

UPDATE CIRCLES

SET (OWNER, C..RADIUS_LENGTH, C..X_CENTER, C..Y_CENTER) =

 ('tony', 5, 18, 22)

WHERE ID = 15

MySQL

MySQL supports the ANSI standard with a few variations, including the LOW PRIORITY clause, the IGNORE clause, and
the LIMIT clause:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the LIMIT clause:

UPDATE [LOW PRIORITY] [IGNORE] table_name

SET column_name = {scalar_expression}

 [,...]

WHERE search_conditions

[ORDER BY column_name1 [{ASC | DESC}] [,...]]

[LIMIT integer]

where:

LOW PRIORITY

Tells MySQL to delay the execution of the UPDATE statement until no other client is reading from the table.

IGNORE

Tells MySQL to ignore any duplicate key errors generated by PRIMARY KEY and UNIQUE constraints. However,
only records that don't generate such errors will be updated.

ORDER BY

Tells MySQL to update the rows in the specified order (ascending or descending) of the columns specified.

LIMIT integer

Restricts the UPDATE action to a specific number of rows as designated by the integer value.

MySQL supports DEFAULT value assignment in the INSERT statement, but not currently in the UPDATE statement.

The following UPDATE would increase all prices in the titles table by 1:

UPDATE titles SET price = price + 1;

The following example limits the UPDATE to the first 10 records encountered in the titles table according to title_id.
Also, the value of price is updated twice. Those two updates of price are assessed from left to right. First, the price is
doubled, then it is increased by 1:

UPDATE titles

SET price = price * 2,

 price = price + 1

ORDER BY title_id

LIMIT 10;

Oracle

The Oracle implementation of UPDATE allows updates against views, materialized views, subqueries, and tables in an
allowable schema:

UPDATE [ONLY]

 { [schema.]{view_name | materialized_view_name |

 table_name}

 [@database_link] [alias]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [@database_link] [alias]

 {[PARTITION (partition_name)] |

 [SUBPARTITION (subpartition_name)]}

 | subquery [WITH {[READ ONLY] | [CHECK OPTION [CONSTRAINT constraint_name]]

 | [TABLE (collection_expression_name) [(+)]] }

SET {column_name1 [,...] = {expression [,...] | subquery} |

 VALUE [(alias)] = { value | (subquery)},

 {column_name1 [,...] = {expression [,...] | subquery} |

 VALUE [(alias)] = { value | (subquery)},

 [,...]

WHERE search_conditions | CURRENT OF cursor_name}

RETURNING expression [,...] INTO variable [,...];

Syntax elements for Oracle's version of UPDATE are:

ONLY

Tells Oracle not to update rows from any subviews. Applies only to views that belong to a hierarchy.

materialized_view_name

Applies the update statement to a pre-existing snapshot.

@database_link

Applies the update statement to a view or table on a remote server made available through a pre-existing
database link

alias

Specifies an alias for the table being updated. Oracle allows table aliases, but does not support the AS keyword
with UPDATE statements. Aliases can also be supplied for the VALUE clause of an UPDATE statement.

PARTITION

Applies the update to a named partition, rather than to an entire table. You are not required to name a partition
when updating a partitioned table, but doing so can, in many cases, help reduce the complexity of your WHERE
clause.

SUBPARTITION

Applies the update to a named subpartition, rather than to an entire table.

WITH READ ONLY

Specifies that the subquery cannot be updated. In some cases, an UPDATE transaction may actually alter the
records used in a subquery. The WITH READ ONLY clause prevents this from happening.

WITH CHECK OPTION

Tells Oracle to abort any changes to the updated table that would not appear in the result set of the subquery.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CONSTRAINT

Tells Oracle to further restrict changes based upon a specific constraint.

SET VALUE

Allows you to set the entire row value for any TABLE datatype. The SET VALUE clause is very similar to the
ANSI SET ROW clause. You can also specify a subquery that retrieves all values needed by the SET VALUE
clause.

RETURNING

Retrieves the rows affected by the command, whereas UPDATE normally only shows the number of rows
updated. When used for a single-row update, the values of the row can be stored in PL/SQL variables and bind
variables. When used for a multirow delete, the values of the rows are stored in bind arrays.

INTO

Indicates the variables into which the values brought back by the RETURNING clause should be stored.

Oracle has some important rules about issuing UPDATE statements:

UPDATE statements are not allowed against tables or the base tables of views containing a domain index with a
status of FAILED or IN PROGRESS. UPDATE statements are also not allowed against any table having an index
partition with a status of UNUSABLE. (You can avoid the index partition problem by setting the
SKIP_UNUSABLE_INDEXES session parameter to TRUE.)

Updates against views can be problematic if a view's defining query contains a join, an aggregate function, a set
operator, the DISTINCT keyword, an ORDER BY clause, a GROUP BY clause, a CONNECT BY clause, a START
WITH clause, an analytical function, a collection expression, or a subquery. (Under these circumstances, you
can use an INSTEAD OF trigger to update the tables underlying a view.)

The following code snippets show some examples of the extensions that Oracle offers in the UPDATE statement. To
begin with, assume that the sales table has grown into a large partitioned table. You can update a specific partition
using the PARTITON clause, for example:

UPDATE sales PARTITION (sales_yr_2004) s

 SET s.payterms = 'Net 60'

 WHERE qty > 100;

You can also use the SET VALUE clause to supply a new value for each column in the row identified by the WHERE
clause:

UPDATE big_sales bs

 SET VALUE(bs) = (SELECT VALUE(s) FROM sales s

 WHERE bs.title_id = s.title_id)

 AND bs.stor_id = s.stor_id)

 WHERE bs.title_id = 'TC7777';

You can return values for review after an update by using the RETURNING clause. The following example updates one
row, placing the updated values into PL/SQL variables:

UPDATE employee

 SET job_id = 13, job_level = 140

 WHERE last_name = 'Josephs'

RETURNING last_name, job_id

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 INTO :var1, :var2;

PostgreSQL

PostgreSQL supports the ANSI standard UPDATE syntax with a couple of small variations. PostgreSQL supports the
addition of a FROM clause. PostgreSQL's other variations include no support for the ARRAY keyword, but support for an
array functionality. PostgreSQL's UPDATE syntax is:

UPDATE [ONLY] {table_name | view_name}

SET column_name1 = {DEFAULT | NULL | scalar_expression },

 column_name2 = {DEFAULT | NULL | scalar_expression }

 [,...]

[FROM {table1 [AS alias], table2 [AS alias] [,...]}]

[WHERE search_condition | WHERE CURRENT OF cursor_name]

Most syntax elements are the same as in the ANSI standard. The only non-standard element is:

FROM

Provides the ability to build highly selective join-based criteria when determining which rows to update. FROM is
not needed when only one table, the target table, is used to determine the rows updated.

In the following example, we want to update job_lvl for employees who have a job_id of 12 and a min_lvl of 25. We
could do this with a large, complex subquery, or we could use the FROM clause to enable us to build a join:

UPDATE employee

 SET job_lvl = 80

 FROM employee AS e, jobs AS j

 WHERE e.job_id = j.job_id

 AND j.job_id = 12

 AND j.min_lvl = 25;

All other aspects of the ANSI standard are fully supported.

SQL Server

SQL Server supports most of the basic components of the ANSI UPDATE statement, but it does not support the ONLY
and ARRAY keywords, nor does it support array update functionality. SQL Server has extended the capabilities of
UPDATE by adding table hints using the WITH clause, query hints using the OPTION clause, as well as more robust
variable handling, as follows:

UPDATE {table_name | view_name | rowset}

[WITH (hint1, hint2 [,...])]

SET {column_name = {DEFAULT | NULL | scalar_expression }

 | variable_name = scalar_expression

 | variable_name = column_name = scalar_expression } [,...]

[FROM {table1 | view1 | nested_table1 | rowset1} [,...]]

 [AS alias]

[JOIN {table2 [,...]}]

WHERE {conditions | CURRENT OF [GLOBAL] cursor_name}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WHERE {conditions | CURRENT OF [GLOBAL] cursor_name}

[OPTION (hint1, hint2 [,...])]

SQL Server's UPDATE syntax elements are as follows:

WITH hint

Allows the use of table hints to override the default behavior of the query optimizer. Since the query optimizer
is quite good at choosing query plans, use hints only with a deep understanding of the tables, indexes, and data
affected by the operation. Without this understanding, including hints could result in a decrease rather than an
increase in performance.

variable_name

SQL Server variables must be declared prior to the UPDATE statement in the form of DECLARE @variable. The
construct SET @variable = column1 = expression1 sets a variable to the final value of an updated column, whereas
SET @variable = column1, column1 = expression sets the variable to the value of the column before execution of
the UPDATE statement.

FROM

Provides the ability to build highly selective join-based criteria when determining which rows to update. FROM is
not needed when only one table, the target table, is used to determine the rows updated. SQL Server rowset
functions are described in the SELECT Statement section.

AS alias

Allows you to assign an easy-to-use alias to the table, view, nested table subquery, or rowset function.

JOIN

Provides the ability to use ANSI standard syntax for joined tables, in conjunction with the FROM clause.

GLOBAL

A slight variation on the ANSI standard WHERE CURRENT OF clause. The clause WHERE CURRENT OF
cursor_name, when used in combination with a cursor, tells SQL Server to update only the single record where
the cursor is currently positioned. The cursor is assumed to be a local cursor, but can be designated a global
cursor by using the keyword GLOBAL.

OPTION hint

Allows the use of query hints to override the default behavior of the query optimizer. Like the WITH clause,
which uses table hints, use query hints only with a deep understanding of the tables, indexes, and data affected
by the operation. Without this understanding, including hints could result in a decrease rather than an increase
in performance.

The primary extension to the ANSI standard that Microsoft SQL Server offers in an UPDATE statement is a FROM clause.
This FROM clause allows the use of the JOIN statement to make it especially easy to update rows in the target table by
correlating rows declared in the FROM clause to the rows updated by the UPDATE table_name component of the
statement. The following example shows an update using the ANSI style and a rather cumbersome subquery, followed
by an update using SQL Server's FROM clause extension, to update the result of a table join. Both statements
accomplish the same work, but in very different ways:

-- ANSI style

UPDATE titles

SET pubdate = GETDATE()

WHERE title_id IN

 (SELECT title_id

 FROM titleauthor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FROM titleauthor

 WHERE au_id IN

 (SELECT au_id

 FROM authors

 WHERE au_lname = 'White'))

-- Microsoft Transact-SQL style

UPDATE titles

SET pubdate = GETDATE()

FROM authors AS a

JOIN titleauthor AS t2 ON a.au_id = t2.au_id

WHERE t2.title_id = titles.title_id

 AND a.au_lname = 'White'

Performing this update using the Transact-SQL style is simply a matter of joining two tables — authors and
titleauthor — to the titles table. To perform the same operation using ANSI-compliant code, the au_id in author
must first be found and passed up to the titleauthors table, and then the title_id must be identified and passed up to
the main update statement.

The following example updates the state column for the first 10 authors from the authors table:

UPDATE authors

SET state = 'ZZ'

FROM (SELECT TOP 10 * FROM authors ORDER BY au_lname) AS t1

WHERE authors.au_id = t1.au_id

The important thing to note about this example is that it is normally difficult to update the first n records in an UPDATE
statement unless there is some explicit row sequence you can identify in the WHERE clause. However, the nested table
subquery in the FROM clause uses a TOP keyword to return on the first 10 records, thereby saving a lot of added
programming that would otherwise be required.

See Also

DECLARE
SELECT
WHERE

WHERE Clause

The WHERE clause sets the search criteria for an operation such as SELECT, UPDATE, or DELETE. Any records in the
target table(s) that do not meet the search criteria are excluded from the operation. The search conditions may include
many variations such as calculations, Boolean operators, and SQL predicates (for example, LIKE or BETWEEN).

Platform Command

DB2 Supported

MySQL Supported

Oracle Supported

PostgreSQL Supported

SQL Server Supported

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

 { WHERE search_criteria | WHERE CURRENT OF cursor_name }

Keywords

WHERE search_criteria

Defines search criteria for the statement to ensure that only the target rows are affected.

WHERE CURRENT OF cursor_name

Restricts the operation of the statement to the current row of a defined and opened cursor called cursor_name.

Rules at a Glance

WHERE clauses are found in SELECT statements, DELETE statements, INSERT...SELECT statements, UPDATE
statements, and any statement that might have a query or subquery such as DECLARE, CREATE TABLE, CREATE VIEW,
and so forth. The search conditions, all of which are described in their own entries elsewhere in the book, can include:

All records (=ALL, >ALL, <= ALL, SOME/ANY)

For example, to see publishers who live in the same city as their authors:

SELECT pub_name

FROM publishers

WHERE city = SOME (SELECT city FROM authors);

Combinations (AND, OR, and NOT) and evaluation hierarchy

For example, to see all authors with sales in quantities greater than or equal to 75 units, or secondary authors
with a royalty of greater than or equal to 60:

SELECT a.au_id

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

WHERE ta.title_id IN (SELECT title_id FROM sales

 WHERE qty >= 75)

 OR (a.au_id IN (SELECT au_id FROM titleauthor

 WHERE royaltyper >= 60)

 AND a.au_id IN (SELECT au_id FROM titleauthor

 WHERE au_ord = 2));

See Programming Tips and Gotchas next, for more information.

Comparison operators (such as =, < >, <, >, <=, and >=).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Comparison operators (such as =, < >, <, >, <=, and >=).

For example, to see author's last and first name from the authors table for authors who don't have a contract
(i.e., contract value of zero):

SELECT au_lname, au_fname

FROM authors

WHERE contract = 0;

Lists (IN and NOT IN).

For example, to see all authors who do not yet have a title in the titleauthors table:

SELECT au_fname, au_lname

FROM authors

WHERE au_id NOT IN (SELECT au_id FROM titleauthor);

NULL comparisons (IS NULL and IS NOT NULL)

For example, to see titles that have NULL year-to-date sales:

SELECT title_id, SUBSTRING(title, 1, 25) AS title

FROM titles

WHERE ytd_sales IS NULL;

Be sure not to specify = NULL in a query. NULL is unknown and can never be equal to
anything. Using = NULL is not the same as specifying the IS NULL operator. Refer to the
section IS Operator, earlier in this chapter, for more information.

Pattern matches (LIKE and NOT LIKE)

For example, to see authors whose last names start with a "C":

SELECT au_id

FROM authors

WHERE au_lname LIKE 'C%';

Range operations (BETWEEN and NOT BETWEEN)

For example, to see authors with last names between "Smith" and "White":

SELECT au_lname, au_fname

FROM authors

WHERE au_lname BETWEEN 'smith' AND 'white';

Programming Tips and Gotchas

The WHERE clause may require special handling when dealing with certain datatypes, such as LOBs or certain character

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The WHERE clause may require special handling when dealing with certain datatypes, such as LOBs or certain character
sets like UNICODE.

Parentheses are used to control evaluation hierarchy within a WHERE clause. Encapsulating a clause within parentheses
tells the DBMS to evaluate that clause before others. Parentheses can be nested to create a hierarchy of evaluations.
The innermost parenthetical clause will be evaluated first. You should watch parentheses very carefully for two reasons:

You must always have an equal number of opening and closing parentheses. Any imbalance in the number of
opening and closing parentheses will cause an error.

You should be careful where you place parentheses, since misplacing a parenthesis can dramatically change the
result set of your query.

For example, consider again the following query, which returns six rows in the pubs database on the SQL Server
platform:

SELECT DISTINCT a.au_id

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

WHERE ta.title_id IN (SELECT title_id FROM sales

 WHERE qty >= 75)

 OR (a.au_id IN (SELECT au_id FROM titleauthor

 WHERE royaltyper >= 60)

 AND a.au_id IN (SELECT au_id FROM titleauthor

 WHERE au_ord = 2))

The output from this query is as follows:

au_id

213-46-8915

724-80-9391

899-46-2035

998-72-3567

Changing just one set of parenthesis produces different results:

SELECT DISTINCT a.au_id

FROM authors AS a

JOIN titleauthor AS ta ON a.au_id = ta.au_id

WHERE (ta.title_id IN (SELECT title_id FROM sales

 WHERE qty >= 75)

 OR a.au_id IN (SELECT au_id FROM titleauthor

 WHERE royaltyper >= 60))

 AND a.au_id IN (SELECT au_id FROM titleauthor

 WHERE au_ord = 2)

This time, the output will look like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This time, the output will look like this:

au_id

213-46-8915

724-80-9391

899-46-2035

DB2

Supported as described above.

MySQL

Supported as described above.

Oracle

Supported as described above.

PostgreSQL

Supported as described above.

SQL Server

Supported as described above.

See Also

ALL/ANY/SOME
BETWEEN
DECLARE CURSOR
DELETE
EXISTS
IN
LIKE
SELECT
UPDATE

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. SQL Statement Command Reference
This chapter is the heart of SQL in a Nutshell, Second Edition. It is an alphabetical listing of SQL commands with
detailed explanations and examples. Each command and function is identified in Table 3-1 as being "supported,"
"supported with variations," "supported with limitations," or "not supported," for each of the five SQL dialects covered
in this book: DB2, MySQL, Oracle, PostgreSQL, SQL Server. After a brief description of the SQL2003 standard, each
vendor application is discussed briefly but thoroughly, with supporting examples. If a specific platform does not support
a particular command, that fact will be noted in the table that heads the command and then the command will not be
listed for that platform. Similarly, although SQL in a Nutshell, Second Edition, is not a comprehensive review of the
SQL2003 standard, each command has been validated against SQL2003.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1 Types of Functions
There are different ways to categorize functions into groups. The following subsections describe distinctions that are
critical to understand how functions work.

4.1.1 Deterministic and Nondeterministic Functions

Functions can be either deterministic or nondeterministic . A deterministic function always returns the same results if
given the same input values. A nondeterministic function may return different results every time it is called, even when
the same input values are provided.

Why is it important that a given input always returns the same output? It is important because of how functions may be
used within views, in user-defined functions, and in stored procedures. Restrictions vary across implementations, but
these objects sometimes allow only deterministic functions within their defining code. For example, SQL Server allows
the creation of an index on a column expression—as long as the expression does not contain nondeterministic functions.
Rules and restrictions vary between the platforms, so check the specific documentation when using functions.

4.1.2 Aggregate and Scalar Functions

Another way of categorizing functions is in terms of whether they operate on values from just one row at a time, on
values from a collection, or on a set of rows. Aggregate functions operate against a collection of values and return a
single summarizing value. Scalar functions return a single value based on scalar input arguments. Some scalar
functions, such as CURRENT_TIME, do not require any arguments.

4.1.3 Window Functions

Window functions can be thought of as being similar to aggregate functions in that they operate over many rows at one
time. The difference lies in how you define those rows. Aggregate functions operate over the sets of rows defined by a
query's GROUP BY clause. With window functions, you specify the set of rows for each function call, and different
invocations of a function within the same query can execute over different sets of rows.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2 ANSI SQL Aggregate Functions
Aggregate functions return a single value based upon a set of other values. If used among other expressions in the item
list of a SELECT statement, the SELECT must have a GROUP BY or HAVING clause. No GROUP BY or HAVING clause is
required if the aggregate function is the only value retrieved by the SELECT statement. The supported aggregate
functions and their syntax are listed in Table 4-1.

Table 4-1. ANSI SQL aggregate functions
Function Usage

AVG(

expression)
Computes the average value of a column given by expression.

CORR(

dependent, independent)
Computes a correlation coefficient.

COUNT(

expression)
Counts the rows defined by the expression.

COUNT(*)
Counts all rows in the specified table or view.

COVAR_POP (

dependent, independent)
Computes population covariance.

COVAR_SAMP(

dependent, independent)
Computes sample covariance.

CUME_DIST(

value_list) WITHIN GROUP (ORDER BY sort_list)

Computes the relative rank of a hypothetical row within a group of rows,
where the rank is equal to the number of rows less than or equal to the
hypothetical row divided by the number of rows in the group.

DENSE_RANK(

value_list) WITHIN GROUP (ORDER BY sort_list)
Generates a dense rank (no ranks are skipped) for a hypothetical row
(value_list) in a group of rows generated by GROUP BY.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MIN(

expression)
Finds the minimum value in a column given by expression.

MAX(

expression)
Finds the maximum value in a column given by expression.

PERCENT_RANK(

value_list) WITHIN GROUP (ORDER BY sort_list)
Generates a relative rank for a hypothetical row by dividing that row's
rank less 1 by the number of rows in the group.

PERCENTILE_CONT (

percentile) WITHIN GROUP (ORDER BY sort_list)
Generates an interpolated value that, if added to the group, would
correspond to the percentile given.

PERCENTILE_DISC (

percentile) WITHIN GROUP (ORDER BY sort_list)
Returns the value with the smallest cumulative distribution value greater
than or equal to percentile.

RANK(

value_list) WITHIN GROUP (ORDER BY sort_list)
Generates a rank for a hypothetical row (value_list) in a group of rows
generated by GROUP BY.

REGR_AVGX(

dependent, independent)
Computes the average of the independent variable.

REGR_AVGY(

dependent, independent)
Computes the average of the dependent variable.

REGR_COUNT(

dependent, independent)
Counts the number of pairs remaining in the group after any pair with
one or more NULL values has been eliminated.

REGR_INTERCEPT(

dependent,independent)
Computes the y-intercept of the least-squares-fit linear equation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

dependent,independent)

REGR_R2(

dependent, independent)
Squares the correlation coefficient.

REGR_SLOPE(

dependent, independent)
Determines the slope of the least-squares-fit linear equation.

REGR_SXX(

dependent, independent)
Sums the squares of the independent variables.

REGR_SXY(

dependent, independent)
Sums the products of each pair of variables.

REGR_SYY(

dependent, independent)
Sums the squares of the dependent variables.

STDDEV_POP(

expression)
Computes the population standard deviation of all expression values in a
group.

STDDEV_SAMP(

expression)
Computes the sample standard deviation of all expression values in a
group.

SUM(

expression)
Computes the sum of column values given by expression.

VAR_POP(

expression)
Computes the population variance of all expression values in a group.

VAR_SAMP(

Computes the sample standard deviation of all expression values in a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expression)
Computes the sample standard deviation of all expression values in a
group.

Technically speaking, ANY, EVERY, and SOME are considered aggregate functions. However, they have been discussed
as range search criteria since they are most often used that way. Refer to ALL/ANY/SOME Operators for more
information on these functions.

The number of values processed by an aggregate function varies depending on the number of rows queried from the
table. This behavior makes aggregate functions different from scalar functions, which can only operate on the values of
a single row per invocation.

The general syntax of an aggregate function is:

aggregate_function_name ([ALL | DISTINCT] expression)

The aggregate function name may be AVG, COUNT, MAX, MIN, or SUM, as listed in Table 4-1. The ALL keyword, which
specifies the default behavior, evaluates all rows when aggregating the value of the function. The DISTINCT keyword
uses only distinct values when evaluating the function.

All aggregate functions except COUNT(*) will ignore NULL values when computing their
results.

AVG and SUM

The AVG function computes the average of values in a column or an expression. SUM computes the sum. Both functions
work with numeric values and ignore NULL values. Use the DISTINCT keyword to compute the average or sum of all
distinct values of a column or expression.

SQL Standard Syntax

AVG ([ALL | DISTINCT] expression)

SUM ([ALL | DISTINCT] expression)

MySQL, PostgreSQL, and SQL Server

All these platforms support the SQL2003 syntax of AVG and SUM.

DB2 and Oracle

DB2 and Oracle support the ANSI syntax and the following analytic syntax:

AVG ([ALL | DISTINCT] expression) OVER (window_clause)

SUM ([ALL | DISTINCT] expression) OVER (window_clause)

For an explanation of the window_clause, see the Section 4.3 later in this chapter.

Examples

The following query computes average year-to-date sales for each type of book:

SELECT type, AVG(ytd_sales) AS "average_ytd_sales"FROM titles GROUP BY type;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT type, AVG(ytd_sales) AS "average_ytd_sales"FROM titles GROUP BY type;

This query returns the sum of year-to-date sales for each type of book:

SELECT type, SUM(ytd_sales) FROM titles GROUP BY type;

CORR

The CORR function returns the correlation coefficient between a set of dependent and independent variables.

SQL2003 Syntax

Calls the function with two variables, one dependent and the other independent:

CORR(dependent, independent)

Any pair in which either the dependent variable, independent variable, or both are NULL is ignored. The result of the
function is NULL when none of the input pairs consist of two non-NULL values.

Oracle

Oracle supports the SQL2003 syntax, and the following analytic syntax:

CORR (dependent, independent) OVER (window_ clause)

For an explanation of the window_clause, see the Section 4.3 later in this chapter.

DB2, MySQL, PostgreSQL, and SQL Server

These platforms do not support any form of the CORR function.

Example

The following CORR example uses the data shown by the first SELECT:

SELECT * FROM test2;

 Y X

---------- ----------

 1 3

 2 2

 3 1

SELECT CORR(y,x) FROM test2;

 CORR(Y,X)

 -1

COUNT

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The COUNT function is used to compute the number of rows in an expression.

SQL2003 Syntax

COUNT(*)

COUNT([ALL|DISTINCT] expression)

COUNT(*)

Counts all the rows in the target table whether or not they include NULLs.

COUNT([ALL|DISTINCT] expression)

Computes the number of rows with non-NULL values in a specific column or expression. When the keyword
DISTINCT is used, duplicate values will be ignored and a count of the distinct values is returned. ALL returns the
number of non-NULL values in the expression and is implicit when DISTINCT is not used.

MySQL, PostgreSQL, and SQL Server

All of these platforms support the SQL2003 syntax of COUNT.

DB2 and Oracle

DB2 and Oracle support the ANSI syntax and the following analytic syntax:

COUNT ({*|[DISTINCT] expression}) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

Examples

This query counts all rows in a table:

SELECT COUNT(*) FROM publishers;

The following query finds the number of different countries where publishers are located:

SELECT COUNT(DISTINCT country) "Count of Countries"

FROM publishers

COVAR_POP

The COVAR_POP function returns the population covariance of a set of dependent and independent variables.

SQL2003 Syntax

Call the function with two variables, one dependent and the other independent:

COVAR_POP(dependent, independent)

The function disregards any pair in which either the dependent variable, independent variable, or both are NULL. If no
rows remain in the group after NULL elimination, then the result of the function is NULL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

rows remain in the group after NULL elimination, then the result of the function is NULL.

Oracle

Oracle supports the SQL2003 syntax and implements the following analytic syntax:

COVAR_POP (dependent, independent) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

DB2

In DB2, the function is named CORRELATION.

MySQL, PostgreSQL, and SQL Server

These platforms do not support any form of the COVAR_POP function.

Example

The following COVAR_POP example uses the data shown by the first SELECT:

SELECT * FROM test2;

 Y X

---------- ----------

 1 3

 2 2

 3 1

SELECT COVAR_POP(y,x) FROM test2;

COVAR_POP(Y,X)

 -.66666667

COVAR_SAMP

The COVAR_SAMP function returns the sample covariance of a set of dependent and independent variables.

SQL2003 Syntax

Call the function with two variables, one dependent and the other independent:

COVAR_SAMP(dependent, independent)

The function disregards any pair in which either the dependent variable, independent variable, or both are NULL. The
result of the function is NULL when none of the input pairs consist of two non-NULL values.

Oracle

Oracle supports the SQL2003 syntax and implements the following analytic syntax:

COVAR_SAMP (dependent, independent) OVER (window_clause)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COVAR_SAMP (dependent, independent) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

DB2, MySQL, PostgreSQL, and SQL Server

These platforms do not support any form of the COVAR_SAMP function.

Example

The following COVAR_SAMP example uses the data shown by the first SELECT:

SELECT * FROM test2;

 Y X

---------- ----------

 1 3

 2 2

 3 1

SQL> SELECT COVAR_SAMP(y,x) FROM test2;

COVAR_SAMP(Y,X)

 -1

CUME_DIST

Computes the relative rank of a hypothetical row within a group of rows, where that relative rank is computed as
follows:

(rows_preceding_hypothetical + rows_peered_with_hypothetical) / rows_in_group

Bear in mind that the rows_in_group value includes the hypothetical row that you are proposing when you call the
function.

SQL2003 Syntax

In the following syntax, items in the value_list correspond by position to items in the sort_list. Therefore, both lists must
have the same number of expressions.

CUME_DIST(value_list) WITHIN GROUP (ORDER BY sort_list)

value_list ::= expression [,expression...]

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle follows the SQL2003 syntax and implements the following analytic syntax:

CUME_DIST OVER ([partioning] ordering)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CUME_DIST OVER ([partioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this chapter titled Section 4.3.

DB2, MySQL, PostgreSQl, and SQL Server

These platforms do not implement the CUME_DIST aggregate function.

Example

The following example determines the relative rank of the hypothetical new row (num=4, odd=1) within each group of
rows from test4, where groups are distinguished by the values in the odd column:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

SELECT odd, CUME_DIST(4,1) WITHIN GROUP (ORDER BY num, odd)

FROM test4

GROUP BY odd;

 ODD CUME_DIST(4,1)WITHINGROUP(ORDERBYNUM,ODD)

---------- ---

 0 1

 1 .8

In group odd=0, the new row comes after the three rows: (0,0), (2,0), and (4,0). It will peer with itself. The total number
of rows in the group will be four, which includes the hypothetical row. The relative rank, therefore, is computed as
follows:

(3 rows preceding + 1 peering) / (3 in group + 1 hypothetical)

= 4 / 4 = 1

In group odd=1, the new row follows the three rows (1,1), (3,1), and a duplicate (3,1). Again, there is one peer, the
hypothetical row itself. The number of rows in the group is five, which includes the hypothetical row. The relative rank
is then:

(3 rows preceding + 1 peering) / (4 in group + 1 hypothetical)

= 4 / 5 = .8

DENSE_RANK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Computes a rank in a group for a hypothetical row that you supply. This is a dense rank. Rankings are never skipped,
even when a group contains rows that rank identically.

SQL2003 Syntax

In the following syntax, items in the value_list correspond by position to items in the sort_list. Therefore, both lists must
have the same number of expressions.

DENSE_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)

value_list ::= expression [,expression...]

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle follows the SQL2003 syntax and implements the following analytic syntax:

DENSE_RANK() OVER ([partioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this chapter titled Section 4.3.

DB2, MySQL, PostgreSQl, and SQL Server

These platforms do not implement the DENSE_RANK aggregate function. However, DB2 does support DENSE_RANK as
an analytic function. See the section later in this chapter titled Section 4.3.

Example

The following example determines the dense rank of the hypothetical new row (num=4, odd=1) within each group of
rows from test4, where groups are distinguished by the values in the odd column:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

SELECT odd, DENSE_RANK(4,1) WITHIN GROUP (ORDER BY num, odd)

FROM test4

GROUP BY odd;

 ODD DENSE_RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)

---------- --

 0 4

 1 3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1 3

In group odd=0, the new row comes after (0,0), (2,0), and (4,0), and thus it is position 4. In group odd=1, the new row
follows (1,1), (3,1), and a duplicate (3,1). In that case, the duplicate occurrences of (3,1) both rank #2, so the new row is
ranked #3. Compare this behavior with RANK, which gives a different result.

MIN and MAX

MIN(expression) and MAX(expression) find the minimum and maximum value of expression (string, datetime, or numeric)
in a set of rows. DISTINCT or ALL may be used with these functions, but do not affect the result.

SQL2003 Syntax

MIN([ALL | DISTINCT] expression)

MAX([ALL | DISTINCT] expression)

PostgreSQL and SQL Server

These platforms support the SQL2003 syntax of MIN and MAX.

DB2 and Oracle

DB2 and Oracle support the ANSI syntax and implements the following analytic syntax:

MIN ({ALL|[DISTINCT] expression}) OVER (window_clause)

MAX ({ALL|[DISTINCT] expression}) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

MySQL

MySQL supports the SQL2003 syntax of MIN and MAX. MySQL also supports the functions LEAST() and GREATEST(),
providing the same capabilities.

Examples

The following query finds the best and worst sales for any title on record:

SELECT MIN(ytd_sales), MAX(ytd_sales)

FROM titles;

Aggregate functions are used often in the HAVING clause of queries with GROUP BY. The following query selects all
categories (types) of books that have an average price for all books in the category higher than $15.00:

SELECT type 'Category', AVG(price) 'Average Price'

FROM titles

GROUP BY type

HAVING AVG(price) > 15

PERCENT_RANK

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Generates a relative rank for a hypothetical row by dividing that row's rank less 1 by the number of rows in the group.

SQL2003 Syntax

In the following syntax, items in the value_list correspond by position to items in the sort_list. Therefore, both lists must
have the same number of expressions.

PERCENT_RANK(value_list) WITHIN GROUP (ORDER BY sort_list)

value_list ::= expression [,expression...]

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle follows the SQL2003 syntax and implements the following syntax:

PERCENT_RANK() OVER ([partioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this chapter titled Section 4.3.

DB2, MySQL, PostgreSQl, and SQL Server

These platforms do not implement the PERCENT_RANK aggregate function.

Example

The following example determines the percentage rank of the hypothetical new row (num=4, odd=1) within each group of
rows from test4, where groups are distinguished by the values in the odd column:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

SELECT odd, PERCENT_RANK(4,1) WITHIN GROUP (ORDER BY num, odd)

FROM test4

GROUP BY odd;

 ODD PERCENT_RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)

---------- --

 0 1

 1 .75

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 1 .75

In group odd=0, the new row comes after (0,0), (2,0), and (4,0), and thus it is position 4. The rank computation is: (4th
rank - 1)/3 rows = 100%. In group odd=1, the new row follows (1,1), (3,1), and a duplicate (3,1), and is again ranked at #4.
The rank computation for odd=1 is: (4th rank - 1)/4 rows = 3/4 = 75%.

PERCENTILE_CONT

Generates an interpolated value corresponding to a percentile that you specify.

SQL2003 Syntax

In the following syntax, percentile is a number between zero and one:

PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY sort_list)

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle allows only one expression in the ORDER BY clause:

PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY expression)

Oracle also allows some use of windowing syntax:

PERCENTILE_CONT (percentile) WITHIN GROUP

(ORDER BY sort_list) OVER (partitioning)

See Section 4.3 later in this chapter for a description of partitioning.

DB2, MySQL, PostgreSQL, and SQL Server

These platforms do not implement PERCENTILE_CONT.

Example

The following example groups the data in test4 by the column named odd, and invokes PERCENTILE_CONT to return a
50th percentile value for each group:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 5 1

SELECT odd, PERCENTILE_CONT(0.50) WITHIN GROUP (ORDER BY NUM)

FROM test4

GROUP BY odd;

 ODD PERCENTILE_CONT(0.50)WITHINGROUP(ORDERBYNUM)

---------- --

 0 2

 1 3

PERCENTILE_DISC

Determines the value in a group with the smallest cumulative distribution greater than or equal to a percentile that you
specify.

SQL2003 Syntax

In the following syntax, percentile is a number between zero and one:

PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY sort_list)

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle allows only one expression in the ORDER BY clause:

PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY expression)

Oracle also allows some use of windowing syntax:

PERCENTILE_DISC (percentile) WITHIN GROUP

(ORDER BY sort_list) OVER (partitioning)

See Section 4.3 later in this chapter for a description of partitioning.

DB2, MySQL, PostgreSQL, and SQL Server

These platforms do not implement PERCENTILE_DISC.

Example

The following example is similar to that for PERCENTILE_CONT, except that it returns, for each group, the value closest,
but not exceeding, the 60th percentile:

SELECT * FROM test4;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

SELECT odd, PERCENTILE_DISC(0.60) WITHIN GROUP (ORDER BY NUM)

FROM test4

GROUP BY odd;

PERCENTILE_CONT(0.50)WITHINGROUP(ORDERBYNUM)

--

 2

 3

RANK

Computes a rank in a group for a hypothetical row that you supply. This is not a dense rank. If the group contains rows
that rank identically, then it's possible for ranks to be skipped. If you want a dense rank, use the DENSE_RANK
function.

SQL2003 Syntax

In the following syntax, items in the value_list correspond by position to items in the sort_list. Therefore, both lists must
have the same number of expressions.

RANK(value_list) WITHIN GROUP (ORDER BY sort_list)

value_list ::= expression [,expression...]

sort_list ::= sort_item [,sort_item...]

sort_item ::= expression [ASC|DESC] [NULLS FIRST|NULLS LAST]

Oracle

Oracle follows the SQL2003 syntax and implements the following analytic syntax:

RANK() OVER ([partitioning] ordering)

For an explanation of the partioning and order clauses, see the section later in this chapter titled Section 4.3.

DB2, MySQL, PostgreSQl, and SQL Server

These platforms do not implement the RANK aggregate function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

The following example determines the rank of the hypothetical new row (num=4, odd=1) within each group of rows from
test4, where groups are distinguished by the values in the odd column:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

SELECT odd, RANK(4,1) WITHIN GROUP (ORDER BY num, odd)

FROM test4

GROUP BY odd;

 ODD RANK(4,1)WITHINGROUP(ORDERBYNUM,ODD)

---------- ------------------------------------

 0 4

 1 4

In both cases, the rank of the hypothetical new row is 4. In group odd=0, the new row comes after: (0,0), (2,0), and
(4,0), and thus it is position 4. In group odd=1, the new row follows (1,1), (3,1), and a duplicate (3,1). In that case, the
new row is preceding by three rows, so it is ranked #4. Compare this behavior with DENSE_RANK.

The REGR Family of Functions

SQL2003 defines a family of functions, having names beginning with REGR_, that relate to different aspects of linear
regression. The functions work in the context of a least-squares regression line.

SQL2003 Syntax

Following is the syntax and a brief description of each REGR_ function:

REGR_AVGX(dependent, independent)

Averages (as in AVG(x)) the independent variable values.

REGR_AVGY(dependent, independent)

Averages (as in AVG(y)) the dependent variable values.

REGR_COUNT(dependent, independent)

Counts the number of non-NULL number pairs.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REGR_INTERCEPT(dependent, independent)

Computes the y-intercept of the regression line.

REGR_R2(dependent, independent)

Computes the coefficient of determination.

REGR_SLOPE(dependent, independent)

Computes the slope of the regression line.

REGR_SXX(dependent, independent)

Sums the squares of the independent variable values.

REGR_SXY(dependent, independent)

Sums the products of each pair of values.

REGR_SYY(dependent, independent)

Sums the squares of the dependent variable values.

The REGR_ functions only work on number pairs containing two non-NULL values. Any number pair with one or more
NULL values will be ignored.

DB2 and Oracle

DB2 and Oracle support the SQL2003 syntax for all REGR_ functions. In addition, DB2 allows the shortened name
REGR_ICPT in place of REGR_INTERCEPT.

Oracle supports the following analytic syntax:

REGR_function (dependent, independent) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

MySQL, PostgreSQL, and SQL Server

These platforms do not implement the REGR family of functions.

Example

The following REGEXP_COUNT example demonstrates that any pair with one or more NULL values is ignored. The table
test3 contains three non-NULL number pairs, and three other pairs having at least one NULL:

SQL> SELECT * FROM test3;

 Y X

---------- ----------

 1 3

 2 2

 3 1

 4 NULL

 NULL 4

 NULL NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NULL NULL

The REGR_COUNT function ignores the pairs having NULLs, counting only those pairs with non-NULL values:

SELECT REGR_COUNT(y,x) FROM test3;

REGR_COUNT(Y,X)

 3

Likewise, all other REGR_ functions filter out any pairs having NULL values before performing their respective
computations.

STDDEV_POP

Use STDDEV_POP to find the population standard deviation within a group of numeric values.

SQL2003 Syntax

STDDEV_POP(numeric_expression)

DB2 and MySQL

Use the STDDEV function. In DB2 and MySQL, STDDEV returns the population standard deviation.

PostgreSQL

This platform does not provide a function to compute population standard deviation.

Oracle

Oracle supports the standard syntax and the following analytic syntax:

STDDEV_POP (numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

SQL Server

Use the STDEVP function.

Example

The following example computes the population standard deviation for the values 1, 2, and 3:

SELECT * FROM test;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM test;

 X

 1

 2

 3

SELECT STDDEV_POP(x) FROM test;

STDDEV_POP(X)

 .816496581

STDDEV_SAMP

Use STDDEV_SAMP to find the sample standard deviation within a group of numeric values.

SQL2003 Syntax

STDDEV_SAMP(numeric_expression)

Oracle

Oracle supports the standard syntax. Oracle also provides the STDDEV function, which operates similar to
STDDEV_SAMP except that it returns zero as not NULL when there is only one value in the set.

Oracle also supports analytic syntax:

STDDEV_SAMP (numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

DB2

This platform does not provide a function to compute sample standard deviation.

MySQL

MySQL does not provide a function to compute sample standard deviation. MySQL does provide a function named
STDDEV, but it returns the population standard deviation.

PostgreSQL

Use STDDEV.

SQL Server

Use STDEV (with only one D!).

Example

The following example computes the sample standard deviation for the values 1, 2, and 3:

SELECT * FROM test;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM test;

 X

 1

 2

 3

SELECT STDDEV_SAMP(x) FROM test;

STDDEV_SAMP(X)

 1

VAR_POP

Use VAR_POP to compute the population variance of a set of values.

SQL2003 Syntax

VAR_POP(numeric_expression)

DB2 and PostgreSQL

These platforms do not provide a function to compute population variance.

MySQL

Use the VARIANCE function, which in MySQL returns the population variance.

Oracle

Oracle supports the standard syntax and the following analytic syntax:

VAR_POP (numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

SQL Server

Use the VARP function.

Example

The following example computes the population variance for the values 1, 2, and 3:

SELECT * FROM test;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM test;

 X

 1

 2

 3

SELECT VAR_POP(x) FROM test;

VAR_POP(X)

.666666667

VAR_SAMP

Use VAR_SAMP to compute the sample variance of a set of values.

SQL2003 Syntax

VAR_SAMP(numeric_expression)

DB2 and PostgreSQL

Use VARIANCE(numeric_expression) to compute sample variance.

MySQL

MySQL provides no function for computing sample variance. There is the VARIANCE function, but in MySQL that
function returns the population variance.

Oracle

Oracle supports the standard syntax. You may also use the VARIANCE function, which differs from VAR_SAMP by
returning zero (and not NULL) for sets having only a single value.

Oracle also supports analytic syntax:

VAR_SAMP (numeric_expression) OVER (window_clause)

For an explanation of the window_clause, see the section later in this chapter titled Section 4.3.

SQL Server

Use the VAR function.

Example

The following example computes the sample variance for the values 1, 2, and 3:

SELECT * FROM test;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM test;

 X

 1

 2

 3

SELECT VAR_SAMP(x) FROM test;

VAR_SAMP(X)

 1

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3 ANSI SQL Window Functions
SQL2003 allows for a window_clause in aggregate function calls, the addition of which makes those functions into window
functions. Both Oracle and DB2 support this window function syntax. This section describes how to use the
window_clause within Oracle and DB2.

Oracle tends to refer to window functions as analytic functions.

Window, or analytic, functions are similar to standard aggregate functions in that they operate on multiple rows, or
groups of rows, within the result set returned from a query. However, the groups of rows that a window function
operates on are defined not by a GROUP BY clause, but by partitioning and windowing clauses. Furthermore, the order
within these groups is defined by an ordering clause, but that order only affects function evaluation, and has no effect
on the order in which rows are returned by the query.

Window functions are the last items in a query to be evaluated except for the ORDER BY
clause. Because of this late evaluation, window functions cannot be used within the
WHERE, GROUP BY, or HAVING clauses.

4.3.1 SQL2003's Window Syntax

SQL2003 specifies the following syntax for window functions:

FUNCTION_NAME(expr) OVER {window_name|(window_specification)}

window_specification ::= [window_name][partitioning][ordering][framing]

partitioning ::= PARTITION BY value [, value...] [COLLATE collation_name]

ordering ::= ORDER [SIBLINGS] BY rule [, rule...]

rule ::= {value|position|alias} [ASC|DESC] [NULLS {FIRST|LAST}]

framing ::= {ROWS|RANGE} {start|between} [exclusion]

start ::= {UNBOUNDED PRECEDING|unsigned-integer PRECEDING|CURRENT ROW}

between ::= BETWEEN bound AND bound

bound ::= {start|UNBOUNDED FOLLOWING|unsigned-integer FOLLOWING}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

bound ::= {start|UNBOUNDED FOLLOWING|unsigned-integer FOLLOWING}

exclusion ::= {EXCLUDE CURRENT ROW|EXCLUDE GROUP

 |EXCLUDE TIES|EXCLUDE NO OTHERS}

4.3.2 Oracle's Window Syntax

Oracle's window function syntax is as follows:

FUNCTION_NAME(expr) OVER (window_clause)

window_clause ::= [partitioning] [ordering [framing]]

partitioning ::= PARTITION BY value [, value...]

ordering ::= ORDER [SIBLINGS] BY rule [, rule...]

rule ::= {value|position|alias} [ASC|DESC]

 [NULLS {FIRST|LAST}]

framing ::= {ROWS|RANGE} {not_range|begin AND end}

not_range ::= {UNBOUNDED PRECEDING

 |CURRENT ROW|

 |value PRECEDING}

begin ::= {UNBOUNDED PRECEDING

 |CURRENT ROW|

 |value {PRECEDING|FOLLOWING}}

end ::= {UNBOUNDED FOLLOWING

 |CURRENT ROW|

 |value {PRECEDING|FOLLOWING}}

4.3.3 DB2's Window Syntax

DB2's syntax is similar to Oracle's. For OLAP, ranking, and numbering functions, DB2 allows the following syntax:

FUNCTION_NAME(expr) OVER (window_clause)

window_clause ::= [partitioning] [ordering]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window_clause ::= [partitioning] [ordering]

partitioning ::= PARTITION BY (value [, value...])

ordering ::= {ORDER BY rule [, rule...] | ORDER OF table_name}

rule ::= {value|position|alias} [ASC|DESC [NULLS {FIRST|LAST}]]

When aggregate functions (e.g. AVG) are used as window functions, DB2 allows the addition of a framing clause:

FUNCTION_NAME(expr) OVER (window_clause)

window_clause ::= [partitioning] [ordering [framing]] [all|framing]

all ::= RANGE UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

partitioning ::= PARTITION BY (value [, value...])

ordering ::= {ORDER BY rule [, rule...] | ORDER OF table_name}

rule ::= {value|position|alias} [ASC|DESC [NULLS {FIRST|LAST}]]

framing ::= {ROWS|RANGE} {group_start|group_between|group_end}

group_start ::= {UNBOUNDED PRECEDING|unsigned-integer PRECEDING

 |CURRENT ROW}

group_between ::= BETWEEN {UNBOUNDED PRECEDING|unsigned_integer PRECEDING

 |unsigned_integer FOLLOWING|CURRENT ROW}

 AND {UNBOUNDED FOLLOWING|unsigned_integer PRECEDING

 |unsigned_integer FOLLOWING|CURRENT ROW}

group_end ::= UNBOUNDED FOLLOWING|unsigned-integer FOLLOWING}

4.3.4 Partitioning

Partitioning the rows operated on by the partition clause is similar to using the GROUP BY expression on a standard
SELECT statement. The partitioning clause takes a list of expressions that will be used to divide the result set into
groups. We'll use the following table as the basis for some examples:

SELECT * FROM odd_nums;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT * FROM odd_nums;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

The following results illustrate the effects of partitioning by ODD. The sum of the even numbers is 2 (0+2), and the
sum of the odd numbers is 4 (1+3). The second column of the result set reports the sum of all values in the partition to
which that row belongs. Yet all the detail rows are returned. The query provides summary results in the context of
detail rows:

SELECT NUM, SUM(NUM) OVER (PARTITION BY ODD) S

FROM ODD_NUMS;

NUM S

--------- ----------

0 2

2 2

1 4

3 4

Not using a partitioning clause at all will sum all of the numbers in the NUM column for each row returned by the query.
In effect, the entire result set is treated as a single, large partition:

SELECT NUM, SUM(NUM) OVER () S FROM ODD_NUMS;

NUM S

--------- ----------

0 6

1 6

2 6

3 6

4.3.5 Ordering

You specify the order of the rows on which an analytic function operates using the ordering clause. However, this
analytic ordering clause does not define the result set ordering. To define the overall result set ordering, you must use
the query's ORDER BY clause. The following use of Oracle's FIRST_VALUE function illustrates the effect of different
orderings of the partitions:

SELECT NUM,

 SUM(NUM) OVER (PARTITION BY ODD) S,

 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM ASC) first_asc,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM ASC) first_asc,

 FIRST_VALUE(NUM) OVER (PARTITION BY ODD ORDER BY NUM DESC) first_desc

FROM ODD_NUMS;

 NUM S FIRST_ASC FIRST_DESC

---------- ---------- ---------- ----------

 0 2 0 2

 2 2 0 2

 1 4 1 3

 3 4 1 3

As you can see, the ORDER BY clauses in the window function invocations affect the ordering of the rows in the
respective partitions when those functions are evaluated. Thus, ORDER BY NUM ASC orders partitions in ascending
order, resulting in 0 for the first value in the even-number partition and 1 for the first value in the odd-number partition.
ORDER BY NUM DESC has the opposite effect.

The preceding query also illustrates an important point: using window functions, you can
summarize and order many different ways in the same query.

4.3.6 Grouping or Windowing

Many analytic functions also allow you to specify a virtual, moving window surrounding a row within a partition. You do
this using the framing clause. Such moving windows are useful for running calculations such as a running total.

The following, Oracle-based example uses the framing clause on the analytic variant of SUM to calculate a running sum
of the values in the first column. No partitioning clause is used, so each invocation of SUM operates over the entire
result set. However, the ORDER BY clause sorts the rows for SUM in ascending order of NUM's value, and the BETWEEN
clause (which is the windowing clause) causes each invocation of SUM to include values for NUM only up through the
current row. Each successive invocation of SUM includes yet another value for NUM, in order, from the lowest value of
NUM to the greatest:

SELECT NUM, SUM(NUM) OVER (ORDER BY NUM ROWS

 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) S FROM ODD_NUMS;

NUM S

--------- ----------

0 0

1 1

2 3

3 6

This example's a bit too easy, as the order of the final result set happens to match the order of the running total. That
doesn't need to be the case. The following example generates the same results, but in a different order. You can see
that the running total values are appropriate for each value of NUM, but the rows are presented in a different order
than before. The result set ordering is completely independent of the ordering used for window function calculations:

SELECT NUM, SUM(NUM) OVER (ORDER BY NUM ROWS

 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) S FROM ODD_NUMS

ORDER BY NUM DESC;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ORDER BY NUM DESC;

 NUM S

---------- ----------

 3 6

 2 3

 1 1

 0 0

4.3.7 List of Window Functions

SQL2003 specifies that any aggregate function may also be used as a window function. Both Oracle and DB2 largely
follow the standard in that respect, so you'll find that you can take just about any aggregate function (certainly the
standard ones) and apply to it the window function syntax described in the preceding sections.

In addition to the aggregate functions, SQL2003 defines the window functions described in the following sections. Only
Oracle and DB2 currently implement these functions. All examples use the following table and data, which is a variation
on the ODD_NUMS table used earlier to illustrate the concepts of partitioning, ordering, and grouping:

SELECT * FROM test4;

 NUM ODD

---------- ----------

 0 0

 1 1

 2 0

 3 1

 3 1

 4 0

 5 1

Platform-specific window functions for Oracle (there are none for DB2) are included in the lists found under Section 4.5
later in this chapter.

CUME_DIST()

Calculates the cumulative distribution, or relative rank, of the current row to other rows in the same partition. The
calculation for a given row is as follows:

number of peer or preceding rows / number of rows in partition

Because the result for a given row depends on the number of rows preceding that row in the same partition, it's
important to always specify an ORDER BY clause when invoking this function.

SQL2003 Syntax

CUME_DIST() OVER {window_name|(window_specification)}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CUME_DIST() OVER {window_name|(window_specification)}

DB2

DB2 does not support the CUME_DIST() window function.

Oracle

Oracle does not allow the framing portion of the windowing syntax. Oracle requires the ordering clause:

CUME_DIST() OVER ([partitioning] ordering)

Example

The following Oracle-based example uses CUME_DIST() to generate a relative rank for each row, ordering by NUM,
after partitioning the data by ODD:

SELECT NUM, ODD, CUME_DIST() OVER

 (PARTITION BY ODD ORDER BY NUM) cumedist

FROM test4;

 NUM ODD CUMEDIST

---------- ---------- ----------

 0 0 .333333333

 2 0 .666666667

 4 0 1

 1 1 .25

 3 1 .75

 3 1 .75

 5 1 1

Following is an explanation of the calculation behind the rank for the row in which NUM=0:

1. Because of the ORDER BY clause, the rows in the partition are ordered as follows:

NUM=0
NUM=2
NUM=4

1. There are no rows preceding NUM=0.

2. There is one row that is a peer of NUM=0, and that is the NUM=0 row itself. Thus, the divisor is 1.

3. There are three rows in the partition as a whole, making the dividend 3.

4. The result of 1/3 is.33 repeating, as shown in the example output.

DENSE_RANK()

Assigns a rank to each row in a partition, which should be ordered in some manner. The rank for a given row is
computed by counting the number of rows preceding the row in question, and then adding 1 to the result. Rows with
duplicate ORDER BY values will rank the same. Unlike the case with RANK(), gaps in rank numbers will not result from
two rows sharing the same rank.

SQL2003 Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

DENSE_RANK() OVER {window_name|(window_specification)}

DB2

DB2 requires the ordering clause and does not allow the framing clause:

DENSE_RANK() OVER ([partitioning] ordering)

Oracle

Oracle also requires the ordering clause and does not allow the framing clause:

DENSE_RANK() OVER ([partitioning] ordering)

Example

Compare the results from the following Oracle-based example to those shown in the section on the RANK() function:

SELECT NUM, DENSE_RANK() OVER (ORDER BY NUM) rank

FROM test4;

 NUM RANK

---------- ----------

 0 1

 1 2

 2 3

 3 4

 3 4

 4 5

 5 6

The two rows where NUM=3 are both ranked at #3. The next higher row is ranked at #4. Rank numbers are not
skipped, hence the term "dense."

RANK()

Assigns a rank to each row in a partition, which should be ordered in some manner. The rank for a given row is
computed by counting the number of rows preceding the row in question, and then adding 1 to the result. Rows with
duplicate ORDER BY values will rank the same, and will lead to subsequent gaps in rank numbers.

SQL2003 Syntax

RANK() OVER {window_name|(window_specification)}

DB2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2

DB2 requires the ordering clause and does not allow the framing clause:

RANK() OVER ([partitioning] ordering)

Oracle

Oracle also requires the ordering clause and does not allow the framing clause:

RANK() OVER ([partitioning] ordering)

Example

The following Oracle-based example uses the NUM column to rank the rows in the test4 table:

SELECT NUM, RANK() OVER (ORDER BY NUM) rank

FROM test4;

 NUM RANK

---------- ----------

 0 1

 1 2

 2 3

 3 4

 3 4

 4 6

 5 7

Because both rows where NUM=3 rank the same at #4, the next higher row will be ranked at #6. The #5 rank is
skipped.

PERCENT_RANK

Computes the relative rank of a row by dividing that row's rank less 1 by the number of rows in the partition, also less
1:

(rank - 1) / (rows - 1)

Compare this calculation to that used for CUME_DIST.

SQL2003 Syntax

PERCENT_RANK() OVER ({window_name|(window_specification)}

DB2

DB2 does not support the PERCENT_RANK() window function.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle

Oracle requires the ordering clause and does not allow the framing clause:

PERCENT_RANK() OVER ([partitioning] ordering)

Example

The following, Oracle-based example assigns a relative rank to values of NUM, partitioning the data on the ODD
column:

SELECT NUM, ODD, PERCENT_RANK() OVER

 (PARTITION BY ODD ORDER BY NUM) cumedist

FROM test4;

 NUM ODD CUMEDIST

---------- ---------- ----------

 0 0 0

 2 0 .5

 4 0 1

 1 1 0

 3 1 .333333333

 3 1 .333333333

 5 1 1

Following is an explanation of the calculation behind the rank for the row in which NUM=2:

1. Row NUM=2 is the second row in its partition; thus, it ranks #2.

2. Subtract 1 from 2 to get a divisor of 1.

3. The dividend is the total number of rows in the partition, or 3.

4. Subtract 1 from 3 to get a dividend of 2.

5. The result of 1/3 is.33 repeating, as shown in the example.

ROW_NUMBER

Assigns a unique number to each row in a partition.

SQL2003 Syntax

ROW_NUMBER() OVER ({window_name|(window_specification)}

DB2

DB2 does not allow the framing clause, and it makes the ordering clause optional:

ROW_NUMBER() OVER ([partitioning] [ordering])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle

Oracle requires the ordering clause and does not allow the framing clause:

ROW_NUMBER() OVER ([partitioning] ordering)

Example

SELECT NUM, ODD, ROW_NUMBER() OVER

 (PARTITION BY ODD ORDER BY NUM) cumedist

FROM test4;

 NUM ODD CUMEDIST

---------- ---------- ----------

 0 0 1

 2 0 2

 4 0 3

 1 1 1

 3 1 2

 3 1 3

 5 1 4

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.4 ANSI SQL Scalar Functions
The ANSI SQL scalar functions return a single value each time they are invoked. The SQL standard provides many
scalar functions that can be used to manipulate date and time types, strings, and numbers, as well as retrieve system
information such as the current user or login name. Scalar functions fall into the categories listed in Table 4-2.

Table 4-2. Categories of scalar functions
Function
category Explanation

Built-in

Performs operations on values or settings built into the database.

Oracle uses the term "built-in" to describe all the specialty functions that are provided by Oracle, and thus
"built into" their DBMS. This is a distinct and separate usage from the "built-in" functions described here.

CASE and
CAST

While these two functions operate on scalar input values, they are in a category all their own. CASE
supplies IF-THEN logic to SQL statements and CAST can convert values from one datatype to another.

Date and
Time

Performs operations on temporal datatypes and returns values in a temporal datatype format. There is no
SQL2003 function that operates on a temporal datatype and returns a temporal result. The closest
function is EXTRACT (covered in Section 4.4.3 later in this chapter), which operates on temporal values
and returns numeric values. Functions returning temporal values but operating on no arguments are
covered in the later Section 4.4.1.

Numeric Performs operations on numeric values and returns numeric values.

String Performs operations on character values (e.g., CHAR, VARCHAR, NCHAR, NVARCHAR, and CLOB) and
returns a string or numeric value.

4.4.1 Built-in Scalar Functions

SQL2003 built-in scalar functions identify both the current user session and the characteristics of the current user
session, such as the current session privileges. Built-in scalar functions are always nondeterministic. The
CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP functions listed in Table 4-3 are built-in functions that fall
into the date-and-time category of functions. Although the five platforms provide many additional functions beyond
these SQL built-ins, the SQL standard defines only those listed in Table 4-3.

Table 4-3. ANSI SQL built-in scalar functions
Function Usage

CURRENT_DATE Returns the current date.

CURRENT_TIME Returns the current time.

CURRENT_TIMESTAMP Returns the current date and time.

CURRENT_USER or USER Returns the currently active user within the database server.

SESSION_USER Returns the currently active Authorization ID, if it differs from the user.

SYSTEM_USER Returns the currently active user within the host operating system.

DB2

DB2 supports the SQL2003 built-in scalar functions CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,
CURRENT_USER, and USER. The SQL2003 scalar functions CURRENT_ROLE, LOCAL_TIME, LOCAL_TIMESTAMP,
SESSION_USER, and SYSTEM_USER are not supported.

MySQL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MySQL

MySQL supports all the SQL2003 built-in scalar functions, plus Oracle's variant SYSDATE. In addition, MySQL supports
NOW() as a synonym of the function CURRENT_TIMESTAMP.

Oracle

Oracle supports USER and SYSDATE as a synonym of CURRENT_TIMESTAMP.

PostgreSQL

PostgreSQL supports all the SQL2003 built-in scalar functions except SESSION_USER.

SQL Server

SQL Server supports all the built-in scalar functions.

Examples

The following queries retrieve the values from built-in functions. Notice that the various platforms return dates in their
native formats:

/* On MySQL */

SELECT CURRENT_TIMESTAMP;'2001-12-15 23:50:26'

/* DB2 */

VALUES CURRENT_TIMESTAMP'2001-12-15 23.50.26.000000'

/* On Microsoft SQL Server */

SELECT CURRENT_TIMESTAMPGO'Dec 15,2001 23:50:26'

/* On Oracle */

SELECT USER FROM dual;dylan

4.4.2 CASE and CAST Functions

ANSI SQL2003 provides a function named CASE that can be used to create IF-THEN flow-control logic within queries or
update statements. The CAST function is for converting between datatypes and is also in the ANSI standard. All of the
databases covered by this book provide ANSI standard support for both the CASE and CAST functions.

CASE

The CASE function provides IF-THEN-ELSE functionality within a SELECT or UPDATE statement. It evaluates a list of
conditions and returns one value out of several possible values.

CASE has two usages: simple and searched. Simple CASE expressions compares one value, the input_value, with a list of
other values and return a result associated with the first matching value. Searched CASE expressions allow the analysis
of several logical conditions and return a result associated with the first one that is true.

All vendors provide the ANSI SQL2003 syntax for CASE.

SQL2003 Syntax and Description

-- Simple comparison operation

CASE input_valueWHEN when_condition THEN resulting_value[...n]

[ELSE else_result_value]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[ELSE else_result_value]

END

-- Boolean searched operation

CASE

WHEN Boolean_condition THEN resulting_value[...n]

[ELSE else_result_expression]

END

In the simple CASE function, the input_value is evaluated against each WHEN clause. The resulting_value is returned for
the first TRUE instance of input_value = when_condition. If no when_condition evaluates as TRUE, the else_result_value is
returned. If no else_result_value is specified, then NULL is returned.

In the more elaborate Boolean searched operation, the structure is essentially the same as the simple comparison
operation except that each WHEN clause has its own Boolean comparison operation.

In either usage, multiple WHEN clauses are used, though only one ELSE clause is necessary.

Examples

Here is a simple comparison operation where the CASE function alters the display of the contract column to make it
more understandable:

SELECT au_fname,

 au_lname,

 CASE contract

 WHEN 1 THEN 'Yes'

 ELSE 'No'

 END 'contract'

FROM authors

WHERE state = 'CA'

Here is an elaborate searched CASE function in a SELECT statement that will report how many titles have been sold in
different year-to-date sales ranges:

SELECT CASE

 WHEN ytd_sales IS NULL THEN 'Unknown'

 WHEN ytd_sales <= 200 THEN 'Not more than 200'

 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'

 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'

 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'

 ELSE 'Over 10000'

 END 'YTD Sales',

 COUNT(*) 'Number of Titles'

FROM titles

GROUP BY CASE

 WHEN ytd_sales IS NULL THEN 'Unknown'

 WHEN ytd_sales <= 200 THEN 'Not more than 200'

 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'

 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'

 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'

 ELSE 'Over 10000'

 END

ORDER BY MIN(ytd_sales)

The results are:

YTD Sales Number of Titles

---------------------- ----------------

Unknown 2

Not more than 200 1

Between 201 and 1000 2

Between 1001 and 5000 9

Between 5001 and 10000 1

Over 10000 3

Next is an UPDATE statement that applies discounts to all of the titles. This more complicated command will discount all
personal computer-related titles by 25%, all other titles by 10%, and apply only a 5% discount to titles with year-to-
date sales exceeding 10,000 units. This query uses a searched CASE expression to perform price adjustment:

UPDATE titles

SET price = price *

 CASE

 WHEN ytd_sales > 10000 THEN 0.95 -- 5% discount

 WHEN type = 'popular_comp' THEN 0.75 -- 25% discount

 ELSE 0.9 -- 10% discount

 END

WHERE pub_date IS NOT NULL

The update has now completed three separate UPDATE operations in a single statement.

CAST

The CAST command explicitly converts an expression of one datatype to another. All vendors provide the ANSI
SQL2003 syntax for CAST.

SQL2003 Syntax and Description

CAST(expression AS data_type[(length)])

The CAST function converts any expression, such as a column value or variable, into another defined datatype. The
length of the datatype may be optionally supplied for those datatypes (such as CHAR or VARCHAR) that support
lengths.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lengths.

Be aware that some conversions, such as DECIMAL values to INTEGER, will result in
rounding operations. Also, some conversion operations may result in an error if the new
datatype does not have sufficient space to display the converted value.

Examples

This example retrieves the year-to-date sales as a CHAR and concatenates it with a literal string and a portion of the
title of the book. It converts ytd_sales to CHAR(5), plus it shortens the length of the title to make the results more
readable.

SELECT CAST(ytd_sales AS CHAR(5)) + ' Copies sold of ' + CAST(title AS VARCHAR(30))

FROM titles

WHERE ytd_sales IS NOT NULL

 AND ytd_sales > 10000

ORDER BY ytd_sales DESC

The results are:

22246 Copies sold of The Gourmet Microwave

18722 Copies sold of You Can Combat Computer Stress

15096 Copies sold of Fifty Years in Buckingham Pala

4.4.3 Numeric Scalar Functions

The list of official SQL2003 numeric functions is rather small, and the different platforms provide supplementary
mathematical and statistical functions. MySQL directly supports many of these functions. The other database platforms
offer the same capabilities of numeric scalar functions through their own internally defined functions, but they do not
share the same name as those declared by the SQL standard. The supported numeric functions and syntax are listed in
Table 4-4.

Table 4-4. SQL2003 numeric functions
Function Usage

ABS Returns the absolute value of a number.

MOD Returns the remainder of one number divided into another.

BIT_LENGTH Returns an integer value representing the number of bits in another value.

CEIL or
CEILING

Rounds a noninteger value upwards to the next greatest integer. Returns an integer value
unchanged.

CHAR_LENGTH Returns an integer value representing the number of characters in a string expression.

EXP Raises a value to the power of the mathematical constant known as e.

EXTRACT Allows the datepart to be extracted (YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
TIMEZONE_HOUR, or TIMEZONE_MINUTE) from a temporal expression.

FLOOR Rounds a noninteger value downwards to the next least integer. Returns an integer value
unchanged.

LN Returns the natural logarithm of a number.

OCTET_LENGTH Returns an integer value representing the number of octets in another value. This value is the same
as BIT_LENGTH/8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

POSITION Returns an integer value representing the starting position of a string within the search string.

POWER Raises a number to a specified power.

SQRT Computes the square root of a number.

WIDTH_BUCKET Deposits a value into the appropriate bucket from a set of buckets covering a given range.

ABS

All platforms have standard SQL2003 support for the ABS function.

SQL2003 Syntax

ABS(expression)

ABS returns the absolute value of the number in expression.

Example

The following shows how to use the ABS function:

/* SQL2003 */

SELECT ABS(-1) FROM NUMBERS1

BIT_LENGTH, CHAR_LENGTH, and OCTET_LENGTH

All platforms stray from the ANSI standard in their support for the scalar functions for determining the length of
expressions. While the platform support is nonstandard, the equivalent functionality exists under different names.

SQL2003 Syntax

The SQL2003 scalar functions for getting the length of a value take an expression to calculate the value and return the
length as an integer. The BIT_LENGTH function returns the number of bits contained within the value of expression. The
CHAR_LENGTH is the number of characters in the string expression. OCTET_LENGTH returns the number of octets within
the string expression. All three of these functions will return NULL if expression is NULL.

BIT_LENGTH(expression)

CHAR_LENGTH(expression)

OCTET_LENGTH(expression)

DB2

DB2 does not support BIT_LENGTH, CHAR_LENGTH, or OCTET_LENGTH. DB2 does support a scalar function named
LENGTH(), which provides similar functionality for nongraphic string types. For graphic string types, LENGTH returns
the number of double-byte characters in a string.

MySQL

MySQL supports CHAR_LENGTH and the SQL2003 synonym CHARACTER_LENGTH().

Oracle

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Oracle

The closest any of the platforms get to the BIT_LENGTH function is Oracle. Oracle supports the LENGTHB function,
which returns an integer value representing the number of bytes in an expression. For the length of an expression in
characters, Oracle provides a LENGTH() function as a synonym for CHAR_LENGTH.

PostgreSQL

PostgreSQL supports CHAR_LENGTH and the SQL2003 synonym CHARACTER_LENGTH().

SQL Server

SQL Server provides the LEN function.

Example

The following example, shown for different databases, determines the length of a string and a value retrieved from a
column:

/* On MySQL and PostgreSQL */

SELECT CHAR_LENGTH('hello');SELECT OCTET_LENGTH(book_title) FROM titles;

/* On Microsoft SQL Server */

SELECT DATALENGTH(title) FROM titlesWHERE type = 'popular_comp'GO

/* On Oracle or DB2 */

SELECT LENGTH('HORATIO') "Length of characters"FROM dual;

CEIL

The CEIL function returns the smallest integer greater than an input value that you specify.

SQL2003 Syntax

SQL2003 supports the following two forms of the function:

CEIL(expression)

CEILING (expression)

DB2

DB2 supports both variations of the SQL2003 syntax.

MySQL

MySQL supports only CEILING.

Oracle

Oracle supports only CEIL.

PostgreSQL

PostgreSQL has no support for either CEIL or CEILING.

SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

SQL Server supports only CEILING.

Examples

When you pass a positive, noninteger number, the effect of CEIL is to round up to the next highest integer:

SELECT CEIL(100.1) FROM dual;

FLOOR(100.1)

 101

Remember, though, that with negative numbers, rounding "up" results in a lower absolute value:

SELECT CEIL(-100.1) FROM dual;

FLOOR(-100.1)

 -100

Use FLOOR to get behavior opposite to that of CEIL.

EXP

The EXP function returns the value of the mathematical constant e (approximately 2.718281) raised to the power of a
specified number.

SQL2003 Syntax

All platforms support the SQL2003 syntax:

EXP(expression)

Example

The following example uses EXP to return an approximation of e:

SELECT EXP(1) FROM dual;

 EXP(1)

2.71828183

Use LN to go in the opposite direction.

EXTRACT

The EXTRACT function is supported by Oracle, PostgreSQL, and MySQL. The other platforms support a separate
command to accomplish the same functionality.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL2003 Syntax

EXTRACT(date_part FROM expression)

The SQL2003 scalar function for extracting parts from a date is EXTRACT. The SQL2003 EXTRACT function takes a
date_part and an expression that evaluates to a date time value.

DB2

DB2 provides unique functions that provide the same behavior as EXTRACT. Those functions are DAY, DAYNAME,
DAYOFWEEK, DAYOFWEEK_ISO, DAYOFYEAR, DAYS, HOUR, JULIAN_DAY, MICROSECOND, MIDNIGHT_SECONDS,
MINUTE, MONTH, MONTHNAME, SECOND, TIME, WEEK, WEEK_ISO, and YEAR. Look to the list shown later in this
chapter in Section 4.5.1 for examples on how to use these functions. As with Oracle, DB2 also offers a TO_CHAR
function that can be used to format a string from a date value.

When extracting parts of a date value on DB2 into an integer, such as the year or minute,
use the special functions provided by DB2 instead of the TO_CHAR function. Doing so will
provide the highest performance, since a conversion from a result string into an integer
won't be required.

MySQL

MySQL's implementation is extended somewhat beyond the ANSI standard. The ANSI standard does not have a
provision for returning multiple fields from the same call to EXTRACT() (e.g., DAY_HOUR). The MySQL extensions try
to accomplish what the combination DATE_TRUNC() and DATE_PART() do in PostgreSQL. MySQL supports the
dateparts listed in Table 4-5.

Table 4-5. MySQL dateparts
Type value Meaning

SECOND Seconds

MINUTE Minutes

HOUR Hours

DAY Days

MONTH Months

YEAR Years

MINUTE_SECOND Minutes and seconds

HOUR_MINUTE Hours and minutes

DAY_HOUR Days and hours

YEAR_MONTH Years and months

HOUR_SECOND Hours, minutes, and seconds

DAY_MINUTE Days, hours, and minutes

DAY_SECOND Days, hours, minutes, and seconds

Oracle

Oracle supports the SQL2003 syntax with the dateparts listed in Table 4-6.

Table 4-6. Oracle dateparts
Type value Meaning

DAY The day of the month field (1-31)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HOUR Returns the hour field (0-23)

MINUTE The minutes field (0-59)

MONTH The month field (1-12)

SECOND The seconds field (0-59)

TIMEZONE_HOUR The hour component of the time zone offset

TIMEZONE_MINUTE The minute component of the time zone offset

TIMEZONE_REGION The current time zone name

TIMEZONE_ABBR The abbreviation of the current time zone

YEAR The year field

PostgreSQL

PostgreSQL supports the SQL2003 syntax with a few extra dateparts. PostgreSQL supports the dateparts listed in Table
4-7.

Table 4-7. PostgreSQL dateparts
Type value Meaning

CENTURY The year field divided by 100.

DAY The day of the month field (1-31).

DECADE The year field divided by 10.

DOW Day of week (0-6, where Sunday is 0). This type only works for TIMESTAMP values.

DOY Day of year (1-366.) The maximum returned value is only 365 for years that are not leap years.
This type can only be used on TIMESTAMP values.

EPOCH Returns the number of seconds between the epoch (1970-01-01 00:00:00-00) and the value.
The result can be negative for values before the epoch.

HOUR Returns the hour field (0-23).

MICROSECONDS The seconds field (including fractional parts) multiplied by 1,000,000.

MILLENNIUM The year field divided by 1,000.

MILLISECONDS The seconds field (including fractional parts) multiplied by 1,000.

MINUTE The minutes field (0-59).

MONTH The month field (1-12).

QUARTER The quarter of the year (1-4) that the value is in. This type can only be used with TIMESTAMP
values.

SECOND The seconds field (0-59).

TIMEZONE_HOUR The hour component of the time zone offset.

TIMEZONE_MINUTE The minute component of the time zone offset.

WEEK The week number that the value falls on within the year.

YEAR The year field.

SQL Server

SQL Server provides the function DATEPART(date_part, expression) as a synonym for the SQL2003 function
EXTRACT(date_part FROM expression). SQL Server supports the dateparts listed in Table 4-8.

Table 4-8. SQL Server dateparts
Type
value Meaning

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

year The year field of the datetime expression. The abbreviations yy and yyyy can also be used for two-digit
and four-digit years, respectively.

quarter The quarter that the datetime expression falls on. The abbreviations q and qq can also be used.

dayofyear The day of the year for the date time expression. The abbreviations y and dy can also be used.

day The day of the month for the date time expression. The abbreviations d and dd can also be used.

week The week of the year for the date time expression. The abbreviations wk and ww can also be used.

weekday The day of the week for the date time expression. The abbreviation dw can also be used.

hour The hour of the day for the date time expression. The abbreviation hh can also be used.

minute The minute of the hour for the date time expression. The abbreviations n and mi can also be used.

second The second of the minute for the date time expression. The abbreviations s and ss can also be used.

millisecond The millisecond for the date time expression. The abbreviation ms can also be used.

Example

This example extracts dateparts from several date time values:

/* On MySQL */

SELECT EXTRACT(YEAR FROM "2013-07-02");2013

SELECT EXTRACT(YEAR_MONTH FROM "2013-07-02 01:02:03");201307

SELECT EXTRACT(DAY_MINUTE FROM "2013-07-02 01:02:03");20102

/* On PostgreSQL */

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');

20

FLOOR

The FLOOR function returns the largest integer less than an input value that you specify.

SQL2003 Syntax

All platforms support the SQL2003 syntax:

FLOOR(expression)

Examples

When you pass a positive number, the effect of FLOOR is to eliminate anything after the decimal point:

SELECT FLOOR(100.1) FROM dual;

FLOOR(100.1)

 100

Remember, though, that with negative numbers, going in the "less than" direction corresponds to increasingly larger
absolute values:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

absolute values:

SELECT FLOOR(-100.1) FROM dual;

FLOOR(-100.1)

 -101

Use CEIL to get behavior opposite to FLOOR.

LN

The LN function returns the natural logarithm of a number, which is the power to which you would need to raise the
mathematical constant e (approximately 2.718281) in order to get the number in question as the result.

SQL2003 Syntax

LN(expression)

DB2, Oracle, PostgreSQL

DB2, Oracle, and PostgreSQL support the SQL2003 syntax for the LN function. DB2 and PostgreSQL also support the
use of LOG as a synonym for LN.

MySQL and SQL Server

MySQL and SQL Server call their natural logarithm function LOG:

LOG(expression)

Example

The following, Oracle-based example shows the natural logarithm of a number closely approximating the mathematical
constant known as e:

SELECT LN(2.718281) FROM dual;

LN(2.718281)

 .999999695

Use the EXP function to go in the other direction.

MOD

The MOD function returns the remainder of a dividend divided by a divider. All platforms support the SQL2003 syntax
for the MOD function.

SQL2003 Syntax

MOD(dividend, divider)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MOD(dividend, divider)

The standard syntax for the MOD function is to return the remainder of dividend divided by the divider; returns the
dividend if the divider is 0.

Example

The following shows how to use the MOD function from within a SELECT statement:

SELECT MOD(12, 5) FROM NUMBERS

2

POSITION

The POSITION function returns an integer that indicates the starting position of a string within the search string.

SQL2003 Syntax

POSITION(string1 IN string2)

The standard syntax for the POSITION function is to return the first location of string1 within string2. POSITION returns 0
if string1 does not occur within string2 and NULL if either argument is NULL.

DB2

DB2's equivalent function is POSSTR.

MySQL

MySQL supports POSITION as defined in SQL2003.

Oracle

Oracle's equivalent function is called INSTR.

PostgreSQL

PostgreSQL supports POSITION as defined in SQL2003.

SQL Server

SQL Server has both CHARINDEX and PATINDEX. CHARINDEX and PATINDEX are very similar, except that PATINDEX
allows the use of wildcard characters in the search criteria.

Examples

/* DB2 */

SELECT POSSTR('bar', 'foobar');

4

/* On MySQL */

SELECT LOCATE('bar', 'foobar');4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT LOCATE('bar', 'foobar');4

/* On MySQL and PostgreSQL */

SELECT POSITION('fu' IN 'snafhu');0

/* On Microsoft SQL Server */

SELECT CHARINDEX('de', 'abcdefg')GO4

SELECT PATINDEX('%fg', 'abcdefg')GO6

POWER

Use POWER to raise a number to a specific value.

SQL2003 Syntax

POWER(base, exponent)

The result of the POWER function is base raised to the exponent power, or baseexponent. If base is negative, then exponent
must be an integer.

DB2, Oracle, PostgreSQL, and SQL Server

These vendors all support the SQL2003 syntax.

MySql

MySQL supports the same functionality, but requires the use of the keyword POW:

POW(base, exponent)

Example

Raising a positive number to an exponent is straightforward:

SELECT POWER(10,3) FROM dual;

POWER(10,3)

 1000

Anything raised to the 0th power evaluates to 1:

SELECT POWER(0,0) FROM dual;

POWER(0,0)

 1

Negative exponents move the decimal point to the left:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Negative exponents move the decimal point to the left:

SELECT POWER(10,-3) FROM dual;

POWER(10,-3)

 .001

SQRT

The SQRT function returns the square root of a number.

SQL2003 Syntax

All platforms support the SQL2003 syntax:

SQRT(expression)

Example

SELECT SQRT(100) FROM dual;

 SQRT(100)

 10

WIDTH_BUCKET

The WIDTH_BUCKET function assigns values to buckets in an equiwidth histogram.

SQL2003 Syntax

In the following syntax, expression represents a value to be assigned to a bucket. You would typically base expression on
one or more columns returned by a query.

WIDTH_BUCKET(expression, min, max, buckets)

The buckets argument specifies the number of buckets to create over the range defined by min through max. min is
inclusive, whereas max is not. The value from expression is assigned to one of those buckets, and the function then
returns the corresponding bucket number. When expression falls outside the range of buckets, the function returns either
0 or max+1, depending on whether expression is lower than min or greater than or equal to max.

Examples

The following example divides the integer values 1 through 10 into two buckets:

SELECT x, WIDTH_BUCKET(x,1,10,2)

FROM pivot;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FROM pivot;

 X WIDTH_BUCKET(X,1,10,2)

---------- ----------------------

 1 1

 2 1

 3 1

 4 1

 5 1

 6 2

 7 2

 8 2

 9 2

 10 3

The following example is more interesting. It divides 11 values from 1 through 10 into three buckets, and illustrates the
distinction between min being inclusive and max being noninclusive:

SELECT x, WIDTH_BUCKET(x,1,10,3)

FROM pivot;

 X WIDTH_BUCKET(X,1,10,3)

---------- ----------------------

 1 1

 2 1

 3 1

 4 2

 5 2

 6 2

 7 3

 8 3

 9 3

 9.9 3

 10 4

Pay particular attention to the results for X=1, 9.9, and 10. An input value of min, 1 in this example, falls into that first
bucket, proving that the lower end of the range for bucket #1 is defined as x >= min. An input value of max, however,
falls outside the highest bucket. In this example, 10 falls into the overflow bucket numbered max+1. The value 9.9 falls
into bucket #3, illustrating that the upper end of the range for the highest bucket is defined as x < max.

4.4.4 String Functions and Operators

Basic string functions and operators offer a number of capabilities and return a string value as a result. Some string
functions are dyadic, indicating that they operate on two strings at once. SQL2003 supports the string functions listed in
Table 4-9.

Table 4-9. SQL String functions and operators

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 4-9. SQL String functions and operators
Function or

operator Usage

Concatenation
operator

Appends two or more literal string expressions, column values, or variables together into one
string.

CONVERT Converts a string to a different representation within the same character set.

LOWER Converts a string to all lowercase characters.

OVERLAY Returns the result of replacing a substring of one string with another.

SUBSTRING Returns a portion of a string.

TRANSLATE Converts a string from one character set to another.

TRIM Removes leading characters, trailing characters, or both from a character string.

UPPER Converts a string to all uppercase characters.

Concatenation Operator

SQL2003 defines a concatenation operator (||), which joins two distinct strings into one string value.

DB2

DB2 supports the SQL2003 concatenation operator and the CONCAT function as a synonym.

MySQL

MySQL supports CONCAT() as a synonym for the SQL2003 concatenation operator.

Oracle and PostgreSQL

PostgreSQL and Oracle support the SQL2003 double vertical bar concatenation operator.

SQL Server

SQL Server uses the plus sign (+) as a synonym for the SQL2003 concatenation operator. SQL Server has the system
setting CONCAT_NULL_YIELDS_NULL, which can be set to alter the behavior when NULL values are used in the
concatenation of string values.

Examples

/* SQL2003 Syntax */

'string1' || 'string2' || 'string3'

'string1string2string3'

/* On MySQL */

CONCAT('string1', 'string2')

'string1string2'

If any of the concatenation values are NULL, the entire returned string is NULL. Also, if a numeric value is
concatenated, it is implicitly converted to a character string.

SELECT CONCAT('My ', 'bologna ', 'has ', 'a ', 'first ', 'name...');

'My bologna has a first name...'

SELECT CONCAT('My ', NULL, 'has ', 'first ', 'name...');NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT CONCAT('My ', NULL, 'has ', 'first ', 'name...');NULL

CONVERT and TRANSLATE

The CONVERT function alters the representation of a character string within its character set and collation. For example,
CONVERT might be used to alter the number of bits per character.

TRANSLATE alters the character set of a string value from one base-character set to another. Thus, TRANSLATE might
be used to translate a value from the English character set to a Kanji (Japanese) or Cyrillic (Russian) character set. The
translation must already exist, either by default or by having been created using the CREATE TRANSLATION command.

SQL2003 Syntax

CONVERT (char_value USING conversion_char_name)

TRANSLATE(char_value USING translation_name)

CONVERT converts char_value to the characterset with the name supplied in conversion_char_name. TRANSLATE converts
char_value to the character set provided in translation_name.

Among the platforms, only Oracle supports CONVERT and TRANSLATE with the same meaning as SQL2003. Oracle's
implementation of TRANSLATE is very similar to SQL2003, but not identical. In its implementation, Oracle accepts only
two arguments and translates only between the database character set and the national language support character
set.

MySQL's implementation of the CONV function only translates numbers from one base to another. In contrast, SQL
Server's implementation of CONVERT is a very rich utility that alters the base datatype of an expression, but is
otherwise dissimilar to the SQL2003 CONVERT function. PostgreSQL does not support CONVERT, and its implementation
of TRANSLATE morphs any occurrence of a character string to any other character string.

DB2

DB2 does not support CONVERT, and its support for the TRANSLATE function is not ANSI standard. TRANSLATE is used
to translate substrings and has historically acted as a synonym for UPPER, since UPPER was only recently added to DB2.
When TRANSLATE is used with only a string expression as an argument, the result will be an uppercase equivalent of
that argument. When used with more than one argument, as in TRANSLATE(source, replacements, match), the function
translates all characters in source that are also in match. Each character in source will be replaced with the character in
replacements that is found in the same position as the matching character in match. Following are some examples:

TRANSLATE('Hello, World!')

'HELLO, WORLD!'

TRANSLATE('Hello, World!', 'wZ', 'lW')

'Hewwo, Zorwd!'

MySQL

MySQL does not support TRANSLATE or CONVERT.

Oracle

Oracle supports the following CONVERT and TRANSLATE functions:

CONVERT(char_value, target_char_set, source_char_set)

TRANSLATE(char_value USING {CHAR_CS | NCHAR_CS})

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRANSLATE(char_value USING {CHAR_CS | NCHAR_CS})

Under Oracle's implementation, the CONVERT function returns the text of char_value in the target character set. The
char_value is the string to convert, target_char_set is the name of the character set into which the string is to be
converted, and source_char_set is the name of the character set in which char_value was originally stored.

Oracle's TRANSLATE function follows the ANSI syntax, but you can choose between two character sets only: the
database character set (CHAR_CS) and the national character set (NCHAR_CS).

Oracle supports a different function that is also named TRANSLATE, which omits the
USING keyword. That version of TRANSLATE has nothing to do with character set
translation.

Both the target and source character set names can be passed either as literal strings, in variables, or in columns from
a table. Note that replacement characters might be substituted when converting from or to a character set that does
not support a representation of all the characters used in the conversion.

Oracle supports several common character sets, including US7ASCII, WE8DECDEC, WE8HP, F7DEC, WE8EBCDIC500,
WE8PC850, and WE8ISO8859P1. For example:

SELECT CONVERT('Gro2', 'US7ASCII', 'WE8HP')FROM DUAL;Gross

PostgreSQL

PostgreSQL supports the ANSI standard CONVERT and conversions can be defined by using CREATE CONVERSION.
PostgreSQL's implementation of the TRANSLATE function offers a large superset of functions that can convert any
occurrence of one text string to another within another specified string.

TRANSLATE (character_string, from_text, to_text)

Here are some examples:

SELECT TRANSLATE('12345abcde', '5a', 'XX');'1234XXbcde'

SELECT TRANSLATE(title, 'Computer', 'PC')FROM titlesWHERE type = 'Personal_computer'

SELECT CONVERT('PostgreSQL' USING iso_8859_1_to_utf_8)

'PostgreSQL'

SQL Server

SQL Server does not support TRANSLATE. SQL Server's implementation of the CONVERT function does not follow the
SQL2003 specification. Instead, it is functionally equivalent to the CAST function.

CONVERT (data_type[(length) | (precision,scale)], expression[,style])

The style clause is used to define the format of a date conversion. Refer to the SQL Server documentation for more
information. Following is an example:

SELECT title, CONVERT(char(7), ytd_sales)

FROM titles

ORDER BY title

GO

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GO

LOWER and UPPER

The functions LOWER and UPPER allow the case of a string to be altered quickly and easily, so that all the characters
are lower- or uppercase, respectively. These functions are supported in all the database implementations covered in
this book. The different database platforms also support a variety of other text formatting functions that are specific to
their implementation.

SQL2003 Syntax

LOWER(string)

UPPER(string)

LOWER converts string into a lowercase string. UPPER is the uppercase counterpart of LOWER.

DB2 and MySQL

These platforms support the SQL2003 UPPER and LOWER scalar functions, as well as the synonyms UCASE and LCASE.

Oracle, PostgreSQL, and SQL Server

These platforms support the SQL2003 UPPER and LOWER scalar functions, as in the following example:

Example

SELECT LOWER('You Talkin To ME?'), UPPER('you talking to me?!');

you talkin to me?, YOU TALKING TO ME?!

OVERLAY

The OVERYLAY function embeds one string into another and returns the result.

SQL2003 Syntax

OVERLAY(string PLACING embedded_string FROM start[FOR length])

If any of the inputs are NULL, the OVERLAY function returns a NULL. The embedded_string replaces the length characters
in string starting at character position start. If the length is not specified, then the embedded_string will replace all
characters after start in string.

DB2, MySQL, Oracle, and SQL Server

These platforms do not have support for the OVERLAY function. You can simulate the OVERLAY function on these
platforms by using a combination of SUBSTRING and the concatenation operator.

PostgreSQL

PostgreSQL supports the ANSI standard for OVERLAY.

Examples

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Examples

This is an example of how to use the OVERLAY function:

/* SQL2003 and PostgreSQL */

SELECT OVERLAY('DONALD DUCK' PLACING 'TRUMP' FROM 8) FROM NAMES;'DONALD TRUMP'

SUBSTRING

The SUBSTRING function allows one character string to be returned from another.

SQL2003 Syntax

SUBSTRING(extraction_string FROM starting_position [FOR length]

[COLLATE collation_name])

If any of the inputs are NULL, the SUBSTRING function returns a NULL. The extraction_string is the source where the
character value is to be extracted. It may be a literal string, a column in a table with a character datatype, or a variable
with a character datatype. The starting_position is an integer value telling the function at which position to begin
performing the extract. The optional length is an integer value that tells the function how many characters to extract,
starting at the starting_position. If the optional FOR is omitted, then the substring starting at starting_position and
continuing to the end of the extraction_string is returned.

DB2

SUBSTR(extraction_string, starting_position [, length])

DB2's implementation, SUBSTR, largely functions the same way as SQL2003's SUBSTRING. It does not support the
COLLATE clause. If length is omitted, the remainder of the string (starting at starting_position) is returned.

MySQL

SUBSTRING(extraction_string FROM starting_position)

MySQL's implementation assumes that the characters are to be extracted from the starting position and will continue to
the end of the character string.

Oracle

SUBSTR(extraction_string, starting_position [, length])

Oracle's implementation, SUBSTR, largely functions the same way as SQL2003's SUBSTRING. It does not support the
COLLATE clause. When a starting_position is a negative number, Oracle counts from the end of the extraction_string. If
length is omitted, the remainder of the string (starting at starting_position) is returned.

PostgreSQL

SUBSTRING(extraction_string [FROM starting_position] [FOR length])

PostgreSQL largely supports the ANSI standard, except that it does not accept the COLLATE clause.

SQL Server

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SQL Server

SUBSTRING(extraction_string [FROM starting_position] [FOR length])

SQL Server largely supports the ANSI standard, except that it does not allow the COLLATE clause. SQL Server allows
this command to be applied to text, image, and binary datatypes; however, the starting_position and length represent the
number of bytes rather than the number of characters to count.

Examples

These examples generally work on any one of the five database platforms profiled in this book. Only the second Oracle
example, with a negative starting position, fails on the others (assuming, of course, that Oracle's SUBSTR is translated
into SUBSTRING):

/* On Oracle, counting from the left */

SELECT SUBSTR('ABCDEFG',3,4) FROM DUAL;'CDEF'

/* On Oracle, counting from the right */

SELECT SUBSTR('ABCDEFG',-5,4) FROM DUAL;'CDEF'

/* On MySQL */

SELECT SUBSTRING('Be vewy, vewy quiet' FROM 5);'wy, vewy quiet'

/* On PostgreSQL or SQL Server */

SELECT au_lname, SUBSTRING(au_fname, 1, 1)FROM authorsWHERE au_lname = 'Carson'

Carson C

TRIM

The TRIM function removes leading characters, trailing characters, or both from a specified character string or BLOB
value. This function also removes other types of characters from a specified character string. The default function is to
trim the specified character from both sides of the character string. If no removal character is specified, TRIM removes
spaces by default.

SQL2003 Syntax

TRIM([[{LEADING | TRAILING | BOTH}] [removal_char] FROM]

 target_string

 [COLLATE collation_name])

The removal_char is the character to be stripped out. The target_string is the character string from which characters are to
be stripped. If a removal_char is not specified, then TRIM strips out spaces. The COLLATE clause forces the result set of
the function into another pre-existing collation set.

DB2

DB2 provides the functions LTRIM and RTRIM to trim off leading spaces or trailing spaces, respectively.

MySQL, Oracle, and PostgreSQL

These platforms support the SQL2003 syntax of TRIM.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

These platforms support the SQL2003 syntax of TRIM.

Microsoft SQL Server

SQL Server provides the functions LTRIM and RTRIM to trim off leading spaces or trailing spaces, respectively. On SQL
Server the LTRIM and RTRIM cannot be used to trim other types of characters.

Examples

SELECT TRIM(' wamalamadingdong ');'wamalamadingdong'

SELECT LTRIM(RTRIM(' wamalamadingdong '));'wamalamadingdong'

SELECT TRIM(LEADING '19' FROM '1976 AMC GREMLIN');'76 AMC GREMLIN'

SELECT TRIM(BOTH 'x' FROM 'xxxWHISKEYxxx');'WHISKEY'

SELECT TRIM(TRAILING 'snack' FROM 'scooby snack');'scooby '

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.5 Platform-Specific Extensions
The following sections provide a full listing and description of each vendor-supported function. The functions are
platform-specific. Thus, a MySQL function, for example, is not guaranteed to be supported by any other vendor.

4.5.1 DB2-Supported Extensions

This section provides an alphabetical listing of DB2-supported functions that are specific to DB2 and not from the ANSI
standard, with examples and corresponding results.

ABSVAL(number)

Synonym for ABS(number). For example:

VALUES(ABSVAL(-1)) -> 1

ACOS(number)

Returns the arc cosine of a number ranging from -1 to 1. The result ranges from 0 to and is expressed in
radians. For example:

SELECT ACOS(0) -> 1.570796

ASCII(text)

Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') -> 120

ASIN(number)

Returns the arc sine of number ranging from -1 to 1. The resulting value ranges from -/2 to /2 and is expressed
in radians. For example:

SELECT ASIN(0) -> 0.000000

ATAN(number)

Returns the arctangent of any number. The resulting value ranges from -/2 to /2 and is expressed in radians. For
example:

SELECT ATAN(3.1415) -> 1.262619

ATAN2(number,nbr)

Returns the arctangent of number and nbr. The values for number and nbr are not restricted, but the results range
from - to and are expressed in radians. ATAN2(x,y) is similar to ATAN(y/x) with the exception that the signs of x
and y are used to determine the quadrant of the result. For example:

VALUES(ATAN2(3.1415, 1)) -> +3.08177595443792E-001

ATANH(number)

Returns the hyperbolic arctangent of number. The values for number are not restricted, but the results range

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the hyperbolic arctangent of number. The values for number are not restricted, but the results range
from - to and are expressed in radians. For example:

VALUES(ATANH(0)) -> +0.00000000000000E+000

BIGINT(expression)

Returns a 64-bit integer representation of expression, where expression can be a number, character string, date,
time, or timestamp. For example:

SELECT BIGINT('1991-11-22') -> 19911122

BLOB(string [,length])

Returns a BLOB representation of string, where string can be a string representation of any type. This example
will return BLOBs from the employee_images table that contain the binary string "JFIF."

SELECT image FROM employee_images WHERE image LIKE BLOB('%JFIF%')

CHAR(expression [,length])

Returns a fixed-length character string representation of expression, where the optional parameter length is the
length attribute of the character value returned.

CHR(number)

Returns the character having the ASCII code value equal to number. For example:

VALUES(CHR(120)) -> 'x'

CLOB(string [,length])

Returns a CLOB representation of string.

COALESCE(expression [,...])

Returns the first argument that is not NULL. For example:

SELECT COALESCE(1,2,3) -> 1

CONCAT(string1, string2)

Returns string1 concatenated with string2. It is equivalent to the concatenation operator (||). For example:

SELECT CONCAT(au_lname, au_fname) FROM authors -> 'JeffersonThomas'

COS(number)

Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) -> 1.000000

COSH(number)

Returns the hyperbolic cosine of number. For example:

VALUES(COSH(3.1415)) -> +1.15908832931176E+001

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COT(number)

Returns the cotangent of number. For example:

SELECT COT(3.1415) -> -10792.88993953

DATE(expression)

Returns a date value from expression. If expression is an integer value, then the returned date is equivalent to
expression-1 days after January 1, 0001. For example:

SELECT DATE(3) -> '01/03/0001'

DAY(expression)

Returns the day number in a date expression. For example:

SELECT DAY('1999-04-15') -> 15

DAYNAME(expression)

Returns the name of the day in expression using the locale of the database server. For example:

SELECT DAYNAME('1999-04-15') -> 'Thursday'

DAYOFWEEK(expression), DAYOFWEEK_ISO(expression), DAYOFYEAR(expression)

Returns the day of the week or year in expression. DAYOFWEEK returns an integer value in the range 1-7,
where 1 represents Sunday. DAYOFWEEK_ISO has the same range as DAYOFWEEK, but the value of 1
represents Monday. DAYOFYEAR returns an integer value in the range 1-366, where the value returned is the
day of the year starting with 1 for January 1st. For example:

VALUES(DAYOFWEEK('1999-04-15')) -> 5

VALUES(DAYOFWEEK_ISO('1999-04-15')) -> 4

VALUES(DAYOFYEAR('1999-04-15')) -> 105

DAYS(expression)

Returns one more than the number of days between expression and January 1, 0001. For example:

VALUES(DAYS('1999-04-15')) -> 729859

DBCLOB(expression [,length])

Returns a DBCLOB representation of a graphic string type, where length specifies the length of the DBCLOB
value returned.

DBPARTITIONNUM(column)

Returns the database partition number of the row containing column. For more information, please look to the
DB2 user documentation for DBPARTITIONNUM.

DECIMAL(expression [,precision [,scale [,decimal_char]), DEC(expression [,precision [,scale [,decimal_char])

Returns a decimal representation of expression. The optional arguments control the precision and scale used in the
result, whereas decimal_char is the decimal character found in expression, if any.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

result, whereas decimal_char is the decimal character found in expression, if any.

DECRYPT_BIN(data [,password]) or DECRYPT_CHAR(data [,password])

Returns decrypted data using the optional password. The result of DECRYPT_BIN is a VARCHAR FOR BIT DATA,
whereas DECRYPT_CHAR returns a VARCHAR.

DEGREES(number)

Returns the number of degrees converted from the argument expressed in radians. For example:

VALUES(DEGREES(3.1415926)) -> +1.79999996929531E+002

DEREF(expression)

Returns the object reference of expression, where expression must return a REF to an object. For more
information on User Defined Types (UDTs) please consult the DB2 User Guide.

DIFFERENCE(expression1, expression2)

Returns the difference between the sounds of two strings based on their SOUNDEX values. The result is an
integer in the range of 0-4, where 4 is the best SOUNDEX match. For example:

VALUES(DIFFERENCE('thimble', 'nimble')) -> 4

DIGITS(number)

Returns the number argument into a character string of digits. The result of DIGITS does not contain decimal or
sign characters and it may be padded on the left with zeros. For example:

VALUES(DIGITS(DEC('-3.1415926', 12, 8))) -> 000031415926

DOUBLE(number)

Returns number converted to a DOUBLE.

ENCRYPT(data [,password [,hint]])

Returns data encrypted with the optional password. The optional hint argument allows a user to store up to a 32-
byte password hint that is encoded into the result value. To get the password hint, look to the GETHINT
function. For example:

UPDATE employee SET ssn = ENCRYPT(ssn, 'luvbug', 'Herbie is-a?')

WHERE empid = '54321-AD'

EVENT_MON_STATE(expression)

Returns the state of an event monitor. For details on usage or available event monitors, please look to the DB2
user documentation.

FLOAT(number)

FLOAT is a synonym for DOUBLE.

GETHINT(data)

Returns the password hint encoded in data. The data argument must be encrypted with the ENCRYPT function.
For example:

SELECT GETHINT(ssn) FROM EMPLOYEE WHERE empid = '54321-AD'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT GETHINT(ssn) FROM EMPLOYEE WHERE empid = '54321-AD'

 'Herbie is-a?'

GENERATE_UNIQUE()

Returns a 13-byte CHAR(13) FOR BIT DATA value that is guaranteed to be unique from other invocations within
the same database. For example:

INSERT INTO employee(id, emp_name)

 VALUES(GENERATE_UNIQUE(), 'Bob Smith')

GRAPHIC(expression [,length])

Returns a fixed-length graphic string representation of expression, where the optional length argument is the
length of the result.

HASHEDVALUE(column)

Returns the partitioning map index of the row containing column. For more information, please look to the DB2
user documentation for HASHEDVALUE().

HEX(expression)

Returns a hexadecimal representation of expression. For example:

VALUES(HEX(255)) -> 000000FF

HOUR(expression)

Returns the hour of part of the time value in expression. For example:

SELECT HOUR(execution_time), COUNT(*) FROM trades

 GROUP BY HOUR(execution_time)

1 2

----------- -----------

 8 2058

 9 856

 10 912

 11 714

. . .

IDENTITY_VAL_LOCAL()

Returns the value most recently assigned to an identity column. Returns NULL when an identity column has not
been inserted into a table since the last COMMIT or ROLLBACK statement.

INSERT(expression1, expression2, expression3, expression4)

Returns expression1 with expression4, replacing expression3 bytes at position expression2. For example:

VALUES (INSERT('food', 2, 2, 'are')) -> 'fared'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

INTEGER(expression)

Returns an integer representation of expression.

JULIAN_DAY(expression)

Returns the Julian day number for the date value in expression. The value returned is the number of days
between the date value in expression and the start of the Julian date calendar, January 1, 4713 B.C. For
example:

VALUES(JULIAN_DAY('1999-04-15')) -> 2451284

LEFT(string, length)

Returns the first length bytes from string. For example:

VALUES(LEFT('Hello, World!', 5)) -> 'Hello'

LENGTH(expression)

Returns the integer length of expression, or NULL if expression is NULL. For example:

VALUES(LENGTH('Hello, World!')) -> 13

LOCATE(substring, string [,starting_pos])

Returns the location of substring within string or zero, if the substring is not found within string. The optional
starting_pos can be used to specify the starting position within string to begin the search. For example:

VALUES(LOCATE('World', 'Hello, World!')) -> 8

LOG(number)

Returns the natural logarithm of number, the same as LN(number).

LOG10(number)

Returns the base 10 logarithm of number. For example:

VALUES(LOG10(50)) -> +1.69897000433602E+000

LONG_VARCHAR(string)

Returns a LONG_VARCHAR representation of string.

LONG_VARGRAPHIC(string)

Returns a LONG_VARGRAPHIC representation of string.

LTRIM(string)

Removes all characters inset from the left of string. For example:

VALUES(LTRIM(' Howdy! ')) -> 'Howdy! '

MICROSECOND(expression)

Returns the microsecond part of the time value in expression. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the microsecond part of the time value in expression. For example:

VALUES(MICROSECOND(CURRENT_TIMESTAMP)) -> 252270

MIDNIGHT_SECONDS(expression)

Returns the number of seconds that have elapsed between midnight and the time value in expression. For
example:

VALUES(MIDNIGHT_SECONDS('08:20:15')) -> 30015

MINUTE(expression)

Returns the minute part of the time value in expression. For example:

VALUES(MINUTE('08:20:15')) -> 20

MONTH(expression)

Returns the month part of the date value in expression. For example:

VALUES(MONTH('1999-04-15')) -> 4

MONTHNAME(expression)

Returns the month's name for the date value stored in expression using the current locale of the database. For
example:

VALUES(MONTHNAME('1999-04-15')) -> 'April'

MULTIPLY_ALT(number1, number2)

Returns the product of number1 and number2. The function MULTIPLY_ALT is a good alternative to the standard
multiplication operator (*) when the numbers being multiplied have a precision greater than 31. For example:

VALUES(MULTIPLY_ALT(DECIMAL('256'), DECIMAL('256'))) -> 65536

NULLIF(expression1, expression2)

Returns NULL if expression1 and expression2 are equal; otherwise the function returns expression1. For example:

VALUES(NULLIF('1999-04-15', '2000-04-15')) -> '1999-04-15'

POSSTR(source, search)

Returns the character position of the first occurrence of search within source where the first character position is
1. For example:

VALUES(POSSTR('Hello, World!', 'World')) -> 8

QUARTER(expression)

Returns an integer ranging from 1 to 4, representing the quarter of the year that contains the date in expression.
For example:

VALUES(QUARTER('2004-04-15')) -> 2

RADIANS(expression)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RADIANS(expression)

Returns the number of radians from expression, which is expressed in degrees. For example:

VALUES(RADIANS(180)) -> +3.14159265358979E+000

RAISE_ERROR(sqlstate, errorstring)

Raises an error upon execution. This function is useful for generating critical errors in complicated SQL
statements and stored procedures. The sqlstate parameter is used for passing error code information back to the
application executing the SQL statement, and the errorstring parameter is used for a custom error message. For
example:

SELECT a.au_fname, a.aulname,

 CASE WHEN t.ytd_sales = 0 THEN 'no sales'

 WHEN t.ytd_sales > 0 THEN 'OK'

 ELSE RAISE_ERROR('70001', 'Sales should not be negative.')

 END

FROM authors a, titleauthor, titles t

WHERE titleauthor.au_id = a.au_id AND

 Titleauthor.title_id = t.title_id

GROUP BY a.au_lname, a.au_fname

RAND([seed])

Returns a random floating-point value between 0 and 1, using seed as the random number generator seed.

REAL(number)

Returns a single-precision floating point representation of number.

REC2XML(decimal, format, rowtags, column_name [, . . .])

Returns an XML string containing XML tags, as well as column names and column data. The arguments are
described in the following list:

decimal

Decimal value greater than 0, but less than or equal to 6.0, that contains the factor to expand string
values to compensate for the string value expanding due to character replacements for the XML values
and elements.

format

Case-sensitive string value equal to "COLATTVAL" or "COLATTVAL_XML". If column values can contain
XML data that would need to be translated to produce valid XML output, then use "COLATTVAL". If the
columns will not contain special XML markup characters, then use "COLATTVAL_XML". Column names
containing special markup characters will still be translated (i.e., "escaped") when "COLATTVAL_XML" is
chosen.

rowtags

String value to name the row element containing the column data. If rowtags is an empty string, then
the value of row is used. If rowtags contains a string of only spaces, then the enclosing row element will
be omitted in the output.

column_name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

column_name

The name of a column to place into the XML result. For example:

SELECT REC2XML(1.3, 'COLATTVAL', 'Author', au_id, au_fname,

 au_lname)

FROM AUTHORS WHERE au_id = '172-32-1176'

<Author>

 <column name="AU_ID">172-32-1176</column>

 <column name="AU_FNAME">Johnson</column>

 <column name="AU_LNAME">White</column>

</Author>

REPEAT(string, number)

Returns a character string that is composed of string repeated number times. For example:

VALUES(CHAR(REPEAT('Duck ', 3))) -> 'Duck Duck Duck'

REPLACE(string, search_string, replacement_string)

Returns string with every occurrence of search_string replaced with replacement_string. For example:

VALUES(REPLACE('change', 'e', 'ing')) -> 'changing'

RIGHT(string, number)

Returns the number rightmost bytes from string. For example:

VALUES(RIGHT('Hello, World!', 6)) -> 'World!'

ROUND(number[, decimal])

Returns number rounded to decimal places right of the decimal point. When decimal is omitted, number is rounded
to places. Note that decimal, an integer, can be negative to round off digits left of the decimal point. For
example:

VALUES(ROUND(12345.6789, 2)) -> 12345.6800

RTRIM(string)

Returns string with all trailing whitespace characters removed. For example:

VALUES(RTRIM(' welcome ')) -> ' welcome'

SECOND(expression)

Returns the seconds part of the time value in expression. For example:

VALUES(SECOND('08:20:15')) -> 15

SIGN(number)

When number < 0, returns -1. When number = 0, returns 0. When number > 0, returns 1. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When number < 0, returns -1. When number = 0, returns 0. When number > 0, returns 1. For example:

VALUES(SIGN(-3.1415926), SIGN(0), SIGN(3.1415926))

-1.00000000000000E+000 0 +1.00000000000000E+000

SIN(number)

Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SINH(number)

Returns the hyperbolic sine of number.

SMALLINT(number)

Returns a SMALLINT value equivalent to number.

SOUNDEX(string)

Returns a character string containing the phonetic representation of string. This function allows words that are
spelled differently but sound alike in English to be compared for equality. For example:

VALUES(SOUNDEX('thimble')) -> 'T514'

SPACE(number)

Returns a string composed of number spaces. For example:

VALUES(SPACE(5)) -> ' '

STDDEV({ ALL | DISTINCT } expression)

Returns the standard deviation of the values contained within expression. The ALL keyword specifies the default
behavior in which all values in expression are used in the standard deviation. The keyword DISTINCT omits
duplicate values in expression when doing the calculation. For example:

SELECT STDDEV(values) FROM NUMBERS -> 0.0642

SUBSTR(string, start [, length])

Returns a substring of string of length bytes starting at start. If length is too large to permit a valid substring, then
string is padded with trailing spaces until a valid substring can be found. The starting position, start, must be an
integer value in the range of 1 to the length of string. For example:

VALUES(SUBSTR('Hello, World!', 8, 5)) -> 'World'

TABLE_NAME(object [,schema])

Returns the unqualified name of object after resolving any aliases. The optional schema argument specifies the
database schema to use in resolving the object name. For example:

VALUES(TABLE_NAME('trades')) -> 'trades'

TABLE_SCHEMA(object [,schema])

Returns the schema name of the object after resolving any aliases. The optional schema argument specifies the
database schema to use in resolving the object name. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

database schema to use in resolving the object name. For example:

VALUES(TABLE_SCHEMA('trades')) -> 'MYSCHEMA'

TAN(number)

Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) -> -0.000093

TANH(number)

Returns the hyperbolic tangent of number.

TIME(expression)

Returns a time value equivalent to the time in expression. For example:

VALUES(TIME('2003-04-15 08:20:15')) -> '08:20:15'

TIMESTAMP(expression1 [,expression2])

Returns a timestamp value created from date and time values in expression1 and expression2. If only expression1 is
given, then it must contain a valid date and time value. If both arguments are given, then expression1 must
contain a valid string representation of a date and expression2 a valid string representation of time. For example:

VALUES(TIMESTAMP('2003-04-15', '08:20:15'))

2003-04-15-08.20.15.000000

TIMESTAMP_FORMAT(string,format)

Returns a timestamp value after extracting it from string. The second argument, format, contains the timestamp
format used in string. (For details on the timestamp format, see the VARCHAR_FORMAT function.) For example:

VALUES(TIMESTAMP_FORMAT('2003-4-15 08:20:15', 'YYYY-MM-DD HH24:MI:SS'))

2003-04-15-08.20.15.000000

TIMESTAMP_ISO(expression)

Returns a timestamp value from expression. If expression is a date value, then the time value will consist of zeros.
If the expression is a time value, then the current date will be used in constructing the timestamp value. For
example:

VALUES(TIMESTAMP_ISO('2003-04-15')) -> 2003-04-15-00.00.00.000000

TIMESTAMPDIFF(interval_type, tsdiff_expression)

Returns an estimated number of intervals between two timestamp values. The interval_type argument must be
a power of 2 in the range between 1 and 256, where the meaning of the value is interpreted as in the following
table:

interval_type Timestamp difference returned

1 Fractions of a second

2 Seconds

4 Minutes

8 Hours

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

The tsdiff_expression must be the result of subtracting two timestamp values and converting to a single CHAR(22) value.
For example:

VALUES(TIMESTAMPDIFF(2, CHAR(CURRENT_DATE - CURRENT_TIMESTAMP)))

515

TO_CHAR(timestamp, format)

Synonym for VARCHAR_FORMAT.

TO_DATE(string, format)

Synonym for TIMESTAMP_FORMAT.

TRANSLATE(string, tostring, fromstring [,pad_char])

Returns a string equivalent to the string argument with each character found in tostring replaced with the
corresponding character from fromstring. The optional pad_char argument can contain a single-byte character
that will be used to pad tostring if it is shorter than fromstring. If the same character appears more than once in
fromstring, then only the first occurrence will count and all following occurrences will be ignored. For example:

VALUES(TRANSLATE('123,456,789.45', ',.', '.,')) -> '123.456.789,45'

TRUNCATE(number1, number2) or TRUNC(number1, number2)

Returns number1 with all digits to the right of the decimal point by number2 places replaced with zeros. If
number2 is negative, then the truncation occurs to the left of the decimal place. For example:

VALUES(TRUNCATE(DEC('123.456'), -1)) -> 120.

TYPE_ID(expression)

Returns the internal type identifier to the user-defined structured type instance stored in expression. For more
information on User Defined Types (UDTs) please consult the DB2 User Guide.

TYPE_NAME(expression)

Returns the unqualified name to the user-defined structured type instance stored in expression. For more
information on User Defined Types (UDTs) please consult the DB2 User Guide.

TYPE_SCHEMA(expression)

Returns the schema name to the user-defined structured type instance stored in expression. For more
information on User Defined Types (UDTs) please consult the DB2 User Guide.

VALUE(expression [,...])

Returns the first argument that is not NULL. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the first argument that is not NULL. For example:

VALUES(VALUE('Hello!', 5)) -> 'Hello!'

VAR or VARIANCE({ ALL | DISTINCT } expression)

Returns the variance of the values contained within expression. The ALL keyword specifies the default behavior in
which all values in expression are used in the calculation. The keyword DISTINCT omits duplicate values in
expression when doing the calculation. For example:

SELECT VARIANCE(values) FROM NUMBERS -> 987244882.22

VARCHAR(expression[,length])

Returns a varying-length character representation of expression, where length is the length attribute for the
varying-length character result. If length is omitted, then the length of the result is the length of the expression.

VARCHAR_FORMAT(expression, format)

Returns a string representation of the timestamp value in expression in the format provided in the format
argument. Listed below are the available specifiers for format and their meanings.

YYYY

Four-digit year

MM

Two-digit month (01-12)

DD

Two-digit day of month (01, 02, ...)

HH24

Two-digit hour of day (00-24)

MI

Two-digit minute (00-59)

SS

Two-digit second (00-59)

For example:

VALUES(VARCHAR_FORMAT(CURRENT_TIMESTAMP, 'YYYY-MM-DD HH24:MI:SS'))

2003-06-24 09:37:45

VARGRAPHIC(expression [,length])

Returns a varying-length graphic string representation of expression, where length is the length attribute for the
varying-length graphic string result. If length is omitted, then the length of the result is the length of the
expression.

WEEK(expression)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

WEEK(expression)

Returns the week of the year for the date value contained in expression. The range for the result is 1-54 and the
week starts with Sunday. For example:

VALUES(WEEK('2003-04-15')) -> 16

WEEK_ISO(expression)

Returns the week of the year for the date value contained in expression. The range for the result is 1-53, and the
week starts with Monday. The first week of the year always contains January 4th. For example:

VALUES(WEEK_ISO('2003-04-15')) -> 16

YEAR(expression)

Returns the year part of the date value in expression. For example:

VALUES(YEAR('2004-04-15')) -> 2004

4.5.2 MySQL-Supported Functions

This section provides an alphabetical listing of MySQL-supported functions, with examples and corresponding results.

ACOS(number)

Returns the arc cosine of number ranging from -1 to 1. The result ranges from 0 to and is expressed in radians.
For example:

SELECT ACOS(0) -> 1.570796

ASCII(text)

Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') -> 120

ASIN(number)

Returns the arc sine of number ranging from -1 to 1. The resulting value ranges from -/2 to /2 and is expressed
in radians. For example:

SELECT ASIN(0) -> 0.000000

ATAN(number)

Returns the arctangent of any number. The resulting value ranges from -/2 to /2 and is expressed in radians. For
example:

SELECT ATAN(3.1415) -> 1.262619

ATAN2(x,y)

Returns the arctangent of the two variables x and y. ATAN2(x,y) is similar to ATAN(y/x), with the exception that
the signs of x and y are used to determine the quadrant of the result. For example:

ATAN2(3.1415, 1) -> 1.262619

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

BENCHMARK(count,expr)

Executes the expression (expr) count times. The result value is always 0. For example:

BENCHMARK(1000000,ATAN2(3.1415, 1)) -> 0

BIN(number)

Returns a string containing the binary value of n, where n is a BIGINT number.

BINARY string

Casts string to a binary string.

BIT_AND(expr)

An aggregate function that returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit
(BIGINT) precision. The value of -1 is returned when no matching rows are found. For example:

BIT_AND(mycolumn) -> 0

BIT_COUNT(number)

Returns the number of bits that are set in number. For example:

BIT_COUNT(5) -> 2

BIT_OR(expr)

An aggregate function that returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit
(BIGINT) precision. The value of zero is returned when no matching rows are found. For example:

BIT_OR(mycolumn) -> 1

CHAR(number [,...])

Returns a string consisting of the characters given by the ASCII code values in the arguments. Any NULL values
are ignored. For example:

CHAR(120,121,122) -> 'xyz'

COALESCE(list)

Returns the first non-NULL element in the list. For example:

COALESCE(NULL, 1, 2) -> 1

COMPRESS(string)

Returns a compressed version of string.

CONCAT_WS(separator, str1, str2[,...])

A special form of CONCAT() that inserts separator between every pair of string arguments concatenated. If
separator is NULL, then the result is NULL. For example:

CONCAT_WS(', ', au_lname, au_fname) -> 'Jefferson, Thomas'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CONCAT_WS(', ', au_lname, au_fname) -> 'Jefferson, Thomas'

CONNECTION_ID()

Returns the connection ID for the connection. Every connection has its own unique ID. For example:

CONNECTION_ID() -> 305102

CONV(number,from_base,to_base)

Returns a string representation of the number number, converted from base from_base to base to_base. If any
argument is NULL, then the result is NULL. For example:

CONV(12,10,2) -> 1100

COS(number)

Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) -> 1.000000

CURDATE()

Returns today's date as a value in YYYY-MM-DD or YYYYMMDD format, depending on whether the function is
used in a string or numeric context. For example:

CURDATE() -> '2003-06-24'

CURTIME()

Returns the current time as a value in HH:MM:SS or HHMMSS format, depending on whether the function is
used in a string or numeric context. For example:

CURTIME() -> '20:40:20'

DATABASE()

Returns the current database name. For example:

DATABASE() -> 'PUBS'

DATE_ADD(date,INTERVAL expr type)

DATE_SUB(date,INTERVAL expr type)

ADDDATE(date,INTERVAL expr type)

SUBDATE(date,INTERVAL expr type)

These functions perform date arithmetic calculations. ADDATE() and SUBDATE() are synonyms for DATE_ADD(
) and DATE_SUB(). DATE_ADD() returns the result of adding the INTERVAL to the date expression. DATE_SUB(
) is the result of subtracting the INTERVAL from the date expression. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

) is the result of subtracting the INTERVAL from the date expression. For example:

DATE_ADD('1999-04-15', INTERVAL 1 DAY) -> '1999-04-16'

DATE_SUB('1999-04-15', INTERVAL 1 DAY) -> '1999-04-14'

DATE_ FORMAT(date, format)

Formats the date value according to the format string. Listed below are the available specifiers for format and
their meanings.

%a

Abbreviation of the day (Sun-Sat)

%b

Abbreviation of the month (Jan-Dec)

%c

Month number (1-12)

%D

Day of month with a suffix (1st, 2nd, 3rd, ...)

%d

Two digit day of month (01, 02, ...)

%e

Day of month (1, 2, 3, ...)

%H

Hour (00-23)

%h

Hour (01-12)

%i

Minutes (00-59)

%I

Hour (01-12)

%j

Day of year (001-366)

%k

Hour (0-23)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hour (0-23)

%l

Hour (1-12)

%M

Full month name (January-December)

%m

Month (01-12)

%p

A.M. or P.M.

%r

12-hour time (hh:mm:ss A.M or P.M)

%S, %s

Seconds (00-59)

%T

24-hour time (hh:mm:ss)

%U

Week number (00-53, Sunday being the first day of the week)

%u

Week number (00-53, Monday being the first day of the week)

%V

Week number (01-53, Sunday being the first day of the week)

%v

Week number (01-53, Monday being the first day of the week)

%W

Name of the day (Sunday-Saturday)

%w

Day of the week (0 = Sunday, 6 = Saturday)

%X

Four-digit year with Sunday being the first day of the week

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Four-digit year with Sunday being the first day of the week

%x

Four-digit year with Monday being the first day of the week

%Y

Four-digit year

%y

Two-digit year

%%

Literal "%"

For example:

DATE_FORMAT('1999-04-15', '%M-%D-%Y') -> 'April-15th-1999'

DAYNAME(date)

Returns the name of the weekday for date. For example:

DAYNAME('1999-04-15') -> 'Thursday'

DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31. For example:

DAYOFMONTH('1999-04-15') -> 15

DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, . . . 7 = Saturday). For example:

DAYOFWEEK('1999-04-15') -> 5

DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366. For example:

DAYOFYEAR('1999-04-15') -> 105

DECODE(crypt_str,pass_str)

Decrypts the encrypted string crypt_str using pass_str as the password; crypt_str should be a string returned from
ENCODE(). For example:

DECODE(ENCODE('foo','bar'),'bar') -> 'foo'

DEGREES(number)

Returns the argument number converted from radians to degrees. For example:

DEGREES(3.1415926) -> 179.99999692953

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DEGREES(3.1415926) -> 179.99999692953

ELT(n, str1, str2, str3[,...n])

Returns str1 if n = 1, str2 if n = 2, and so on. If n is less than 1 or greater than the number of arguments, then
this function returns NULL. ELT() is the complement of FIELD(). For example:

ELT(1, 'Hi', 'There') -> 'Hi'

ELT(2, 'Hi', 'There') -> 'There'

EMPTY_BLOB and EMPTY_CLOB

Returns empty LOB locators, which you can use to initialize BLOB and CLOB values that you wish to create as
part of an INSERT or UPDATE statement.

ENCODE(str,pass_str)

Encrypts str using pass_str as the password. To decrypt the result, use DECODE(). The result is a binary string
the same length as the string. For example:

DECODE(ENCODE('foo','bar'),'bar') -> 'foo'

ENCRYPT(str[,salt])

Encrypts str using the Unix crypt() system call. The salt argument should be a string with two characters. For
example:

ENCRYPT('password') -> 'ZB7yqPUHvNnmo'

EXPORT_SET(bits,on,off,[separator,[number_of_bits]])

Returns a string where every bit set in bits gets an on string and every unset bit gets an off string. Each string is
separated with separator; the default is a comma (,). Only number_of_bits of bits is used; the default is 64. For
example:

EXPORT_SET(4,'T','F')

F,F,T,F,

F,F

FIELD(str,str1,str2,str3[,...])

Returns the index of str in the given string arguments. Returns 0 if str is not found. FIELD() is the complement
of ELT(). For example:

FIELD('GOOSE','DUCK','DUCK','GOOSE','DUCK') -> 3

FIND_IN_SET(str,strlist)

Returns the index of str within the strlist, where strlist is a list of strings separated by commas. This function is
equivalent to calling FIELD(str, CONCAT_WS(',', str1, str2, str3, [,...])). For example:

FIND_IN_SET('b','a,b,c,d') -> 2

FORMAT(number,decimals)

Formats the number number to a format like #,###,###.##, rounded to decimals decimals. If decimals is 0, the
result has no decimal point or fractional part. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

result has no decimal point or fractional part. For example:

FORMAT(12345.2132,2) -> 12,345.21

FORMAT(12345.2132,0) -> 12,345

FROM_DAYS(number)

Given a day number number, returns a DATE value. This function should not be used for values that precede the
advent of the Gregorian calendar (1582), due to the days lost when the calendar was changed. For example:

FROM_DAYS(888888) -> 2433-09-10

FROM_UNIXTIME(unix_timestamp)

Returns a representation of the unix_timestamp argument as a value in YYYY-MM-DD HH:MM:SS or
YYYYMMDDHHMMSS format, depending on whether the function is used in a string or numeric context. For
example:

FROM_UNIXTIME(888123892) -> 1998-02-21 21:04:52

FROM_UNIXTIME(unix_timestamp,format)

Returns a string representation of the unix_timestamp, formatted according to the format string. format may
contain the same specifiers as those listed in the entry for the DATE_FORMAT() function. For example:

FROM_UNIXTIME(888123892,'%Y %D %M') -> '1998 21st February'

GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, with a time-out of timeout seconds. Returns 1 if the
lock is obtained successfully or NULL if an error occurs or the attempt to acquire the lock times out. For
example:

GET_LOCK('lochness',10) -> 1

GREATEST(x,y[,...])

Returns the largest argument. For example:

GREATEST(8,2,4) -> 8

HEX(number)

Returns a string representation of the hexadecimal value of number. This is equivalent to CONV(number,10,16).
For example:

HEX(255) -> FF

HOUR(time)

Returns the hour for time, in the range 0 to 23. For example:

HOUR('08:20:15') -> 8

IF(expr1, expr2, expr3)

Returns expr2 if expr1 is TRUE, otherwise returns expr3. For example:

IF(1,'yes','no') -> 'yes'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IF(1,'yes','no') -> 'yes'

IF(0,'yes','no') -> 'no'

IFNULL(expr1, expr2)

Returns expr1 if expr1 is not NULL, otherwise returns expr2. For example:

IFNULL(0,'NULL') -> 0

IFNULL(NULL,'NULL') -> 'NULL'

INSERT(str, pos, len, newstr)

Returns the string str with newstr inserted at character position pos for length len. For example:

INSERT('paper',2,3,'ea') -> 'pear'

INSTR(str,substr)

Returns the position of the first occurrence of the substring substr in the string str. For example:

INSTR('ducks','c') -> 3

INTERVAL(num1,num2,num3,num4[,...n])

Returns 0 if num1 < num2, 1 if num1 < num3, and so on. It is required that num2< num3< num4< . . . < numN.
For example:

INTERVAL(5,1,6) -> 1

INTERVAL(5,2,3,7,9) -> 2

IS_FREE_LOCK(lock)

Returns 1 if lock is free and zero if the lock is currently in use. The function may return NULL on error
conditions. For example:

IS_FREE_LOCK('lochness') -> 0

ISNULL(expr)

If expr is NULL, IFNULL() returns 1; otherwise it returns 0. For example:

ISNULL(1) -> 0

ISNULL(NULL) -> 1

LAST_INSERT_ID([expr])

Returns the last automatically generated value that was inserted into an AUTO_INCREMENT column. For
example:

LAST_INSERT_ID() -> 0

LCASE(str)

Synonym for lower(str). For example:

LCASE('DUCK') -> 'duck'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LCASE('DUCK') -> 'duck'

LEAST(X,Y[,...n])

With two or more arguments, returns the smallest (minimum-valued) argument. For example:

LEAST(10,5,3,7) -> 3

LEFT(str,len)

Returns the leftmost len characters from the string str. For example:

LEFT('Ducks', 4) -> 'Duck'

LENGTH(str)

These functions return the length of the string str. For example:

LENGTH('DUCK') -> 4

LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. The file must be on the server, and the user must
specify the full pathname to the file and have access to the file.

LOCATE(substr,str), POSITION(substr IN str)

Returns the position of the first occurrence of the substring substr in the string str. Returns zero if substr is not in
str. LOCATE is a synonym for the standard POSITION(substr IN str). For example:

LOCATE('al','Donald') -> 4

POSITION('al' IN 'Donald') -> 4

LOCATE(substr,str,pos)

Returns the position of the first occurrence of the substring substr in the string str, starting at position pos;
returns zero if substr is not in str. For example:

LOCATE('World', 'Hello, World!') -> 8

LOG(X)

Returns the natural logarithm of X. For example:

LOG(50) -> 3.912023

LOG2(X)

Returns the base-2 logarithm of X. For example:

LOG2(50) -> 5.64386

LOG10(X)

Returns the base-10 logarithm of X. For example:

LOG10(50) -> 1.698970

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LOG10(50) -> 1.698970

LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr until str is len characters long. For example:

LPAD('ucks',6,'d') -> 'dducks'

LTRIM(str)

Returns the string str with leading-space characters removed. For example:

LTRIM(' Howdy! ') -> 'Howdy! '

MAKE_SET(bits, str1, str2[, ...n])

Returns a set (a string containing substrings separated by commas) consisting of the string arguments that
have the corresponding bit in bits set; str1 corresponds to bit 0, str2 to bit 1, etc. NULL strings in str1, str2, ... are
not appended to the result. For example:

MAKE_SET(1 | 4,'hello','nice','world') -> 'hello,world'

MD5(string)

Calculates an MD5 checksum for the string. Value is returned as a 32-digit-long hex number. For example:

MD5('somestring') -> 1f129c42de5e4f043cbd88ff6360486f

MINUTE(time)

Returns the minute for time, in the range to 59. For example:

MINUTE('08:20:15') -> 20

MONTH(date)

Returns the month for date, in the range 1 to 12. For example:

MONTH('1999-04-15') -> 4

MONTHNAME(date)

Returns the name of the month for date. For example:

MONTHNAME('1999-04-15') -> 'April'

NOW() , SYSDATE()

Returns the current date and time as a value in YYYY-MM-DD HH:MM:SS or YYYYMMDDHHMMSS format,
depending on whether the function is used in a string or numeric context. For example:

NOW() -> 2003-06-24 20:40:24

SYSDATE() -> 2003-06-24 20:40:24

CURRENT_TIMESTAMP -> 2003-06-24 20:40:24

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NULLIF(expr1, expr2)

Returns NULL if expr1 is equal to expr2; otherwise returns expr1. For example:

NULLIF(2,29) -> 2

NULLIF(29,29) -> NULL

OCT(n)

Returns an octal value equivalent of n, where n is a number. This is equivalent to CONV(N,10,8). Returns NULL if
n is NULL. For example:

OCT(255) -> 377

ORD(str)

Returns the character ordinal of the multibyte character string str. The value is calculated using the following
formula: ((first byte ASCII code)*256+(second byte ASCII code)*256*256)(third byte ASCII
code)*256*256*256[,...]. If str isn't a multibyte character, then this function returns the same value as the
ASCII() function. For example:

ORD('29') -> 50

PASSWORD(str)

Calculates a password string from the plain-text password str. This is the function that is used for encrypting
MySQL passwords. For example:

PASSWORD('password') -> 5d2e19393cc5ef67

PERIOD_ADD(period,months)

Adds the number of months found in months to the period in period (in the format YYMM or YYYYMM). Returns a
value in the format YYYYMM. For example:

PERIOD_ADD(9902,3) -> 199905

PERIOD_DIFF(period1, period2)

Returns the number of months between period1 and period2. period1 and period2 should be in the format YYMM or
YYYYMM. For example:

PERIOD_DIFF(9902,9905) -> -3

PI()

Returns the value of -. For example:

PI() -> 3.141593

POW(X,Y), POWER(X,Y)

Returns the value of X raised to the power of Y. For example:

POW(2, 8) -> 256.000000

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4. For example:

QUARTER('1999-04-15') -> 2

RADIANS(X)

Returns the argument X, converted from degrees to radians. For example:

RADIANS(180) -> 3.1415926535898

RAND() , RAND(N)

Returns a random floating-point value in the range 0 to 1.0. If an integer argument N is specified, it is used as
the seed value. For example:

RAND() -> 0.29588872501244

RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the lock is released
or NULL if the named lock doesn't exist or isn't locked by this thread (in which case the lock is not released).
For example:

RELEASE_LOCK('lochness') -> 1

REPEAT(str, count)

Returns a string consisting of the string str repeated count times. For example:

REPEAT('Duck', 3) -> 'DuckDuckDuck'

REPLACE(str, from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string to_str. For example:

REPLACE('change', 'e', 'ing') -> 'changing'

REVERSE(str)

Returns the string str reversed. For example:

REVERSE('STOP') -> 'POTS'

RIGHT(str,ten)

Returns the rightmost 10 characters from the string str. For example:

RIGHT('Hello, World!', 6) -> 'World!'

ROUND(X[,D])

Returns the argument X, rounded to a number with D decimals. If D is 0, the result has no decimal point or
fractional part. For example:

ROUND(12345.6789, 2) -> 12345.68

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROUND(12345.6789, 2) -> 12345.68

RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr until str is len characters long. For example:

RPAD('duck',6,'s') -> 'duckss'

RTRIM(str)

Returns the string str with trailing space characters removed. For example:

RTRIM(' welcome ') -> 'welcome '

SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes, and seconds, as a value in HH:MM:SS or HHMMSS
format, depending on whether the function is used in a string or numeric context. For example:

SEC_TO_TIME(256) -> 00:04:16

SECOND(time)

Returns the second for time, in the range to 59. For example:

SECOND('08:20:15') -> 15

SHA(X) or SHA1(X)

Returns a SHA1 160-bit checksum for X. For example:

SHA('abc') -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or positive. For
example:

SIGN(-3.1415926) -> -1

SIN(number)

Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SOUNDEX(str)

Returns a soundex string from str. For example:

SOUNDEX('thimble') -> 'T514'

expr1 SOUNDS LIKE expr2

Synonymous with the expression:

SOUNDEX(expr1) = SOUNDEX(expr2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SOUNDEX(expr1) = SOUNDEX(expr2)

SPACE(n)

Returns a string consisting of n space characters. For example:

SPACE(5) -> ' '

STD(expr), STDDEV(expr)

Returns the standard deviation of expr. The STDDEV() form of this function is provided for Oracle compatibility.
For example:

STD(5) -> NULL

STRCMP(expr1,expr2)

STRCMP() returns zero, as marked if the strings are the same, -1 if the first argument is smaller than the
second according to the current sort order, and 1 otherwise. For example:

STRCMP('DUCKY', 'DUCK') -> 1

STRCMP('DUCK', 'DUCK') -> 0

SUBSTRING(str, pos, len), MID(str, pos, len)

Returns a substring len characters long from string str, starting at position pos. These functions are synonyms
for the ANSI SQL92 function SUBSTRING(str FROM pos FOR len). For example:

SUBSTRING('Hello, World!', 8, 10) -> 'World!'

SUBSTRING('Hello, World!' FROM 8 FOR 10) -> 'World!'

SUBSTRING(str,pos), SUBSTRING(str FROM pos)

Returns a substring from string str starting at position pos. For example:

SUBSTRING('Hello, World!', 8) -> 'World!'

SUBSTRING('Hello, World!' FROM 8) -> 'World!'

SUBSTRING_INDEX(str, delim, count)

Returns the substring of str after count occurrences of the delimiter delim. For example:

SUBSTRING_INDEX('www.mysql.com', '.', 2) -> 'www.mysql'

TAN(number)

Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) -> -0.000093

TIME_FORMAT(time, format)

This is used like DATE_FORMAT(), but the format string may contain only those format specifiers that handle
hours, minutes, and seconds. Other specifiers produce a NULL value or 0. See DATE_FORMAT for the format
specifiers available. For example:

TIME_FORMAT('2003-04-15 08:20:15', '%r') -> 08:20:15 AM

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TIME_FORMAT('2003-04-15 08:20:15', '%r') -> 08:20:15 AM

TIME_TO_SEC(time)

Returns the time argument, converted to seconds. For example:

TIME_TO_SEC('08:20:15') -> 30015

TO_DAYS(date)

Given a date, returns a day number (the number of days since the year 0). For example:

TO_DAYS('1999-04-15') -> 730224

TRUNCATE(X,D)

Returns the number X, truncated to D decimals. If D is 0, the result has no decimal point or fractional part. For
example:

TRUNCATE('123.456', 2) -> '123.45'

TRUNCATE('123.456', 0) -> '123'

TRUNCATE('123.456', -1) -> '120'

UCASE(str)

Synonym for UPPER(str). For example:

UCASE('duck') -> 'DUCK'

UNCOMPRESS(string)

Returns a compressed version of string.

UNHEX(str)

Returns a binary string constructed from hex characters in str.

UNIX_TIMESTAMP() ,UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since 1970-01-01 00:00:00 GMT). If
UNIX_TIMESTAMP() is called with a date argument, it returns the value of the argument as seconds since 1970-
01-01 00:00:00 GMT. For example:

UNIX_TIMESTAMP() -> 1056512427

UNIX_TIMESTAMP('1999-04-15') -> 924159600

USER() , SYSTEM_USER() , SESSION_USER()

These functions return the current MySQL username. For example:

USER() -> 'login@machine.com'

SYSTEM_USER() -> 'login@machine.com'

SESSION_USER() -> 'login@machine.com'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VERSION()

Returns a string indicating the MySQL server version. For example:

VERSION() -> '4.0.12-standard'

WEEK(date), WEEK(date, first)

With a single argument, returns the week for date, in the range 1 to 53. (The beginning of a week 53 is possible
during some years.) The two-argument form of WEEK() allows the user to specify whether the week starts on
Sunday (0) or Monday (1). For example:

WEEK('1999-04-15') -> 15

WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, . . . 6 = Sunday). For example:

WEEKDAY('1999-04-15') -> 3

YEAR(date)

Returns the year for date, in the range 1000 to 9999. For example:

YEAR('1999-04-15') -> 1999

YEARWEEK(date), YEARWEEK(date, first)

Returns the year and week for date. The second argument works exactly like the second argument to WEEK().
Note that the year may be different from the year in the date argument for the first and the last week of the
year. For example:

YEARWEEK('1999-04-15') -> 199915

4.5.3 Oracle-Supported Functions

This section provides an alphabetical listing of the SQL functions specific to Oracle, with examples and corresponding
results.

ACOS(number)

Returns the arc cosine of number ranging from -1 to 1. The result ranges from 0 to 1 and is expressed in
radians. For example:

SELECT ACOS(0) FROM DUAL -> 1.570796

ADD_MONTHS(date, int)

Returns the date plus int months. For example:

SELECT ADD_MONTHS('15-APR-1999', 3) FROM DUAL -> 15-JUL-99

ASCII(text)

Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') FROM DUAL -> 120

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ASCIISTR(text)

Converts text from any character set into an ASCII equivalent. Characters in text that have no equivalent in
ASCII will be replaced with the string \XXXX, where XXXX represents the UTF-16 code unit. For example:

SELECT ASCIISTR('ÄBC') FROM DUAL -> '\00C4BC'

ASIN(number)

Returns the arc sine of number ranging from -1 to 1. The resulting value ranges from -/2 to /2 and is expressed
in radians. For example:

SELECT ASIN(0) FROM DUAL -> 0.000000

ATAN(number)

Returns the arctangent of number. The resulting value ranges from -/2 to /2 and is expressed in radians. For
example:

SELECT ATAN(3.1415) FROM DUAL -> 1.262619

ATAN2(number,nbr)

Returns the arctangent of number and nbr. The values for number and nbr are not restricted, but the results range
from - to and are expressed in radians. ATAN2(x,y) is similar to ATAN(y/x), with the exception that the signs of
x and y are used to determine the quadrant of the result. For example:

SELECT ATAN2(3.1415, 1) FROM DUAL -> 1.26261873

BFILENAME(directory,filename)

Returns a BFILE locator associated with a physical LOB binary file on the server's filesystem in directory with the
name filename.

BIN_TO_NUM(expr[,...n])

Returns a decimal number equivalent of the binary bit vector contained in the expr arguments. For example:

SELECT BIN_TO_NUM(1,0,1) FROM DUAL -> 5

BITAND(integer1, integer2)

Returns the bitwise AND of the two integer arguments. For example:

SELECT BITAND(101, 2) FROM DUAL -> 0

SELECT BITAND(column1, 1) FROM DUAL -> 1

CARDINALITY(nested_table)

Returns the number of elements (cardinality) of the nested_table. If the nested_table is empty, NULL will be
returned. For example:

SELECT CARDINALITY(mytable) FROM DUAL -> 6

CHARTOROWID(char)

Converts a value from a character datatype (CHAR or VARCHAR2 datatype) to a ROWID datatype.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converts a value from a character datatype (CHAR or VARCHAR2 datatype) to a ROWID datatype.

CHR(number [USING NCHAR_CS])

Returns the character having the binary equivalent to number in either the database character set (if USING
NCHAR_CS is not included) or the national character set (if USING NCHAR_CS is included).

COALESCE(list)

Returns the first non-NULL element in the list. For example:

SELECT COALESCE(NULL, 1, 2) FROM DUAL -> 1

COLLECT (column)

Creates for each group a nested table consisting of all values in a column. This is an aggregate function.

COMPOSE(string)

Returns string as a fully normalized UNICODE string.

CONCAT(string1, string2)

Returns string1 concatenated with string2. CONCAT is equivalent to the concatenation operator (||). For example:

SELECT CONCAT(au_lname, au_fname) FROM AUTHORS -> 'JeffersonThomas'

CONVERT(char_value, target_char_set, source_char_set)

Converts a character string from one character set to another; returns char_value in the target_char_set after
converting char_value from the source_char_set.

CORR_K(expr1, expr2 [,return_type])

CORR_S(expr1, expr2 [,return_type])

CORR_K returns Kendall's tau-b correlation coefficient, and CORR_S returns Spearman's rho correlation
coefficient of a set of numbered pairs (expr1 and expr2). The return_type argument, a VARCHAR2, can be omitted
or one of the following values: 'COEFFICIENT', 'ONE_SIDED_SIG', 'TWO_SIDED_SIG'. The value of 'COEFFICIENT',
which specifies the default behavior, returns the coefficent of the correlation. The values of 'ONE_SIDED_SIG' and
'TWO_SIDED_SIG' will return the one- and two-tailed significance of the correlation, respectively.

COS(number)

Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) FROM DUAL -> 1.000000

COSH(number)

Returns the hyperbolic cosine of number. For example:

SELECT COSH(180) FROM DUAL -> 7.4469E+77

SELECT COT(3.1415) FROM DUAL -> -10792.88993953

COT(number)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COT(number)

Returns the cotangent of number. For example:

SELECT COT(3.1415) -> -10792.88993953

CV([dimension_column])

Relevant only in the inter-row calculations performed within the MODEL clause of a SELECT statement, this
function returns the current value of the dimension_column. CV can only be used in the righthand side of a rule,
since it returns the value of the dimension_column from the left-hand side of the same rule.

DBTIMEZONE

Returns the time zone offset from UTC time for the database server. For example:

SELECT DBTIMEZONE FROM DUAL -> +00:00

DECODE(expr, search , result [, search, result [,...n]] [,default])

Compares expr to the search value; if expr is equal to a search, it returns the result. For example:

DECODE ('B','A',1,'B',2,...'Z',26,'?') -> 2

Without a match, DECODE returns default, or NULL if default is omitted. Refer to Oracle documentation for more
details. Consider using CASE instead, as CASE is part of the ANSI/ISO SQL standard.

DECOMPOSE(string [{CANONICAL | COMPATIBILITY}])

Returns string decomposed into UNICODE code-points. The second argument specifies the type of decomposition
performed. CANONICAL, which specifies the default behavior, allows the original UNICODE string to be
recomposed.

DEPTH(number)

Returns the depth of the path specified by the UNDER_PATH condition in an XML query. See the Oracle SQL
Reference for more information.

DEREF(expression)

Returns the object referenced by expression, where expression must return a REF to an object.

DUMP(expression [,return_format [, starting_at [,length]]])

Returns a VARCHAR2 value containing a datatype code, length in bytes, and internal representation of expression.
The resulting value is returned in the format of return_format. For example:

SELECT DUMP('abc', 1016) FROM DUAL

Typ=96 Len=3 CharacterSet=AL32UTF8: 61,62,63

EMPTY_BLOB() , EMPTY_CLOB()

Returns an empty LOB locator that can be used to initialize a LOB variable. It can also be used to initialize a
LOB column or attribute to empty in an INSERT or UPDATE statement.

EXISTSNODE(instance, xpath [, namespace])

Returns 1 if applying the XPath query in xpath would return any nodes from instance; otherwise, returns 0. The
optional namespace parameter specifies the XML namespace in the query. For more information on XML queries,
refer to the Oracle SQL Reference.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

refer to the Oracle SQL Reference.

EXTRACT(instance, xpath [, namespace])

Returns the XML nodes from instance returned by running the XPath query contained in the xpath parameter. The
optional namespace parameter specifies the XML namespace in the query. For more information on XML queries,
refer to the Oracle SQL Reference. For example:

SELECT EXTRACT(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),

 '/foo/bar') from DUAL

<bar>Hello, World!</bar>

EXTRACTVALUE(instance, xpath [, namespace])

Returns the value from an XML node returned by running the XPath query contained in the xpath parameter.
The optional namespace parameter specifies the XML namespace in the query. For more information on XML
queries, refer to the Oracle SQL Reference. For example:

SELECT EXTRACTVALUE(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),

 '/foo/bar') from DUAL

Hello, World!

FIRST

An aggregate function that returns a specified value from the row that ranks first, given the order specified in
the ORDER BY clause. Syntax:

aggregate(aexpr) KEEP (DENSE_RANK FIRST ORDER BY expr [,...n])

where the syntax of expr is:

expr := [ASC|DESC] [NULLS {FIRST|LAST}]

The first ranking row following the order specified by expr will be used in the aggregate function aggregate. The
aexpr is the expression passed to the aggregate function. For example:

SELECT MAX(c1) KEEP (DENSE_RANK FIRST ORDER BY c2) FROM FIVE_NUMS

1

FIRST_VALUE(expression IGNORE NULLS) OVER (window_clause)

Returns the first value in an ordered set of values. FIRST_VALUE is an analytic function. See the Section 4.3
earlier in this chapter for a detailed explanation of the window_clause. For example:

SELECT FIRST_VALUE(col1) OVER () FROM NUMS

1

1

1

1

FROM_TZ(timestamp, timezone)

Returns timestamp converted to a TIMESTAMP WITH TIME ZONE value, where timestamp is a TIMESTAMP value
and timezone is a string in the TZH:TZM format. For example:

SELECT FROM_TZ(TIMESTAMP '2004-04-15 23:59:59', '8:00') FROM DUAL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT FROM_TZ(TIMESTAMP '2004-04-15 23:59:59', '8:00') FROM DUAL

'15-APR-04 11.59.59 PM +08:00'

GREATEST(expression [,...n])

Returns the greatest of the list of expressions. All expressions after the first are implicitly converted to the
datatype of the first expression before the comparison. For example:

SELECT GREATEST(8,2,4) FROM DUAL -> 8

GROUP_ID()

Returns a positive value for each duplicate group returned by a query containing a GROUP BY clause. This
function is useful in filtering out duplicate groups created when using CUBE, ROLLUP, or other GROUP BY
extension (see GROUPING.)

GROUPING(column_name)

Returns 1 when a row is added by CUBE, ROLLUP, or other GROUP BY extensions; otherwise returns 0. For
example:

SELECT royalty, SUM(advance) 'total advance',

 GROUPING(royalty) 'grp'

 FROM titles

 GROUP BY royalty WITH ROLLUP

royalty total advance grp

--------- --------------------- ---

NULL NULL 0

10 57000.0000 0

12 2275.0000 0

14 4000.0000 0

16 7000.0000 0

24 25125.0000 0

NULL 95400.0000 1

GROUPING_ID(column_name1 [, column_name2 ,...])

Returns the base-10 number that is equal to the binary value constructed by concatenating the GROUPING
values on each of the parameters. GROUPING_ID is useful when returning a query containing multiple levels of
aggregation created by GROUP BY expressions. Consider using the GROUPING_ID function instead of multiple
GROUPING functions within one query. This function is a shorthand equivalent of:

BIN_TO_NUM(GROUPING(column_name1) [, GROUPING(column_name2) ,...])

HEXTORAW(string)

Converts string containing hexadecimal digits into a raw value. For example:

SELECT HEXTORAW('0FE') FROM DUAL -> '00FE'

INITCAP(string)

Returns string, with the first letter of each word in uppercase and all other letters in lowercase. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns string, with the first letter of each word in uppercase and all other letters in lowercase. For example:

SELECT INITCAP('thomas jefferson') FROM DUAL -> 'Thomas Jefferson'

INSTR(string1, string2 [, start_at [, occurrence]])

Returns the position of string2 within string1. INSTR searches string1 with a starting position of start_at (an
integer) looking for the specified occurrence of string2. For example:

SELECT INSTR('foobar', 'o', 1, 1) FROM DUAL -> 2

Use INSTRB for bytes, INSTRC for UNICODE complete characters, INSTR2 for UNICODE UCS2 code points, and
INSTR4 for UNICODE UCS4 code points.

ITERATION_NUMBER

Relevant only in the inter-row calculations performed within the MODEL clause of a SELECT statement, this
function returns the number of times the rules within the MODEL clause have been executed while processing
the query.

LAG(expression [,offset][,default]) OVER (window_clause)

An analytic function that provides access to more than one row of a table at the same time without a self join.
LAG provides a "lagging" value in the result set that lags offset rows behind the current row. The default value is
used for the first offset rows in the result set, since the "lagging" value is undefined for these rows. See Section
4.3 earlier in this chapter for a detailed explanation of the window_clause. For example:

SELECT c1, LAG(c1, 2, 0) OVER (ORDER BY c1) FROM FIVE_NUMS

1 0

2 0

3 1

4 2

5 3

LAST

Returns the row that ranks last given the order specified in the ORDER BY clause. The syntax is:

aggregate(aexpr) KEEP (DENSE_RANK LAST ORDER BY expr [,...n])

where the syntax of expr is:

expr := [ASC|DESC] [NULLS {FIRST|LAST}]

The last ranking row following the order specified by expr will be used in the aggregate function aggregate. The
aexpr is the expression passed to the aggregate function. For example:

SELECT MIN(c1) KEEP (DENSE_RANK LAST ORDER BY c1) FROM FIVE_NUMS

5

LAST_DAY(date)

Returns the date of the last day of the month that contains date. For example:

SELECT LAST_DAY('15-APR-1999') FROM DUAL -> 30-APR-99

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LAST_VALUE(expression [IGNORE NULLS]) OVER (window_clause)

Returns the last value in an ordered set of values. See Section 4.3 earlier in this chapter for a detailed
explanation of the window_clause. For example:

SELECT c1, LAST_VALUE(c1) OVER (ORDER BY c1) FROM FIVE_NUMS

1 5

2 5

3 5

4 5

5 5

LEAD(expression [,offset][,default]) OVER(window_clause)

An analytic function that provides access to more than one row of a table at the same time without a self join.
LEAD provides a "leading" value in the result set that is offset rows ahead of the current row. The default value is
used for the last offset rows in the result set, since the "leading" value is undefined for these rows. See Section
4.3 earlier in this chapter for a detailed explanation of the window_clause. For example:

SELECT c1, LEAD(c1, 2) OVER (ORDER BY c1) FROM FIVE_NUMS

1 3

2 4

3 5

4

5

LEAST(expression [,...n])

Returns the least of the list of expressions. For example:

SELECT LEAST(10,5,3,7) FROM DUAL -> 3

LENGTH(string)

Returns the integer length of string, or NULL if string is NULL. For example:

SELECT LENGTH('DUCK') FROM DUAL -> 4

LENGTHB(string)

Returns the length of char in bytes; otherwise, the same as LENGTH. For example:

SELECT LENGTHB('DUCK') FROM DUAL -> 4

Use LENGTHB for bytes, LENGTHC for UNICODE complete characters, LENGTH2 for UNICODE UCS2 code points,
and LENGTH4 for UNICODE UCS4 code points.

LNNVL(condition)

Returns true if condition is false or if one of the operands in condition is NULL. For example:

SELECT COUNT(*) FROM authors WHERE LNNVL(contract <> 1) -> 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LOCALTIMESTAMP [(precision)]

Returns a TIMESTAMP value for the current date and time. This function is similar to CURRENT_TIMESTAMP,
with the exception that this function does not return a TIME ZONE value with the TIMESTAMP. For example:

SELECT LOCALTIMESTAMP FROM DUAL -> '15-APR-05 03.15.00 PM'

LOG(base_number, number)

Returns the logarithm of any base_number of number. For example:

SELECT LOG(50,10) FROM DUAL -> .58859191

LPAD(string1, number [,string2])

Returns string1, left-padded to length number using characters in string2; string2 defaults to a single blank. For
example:

SELECT LPAD('ucks',5,'d') FROM DUAL -> 'ducks'

LTRIM(string[, set])

Removes all characters in set from the left of string. Set defaults to a single blank. For example:

SELECT LTRIM(' Howdy! ',' ') FROM DUAL -> 'Howdy! '

MAKE_REF({table_name | view_name} , key [,...n])

Creates a reference (REF) to a row of an object view or a row in an object table whose object identifier is
primary key-based.

MEDIAN(expression) OVER (partitioning)

Returns the median value in an ordered set of numeric or datetime values. See Section 4.3 earlier in this
chapter for a detailed explanation of the partitioning clause. For example:

SELECT MEDIAN(c1) FROM FIVE_NUMS -> 3

MONTHS_BETWEEN(date1, date2)

Returns the number of months between dates date1 and date2. When date1 is later than date2, the result is
positive. If it is earlier, the result is negative. For example:

SELECT MONTHS_BETWEEN('15-APR-2000', '15-JUL-1999') FROM DUAL -> 9

NANVL(a, b)

Returns b when a is not a number (NaN); returns a otherwise. Expression a must evaluate to a BINARY_FLOAT
or BINARY_DOUBLE number, which are the only number types that permit storing NaN. For example:

SELECT c1, NANVL(c1, 0) FROM NUMS

1.0E+000 1.0E+000

2.0E+000 2.0E+000

Nan 0

NCHAR(number)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A synonym for CHR(number) USING NCHAR_CS.

NEW_TIME(date, time_zone1, time_zone2)

Returns the date and time in time_zone2 using date as the input date/time, and using time_zone1 as the
originating time zone. For example:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY HH12:MI:SS'

SELECT NEW_TIME(TO_DATE('04-15-99 08:22:31', 'MM-DD-YY HH12:MI:SS'),

'AST', 'PST') FROM DUAL

15-APR-2099 04:22:31

Time_zone1 and Time_zone2 may be any of these text strings:

AST, ADT: Atlantic Standard or Daylight Time

BST, BDT: Bering Standard or Daylight Time

CST, CDT: Central Standard or Daylight Time

EST, EDT: Eastern Standard or Daylight Time

GMT: Greenwich Mean Time

HST, HDT: Alaska-Hawaii Standard or Daylight Time

MST, MDT: Mountain Standard or Daylight Time

NST: Newfoundland Standard Time

PST, PDT: Pacific Standard or Daylight Time

YST, YDT: Yukon Standard or Daylight Time

NEXT_DAY(date, string)

Returns the date of the first weekday named by string that is later than date. The argument string must be either
the full name or the abbreviation of a day of the week in the date language of the session. For example:

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YYYY'

SELECT NEXT_DAY('15-APR-1999', 'SUNDAY') FROM DUAL

18-APR-1999

NLS_CHARSET_DECL_LEN(bytecnt, csid)

Returns the declaration width (bytecnt) of an NCHAR column using the character set ID (csid) of the column.

NLS_CHARSET_ID(text)

Returns the NLS character set ID number corresponding to text.

NLS_CHARSET_NAME(number)

Returns the VARCHAR2 name for the NLS character set corresponding to the ID number.

NLS_INITCAP(string [,nlsparameter])

Returns string with the first letter of each word in uppercase and all other letters in lowercase. The nlsparameter
offers special linguistic sorting features.

NLS_LOWER(string [,nlsparameter])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns string with all letters lowercase. The nlsparameter offers special linguistic sorting features.

NLSSORT(string [,nlsparameter])

Returns the string of bytes used to sort string. The nlsparameter offers special linguistic sorting features.

NLS_UPPER(string [,nlsparameter])

Returns string with all letters uppercase. The nlsparameter offers special linguistic sorting features.

NTILE(expression) OVER ([partitioning] ordering)

Divides an ordered data set into a number of groups numbered 1 to expression and assigns the appropriate
group number to each row. Rows are allocated to each group so that the number of rows per group varies by
no more than one. See Section 4.3 earlier in this chapter for details on the partitioning and ordering clauses. For
example:

SELECT c1, NTILE(4) OVER (ORDER BY c1) FROM FIVE_NUMS

1 1

2 1

3 2

4 3

5 4

NULLIF(expr1, expr2)

Returns NULL if expr1 is equal to expr2. If the two expressions are not equal, then the function returns expr1. A
NULL value, if passed as one of the expressions, can only be specified as the second expression expr2. For
example:

SELECT c1, c2, NULLIF(c1, c2) FROM NUMS

1 2 1

2 2

3 2 3

NUMTODSINTERVAL(number, string)

Converts number to an INTERVAL DAY TO SECOND literal, where number is a number or an expression resolving
to a number, such as a numeric datatype column. The second argument, string, can be 'DAY', 'HOUR', 'MINUTE',
or 'SECOND', which specifies how to interpret number. For example:

SELECT NUMTODSINTERVAL(100, 'DAY') FROM DUAL

+000000100 00:00:00.000000000

NUMTOYMINTERVAL(number, string)

Converts number to an INTERVAL YEAR TO MONTH literal, where number is a number or an expression resolving
to a number, such as a numeric datatype column. The second argument, string, can be 'YEAR' or 'MONTH', which
specifies how to interpret number. For example:

SELECT NUMTOYMINTERVAL(100, 'YEAR') FROM DUAL

+000000100-00

NVL(expression1, expression2)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NVL(expression1, expression2)

If expression1 is NULL, expression2 is returned in place of that NULL value. Otherwise, expression1 is returned.
expression1 and expression2 may be any datatype. For example:

SELECT NVL(2,29) FROM DUAL -> 2

NVL2(expression1, expression2, expression3)

Similar to NVL, except that if expression1 is not NULL, expression2 is returned. If expression1 is NULL, expression3 is
returned. The expressions may be any datatype except LONG. For example:

SELECT NVL2(1,3,5) FROM DUAL -> 3

ORA_HASH(expression [, buckets [, seed]])

Computes a hash value from expression and returns a bucket number based on the computed hash value. The
optional buckets argument is the maximum bucket number to use, which is one less than the total number of
buckets, since the bucket numbering starts at 0. The default for buckets is 4,294,967,295. The optional seed
value is used to seed the hashing function so that multiple results can be produced from the same data by only
changing the seed value. The seed value defaults to 0. This example psuedo-randomly assigns all numbers to
one of two buckets and returns those assigned to the first bucket, which will be a sample of roughly one half of
the values:

SELECT C1 FROM FIVE_NUMS WHERE

 ORA_HASH(C1, 1, TO_CHAR(SYSTIMESTAMP, 'SSSS.FF')) = 0

1

5

PATH(number)

Returns the path specified by the UNDER_PATH condition with the correlation variable number in an XML query.
See the Oracle SQL Reference for more information.

POWERMULTISET(nested_table) POWERMULTISET_BY_CARDINALITY(nested_table, cardinality)

Returns a nested table of nested tables of all nonempty subsets of the input nested table in the nested_table
parameter. POWERMULTISET_BY_CARDINALITY has an additional parameter that can be used to limit the
subsets returned to a specified minimum cardinality. For more information, please see the Oracle SQL
Reference.

PRESENTNNV(cell_reference, expr1, expr2)

Relevant only in the inter-row calculations performed within the MODEL clause of a SELECT statement, this
function returns expr1 when cell_reference exists and is not NULL; otherwise, it returns expr2.

PRESENTV(cell_reference, expr1, expr2)

Relevant only in the interrow calculations performed within the MODEL clause of a SELECT statement. This
function returns expr1 when cell_reference exists; otherwise, it returns expr2.

PREVIOUS(cell_reference)

Relevant only in the inter-row calculations performed within the ITERATE...[UNTIL] section of a SELECT's
MODEL clause. This function returns the value held by cell_reference at the beginning of the iteration.

RATIO_TO_REPORT (value_exprs) OVER (partitioning)

Computes the ratio of a value in value_exprs to the sum of all value_exprs with each partition. If values_expr is
NULL, the ratio-to-report value also is NULL. See Section 4.3 earlier in this chapter for details on the partitioning
clause. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clause. For example:

SELECT c1, RATIO_TO_REPORT(c1) OVER () FROM FIVE_NUMS

1 .066666667

2 .133333333

3 .2

4 .266666667

5 .333333333

RAWTOHEX(raw)

Converts a raw value to a string (character datatype) of its hexadecimal equivalent. For example:

SELECT RAWTOHEX('Hi') FROM DUAL -> 4869

RAWTONHEX(raw)

Converts a raw value to an NVARCHAR2 (character datatype) of its hexadecimal equivalent.

REF(table_alias)

REF takes a table alias associated with a row from an object table or an object view. A special reference value is
returned for the object instance that is bound to the variable or row.

REFTOHEX(expression)

Converts expression to a character value containing its hexadecimal equivalent.

REGEXP_INSTR(string, pattern [, start_at [, occurrence [, roption [, mparam]]]])

Returns the character position within string matching the regular expression pattern in pattern. REGEXP_INSTR
searches string with a starting position of start_at (an integer greater than 0) looking for the specified occurrence
of pattern. Both the start_at and occurrence parameters default to 1. The roption parameter can be 0 or 1 and
specifies if the position returned is the first character matching the pattern or the character after. The default
for roption is 0, which returns the position of the first character matching the pattern. The mparam argument can
be used to modify the matching behavior of the function and can be set to one or more of the following
characters:

'i'

matching is case-insensitive

'c'

matching is case-sensitive

'n'

the "." character matches newline characters

'm'

treat input string as multiple lines; use '^' to match the beginning of a line and '$' to match the end of a line

For example:

SELECT REGEXP_INSTR('Hello, World!', '([^]*)!', 1, 1) FROM DUAL -> 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REGEXP_REPLACE(string, pattern [, newstr [, start_at [, occurrence [, mparam]]]])

Returns the result of replacing all occurrences of the regular expression in pattern within string with another
string newstr. REGEXP_REPLACE searches string with a starting position of start_at (an integer greater than 0)
looking for the specified occurrence of pattern. Both the start_at and occurrence parameters default to 1. The
mparam argument can be used to modify the matching behavior of the function and can be set to one or more of
the following characters:

'i'

matching is case-insensitive

'c'

matching is case-sensitive

'n'

the "." character matches newline characters

'm'

treat input string as multiple lines; use '^' to match the beginning of a line and '$' to match the end of a line

For example:

SELECT REGEXP_REPLACE('Hello, World!', '([^]*!)', 'Reader!') FROM DUAL

'Hello, Reader!'

REGEXP_SUBSTR(string, pattern [, start_at [, occurrence [, mparam]]])

Returns the substring within string matching the regular expression pattern pattern. REGEXP_SUBSTR searches
string with a starting position of start_at (an integer greater than 0) looking for the specified occurrence of pattern.
Both the start_at and occurrence parameters default to 1. The mparam argument can be used to modify the
matching behavior of the function and can be set to one or more of the following characters:

'i'

matching is case-insensitive

'c'

matching is case-sensitive

'n'

the `.' character matches newline characters

'm'

treat input string as multiple lines; use '^' to match the beginning of a line and '$' to match the end of a line

For example:

SELECT REGEXP_SUBSTR('Hello, World!', '([^]*!)') FROM DUAL

'World!'

REMAINDER(m, n)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

REMAINDER(m, n)

Returns the remainder of m divided by n. This return value is equivalent to the expression:

m-n*ROUND(m/n)

The function MOD uses FLOOR instead of ROUND. For example:

SELECT REMAINDER(11, 4), MOD(11, 4) FROM DUAL

-1 3

REPLACE(string, search_string [,replacement_string])

Returns string with every occurrence of search_string replaced with replacement_string. For example:

SELECT REPLACE('change', 'e', 'ing') FROM DUAL -> 'changing'

ROUND (number[, decimal])

Returns number rounded to decimal places right of the decimal point. When decimal is omitted, number is rounded
to an integer. Note that decimal, an integer, can be negative to round off digits left of the decimal point. For
example:

SELECT ROUND(12345.6789, 2) FROM DUAL -> 12345.68

ROUND (date[, format])

Returns the date rounded to the unit specified by the format model. When format is omitted, date is rounded to
the nearest day. (For more on valid format specifiers, see the TO_CHAR function.) For example:

SELECT ROUND(TO_DATE('15-APR-1999'), 'MONTH') FROM DUAL

01-APR-1999

ROWIDTOCHAR(rowid), ROWIDTONCHAR(rowid)

ROWIDTOCHAR converts a rowid value to the VARCHAR2 datatype, 18 characters long. ROWIDTONCHAR
converts rowid to an 18-character long NVARCHAR2 value. For example:

SELECT ROWIDTOCHAR(ROWID) FROM NUMS

ABAsxDAAKAAAAEqAAA

ABAsxDAAKAAAAEqAAB

ABAsxDAAKAAAAEqAAC

ABAsxDAAKAAAAEqAAD

RPAD(string1, number [, string2])

Returns string1, right-padded to length number with the value of string2, repeated as needed. string2 defaults to a
single blank. For example:

SELECT RPAD('duck',8,'s') FROM DUAL -> 'duckssss'

RTRIM(string[,set])

Returns string, with all the rightmost characters that appear in set removed; set defaults to a single blank. For
example:

SELECT RTRIM(' welcome ', ' ') FROM DUAL -> ' welcome'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT RTRIM(' welcome ', ' ') FROM DUAL -> ' welcome'

SCN_TO_TIMESTAMP(scn)

Returns the timestamp associated with the System Change Number (SCN) argument. For example:

SELECT SCN_TO_TIMESTAMP(ORA_ROWSCN) FROM NUMS WHERE c1 = 1

15-APR-04 02.56.05.000000000 PM

SESSIONTIMEZONE

Returns the session's time zone offset. For example:

SELECT SESSIONTIMEZONE FROM DUAL -> -06:00

SET(nested_table)

Returns a nested table of distinct elements from the input nested table. For more information, please see the
Oracle SQL Reference.

SIGN(number)

When number < 0, returns -1. When number = 0, returns 0. When number > 0, returns 1. For example:

SELECT SIGN(-3.1415926) FROM DUAL -> -1

SIN(number)

Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SINH(number)

Returns the hyperbolic sine of number. For example:

SELECT SINH(180) FROM DUAL -> 7.4469E+77

SOUNDEX(string)

Returns a character string containing the phonetic representation of string. This function allows words that are
spelled differently but sound alike in English to be compared for equality. For example:

SELECT SOUNDEX('thimble') FROM DUAL -> 'T514'

STATS_BINOMIAL_TEST, STATS_CROSSTAB, STATS_F_TEST, STATS_KS_TEST, STATS_MODE, STATS_MW_TEST,
STATS_ONE_WAY_ANOVA, STATS_T_TEST_ONE, STATS_T_TEST_PAIRED, STATS_T_TEST_INDEP,
STATS_T_TEST_INDEPU, STATS_WSR_TEST

Oracle provides many sophisticated statistical functions. For further information on the STATS_* functions,
please see the Oracle SQL Reference.

STDDEV([DISTINCT | ALL] expression) [OVER (window_clause)]

Returns a sample standard deviation of a set of numbers shown as expression. See Section 4.3 earlier in this
chapter for details on the window_clause. For example:

SELECT STDDEV(col1) FROM NUMS -> 5.71547607

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT STDDEV(col1) FROM NUMS -> 5.71547607

STDDEV_SAMP(expression) [OVER (window_clause)]

Computes the cumulative sample standard deviation and returns the square root of the sample variance. See
Section 4.3 earlier in this chapter for details on the window_clause. For example:

SELECT STDDEV_SAMP(col1) FROM NUMS -> 5.71547607

STDEV_POP(expression) [OVER (window_clause)]

Computes the population standard deviation and returns the square root of the population variance. See Section
4.3 earlier in this chapter for details on the window_clause. For example:

SELECT STDDEV_POP(col1) FROM NUMS -> 4.94974747

SUBSTR(string, start [FROM starting_position] [FOR length])

Refer to the earlier section on SUBSTR. For example:

SELECT SUBSTR('Hello, World!',8,10) FROM DUAL -> 'World!'

SUBSTRB(extraction_string [, length])

Returns the portion of string beginning at start and continuing for length characters. If length is omitted, all
characters from start onward are returned. If start is negative, it represents an offset from the right edge of the
string. For example:

SELECT SUBSTR ('Hello, World!', 8)

FROM DUAL -> World!

Use SUBSTRB for bytes, SUBSTRC for UNICODE complete characters, SUBSTR2 for UNICODE UCS2 code points,
and SUBSTR4 for UNICODE UCS4 code points.

SYS_CONNECT_BY_PATH(column, char)

For hierarchical queries, SYS_CONNECT_BY_PATH returns the path from the root to the node with the column
name specified by the column parameter. The char parameter specifies the node separator for the return path.
For more on Oracle hierarchical queries, please refer to the Oracle SQL Reference.

SYS_CONTEXT(namespace,attribute[,length])

Returns the value of attribute associated with the context namespace, usable in both SQL and PL/SQL statements.
For example:

SELECT SYS_CONTEXT ('USERENV', 'SESSION_USER') FROM DUAL

 'LOGIN'

SYS_DBURIGEN(column [,rowid] [,...] [, 'text() '])

Returns a URL that can be used as a unique reference to the row specified by the column parameter. For
columns that don't hold unique values, a rowid can be used directly after the column it identifies to guarantee
that the URL only points to one row. Use the 'text()' option if you want the URL to point to the text within an
XML document, instead of the document itself.

SYS_EXTRACT_UTC(datetime)

Returns the datetime argument converted to a UTC datetime value. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the datetime argument converted to a UTC datetime value. For example:

SELECT SYS_EXTRACT_UTC(TIMESTAMP '2004-04-15 11:59:59.00 -08:00')

FROM DUAL

'15-APR-04 07.59.59.000000000 PM'

SYS_GUID()

Generates and returns a globally unique identifier (RAW value) made up of 16 bytes. For example:

SELECT SYS_GUID() FROM DUAL -> C0FD3FDC30148EAEE030440A49096A41

SYS_TYPEID(object_value)

Returns the type ID of the object_value parameter.

SYS_XMLAGG(expr [,format])

Returns a single XML document created by aggregating the XML documents or fragments in the expr parameter.
The optional format parameter can be used to format the XML document. For more information, refer to the
Oracle SQL Reference.

SYS_XMLGEN(expression [,format])

Returns a single XML document created from the expression. The optional format parameter can be used to
format the XML document. For more information, refer to the Oracle SQL Reference.

SYSDATE

Returns the current date and time on the system in which the database is hosted. The value returned is of type
DATE. For example:

SELECT SYSDATE FROM DUAL -> 26-JUN-2003

SYSTIMESTAMP

Returns the current date and time on the system in which the database is hosted. The value returned is of type
TIMESTAMP. For example:

SELECT SYSTIMESTAMP FROM DUAL

26-JUN-2003 11.15.00.000000 PM -06:00

TAN(number)

Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) FROM DUAL -> -0.000093

TANH(number)

Returns the hyperbolic tangent of number. For example:

SELECT TANH(180) FROM DUAL -> 1

TIMESTAMP_TO_SCN (timestamp_value)

Returns the approximate system change number (SCN) associated with that timestamp. The return value is of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the approximate system change number (SCN) associated with that timestamp. The return value is of
type NUMBER.

TO_BINARY_DOUBLE (expr [, format [, nls_parameter]])

Converts expr to a BINARY_DOUBLE in the format specified by the format parameter. If expr is a character
expression, the format and nls_parameter options have equivalent meanings, as they do in the TO_CHAR function.
If expr is a numeric expression, then format and nls_parameter must be omitted. For example:

SELECT c1, TO_BINARY_DOUBLE(c1) FROM NUMS

1 1.0E+000

2 2.0E+000

3 3.0E+000

TO_BINARY_FLOAT(expr [, format [, nls_parameter]])

Converts expr to a BINARY_FLOAT in the format specified by the format parameter. If expr is a character
expression, the format and nls_parameter options have equivalent meanings as they do in the TO_CHAR function.
If expr is a numeric expression, then format and nls_parameter must be omitted. For example:

SELECT c1, TO_BINARY_FLOAT(c1) FROM NUMS

1 1.0E+000

2 2.0E+000

3 3.0E+000

TO_CHAR (character_expr)

Converts character_expr to the database character set. For example:

SELECT TO_CHAR('Howdy') FROM DUAL

Howdy

TO_CHAR (date | interval [, format [, nls_parameter]])

Converts date or interval to a VARCHAR2 in the format specified by the date format. When format is omitted, date
is converted to the default date format. The nls_parameter option offers additional control over formatting. Listed
below are the available specifiers for format and their meanings.

AD or A.D.

AD indicator

AM or A.M.

Meridian indicator

BC or B.C.

BC indicator

D

Day of week (1-7)

DAY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Name of day

DD

Day of month (1-31)

DDD

Day of year (1-366)

DL

Long date format

DS

Short date format

DY

Abbreviated name of day

FF

Fractional seconds; to specify the precision, include a number (1-9) after the FF specifier

HH or HH12

Hour of day (1-12)

HH24

Hour of day (0-23)

J

Julian day; the number of days since January 1, 4713 BC

MI

Minute (0-59)

MM

Month (01-12)

MON

Abbreviated name of month

RM

Roman numeral month (I-XII)

SS

Second (0-59)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Second (0-59)

SSSSS

Seconds past midnight (0-86,399)

SYYY

Four-digit year; BC dates are prefixed with a minus sign

TS

Short time format.

TZD

Daylight savings information (example: PST versus PDT)

TZH

Time zone hour

TZM

Time zone minute

TZR

Time zone region

X

Local radix character

Y, YY, or YYY

One, two, or three digits for the year

Y,YYY

Year with comma

YYYY

Four-digit year

For example:

SELECT TO_CHAR(TO_DATE('15-APR-1999') ,'MON-DD-YYYY') FROM DUAL

APR-15-1999

TO_CHAR (number [, format [, nls_parameter]])

Converts number to a VARCHAR2 in the format specified. When format is omitted, number is converted to a string
long enough to hold the number. The nls_parameter option offers additional control over formatting options. For
example:

SELECT TO_CHAR(123.45, '$999.99') FROM DUAL -> $123.45

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TO_CLOB (expr)

Converts the character expression given by expr to the CLOB datatype. For example:

SELECT LENGTH(TO_CLOB('I am a SQL nut!')) FROM DUAL -> 15

TO_DATE(string [, format [, nls_parameter]])

Converts string (in CHAR or VARCHAR2) to a DATE datatype. The nls_parameter option offers additional control
over formatting options. For example:

SELECT TO_DATE('15/04/1999', 'DD/MM/YYYY') FROM DUAL

15-APR-1999

TO_DSINTERVAL(string [, nls_parameter])

Converts the character expression given by string to the INTERVAL DAY TO SECOND datatype. The nls_parameter
option offers additional control over formatting options. For example:

SELECT CURRENT_DATE, CURRENT_DATE-TO_DSINTERVAL('14 00:00:00') FROM DUAL

15-APR-2003 01-APR-2003

TO_LOB(long_column)

Usable only by LONG or LONG RAW expressions, it converts LONG or LONG RAW values in the column
long_column to LOB values. It is usable only in the SELECT list of a subquery in an INSERT statement.

TO_MULTI_BYTE(string)

Returns string with all of its single-byte characters converted to their corresponding multibyte characters.

TO_NCHAR(expr [, format [,nls_parameter]])

Synonymous with the TO_CHAR function, except the return datatype is NCHAR. For more on valid format
specifiers, see the TO_CHAR function.

TO_NCLOB (expr)

Converts the character expression given by expr to the NCLOB datatype. For example:

SELECT LENGTH(TO_NCLOB('I am a SQL nut!')) FROM DUAL -> 15

TO_NUMBER(string [, format [,nls_parameter]])

Converts a numeric string (of CHAR or VARCHAR2 datatype) to a value of NUMBER datatype, optionally in the
format specified by the format model. The nls_parameter option offers additional control over formatting options.
For example:

SELECT TO_NUMBER('12345') FROM DUAL -> 12345

TO_SINGLE_BYTE(string)

Returns string with all of its multibyte characters converted to their corresponding single-byte characters.

TO_TIMESTAMP(string [, format [,nls_parameter]])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TO_TIMESTAMP(string [, format [,nls_parameter]])

Converts the character expression provided by string to the TIMESTAMP datatype, optionally in the format
specified by the format parameter. The nls_parameter option offers additional control over formatting options. (For
more on valid format specifiers, see the TO_CHAR function.) For example:

SELECT TO_TIMESTAMP(CURRENT_DATE) FROM DUAL -> 04-MAY-04 12.00.00 AM

TO_TIMESTAMP_TZ(string [, format [,nls_parameter]])

Converts the character expression provided by string to the TIMESTAMP WITH TIME ZONE datatype, optionally
in the format specified by the format parameter. The nls_parameter option offers additional control over
formatting options. (For more on valid format specifiers, see the TO_CHAR function.) For example:

SELECT TO_TIMESTAMP_TZ('15-04-2006', 'DD-MM-YYYY') FROM DUAL

15-APR-06 12.00.00.000000000 AM -07:00

TO_YMINTERVAL(string)

Converts the character expression provided by string to the INTERVAL YEAR TO MONTH datatype. For example:

SELECT TO_DATE('29-FEB-2000')+TO_YMINTERVAL('04-00') FROM DUAL

29-FEB-04

TRANSLATE(char_value, from_text, to_text)

Returns char_value with each occurrence of a character in from_text replaced by its corresponding character in
to_text. For example:

SELECT TRANSLATE('foobar', 'fa', 'bu') FROM DUAL -> 'boobur'

TRANSLATE (text USING [CHAR_CS | NCHAR_CS])

Converts text into the character set specified. Use CHAR_CS to convert text to the CHAR datatype or NCHAR_CS
to convert text to the NCHAR datatype. For example:

SELECT TRANSLATE(N'foobar' USING CHAR_CS) FROM DUAL

'foobar'

TREAT (expr AS [REF] [schema.]type)

Converts expr from its declared type to the type specified in the type parameter. For more information on the
usage of this function, please look to the SQL Reference for the Oracle Database.

TRUNC (base [, number])

Returns base truncated to number decimal places. When number is omitted, base is truncated to an integer.
number can be negative to truncate (make zero) digits left of the decimal point. (For more on valid format
specifiers, see the TO_CHAR function.)For example:

SELECT TRUNC('123.456', 2) FROM DUAL -> 123.45

TRUNC (date [, format])

Returns date truncated to the unit specified by format. When format is omitted, date is truncated to the nearest
whole day. (For more on valid format specifiers, see the TO_CHAR function.) For example:

SELECT TRUNC(TO_DATE('15/04/1999', 'MM/DD/YYYY'), 'YYYY')

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT TRUNC(TO_DATE('15/04/1999', 'MM/DD/YYYY'), 'YYYY')

FROM DUAL

1999

See TO_CHAR for a list of format specifiers.

TZ_OFFSET ({expr | SESSIONTIMEZONE | DBTIMEZONE})

Returns the time zone offset corresponding to the argument. The character expression expr can either be the
name of the time zone or a time zone offset. The SESSIONTIMEZONE and DBTIMEZONE arguments provide the
time zone for the session or database, respectively. For example:

SELECT TZ_OFFSET('+08:00'), TZ_OFFSET(SESSIONTIMEZONE) FROM DUAL

+08:00 -07:00

UID

Returns an integer that uniquely identifies the currently logged on session user. No parameters are needed. For
example:

SELECT UID FROM DUAL -> 47

UNISTR(string)

Converts string to the NCHAR datatype while converting any UNICODE encoding values within string. For
example:

SELECT UNISTR('El Ni\00F1o') FROM DUAL -> 'El Niño'

UPDATEXML(instance, xpath, expr [, namespace])

Updates the values held by nodes within instance to the new value in expr. Only those nodes returned by the
XPath query contained in the xpath parameter are updated. The optional namespace parameter specifies the XML
namespace in the query. For more information on XML queries, refer to the Oracle SQL Reference. For example:

SELECT UPDATEXML(XMLTYPE('<foo><bar>Hello, World!</bar></foo>'),

 '/foo/bar', '<bar>Bye, World!</bar>') from DUAL

Bye, World!

USERENV(option)

Returns information about the current session in VARCHAR2. This function has been deprecated and is only
provided for backward compatibility. USERENV is a synonym for SYS_CONTEXT('USER_ENV', option). Look to
the SYS_CONTEXT function with the USERENV namespace for current functionality. For example:

SELECT USERENV('LANGUAGE') "Language" FROM DUAL

'AMERICAN_AMERICA.AL32UTF8'

VALUE(table_alias)

Takes a table_alias associated with a row in an object table and returns the object instance stored within the
object table for that row.

VARIANCE([DISTINCT] expression) [OVER (window_clause)]

Returns the variance of expression calculated as follows: 0 if the number of rows in expression = 1; VAR_SAMP if
the number of rows in expression > 1. See Section 4.3 earlier in this chapter for details on the window_clause. For

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the number of rows in expression > 1. See Section 4.3 earlier in this chapter for details on the window_clause. For
example:

SELECT VARIANCE(col1) FROM NUMS -> 32.6666667

VAR_POP(expression) [OVER (window_clause)]

Returns the population variance of the set of numbers represented by expression after discarding the NULLs in
the set. See Section 4.3 earlier in this chapter for details on the window_clause. For example:

SELECT VAR_POP(col1) FROM NUMS -> 24.5

VAR_SAMP(expression) [OVER (window_clause)]

Returns the sample variance of the set of numbers represented by expression after discarding the NULLs in the
set. See Section 4.3 earlier in this chapter for details on the window_clause. For example:

SELECT VAR_SAMP(col1) FROM NUMS -> 32.6666667

VSIZE(expression)

Returns the number of bytes in the internal representation of expression. When expression is NULL, returns NULL.
For example:

SELECT vsize(1) FROM DUAL -> 2

XMLAGG(instance [, order_by])

An aggregate function that returns an XML document from a table of XML fragments contained in instance. The
optional order_by clause allows the XML fragments in the result to be ordered. For more information on XML
queries refer to the Oracle SQL Reference.

XMLCOLATTVAL(expr [AS alias] [,...])

Returns an XML fragment from the expr arguments. The optional AS clause can be used to change the value of
the name attribute. For more information on XML queries, refer to the Oracle SQL Reference.

XMLCONCAT(instance [,...])

Returns an XML instance that is the union of all XML instance parameters. For more information on XML queries
refer to the Oracle SQL Reference.

XMLELEMENT([NAME] name [, XMLATTRIBUTES(expr [AS alias] [,...])] [, value [,...]])

Returns an XMLELEMENT with the name specified in the name parameter and attributes specified in the optional
XMLATTRIBUTES clause. The value parameters provide the values of the XMLELEMENT result. For more
information on XML queries refer to the Oracle SQL Reference.

XMLFOREST(value [AS alias] [,...])

Returns an XML fragment constructed from the values provided in the value parameters. The optional AS clause
can be used to change the enclosing tag name. For more information on XML queries refer to the Oracle SQL
Reference.

XMLSEQUENCE(instance)

Returns an array of XML fragments constructed from the top-level nodes in the XML instance provided by the
instance parameter. For more information on XML queries, refer to the Oracle SQL Reference.

XMLTRANSFORM(instance, stylesheet)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the result of applying the XSL stylesheet in the stylesheet parameter to the XML document contained in
instance. For more information on XML queries, refer to the Oracle SQL Reference.

4.5.4 PostgreSQL-Supported Functions

This section lists the functions specific to PostgreSQL, with examples and corresponding results.

ABSTIME(timestamp)

Converts the timestamp value to ABSTIME type. This function is provided for backwords compatibility and may be
removed in future versions. For example:

SELECT ABSTIME(CURRENT_TIMESTAMP) -> 2003-06-24 00:19:17-07

ACOS(number)

Returns the arc cosine of number ranging from -1 to 1. The result ranges from 0 to and is expressed in radians.
For example:

SELECT ACOS(0) -> 1.570796

AGE(timestamp)

Same meaning as AGE(CURRENT_DATE, timestamp).

AGE(timestamp, timestamp)

Returns the time between the two timestamp values. For example:

SELECT AGE('2003-12-31', CURRENT_TIMESTAMP)

6 mons 7 days 00:34:41.658325

AREA(object)

Returns the area of an item. For example:

SELECT AREA(BOX '((0,0),(1,1))') -> 1

ASCII(text)

Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') -> 120

ASIN(number)

Returns the arc sine of number ranging from -1 to 1. The resulting value ranges from -/2 to /2 and is expressed
in radians. For example:

SELECT ASIN(0) -> 0.000000

ATAN(number)

Returns the arctangent of number. The resulting value ranges from -/2 to /2 and is expressed in radians. For
example:

SELECT ATAN(3.1415) -> 1.262619

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT ATAN(3.1415) -> 1.262619

ATAN2(float1,float2)

Returns the arctangent of the two float values. ATAN2(x,y) is similar to ATAN(y/x), with the exception that the
signs of x and y are used to determine the quadrant of the result. For example:

SELECT ATAN2(3.1415926, 0) -> 1.5707963267949

BOX(box,box)

Returns a BOX created by the intersection of the two boxes. If the two boxes do not intersect, the return value
is NULL. For example:

SELECT BOX(BOX '((-1,-1),(1,1))', BOX '((0,0),(1,1))')

 (1,1),(0,0)

BOX(circle)

Returns a BOX with vertices that intersect circle so that the box is the maximum size that can be fully contained
within circle. For example:

SELECT BOX(CIRCLE '((0,0),2.0)')

 (1.41421356237309,1.41421356237309),

(-1.41421356237309,-1.41421356237309)

BOX(point,point)

Returns a BOX with the two point arguments as opposite corners. For example:

SELECT BOX(POINT(0,0), POINT(1,1)) -> (1,1),(0,0)

BOX(polygon)

Converts polygon to a BOX. For example:

SELECT BOX(POLYGON '((0,0),(1,1),(2,0))') -> (2,1),(0,0)

BROADCAST(inet)

Constructs a broadcast address as text. For example:

SELECT BROADCAST('192.168.1.5/24') -> '192.168.1.255/24'

CBRT(float8)

Returns the cube root of float8. For example:

SELECT CBRT(8) -> 2

CENTER(object)

Returns a POINT object to the center of the argument. For example:

SELECT CENTER(CIRCLE '((0,0), 2.0)') -> (0,0)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CHAR(text)

Converts text to the CHAR type.

CHAR_LENGTH(string) or CHARACTER_LENGTH(string)

Returns the length of string in characters.

CIRCLE(box)

Returns a CIRCLE contained within box. For example:

SELECT CIRCLE(BOX '((0,0),(1,1))') -> <(0.5,0.5),0.707106781186548>

CIRCLE(point,float8)

Converts point to a CIRCLE with float8 for the radius. For example:

SELECT CIRCLE(POINT '(0,0)', 2.0) -> <(0,0),2>

COALESCE(list)

Returns the first non-NULL value in list. For example:

SELECT COALESCE(NULL,1,2,3,NULL) -> 1

COS(number)

Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) -> 1.000000

COT(number)

Returns the cotangent of number. For example:

SELECT COT(3.1415) -> -10792.88993953

DATE_PART(text, value)

Equivalent to EXTRACT(text, value); for more details on the usage of EXTRACT, see the section about EXTRACT
in Section 4.4.

DATE_TRUNC(precision,timestamp)

Truncates timestamp to the specified precision. For example:

SELECT DATE_TRUNC('hour', TIMESTAMP '2003-04-15 23:58:30')

2003-04-15 23:00:00

DEGREES(float8)

Converts radians to degrees. For example:

SELECT DEGREES(3.1415926) -> 179.999996929531

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DIAMETER(circle)

Returns the diameter of circle. For example:

SELECT DIAMETER(CIRCLE(POINT '(0,0)', 2.0)) -> 4

FLOAT(int)

Converts int to a floating point.

FLOAT4(int)

Converts int to a floating point.

HEIGHT(box)

Returns the vertical size of box. For example:

SELECT HEIGHT(BOX '((0,0),(1,1))') -> 1

HOST(inet)

Extracts the host address as text. For example:

SELECT HOST('192.168.1.5/24') -> '192.168.1.5'

INITCAP(text)

Converts the first letter of each word to uppercase. For example:

SELECT INITCAP('my name is inigo montoya.')

 'My Name Is Inigo Montoya.'

INTEGER(float)

Converts a floating point to integer.

INTERVAL(reltime)

Converts reltime to an INTERVAL.

ISCLOSED(path)

Returns 't' if path is closed, 'f' if open. For example:

SELECT ISCLOSED(PATH '((0,0),(1,1),(2,0))') -> 't'

SELECT ISCLOSED(PATH '[(0,0),(1,1),(2,0)]') -> 'f'

ISFINITE(interval)

Returns 'f' if interval is open, 't' otherwise. For example:

SELECT ISFINITE(INTERVAL '4 hours') -> 't'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ISFINITE(timestamp)

Returns 'f' if timestamp is either invalid or infinite, 't' otherwise. For example:

SELECT ISFINITE(TIMESTAMP '2001-02-16 21:28:30') -> 't'

ISOPEN(path)

Returns an open path. For example:

SELECT ISOPEN(PATH '((0,0),(1,1),(2,0))') -> 'f'

SELECT ISOPEN(PATH '[(0,0),(1,1),(2,0)]') -> 't'

LENGTH(object)

Returns the length of object. For example:

SELECT LENGTH('Howdy!') -> 6

SELECT LENGTH(PATH '((-1,0),(1,0))') -> 4

LOG(float8)

Returns a base-10 logarithm. For example:

SELECT LOG(100) -> 2

LPAD(text,int,text)

Returns a left-pad string to the specified length. For example:

SELECT LPAD('Duck', 10, 's') -> 'ssssssDuck'

LSEG(box)

Converts a box diagonal to a line segment. For example:

SELECT LSEG(BOX '((-1,0),(1,0))') -> [(1,0),(-1,0)]

LSEG(point,point)

Converts points to a line segment. For example:

SELECT LSEG(POINT '(-1,0)', POINT '(1,0)') -> [(-1,0),(1,0)]

LTRIM(text)

Returns text with all leading whitespace removed. For example:

SELECT LTRIM(' Howdy! ') -> 'Howdy! '

MASKLEN(cidr)

Returns the netmask length in cidr. For example:

SELECT MASKLEN('192.168.1.5/24') -> 24

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT MASKLEN('192.168.1.5/24') -> 24

NETMASK(inet)

Returns the netmask for inet. For example:

SELECT NETMASK('192.168.1.5/24') -> '255.255.255.0'

NETWORK(inet)

Returns the network part of inet. For example:

SELECT NETWORK('192.168.1.5/24') -> '192.168.1.0/24

NPOINTS(object)

Returns the number of points in object. For example:

SELECT NPOINTS(POLYGON '((1,1),(0,0))') -> 2

NULLIF(input,value)

Returns NULL if input = value, else returns input. For example:

SELECT NULLIF(5, 6), NULLIF(5, 5)

 5 NULL

PATH(polygon)

Converts polygon to a path. For example:

SELECT PATH('((0,0),(1,1),(2,0))')

 ((0,0),(1,1),(2,0))

PCLOSE(path)

Converts path to a closed path. For example:

SELECT PCLOSE(PATH '[(0,0),(1,1),(2,0)]')

 ((0,0),(1,1),(2,0))

PI()

Returns the constant pi.

POLYGON(path)

Converts path to a POLYGON. For example:

SELECT POLYGON(PATH '((0,0),(1,1),(2,0))')

 ((0,0),(1,1),(2,0))

POINT(circle)

Returns the center of circle. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the center of circle. For example:

SELECT POINT(CIRCLE '((0,0), 2.0)') -> (0,0)

POINT(lseg1,lseg2)

Returns the intersection of two line segments. For example:

SELECT POINT(LSEG '((-1,0),(1,0))', LSEG '((-2,-2),(2,2))')

 (0,0)

POINT(polygon)

Returns the center point of polygon. For example:

SELECT POINT(POLYGON '((0,0),(1,1),(2,0))')

 (1,0.333333333333333)

POLYGON(box)

Returns a 4-point polygon. For example:

SELECT POLYGON(BOX '((0,0),(1,1))')

 ((0,0),(0,1),(1,1),(1,0))

POLYGON(circle)

Synonym for POLYGON(12, circle).

POLYGON(npts,circle)

Returns and approximation of circle as a polygon with npts vertices. For example:

SELECT POLYGON(6, CIRCLE '((0,0),2.0)')

 ((-2,0),

 (-0.999999999994107,1.73205080757228),

 (1.00000000001179,1.73205080756207),

 (2,-2.04136478690279e-11),

 (0.999999999976428,-1.73205080758249),

 (-1.00000000002946,-1.73205080755187))

POPEN(path)

Converts path to an open path. For example:

SELECT POPEN(PATH '((0,0),(1,1),(2,0))')

 [(0,0),(1,1),(2,0)]

POW (number,exponent)

Raises a number to the specified exponent. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Raises a number to the specified exponent. For example:

SELECT POW(2, 3) -> 8

RADIANS(float8)

Converts degrees to radians. For example:

SELECT RADIANS(180) -> 3.14159265358979

RADIUS(circle)

Returns the radius of circle. For example:

SELECT RADIUS(CIRCLE '((0,0), 2.0)') -> (0,0)

RELTIME(interval)

Converts interval to a RELTIME. Provided for backward compatibility and may be removed in a future release.

ROUND(number)

Rounds number to the nearest integer. For example:

SELECT ROUND(5.5) -> 6

RPAD(text,length,char)

Pads text to the specified length using char. For example:

SELECT RPAD('Duck', 10, 's') -> 'Duckssssss'

RTRIM(text)

Returns text with all trailing whitespace removed. For example:

SELECT RTRIM(' St. Lucia ') -> ' St. Lucia'

SET_MASKLEN(inet, size)

Sets the netmask length for inet to size. For example:

SELECT SET_MASKLEN('192.168.1.5/24',16)

 '192.168.1.5/16'

SIN(number)

Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SUBSTRING(string [FROM start] [FOR bytes]), SUBSTR(string,start[,bytes])

Extracts a substring of length bytes from string starting at the character position start. If bytes is omitted, then the
length returned is the remainder of the string from the start position. For example:

SELECT SUBSTRING('Inigo Montoya' FROM 7 FOR 4) -> 'Mont'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT SUBSTRING('Inigo Montoya' FROM 7 FOR 4) -> 'Mont'

TAN(number)

Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) -> -0.000093

TEXT(char)

Converts char to TEXT type.

TIMESTAMP(date [,time])

Converts date to a timestamp.

TO_CHAR(expression, text)

Converts expression to a string. For example:

SELECT TO_CHAR(NUMERIC '-125.8', '999D99S') -> 125.80-

SELECT TO_CHAR (interval '15h 2m 12s','HH24:MI:SS') -> 15:02:12

TO_DATE(string, format)

Converts string to a date using the second argument for the input format. Listed below are the available
specifiers for format and their meanings.

AM or A.M.

Meridian indicator

AD or A.D.

AD indicator

BC or B.C.

BC indicator

CC

Two-digit century

D

Day of week (1-7)

DD

Day of month (01-31)

DDD

Day of year (001-366)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DAY

Full uppercase day name

Day

Full camel case day name

day

Full lowercase day name

DY

Abbreviated uppercase day name

Dy

Abbreviated camel case day name

dy

Abbreviated lowercase day name

HH or HH12

Hour of day (01-12)

HH24

Hour of day (00-23)

IW

ISO week number of year

J

Julian day number (days since January 1, 4713 BC)

MI

Minute of hour (00-59)

MM

Two-digit month number (01-12)

MON

Abbreviated uppercase month name

Mon

Abbreviated camel case month name

mon

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mon

Abbreviated lowercase month name

MONTH

Full uppercase month name

Month

Full camel case month name

month

Full lowercase month name

MS

Milliseconds (000-999)

PM or P.M.

Meridian indicator

Q

Quarter of the year

RM

Roman Numeral month (I-XII)

rm

Lowercase Roman Numeral month (i-xii)

SS

Seconds (00-59)

SSSS

Seconds past midnight (0-86399)

TZ

Uppercase time zone name

tz

Lowercase time zone name

US

Microseconds (000000-999999)

W

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Week of month (1-5)

WW

Week of year (1-53)

Y, YY, or YYY

One-, two-, or three-digit years

Y,YYY

Year with comma

YYYY

Four-digit year

For example:

SELECT TO_DATE('05 Dec 2000', 'DD Mon YYYY') -> 2000-12-05

TO_NUMBER(string, format)

Converts string to a numeric value using the second argument for the input format. For example:

SELECT TO_NUMBER('12,454.8-', '99G999D9S') -> -12454.8

TO_TIMESTAMP(text, format)

Converts text to a timestamp value using the second argument for the input format. (For more on valid format
specifiers, see the TO_DATE function.) For example:

SELECT TO_TIMESTAMP('05 Dec 2000', 'DD Mon YYYY') -> 2000-12-05 00:00:00-08

TRANSLATE(text,from,to)

Converts the characters found in text that also exist in from to the corresponding characters in to. For example:

SELECT TRANSLATE('foo', 'fo', 'ab') -> 'abb'

TRUNC(float8)

Truncates (towards zero). For example:

SELECT TRUNC(PI()) -> 3

VARCHAR(string)

Converts string to a VARCHAR.

WIDTH(box)

Returns the width of box. For example:

SELECT WIDTH(BOX '((0,0),(3,1))') -> 3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5.5 SQL Server-Supported Functions

This section provides an alphabetical listing of Microsoft SQL Server-supported functions, with examples and
corresponding results.

ACOS(number)

Returns the arc cosine of number ranging from -1 to 1. The result ranges from 0 to and is expressed in radians.
For example:

SELECT ACOS(0) -> 1.570796

APP_NAME()

Returns the application name for the current session, set by the application. For example:

SELECT APP_NAME() -> 'SQL Enterprise Manager'

ASCII(text)

Returns the ASCII code of the first character of text. For example:

SELECT ASCII('x') -> 120

ASIN(number)

Returns the arc sine of number ranging from -1 to 1. The resulting value ranges from -/2 to /2 and is expressed
in radians. For example:

SELECT ASIN(0) -> 0.000000

ATAN(number)

Returns the arctangent of any number. The resulting value ranges from -/2 to /2 and is expressed in radians. For
example:

SELECT ATAN(3.1415) -> 1.262619

ATN2(float1, float2)

Returns the angle (in radians) whose tangent is float1/float2. For example:

SELECT ATN2(35.175643, 129.44) -> 0.265345

BINARY_CHECKSUM(* | expression [,...n])

Returns the binary checksum for a list of expressions or for a row of a table. This example returns a list of user
IDs where the stored password checksum doesn't match the current password's checksum:

SELECT userid AS 'Changed' FROM users WHERE NOT password_chksum =

BINARY_CHECKSUM(password)

CHAR(integer_expression)

Converts a numeric ASCII code to a character. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converts a numeric ASCII code to a character. For example:

SELECT CHAR(78) -> 'N'

CHARINDEX(substring, string [, start_location])

Returns the position of the first occurrence of a substring in a string. For example:

SELECT CHARINDEX('he', 'Howdy, there!') -> 9

CHECKSUM(* | expression [,...n])

Returns a checksum (computed over row values or expressions provided). The following example returns a list
of user IDs for which the stored password checksum doesn't match the current password's checksum:

SELECT userid AS 'Changed' FROM users WHERE NOT password_chksum =

BINARY_CHECKSUM(password)

CHECKSUM_AGG([ALL | DISTINCT] expression)

Returns the checksum of the values in a group. For example:

SELECT CHECKSUM_AGG(BINARY_CHECKSUM(*)) FROM authors -> 67

COALESCE(expression [,...n])

Returns the first non-NULL argument from a list of arguments. For example:

SELECT COALESCE(NULL, 1, 3, 5, 7) -> 1

COL_LENGTH(table, column)

Returns column length in bytes. For example:

SELECT COL_LENGTH('authors', 'au_fname') -> 50

COL_NAME(table_id, column_id)

Returns column name, given table_id and column_id. For example:

SELECT COL_NAME(OBJECT_ID('authors'), 1)

CONTAINS({column | *}, contains_search_condition)

Searches columns for exact or "fuzzy" matches of the contains_seach_criteria. CONTAINS is an elaborate function
used to perform full-text searches. Refer to the vendor documentation for more information. This example
returns all product ID's from the products table that contain the words "peanut" and "butter" in close proximity
to each other.

SELECT productid FROM products

WHERE CONTAINS(productname, ' "peanut" NEAR "butter" ')

CONTAINSTABLE(table, column, contains_search_condition)

Returns a table with exact and "fuzzy" matches to contains_search_condition. CONTAINSTABLE is an elaborate
function used to perform full-text searches. The following example returns all product ID's from the products
table that contain the words "peanut" and "butter" in close proximity to each other:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

table that contain the words "peanut" and "butter" in close proximity to each other:

SELECT productid FROM products WHERE CONTAINS

(products, productname, ' "peanut" NEAR "butter" ')

CONVERT(data_type[(length)], expression [, style])

Converts data from one datatype to another. For example:

SELECT CONVERT(VARCHAR(50), CURRENT_TIMESTAMP, 1) -> '06/29/03'

COS(number)

Returns the cosine of number as an angle expressed in radians. For example:

SELECT COS(0) -> 1.000000

COT(number)

Returns the cotangent of number. For example:

SELECT COT(3.1415) -> -10792.88993953

DATABASEPROPERTYEX (database, property)

Returns a database option or property. For example:

SELECT DATABASEPROPERTYEX('pubs', 'Version') -> 539

DATALENGTH(expression)

Returns the number of bytes in a character or binary string. For example:

SELECT MAX(DATALENGTH(au_fname)) FROM authors -> 11

DATEADD(datepart, number, date)

Adds a number of dateparts (e.g., days) to a datetime value. For example:

SELECT DATEADD(Year, 10, CURRENT_TIMESTAMP) -> 2013-06-29 19:47:15.270

DATEDIFF(datepart, startdate, enddate)

Calculates the difference between two datetime values expressed in the specified datepart. For example:

SELECT DATEDIFF(Day, CURRENT_TIMESTAMP,

 DATEADD(Year, 1, CURRENT_TIMESTAMP))

366

DATENAME(datepart, date)

Returns the name of a datepart (e.g., month) of a datetime argument. For example:

SELECT DATENAME(month, GETDATE()) -> 'June'

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DATEPART(datepart, date)

Returns the value of a datepart (e.g., hour) of a datetime argument. For example:

SELECT DATEPART(year, GETDATE()) -> 2003

DAY(date)

Returns an integer value representing the day of the date provided as a parameter. For example:

SELECT DAY('04/15/2004') -> 15

DB_ID([database_name])

Returns a database ID and given name. For example:

SELECT DB_ID() -> 5

DB_NAME(database_id)

Returns the database name. For example:

SELECT DB_NAME(5) -> 'pubs'

DEGREES(numeric_expression)

Converts radians to degrees. For example:

SELECT DEGREES(PI()) -> 180

DIFFERENCE(character_expression, character_expression)

Compares how two arguments sound and returns a number from 0 to 4. A higher result indicates a better
phonetic match. For example:

SELECT DIFFERENCE('moe', 'low') -> 3

FILE_ID(file_name)

Returns the file ID for the logical file_name. For example:

SELECT FILE_ID('master') -> 1

FILE_NAME(file_id)

Returns the logical filename for the file_id. For example:

SELECT FILE_NAME(1) -> 'master'

FILEGROUP_ID(filegroup_name)

Returns filegroup ID for the logical filegroup_name. For example:

SELECT FILEGROUP_ID('PRIMARY') -> 1

FILEGROUP_NAME(filegroup_id)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the logical filegroup name for filegroup_id. For example:

SELECT FILEGROUP_NAME(1) -> 'PRIMARY'

FILEGROUPPROPERTY(filegroup_name, property)

Returns the filegroup property value for the specified property. For example:

SELECT FILEGROUPPROPERTY('PRIMARY', 'IsReadOnly') -> 0

FILEPROPERTY(file, property)

Returns the file property value for the specified property. For example:

SELECT FILEPROPERTY('pubs', 'SpaceUsed') -> 160

FULLTEXTCATALOGPROPERTY(catalog_name, property)

Returns the fulltext catalog properties. For example:

SELECT FULLTEXTCATALOGPROPERTY('Cat_Desc', 'LogSize')

FULLTEXTSERVICEPROPERTY(property)

Returns the fulltext service level properties. For example:

SELECT FULLTEXTSERVICEPROPERTY('IsFulltextInstalled') -> 1

FORMATMESSAGE(msg_number, param_value [,... n])

Constructs a message from an existing message in the SYSMESSAGES table. (Similar to RAISEERROR). For
example:

sp_addmessage 50001, 1, 'Table %s has %s rows.'

SELECT FORMATMESSAGE(50001, 'AUTHORS',

(SELECT COUNT(*) FROM AUTHORS)) 'Table AUTHORS has 23.'

FREETEXT({ column |*}, freetext_string)

Used for a full-text search. Returns rows with column that match the meaning, but not exactly the value, of
freetext_string.

FREETEXTTABLE(table, { column |*}, freetext_string [, top_n_by_rank])

Used for a full-text search. Returns rows from table with column that match the meaning, but not exactly the
value, of freetext_string. For example:

SELECT * from FREETEXTTABLE (authors, *, 'kev')

GETANSINULL([database])

Returns default nullability setting for new columns. For example:

SELECT GETANSINULL() -> 1

GETDATE()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GETDATE()

Returns current date and time. For example:

SELECT GETDATE() -> 2003-06-27 19:26:59.893

GETUTCDATE()

Returns the current date as a Coordinated Universal Time (UTC) date. For example:

SELECT GETUTCDATE() -> 2003-06-28 02:26:46.720

GROUPING(column_name)

Returns 1 when a row is added by CUBE or ROLLUP; otherwise returns 0. For example:

SELECT royalty, SUM(advance) 'total advance',

 GROUPING(royalty) 'grp'

 FROM titles

 GROUP BY royalty WITH ROLLUP

royalty total advance grp

--------- --------------------- ---

NULL NULL 0

10 57000.0000 0

12 2275.0000 0

14 4000.0000 0

16 7000.0000 0

24 25125.0000 0

NULL 95400.0000 1

HOST_ID()

Returns the workstation ID. For example:

SELECT HOST_ID() -> 216

HOST_NAME()

Returns the process host name. For example:

SELECT HOST_NAME() -> 'PLATO'

IDENT_CURRENT(table_name)

Returns the last identity value generated for the specified table. For example:

SELECT IDENT_CURRENT('jobs') -> 876

IDENT_INCR(table_or_view)

Returns an identity column increment value. For example:

SELECT IDENT_INCR('jobs') -> 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT IDENT_INCR('jobs') -> 1

IDENT_SEED(table_or_view)

Returns an identity seed value. For example:

SELECT IDENT_SEED('jobs') -> 1

IDENTITY(data_type [, seed, increment]) AS column_name

Used in a SELECT INTO statement to insert an identity column into the destination table. For example:

SELECT IDENTITY(int, 1,1) AS ID

INTO NewTable

FROM OldTable

INDEX_COL(table, index_id, key_id)

Returns an index column name given a table name, index ID, and the sequential number of the column in the
index key. For example:

SELECT INDEX_COL(OBJECT_ID('authors'), 1, 1) -> NULL

INDEXPROPERTY(table_id, index, property)

Returns an index property (such as FILLFACTOR). For example:

SELECT INDEXPROPERTY(OBJECT_ID('authors'),

'UPKCL_auidind', 'IsPadIndex')

0

ISDATE(expression)

Validates if a character string can be converted to DATETIME. For example:

SELECT ISDATE(NULL), ISDATE(GETDATE())

0 1

IS_MEMBER({group | role})

Returns true or false (1 or 0) depending on whether the user is a member of the specified Windows NT group or
SQL Server role. For example:

SELECT IS_MEMBER('db_owner') -> 0

IS_SRVROLEMEMBER(role [,login])

Returns true or false (1 or 0) depending on whether the user is a member of the specified server role. For
example:

SELECT IS_SRVROLEMEMBER('sysadmin') -> 0

ISNULL(check_expression, replacement_value)

Returns the first argument if it is not NULL; otherwise returns the second argument. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the first argument if it is not NULL; otherwise returns the second argument. For example:

SELECT ISNULL(NULL, 'NULL') -> 'NULL'

ISNUMERIC(expression)

Validates if a character string can be converted to NUMERIC. For example:

SELECT ISNUMERIC('3.1415'), ISNUMERIC('IRK')

1 0

LEFT(character_expression, integer_expression)

Returns the leftmost integer_expression characters of character_expression. For example:

SELECT LEFT('Wet Paint', 3) -> 'Wet'

LEN(string_expression)

Returns the number of characters in the expression. For example:

SELECT LEN('Wet Paint') -> 9

LOG(float_expression)

Returns the natural logarithm. For example:

SELECT LOG(PI()) -> 1.1447298858494002

LOG10(float_expression)

Returns the base-10 logarithm. For example:

SELECT LOG10(PI()) -> 0.49714987269413385

LTRIM(character_expression)

Trims leading space characters. For example:

SELECT LTRIM(' beaucoup ') -> 'beaucoup '

MONTH(date)

Returns the month part of the date provided. For example:

SELECT MONTH(GETDATE()) -> 6

NCHAR(integer_expression)

Returns the UNICODE character with the given integer code. For example:

SELECT NCHAR(120) -> 'x'

NEWID()

Creates a new unique identifier of type UNIQUEIDENTIFIER. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Creates a new unique identifier of type UNIQUEIDENTIFIER. For example:

SELECT NEWID() -> '32B35185-F55E-4FE0-B2C8-B57B35815C12'

NULLIF(expression, expression)

Returns a NULL if the two specified expressions are equivalent. For example:

SELECT NULLIF(5, 5) -> NULL

OBJECT_ID(object)

Returns the object ID of object. For example:

SELECT OBJECT_NAME (OBJECT_ID('authors')) -> 'authors'

OBJECT_NAME(object_id)

Returns the object name of an object with the object ID. For example:

SELECT OBJECT_NAME (OBJECT_ID('authors')) -> 'authors'

OBJECTPROPERTY(id, property)

Returns the properties of objects in the current database. For example:

SELECT OBJECTPROPERTY (object_id('authors'),'ISTABLE') -> 1

OPEN {[GLOBAL]cursor_name}| cursor_variable_name}

Opens a local or global cursor.

OPENDATASOURCE(provider_name, init_string)

Makes a connection to a data source without using a linked server name. For examples, refer to the "Loaders"
section of the SQL Server User's Guide.

OPENQUERY(linked_server, query)

Queries a remote data source previously configured as a linked server. For an example, refer to the "Loaders"
section of the SQL Server User's Guide.

OPENROWSET(provider_name, {datasource; user_id,password | provider_string}, {[catalog.][schema.]object | query})

Queries a remote data source without setting it up as a linked server.

PARSENAME(object_name, object_piece)

Returns the database name, owner name, server name, or object name for the object specified. Object_piece is
an integer between 1 and 4. For example:

SELECT PARSENAME('pubs..authors', 1) -> 'authors'

SELECT PARSENAME('pubs..authors', 2) -> NULL

SELECT PARSENAME('pubs..authors', 3) -> 'pubs'

SELECT PARSENAME('pubs..authors', 4) -> NULL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PATINDEX('%pattern%', expression)

Returns the position of the first occurrence of a pattern in a string. For example:

SELECT PATINDEX('%Du%', 'Donald Duck') -> 8

PERMISSIONS([object_id [, column]])

Returns a numeric value representing a bitmap with the current user's permissions on the specified object or
column. For example:

SELECT PERMISSIONS(OBJECT_ID('authors'))&8 -> 8

PI()

Returns the pi constant. For example:

SELECT 2*PI() -> 6.2831853071795862

RADIANS(numeric_expression)

Converts degrees to radians. For example:

SELECT RADIANS(90.0) -> 1.570796326794896600

RAND([seed])

Returns a pseudo-random FLOAT type value between and 1. For example:

SELECT RAND(PI()) -> 0.71362925915543995

REPLICATE(character_expression, integer_expression)

Repeats a string a number of times. For example:

SELECT REPLICATE('FOOBAR', 3) -> 'FOOBARFOOBARFOOBAR'

REPLACE(string_expression1,string_expression2,string_expression3)

Performs a search-and-replace on string_expression1, replacing each occurrence of string_expression2 with
string_expression3. For example:

SELECT REPLACE('Donald Duck', 'Duck', 'Trump') -> 'Donald Trump'

REVERSE(character_expression)

Reverses the characters of a string. For example:

SELECT REVERSE('Donald Duck') -> 'kcuD dlanoD'

RIGHT(character_expression, integer_expression)

Returns the rightmost integer_expression characters of character_expression. For example:

SELECT RIGHT('Donald Duck', 4) -> 'Duck'

ROUND (number, decimal [,function])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ROUND (number, decimal [,function])

Returns number rounded to decimal places right of the decimal point. Note that decimal, an integer, can be
negative to round off digits left of the decimal point. If a nonzero integer is provided for function, the return
value will be truncated; otherwise the value is rounded. For example:

SELECT ROUND(PI(), 2) -> 3.1400000000000001

ROWCOUNT_BIG()

Returns the number of rows affected by the most recent query. (Same as @@ROWCOUNT, but returns a
BIGINT type.) For example:

SELECT ROWCOUNT_BIG() -> 1

RTRIM(character_expression)

Trims trailing space characters from the expression. For example:

SELECT RTRIM(' beaucoup ') -> ' beaucoup'

SIGN(numeric_expression)

Returns -1 if the argument is negative, 0 if it is zero, and 1 if the argument is positive. For example:

SELECT SIGN(-PI()) -> -1.0

SIN(number)

Returns the sine of number, where number is in radians. For example:

SELECT SIN(0) -> 0.000000

SOUNDEX(character_expression)

Returns a four-character code based on how the argument string sounds. For example:

SELECT SOUNDEX('char') -> 'C600'

SPACE(integer_expression)

Returns a string consisting of a given number of space characters. For example:

SELECT SPACE(5) -> ' '

STATS_DATE(table_id, index_id)

Returns the date and time that index statistics were last updated. For example:

SELECT i.name, STATS_DATE(i.id, i.indid)

FROM sysobjects o, sysindexes i

WHERE o.name = 'authors' AND o.id = i.id

UPKCL_auidind 2000-08-06 01:34:00.153

aunmind 2000-08-06 01:34:00.170

STDEV(expression)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

STDEV(expression)

Returns the standard deviation of values in expression. For example:

SELECT STDEV(qty) FROM sales -> 16.409201831957116

STDEVP(expression)

Returns the standard deviation for the population of values in expression. For example:

SELECT STDEVP(qty) FROM sales -> 16.013741264834152

STR(number [, length [, decimal]])

Converts number to a character string with length length and decimal decimal places.

STUFF(string1, start, length, string2)

Replaces the length characters at position start within string1 with those in string2. For example:

SELECT STUFF('Donald Duck', 8, 4, 'Trump') -> 'Donald Trump'

SUBSTRING(string, start, length)

Extracts length characters from string starting at the character in the start position. For example:

SELECT SUBSTRING('Donald Duck', 8, 4) -> 'Duck'

SUSER_ID([login])

Returns the system user ID of a given login name. Incidentally, this function will always return NULL with SQL
Server 2000 or later. Therefore, avoid using this function.

SUSER_SID([login])

Returns the Security ID (SID) for the current user, or for the specified login. The SID is retuned in binary
format. For example:

SELECT SUSER_SID('montoyai')

0x68FC17A71010DE40B005BCF2E443B377

SUSER_SNAME([server_user_sid])

Returns the login name for the current user, or for the specified login Security ID (SID). For example:

SELECT SUSER_SNAME() -> 'montoyai'

TAN(number)

Returns the tangent of number, where number is in radians. For example:

SELECT TAN(3.1415) -> -0.000093

TEXTPTR(column)

Returns a pointer to a TEXT, NTEXT, or IMAGE column in VARBINARY format. For example:

SELECT TEXTPTR(pr_info)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SELECT TEXTPTR(pr_info)

FROM pub_info WHERE pub_id = '0736'

ORDER BY pub_id

0xFEFF6F00000000005C00000001000100

TEXTVALID(table.column, text_ptr)

Returns true or false (1 or 0), depending on whether the provided pointer to a TEXT, NTEXT, or IMAGE column
is valid. For example:

SELECT pub_id, 'Valid (if 1) Text data'

 = TEXTVALID ('pub_info.logo', TEXTPTR(logo))

FROM pub_info

ORDER BY pub_id

0736 1

0877 1

1389 1

1622 1

1756 1

9901 1

9952 1

9999 1

TYPEPROPERTY(datatype, property)

Returns information about datatype properties. The datatype argument can contain the name of any datatype,
and property can be a string containing one of the following:

Precision

The precision of the datatype is the number of digits or characters that it can store.

Scale

The scale is the number of decimal places for a numeric datatype. A NULL value will be returned if datatype is
not a numeric datatype. For example:

SELECT TYPEPROPERTY('decimal', 'PRECISION') -> 38

UNICODE(ncharacter_expression)

Returns the UNICODE code point for the first character of the input parameter. For example:

SELECT UNICODE('Hello!') -> 72

USER_ID([user])

Returns the user ID for user in the current database. If user is omitted, then the current user's ID will be
returned. For example:

SELECT USER_ID() -> 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

USER_NAME([id])

Returns the current username in the current database. For example:

SELECT USER_NAME() -> 'montoyai'

VAR(expression)

Returns the statistical variance for the values represented by expression. For example:

SELECT VAR(qty) FROM sales -> 269.26190476190476

VARP(expression)

Returns statistical variance for the population represented by all values of expression in a group. VARP is an
aggregate function. For example:

SELECT VARP(qty) FROM sales -> 256.43990929705217

YEAR(date)

Returns an integer that is the YEAR part of the specified date. For example:

SELECT YEAR(CURRENT_TIMESTAMP) -> 2003

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. SQL Functions
A function is a special type of command word in the SQL command set, and each SQL dialect varies in its
implementation of the command set. In effect, functions are one-word commands that return single values. The value
of a function can be determined by input parameters, as with a function that averages a list of database values. But
many functions do not use any type of input parameter, such as the function that returns the current system time,
CURRENT_TIME.

The ANSI standard supports a number of useful functions. This chapter covers those functions, providing detailed
descriptions and examples for each platform. In addition, each database maintains a long list of their own internal
functions that are outside of the scope of the standard SQL. This chapter provides parameters and descriptions for each
database implementation's internal functions.

In addition, most database platforms support the ability to create user-defined functions (UDFs). For more information
on UDFs, refer to the CREATE/ALTER FUNCTION/PROCEDURE Statements.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1 Database Programming Overview
Developing successful database applications, large and small, involves many steps. Careful thought must be given to
application architecture, and especially to the following issues:

How to map application data, which is typically object-oriented, to a relational database

How to handle errors gracefully

How to maximize performance and scalability

A typical database application will require many different SQL statements. The management of so many statements is
simplified by the fact that all SQL statements will follow roughly the same pattern of execution within an application.
Figure 5-1 is a state diagram showing how SQL statements are prepared, executed, and then processed by a database
application when interacting with a relational database system. The state diagram has been broken down into eleven
steps, four of which are optional (and are indented in the diagram).

Figure 5-1. Statement execution state diagram

Following are detailed descriptions of each step shown in Figure 5-1:

1. Establish connectivity: Establishing connectivity is the first step in every successful database application. It is in
this step that the client, or database application, makes a physical connection to the database that will be used
to transmit the SQL statements to the database and the results back to the client. The actual physical
connection could be over a LAN, WAN, or even a simple logical connection back to the client in cases where the
database application and server are running on the same machine. For more information on how to establish
connectivity, please see the section Section 5.2 later in this chapter.

2. Begin transaction (optional): A transaction may be begun so that the database changes may be rolled back on
failure or committed on success. For more information on transaction control from database programming APIs,
please see Section 5.4 later in this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

please see Section 5.4 later in this chapter.

3. Create statement object: Most modern database programming APIs are object-oriented and therefore use an
object to represent a SQL statement. There will typically be one statement object per SQL statement executed
within the application. The statement object holds the state information required to execute the SQL statement,
such as the SQL statement itself and input parameters when they exist.

4. Associate SQL with statement object: After the statement object has been created, it needs to have a SQL
statement assigned to it. Once this is done, the statement object may be executed.

5. Bind input parameters (optional): While not part of the ANSI SQL standard, the ability to bind parameters to
"placeholders" within a SQL statement is supported by all the database platforms covered in this book. If the
SQL statement has placeholders for input parameters, the statement object will need to have a program
variable associated with each input parameter. If the SQL statement contains no input parameters, then this
step may be skipped. Input parameters are useful for optimizing performance when the same SQL statement is
re-executed many times, because the server-side parsing of the statement only needs to be done once prior to
the first execution. Another reason to use input parameters is to embed binary data, such as BLOB data, into
SQL statements such as INSERT and UPDATE statements.

6. Execute statement object: After the statement object has been successfully created and initialized with a SQL
statement, the statement object can be executed. This step executes the SQL statement on the database
server.

7. Process Results (optional): After the database server returns a result set, the application may process the
results. This step is optional, since it is typically not required for statements that insert or update data in the
database.

8. Re-execution: If the same statement needs to be re-executed to retry on a failure or to execute again with
different values for the input parameters, the application can return to Step 6. If the application has no need to
re-execute the same statement, it moves on to Step 9.

9. Execute another SQL statement: If the application needs to execute a different SQL statement and can reuse
the statement object, then the application can return to Step 4; if not, it can move to Step 10.

10. End transaction (optional): Assuming a transaction was begun in step 2, the transaction is now either
committed or rolled back. If the transaction is rolled back, then all changes to the database made by the
statement object will be removed from the database.

11. Free resources: After successfully executing the statement and processing any results, the client- and server-
side resources need to be freed for use by other applications.

The remaining sections in this chapter provide examples of how to use the ADO.NET and JDBC database APIs to build
applications that follow the steps outlined in Figure 5-1.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2 Opening a Database Connection
Before interacting with a database, an application must first establish a connection to the database server. The APIs
covered in this book abstract the low-level connectivity details into a few simple object-oriented classes, making it
easier to focus on the database application instead of protocols and network topology.

5.2.1 Opening an ADO.NET Database Connection

Opening a connection with ADO.NET requires instantiating a connection object with a properly formatted connection
string and then invoking the Open method on the connection object. The connection object can be an OdbcConnection,
SqlConnection, or an OleDbConnection. The OdbcConnection is designed for any ODBC datasource, and the OleDbConnection
type will work with any OLE DB Provider. For the highest performance data access, use connection objects specifically
tuned to the specific database platform, such as SqlConnection for Microsoft SQL Server. Following is the syntax for
creating a Connection object in ADO.NET:

{Odbc|OleDb|Sql}Connection connection =

 new {Odbc|OleDb|Sql}Connection(connection_string);

connection.Open();

The format of the connection string is the same for all of the connection types. The format is a string of key/value pairs
delimited by semicolons. For example:

key1=value1; key2=value2; key3=value3; ...

While the format is the same for every connection type, the keys and values are quite different. Tables Table 5-1
through Table 5-3 list the attributes for the three connection types listed above. Many database platforms support
additional attributes that can also be set through the connection string. For a list of these attributes, please consult the
appropriate database vendor documentation.

Following are examples of two connection strings for an OdbcConnection:

DSN=MyOracleDSN; UID=scott; PWD=tiger;

DRIVER={SQL Server};SERVER=(local);UID=sa;PWD=;DATABASE=pubs;

The first string connects to a Data Source Name, or DSN, with the name MyOracleDSN using the username scott and
the password tiger.

The second string connects using the SQL Server driver to a database named pubs on the local server. The username
is sa. The password is blank, indicating to the driver that the password is not required for the sa user.

Following is an example of a connection string for an OleDbConnection, which connects to an Oracle9i data source using
the MSDAORA OLE DB provider, the use name scott, and the password tiger.

Provider=MSDAORA;Data Source=Oracle9;User ID=scott;Password=tiger;

Finally, here is an example of a connection string for a SqlConnection, which connects to a SQL Server data source on the
local server:

Server=(local);UID=sa;PWD=;DATABASE=pubs;Connection Timeout=60;

In Tables Table 5-1 through Table 5-3, you'll find synonyms for some keywords. For example, you can use "DSN" and
"Data Source Name" interchangeably in your code.

Table 5-1. Connection string attributes for OdbcConnection
Keyword Notes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Data
Source
Name

DSN

The DSN, FILEDSN, or DRIVER attribute must be provided to connect. The DSN is the Data Source Name
known by the client's driver manager. The advantage of using a DSN is that the DSN can be changed to
point to a different database platform while the database applications are still running.

User ID

UID
This value is set to the user identifier authorized to open a new connection.

Password

PWD

The password for the user. If the user doesn't have a password for the data source, then this property
should still be supplied with an empty value.

DSN_File
Name

FILEDSN

Similar to the DSN, the FILEDSN is a file, typically with a DSN extension that contains the attributes for
the connection object to establish connectivity. Even when using a FILEDSN, the connection may still need
the password provided, since passwords aren't stored within DSN files.

Driver
Name

DRIVER

A Driver may be explicitly used instead of a DSN or FILEDSN. The drawback of using a driver directly is
that the application won't be isolated from changes made to the driver and will require slight modifications
to target a different database platform.

SAVEFILE
When the SAVEFILE attribute is set to a legal filename, the connection attributes will be saved to the file
once successful connectivity is established. This option is only available when using DRIVER and FILEDSN
connectivity methods.

Table 5-2. Connection string attribute for OleDbConnection
Keyword Notes

Provider The name of the provider: this is the only required attribute. The specified provider may require additional
attributes.

Table 5-3. Connection string attributes for SqlConnection
Keyword Notes

Application Name The name of the application that will be displayed from server management utilities.

AttachDBFilename

Extended
properties

Initial File Name

The pathname to an attachable database.

Connect Timeout

Connection Timeout
Number of seconds to wait before the connection attempt is aborted. The default is 15 seconds.

Connection Lifetime Time in seconds the connection can remain in the connection pool, when pooling is enabled.

Connection Reset Specifies whether or not the connection is reset when it is reused from the connection pool.
Default is true.

Current Language The language the connection session should use.

Data Source

Server

Address

Addr

Network Address

The SQL Server instance name or network address.

Initial Catalog

Database
The name of the database.

Integrated Security

Trusted_Connection
Set to true or sspi for secure connections. The default is false.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Max Pool Size The maximum number of connections allowed in the connection pool at a time. The default is
100.

Min Pool Size The minimum number of connections to keep in the connection pool at a time. The default is 0.

Network Library

Net

The network library to use in establishing the connection. Valid settings are dbnmpntw for Named
Pipes, dbmsrpcn for Multiprotocol, dbmsadsn for AppleTalk, dbmsgnet for VIA, dbmsipcn for Shared
Memory, dbmsspxn for IPX/SPX, and dbmssocn for TCP/IP. The default is dbmssocn for TCP/IP.

Packet Size The network packet size in bytes; the default is 8,192.

Password

Pwd
The user's password.

Persist Security
Info

Determines if security-sensitive connection properties, such as the password, are stored within
the connection object after a connection has been attempted or completed. The default is false.

Pooling Determines if connection pooling should be used for the connection. The default is true.

User ID The user's login name.

Workstation ID The name of the computer connecting to the database.

5.2.2 Opening a JDBC Database Connection

Following is the syntax for registering a driver with the JDBC Driver Manager and then opening a database connection:

Class.forName(driver_name);

Connection connection = DriverManager.getConnection(connect_string,

 username, password);

The first step in establishing JDBC connectivity is to instruct the Java Virtual Machine (JVM) class loader to load the
appropriate JDBC driver.

The most common method of loading the driver into the class loader is to use the static forName method of the Class
class. This method can provide applications with greater flexibility in changing database platforms by having the Java
Virtual Machine (JVM) load the database driver at runtime:

Class.forName("driver_name");

After the database driver has been loaded, the application can establish connectivity by invoking the static getConnection
method on the JDBC DriverManager class. The getConnection method takes three arguments: a connection string,
username, and password:

Connection connection = DriverManager.getConnection(connect_string,

 username, password);

The connection string follows the following JDBC URL naming scheme:

jdbc:subprotocol:subname

Following are examples of how to connect to the different vendors covered in this book using JDBC.

5.2.2.1 DB2

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

Connection connection = DriverManager.getConnection(

 "jdbc:db2:DATABASE", "user", "passwd");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "jdbc:db2:DATABASE", "user", "passwd");

5.2.2.2 MySQL

Class.forName("org.gjt.mm.mysql.Driver");

Connection connection = DriverManager.getConnection(

 "jdbc:mysql://127.0.0.1:3306/DATABASE",

 "user", "passwd");

5.2.2.3 PostgreSQL

Class.forName("org.postgresql.Driver");

Connection connection = DriverManager.getConnection(

 "jdbc:postgresql://127.0.0.1:5432/DATABASE",

 "user", "passwd");

5.2.2.4 Oracle

Class.forName("oracle.jdbc.driver.OracleDriver");

Connection connection = DriverManager.getConnection(

 "jdbc:oracle:thin:@myserver",

 "scott","tiger");

5.2.2.5 SQL Server

Class.forName(

 "com.microsoft.jdbc.sqlserver.SQLServerDriver"

);

Connection connection = DriverManager.getConnection(

 "jdbc:microsoft:sqlserver://SERVER:1433;" +

 "DatabaseName=pubs;",

 "user", "passwd");

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3 Closing a Database Connection
Once an application is finished using an open connection, that connection should be closed. Some APIs automatically
close connections when the application exits; however, it is best to explicitly close the connection as soon as the
application is finished accessing the database to allow other applications access to precious connection resources.

Calling the appropriate close methods when finished with an ADO.NET or JDBC object is
essential to freeing precious database resources used by the application. Both ADO.NET
and Java offer very few guarantees when objects are finalized; therefore, it is common for
those applications that don't close objects explicitly to run out of database resources (such
as connections, statement handles, and memory).

5.3.1 Closing an ADO.NET Database Connection

To close an ADO.NET connection, invoke the Close method on the connection object:

connection.Close();

5.3.2 Closing a JDBC Database Connection

To close a JDBC connection, invoke the close method on the connection object:

connection.close();

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4 Managing Transactions
Most database programming APIs provide methods of controlling transactions, setting savepoints, and modifying
isolation levels. This section covers the mechanisms for controlling transactions from the ADO.NET and JDBC APIs
covered in this chapter.

5.4.1 Beginning a Transaction

Beginning a transaction is the first step in guaranteeing atomicity when executing multiple SQL statements. After
beginning a transaction, the transaction can be committed to make the changes performed by the executed SQL
statements permanent or the transaction can be rolled back to abort the changes and leave the database unchanged.

5.4.1.1 Beginning an ADO.NET transaction

To begin a transaction using ADO.NET, invoke the BeginTransaction method on a connection object. A Transaction object is
returned that can be used in the creation of ADO.NET Command objects that execute within the same transaction. To
execute a Command object within the new transaction, you must first attach the Transaction object to the Command
object's Transaction property. Following is the syntax for starting a transaction by creating a Transaction object in
ADO.NET:

{Odbc|OleDb|Sql}Transaction transaction =

 connection.BeginTransaction([IsolationLevel.

 {Chaos | ReadCommitted | ReadUncommitted |RepeatableRead |

 Serializable | Unspecified}]);

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();

statement.Transaction = transaction;

When creating the Transaction object, you can optionally specify the isolation level that is used for the transaction. The
isolation level controls how much (or little) your database transactions are insulated from the effects of other
transactions. The available isolation levels are:

Chaos

Pending changes of other transactions with higher isolation levels (ReadCommitted, ReadUncommitted,
RepeatableRead, or Serializable) cannot be changed.

ReadUncommitted

The lowest ANSI standard isolation level, unprotected against dirty reads, non-repeatable reads, and phantom
records.

ReadCommitted

The next highest ANSI standard isolation level above ReadUncommitted, protects against dirty reads.

RepeatableRead

The next highest ANSI standard isolation level above ReadCommitted, protects against dirty reads and
nonrepeatable reads.

Serializable

The highest ANSI standard isolation level. Protects against dirty reads, non-repeatable reads, and phantom
records.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

records.

Unspecified

Isolation level cannot be determined. This option is not typically passed into the BeginTransaction method; its
purpose is to provide an Unknown state for the Connection object's IsolationLevel property. If the Transaction has
this IsolationLevel, even after being set to another value, then it is safe to assume that the database does not
support the IsolationLevel that you requested.

For more information about isolation levels, see Programming Tips and Gotchas under SET TRANSACTION Statement.

The isolation level used during SQL statement execution can have a significant impact on
the performance and scalability of a database application, as well as on the RDBMS itself.
When deciding which isolation level to use, choose the lowest level that provides the
appropriate isolation guarantees for the database application.

5.4.1.2 Beginning a JDBC transaction

JDBC starts a connection in AUTO COMMIT mode, which is a setting that automatically commits changes made by each
SQL statement when it executes. To gain control over when changes are committed, the AUTO COMMIT setting must be
turned off. JDBC's mechanism of beginning a transaction is subtle compared to ADO.NET, which uses a BeginTransaction
method to begin a transaction. In JDBC, a transaction is started as soon as the AUTO COMMIT mode is turned off or
just after the transaction has been committed or rolled back. Committing or rolling back the transaction doesn't turn the
AUTO COMMIT mode back on, so multiple commits or rollbacks will need to be executed to commit/roll back multiple
units of work until the connection is closed or AUTO COMMIT is explicitly turned back on. To turn off the AUTO COMMIT
mode, execute the setAutoCommit method of the JDBC Connection object with a false argument:

connection.setAutoCommit(false);

Beware that invoking setAutoCommit to turn AUTO COMMIT mode on or off when a
transaction has already begun will automatically commit that transaction.

JDBC also supports different isolation levels through the JDBC Connection interface. To set the isolation level used for
new transactions, invoke the setTransactionIsolation method with one of the following isolation levels:

TRANSACTION_NONE

Indicates transactions are not supported on the connection. This value is not typically used to set the isolation
level, but to query the connection for transaction support with the getTransactionIsolation method on the
Connection interface.

TRANSACTION_READ_UNCOMMITTED

The lowest ANSI standard isolation level, unprotected against dirty reads, nonrepeatable reads, and phantom
records.

TRANSACTION_READ_COMMITTED

The next highest ANSI standard isolation level above TRANSACTION_READ_UNCOMMITTED. Protects against dirty
reads.

TRANSACTION_REPEATABLE_READ

The next highest ANSI standard isolation level above TRANSACTION_READ_COMMITTED. Protects against dirty
reads and nonrepeatable reads.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TRANSACTION_SERIALIZABLE

The highest ANSI standard isolation level. Protects against dirty reads, nonrepeatable reads, and phantom
records.

For a more detailed explanation of transaction isolation levels, see Programming Tips and Gotchas under SET
TRANSACTION Statement.

Following is example code setting the isolation level in JDBC:

connection.setIsolationLevel(Connection.TRANSACTION_SERIALIZABLE);

The isolation level used on the connection can have a significant impact on the
performance and scalability of a database application, as well as on the RDBMS itself.
When deciding which isolation level to use, choose the lowest level that provides the
appropriate isolation guarantees for the connection.

5.4.2 Committing a Transaction

Committing a transaction is a way to explicitly close the transaction and make its database modifications permanent.

5.4.2.1 Committing an ADO.NET transaction

To commit a transaction using ADO.NET, invoke the Commit method on the Transaction object:

transaction.Commit();

ADO.NET is more object-oriented than many database-programming APIs, as can be seen from the encapsulation of a
transaction into a unique object type. This has the drawback of making the methods for explicitly ending a transaction
more difficult to find than those to begin a transaction, since they are on different object types. Remember that the
method to begin a transaction is on the Connection object, and the methods to commit or roll back a transaction are
found on the Transaction object.

5.4.2.2 Committing a JDBC transaction

Invoking the commit method on a JDBC Connection object commits a transaction within JDBC and begins a new
transaction:

connection.commit();

If the connection is in AUTO COMMIT mode, you will then get a Java exception of type SQLException because the
connection will not have a pending transaction.

5.4.3 Rolling Back a Transaction

Rolling back a transaction is a way to close the transaction explicitly and to discard any database modifications since the
transaction was started.

5.4.3.1 Rolling back an ADO.NET transaction

To roll back a transaction using ADO.NET, invoke the Rollback method on the Transaction object:

transaction.Rollback();

After rolling back a Transaction object, the Dispose method should be invoked to free any resources held by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

After rolling back a Transaction object, the Dispose method should be invoked to free any resources held by the
transaction:

transaction.Dispose();

5.4.3.2 Rolling back a JDBC transaction

Invoking the rollback method on a JDBC Connection object rolls back a transaction within JDBC and begins a new
transaction:

connection.rollback();

If the connection is in AUTO COMMIT mode, then a Java exception will be thrown of SQLException type.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.5 Executing Statements
The primary purpose of programming to a specific database API is to execute SQL statements. The next section covers
the steps required to successfully execute a simple SQL statement, such as INSERT or UPDATE, that does not return
results. The section following focuses on the more complicated task of executing statements that do return results.

5.5.1 Executing an ADO.NET Statement

The following code fragment provides the syntax for executing a SQL INSERT statement using ADO.NET:

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();

statement.CommandText = "INSERT INTO authors(au_id, au_lname, " +

 " au_fname, contract) " +

 "VALUES ('xyz', 'Brown', 'Emmit', 1)";

int rowsInserted = statement.ExecuteNonQuery();

statement.Close();

To execute a statement using ADO.NET, take the following steps:

1. Create an ADO.NET Command object. SqlCommand is used for access to Microsoft SQL Server, OdbcCommand is
used for ODBC data sources, and OleDbCommand for OLE-DB data sources.

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();

2. After creating the appropriate Command object, a SQL statement needs to be associated with the Command
before it can be executed.

statement.CommandText = "INSERT INTO authors(au_id, au_lname, " +

 " au_fname, contract) " +

 "VALUES ('xyz', 'Brown', 'Emmit', 1)";

3. After assignment of the SQL statement, the Command object is ready for execution.

int rowsInserted = statement.ExecuteNonQuery();

There are three methods that can be used to execute ADO.NET Command objects:

a. ExecuteReader: Executes SQL statements that return rows, such as SELECT statements. The return value
is an ADO.NET DataReader object.

b. ExecuteNonQuery: Executes SQL statements that do not typically return result sets, such as INSERT,
DELETE, or UPDATE statements. The return value is an integer value equal to the number of rows
affected by the statement execution.

c. ExecuteScalar: Executes SQL statements that return a single value, such as statements containing a
single aggregate function.

d. After the Command object is executed, it should be explicitly closed to free up resources that have been
allocated to execute statements and to communicate with the database server. To free up these
resources, invoke the Command object's Dispose method:

statement.Dispose();

The resources held by ADO.NET Statement objects are freed using the Dispose method,
which differs from the Close method used by all other ADO.NET types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

which differs from the Close method used by all other ADO.NET types.

5.5.2 Executing a JDBC Statement

The following code fragment provides the syntax for executing a SQL INSERT statement using JDBC:

java.sql.Statement statement = connection.createStatement();

int rowsInserter = statement.executeUpdate(

 "INSERT INTO authors(au_id, au_lname, au_fname, contract) " +

 " VALUES ('xyz', 'Brown', 'Emmit', 1)");

statement.close();

1. Executing a SQL statement first requires the creation of a JDBC Statement object. A Statement object is produced
by invoking the createStatement method on a valid JDBC Connection object:

java.sql.Statement statement = connection.createStatement();

2. After a Statement object has been created, a SQL statement can be executed by invoking one of the execute
methods found on the Statement object. For non-query statements, the executeUpdate method is the best method
to use:

statement.executeUpdate("INSERT INTO authors(au_id, au_lname, " +

 "au_fname, contract) VALUES " +

 "('xyz', 'Brown', 'Emmit', 1)");

The executeUpdate method returns an int value indicating the number of rows inserted, updated, or deleted
during the execution of the SQL statement. If the execution fails, you will get a SQLException.

3. After the Statement object has been executed, it may be executed again, or freed by invoking the close method.

statement.close();

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.6 Retrieving Data
A typical database program retrieves data from a database server and processes it. These programs will execute
SELECT statements following a process similar to that described in the previous section. The difference between
executing a SELECT statement as opposed to a statement that does not return results is that with SELECT you must
execute additional code to process the results returned by SELECT.

5.6.1 Retrieving Data Using ADO.NET

The following C# code fragment executes a SQL SELECT statement that returns author names from the authors table
and then iterates through the results one row at a time, printing out each author's name. The code is explained in the
detailed steps that follow:

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();

statement.CommandText = "SELECT au_fname, au_lname FROM authors";

{Odbc|OleDb|Sql}DataReader resultSet = statement.ExecuteReader();

while(resultSet.Read())

{

 String fname = "NULL";

 String lname = "NULL";

 if(!resultSet.IsDBNull(0)) fname = resultSet.GetString(0);

 if(!resultSet.IsDBNull(1)) lname = resultSet.GetString(1);

 System.Console.WriteLine(lname + ", " + fname);

}

resultSet.Close();

statement.Close();

Column ordinals are all zero-based (the first column is 0, the second is 1, etc.) in
ADO.NET, which is different from the one-based ordinals used by JDBC.

To execute a SQL query and process the results using ADO.NET, take the following steps:

1. Create the Command object that will be used to execute the SELECT statement and attach a SELECT statement
to it:

{Odbc|OleDb|Sql}Command statement = connection.CreateCommand();

statement.CommandText = "SELECT au_fname, au_lname FROM AUTHORS";

2. Invoke the ExecuteReader method on the Command object, creating a new DataReader object.

{Odbc|OleDb|Sql}DataReader resultSet = statement.ExecuteReader();

3. Iterate through each row in the result set. After execution of the SELECT statement, retrieve rows using the
DataReader's Read method. If you expect a multiple row result, you should invoke the Read method from within a
while loop:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

while loop:

while(resultSet.Read())

{

4. Having fetched a row of data into the DataReader object, the column data can be extracted using the DataReader's
Get methods. Before calling the Get methods, we check to see if the data is NULL using the DataReader's IsDBNull
method. If the value returned by the IsDBNull method is true, then the value of the string will be NULL. There
are many Get methods for each type of column. Using the appropriate datatype for the column is important,
because a conversion is not always possible. For a list of available Get methods and the ANSI SQL types they
should be used with, please see Table 5-4.

 String fname = "NULL";

 String lname = "NULL";

 if(!resultSet.IsDBNull(0)) fname = resultSet.GetString(0);

 if(!resultSet.IsDBNull(1)) lname = resultSet.GetString(1);

When creating an ADO.NET program that fetches data that can contain NULL values, it is always safest to check
the return value of the DataReader object's IsDBNull method prior to extracting a value.

5. The Read method of DataReader returns false when all the data has been read from the database server. At that
point, the Close methods on the Command object and DataReader should be invoked to free up the resources
used internally to process the statement.

resultSet.Close();

statement.Close();

Table 5-4. ADO.NET DataReader Get methods
Method name Description

GetBoolean(int i) Returns the value from the ith column as a Boolean value, where i is the zero-based column
number.

GetByte(int i)
Returns the value from the ith column as a single-byte value, where i is the zero-based column
number. No conversion will be done if the data in the column exceeds one byte and an
InvalidCastException object will be thrown.

GetBytes(int i, long
dataIndex, byte[]
buffer, int
bufferIndex, int
length)

Returns the value from the ith column as a binary value, where i is the zero-based column
number, dataIndex is the offset in the column value to start reading, buffer is the byte array to
copy the data into, bufferIndex is the offset into buffer at which to start copying data, and length is
the maximum length to copy into buffer.

GetChar(int i) Returns a single char value from the ith column. For use with character type columns, where i is
the zero-based column number.

GetChars(int i, long
dataIndex, char[]
buffer, int
bufferIndex, int
length)

Returns a string of characters from the ith column. For use with character type columns, where i
is the zero-based column number, dataIndex is the offset in the column value to start reading,
buffer is the char array to copy the data into, bufferIndex is the offset into buffer at which to start
copying data, and length is the maximum length to copy into buffer.

GetDataTypeName(int
i)

Gets a String value that contains the name of the column's datatype, where i is the zero-based
column number.

GetDateTime(int i) Returns a DateTime value from the ith column. For use with temporal type columns, where i is the
zero-based column number.

GetDecimal(int i) Returns a single Decimal value from the ith column. For use with numeric type columns, where i
is the zero-based column number.

GetDouble(int i) Returns a single double value from the ith column. For use with double precision type columns,
where i is the zero-based column number.

GetFloat(int i) Returns a single float value from the ith column. For use with floating-point columns, where i is
the zero-based column number.

GetInt{16,32,64}(int
i)

Retrieves data from integer columns. The precision of the return value is encoded within the
function names. Use GetInt16 for a 16-bit signed short integer, GetInt32 for a 32-bit signed int, and
GetInt64 for a 64-bit signed long.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

GetName(int i) Returns a String value containing the name of the ith column, where i is the zero-based column
number.

GetOrdinal(string
name)

Returns an int value containing the ordinal value of the column with name matching the name
argument.

GetString(int i) Returns a single String value from the ith column. For use with character type columns, where i is
the zero-based column number.

Beyond the Get methods, there are three other methods on the DataReader type that are frequently used when
processing data from a query. Those three methods are listed in Table 5-5.

Table 5-5. Frequently used ADO.NET DataReader methods
Method
name Description

Close() Closes the DataReader object, freeing up resources held by the instance.

IsDBNull(int i) Returns true if the specified column is NULL, otherwise it returns false, where i is the zero-based
column number.

Read() Fetch the next row if one is available, and return true, otherwise return false.

5.6.2 Retrieving Data Using JDBC

The following Java code fragment executes a SQL SELECT statement that returns author names from the authors table
and then iterates through the results one row at a time, printing out each author's name:

java.sql.Statement statement = connection.createStatement();

java.sql.ResultSet result =

 statement.executeQuery("SELECT au_fname, au_lname FROM authors");

while(result.next()) {

 String fname = result.getString(1);

 if(result.wasNull()) fname = "NULL";

 String lname = result.getString(2);

 if(result.wasNull()) lname = "NULL";

 System.out.println(lname + ", " + fname);

}

result.close();

statement.close();

Column ordinals are all one-based (first column is 1, second is 2, etc.) in JDBC, which is
different from the zero-based ordinals used by ADO.NET.

5.6.2.1 Use the following steps to execute query statements in JDBC:

1. Create a JDBC Statement object by invoking the createStatement method on a valid Connection object:

java.sql.Statement statement = connection.createStatement();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

java.sql.Statement statement = connection.createStatement();

2. The query is executed by invoking one of the execute methods on the Statement object. Result sets from query
statements are processed by JDBC ResultSet objects, which are returned from the executeQuery method of JDBC
Statement objects.

java.sql.ResultSet result =

 statement.executeQuery("SELECT au_fname, au_lname FROM authors");

3. After creating a ResultSet object, you can iterate through one row at a time by invoking the next method. The
next method returns a Boolean value, true for each row in a result set and false after all rows have been
iterated through. It is common to invoke the next method within a while loop to process the rows one-by-one.
The ResultSet does not begin on the first row of the result, so you must invoke the next method to advance to
the first row before calling any of the get methods.

while(result.next()) {

4. To retrieve column data from the rows within a result set, invoke the appropriate get method on the ResultSet
object. For a list of the most common get methods, check Table 5-6. Note that the column data is checked for a
NULL value after the get method has been invoked, since the nullness of a value can't be determined from the
value returned by the get methods.

 String fname = result.getString("au_fname");

 if(result.wasNull()) fname = "NULL";

 String lname = result.getString("au_lname");

 if(result.wasNull()) lname = "NULL";

When creating a JDBC program that fetches data from nullable columns, it is always safest to check the value
returned from a ResultSet object for a NULL value using the wasNull method.

The JDBC get methods that return object types will return Java NULL values when
returning database NULL values. However, this does not apply to non-object types
such as getInt(), which returns zero in the case of a database NULL. For this reason,
this chapter uses the verbose wasNull() method to test the value for a NULL.

5. Free the resources held by the result set and statement objects. When finished with the ResultSet and Statement
objects, invoke their close methods so that database resources can be freed.

result.close();

statement.close();

Table 5-6. JDBC ResultSet get methods
Method name Description

getBlob({int i|String
name})

Retrieves a Blob value from BLOB type columns, where i is the one-based column ordinal and
name is the name of the column.

getBoolean({int
i|String name})

Retrieves a boolean value from BOOLEAN type columns, where i is the one-based column ordinal
and name is the name of the column.

getByte({int i|String
name})

Retrieves a byte value from CHARACTER or BINARY type columns, where i is the one-based
column ordinal and name is the name of the column.

getBytes({int i|String
name})

Retrieves a byte[] value from BINARY type columns, where i is the one-based column ordinal
and name is the name of the column.

getClob({int i|String
name})

Retrieves a Clob value from CLOB type columns, where i is the one-based column ordinal and
name is the name of the column.

getDate({int i|String
name})

Retrieves a Date value from TEMPORAL type columns, where i is the one-based column ordinal
and name is the name of the column.

getDouble({int i|String Retrieves a double value from DOUBLE PRECISION type columns, where i is the one-based

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getDouble({int i|String
name})

Retrieves a double value from DOUBLE PRECISION type columns, where i is the one-based
column ordinal and name is the name of the column.

getFloat({int i|String
name})

Retrieves a float value from REAL type columns, where i is the one-based column ordinal and
name is the name of the column.

getInt({int i|String
name})

Retrieves an int value from INTEGER type columns, where i is the one-based column ordinal and
name is the name of the column.

getLong({int i|String
name})

Retrieves a long value from INTEGER type columns, where i is the one-based column ordinal and
name is the name of the column.

getRow() Returns the current row number.

getShort({int i|String
name})

Retrieves a short value from INTEGER type columns, where i is the one-based column ordinal
and name is the name of the column.

getString({int i|String
name})

Retrieves a String value from CHARACTER type columns, where i is the one-based column
ordinal and name is the name of the column.

getTime({int i|String
name})

Retrieves a Time value from TEMPORAL type columns, where i is the one-based column ordinal
and name is the name of the column.

getTimestamp({int
i|String name})

Retrieves a Timestamp value from TEMPORAL type columns, where i is the one-based column
ordinal and name is the name of the column.

Beyond the get methods, there are three other methods on the ResultSet type that are frequently used when processing
data from a query. Those three methods are listed in Table 5-7.

Table 5-7. Frequently used JDBC ResultSet methods
Method
name Description

close() Closes the ResultSet object, freeing up resources held by the instance.

next() Advances the ResultSet object to the next available row and returns true. If no rows remain false will be
returned.

wasNull() Returns true if the last column returned with a get method contained a database NULL value, returns
false otherwise.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.7 Bound Parameters
One of the easiest ways to optimize a slow database application that executes many similar SQL statements is to
parameterize the most commonly used SQL statements. Parameterization is a way of reusing a SQL statement by
writing it with placeholders for frequently changing values. This provides two major benefits: the potential for reduced
server roundtrips and better processing efficiency on the database server, since the server doesn't need to parse, plan,
and optimize the execution of frequently used SQL statements on every execution.

Parametrized statements are useful in using string or binary values within SQL statements that contain unfriendly
characters, such as quote marks or terminal NULL characters that indicate the end of a string. Usage in this way
provides security benefits to a database application where user input is used within statements. Not binding a
parameter coming from an end user could allow clever modification of the statement in a way that may divulge secret
information from the database.

Since there is a slight cost involved in setting up a parameterized statement, it's good
practice to only parameterize statements that will be executed at least three times prior to
the statement closing. If a statement is only executed once prior to freeing the statement,
the costs of preparing the statement and binding the parameters could result in a
performance net loss to the application.

5.7.1 ADO.NET Bound Parameters

The following C# code fragment executes a SQL INSERT statement that adds new sales to the sales table in the pubs
database. The INSERT statement is parameterized to provide better performance, since the statement object needs to
be parsed only once on the server.

// Create a Command object for the SQL statement

Statement statement = connection.CreateCommand();

statement.CommandText =

 "INSERT INTO SALES(stor_id,

 ord_num,

 ord_date,

 qty,

 payterms,

 title_id) " +

 "VALUES(@stor_id, @ord_num, @ord_date, @qty, @payterms, @title_id)";

//Prepare the statement on the server

statement.Prepare();

// Declare parameters that will be bound

{Odbc|OleDb|Sql}Parameter stor_id, ord_num, ord_date,

 qty, payterms, title_id;

stor_id = statement.Parameters.Add("@stor_id", DbType.String);

ord_num = statement.Parameters.Add("@ord_num", DbType.String);

ord_date = statement.Parameters.Add("@ord_date", DbType.DateTime);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ord_date = statement.Parameters.Add("@ord_date", DbType.DateTime);

qty = statement.Parameters.Add("@qty", DbType.Int16);

payterms = statement.Parameters.Add("@payterms", DbType.String);

title_id = statement.Parameters.Add("@title_id", DbType.String);

while(GetNextSale(stor_id, ord_num, ord_date, qty, payterms, title_id))

{

 // Execute the statement

 int result = statement.ExecuteNonQuery();

 if(result != 1)

 {

 // If result isn't 1, then the insert failed.

 System.Console.WriteLine("The INSERT failed.");

 break;

 }

}

5.7.1.1 Use the following steps to execute statements with bound parameters in
ADONET:

1. As done in previous sections, we create an ADO.NET Command object and assign a SQL statement to it. The
difference for using bound parameters within the statement is in the VALUES clause of the INSERT statement.
Contained within the VALUES clause are six named placeholders for the parameters that will be later bound to
the Command object. In ADO.NET the placeholders begin with the @ symbol and are followed by an identifier
that is unique amongst all placeholders in the statement.

Statement statement = connection.CreateCommand();

statement.CommandText =

 "INSERT INTO SALES(stor_id,

 ord_num,

 ord_date,

 qty,

 payterms,

 title_id) " +

 "VALUES(@stor_id, @ord_num, @ord_date, @qty, @payterms, @title_id)";

2. Invoke the Prepare method on the Command object to prepare the SQL statement for execution. This notifies the
database layer that the Command object will be executed with bound parameters.

statement.Prepare();

3. Declare the parameter objects using the parameter type that matches the Command object: OdbcParameter,
OleDbParameter, or SqlParameter. After declaring the parameters, create parameter objects by invoking the Add
method of the Command object's Parameter collection and assign the return value to the Parameter object. The
first argument to the Add method is the name of the placeholder that the parameter will map to during
execution. In the example below, the stor_id Parameter object will map to the first item in the VALUES clause,
which has the placeholder named @stor_id. The second argument in the Add method is the column type that the
placeholder maps to on the server. Look to Table 5-8 for a list of frequently used types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

placeholder maps to on the server. Look to Table 5-8 for a list of frequently used types.

{Odbc|OleDb|Sql}Parameter stor_id, ord_num, ord_date,

 qty, payterms, title_id;

stor_id = statement.Parameters.Add("@stor_id", DbType.String);

ord_num = statement.Parameters.Add("@ord_num", DbType.String);

ord_date = statement.Parameters.Add("@ord_date", DbType.DateTime);

qty = statement.Parameters.Add("@qty", DbType.Int16);

payterms = statement.Parameters.Add("@payterms", DbType.String);

title_id = statement.Parameters.Add("@title_id", DbType.String);

4. In this example, the Parameter objects are assigned a value by the user-defined GetNextSale function call, which
could be implemented like this:

static bool GetNextSale(SqlParameter stor_id,

 SqlParameter ord_num,

 SqlParameter ord_date,

 SqlParameter qty,

 SqlParameter payterms,

 SqlParameter title_id)

{

 // Omitted is the code that would

 // Read a sale record from a file, or user input, etc.

 // If there are no more sale records, return false.

 if(!more_records) return false;

 // Assign values to the parameter objects

 stor_id.Value = 1234;

 ord_num.Value = "ABCD.123";

 ord_date.Value = new DateTime(2003,2,24);

 qty.Value = 50;

 payterms.Value = "Net 60";

 title_id.Value = "SD2043";

 return true;

}

Notice that the parameters are assigned a value by assigning directly to the Value property on the Parameter
object. The stor_id parameter object is assigned a value of 1234, whereas ord_date is assigned a C# ADO.NET
DateTime object. The function returns false if there are no more sales to insert into the table; otherwise the
function returns true.

Combined with a while loop, the program will continue to insert new sales into the database until the GetNextSale
function runs out of new records to process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function runs out of new records to process.

while(GetNextSale(stor_id, ord_num, ord_date, qty, payterms, title_id))

{

5. Invoking the ExecuteNonQuery method on the Command object executes the INSERT statement, with the bound
parameter values replaced for their corresponding placeholders. The ExecuteNonQuery method returns the
number of rows affected, which will be 1 in this case on a successful single-row insert. This return value is used
in error handling and the application will exit if the statement should ever fail to execute.

 // Execute the statement

 int result = statement.ExecuteNonQuery();

 if(result != 1)

 {

 // If result isn't 1, then the insert failed.

 System.Console.WriteLine("The INSERT failed.");

 break;

 }

Table 5-8. Frequently used parameter object types
DbType object

type Description

AnsiString Variable-length, non-Unicode character string between 1 and 8,000 characters.

AnsiStringFixedLength Fixed-length, non-Unicode character string.

Binary Variable-length binary string between 1 and 8,000 bytes.

Boolean Represents a true or false value.

Byte Unsigned integer value ranging 0 to 255.

Currency Currency value ranging from -263 to 263-1.

DateTime Date and time value.

Decimal Numeric value ranging from 10-28 to 7.9 1028 with about 28 significant digits.

Double Floating point type ranging from 5.0 10-324 to 1.7 10308 with about 15 digits.

Int{16,32,64} Signed integer; the number suffix indicates the number of bits of precision. For example, Int32 is
a 32-bit integer.

Single Floating point type ranging from 5.0 10-324 to 1.7 10308, with about 15 digits.

String Variable-length, Unicode character string.

StringFixedLength Fixed-length, Unicode character string.

UInt{16,32,64} Unsigned integer; the number suffix indicates the number of bits of precision. For example,
UInt32 is a 32-bit unsigned integer.

5.7.2 Binding Parameters with JDBC

The following Java code fragment executes a SQL INSERT statement that adds new sales to the sales table in the pubs
database. The INSERT statement is parameterized to provide better performance.

// Create a Command object for the SQL statement

PreparedStatement statement = connection.prepareStatement(

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PreparedStatement statement = connection.prepareStatement(

 "INSERT INTO SALES(stor_id,

 ord_num,

 ord_date,

 qty,

 payterms,

 title_id) " +

 "VALUES(?, ?, ?, ?, ?, ?)");

while(getNextSale(statement))

{

 // Execute the statement

 int result = statement.executeUpdate();

 if(result != 1)

 {

 // If result isn't 1, then the insert failed.

 System.out.println("The INSERT failed.");

 break;

 }

}

5.7.2.1 Use the following steps to execute statements with bound parameters in
JDBC:

1. Create a JDBC PreparedStatement object and pass the parameterized SQL statement into its constructor. The
difference for using bound parameters within the statement is in the VALUES clause of the INSERT statement.
Contained within the VALUES clause are six placeholders (the question marks) for the parameters that will later
be bound to the PreparedStatement object.

PreparedStatement statement = connection.prepareStatement(

 "INSERT INTO SALES(stor_id,

 ord_num,

 ord_date,

 qty,

 payterms,

 title_id) " +

 "VALUES(?, ?, ?, ?, ?, ?)");

1. In this example, the parameters are assigned a value by the user-defined getNextSale function call, which could
be implemented like this:

static boolean getNextSale(PreparedStatement statement)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

static boolean getNextSale(PreparedStatement statement)

 throws SQLException

{

 // Omitted is the code that would

 // Read a sale record from a file, or user input, etc.

 // If there are no more sale records, return false.

 if(!more_records) return false;

 statement.setString(1, "1234");

 statement.setString(2, "ABCD.123");

 statement.setDate(3, new java.sql.Date(2003, 2, 24));

 statement.setInt(4,50);

 statement.setString(5, "Net 60");

 statement.setString(6, "SD2043");

 return true;

}

1. Each binding position is referenced by its ordinal position in the SQL statement, with the first position starting at
1. The values are assigned to placeholders using the set methods found on the PreparedStatement object. Table 5-
9 contains a list of frequently used set methods.

2. The function returns false if there are no more sales to insert into the table; otherwise the function returns true.

3. Combined with a while loop, the program will continue to insert new sales into the database until the getNextSale
function runs out of new records to process.

while(getNextSale(statement))

{

1. Invoking the executeUpdate method on the PreparedStatement object executes the INSERT statement, with the
bound parameter values replaced for their corresponding placeholders. The executeUpdate method returns the
number of rows affected, which will be 1 in this case on a successful single-row insert. This return value is used
in error handling and the application will exit if the statement should ever fail to execute.

 // Execute the statement

 int result = statement.executeUpdate();

 if(result != 1)

 {

 // If result isn't 1, then the insert failed.

 System.out.println("The INSERT failed.");

 break;

 }

}

Table 5-9. Frequently used PreparedStatement set methods
Method name Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Method name Description

setBlob(int i, Blob value) Sets the placeholder at position i to the Blob contained in value.

setBoolean(int i, boolean value) Sets the placeholder at position i to the boolean contained in value.

setByte(int i, byte value) Sets the placeholder at position i to the byte contained in value.

setClob(int i, Clob value) Sets the placeholder at position i to the Clob contained in value.

setDate(int i, Date value[,
Calendar cal])

Sets the placeholder at position i to the Date contained in value. If cal is provided, it'll
be used to interpret the Date value.

setDouble(int i, double value) Sets the placeholder at position i to the double contained in value.

setFloat(int i, float value) Sets the placeholder at position i to the float contained in value.

setInt(int i, int value) Sets the placeholder at position i to the int contained in value.

setLong(int i, long value) Sets the placeholder at position i to the long contained in value.

setNull(int i, int v) Sets the placeholder at position i to a NULL value when v is true.

setString(int i, String value) Sets the placeholder at position i to the String contained in value.

setTimestamp(int i, Timestamp
value[,Calendar cal])

Sets the placeholder at position i to the Timestamp contained in value. If cal is provided,
it'll be used to interpret the Timestamp value.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.8 Error Handling
With everything that can go wrong in a database application, the correct handling of errors is a topic large enough for
its own chapter (or book!). We're lucky that the APIs covered in this book, built on the modern Java language and on
the .NET framework, contain error handling mechanisms that make recovering from errors easy.

5.8.1 Error Handling in ADO.NET

ADO.NET's error handling model is based on .NET exceptions. Functions or methods that can fail because of an error
must be wrapped in a try/catch/finally block. The difficult part of handling exceptions is determining what to do when an
error occurs and freeing resources for objects that were created. The following code example shows the error handling
pattern that can be successfully used with ADO.NET to clean up all resources in the event of an error:

{Odbc|OleDb|Sql}Connection connection = null;

{Odbc|OleDb|Sql}Command statement = null;

{Odbc|OleDb|Sql}DataReader resultSet = null;

try {

 // Create and use the Connection, Command, and DataReader objects

 connection = new SqlConnection(connection_string);

 connection.Open();

 statement = connection.CreateCommand();

 statement.CommandText = SQL;

 resultSet = statement.ExecuteReader();

} catch(Exception e) {

 // Notify user that an error occurred

} finally {

 if(resultSet != null) resultSet.Close();

 if(statement != null) statement.Dispose();

 if(connection != null) connection.Close();

}

If an error occurs in the try block and an exception (of type Exception in this case) is thrown, the exception will be caught
and the code in the catch block will be executed. The finally block, which will be executed regardless of whether an
exception is thrown, should be responsible for freeing the resources. Which resources to free is difficult to determine if
you don't know the point of failure. For example, if the failure occurs when executing a SQL statement, then the only
resources that need to be freed are the statement and connection objects. In the code fragment above, an exception
thrown in the ExecuteReader method would prevent the resultSet object from being closed, since it would still be set to its
initial value of null.

It is good programming practice to free resources in the opposite order in which they were
allocated.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.8.2 Error Handling in JDBC

JDBC's error handling model is based on Java exceptions; therefore, the standard try/catch/finally error handling
paradigm of Java can be applied to JDBC applications. The following Java code fragment is an example of how to use a
try/catch/finally code block to gracefully handle application exceptions and free allocated resources:

Connection connection = null;

Statement statement = null;

ResultSet resultSet = null;

try {

 // Create and use the Connection, Statement, and ResultSet objects

 connection = DriverManager.getConnection(connection_string);

 statement = connection.createStatement();

 resultSet = statement.executeQuery(SQL);

} catch(Exception e) {

 // Then, notify the user of an error.

} finally {

 if(resultSet != null)

 try{resultSet.close();} catch(Exception e) {}

 if(statement != null)

 try{statement.close();} catch(Exception e) {}

 if(connection != null)

 try{connection.close();} catch(Exception e) {}

}

If an error occurs in the try block and an exception (of type Exception in this case) is thrown, the exception will be caught
and the code in the catch block will be executed. The finally block, which will be executed regardless of whether an
exception is thrown, should be responsible for freeing the resources held by the connection, result set, and statement
objects. Note that each object is first tested for a null value before freeing the resources held by the object. This NULL
test is to make the code applicable to all error conditions — the code functions if the exception occurs while opening the
connection as well as processing the result set data. The close methods on the JDBC objects can also generate exceptions
when freeing resources, so they must be wrapped in their own try/catch blocks. This makes coding awkward, but even
so, it will be relatively simple if you follow the pattern given here.

It is good programming practice to free resources in the opposite order from what they
were allocated.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.9 Examples
In the previous sections of this chapter, we examined the fundamental components of SQL statement processing found
in most database programs, but didn't include any programs in their entirety. In the following section, we combine the
necessary steps into a small program that executes a simple SELECT statement and prints out the results. The same
example is provided for both of the APIs covered in this chapter.

The examples execute a SELECT statement and print out the results after establishing connectivity with the database.
The SELECT statement is as follows:

SELECT a.au_lname, a.au_fname, SUM(t.ytd_sales)

FROM authors a, titleauthor, titles t

WHERE titleauthor.au_id = a.au_id and

 titleauthor.title_id = t.title_id

GROUP BY a.au_lname, a.au_fname

ORDER BY 3 DESC

The examples execute the statement and print out the three-column result set returned by the database server.

5.9.1 ADO.NET Example

The following C# ADO.NET database program connects to a database and prints a list of authors in the pubs database
that includes their year-to-date sales. This program can be easily be adapted to meet other database processing needs
by following the practices outlined in the earlier sections of this chapter.

using System;

using System.Data.SqlClient;

class ExampleApplication

{

 static void Main(string[] args)

 {

 String connection_string =

 "Server=(local);Trusted_Connection=true;DATABASE=pubs;";

 String SQL =

 "SELECT a.au_lname, a.au_fname, SUM(t.ytd_sales) " +

 "FROM authors a, titleauthor, titles t " +

 "WHERE titleauthor.au_id = a.au_id and " +

 " titleauthor.title_id = t.title_id " +

 "GROUP BY a.au_lname, a.au_fname " +

 "ORDER BY 3 DESC";

 SqlConnection connection = null;

 SqlCommand statement = null;

 SqlDataReader resultSet = null;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 SqlDataReader resultSet = null;

 try

 {

 // Create Connection and Connect to the Server

 connection = new SqlConnection(connection_string);

 connection.Open();

 // Create a Command object for the SQL statement

 statement = connection.CreateCommand();

 statement.CommandText = SQL;

 // Create a Reader for reading the result set

 resultSet = statement.ExecuteReader();

 while(resultSet.Read())

 {

 // Extract the data from the server and display it

 String fname = "NULL";

 String lname = "NULL";

 String sales = "ZERO";

 if(!resultSet.IsDBNull(0))

 fname = resultSet.GetString(0);

 if(!resultSet.IsDBNull(1))

 lname = resultSet.GetString(1);

 if(!resultSet.IsDBNull(2))

 sales = resultSet.GetInt32(2).ToString();

 System.Console.WriteLine(lname + ", " +

 fname + " has sales of " +

 sales);

 }

 }

 catch(SqlException e)

 {

 // Print out the error string, if any.

 System.Console.WriteLine("Error:" + e.ToString());

 } finally {

 // Free up resources

 if(resultSet != null) resultSet.Close();

 if(statement != null) statement.Dispose();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if(statement != null) statement.Dispose();

 if(connection != null) connection.Close();

 }

 }

}

5.9.2 JDBC Example

The following Java JDBC database program connects to a database and prints out each of the authors in the pubs
database, as well as their year-to-date sales.

import java.sql.*;

public class ExampleApplication

{

 public static void main(String[] args)

 {

 String connection_string =

 "jdbc:microsoft:sqlserver://localhost:1433;" +

 "User=montoyai;Password=12345;DatabaseName=pubs;";

 String SQL =

 "SELECT a.au_lname, a.au_fname, SUM(t.ytd_sales) " +

 "FROM authors a, titleauthor, titles t " +

 "WHERE titleauthor.au_id = a.au_id and " +

 " titleauthor.title_id = t.title_id " +

 "GROUP BY a.au_lname, a.au_fname " +

 "ORDER BY 3 DESC";

 Connection connection = null;

 Statement statement = null;

 ResultSet resultSet = null;

 try

 {

 Class.forName("com.microsoft.jdbc.sqlserver.SQLServerDriver");

 // Create Connection and Connect to the Server

 connection = DriverManager.getConnection(connection_string);

 // Create a Command object for the SQL statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Create a Command object for the SQL statement

 statement = connection.createStatement();

 // Create a Reader for reading the result set

 resultSet = statement.executeQuery(SQL);

 while(resultSet.next())

 {

 // Extract the data from the server and display it

 String lname = resultSet.getString(1);

 if(resultSet.wasNull()) lname = "NULL";

 String fname = resultSet.getString(2);

 if(resultSet.wasNull()) fname = "NULL";

 String sales = resultSet.getString(3);

 if(resultSet.wasNull()) sales = "ZERO";

 System.out.println(lname + ", " +

 fname + " has sales of " + sales);

 }

 }

 catch(Exception e)

 {

 // Print out the error string, if any.

 System.out.println("Error:" + e.toString());

 } finally {

 // Free up resources

 if(resultSet != null)

 try {resultSet.close();} catch(Exception e) {}

 if(statement != null)

 try {statement.close();} catch(Exception e) {}

 if(connection != null)

 try {connection.close();} catch(Exception e) {}

 }

 }

}

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Database Programming
While SQL plays an important role in standardizing the communication with different RDBMSs, a missing piece still
remains for those who want to write database software applications. The missing piece is the database programming
Application Programming Interface (API) used to transport SQL statements to and process their results from an RDBMS.
While all the database platforms discussed in this book provide their own proprietary interfaces for database application
developers, this chapter focuses on two commonly used APIs that provide a consistent interface across database
platforms. Specifically, this chapter introduces you to:

ADO.NET

ADO.NET is Microsoft's high-level database programming API on the .NET platform. The ADO.NET API is a
collection of .NET interfaces that are accessible from any of the .NET languages. The primary benefits of
ADO.NET are ease of use, portability within the .NET platform, XML integration, and access to data sources
other than relational databases. The ADO.NET examples covered in this book are written in C#; however,
ADO.NET is also available from Visual Basic and the other .NET languages.

JDBC

JDBC, or Java Database Connectivity, was developed primarily by Sun Microsystems to be the primary database
programming API for the Java language. JDBC is the most popular database programming API for the Java
language and offers operating-system portability, reasonable performance for most applications, and a well-
documented interface. In addition, drivers for most database systems are typically free. This chapter covers
JDBC Version 3.0. For additional information, please browse http://java.sun.com/jdbc.

As a quick desk reference, this chapter won't provide all the information needed to develop a large enterprise database
application. However, we give you enough to get started by covering components that are common to all database
applications, both large and small.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of SQL in a Nutshell is a chameleon. There are approximately 85 species of chameleons
existing in the world today. They are mostly indigenous to Africa, although there are a few species found in Asia and in
Europe. Most are tree dwellers. The chameleon is relatively small; the average adult size is between 6 and 12 inches. It
lives mostly on insects and uses its long tongue to capture its prey. Indeed, the tongue is a critical tool. It can stretch
up to 1.5 times the lizard's body length, and there is an adhesive pad on the end on which the insects are trapped.
There are several other characteristics common to all species of chameleons. For example, its eyes are large and
protruding, and the lizard can see 360 degrees without moving its head or body. Its toes are on either side of its feet,
usually three on one side and two on the other. This is ideal for moving quickly and efficiently through tree branches.

Chameleons are best known for their ability to change their appearance to adapt to their physical environment.
Actually, several types of reptiles can change their skin color, but the chameleon is far and away the most
accomplished. This skill, which is moderated by the nervous system, obviously is invaluable for hunting prey and
avoiding predators, and also helps to stablize body temperature. The extent of this camouflage capability is related to
the gender, age, and species of the lizard.

Mary Brady was the production editor for SQL in a Nutshell, and Jane Ellin was the copyeditor. Ann Schirmer was the
proofreader. Sarah Sherman and Colleen Gorman provided quality control. Julie Hawks wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1
using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Mary Brady.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Ellie
Cutler) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright © 2004 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
The In a Nutshell series designations, SQL in a Nutshell, the image of a chameleon, and related trade dress are
trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Why This Book?
The primary source of information for relational databases is the documentation and help files provided by the vendors
themselves. While each vendor's documentation is an indispensable resource that most database programmers and
database administrators turn to first, it has a number of limitations:

It covers only a single, specific vendor's product. There is no coverage for translation, migration, or integration
issues.

It describes programming methods, usually in a multitude of small, disconnected documents or help files.

It covers individual commands, often in confusing detail, obscuring the simple and direct uses of commands that
are used every day by programmers and administrators.

In other words, the documentation included with the vendor database is an exhaustive explanation of every aspect of
their platform. After all, help texts are naturally geared toward delivering the main facts about the product. They'll tell
you a command's specific syntax (and all its obscure variants) and, in general terms, how to implement it. However, if
you move between RDMS's and you need to be productive very quickly, you will rarely use those obscure command
variations and instead utilize the common capabilities in real-life situations.

This book begins where the vendor documentation ends by distilling the experiences of professional database
administrators and developers who have used these SQL variants day in and day out to support complex enterprise
applications. You'll get the benefit of their experience in a compact and easily usable format. Whether SQL is new to
you or you have been using SQL since its earliest days, there are always new tips and techniques to learn. And, when
moving between different implementations, it's always important to find out about the implementations that can bite
you if you're not careful and informed.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments
We'd like to take a moment to thank a few special individuals at O'Reilly Media. First, we owe a huge debt of gratitude
to Jonathan Gennick, the editor of the second edition. Jonathan kept us on track and on task, even when the cares of
this world threatened to derail the project. Jonathan's attention to detail and exceptional management skills, in addition
to his talents as an editor, are the reason this book is here today. Thank you! And of course, thanks to Tim O'Reilly for
having a direct hand in the birth of this book.

We also owe a debt to our fine technical reviewers. To Peter Gulutzan (SQL Standard), Thomas Lockhart (PostgreSQL),
Alan Beaulieu (Oracle), Baya Pavliachvili (Microsoft SQL Server), Bobby Fielding (DB2), Doug Doole (DB2), Rick
Swagerman (DB2), Josh Stellan (DB2), Brian Lalonde (Database Programming), John Haydu (Oracle, Phani Arega
(Oracle), and Paul DuBois (MySQL): we owe you a hearty thanks! Your contributions have greatly improved the
accuracy, readability, and value of this book. Without you, our sections on each of the language extensions would have
been on shaky ground. In addition, we'd like to tip our hat to Peter Gulutzan and Trudy Pelzer for their book SQL-99
Complete, Really!, which assisted our understanding of the ANSI SQL2003 standards.

Brand Hunt's Acknowledgments

To my wife Michelle, without your continued support and love, I wouldn't be a part of this project. I'm appreciative for
every moment we've shared and your forgiveness for my keeping you awake at night with the "tappity-tap-taps"
emanating from the computer.

To my parents Rex and Jackie, the two biggest influences in everything I've ever done correctly — especially those
things that frequently take multiple attempts (like writing!)

A huge thanks to my teammates Kevin, Daniel, and Jonathan for letting me participate in this project and exercising so
much patience tutoring a first time O'Reilly author. Your professionalism, work ethic, and ability to make the most
tedious tasks fun is so admirable I plan to steal it and adopt it as my own!

Mad props to my friends and colleagues at Rogue Wave Software, ProWorks, NewCode Technology, and Systems
Research and Development, for providing the ultimate sand box for refining skills in SQL, databases, business, software
development, writing, and friendship: Gus Waters, Greg Koerper, Marc Manley, Wendi Minne, Erin Foley, Elaine Cull,
Randall Robinson, Dave Ritter, Edin Zulic, David Noor, Jim Shur, Chris Mosbrucker, Dan Robin, Mike Faux, Jason
Prothero, Tim Romanowski, Andy Mosbrucker, Jeff Jonas, Jeff Butcher, Charlie Barbour, Steve Dunham, Brian Macy,
and Ze'ev Mehler.

Daniel Kline's Acknowledgments

I'd like to thank my brother, Kevin, for his continued willingness to work with me, to my colleagues at the University of
Alaska Anchorage for their suggestions, and to the readers and users of the first edition of SQL in a Nutshell for their
honest feedback and useful critiques. I'd also like to thank the Japanese translators of the first edition—Ryoko Akaike,
O'Reilly Japan editor; Ishii Tatsuo, open source manager of Software Research Associates, Inc. and author of
PostgresSQL Perfect Guide; and Toru Miyahara, CEO of BigiNet Co., Ltd.—for their careful review and helpful
suggestions.

Kevin E. Kline's Acknowledgments

Many people helped deliver the big, thick book you hold in your hands. This note expresses our appreciation to those
who helped make this a book reality.

First of all, Dan and Brand get a big slap on the back for working so hard to create the content you are now reading.
Brand had to spend a lot of nights working on this both before and after his wedding. Thank you, Michelle, for lending
us Brand when you wanted him the most.

Next, Jonathan Gennick, our editor at O'Reilly Media, gets a warm handshake and squeeze on the shoulder. You
travailed through many extra months of hard labor bringing this book out of the shadows and into the light. I think
there's a special blessing in store for those who've carried themselves with as much patience, professionalism, and
good humor as you.

We must also express deep thanks and appreciation to our technical reviewers who caught many errors, omissions, and
plain ol' mistakes and diverted us from many embarrassments:

ANSI SQL — Peter Gulutzan, author of SQL-99 Complete, Really and SQL Performance Tuning

DB2 — Doug Doole, Bobby Fielding, and Richard Swagerman of IBM; Josh Steffan of Quest Software

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DB2 — Doug Doole, Bobby Fielding, and Richard Swagerman of IBM; Josh Steffan of Quest Software

MySQL — Paul DuBois, author of MySQL

Oracle — Phani Arega of Quest Software and the reviewers at Oracle

PostgreSQL — Thomas Lockhart, original author of the PostgreSQL open source documentation

SQL Server — Baya Pavliashvili of Healthstream, Inc.

Database Programming — Brian LaLonde

To all of my colleagues at Quest Software go a very big thanks for your support and encouragement. Rony Lerner, Deb
Jenson, Eyal Aronoff, John Newsom, and Vinny Smith: thank you for investing your trust in me and making these last
three years with Quest Software such a blast.

Thank you to all the guys on the SQL Server team for making our products the best on the market: John Theron,
Patrick O'Keeffe, John Ortega, Mark Simon, Hasan Fahimi, Lee Grissom, Joe Motley, Adrian Tudor, Israel Kalush, Amit
Kubovsky, and Ross Doering. I couldn't ask for a better team or a better set of friends.

Thanks to the SQL Server team at Microsoft for keeping me in the know: Euan Garden, Richard Waymire, Joe Yong,
Don Peterson, Mark Sousa, Steven Dybing, Fernando Caro, Tom Rizzo, and Bill Baker. Your product rocks!

Finally, a word for my family. It's hard to work ridiculously long hours for months on end, between the day job and the
book project, without making some sacrifices. And yet, somehow, we managed to spend so much good time together.
Katie Jo, you've learned how to talk between the time I started and the time I finished. I still get choked up hearing you
say "Yi yove you, daddy." Anna Lynn, your super powers rescued me plenty of times when I was down. I want to hear
"Supergirl to da rescue!" the next time I need rescuing. Here's a secret: I keep that jar of fresh pistachios on my desk
just because they're your favorite. Emily, thank you for letting me paint your nails. Some daughters don't let their dads
that close. Dylan, you whipped me at so many games on the PS2 that I don't know why you still want me to play with
you. But, one day, the ol' man is gonna take you down! Kelly, you are my tonic, my therapy, and my medicine. Just a
touch or a glance or a smile from you and my night turns to day and my despair to hope. Thank you for loving me,
supporting me, and seeing me through this project.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who Should Read This Book?
SQL in a Nutshell, Second Edition, benefits several groups of users. It is useful for programmers who require a concise
and handy SQL reference tool. It is useful for developers who need to migrate from one SQL dialect to another. Finally,
it is useful for database administrators (DBAs) who need to both execute a myriad of SQL statements to keep their
enterprise databases up and running, and create and manage objects such as tables, indexes, and views.

This book is a reference work, not a tutorial. The writing is not expository. For example, we won't explain the concept of
an elementary loop. Experienced developers already know such things. You want the meat. So we will explain, for
example, the detailed workings of an ANSI standard cursor, how it works on each of the database platforms we cover,
the special capabilities of cursors on each database platform, and the various pitfalls of cursors and how to get around
them.

While we don't intend for SQL in a Nutshell, Second Edition, to be a tutorial on SQL or a handbook for database design,
we do provide some brief coverage of those topics, and we hope you find that helpful. Chapter 1 and Chapter 2 provide
a concise introduction to SQL, covering the general origins, essential structure, and basic operation of the language. If
you're new to SQL, the introductions in Chapter 1 and Chapter 2 will help you to get started.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How This Book Is Organized
SQL in a Nutshell, Second Edition, is divided into five chapters and two appendixes:

Chapter 1, SQL History and Implementations

Discusses the Relational Database Model, describes the current and previous SQL standards, and introduces the
SQL implementations covered in this book.

Chapter 2, Foundational Concepts

Describes the fundamental concepts necessary for understanding relational databases and SQL commands.

Chapter 3, SQL Statement Command Reference

Provides an alphabetical command reference to SQL statements. It details the latest ANSI standard, SQL2003,
for each command, as well as the implementation of each command by DB2, MySQL, Oracle, PostgreSQL, and
SQL Server.

Chapter 4, SQL Functions

Provides an alphabetical reference of the SQL2003 functions, describing vendor implementations of all SQL2003
functions. In addition, Chapter 4 includes coverage for all platform-specific functions that are unique to each
implementation.

Chapter 5, Database Programming

Provides an overview of database programming from a variety of connectivity methods. ADO.NET and JDBC are
discussed, among other topics.

Appendix A, Sybase Adaptive Server

Sybase's Adaptive Server product and Microsoft SQL Server share a common heritage. As a result, most of the
SQL Server commands detailed in Chapter 3, and most of the functions detailed in Chapter 4, will work with
Sybase. However, "most" is the operative word, and we provide this appendix to show where Sybase differs
from SQL Server.

Appendix B, Shared and Platform-Specific Keywords

Provides a table of keywords declared in SQL2003 and by the different database platforms. You can use this
table to look for words that you should not use for object or variable names.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book

Constant Width

Used to indicate programming syntax, code fragments, and examples.

Constant Width Italic

Used to indicate variables in code that should be replaced with values.

Constant Width Bold

Used in code sections to highlight portions of the code.

Italic

Used to introduce new terms, for emphasis, to indicate commands or user-specified file and directory names,
and to indicate variables within text.

Bold

Used to display the names of database objects, such as tables, columns, and stored procedures.

UPPERCASE ITALIC

Used to indicate SQL keywords when they appear in the text.

This icon indicates a tip, suggestion, or general note.

Indicates a warning or caution.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How to Use This Book
SQL in a Nutshell, Second Edition, is primarily a command reference. As a consequence, you'll probably use it to look up
a variety of SQL commands and functions. However, with documentation for the ANSI standard itself, plus five database
platforms, each command has the potential to get very large.

In order to reduce the verbiage describing each command, we compare each platform's implementation to the SQL2003
standard. If the platform supports a clause described in the SQL2003 discussion, then we won't repeat that clause
again.

Generic and transportable examples are provided within the body of each SQL2003 command description. Since the
SQL2003 standard is ahead of most database platforms, examples aren't provided for elements of the SQL2003
commands that are not supported by any platform discussed in this book. In addition, more examples are provided for
each database platform that highlight unique extensions and enhancements.

We recognize that our approach may necessitate jumping from a description of a platform's implementation of a
command back to the corresponding SQL2003 command description. However, we felt that this was better than packing
the book with hundreds of pages of redundant content.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

How to Contact Us
We have tested and verified the information in this book to the best of our ability, but you may find that features have
changed (or even that we have made mistakes!). We want to hear from you, especially with information that will make
this book better. Please let us know about any errors you find, as well as your suggestions for future editions, by writing
to:

O'Reilly Media, Inc.
1005 Gravenstein Highway NorthSebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web site for the book, where we'll list any examples, errata, or plans for future editions. You can access this
page at:

http://www.oreilly.com/catalog/sqlnut2/

Please help us out by pointing out any typos or syntactical errors that you encounter. (You can imagine how hard it is to
proofread a book covering the ANSI standard and five separate products.) You may also ask technical questions or
comment on the book by sending an email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site:

http://www.oreilly.com

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Safari Enabled

When you see the Safari® Enabled icon on the back cover of your favorite technology book, that
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top
technology books, cut and paste code samples, download chapters, and find quick answers when you need the most
accurate, current information.

Try it for free at http://safari.oreilly.com.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Resources
The following web sites provide additional information about the various platforms covered in this book:

DB2

IBM's DB2 database is supported on the Web at http://www.software.ibm.com/data/db2/. DB2 has an active
and vibrant user community located on the Web at http://www.idug.org.

MySQL

The corporate resource for MySQL is http://www.mysql.com, and another good site is
http://theoryx5.uwinnipeg.ca/mysql. A great developer resource with lots of useful tips is Devshed.com. See
http://www.devshed.com/Server_Side/MySQL/ for MySQL-specific information.

PostgreSQL

The home for this open source database is located at http://www.postgresql.org. With a great deal of useful
information available for download, this site also maintains mailing lists for PostgreSQL users. Another
PostgreSQL site worth investigating is http://www.pgsql.com, which offers support for commercial customers.

Oracle

Oracle's cyberspace home is http://www.oracle.com. A great resource for hard-core Oracle users is
http://www.oracle.com/technology. You can also find all Oracle documentation at http://tahiti.oracle.com.

SQL Server

The official Microsoft SQL Server web site is http://www.microsoft.com/sql/. Another good resource is found at
the home of the Professional Association for SQL Server (PASS) at http://www.sqlpass.org.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Changes in the Second Edition
Although the ANSI standards committee released the current version of SQL in 2003, called SQL2003, this book has
grown dynamically in a variety of new ways in response to request from our readers. In fact, when you compare the
first and second editions of SQL in a Nutshell, you'll see that the second edition is, in reality, an entirely new book. Here
are more details about changes in the second edition:

New format

We've developed an entirely new format that reduces redundancy and increases coverage for the SQL2003
standard and each vendor's implementation. Rather than use the expository style of the first edition, we've
taken a keyword description style that breaks all the keywords and clauses into small, bite-sized entries.

New database platforms

We've added full coverage for IBM's DB2 UDB database platform running on Unix, Linux, and Windows. In
addition, we've added an appendix that describes Sybase's implementation of the SQL commands, as they differ
from Microsoft SQL Server's implementation.

Database programming

We've added a chapter that covers the basics of how programmers can interface their frontend programs to the
backend database platforms covered in this book.

More complete coverage

We've added many more examples and added SQL commands not covered in the first edition. In addition,
we've added much more complete coverage for SQL functions — in particular, vendor-specific functions that are
not part of the SQL2003 standard.

More examples

You can never have too many examples. We've added examples for the most basic uses of the commands
under the SQL2003 headings, with even more examples that highlight the unique and powerful extensions
offered by each database platform.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
Since its first incarnation in the 1970s, the Structured Query Language (SQL) has been developed hand in hand with
the information boom, and as a result, is the most widely used database manipulation language in business and
industry. A number of different software companies and program developers, including those in the open source
movement, have concurrently developed their own SQL dialects in response to specific professional needs. All the while,
standards bodies have developed a growing list of common features.

SQL in a Nutshell, Second Edition, describes the latest ANSI standard, SQL2003, version of each SQL command, and
then documents each platform's implementation of that command. In this book, you will find a concise explanation of
the Relational Database Management System (RDBMS) model, a clear-cut explanation of foundational RDBMS concepts,
and thorough coverage of SQL syntax and commands.

Most importantly, at least if you're a programmer or developer, is that SQL in a Nutshell, Second Edition, provides a
concise guide both to the most popular commercial database packages on the market (Microsoft SQL Server, IBM's DB2
Universal Database, Sybase Adaptive Server, and Oracle), and to two of the best-known open source
(http://www.opensource.org) database products (MySQL and PostgreSQL). SQL in a Nutshell's attention to open source
SQL platforms is an affirmation of the growing importance of the open source movement within the computing
community.

The database platforms covered in this book include:

IBM DB2 UDB Version 8.0 for Linux, Unix, and Windows

MySQL Version 4

Oracle Database 10g

PostgreSQL Version 7.0

Microsoft SQL Server 2000

Sybase Adaptive Server Version 12.5

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic
SQL in a Nutshell, 2nd Edition

By Kevin E. Kline

Publisher: O'Reilly

Pub Date: September 2004

ISBN: 0-596-00481-8

Pages: 710

 Copyright

 Preface

 Why This Book?

 Who Should Read This Book?

 How This Book Is Organized

 Conventions Used in This Book

 How to Use This Book

 How to Contact Us

 Safari Enabled

 Resources

 Changes in the Second Edition

 Acknowledgments

 Chapter 1. SQL History and Implementations

 Section 1.1. The Relational Model and ANSI SQL

 Section 1.2. History of the SQL Standard

 Section 1.3. SQL Dialects

 Chapter 2. Foundational Concepts

 Section 2.1. Database Platforms Described in This Book

 Section 2.2. Categories of Syntax

 Section 2.3. SQL2003 and Platform-Specific Datatypes

 Section 2.4. Constraints

 Chapter 3. SQL Statement Command Reference

 Section 3.1. How to Use This Chapter

 Section 3.2. SQL Platform Support

 Section 3.3. SQL Command Reference

 Chapter 4. SQL Functions

 Section 4.1. Types of Functions

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 4.2. ANSI SQL Aggregate Functions

 Section 4.3. ANSI SQL Window Functions

 Section 4.4. ANSI SQL Scalar Functions

 Section 4.5. Platform-Specific Extensions

 Chapter 5. Database Programming

 Section 5.1. Database Programming Overview

 Section 5.2. Opening a Database Connection

 Section 5.3. Closing a Database Connection

 Section 5.4. Managing Transactions

 Section 5.5. Executing Statements

 Section 5.6. Retrieving Data

 Section 5.7. Bound Parameters

 Section 5.8. Error Handling

 Section 5.9. Examples

 Appendix A. Sybase Adaptive Server

 Section A.1. Sybase Adaptive Server Datatypes

 Section A.2. Sybase Adaptive Server SQL Statements

 Section A.3. Sybase Adaptive Server SQL Functions

 Section A.4. Sybase Adaptive Server Keywords

 Appendix B. Shared and Platform-Specific Keywords

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

