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SOLUTIONS TO SELECTED EXERCISES

CHAPTER ONE

Section 1.3E

1.a. This sentence does have a truth-value and does fall within the scope
of this text. It is false if by ‘second President of the United States’ we mean
the second person to hold the office of President as established by the Con-
stitution of the United States. However, it is true if we mean the second per-
son to bear the title ‘President of the United States’, as the Articles of Con-
federation, which predate the Constitution, established a loose union of states
whose first and only president, John Hanson, did bear the title ‘President of
the United States.

c. This is a request or command, as such it is neither true nor false,
and therefore does not fall within the scope of this text.

e. This sentence does have a truth-value (it is true), and does fall
within the scope of this text.

g. This sentence does have a truth-value and does fall within the scope
of this text. It is false, as Bill Clinton is the President who immediately pre-
ceded George W. Bush.

i. This sentence is neither true nor false, for if it were true, then sen-
tence m would be true, and if m is true then what it says, that m is false, is
also true. And no sentence can be both true and false. See the answer to exer-
cise m below.
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k. This sentence gives advice and is neither true nor false. Hence it
does not fall within the scope of this text.

m. This appears to be a straightforward, unproblematic claim. But it is
not. In fact, it embodies a well-known paradox. For if what the sentence says is
true, then the sentence itself is, as is claimed, false. And if what the sentence says
is false, then the sentence is not false and therefore is true. So the sentence is
true if and only if it is false, an impossibility. This is an example of the paradox
of self-reference. We exclude paradoxical sentences from the scope of this text.

2.a. When Mike, Sharon, Sandy, and Vicky are all out of the office no
important decisions get made.

Mike is off skiing.

Sharon is in Spokane.

Vicky is in Olympia and Sandy is in Seattle.

No decisions will be made today.

c. This passage does not express any obvious argument. It is best con-
strued as a series of related claims about the people in the office in question.

e. This passage does not express any obvious argument. It is best con-
strued as a series of related claims about the contents of a set of drawers.

g. This passage does not express an obvious argument, though it might
be claimed that the last sentence, ‘So why are you unhappy’ is rhetorical and has
here the force of ‘So you should be happy’, yielding the following argument:

The weather is perfect; the view is wonderful; and we’re on vacation.

You should be happy.

i. Wood boats are beautiful but they require too much maintenance.

Fiberglass boats require far less maintenance, but they tend to be
more floating bathtubs than real sailing craft.

Steel boats are hard to find, and concrete boats never caught on.

So there’s no boat that will please me.

k. Everyone from anywhere who’s anyone knows Barrett.

All those who know Barrett respect her and like her.

Friedman is from Minneapolis and Barrett is from Duluth.

Friedman doesn’t like anyone from Duluth.

Either Friedman is a nobody or Minneapolis is a nowhere.
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m.Whatever is required by something that is good is itself a good.

Being cured of cancer is a good.

Being cured of cancer requires having cancer.

Having cancer is a good.

o. When there are more than two political parties, support tends to
split among the parties with no one party receiving the support of
a majority of voters.

No party can govern effectively without majority support.

When there is only one political party, dissenting views are neither
presented nor contested.

When there are two or more viable parties, dissenting views are
presented and contested.

Only the two party system is compatible both with effective
governance and with the presenting and contesting of dissenting
views.

Section 1.4E

1.a. False. Many valid arguments have one or more false premise. Here
is an example with two false premises:

All Doberman pinschers are friendly creatures.

All friendly creatures are dogs.

All Doberman pinschers are dogs.

c. True. By definition, a sound argument is a valid argument with true
premises.

e. False. A valid argument all of whose premises are true cannot have
a false conclusion. But if a valid argument has at least one false premises, it
may well have a false conclusion. Here is an example:

Reptiles are mammals.

If reptiles are mammals, then reptiles are warm blooded.

Reptiles are warm blooded.
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g. False. An argument may have true premises and a true conclusion
and not be valid. Here is an example:

Chicago is in Illinois.

Madrid is in Spain.

i. False. A sound argument is, by definition, a valid argument with true
premises. And every valid argument with true premises has a true conclusion.

Section 1.5E

1.a. This passage is best construed as a deductive argument with some
unexpressed or assumed premises. These premises include: Mike is skiing
somewhere other than the office. No one can be in Spokane, or Olympia, or
Seattle and in the office in question. With these premises added, the argument
is deductively valid. Without them, it is deductively invalid.

c. As noted in the answers to exercises 1.3.2E, the passage in question
expresses no plausible argument. Construed as a deductive argument it is
deductively invalid (no matter which claim is taken as the conclusion). Con-
strued as an inductive argument it is inductively weak, again no matter which
claim is taken as the conclusion.

e. Same answer as c. above.
g. This passage can be construed as an argument (see answers to

1.3.2.E). So construed it is deductively invalid but inductively plausible.
i. This passage can be construed as a deductive argument with sup-

pressed or assumed premises. The missing premises can be expressed as: ‘All
the boats there are either wood or fiberglass or steel or concrete’, and ‘No
boat will please me if it requires too much maintenance, is a floating bathtub,
is hard to find, or is of a type that never taught on.’ Even with these premises
added the argument is deductively invalid, as it does not follow from the claim
that fiberglass boats ‘‘tend to be floating bathtubs’’ that every fiberglass is a
floating bathtub.

k. This argument is best construed as a deductive argument, and is
deductively valid. Since Barrett is from Duluth, and Friedman doesn’t like any-
one from Duluth, Friedman doesn’t like Barrett. Hence, by the first premise,
either the place Friedman is from (Minneapolis) is a nowhere, or Friedman
isn’t anyone, i.e., is a nobody.

m. This is a valid deductive argument. The conclusion is, of course,
false. So we know that a least one of the premises is false. The best candidate
for this position is ‘‘Whatever is required by something that is good is itself a
good’’.

o. This passage is best construed as a deductive argument. From the
first and second premises it follows that effective governance is not possible
when there are more than two political parties. From the third and the fourth
premises it follows that there must be at least two political parties for dissenting
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views to be presented and contested. Whether the argument is deductively
valid depends on how we construe the claim ‘Only the two-party system is com-
patible both with effective governance and with the presenting and contesting
of dissenting views.’ It is invalid if we take this claim to mean that the two-
party system is compatible both with effective governance and with the pre-
senting and contesting of dissenting views. The argument is valid if we take
the claim in question to mean only that all systems other than the two-party
systems are not so compatible.

Section 1.6E

1.a. {Kansas City is in Missouri, St. Paul is in Minnesota, San Francisco
is in California}

c. There is no such set. If all the members of a set are true, then it
is clearly possible for all those members to be true, and the set is therefore
consistent.

2.a. All the members of this set are true (The Dodgers have not been
in Brooklyn for almost half a century. Here, in the Northwest, good vegetables
are hard to find. And today, the day this answer is written, is hotter than yes-
terday.) Since all the members are true, it is clearly possible for all the mem-
bers to be true. Therefore, the set is consistent.

c. All three members of this set are true, so the set is consistent.
e. It is possible for all four members of this set to be true. Imagine

yourself driving home on a Monday afternoon with a nearly empty gas tank.
g. The set is inconsistent. If no one who fails ‘‘Poetry for Scientists’’

is bright and Tom failed that course, it follows that Tom is not bright. So, for
every member of the set to be true Tom would have to both be bright (as
‘‘Tom, Sue, and Robin are all bright’ alleges), and not be bright. This is not
possible.

i. This set is inconsistent. If Kennedy was the best President we ever
had, it cannot be that Eisenhower was a better President than Kennedy, and
vice-versa. So not all the members of the set can be true.

k. This set is consistent. What is being claimed is that everyone who likes
film classics likes Casablanca, not that everyone who likes Casablanca likes all film
classics. So, it is possible for Sarah to like Casablanca without liking (all) film
classics. Similarly, Sarah can like Casablanca without liking Humphrey Bogart.

3.a. ‘Que será, será’ is a logically true sentence (of Spanish). It means
‘Whatever will be, will be.’ This sentence, taken literally, is logically true.
(Were it not, there would have to be something that will be and will not be,
an impossibility.)

c. ‘Eisenhower preceded Kennedy as President’ is true and is logically
indeterminate. It is true because of facts about the American political system
and how the voters voted in 1956 and 1960, not because of any principles of
logic.
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4.a. Logically indeterminate. Passing the bar exam does not involve, as
a matter of logic, having gone to law school. Lincoln passed the bar exami-
nation but never went to law school.

c. Logically false. An MD is a Doctor of Medicine, so every MD is a
doctor.

e. Logically true. Whoever Robin is and whatever the class is, she
either will, or will not, make it to the class by starting time.

g. Logically false. If Bob knows everyone in the class, and Robin is in
the class, it follows that he knows Robin, so if the first part of this claim is true,
the last part, which claims Bob doesn’t know Robin, must be false.

i. Logically true. Since ocean fish are a kind of fish, it follows from
‘Sarah likes all kinds of fish’ that she likes ocean fish.

k. Logically indeterminate. This claim is almost certainly true, given
the very large number of people there are, but it is not a logical truth. If all
but a handful of people were killed, then one of the survivors might love every-
one, including him or herself, and not be lacking in discrimination.

5.a. No one will win.
There will be no winner.

c. Not possible. If one sentence is logically true and the other is logi-
cally indeterminate, then it is possible for the second sentence to be false and
the former true (the former is always true), and hence the sentences are not
logically equivalent.

e. Any pair of logically true sentences will satisfy this condition, for
example ‘A square has four sides’ and ‘A mother has a child (living or dead)’.
Neither sentence can be false, so it is impossible that one is true and the other
false.

6.a. These sentences are not logically equivalent. It can, and does, hap-
pen that a person loves someone who does not return that love.

c. These sentences are not logically equivalent. What one claims to be
the case is not always actually the case. Tom may want to impress his new boss,
a gourmet cook, but refuse to indulge when presented with a plate of raw
shark.

e. These sentences are not logically equivalent. If the first is true, then
both Bill and Mary will fail to get into law school. The second sentence makes
a weaker claim, that one or the other will not get into law school. It, unlike
the first sentence, will be true if Mary gets into law school but Bill does not.

g. These sentences are not logically equivalent. If the first is true, then
there are no non-Mariner fans at the rally, but it does not follow that all the
Mariner fans are there. And if the second is true, it does not follow that no
non-Mariner fans are present.

i. These sentences are not logically equivalent. There is often a dif-
ference between what is reported and what is the case. If a strike is imminent
but no newscast so reports, the second of the sentences is true but the first
false. So too, newcasts, even taken collectively, often get it wrong, as when all
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news outlets reported that Dewey won the presidential election in 1948 when
in fact Truman won that election.

k. These sentences are not logically equivalent. If the first is true,
then at least one of the two, Sarah and Anna, will not be elected, and perhaps
neither will be elected. That is, this sentence will be true if neither is elected.
But in that case the second sentence, which claims that one or the other will
be elected, will be false.

m. These sentences are not logically equivalent. The first may well be
true (each of us can probably name at least one person we dislike). Given the
truth of the first sentence, the second sentence may still be false, for we may
each dislike different persons, and there may be no one universally disliked
person.

o. These sentences are not logically equivalent. It is plausible that each
of us does like at least one person, but it does not follow that there is some-
one we all like.

Section 1.7E

1.a. True. If a member of a set of sentences is logically false, then that
member cannot be true, and hence it cannot be that all the members are true.
So the set is logically inconsistent.

c. True. Sentences that are logically equivalent cannot have different
truth-values. So if all the premises of an argument are true, and one of those
premises is equivalent to the conclusion, then the conclusion must also be
true. Hence, that argument cannot have true premises and a false conclusion.
It is, therefore, deductively valid.

e. True. ‘Whatever will be, will be’ is logically true. Therefore, any
argument that has it as a conclusion cannot have a false conclusion, and,
hence, cannot have true premises and a false conclusion. Any such argument
is, therefore, deductively valid.

g. False. An argument all of whose premises are logically true is valid
if and only if its conclusion is also logically true. If the conclusion of such an
argument is not logically true, then it is possible for the premises all to be true
(as logical truths they are always true) and the conclusion false.

2.a. No. Such a person obviously has at least one false belief, but her or
his mistake is about the facts of geography and/or of the political organiza-
tion of the United States.

c. Normally logic cannot tell us whether a sentence is true or false, for
most of the sentences we normally deal with, truth is a matter of how things
are with the world. And, to determine whether or not a valid argument is
sound, we do need to determine whether the premises are true. However, in
one case logic can tell us that an argument is sound. This is where the argu-
ment is valid and all the premises are logical truths.

e. If an argument has a logical falsehood as one of its premises, it is
impossible for that premises to be true. If one premise cannot be true, then surely
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it cannot be that all the premises are true, and it cannot be that all the premises
are true and the conclusion false. So the argument must be deductively valid.

g. If an argument has a logical truth for its conclusion, it is impossi-
ble for that conclusion to be false. And if the conclusion cannot be false, then
it obviously cannot be that the premises are true and the conclusion false.
Hence such an argument is deductively valid, no matter what its premises are.
But it will be sound only if those premises are true. So some such arguments
are sound (those with true premises) and some are unsound (those with at
least one false premise).

i. Yes. If the set with a million sentences is consistent, then it is pos-
sible for all of those sentences to be true. Now consider a set each of whose
members is equivalent to at least one member of that first set. Sentences that
are equivalent have the same truth-value. Therefore, if all the million mem-
bers of the first set are true, all the sentences of the second set, each of which
is equivalent to a member of the first set, will also be true. Therefore, the sec-
ond set is also consistent.
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CHAPTER TWO

Section 2.1E

1.a. Both Bob jogs regularly and Carol jogs regularly.

B & C

c. Either Bob jogs regularly or Carol jogs regularly.

B ∨ C

e. It is not the case that either Bob jogs regularly or Carol jogs regularly.

∼ (B ∨ C)

[or]

Both it is not the case that Bob jogs regularly and it is not the case that Carol
jogs regularly.

∼ B & ∼ C

g. If it is not the case that Carol jogs regularly then it is not the case
that Bob jogs regularly.

∼ C ⊃ ∼ B

i. Both (either Bob jogs regularly or Albert jogs regularly) and it is
not the case that (both Bob jogs regularly and Albert jogs regularly).

(B ∨ A) & ∼ (B & A)

k. Both it is not the case that (either Carol jogs regularly or Bob jogs
regularly) and it is not the case that Albert jogs regularly.

∼ (C ∨ B) & ∼ A

m. Either Albert jogs regularly or it is not the case that Albert jogs
regularly.

A ∨ ∼ A

2.a. Albert jogs regularly and so does Bob.
c. Either Albert or Carol jogs regularly.
e. Neither Albert nor Carol jogs regularly.
g. Bob jogs regularly and so does either Albert or Carol.
i. Albert, Carol, and Bob jog regularly.
k. Either Bob or Carol jogs regularly, or neither of them jogs regularly.

3. c and k are true; and a, e, g, and i are false.
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4. Paraphrases
a. It is not the case that all joggers are marathon runners.
c. It is not the case that some marathon runners are lazy.
e. It is not the case that somebody is perfect.

Symbolizations

a. Using ‘A’ for ‘All joggers are marathon runners’:

∼ A

c. Using ‘L’ for ‘Some marathon runners are lazy’:

∼ L

e. Using ‘P’ for ‘Somebody is perfect’:

∼ P

5.a. If Bob jogs regularly then it is not the case that Bob is lazy.

B ⊃ ∼ L

c. Bob jogs regularly if and only if it is not the case that Bob is lazy.

B � ∼ L

e. Carol is a marathon runner if and only if Carol jogs regularly.

M � C

g. If (both Carol jogs regularly and Bob jogs regularly) then Albert
jogs regularly.

(C & B) ⊃ A

i. If (either it is not the case that Carol jogs regularly or it is not the
case that Bob jogs regularly) then it is not the case that Albert jogs regularly.

(∼ C ∨ ∼ B) ⊃ ∼ A

k. If (both Albert is healthy and it is not the case that Bob is lazy) then
(both Albert jogs regularly and Bob jogs regularly).

(H & ∼ L) ⊃ (A & B)

m. If it is not the case that Carol is a marathon runner then [Carol jogs
regularly if and only if (both Albert jogs regularly and Bob jogs regularly)].

∼ M ⊃ [C � (A & B)]

o. If [both (both Carol is a marathon runner and it is not the case
that Bob is lazy) and Albert is healthy] then [both Albert jogs regularly and
(both Bob jogs regularly and Carol jogs regularly)].

[(M & ∼ L) & H] ⊃ [A & (B & C)]
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q. If (if Carol jogs regularly then Albert jogs regularly) then (both
Albert is healthy and Carol is a marathon runner).

(C ⊃ A) ⊃ (H & M)

s. If [if (either Carol jogs regularly or Bob jogs regularly) then Albert
jogs regularly)] then (both Albert is healthy and it is not the case that Bob is
lazy).

[(C ∨ B) ⊃ A] ⊃ (H & ∼ L)

6.a. Either Bob is lazy or he isn’t.
c. Albert jogs regularly if and only if he is healthy.
e. Neither Bob nor Carol jogs regularly.
g. If either Albert or Carol does not jog regularly, then Bob does.
i. Carol jogs regularly only if Albert does but Bob doesn’t.
k. Carol does and does not jog regularly.

m. If Bob is lazy, then he is; but Bob jogs regularly.
o. If Albert doesn’t jog regularly, then Bob doesn’t jog regularly only

if Carol doesn’t.
q. Albert doesn’t jog regularly, and Bob jogs regularly if and only if he

is not lazy.

7.a. Both both it is not the case that men are from Mars and it is not
the case that women are from Mars and both it is not the case that men are
from Venus and it is not the case that women are from Venus.

(∼ M & ∼ W) & (∼ V & ∼ S)

c. It is not the case that both Butch Cassidy escaped and the Sundance
Kid escaped.

∼ (B & S)

e. Either both that lady was cut in half and that lady was torn asunder
or it was a magic trick.

(H & A) ∨ M

g. Either the prisoner will receive a life sentence or the prisoner will
receive the death penalty.

L ∨ D

8. P Q (P ∨ Q) & ∼ (P & Q) P � ∼ Q

T T F F
T F T T
F T T T
F F F F
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Section 2.2E

1.a. Either the French team will win at least one gold medal or either
the German team will win at least one gold medal or the Danish team will win
at least one gold medal.

F ∨ (G ∨ D)

c. Both (either the French team will win at least one gold medal or
either the German team will win at least one gold medal or the Danish team
will win at least one gold medal) and (either [it is not the case that either the
French team will win at least one gold medal or the German team will win at
least one gold medal] or [either (it is not the case that either the French team
will win at least one gold medal or the Danish team will win at least one gold
medal) or (it is not the case that either the German team will win at least one
gold medal or the Danish team will win at least one gold medal)]).

[F ∨ (G ∨ D)] & (∼ (F ∨ G) ∨ [∼ (F ∨ D) ∨ ∼ (G ∨ D)])

e. Either both the French team will win at least one gold medal and
the German team will win at least one gold medal or either both the French
team will win at least one gold medal and the Danish team will win at least
one gold medal or both the German team will win at least one gold medal
and the Danish team will win at least one gold medal.

(F & G) ∨ [(F & D) ∨ (G & D)]

g. Either both both the French team will win at least one gold medal
and the German team will win at least one gold medal and it is not the case
that the Danish team will win at least one gold medal or either both both the
French team will win at least one gold medal and the Danish team will win at
least one gold medal and it is not the case that the German team will win at
least one gold medal or both both the German team will win at least one gold
medal and the Danish team will win at least one gold medal and it is not the
case that the French team will win at least one gold medal.

[(F & G) & ∼ D] ∨ ([(F & D) & ∼ G] ∨ [(G & D) & ∼ F])

2.a. None of them will win a gold medal.
c. None of them will win a gold medal.
e. At least one of them will win a gold medal.
g. The French team will win a gold medal and exactly one of the other

two teams will win a gold medal.

3.a. If either the French team will win at least one gold medal or either
the German team will win at least one gold medal or the Danish team will win
at least one gold medal then both the French team will win at least one gold
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medal and both the German team will win at least one gold medal and the
Danish team will win at least one gold medal.

[F ∨ (G ∨ D)] ⊃ [F & (G & D)]

c. If the star German runner is disqualified then if the German team
will win at least one gold medal then it is not the case that either the French
team will win at least one gold medal or the Danish team will win at least one
gold medal.

S ⊃ [G ⊃ ∼ (F ∨ D)]

e. The Danish team will win at least one gold medal if and only if both
the French team is plagued with injuries and the star German runner is dis-
qualified.

D � (P & S)

g. If the French team is plagued with injuries then if the French team
will win at least one gold medal then both it is not the case that either the
Danish team will win at least one gold medal or the German team will win at
least one gold medal and it rains during most of the competition.

P ⊃ (F ⊃ [∼ (D ∨ G) & R])

4.a. If the German star is disqualified then the German team will not
win a gold medal, and the star is disqualified.

c. The German team won’t win a gold medal if and only if the Danish
as well as the French will win one.

e. If a German team win guarantees a French team win and a French
team win guarantees a Danish team win then a German team win guarantees
a Danish team win.

g. Either at least one of the three wins a gold medal or else the French
team is plagued with injuries or the star German runner is disqualified or it
rains during most of the competition.

5.a. If it is not the case that the author of Robert’s Rules of Order was a
politician, then either the author of Robert’s Rules of Order was an
engineer or the author of Robert’s Rules of Order was a clergyman.

Both the author of Robert’s Rules of Order was motivated to write
the book by an unruly church meeting and it is not the case that
the author of Robert’s Rules of Order was a clergyman.

Both it is not the case that the author of Robert’s Rules of Order was
a politician and the author of Robert’s Rules of Order could not
persuade a publisher that the book would make money forcing
him to publish the book himself.

The author of Robert’s Rules of Order was an engineer.
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E: The author of Robert’s Rules of Order was an engineer.
C: The author of Robert’s Rules of Order was a clergyman.
P: The author of Robert’s Rules of Order was a politician.

M: The author of Robert’s Rules of Order was motivated to write
the book by an unruly church meeting.

F: The author of Robert’s Rules of Order could not persuade a
publisher that the book would make money forcing him to
publish the book himself.

∼ P ⊃ (E ∨ C)

M & ∼ C

∼ P & F

E

c. Either either the maid committed the murder or the butler com-
mitted the murder or the cook committed the murder.

Both (if the cook committed the murder then a knife was the
murder weapon) and (if a knife was the murder weapon then it is
not the case that either the butler committed the murder or the
maid committed the murder).

A knife was the murder weapon.

The cook committed the murder.

M: The maid committed the murder.
B: The butler committed the murder.
C: The cook committed the murder.
K: A knife was the murder weapon.

(M ∨ B) ∨ C

(C ⊃ K) & (K ⊃ ∼ (B ∨ M))

K

C
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e. If the candidate is perceived as conservative then both it is not the
case that the candidate will win New York and both the candidate
will win California and the candidate will win Texas.

Both if the candidate has an effective advertising campaign then
the candidate is perceived as conservative and the candidate has
an effective advertising campaign.

Either both the candidate will win California and the candidate
will win New York or either (both the candidate will win Califor-
nia and the candidate will win Texas) or (both the candidate will
win New York and the candidate will win Texas).

P: The candidate is perceived as conservative.
N: The candidate will win New York.
C: The candidate will win California.
T: The candidate will win Texas.
E: The candidate has an effective advertising campaign.

P ⊃ [∼ N & (C & T)]

(E ⊃ P) & E

(C & N) ∨ [(C & T) ∨ (N & T)]

Section 2.3E

1. Since we do not know how these sentences are being used (e.g., as
premises, conclusions, or as isolated claims) it is best to symbolize those that
are non-truth-functional compounds as atomic sentences of SL.

a. ‘It is possible that’ does not have a truth-functional sense. Thus the
sentence should be treated as a unit and abbreviated by one letter, for exam-
ple, ‘E’. Here ‘E’ abbreviates not just ‘Every family on this continent owns a
television set’ but the entire original sentence, ‘It is possible that every family
on this continent owns a television set’.

c. ‘Necessarily’ has scope over the entire sentence. Abbreviate the
entire sentence by one letter such as ‘N’.

e. This sentence can be paraphrased as a truth-functional compound:

Both it is not the case that Tamara will stop by and Tamara prom-
ised to phone early in the evening

which can be symbolized as ‘∼ B & E’, where ‘B’ abbreviates ‘Tamara will stop
by’ and ‘E’ abbreviates ‘Tamara promised to phone early in the evening’.

g. ‘John believes that’ is not a truth-functional connective. Abbreviate
the sentence by one letter, for example ‘J’.

i. ‘Only after’ has no truth-functional sense. Therefore abbreviate the
entire sentence as ‘D’.
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2.a. The paraphrase is

If the maid committed the murder then the maid believed her
life was in danger.

If the butler committed the murder then (both the murder was
done silently and it is not the case that the body was mutilated).

Both the murder was done silently and it is not the case that the
maid’s life was in danger.

The butler committed the murder if and only if it is not the case
that the maid committed the murder.

The maid committed the murder.

Notice that ‘The maid believed her life was in danger’ (first premise) and ‘The
maid’s life was in danger’ (third premise) make different claims and cannot
be treated as the same sentence. Further, since the subjunctive conditional in
the original argument is a premise, it can be weakened and paraphrased as a
truth-functional compound. Using the abbreviations

M: The maid committed the murder.
D: The maid believed that her life was in danger.
B: The butler committed the murder.
S: The murder was done silently.

W: The body was mutilated.
L: The maid’s life was in danger.

the symbolized argument is

M ⊃ D

B ⊃ (S & ∼ W)

S & ∼ L

B � ∼ M

M
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c. The paraphrase is

If (both Charles Babbage had the theory of the modern com-
puter and Charles Babbage had modern electronic parts) then
the modern computer was developed before the beginning of the
twentieth century.

Both Charles Babbage lived in the early nineteenth century and
Charles Babbage had the theory of the modern computer.

Both it is not the case that Charles Babbage had modern
electronic parts and Charles Babbage was forced to construct his
computers out of mechanical gears and levers.

If Charles Babbage had had modern electronic parts available to
him then the modern computer would have been developed
before the beginning of the twentieth century.

In the original argument subjunctive conditionals occur in the first premise and
the conclusion. Since it is correct to weaken the premises but not the conclusion,
the first premise, but not the conclusion, is given a truth-functional paraphrase.
The conclusion will be abbreviated as a single sentence. Using the abbreviations

T: Charles Babbage had the theory of the modern computer.
E: Charles Babbage had modern electronic parts.
C: The modern computer was developed before the beginning

of the twentieth century.
L: Charles Babbage lived in the early nineteenth century.
F: Charles Babbage was forced to construct his computers out

of mechanical gears and levers.
W: If Charles Babbage had had modern electronic parts

available to him then the modern computer would have been
developed before the beginning of the twentieth century.

the paraphrase can be symbolized as

(T & E) ⊃ C

L & T

∼ E & F

W

Section 2.4E

1.a. True
c. False. The chemical symbol names or designates the metal copper,

not the word ‘copper’.
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e. False. The substance copper is not its own name.
g. False. The name of copper is not a metal.

2.a. The only German word mentioned is ‘Deutschland’ which has
eleven letters.

c. The phrase ‘the German name of Germany’ here refers to the word
‘Deutschland’, so ‘Deutschland’ is mentioned here.

e. The word ‘Deutschland’ occurs inside single quotation marks in
Exercise 2.e, so it is there being mentioned, not used.

3.a. A sentence of SL.
c. A sentence of SL.
e. A sentence of SL.
g. A sentence of SL.
i. A sentence of SL.

4.a. The main connective is ‘&’. The immediate sentential components
are ‘∼ A’ and ‘H’. ‘∼ A & H’ is a component of itself. Another sentential com-
ponent is ‘A’. The atomic sentential components are ‘A’ and ‘H’.

c. The main connective is ‘∨’. The immediate sentential components
are ‘∼ (S & G)’ and ‘B’. The other sentential components are ‘∼ (S & G) ∨ B’
itself, ‘(S & G)’, ‘S’, and ‘G’. The atomic components are ‘B’, ‘S’, and ‘G’.

e. The main connective is the first occurrence of ‘∨’. The immediate
sentential components are ‘(C � K)’ and ‘(∼ H ∨ (M & N))’. Additional sen-
tential components are the sentence itself, ‘∼ H’, ‘(M & N)’, ‘C’, ‘K’, ‘H’, ‘M’,
and ‘N’. The last five sentential components listed are atomic components.

5.a. No. The sentence is a conditional, but not a conditional whose
antecedent is a negation.

c. Yes. Here P is the sentence ‘A’ and Q is the sentence ‘∼ B’.
e. No. The sentence is a negation, not a conditional.
g. No. The sentence is a negation, not a conditional.
i. Yes. Here P is ‘A ∨ ∼ B’ and Q is ‘∼ (C & ∼ D)’.

6.a. ‘H’ can occur neither immediately to the left of ‘∼’ nor immediately
to the right of ‘A’. As a unary connective, ‘∼’ can immediately precede but not
immediately follow sentences of SL. Both ‘H’ and ‘A’ are sentences of SL, and
no sentence of SL can immediately precede another sentence of SL.

c. ‘(’ may not occur immediately to the right of ‘A’, as a sentence of
SL can be followed only by a right parentheses or by a binary connective. But
‘(’ may occur immediately to the left of ‘∼’, as in ‘(∼ A & B)’.

e. ‘[’ may not occur immediately to the right of ‘A’ but may occur
immediately to the left of ‘∼’, as it functions exactly as does ‘(’.
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CHAPTER THREE

Section 3.1E

1.a. 21 � 2
c. 22 � 4

2.a. ↓
E ∼ ∼ (E & ∼ E)

T F T T F F T
F F T F F T F

c. ↓
A J A � [J � (A � J)]

T T T T T T T T T
T F T T F T T F F
F T F T T F F F T
F F F T F F F T F

g. ↓
A B ∼ (A ∨ B) ⊃ (∼ A ∨ ∼ B)

T T F  T T T T F T F F T
T F F  T T F T F T T T F
F T F  F T T T T F T F T
F F T  F F F T T F T T F

e. ↓
A H J [∼ A ∨ (H ⊃ J)] ⊃ (A ∨ J)

T T T F T T T T T T T T T
T T F F T F T F F T T T F
T F T F T T F T T T T T T
T F F F T T F T F T T T F
F T T T F T T T T T F T T
F T F T F T T F F F F F F
F F T T F T F T T T F T T
F F F T F T F T F F F F F

i. ↓
B E H ∼ (E & [H ⊃ (B & E)])

T T T F  T T T T T T T
T T F F  T T F T T T T
T F T T  F F T F T F F
T F F T  F F F T T F F
F T T T  T F T F F F T
F T F F  T T F T F F T
F F T T  F F T F F F F
F F F T  F F F T F F F
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k. ↓
D E F ∼ [D & (E ∨ F)] � [∼ D & (E & F)]

T T T F  T T T T T T F T F T T T
T T F F  T T T T F T F T F T F F
T F T F  T T F T T T F T F F F T
T F F T  T F F F F F F T F F F F
F T T T  F F T T T T T F T T T T
F T F T  F F T T F F T F F T F F
F F T T  F F F T T F T F F F F T
F F F T  F F F F F F T F F F F F

3.a. ↓
A B C ∼ [∼ A ∨ (∼ C ∨ ∼ B)]

F T T F T F T F T F F T

c. ↓
A B C (A ⊃ B) ∨ (B ⊃ C)

F T T F T T T T T T

e. ↓
A B C (A � B) ∨ (B � C)

F T T F F T T T T T

g. ↓
A B C ∼ [B ⊃ (A ∨ C)] & ∼ ∼ B

F T T F  T T F T T F T F T

i. ↓
A B C ∼ [∼ (A � ∼ B) � ∼ A] � (B ∨ C)

F T T T F  F T F T F T F T T T T

m. ↓
A H J (A ∨ (∼ A & (H ⊃ J))) ⊃ (J ⊃ H)

T T T T T F T F T T T T T T T
T T F T T F T F T F F T F T T
T F T T T F T F F T T F T F F
T F F T T F T F F T F T F T F
F T T F T T F T T T T T T T T
F T F F F T F F T F F T F T T
F F T F T T F T F T T F T F F
F F F F T T F T F T F T F T F
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4.a. ↓
D F G F ∨ (G ∨ D)

T T T T T T T T
T T F T T F T T
T F T F T T T T
T F F F T F T T
F T T T T T T F
F T F T T F F F
F F T F T T T F
F F F F F F F F

c. ↓
D F G [F ∨ (G ∨ D)] & (∼ (F ∨ G) ∨ [∼ (F ∨ D) ∨ ∼ (G ∨ D)])

T T T T T T T T F F T T T F F T T T F F T T T
T T F T T F T T F F T T F F F T T T F F F T T
T F T F T T T T F F F T T F F F T T F F T T T
T F F F T F T T T T F F F T F F T T F F F T T
F T T T T T T F F F T T T F F T T F F F T T F
F T F T T F F F T F T T F T F T T F T T F F F
F F T F T T T F T F F T T T T F F F T F T T F
F F F F F F F F F T F F F T T F F F T T F F F

g. ↓
D F G [(F & G) & ∼ D] ∨ ([(F & D) & ∼ G] ∨ [(G & D) & ∼ F])

T T T T T T F F T F T T T F F T F T T T F F T
T T F T F F F F T T T T T T T F T F F T F F T
T F T F F T F F T T F F T F F T T T T T T T F
T F F F F F F F T F F F T F T F F F F T F T F
F T T T T T T T F T T F F F F T F T F F F F T
F T F T F F F T F F T F F F T F F F F F F F T
F F T F F T F T F F F F F F F T F T F F F T F
F F F F F F F T F F F F F F T F F F F F F T F

e. ↓
D F G (F & G) ∨ [(F & D) ∨ (G & D)]

T T T T T T T T T T T T T T
T T F T F F T T T T T F F T
T F T F F T T F F T T T T T
T F F F F F F F F T F F F T
F T T T T T T T F F F T F F
F T F T F F F T F F F F F F
F F T F F T F F F F F T F F
F F F F F F F F F F F F F F
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5.a. ↓
D F G [F ∨ (G ∨ D)] ⊃ [F & (G & D)]

T T T T T T T T T T T T T T
T T F T T F T T F T F F F T
T F T F T T T T F F F T T T
T F F F T F T T F F F F F T
F T T T T T T F F T F T F F
F T F T T F F F F T F F F F
F F T F T T T F F F F T F F
F F F F F F F F T F F F F F

e. ↓
D P S D � (P & S)

T T T T T T T T
T T F T F T F F
T F T T F F F T
T F F T F F F F
F T T F F T T T
F T F F T T F F
F F T F T F F T
F F F F T F F F

c. ↓
D F G S S ⊃ [G ⊃ ∼ (F ∨ D)]

T T T T T F T F F T T T
T T T F F T T F F T T T
T T F T T T F T F T T T
T T F F F T F T F T T T
T F T T T F T F F F T T
T F T F F T T F F F T T
T F F T T T F T F F T T
T F F F F T F T F F T T
F T T T T F T F F T T F
F T T F F T T F F T T F
F T F T T T F T F T T F
F T F F F T F T F T T F
F F T T T T T T T F F F
F F T F F T T T T F F F
F F F T T T F T T F F F
F F F F F T F T T F F F
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g. ↓
D F G P R P ⊃ (F ⊃ [∼ (D ∨ G) & R])

T T T T T T F T F F  T T T F T
T T T T F T F T F F  T T T F F
T T T F T F T T F F  T T T F T
T T T F F F T T F F  T T T F F
T T F T T T F T F F  T T F F T
T T F T F T F T F F  T T F F F
T T F F T F T T F F  T T F F T
T T F F F F T T F F  T T F F F
T F T T T T T F T F  T T T F T
T F T T F T T F T F  T T T F F
T F T F T F T F T F  T T T F T
T F T F F F T F T F  T T T F F
T F F T T T T F T F  T T F F T
T F F T F T T F T F  T T F F F
T F F F T F T F T F  T T F F T
T F F F F F T F T F  T T F F F
F T T T T T F T F F  F T T F T
F T T T F T F T F F  F T T F F
F T T F T F T T F F  F T T F T
F T T F F F T T F F  F T T F F
F T F T T T T T T T  F F F T T
F T F T F T F T F T  F F F F F
F T F F T F T T T T  F F F T T
F T F F F F T T F T  F F F F F
F F T T T T T F T F  F T T F T
F F T T F T T F T F  F T T F F
F F T F T F T F T F  F T T F T
F F T F F F T F T F  F T T F F
F F F T T T T F T T  F F F T T
F F F T F T T F T T  F F F F F
F F F F T F T F T T  F F F T T
F F F F F F T F T T  F F F F F

Section 3.2E

1.a. Truth-functionally indeterminate

↓
A ∼ A ⊃ A

T F T T T
F T F F F
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c. Truth-functionally true

↓
A (A � ∼ A) ⊃ ∼ (A � ∼ A)

T T F F T T T  T F F T
F F F T F T T  F F T F

i. Truth-functionally true

↓
J K ( J ∨ ∼ K) � ∼ ∼ (K ⊃ J)

T T T T F T T T F  T T T
T F T T T F T T F  F T T
F T F F F T T F T  T F F
F F F T T F T T F  F T F

e. Truth-functionally indeterminate

↓
B D (∼ B & ∼ D) ∨ ∼ (B ∨ D)

T T F T F F T F F  T T T
T F F T F T F F F  T T F
F T T F F F T F F  F T T
F F T F T T F T T  F F F

g. Truth-functionally indeterminate

↓
A B C [(A ∨ B) & (A ∨ C)] ⊃ ∼ (B & C)

T T T T T T T T T T F F  T T T
T T F T T T T T T F T T  T F F
T F T T T F T T T T T T  F F T
T F F T T F T T T F T T  F F F
F T T F T T T F T T F F  T T T
F T F F T T F F F F T T  T F F
F F T F F F F F T T T T  F F T
F F F F F F F F F F T T  F F F

k. Truth-functionally true

↓
A D [(A ∨ ∼ D) & ∼ (A & D)] ⊃ ∼ D

T T T T F T F F  T T T T F T
T F T T T F T T  T F F T T F
F T F F F T F T  F F T T F T
F F F T T F T T  F F F T T F
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3.a. Truth-functionally false

↓
B D (B � D) & (B � ∼ D)

T T T T T F T F F T
T F T F F F T T T F
F T F F T F F T F T
F F F T F F F F T F

c. Not truth-functionally false

↓
A B A � (B � A)

T T T T T T T

e. Not truth-functionally false

↓
C D [(C ∨ D) � C] ⊃ ∼ C

F T F T T F F T T F

c. Truth-functionally true

↓
A B C ∼ A ⊃ [(B & A) ⊃ C]

T T T F T T T T T T T
T T F F T T T T T F F
T F T F T T F F T T T
T F F F T T F F T T F
F T T T F T T F F T T
F T F T F T T F F T F
F F T T F T F F F T T
F F F T F T F F F T F

2.a. Not truth-functionally true

↓
F H (F ∨ H) ∨ (∼ F � H)

F F F F F F T F F F

e. Truth-functionally true

↓
C [(C ∨ ∼ C) ⊃ C] ⊃ C

T T T F T T T T T
F F T T F F F T F
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4.a. False. For example, while ‘(A ⊃ A)’ is truth-functionally true,
‘(A ⊃ A) & A’ is not.

c. True. There cannot be any truth-value assignment on which the
antecedent is true and the consequent false because there is no truth-value
assignment on which the consequent is false.

e. False. For example, although ‘(A & ∼ A)’ is truth-functionally false,
‘C ∨ (A & ∼ A)’ is not.

g. True. Since a sentence ∼ P is false on a truth-value assignment if
and only if P is true on the truth-value assignment, P is truth-functionally true
if and only if ∼ P is truth-functionally false.

i. False. For example, ‘(A ∨ ∼ A)’ is truth-functionally true, but
‘(A ∨ ∼ A) ⊃ B’ is truth-functionally indeterminate.

5.a. On every truth-value assignment, P is true and Q is false. Hence
P � Q is false on every truth-value assignment. Therefore P � Q is truth-
functionally false.

c. No. Both ‘A’ and ‘∼ A’ are truth-functionally indeterminate, but
‘A ∨ ∼ A’ is truth-functionally true.

Section 3.3E

1.a. Not truth-functionally equivalent

↓ ↓
A B ∼ (A & B) ∼ (A ∨ B)

T T F  T T T F  T T T
T F T  T F F F  T T F
F T T  F F T F  F T T
F F T  F F F T  F F F

c. Truth-functionally equivalent

↓ ↓
H K K � H ∼ K � ∼ H

T T T T T F T T F T
T F F F T T F F F T
F T T F F F T F T F
F F F T F T F T T F

e. Truth-functionally equivalent

↓ ↓
F G (G ⊃ F) ⊃ (F ⊃ G) (G � F) ∨ (∼ F ∨ G)

T T T T T T T T T T T T T F T T T
T F F T T F T F F F F T F F T F F
F T T F F T F T T T F F T T F T T
F F F T F T F T F F T F T T F T F
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2.a. Truth-functionally equivalent

↓ ↓
G H G ∨ H ∼ G ⊃ H

T T T T T F T T T
T F T T F F T T F
F T F T T T F T T
F F F F F T F F F

g. Not truth-functionally equivalent

↓ ↓
H J K ∼ (H & J) � ( J � ∼ K) (H & J) ⊃ ∼ K

T T T F  T T T T T F F T T T T F F T
T T F F  T T T F T T T F T T T T T F
T F T T  T F F T F T F T T F F T F T
T F F T  T F F F F F T F T F F T T F
F T T T  F F T F T F F T F F T T F T
F T F T  F F T T T T T F F F T T T F
F F T T  F F F T F T F T F F F T F T
F F F T  F F F F F F T F F F F T T F

k. Not truth-functionally equivalent

↓ ↓
F G H F ∨ ∼ (G ∨ ∼ H) (H � ∼ F) ∨ G

T T T T T F  T T F T T F F T T T
T T F T T F  T T T F F T F T T T
T F T T T T  F F F T T F F T F F
T F F T T F  F T T F F T F T T F
F T T F F F  T T F T T T T F T T
F T F F F F  T T T F F F T F T T
F F T F T T  F F F T T T T F T F
F F F F F F  F T T F F F T F F F

i. Not truth-functionally equivalent

↓ ↓
A C D [A ∨ ∼ (D & C)] ⊃ ∼ D [D ∨ ∼ (A & C)] ⊃ ∼ A

T T T T T F  T T T F F T T T F  T T T F F T
T T F T T T  F F T T T F F F F  T T T T F T
T F T T T T  T F F F F T T T T  T F F F F T
T F F T T T  F F F T T F F T T  T F F F F T
F T T F F F  T T T T F T T T T  F F T T T F
F T F F T T  F F T T T F F T T  F F T T T F
F F T F T T  T F F F F T T T T  F F F T T F
F F F F T T  F F F T T F F T T  F F F T T F
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c. Truth-functionally equivalent

↓ ↓
A D (D � A) & D D & A

T T T T T T T T T T
T F F F T F F F F T
F T T F F F T T F F
F F F T F F F F F F

e. Not truth-functionally equivalent

↓ ↓
A A � (∼ A � A) ∼ (A ⊃ ∼ A)

T T F F T F T T  T F F T

3.a. Not truth-functionally equivalent

C: The sky clouds over.

N: The night will be clear.

M: The moon will shine brightly.

↓ ↓
C M N C ∨ (N & M) M � (N & ∼ C)

T T T T T T T T T F T F F T
T T F T T F F T T F F F F T
T F T T T T F F F T T F F T
T F F T T F F F F T F F F T
F T T F T T T T T T T T T F
F T F F F F F T T F F F T F
F F T F F T F F F F T T T F
F F F F F F F F F T F F T F

c. Truth-functionally equivalent

D: The Daily Herald reports on our antics.

A: Our antics are effective.

↓ ↓
A D D ⊃ A ∼ A ⊃ ∼ D

T T T T T F T T F T
T F F T T F T T T F
F T T F F T F F F T
F F F T F T F T T F
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e. Not truth-functionally equivalent

M: Mary met Tom.

L: Mary liked Tom.

G: Mary asked George to the movies.

↓ ↓
G L M (M & L) ⊃ ∼ G (M & ∼ L) ⊃ G

T T T T T T F F T T F F T T T
T T F F F T T F T F F F T T T
T F T T F F T F T T T T F T T
T F F F F F T F T F F T F T T
F T T T T T T T F T F F T T F
F T F F F T T T F F F F T T F
F F T T F F T T F T T T F F F
F F F F F F T T F F F T F T F

Section 3.4E

1.a. Truth-functionally consistent

↓ ↓ ↓
A B C A ⊃ B B ⊃ C A ⊃ C

T T T T T T T T T T T T
T T F T T T T F F T F F
T F T T F F F T T T T T
T F F T F F F T F T F F
F T T F T T T T T F T T
F T F F T T T F F F T F
F F T F T F F T T F T T
F F F F T F F T F F T F

4.a. Yes. P and Q have the same truth-value on every truth-value assign-
ment. On every truth-value assignment on which they are both true, ∼ P and
∼ Q are both false, and on every truth-value assignment on which they are
both false, ∼ P and ∼ Q are both true. It follows that ∼ P and ∼ Q are truth-
functionally equivalent.

c. If P and Q are truth-functionally equivalent then they have the same
truth-value on every truth-value assignment. On those assignments on which
they are both true, the second disjunct of ∼ P ∨ Q is true and so is the dis-
junction. On those assignments on which they are both false, the first disjunct
of ∼ P ∨ Q is true and so is the disjunction. So ∼ P ∨ Q is true on every truth-
value assignment.
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c. Truth-functionally inconsistent

↓ ↓ ↓
H J L ∼ [ J ∨ (H ⊃ L)] L � (∼ J ∨ ∼ H) H � ( J ∨ L)

T T T F T T T T T T F F T F F T T T T T T
T T F F T T T F F F T F T F F T T T T T F
T F T F F T T T T T T T F T F T T T F T T
T F F T F F T F F F F T F T F T T F F F F
F T T F T T F T T T T F T T T F F F T T T
F T F F T T F T F F F F T T T F F F T T F
F F T F F T F T T T T T F T T F F F F T T
F F F F F T F T F F F T F T T F F T F F F

g. Truth-functionally consistent

↓ ↓ ↓
A B C A B C

T T T T T T
T T F T T F
T F T T F T
T F F T F F
F T T F T T
F T F F T F
F F T F F T
F F F F F F

i. Truth-functionally consistent

↓ ↓ ↓
A B C (A & B) ∨ (C ⊃ B) ∼ A ∼ B

T T T T T T T T T T F T F T
T T F T T T T F T T F T F T
T F T T F F F T F F F T T F
T F F T F F T F T F F T T F
F T T F F T T T T T T F F T
F T F F F T T F T T T F F T
F F T F F F F T F F T F T F
F F F F F F T F T F T F T F

e. Truth-functionally inconsistent

↓ ↓ ↓
H J ( J ⊃ J) ⊃ H ∼ J ∼ H

T T T T T T T F T F T
T F F T F T T T F F T
F T T T T F F F T T F
F F F T F F F T F T F
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2.a. Truth-functionally consistent

↓ ↓
B D E B ⊃ (D ⊃ E) ∼ D & B

T F T T T F T T T F T T

c. Truth-functionally consistent

↓ ↓
F J K F ⊃ ( J ∨ K) F � ∼ J

T F T T T F T T T T T F

e. Truth-functionally consistent

↓ ↓
A B (A ⊃ B) � (∼ B ∨ B) A

T T T T T T F T T T T

3.a. Truth-functionally inconsistent

S: Space is infinitely divisible.

Z: Zeno’s paradoxes are compelling.

C: Zeno’s paradoxes are convincing.

↓ ↓ ↓
C S Z S ⊃ Z ∼ (C ∨ Z) S

T T T T T T F  T T T T
T T F T F F F  T T F T
T F T F T T F  T T T F
T F F F T F F  T T F F
F T T T T T F  F T T T
F T F T F F T  F F F T
F F T F T T F  F T T F
F F F F T F T  F F F F
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c. Truth-functionally consistent

E: Eugene O’Neill was an alcoholic.

P: Eugene O’Neill’s plays show that he was an alcoholic.

I: The Iceman Cometh must have been written by a teetotaler.

F: Eugene O’Neill was a fake.

↓ ↓ ↓ ↓
E F I P E P I E ∨ F

T T T T T T T T T T
T T T F T F T T T T
T T F T T T F T T T
T T F F T F F T T T
T F T T T T T T T F
T F T F T F T T T F
T F F T T T F T T F
T F F F T F F T T F
F T T T F T T F T T
F T T F F F T F T T
F T F T F T F F T T
F T F F F F F F T T
F F T T F T T F F F
F F T F F F T F F F
F F F T F T F F F F
F F F F F F F F F F

e. Truth-functionally consistent

R: The Red Sox will win next Sunday.

J: Joan bet $5.00.

E: Joan will buy Ed a hamburger.

↓ ↓
E J R R ⊃ ( J ⊃ E) ∼ R & ∼ E

T T T T T T T T F T F F T
T T F F T T T T T F F F T
T F T T T F T T F T F F T
T F F F T F T T T F F F T
F T T T F T F F F T F T F
F T F F T T F F T F T T F
F F T T T F T F F T F T F
F F F F T F T F T F T T F



4.a. First assume that {P} is truth-functionally inconsistent. Then, since
P is the only member of {P}, there is no truth-value assignment on which P is
true; so P is false on every truth-value assignment. But then ∼ P is true on
every truth-value assignment, and so ∼ P is truth-functionally true.

Now assume that ∼ P is truth-functionally true. Then ∼ P is true on
every truth-value assignment, and so P is false on every truth-value assignment.
But then there is no truth-value assignment on which P, the only member of
{P}, is true, and so the set is truth-functionally inconsistent.

c. No. For example, ‘A’ and ‘∼ A’ are both truth-functionally indeter-
minate, but {A, ∼ A} is truth-functionally inconsistent.
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Section 3.5E

1.a. Truth-functionally valid

↓ ↓ ↓ ↓
A H J A ⊃ (H & J) J � H ∼ J ∼ A

T T T T T T T T T T T F T F T
T T F T F T F F F F T T F F T
T F T T F F F T T F F F T F T
T F F T F F F F F T F T F F T
F T T F T T T T T T T F T T F
F T F F T T F F F F T T F T F
F F T F T F F T T F F F T T F
F F F F T F F F F T F T F T F

c. Truth-functionally valid

↓ ↓ ↓
A D G (D � ∼ G) & G (G ∨ [(A ⊃ D) & A]) ⊃ ∼ D G ⊃ ∼ D

T T T T F F T F T T T T T T T T F F T T F F T
T T F T T T F F F F T T T T T T F F T F T F T
T F T F T F T T T T T T F F F T T T F T T T F
T F F F F T F F F F F T F F F T T T F F T T F
F T T T F F T F T T T F T T F F F F T T F F T
F T F T T T F F F F F F T T F F T F T F T F T
F F T F T F T T T T T F T F F F T T F T T T F
F F F F F T F F F F F F T F F F T T F F T T F
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e. Truth-functionally valid

↓ ↓ ↓
C D E (C ⊃ D) ⊃ (D ⊃ E) D C ⊃ E

T T T T T T T T T T T T T T
T T F T T T F T F F T T F F
T F T T F F T F T T F T T T
T F F T F F T F T F F T F F
F T T F T T T T T T T F T T
F T F F T T F T F F T F T F
F F T F T F T F T T F F T T
F F F F T F T F T F F F T F

g. Truth-functionally valid

↓ ↓
G H (G � H) ∨ (∼ G � H) (∼ G � ∼ H) ∨ ∼ (G � H)

T T T T T T F T F T F T T F T T F  T T T
T F T F F T F T T F F T F T F T T  T F F
F T F F T T T F T T T F F F T T T  F F T
F F F T F T T F F F T F T T F T F  F T F

2.a. Truth-functionally valid

↓ ↓ ↓
J M ( J ∨ M) ⊃ ∼ ( J & M) M � (M ⊃ J) M ⊃ J

T T T T T F F T T T T T T T T T T T
T F T T F T T T F F F F F T T F T T
F T F T T T T F F T T F T F F T F F
F F F F F T T F F F F F F T F F T F

i. Truth-functionally invalid

↓ ↓ ↓
F G ∼ ∼ F ⊃ ∼ ∼ G ∼ G ⊃ ∼ F G ⊃ F

T T T F T T T F T F T T F T T T T
T F T F T F F T F T F F F T F T T
F T F T F T T F T F T T T F T F F
F F F T F T F T F T F T T F F T F
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3.a. Truth-functionally valid

↓
B C (B & C) ⊃ (B ∨ C)

T T T T T T T T T
T F T F F T T T F
F T F F T T F T T
F F F F F T F F F

c. Truth-functionally invalid

↓
J T ([( J ⊃ T) ⊃ J] & [(T ⊃ J) ⊃ T]) ⊃ (∼ J ∨ ∼ T)

T T T T T T T T T T T T T F F T F F T

e. Truth-functionally invalid

↓
B C D [(B & C) & (B ∨ D)] ⊃ D

T T F T T T T T T F F F

4.a. Truth-functionally invalid

S: ‘Stern’ means the same as ‘star’.

N: ‘Nacht’ means the same as ‘day’.

↓ ↓ ↓
N S N ⊃ S ∼ N ∼ S

T T T T T F T F T
T F T F F F T T F
F T F T T T F F T
F F F T F T F T F

c. Truth-functionally valid

↓ ↓ ↓
A B A ⊃ ∼ A (B ⊃ A) ⊃ B A � ∼ B

T T T F F T T T T T T T F F T
T F T F F T F T T F F T T T F
F T F T T F T F F T T F T F T
F F F T T F F T F F F F F T F

e. Truth-functionally invalid

↓ ↓ ↓
A B C A & ∼ [(B & C) � (C ⊃ A)] B ⊃ ∼ B ∼ C ⊃ C

T F F T T T   F F F F F T T F T T F T F F F
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c. Truth-functionally valid

S: September has 30 days.

A: April has 30 days.

N: November has 30 days.

F: February has 40 days.

M: May has 30 days.

↓ ↓ ↓
A F M N S S & (A & N) (A � ∼ M) & (N ⊃ M) F

T T T T T T T T T T T F F T F T T T T
T T T T F F F T T T T F F T F T T T T
T T T F T T F T F F T F F T F F T T T
T T T F F F F T F F T F F T F F T T T
T T F T T T T T T T T T T F F T F F T
T T F T F F F T T T T T T F F T F F T
T T F F T T F T F F T T T F T F T F T
T T F F F F F T F F T T T F T F T F T
T F T T T T T T T T T F F T F T T T F
T F T T F F F T T T T F F T F T T T F
T F T F T T F T F F T F F T F F T T F
T F T F F F F T F F T F F T F F T T F
T F F T T T T T T T T T T F F T F F F
T F F T F F F T T T T T T F F T F F F
T F F F T T F T F F T T T F T F T F F
T F F F F F F T F F T T T F T F T F F
F T T T T T F F F T F T F T T T T T T
F T T T F F F F F T F T F T T T T T T
F T T F T T F F F F F T F T T F T T T
F T T F F F F F F F F T F T T F T T T
F T F T T T F F F T F F T F F T F F T
F T F T F F F F F T F F T F F T F F T
F T F F T T F F F F F F T F F F T F T
F T F F F F F F F F F F T F F F T F T
F F T T T T F F F T F T F T T T T T F
F F T T F F F F F T F T F T T T T T F
F F T F T T F F F F F T F T T F T T F
F F T F F F F F F F F T F T T F T T F
F F F T T T F F F T F F T F F T F F F
F F F T F F F F F T F F T F F T F F F
F F F F T T F F F F F F T F F F T F F
F F F F F F F F F F F F T F F F T F F
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e. Truth-functionally valid

D: Computers can have desires.

E: Computers can have emotions.

T: Computers can think.

↓ ↓ ↓ ↓
D E T T � E E ⊃ D D ⊃ ∼ T ∼ T

T T T T T T T T T T F F T F T
T T F F F T T T T T T T F T F
T F T T F F F T T T F F T F T
T F F F T F F T T T T T F T F
F T T T T T T F F F T F T F T
F T F F F T T F F F T T F T F
F F T T F F F T F F T F T F T
F F F F T F F T F F T T F T F

5.a. Suppose that the argument is truth-functionally valid. Then there
is no truth-value assignment on which P1, . . . , Pn are all true and Q is
false. But, by the characteristic truth-table for ‘&’, the iterated conjunction
(. . . (P1 & P2) & . . . Pn) has the truth-value T on a truth-value assignment if
and only if all of P1, . . . , Pn have the truth-value T on that assignment. So,
on our assumption, there is no truth-value assignment on which the
antecedent of (. . . (P1 & P2) & . . . & Pn) ⊃ Q has the truth-value T and the
consequent has the truth-value F. It follows that there is no truth-value
assignment on which the corresponding material conditional is false, so it is
truth-functionally true.

Assume that (. . . (P1 & P2) & . . . & Pn) ⊃ Q is truth-functionally true.
Then there is no truth-value assignment on which the antecedent is true and
the consequent false. But the iterated conjunction is true if and only if the
sentences P1, . . . , Pn are all true. So there is no truth-value assignment on
which P1, . . . , Pn are all true and Q is false; hence the argument is truth-
functionally valid.

c. No. For example, {A ⊃ B} ‘∼ A ∨ B’. But {A ⊃ B} does not entail
‘∼ A’, nor does it entail ‘B’.

Section 3.6E

1.a. If {∼ P} is truth-functionally inconsistent, then there is no truth-value
assignment on which ∼ P is true (since ∼ P is the only member of its unit set).
But then ∼ P is false on every truth-value assignment, so P is true on every
truth-value assignment and is truth-functionally true.

c. If Γ ∪ {∼ P} is truth-functionally inconsistent, then there is no truth-
value assignment on which every member of Γ ∪ {∼ P} is true. But ∼ P is true
on a truth-value assignment if and only if P is false on that assignment. Hence

|=
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there is no truth-value assignment on which every member of Γ is true and P
is false. Hence Γ P.

2.a. P is truth-functionally true if and only if the set {∼ P} is truth-
functionally inconsistent. But {∼P} is the same set as ∅ ∪ {∼ P}. So P is truth-
functionally true if and only if ∅ ∪ {∼ P} is truth-functionally inconsistent. But
we have already seen, by previous results, that ∅ ∪ {∼ P} is truth-functionally
inconsistent if and only if ∅ P. Hence P is truth-functionally true if and only
if ∅ P.

c. Assume that Γ is truth-functionally inconsistent. Then there is no
truth-value assignment on which every member of Γ is true. Let P be an arbi-
trarily selected sentence of SL. Then there is no truth-value assignment on
which every member of Γ is true and P false since there is no truth-value
assignment on which every member of Γ is true. Hence Γ P.

3.a. Let Γ be a truth-functionally consistent set. Then there is at least
one truth-value assignment on which every member of Γ is true. But P is also
true on such an assignment since a truth-functionally true sentence is true on
every truth-value assignment. Hence on at least one truth-value assignment
every member of Γ ∪ {P} is true; so the set is truth-functionally consistent.

4.a. P is either true or false on each truth-value assignment. On any
assignment on which P is true, Q is true (because {P} Q) and so Q ∨ R is
true. On any assignment on which P is false, ∼ P is true, R is therefore also
true (because {∼ P} R), and so Q ∨ R is true as well. Either way, then, Q ∨ R
is true—so the sentence is truth-functionally true.

c. Assume that every member of Γ ∪ Γ� is true on some truth-value
assignment. Then every member of Γ is true, and so P is true (because Γ
P). Every member of Γ� is also true, and so Q is true (because Γ� Q). There-
fore P & Q is true. So Γ ∪ Γ� P & Q.|=

|=
|=

|=

|=

|=

|=
|=

|=
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c. 1. ∼ (A ∨ B) & (A ∨ ∼B)� SM
2. ∼ (A ∨ B)� 1 &D
3. A ∨ ∼ B� 1 &D
4. ∼ A 2 ∼ ∨D
5. ∼ B 2 ∼ ∨D

6. A ∼ B 2 ∨D
�

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

A B

F F

e. 1. (A ∨ B) & (A ∨ ∼ B)� SM
2. A ∨ B� 1 &D
3. A ∨ ∼ B� 1 &D

4. A B 2 ∨D

5. A ∼ B A ∼ B 3 ∨D
�

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

A B

T T
T F

CHAPTER FOUR

Section 4.2E

1. a. 1. A & ∼ (B ∨ A)� SM
2. A 1 &D
3. ∼ (B ∨ A)� 1 &D
4. ∼ B 3 ∼ ∨D
5. ∼ A 3 ∼ ∨D

�

Since the truth-tree is closed, the set is truth-functionally inconsistent.
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g. 1. ( J ∨ ∼ K) & I� SM
2. ∼ I ∨ K � SM
3. J ∨ ∼ K � 1 &D
4. I 1 &D

5. ∼ I K 2 ∨D
�

6. J ∼ K 3 ∨D
�

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

I J K

T T T

i. 1. (H ∨ ∼ I) & I� SM
2. ∼ (H & I)� SM
3. H ∨ ∼ I� 1 &D
4. I 1 &D

5. H ∼ I 3 ∨D
�

6. ∼ H ∼ I 2 ∼ &D
� �

Since the truth-tree is closed, the set is truth-functionally inconsistent.

k. 1. ∼ (A & B)� SM
2. ∼ (∼ C ∨ B)� SM
3. ∼ (A & C)� SM
4. ∼ ∼ C� 2 ∼ ∨D
5. ∼ B 2 ∼ ∨D
6. C 4 ∼ ∼ D

7. ∼ A ∼ C 3 ∼ &D
�

8. ∼ A ∼ B 1 ∼ &D
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m. 1. (A ∨ B) & (A ∨ C)� SM
2. ∼ C & ∼ A� SM
3. A ∨ B� 1 &D
4. A ∨ C� 1 &D
5. ∼ C 2 &D
6. ∼ A 2 &D

7. A B 3 ∨D

8. A C A C 4 ∨D
� � � �

Since the truth-tree is closed, the set is truth-functionally inconsistent.

o. 1. (H & ∼ I) ∨ (I ∨ ∼ H)� SM
2. J ∨ I� SM
3. ∼ J SM

4. J I 2 ∨D
�

5. H & ∼ I� I ∨ ∼ H� 1 ∨D
6. H 5 &D
7. ∼ I 5 &D
8. � I ∼ H 5 ∨D

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

H I J

T T F
F T F

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

A B C

F F T
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2. a. 1. ∼ (H & I)� SM
2. H ∨ I� SM

3. H I 2 ∨D

4. ∼ H ∼ I ∼ H ∼ I 1 ∼ &D
� �

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

H I

T F
F T

c. 1. ∼ (H & I) ∨ J� SM
2. ∼ ( J ∨ ∼ I)� SM
3. ∼ J 2 ∼ ∨D
4. ∼ ∼ I� 2 ∼ ∨D
5. I 4 ∼ ∼ D

6. ∼ (H & I)� J 1 ∨D
�

7. ∼ H ∼ I 6 ∼ &D
�

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

H I J

F T F
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i. 1. (∼ F & ∼ G) & [(G ∨ ∼ I) & (I ∨ ∼ H)]� SM
2. ∼ F & ∼ G� 1 &D
3. (G ∨ ∼ I) & (I ∨ ∼ H)� 1 &D
4. ∼ F 2 &D
5. ∼ G 2 &D
6. G ∨ ∼ I� 3 &D
7. I ∨ ∼ H� 3 &D

8. G ∼ I 6 ∨D
�

9. I ∼ H 7 ∨D
�

g. 1. ∼ C ∨ (A & B)� SM
2. C SM
3. ∼ (A & B)� SM

4. ∼ C A & B� 1 ∨D
5. � A 4 &D
6. B 4 &D

7. ∼ A ∼ B 3 ∼ &D
� �

Since the truth-tree is closed, the set is truth-functionally inconsistent.

e. 1. A & (B & C)� SM
2. ∼ [A & (B & C)]� SM
3. A 1 &D
4. B & C� 1 &D
5. B 4 &D
6. C 4 &D

7. ∼ A ∼ (B & C)� 2 ∼ &D
�

8. ∼ B ∼ C 7 ∼ &D
� �

Since the truth-tree is closed, the set is truth-functionally inconsistent.
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Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

F G H I

F F F F

k. 1. (F ∨ ∼ G) & [(G ∨ ∼ I) & (I ∨ ∼ H)]� SM
2. F ∨ ∼ G� 1 &D
3. (G ∨ ∼ I) & (I ∨ ∼ H)� 1 &D
4. G ∨ ∼ I� 3 &D
5. I ∨ ∼ H� 3 &D

6. F ∼ G 2 ∨D

7. G ∼ I G ∼ I 4 ∨D
�

8. I ∼ H I ∼ H I ∼ H 5 ∨D
� �

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

F G H I

T T T T
T T F T
T T F F
T F F F
F F F F
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Section 4.3.E

1. a. 1. ∼ (A ⊃ B)� SM
2. ∼ (B ⊃ A)� SM
3. A 1 ∼ ⊃D
4. ∼ B 1 ∼ ⊃D
5. B 2 ∼ ⊃D
6. ∼ A 2 ∼ ⊃D

�

Since the truth-tree is closed, the set is truth-functionally inconsistent.

m. 1. A ∨ (B ∨ C)� SM
2. ∼ (A ∨ B)� SM
3. ∼ (B & C)� SM
4. ∼ (A & C)� SM
5. ∼ A 2 ∼ ∨D
6. ∼ B 2 ∼ ∨D

7. A B ∨ C� 1 ∨D
�

8. ∼ B ∼ C 3 ∼ &D

9. ∼ A ∼ C ∼ A ∼ C 4 ∼ &D

10. B C B C B C B C 7 ∨D
� � � � � � �

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

A B C

F F T
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c. 1. B ⊃ (D ⊃ E)� SM
2. D & B� SM
3. D 2 &D
4. B 2 &D

5. ∼ B D ⊃ E� 1 ⊃D
�

6. ∼ D E 5 ⊃D
�

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

B D E

T T T

e. 1. H � G� SM
2. ∼ G SM

3. H ∼ H 1 �D
4. G ∼ G 1 �D

�

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

H G

F F

g. 1. H � G� SM
2. ∼ (H ⊃ G)� SM
3. H 2 ∼ ⊃D
4. ∼ G 2 ∼ ⊃D

5. H ∼ H 1 �D
6. G ∼ G 1 �D

� �

Since the truth-tree is closed, the set is truth-functionally inconsistent.
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i. 1. H � G� SM
2. G � I� SM
3. ∼ (H ⊃ I)� SM
4. H 3 ∼ ⊃D
5. ∼ I 3 ∼ ⊃D

6. H ∼ H 1 �D
7. G ∼ G 1 �D

�

8. G ∼ G 2 �D
9. I ∼ I 2 �D

� �

Since the truth-tree is closed, the set is truth-functionally inconsistent.

k. 1. L � ( J & K)� SM
2. ∼ J SM
3. ∼ L ⊃ L� SM

4. L ∼ L 1 �D
5. J & K � ∼ ( J & K)� 1 �D
6. J 5 &D
7. K 5 &D
8. � ∼ ∼ L L 3 ⊃D
9. L � 8 ∼ ∼ D

�

Since the truth-tree is closed, the set is truth-functionally inconsistent.

m. 1. ∼ [(A � B) � A)]� SM

2. A � B� ∼ (A � B)� 1 �D
3. ∼ A A 1 �D

4. A ∼ A 2 �D
5. B ∼ B 2 �D
6. � A ∼ A 2 ∼ �D
7. ∼ B B 2 ∼ �D

�
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Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

A B

T F
F F

o. 1. H ⊃ J� SM
2. J ⊃ K � SM
3. K ⊃ ∼ H� SM

4. ∼ H J 1 ⊃D

5. ∼ J K ∼ J K 2 ⊃D
�

6. ∼ K ∼ H ∼ K ∼ H ∼ K ∼ H 3 ⊃D
� �

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

H J K

F F F
F T T
F F T

2. a. 1. ∼ [(A ⊃ ∼ B) ⊃ (B ⊃ A)]� SM
2. ∼ (∼ A ⊃ ∼ B)� SM
3. A ⊃ ∼ B� 1 ∼ ⊃D
4. ∼ (B ⊃ A)� 1 ∼ ⊃D
5. B 4 ∼ ⊃D
6. ∼ A 4 ∼ ⊃D
7. ∼ A 2 ∼ ⊃D
8. ∼ ∼ B 2 ∼ ⊃D

9. ∼ A ∼ B 3 ⊃D
�
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c. 1. (A & ∼ C) ∨ (A & ∼ B)� SM
2. A ⊃ B� SM
3. C SM

4. A & ∼ C� A & ∼ B� 1 ∨D
5. A A 4 &D
6. ∼ C ∼ B 4 &D

�

∼ A B 2 ⊃D
� �

Since the truth-tree is closed, the set is truth-functionally inconsistent.

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

A B

F T

e. 1. ∼ [A ⊃ (B � C)]� SM
2. A � ∼ C� SM
3. A � B� SM
4. A 1 ∼ ⊃D
5. ∼ (B � C)� 1 ∼ ⊃D

6. A ∼ A 3 �D
7. B ∼ B 3 �D

�

8. A ∼ A 2 �D
9. ∼ C ∼ ∼ C� 2 �D

�

10. B ∼ B 5 ∼�D
11. ∼ C C 5 ∼�D

�

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

A B C

T T F
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g. 1. ∼ (A ∨ B) ⊃ ∼ A� SM
2. ∼ (A ∨ B) ⊃ ∼ B� SM
3. A SM

4. ∼ ∼ (A ∨ B)� ∼ A 1 ⊃D
5. A ∨ B� � 4 ∼ ∼ D

6. A B 5 ∨D

7. ∼ ∼ (A ∨ B)� ∼ B ∼ ∼ (A ∨ B)� ∼ B 2 ⊃D
8. A ∨ B� A ∨ B� � 7 ∼ ∼ D

9. A B A B 8 ∨D

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

A B

T T
T F

i. 1. A � (B & ∼ C)� SM
2. ∼ A ∨ ∼ B� SM
3. ∼ (∼ B � C)� SM

4. A ∼ A 1 �D
5. B & ∼ C� ∼ (B & ∼ C)� 1 �D

6. ∼ A ∼ B ∼ A ∼ B 2 ∨D
7. � B 5 &D
8. ∼ C 5 &D

�
9. ∼ B ∼ ∼ B� ∼ B ∼ ∼ B� 3 ∼ �D

10. ∼ C C ∼ C C 3 ∼ �D
11. B B 9 ∼ ∼ D

�

12. ∼ B ∼ ∼ C� ∼ B ∼ ∼ C� ∼ B ∼ ∼ C� 5 ∼ &D
13. C � C C 12 ∼ ∼ D

� �
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k. 1. A � (∼ B � C)� SM
2. ∼ A ⊃ (B ⊃ ∼ C)� SM
3. ∼ (A ⊃ ∼ C)� SM
4. A 3 ∼ ⊃D
5. ∼ ∼ C� 3 ∼ ⊃D
6. C 5 ∼ ∼ D

7. A ∼ A 1 �D
8. ∼ B � C� ∼ (∼ B � C)� 1 �D

�

9. ∼ ∼ A B ⊃ ∼ C� 2 ⊃D
10. A 9 ∼ ∼ D

11. ∼ B ∼ ∼ B� ∼ B ∼ ∼ B 8 �D
12. C ∼ C C ∼ C 8 �D

� �

13. ∼ B ∼ C 9 ⊃D
�

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

A B C

T F T

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

A B C

F F F
F F T
F T T
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m. 1. J ⊃ (H � ∼ I)� SM
2. ∼ ( J � H)� SM

3. ∼ J H � ∼ I� 1 ⊃D

4. J ∼ J J ∼ J 2 ∼ �D
5. ∼ H H ∼ H H 2 ∼ �D

�

6. H ∼ H H ∼ H 3 �D
7. ∼ I ∼ ∼ I� ∼ I ∼ ∼ I 3 �D
8. � I � 7 ∼ ∼ D

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragment is

J H I

F T T
F T F
T F T

Section 4.4E

1.a. 1. H ∨ G� SM
2. ∼ G & ∼ H� SM
3. ∼ G 2 &D
4. ∼ H 2 &D

5. H G 1 ∨D
� �

Since the truth-tree is closed, the set is truth-functionally inconsistent.
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e. 1. ∼ [∼ (E ∨ ∼ C) & A]� SM
2. ∼ (E ∨ ∼ C) & A� SM
3. ∼ (E ∨ ∼ C)� 2 &D
4. A 2 &D
5. ∼ E 3 ∼ ∨D
6. ∼ ∼ C� 3 ∼ ∨D

7. ∼ ∼ (E ∨ ∼ C)� ∼ A 1 ∼ &D
�

8. E ∨ ∼ C� 7 ∼ ∼ D

9. E ∼ C 8 ∨D
�

10. C 6 ∼ ∼ D
�

Since the truth-tree is closed, the set is truth-functionally inconsistent.

c. 1. ∼ ∼ C� SM
2. C & [U ∨ (∼ C & B)]� SM
3. C 1 ∼ ∼ D
4. C 2 &D
5. U ∨ (∼ C & B)� 2 &D

6. U ∼ C & B� 5 ∨D
7. ∼ C 6 &D
8. B 6 &D

�

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

B C U

F T T
T T T
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g. 1. ∼ A ∨ ∼ ∼ [∼ (K & ∼ A) ∨ R]� SM
2. ∼ [D ∨ (A & ∼ K)]� SM
3. A & (R ∨ K)� SM

4. A 3 &D
5. R ∨ K � 3 &D
6. ∼ D 2 ∼ ∨D
7. ∼ (A & ∼ K)� 2 ∼ ∨D

8. ∼ A ∼ ∼ K � 7 ∼ &D
�

9. K 8 ∼ ∼ D

10. ∼ A ∼ ∼ [∼ (K & ∼ A) ∨ R]� 1 ∨D
�

11. ∼ (K & ∼ A) ∨ R� 10 ∼ ∼ D

12. ∼ (K & ∼ A)� R 11 ∨D

13. ∼ K ∼ ∼ A� 12 ∼ &D
�

14. A 13 ∼ ∼ D

15. R K R K 5 ∨D

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

A D K R

T F T T
T F T F
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i. 1. B ⊃ J� SM
2. H � J� SM
3. ∼ H ∨ B� SM

4. H ∼ H 2 �D
5. J ∼ J 2 �D

6. ∼ B J ∼ B J 1 ⊃D
�

7. ∼ H B ∼ H B ∼ H B 3 ∨D
� � � �

Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

B H J

T T T
F F F

k. 1. ∼ [(B & J) � ∼ (W ∨ Z)]� SM
2. ∼ ( J & W)� SM

3. B & J� ∼ (B & J)� 1 ∼ �D
4. ∼ ∼ (W ∨ Z)� ∼ (W ∨ Z)� 1 ∼ �D
5. ∼ W 4 ∼ ∨D
6. ∼ Z 4 ∼ ∨D
7. W ∨ Z� 4 ∼ ∼ D
8. B 3 &D
9. J 3 &D

10. W Z 7 ∨D

11. ∼ J ∼ W ∼ J ∼ W ∼ J ∼ W 2 ∼ &D
� � �

12. ∼ B ∼ J ∼ B ∼ J 3 ∼ &D
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Since the truth-tree has at least one completed open branch, the set is truth-
functionally consistent. The recoverable fragments are

B J W Z

T T F T
T F F F
F T F F
F F F F

2.a. True. Truth-trees test for consistency. A completed open branch
shows that the set is consistent because it yields at least one truth-value assign-
ment on which all the members of the set being tested are true. An open
branch on a completed truth-tree is a completed open branch.

c. True. If a tree has a completed open branch, then we can recover
from that branch a truth-value assignment on which every member of the set
is true. And a set is, by definition, consistent if and only if there is at least one
truth-value assignment on which all its members are true.

e. True. If all the branches are closed, there is no truth-value assign-
ment on which all the members of the set being tested are true, and if there
is no such assignment, that set is truth-functionally inconsistent.

g. False. The number of branches on a completed tree and the num-
ber of distinct atomic components of the members of the set being tested are
not related.

i. False. Closed branches represent unsuccessful attempts to find truth-
value assignments on which all the members of the set being tested are true.
No fragments of truth-value assignments are recoverable from them; hence
they do not yield assignments on which all the members of the set being tested
are false.

k. False. The truth-tree for {A ⊃ B, A} has a closed branch.

1. A ⊃ B� SM
2. A SM

3. ∼ A B 1 ⊃D
�
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3.a. 1. D � (B ∨ S)� SM
2. ∼ (B ∨ S) & M� SM
3. N ⊃ M SM
4. D ∨ ∼ M� SM
5. ∼ (B ∨ S)� 2 &D
6. M 2 &D
7. ∼ B 5 ∼ ∨D
8. ∼ S 5 ∼ ∨D

9. D ∼ M 4 ∨D
�

10. D ∼ D 1 �D
11. B ∨ S� ∼ (B ∨ S) 1 �D

�

12. B S 11 ∨D
� �

Since the truth-tree is closed, the set is truth-functionally inconsistent.

c. 1. [(B ∨ M) ∨ G] & ∼ [(B & M) & G]� SM
2. (B ⊃ I) & (∼ I ⊃ ∼ G)� SM
3. [U ⊃ (B ∨ M)] & ∼ M� SM
4. U & ∼ I� SM
5. U 4 &D
6. ∼ I 4 &D
7. U ⊃ (B ∨ M) 3 &D
8. ∼ M 3 &D
9. B ⊃ I� 2 &D

10. ∼ I ⊃ ∼ G� 2 &D
11. (B ∨ M) ∨ G� 1 &D
12. ∼ [(B & M) & G] 1 &D

13. ∼ B I 9 ⊃D
�

14. ∼ ∼ I� ∼ G 10 ⊃D
15. I 14 ∼ ∼ D

�

16. B ∨ M� G 11 ∨D
�

17. B M 16 ∨D
� �

Since the truth-tree is closed, the set is truth-functionally inconsistent.
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Section 4.5E

1.a. 1. M & ∼ M� SM
2. M 1 &D
3. ∼ M 1 &D

�

Since the truth-tree for the given sentence is closed, that sentence is truth-
functionally false.

c. 1. ∼ M ∨ ∼ M� SM

2. ∼ M ∼ M 1 ∨D

1. ∼ (∼ M ∨ ∼ M)� SM
2. ∼ ∼ M� 1 ∼ ∨D
3. ∼ ∼ M� 1 ∼ ∨D
4. M 2 ∼ ∼ D
5. M 3 ∼ ∼ D

Neither the truth-tree for the given sentence nor the truth-tree for the negation
of that sentence is closed, therefore the given sentence is truth-functionally
indeterminate.

e. 1. (C ⊃ R) & [(C ⊃ ∼ R) & ∼ (∼ C ∨ R)]� SM
2. C ⊃ R� 1 &D
3. (C ⊃ ∼ R) & ∼ (∼ C ∨ R)� 1 &D
4. C ⊃ ∼ R 3 &D
5. ∼ (∼ C ∨ R)� 3 &D
6. ∼ ∼ C� 5 ∼ ∨D
7. ∼ R 5 ∼ ∨D
8. C 6 ∼ ∼ D

9. ∼ C R 2 ⊃D
� �

Since the truth-tree is closed, the sentence we are testing is truth-functionally false.
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g. 1. (∼ A � ∼ Z) & (A & ∼ Z)� SM
2. ∼ A � ∼ Z� 1 &D
3. A & ∼ Z� 1 &D
4. A 3 &D
5. ∼ Z 3 &D

6. ∼ A ∼ ∼ A 2 �D
7. ∼ Z ∼ ∼ Z� 2 �D

�

8. Z 7 ∼ ∼ D
�

Since the truth-tree is closed, the sentence we are testing is truth-functionally
false.

i. 1. (A ∨ B) & ∼ (A ∨ B)� SM
2. A ∨ B� 1 &D
3. ∼ (A ∨ B)� 1 &D
4. ∼ A 3 ∼ ∨D
5. ∼ B 3 ∼ ∨D

6. A B 2 ∨D
� �

The tree is closed, so the sentence is truth-functionally false.

k. 1. (A ∨ B) � ∼ (A ∨ B)� SM

2. A ∨ B� ∼ (A ∨ B)� 1 �D
3. ∼ (A ∨ B)� ∼ ∼ (A ∨ B)� 1 �D
4. ∼ A 3 ∼ ∨D
5. ∼ B 3 ∼ ∨D

6. A B 2 ∨D
7. � � ∼ A 2 ∼ ∨D
8. ∼ B 2 ∼ ∨D
9. A ∨ B� 3 ∼ ∼ D

10. A B 9 ∨D
� �

The tree is closed, so the sentence is truth-functionally false.
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m. 1. ∼ (D ∨ F) � (∼ D ∨ ∼ F) SM

2. ∼ (D ∨ F)� ∼ ∼ (D ∨ F)� 1 �D
3. ∼ D ∨ ∼ F� ∼ (∼ D ∨ ∼ F)� 1 �D
4. D ∨ F� 2 ∼ ∼ D
5. ∼ ∼ D� 3 ∼ ∨D
6. ∼ ∼ F� 3 ∼ ∨D
7. D 5 ∼ ∼ D
8. F 6 ∼ ∼ D

9. D F 4 ∨D
10. ∼ D 2 ∼ ∨D
11. ∼ F 2 ∼ ∨D

12. ∼ D ∼ F 3 ∨ D

1. ∼ (∼ (D ∨ F) � (∼ D ∨ ∼ F))� SM

2. ∼ (D ∨ F)� ∼ ∼ (D ∨ F)� 1 ∼ �D
3. ∼ (∼ D ∨ ∼ F)� ∼ D ∨ ∼ F� 1 ∼ �D
4. D ∨ F� 2 ∼ ∼ D

5. ∼ D ∼ F 3 ∨D

6. D F D F 4 ∨D
7. ∼ D � � 2 ∼ ∨D
8. ∼ F 2 ∼ ∨D
9. ∼ ∼ D� 3 ∼ ∨D

10. ∼ ∼ F 3 ∼ ∨D
11. D 9 ∼ ∼ D

�

Neither the tree for the sentence nor the tree for its negation is closed. There-
fore the sentence is truth-functionally indeterminate.
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c. 1. ∼ [(A � K) ⊃ (A ∨ K)]� SM
2. A � K � 1 ∼ ∨D
3. ∼ (A ∨ K)� 1 ∼ ∨D
4. ∼ A 3 ∼ ∨D
5. ∼ K 3 ∼ ∨D

6. A ∼ A 2 �D
7. K ∼ K 2 �D

�

Since the truth-tree for the negation of the given sentence is not closed, the
given sentence is not truth-functionally true. The recoverable fragment is

A K

F F

e. 1. ∼ [[( J ⊃ Z) & ∼ Z] ⊃ ∼ J]� SM
2. ( J ⊃ Z) & ∼ Z� 1 ∼ ∨D
3. ∼ ∼ J� 1 ∼ ∨D
4. J 3 ∼ ∼ D
5. J ⊃ Z� 2 &D
6. ∼ Z 2 &D

7. ∼ J Z 5 ⊃D
� �

Since the truth-tree for the negation of the given sentence is closed, the given
sentence is truth-functionally true.

2.a. 1. ∼ [(B ⊃ L) ∨ (L ⊃ B)]� SM
2. ∼ (B ⊃ L)� 1 ∼ ∨D
3. ∼ (L ⊃ B)� 1 ∼ ∨D
4. B 2 ∼ ⊃D
5. ∼ L 2 ∼ ⊃D
6. L 3 ∼ ⊃D
7. ∼ B 3 ∼ ⊃D

�

Since the truth-tree for the negation of the given sentence is closed, the given
sentence is truth-functionally true.
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g. 1. ∼ [(B ⊃ (M ⊃ H)) � [(B ⊃ M) ⊃ (B ⊃ H)]]� SM

2. B ⊃ (M ⊃ H)� ∼(B ⊃ (M ⊃ H))� 1 ∼ �D
3. ∼ [{B ⊃ M) ⊃ (B ⊃ H)]� (B ⊃ M) ⊃ (B ⊃ H)� 1 ∼ �D
4. B ⊃ M � 3 ∼ ⊃D
5. ∼ (B ⊃ H)� 3 ∼ ⊃D
6. B 5 ∼ ⊃D
7. ∼ H 5 ∼ ⊃D

8. ∼ B M 4 ⊃D
�

9. ∼ B M ⊃ H� 2 ⊃D
�

10. ∼ M H 9 ⊃D
� �

11. B 2 ∼ ⊃D
12. ∼ (M ⊃ H)� 2 ∼ ⊃D
13. M 12 ∼ ⊃D
14. ∼ H 12 ∼ ⊃D

15. ∼ (B ⊃ M)� B ⊃ H� 3 ⊃D
16. B 15 ∼ ⊃D
17. ∼ M 15 ∼ ⊃D

�

18. ∼ B H 15 ⊃D
� �

Since the truth-tree for the negation of the given sentence is closed, the given
sentence is truth-functionally true.

i. 1. ∼ ((A & ∼ B) ⊃ ∼ (A ∨ B))� SM
2. A & ∼ B� 1 ∼ ⊃D
3. ∼ ∼ (A ∨ B)� 1 ∼ ⊃D
4. A 2 &D
5. ∼ B 2 &D
6. A ∨ B� 3 ∼ ∼ D

7. A B 6 ∨D
�



m. 1. ∼ ((A ⊃ (B & C)) ⊃ (A ⊃ (B ⊃ C)))� SM
2. A ⊃ (B & C)� 1 ∼ ⊃D
3. ∼ (A ⊃ (B ⊃ C))� 1 ∼ ⊃D
4. A 3 ∼ ⊃D
5. ∼ (B ⊃C)� 3 ∼ ⊃D
6. B 5 ∼ ⊃D
7. ∼ C 5 ∼ ⊃D

8. ∼ A B & C� 2 ⊃D
9. � B 8 &D

10. C 8 &D
�
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k. 1. ∼ (((A & B) ⊃ C) � ((A ⊃ ∼ B) ∨ C))� SM

2. (A & B) ⊃ C� ∼ ((A & B) ⊃ C)� 1 ∼ �D
3. ∼ ((A ⊃ ∼ B) ∨ C)� (A ⊃ ∼ B) ∨ C� 1 ∼ �D
4. ∼ (A ⊃ ∼ B)� 3 ∼ ∨D
5. ∼ C 3 ∼ ∨D
6. A 4 ∼ ⊃D
7. ∼ ∼ B� 4 ∼ ⊃D
8. B 7 ∼ ∼ D

9. ∼ (A & B)� C 2 ⊃D
�

10. ∼ A ∼ B 9 ∼ &D
11. � � A & B� 2 ∼ ⊃D
12. ∼ C 2 ∼ ⊃D
13. A 11 &D
14. B 11 &D

15. A ⊃ ∼ B� C 3 ∨D
�

16. ∼ A ∼ B 15 ⊃D
� �

The tree for the negation of the sentence is closed. Therefore the sentence is
truth-functionally true.

The tree for the negation of the sentence is not closed. Therefore the sen-
tence is not truth-functionally true. The recoverable fragment is

A B

T F
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The tree for the negation of the sentence is closed. Therefore the sentence is
truth-functionally true.

o. 1. ∼ (((A & B) ⊃ C) � (A ⊃ (B ⊃ C)))� SM

2. (A & B) ⊃ C� ∼ ((A & B) ⊃ C)� 1 ∼ �D
3. ∼ (A ⊃ (B ⊃ C))� A ⊃ (B ⊃ C)� 1 ∼ �D
4. A 3 ∼ ⊃D
5. ∼ (B ⊃ C)� 3 ∼ ⊃D
6. B 5 ∼ ⊃D
7 ∼ C 5 ∼ ⊃D

8. ∼ (A & B)� C 2 ⊃D
�

9. ∼ A ∼ B 8 ∼ &D
10. � � A & B� 2 ∼ ⊃D
11. ∼ C 2 ∼ ⊃D
12. A 10 &D
13. B 10 &D

14. ∼ A B ⊃ C� 3 ⊃D
�

15. ∼ B C 14 ⊃D
� �

The tree for the negation of the sentence is closed. Therefore the sentence is
truth-functionally true.

3.a. 1. ∼ (∼ A ⊃ A)� SM
2. ∼ A 1 ∼ ⊃D
3. ∼ A 1 ∼ ⊃D

The tree for the sentence does not close. Therefore the sentence is not truth-
functionally false. The recoverable fragment  is

A

F

Since only one of the two relevant fragments is recoverable, the sentence is
not truth-functionally true. Therefore it is truth-functionally indeterminate.
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c. 1. (A � ∼ A) ⊃ ∼ (A � ∼ A)� SM

2. ∼ (A � ∼ A)� ∼ (A � ∼ A)� 1 ⊃D

3. A ∼ A A ∼ A 2 ∼ �D
4. ∼ ∼ A � ∼ A ∼ ∼ A � ∼ A 2 ∼ �D
5. A A 4 ∼ ∼ D

e. 1. (∼ B & ∼ D) ∨ ∼ (B ∨ D)� SM

2. ∼ B & ∼ D� ∼ (B ∨ D)� 1 ∨D
3. ∼ B 2 &D
4. ∼ D 2 &D
5. ∼ B 2 ∼ ∨D
6. ∼ D 2 ∼ ∨D

The tree for the sentence does not close. Therefore the sentence is not truth-
functionally false. The recoverable fragments are

A

T
F

Since both the two relevant fragments are recoverable, the sentence is truth-
functionally true.

The tree for the sentence does not close. Therefore the sentence is not truth-
functionally false. The recoverable fragment is

B D

F F

Since only one of the four relevant fragments is recoverable, the sentence is
not truth-functionally true. Therefore it is truth-functionally indeterminate.

g. 1. [(A ∨ B) & (A ∨ C)] ⊃ ∼ (B & C)� SM

2. ∼ ((A ∨ B) & (A ∨ C))� ∼ (B & C)� 1 ⊃D

3. ∼ (A ∨ B)� ∼ (A ∨ C)� ∼ B ∼ C 2 ∼ &D
4. ∼ A ∼ A 3 ∼ ∨D
5. ∼ B ∼ C 3 ∼ ∨D
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The tree for the sentence does not close. Therefore the sentence is not truth-
functionally false. The recoverable fragments are

A B C

F F T
F F F
F T F
T F T
T F F
T T F

Since only six of the eight relevant fragments are recoverable, the sentence is
not truth-functionally true. Therefore it is truth-functionally indeterminate.

i. 1. ( J ∨ ∼ K) � ∼ ∼ (K ⊃ J)� SM

2. J ∨ ∼ K � ∼ ( J ∨ ∼ K)� 1 �D
3. ∼ ∼ (K ⊃ J)� ∼ ∼ ∼ (K ⊃ J)� 1 �D
4. K ⊃ J� ∼ (K ⊃ J)� 3 ∼ ∼ D

5. J ∼ K 2 ∨D

6. ∼ K J ∼ K J 4 ⊃D
7. ∼ J 2 ∼ ∨D
8. ∼ ∼ K � 2 ∼ ∨D
9. K 8 ∼ ∼ D

10. K 4 ∼ ⊃D
11. ∼ J 4 ∼ ⊃D

The tree for the sentence does not close. Therefore the sentence is not truth-
functionally false. The recoverable fragments are

J K

T F
T T
F T
F F

Since all four of the four relvant fragments are recoverable, the sentence is
truth-functionally true.
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4.a. False. A tree for a truth-functionally true sentence can have some
open and some closed branches. ‘(H ∨ ∼ H) ∨ (∼ H & H)’ is clearly truth-
functionally true, inasmuch as its left disjunct is truth-functionally true. Yet the
tree for this sentence has two open branches and one closed branch.

1. (H ∨ ∼ H) ∨ (∼ H & H)� SM

2. H ∨ ∼ H� ∼ H & H� 1 ∨D
3. ∼ H 2 &D
4. H 2 &D

�

5. H ∼ H 2 ∨D

c. False. Many truth-functionally indeterminate sentences have com-
pleted trees all of whose branches are open. A simple example is

1. H ∨ G� SM

2. H G 1 ∨D

e. False. Some such unit sets open trees; for example, P ∨ Q does, but
not all such unit sets have open trees. For example, P & Q has a closed tree
if P is ‘H & G’ and Q is ‘∼ H & K’.

1. (H & G) & (∼ H & K)� SM
2. H & G� 1 &D
3. ∼ H & K � 1 &D
4. H 2 &D
5. G 2 &D
6. ∼ H 3 &D
7. K 3 &D

�

g. The claim is false. If P and Q are both truth-functionally true, then
P & Q, P ∨ Q, P ⊃ Q, and P � Q are also truth-functionally true. Therefore
the unit set of each is truth-functionally consistent and will not have a closed
truth-tree. But each may still have a tree with one or more closed branch. For
example, if P is ‘(A ∨ ∼ A) ∨ (B & ∼ B)’ then P & Q, P ∨ Q, and P � Q will
each have at least one closed branch—the one resulting from the decomposi-
tion of ‘B & ∼ B’. And if P is ‘A ∨ ∼ A’ and Q is ‘B ∨ ∼ B’, then the tree for
P ⊃ Q will have a closed branch, the one resulting from the occurrence of
‘∼ (A ∨ ∼ A)’ on line 2 of the tree for this sentence. 

i. The claim is false. Given that both P and Q are truth-functionally
false, P & Q and P ∨ Q will also be truth-functionally false, and hence will have
closed truth-trees. However, P ⊃ Q and P � Q will both be truth-functionally
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true. (The only way P ⊃ Q could fail to be truth-functionally true would be
there to be a truth-value assignment on which P is true and Q is false, but there
is no truth-value assignment on which P is true since P is truth-functionally
false. The only way P � Q could fail to be truth-functionally true would be for
there to be a truth-value assignment on which P and Q have different truth-
values. But then there would have to be an assignment on which one of P and
Q is true, but there can be no such assignment since both P and Q are truth-
functionally false.) And sentences that are truth-functionally true have com-
pleted truth-trees that are open, not closed.

k. The claim is false. If P is, as stated, truth-functionally true and Q is
truth-functionally false, then P & Q, P ⊃ Q, and P � Q will all be truth-
functionally false. P & Q so because there will be no truth-value assignment on
which P and Q are both true (because Q is truth-functionally false. Hence P & Q
will have a closed truth-tree (one on which every branch is closed). Similarly,
P ⊃ Q will be false on every truth-value assignment because P will be true and
Q false on every assignment. So the tree for P ⊃ Q will also be closed. P � Q
will be truth-functionally false because on every truth-value assignment P will be
true and Q false, so there will be no assignment on which P and Q have the
same truth-value, that is, no assignment on which P � Q is true. So the tree for
P � Q will be closed. However, P ∨ Q will be truth-functionally true, because P
is truth-functionally true. Line 2 of the tree will contain P on the left branch
and Q on the right. Because P is truth-functionally true, subsequent work on
the left branch will yield at least one (in fact at least two) completed open
branches (see answer to exercise h). The right branch, that which has Q at the
top, will become a closed branch because Q is truth-functionally false.

Section 4.6E

1.a. 1. ∼ [∼ (Z ∨ K) � (∼ Z & ∼ K)]� SM

2. ∼ (Z ∨ K)� ∼ ∼ (Z ∨ K)� 1 ∼ �D
3. ∼ (∼ Z & ∼ K)� ∼ Z & ∼ K � 1 ∼ �D
4. ∼ Z 2 ∼ ∨D
5. ∼ K 2 ∼ ∨D

6. ∼ ∼ Z� ∼ ∼ K � 3 ∼ &D
7. Z K 6 ∼ ∼ D

� �
8. Z ∨ K � 2 ∼ ∼ D
9. ∼ Z 3 &D

10. ∼ K 3 &D

11. Z K 8 ∨D
� �
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c. 1. ∼ [[(B & C) ⊃ R] � [(B ⊃ R) & (C ⊃ R)]]� SM

2. (B & C) ⊃ R � ∼ [B & C) ⊃ R]� 1 ∼ �D
3. ∼ [(B ⊃ R) & (C ⊃ R)] (B ⊃ R) & (C ⊃ R)� 1 ∼ �D

4. ∼ (B ⊃ R)� ∼ (C ⊃ R)� 3 ∼ &D
5. B C 4 ∼ ⊃D
6. ∼ R ∼ R 4 ∼ ⊃D

7. ∼ (B & C)� R ∼ (B & C)� R 2 ⊃D
� �

8. ∼ B ∼ C ∼ B ∼ C 7 ∼ &D
� �

9. B & C� 2 ∼ ⊃D
10. ∼ R 2 ∼ ⊃D
11. B 9 &D
12. C 9 &D
13. B ⊃ R� 3 &D
14. C ⊃ R 3 &D

15. ∼ B R 13 ⊃D
� �

Our truth-tree for the negation of the biconditional of the sentences we are
testing, ‘∼ (Z ∨ K)’ and ‘∼ Z & ∼ K’, is closed. Therefore that negation is truth-
functionally false, the biconditional it is a negation of is truth-functional true,
and the sentences we are testing are truth-functionally equivalent.

Since our truth-tree for the negation of the biconditional of the sentences we
are testing is open, those sentences are not truth-functionally equivalent. The
recoverable fragments are

B C R

T F F
F T F
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e. 1. ∼ ([A & (B ∨ C)] � [(A & B) ∨ (A & C)])� SM

2. A & (B ∨ C)� ∼ [A & (B ∨ C)]� 1 ∼ �D
3. ∼ [(A & B) ∨ (A & C)]� (A & B) ∨ (A & C)� 1 ∼ �D
4. A 2 &D
5. B ∨ C� 2 &D
6. ∼ (A & B)� 3 ∼ ∨D
7. ∼ (A & C)� 3 ∼ ∨D

8. ∼ A ∼ C 7 ∼ &D
�

9. ∼ A ∼ B 6 ∼ &D
�

10. B C 5 ∨D
� �

11. A & B� A & C 3 ∨D
12. A A 11 &D
13. B C 11 &D

14. ∼ A ∼ (B ∨ C)� ∼ A ∼ (B ∨ C)� 2 ∼ &D
� �

15. ∼ B ∼ B 14 ∼ ∨D
16. ∼ C ∼ C 14 ∼ ∨D

� �

Since our truth-tree for the negation of the biconditional of the sentences we
are testing is closed, those sentences are truth-functionally equivalent.
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g. 1. ∼ [(D ⊃ (L ⊃ M)) � ((D ⊃ L) ⊃ M)]� SM

2. D ⊃ (L ⊃ M)� ∼ [D ⊃ (L ⊃ M)]� 1 ∼ �D
3. ∼ [(D ⊃ L) ⊃ M]� (D ⊃ L) ⊃ M� 1 ∼ �D
4. D ⊃ L� 3 ∼ ⊃D
5. ∼ M 3 ∼ ⊃D

6. ∼ D L ⊃ M� 2 ⊃D

7. ∼ L M 6 ⊃D
�

8. ∼ D L ∼ D L 4 ⊃D
�

9. D 2 ∼ ⊃D
10. ∼ (L ⊃ M)� 2 ∼ ⊃D
11. L 10 ∼ ⊃D
12. ∼ M 10 ∼ ⊃D

13. ∼ (D ⊃ L)� M 3 ⊃D
�

14. D 13 ∼ ⊃D
15. ∼ L 13 ∼ ⊃D

�

Since our truth-tree for the negation of the biconditional of the sentences we
are testing is open, those sentences are not truth-functionally equivalent. The
recoverable fragments are

D L M

F T F
F F F
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i. 1. ∼ [(A ⊃ A) � (B ⊃ B)]� SM

2. A ⊃ A ∼ (A ⊃ A)� 1 ∼ �D
3. ∼ (B ⊃ B)� B ⊃ B 1 ∼ �D
4. B 3 ∼ ⊃D
5. ∼ B 3 ∼ ⊃D
6. � A 2 ∼ ⊃D
7. ∼ A 2 ∼ ⊃D

�

Since the truth-tree is closed, the sentences being tested are truth-functionally
equivalent. 

k. 1. ∼ [(A & ∼ B) � (∼ A ∨ B)]� SM

2. A & ∼ B� ∼ (A & ∼ B)� 1 ∼ �D
3. ∼ (∼ A ∨ B)� ∼ A ∨ B� 1 ∼ �D
4. A 2 &D
5. ∼ B 2 &D
6. ∼ ∼ A � 3 ∼ ∨D
7. ∼ B 3 ∼ ∨D
8. A 6 ∼ ∼ D
9. ∼ A ∼ ∼ B 2 ∼ &D

10. B 9 ∼ ∼ D

11. ∼ A B ∼ A B 3 ∨D

Since the truth-tree is not closed, the sentences being tested are not truth-
functionally equivalent. The recoverable fragments are

A B

T F
F F
F T
T T
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m. 1. ∼ [∼ (A � B) � (∼ A � ∼ B)]� SM

2. ∼ (A � B)� ∼ ∼ (A � B)� 1 ∼ �D
3. ∼ (∼ A � ∼ B)� ∼ A � ∼ B� 1 ∼ �D

4. A ∼ A 2 ∼ �D
5. ∼ B B 2 ∼ �D

6. ∼ A ∼ ∼ A ∼ A ∼ ∼ A 3 ∼ �D
7. ∼ ∼ B� ∼ B ∼ ∼ B ∼ B 3 ∼ �D
8. B B � 7 ∼ ∼ D
9. � A 6 ∼ ∼ D

10. A � B� 2 ∼ ∼ D

11. A ∼ A 10 ∼ �D
12. B ∼ B 10 ∼ �D

13. ∼ A ∼ ∼ A� ∼ A ∼ ∼ A� 3 �D
14. ∼ B ∼ ∼ B� ∼ B ∼ ∼ B 3 �D
15. � A A 13 ∼ ∼ D
16. B � 14 ∼ ∼ D

Since the truth-tree has at least one completed open branch, the sentences
being tested are not truth-functionally equivalent. The recoverable fragments
are

A B

T T
F F
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o. 1. ∼ [(A & (B ∨ C))] � ((A & B) ∨ (A & C)]� SM

2. A & (B ∨ C)� ∼ [A & (B ∨ C)]� 1 ∼ �D
3. ∼ [(A & B) ∨ (A & C)]� (A & B) ∨ (A & C)� 1 ∼ �D
4. A 2 &D
5. B ∨ C� 2 &D
6. ∼ (A & B)� 3 ∼ ∨D
7. ∼ (A & C)� 3 ∼ ∨D

8. ∼ A ∼ B 6 ∼ &D
�

9. B C 5 ∨D
�

10. ∼ A ∼ C 7 ∼ &D
11. � � ∼ A ∼ (B ∨ C)� 2 ∼ &D
12. ∼ B 11 ∼ ∨D
13. ∼ C 11 ∼ ∨D

14. A & B� A & C� A & B� A & C� 3 ∨D
15. A A A A 14 &D
16. B C B C 14 &D

� � � �

Since the truth-tree is closed, the sentences being tested are truth-functionally
equivalent. 

2.a. True. If P and Q are truth-functionally equivalent, their bicondi-
tional is truth-functionally true. And all truth-functionally true sentences have
completed open trees.

c. False. The tree for the set {P, Q} may close, for P and Q may both
be truth-functionally false. Remember that all truth-functionally false sentences
are truth-functionally equivalent and a set composed of one or more truth-
functionally false sentences has a closed tree.
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Section 4.7E

1.a. 1. A ⊃ (B & C)� SM
2. C � B SM
3. ∼ C SM
4. ∼ ∼ A� SM
5. A 4 ∼ ∼ D

6. ∼ A B & C� 1 ⊃D
7. � B 6 &D
8. C 6 &D

�

Our tree is closed, so the set {A ⊃ (B & C), C � B, ∼ C} does truth-functionally
entail ‘∼ A’.

c. 1. ∼ (A � B)� SM
2. ∼ A SM
3. ∼ B SM
4. ∼ (C & ∼ C) SM

5. A ∼ A 1 ∼ �D
6. ∼ B B 1 ∼ �D

� �

Our tree is closed, so the set {∼ (A � B), ∼ A, ∼ B} does truth-functionally
entail ‘C & ∼ C’.

e. 1. ∼ ∼ F ⊃ ∼ ∼ G� SM
2. ∼ G ⊃ ∼ F� SM
3. ∼ (G ⊃ F)� SM
4. G 3 ∼ ⊃D
5. ∼ F 3 ∼ ⊃D

6. ∼ ∼ ∼ F� ∼ ∼ G� 1 ⊃D
7. ∼ F G 6 ∼ ∼ D

8. ∼ ∼ G� ∼ F ∼ ∼ G� ∼ F 2 ⊃D
9. G G 8 ∼ ∼ D
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Our truth-tree is open, so the set {∼ ∼ F ⊃ ∼ ∼ G, ∼ G ⊃ ∼ F} does not truth-
functionally entail ‘G ⊃ F’. The relevant fragment of the recoverable truth-
value assignments is

F G

F T

g. 1. [(C ∨ D) & H] ⊃ A� SM
2. D SM
3. ∼ (H ⊃ A)� SM
4. H 3 ∼ ⊃D
5. ∼ A 3 ∼ ⊃D

6. ∼ [(C ∨ D) & H]� A 1 ⊃D
�

7. ∼ (C ∨ D)� ∼ H 6 ∼ &D
�

8. ∼ C 7 ∼ ∨D
9. ∼ D 7 ∼ ∨D

�

Our truth-tree is closed, so the given set does truth-functionally entail ‘H ⊃ A’.

i. 1. ( J ∨ M) ⊃ ∼ ( J & M)� SM
2. M � (M ⊃ J)� SM
3. ∼ (M ⊃ J)� SM
4. M 3 ∼ ⊃D
5. ∼ J 3 ∼ ⊃D

6. ∼ ( J ∨ M)� ∼ ( J & M)� 1 ⊃D
7. ∼ J 6 ∼ ∨D
8. ∼ M 6 ∼ ∨D
9. � M ∼ M 2 �D

10. M ⊃ J� ∼ (M ⊃ J) 2 �D
�

11. ∼ J ∼ M 6 ∼ &D
�

12. ∼ M J 10 ⊃D
� �

The tree is closed, so the set {( J ∨ M) ⊃ ∼ ( J & M), M � (M ⊃ J)} does truth-
functionally entail ‘M ⊃ J’.
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k. 1. ∼ (∼ (A � B) ⊃ (∼ A � ∼ B))� SM
2. ∼ (A � B)� 1 ∼ ⊃D
3. ∼ (∼ A � ∼ B)� 1 ∼ ⊃D

4. A ∼ A 2 ∼ �D
5. ∼ B B 2 ∼ �D

6. ∼ A ∼ ∼ A� ∼ A ∼ ∼ A� 3 ∼ �D
7. ∼ ∼ B ∼ B ∼ ∼ B� ∼ B 3 ∼ �D
8. � A A 6 ∼ ∼ D
9. B � 7 ∼ ∼ D

m. 1. ∼ (((A ⊃ B) ⊃ (C ⊃ D)) ⊃ (C ⊃ (B ⊃ D)))� SM
2. (A ⊃ B) ⊃ (C ⊃ D)� 1 ∼ ⊃D
3. ∼ (C ⊃ (B ⊃ D))� 1 ∼ ⊃D
4. C 3 ∼ ⊃D
5. ∼ (B ⊃ D)� 3 ∼ ⊃D
6. B 5 ∼ ⊃D
7. ∼ D 5 ∼ ⊃D

8. ∼ (A ⊃ B)� C ⊃ D� 2 ⊃D
9. A 8 ∼ ⊃D

10. ∼ B 8 ∼ ⊃D
11. � ∼ C D 8 ⊃D

� �

The tree is closed, so the empty set does truth-functionally entail ‘[(A ⊃ B) ⊃
(C ⊃ D)] ⊃ [C ⊃ (B ⊃ D)]’.

Our truth-tree is open, so the empty set does not truth-functionally entail
‘∼ (A � B) ⊃ (∼ A � ∼ B)’. The relevant fragments of the recoverable truth-
value assignments are

A B

T F
F T
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2.a. 1. M ⊃ (K ⊃ B)� SM
2. ∼ K ⊃ ∼ M� SM
3. L & M� SM
4. ∼ B SM
5. L 3 &D
6. M 3 &D

7. ∼ M K ⊃ B� 1 ⊃D
�

8. ∼ K B 7 ⊃D
�

9. ∼ ∼ K � ∼ M 2 ⊃D
�

10. K 9 ∼ ∼ D
�

Our truth-tree for the premises and the negation of the conclusion of the
argument we are testing is closed. Therefore there is no truth-value assignment
on which the premises and the negation of the conclusion are all true, hence
no assignment on which the premises are true and the conclusion false. So
the argument is truth-functionally valid.

c. 1. A & (B ∨ C)� SM
2. (∼ C ∨ H) & (H ⊃ ∼ H)� SM
3. ∼ (A & B)� SM
4. A 1 &D
5. B ∨ C� 1 &D
6. ∼ C ∨ H� 2 &D
7. H ⊃ ∼ H� 2 &D

8. ∼ A ∼ B 3 ∼ &D
�

9. B C 5 ∨D
�

10. ∼ C H 6 ∨D
�

11. ∼ H ∼ H 7 ⊃D
� �
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e. 1. (M � K) ∨ ∼ (K & D)� SM
2. ∼ M ⊃ ∼ K � SM
3. ∼ D ⊃ ∼ (K & D)� SM
4. ∼ M SM

5. M � K � ∼ (K & D)� 1 ∨D

6. M ∼ M 5 �D
7. K ∼ K 5 �D

�

8. ∼ ∼ M� ∼ K ∼ ∼ M� ∼ K 2 ⊃D
9. M M 8 ∼ ∼ D

� �

10. ∼ ∼ D� ∼ (K & D)� ∼ ∼ D� ∼ (K & D)� 3 ⊃D
11. D D 10 ∼ ∼ D

12. ∼ K ∼ D ∼ K ∼ D 10 ∼ &D

13. ∼ K ∼ D ∼ K ∼ D ∼ K ∼ D 5 ∼ &D
�

Our truth-tree for the premises and the negation of the conclusion of the argu-
ment we are testing is open. Therefore that argument is truth-functionally
invalid. The recoverable fragments are

D K M

T F F
F F F
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g. 1. B & (H ∨ Z)� SM
2. ∼ Z ⊃ K � SM
3. (B � Z) ⊃ ∼ Z� SM
4. ∼ K SM
5. ∼ (M & N) SM
6. B 1 &D
7. H ∨ Z 1 &D

8. ∼ ∼ Z� K 2 ⊃D
�

9. Z 8 ∼ ∼ D

10. ∼ (B � Z)� ∼ Z 3 ⊃D
�

11. B ∼ B 10 ∼ �D
12. ∼ Z Z 10 ∼ �D

� �

Our truth-tree for the premises and the negation of the conclusion of the argu-
ment we are testing is closed. Therefore that argument is truth-functionally
valid. Notice that our tree closed before we decomposed the negation of the
conclusion. Thus the premises of the argument form a truth-functionally
inconsistent set, and therefore those premises and any conclusion constitute a
truth-functionally valid argument, even where the conclusion has no atomic
components in common with the premises.

i. 1. A & (B ⊃ C)� SM
2. ∼ ((A & C) ∨ (A & ∼ B))� SM
3. A 1 &D
4. B ⊃ C� 1 &D
5. ∼ (A & C)� 2 ∼ ∨D
6. ∼ (A & ∼ B)� 2 ∼ ∨D

7. ∼ B C 4 ⊃D

8. ∼ A ∼ C ∼ A ∼ C 5 ∼ &D
� � �

9. ∼ A ∼ ∼ B� 6 ∼ &D
10. � B 9 ∼ ∼ D

�

Our truth-tree for the premise and the negation of the conclusion is closed.
Therefore the argument is truth-functionally valid.
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k. 1. A ⊃ ∼ A� SM
2. (B ⊃ A) ⊃ B� SM
3. ∼ (A � ∼ B)� SM

4. A ∼ A 3 ∼ �D
5. ∼ ∼ B� ∼ B 3 ∼ �D
6. B 5 ∼ ∼ D

7. ∼ (B ⊃ A)� B ∼ (B ⊃ A)� B 2 ⊃D
8. B B � 7 ∼ ⊃D
9. ∼ A ∼ A 7 ∼ ⊃D

10. � ∼ A ∼ A � 1 ⊃D
� �

Our truth-tree for the premise and the negation of the conclusion is closed.
Therefore the argument is truth-functionally valid.

3.a. In symbolizing the argument we use the following abbreviations:

C: Members of Congress claim to be sympathetic to senior citizens.

M: More money will be collected through social security taxes.

S: The social security system will succeed.

T: Many senior citizens will be in trouble.

Here is our tree for the premises and the negation of the conclusion:

1. S � M� SM
2. S ∨ T SM
3. C & ∼ M� SM
4. ∼ ∼ S� SM
5. S 4 ∼ ∼ D
6. C 3 &D
7. ∼ M 3 &D

8. S ∼ S 1 �D
9. M ∼ M 1 �D

� �

Since our truth-tree is closed, the argument is truth-functionally valid.
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c. In symbolizing the argument we use the following abbreviations:

A: The President acts quickly.

C: The President is pressured by senior citizens.

D: Senior citizens will be delighted.

H: The President is pressured by members of the House.

M: The President is pressured by members of the Senate.

S: The social security system will be saved.

Here is our tree for the premises and the negation of the conclusion.

1. (A ⊃ S) & (S ⊃ D)� SM
2. [(M ∨ H) ∨ C] ⊃ A� SM
3. ∼ (M ∨ H) & C � SM
4. ∼ D SM
5. ∼ (M ∨ H)� 3 &D
6. C 3 &D
7. ∼ M 5 ∼ ∨D
8. ∼ H 5 ∼ ∨D
9. A ⊃ S� 1 &D

10. S ⊃ D� 1 &D

11. ∼ [(M ∨ H) ∨ C]� A 2 ⊃D
12. ∼ (M ∨ H) 11 ∼ ∨D
13. ∼ C 11 ∼ ∨D

�

14. ∼ S D 10 ⊃D
�

15. ∼ A S 9 ⊃D
� �

Since our tree is closed, the argument is truth-functionally valid.
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e. In symbolizing the argument we use the following abbreviations:

H: The House of Representatives will pass the bill.

S: The Senate will pass the bill.

T: The President will be pleased.

V: The voters will be pleased.

W: All the members of the White House will be happy.

Here is our tree for the premises and the negation of the conclusion.

1. ∼ (S & H)� SM
2. [(H ∨ S) ⊃ V] & [(S & H) ⊃ ∼ T]� SM
3. ∼ T ⊃ ∼ W� SM
4. ∼ ∼ W� SM
5. W 4 ∼ ∼ D
6. (H ∨ S) ⊃ V� 2 &D
7. (S & H) ⊃ ∼ T� 2 &D

8. ∼ ∼ T� ∼ W 3 ⊃D
�

9. T 8 ∼ ∼ D

10. ∼ (S & H)� ∼ T 7 ⊃D
�

11. ∼ (H ∨ S)� V 6 ⊃D
12. ∼ H 11 ∼ ∨D
13. ∼ S 11 ∼ ∨D

14. ∼ S ∼ H ∼ S ∼ H 10 ∼ &D

15. ∼ S ∼ H ∼ S ∼ H ∼ S ∼ H ∼ S ∼ H 1 ∼ &D

Since our truth-tree is open, the argument is truth-functionally invalid. The
recoverable fragments are

H S T W V

T F T T T
F T T T T
F F T T T
F F T T F
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4.a. The first of the following arguments is truth-functionally invalid, the
second truth-functionally valid. In each case the tree for the premise and the
conclusion is open. This demonstrates that doing a tree for the premises of
an argument and the conclusion of the argument and finding that the tree
has a completed open branch establishes neither that the argument is truth-
functionally valid nor that it is truth-functionally invalid.

H ∨ G H & G

G G

1. H ∨ G� SM
2. G SM

3. H G 1 ∨D

1. H & G� SM
2. G SM
3. H 1 &D
4. G 1 &D

c. Since doing a tree for the premises of an argument and the con-
clusion, whether the tree be open (see answer to a above) or closed (see
answer to b above), establishes neither that the argument is truth-functionally
valid nor that it is truth-functionally invalid, there is clearly no useful infor-
mation to be gained by doing such a tree.

5. The needed rules are

PQ� D ∼ PQ� ∼D
P
Q

∼ P ∼ Q
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1. ∼ [(AB) � [(AA) ∨ (BB)]]� SM

2. AB� ∼ AB� 1 ∼ �D
3. ∼ [(AA) ∨ (BB)]� [(AA) ∨ (BB)]� 1 ∼ �D
4. ∼ AA� 3 ∼ ∨D
5. ∼ BB� 3 ∼ ∨D
6. A 4 ∼ D
7. A 4 ∼ D
8. B 5 ∼ D
9. B 5 ∼ D

10. ∼ A ∼ B 2 D
� �

11. A 2 ∼D
12. B 2 ∼D

13. AA� BB� 3 ∨D

14. ∼ A ∼ A ∼ B ∼ B 13 D
� � � �

The truth-tree is closed. Therefore the sentences we are testing are truth-
functionally equivalent.
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CHAPTER FIVE

Section 5.1.1E

a. Derive: Q & R

1 R & Q Assumption

2 Q 1 &E
3 R 1 &E
4 Q & R 2, 3 &I

e. Derive: [( J ⊃ T) & ∼ R] & (∼ U ∨ G)

1 N & ∼ R Assumption
2 K & ( J ⊃ T) Assumption
3 (∼ U ∨ G) & ∼ J Assumption

4 J ⊃ T 2 &E
5 ∼ R 1 &E
6 ∼ U ∨ G 3 &E
7 ( J ⊃ T) & ∼ R 4, 5 &I
8 [( J ⊃ T) & ∼ R] & (∼ U ∨ G) 6, 7 &I

Section 5.1.2E

a. Derive: U

1 H ⊃ U Assumption
2 S & H Assumption

3 H 2 &E
4 U 1, 3 ⊃E

c. Derive: J ⊃ T

1 J ⊃ (S & T) Assumption

2 J Assumption

3 S & T 1, 2 ⊃E
4 T 3 &E
5 J ⊃ T 2–4 ⊃I

c. Derive: K

1 S & [∼ T & (K & ∼ F)] Assumption

2 ∼ T & (K & ∼ F) 1 &E
3 K & ∼ F 2 &E
4 K 3 &E
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e. Derive: (S & B) ⊃ ∼ N

1 S ⊃ (L & ∼ N) Assumption

2 S & B Assumption

3 S 2 &E
4 L & ∼ N 1, 3 ⊃E
5 ∼ N 4 &E
6 (S & B) ⊃ ∼ N 2–5 ⊃I

Section 5.1.3E

a. Derive: ∼ G

1 (G ⊃ I) & ∼ I Assumption

2 G Assumption

3 G ⊃ I 1 &E
4 I 2, 3 ⊃E
5 ∼ I 1 &E
6 ∼ G 2–5 ∼ I

c. Derive: ∼ ∼ R

1 ∼ R ⊃ A Assumption
2 ∼ R ⊃ ∼ A Assumption

3 ∼ R Assumption

4 A 1, 3 ⊃E
5 ∼ A 2, 3 ⊃E
6 ∼ ∼ R 3–5 ∼ I

e. Derive: P

1 (∼ P ⊃ ∼ L) & (∼ L ⊃ L) Assumption

2 ∼ P Assumption

3 ∼ P ⊃ ∼ L 1 &E
4 ∼ L 2, 3 ⊃E
5 ∼ L ⊃ L 1 &E
6 L 4, 5 ⊃E
7 P 2–6 ∼ E

Section 5.1.4E

a. Derive: B ∨ (K ∨ G)

1 K Assumption

2 K ∨ G 1 ∨I
3 B ∨ (K ∨ G) 2 ∨I



90 SOLUTIONS TO SELECTED EXERCISES ON PP. 173 AND 175

e. Derive: X

1 ∼ E ∨ X Assumption
2 ∼ E ⊃ X Assumption

3 ∼ E Assumption

4 X 2, 3 ⊃E

5 X Assumption

6 X 5 R
7 X 1, 3–4, 5–6 ∨E

Section 5.1.5E

a. Derive: Q

1 K � (∼ E & Q) Assumption
2 K Assumption

3 ∼ E & Q 1, 2 �E
4 Q 3 &E

c. Derive: S & ∼ A

1 (S � ∼ I) & N Assumption
2 (N � ∼ I) & ∼ A Assumption

3 ∼ A 2 &E
4 N � ∼ I 2 &E
5 N 1 &E
6 ∼ I 4, 5 �E
7 S � ∼ I 1 &E
8 S 6, 7 �E
9 S & ∼ A 3, 8 &I

c. Derive: D

1 D ∨ D Assumption

2 D Assumption

3 D 2 R
4 D 1, 2–3, 2–3 ∨E
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e. Derive: (E � O) & (O � E)

1 (E ⊃ T) & (T ⊃ O) Assumption
2 O ⊃ E Assumption

3 E Assumption

4 E ⊃ T 1 &E
5 T 3, 4 ⊃E
6 T ⊃ O 1 &E
7 O 5, 6 ⊃E

8 O Assumption

9 E 2, 8 ⊃E
10 E � O 3–7, 8–9 �I
11 O � E 3–7, 8–9 �I
12 (E � O) & (O � E) 10, 11 &I

c. Derive: ∼ B

1 B ⊃ (A & ∼ B) Assumption

2 B Assumption

3 A & ∼ B 1, 2 ⊃E
4 ∼ B 3 &E
5 B 2 R
6 ∼ B 2–5 ∼ I

Section 5.2E

1.a. Derive: (A & C) ∨ (B & C)

1 (A ∨ B) & C Assumption

2 A ∨ B 1 &E
3 C 1 &E
4 A Assumption

5 A & C 3, 4 &I
6 (A & C) ∨ (B & C) 5 ∨I

7 B Assumption

8 B & C 3, 7 &I
9 (A & C) ∨ (B & C) 8 ∨I

10 (A & C) ∨ (B & C) 2, 4–6, 7–9 ∨E
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e. Derive: C ⊃ (∼ A & B)

1 ∼ D Assumption
2 C ⊃ (A � B) Assumption
3 (D ∨ B) ⊃ ∼ A Assumption
4 (A � B) ⊃ (D & E) Assumption
5 ∼ B ⊃ D Assumption

6 C Assumption

7 A � B 2, 6 ⊃E
8 D & E 7, 4 ⊃E
9 D 8 &E

10 D ∨ B 9 ∨I
11 ∼ A 3, 10 ⊃E
12 ∼ B Assumption

13 D 5, 12 ⊃E
14 ∼ D 1 R
15 B 12–14 ∼ E
16 ∼ A & B 11, 15 &I
17 C ⊃ (∼ A & B) 6–16 ⊃I

2.a. Derive: ∼ D

1 ∼ ∼ P ⊃ (W & ∼ D) Assumption
2 ∼ P Assumption

3 W & ∼ D 1, 2 ⊃E ← ERROR!
4 ∼ D 3 &E

g. Derive: A � B

1 ∼ A & ∼ B Assumption

2 A Assumption

3 ∼ B Assumption

4 ∼ A 1 &E
5 A 2 R
6 B 3–5 ∼ E

7 B Assumption

8 ∼ A Assumption

9 B 7 R
10 ∼ B 1 &E
11 A 8–10 ∼ E
12 A � B 2–6, 7–11 �I

This is not an application of the rule Conditional Elimination because the
antecedent of the conditional is ‘∼ ∼ P’ and the sentence on line 2 is ‘∼ P’.
They are not the same sentence.
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c. Derive: H & A

1 B ⊃ A Assumption
2 H Assumption

3 B Assumption

4 A 1, 3 ⊃E
5 A & A 4, 4 &I
6 B ⊃ (A & A) 3–5 ⊃I
7 H & A 2, 4 &I ← ERROR!

Line 4 is not accessible at line 7. The subderivation ends at line 5. Note that
line 5, which cites line 4 twice, is acceptable.

e. Derive: X

1 (K & H) ⊃ L Assumption
2 X � L Assumption

3 K & H Assumption

4 L 1, 3 ⊃E
5 L 4 R ← ERROR!
6 X 2, 5 �E

‘L’ on line 4 is not accessible at line 5. ‘(K & H) ⊃ L’ is derivable on line 5
by Conditional Introduction, but that would not help complete the derivation.
In fact, ‘X’ is not derivable from the set of primary assumptions.

Section 5.4E

1. Goal analysis
First Part: Indicating goals and subgoals

a. Derive: L & ∼ G

1 (L & T) & (∼ G & S) Assumption

Subgoal → L
Subgoal → ∼ G

Goal → L & ∼ G —, — &I

c. Derive: S ⊃ ∼ B

1 ∼ B � S Assumption

S Assumption

Subgoal → ∼ B
Goal → S ⊃ ∼ B —–— ⊃I
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e. Derive: ∼ M

1 M � P Assumption
2 ∼ P Assumption

M Assumption

Subgoal → P
Subgoal → ∼ P

Goal → ∼ M —–— ∼ I

g. Derive S & I

1 ∼ G & ∼ H Assumption
2 G Assumption

∼ (S & I) Assumption

Subgoal → G
Subgoal → ∼ G

Goal → S & I —, — ∼ E

k. Derive: N ⊃ (C ⊃ ∼ D)

1 ∼ D & (N ∨ H) Assumption

2 N Assumption

3 C Assumption

Subgoal → ∼ D
Goal → C ⊃ ∼ D 3–— ⊃I

N ⊃ (C ⊃ ∼ D) 2–— ⊃I

i. Derive B

1 ∼ Q ⊃ (K � (J & B)) Assumption
2 ∼ Q & K Assumption

Subgoal → K � ( J & B)
Goal → J & B —, — �E

B — &E

Second Part: Completing the derivations

a. Derive: L & ∼ G

1 (L & T) & (∼ G & S) Assumption

2 L & T 1 &E
3 ∼ G & S 1 &E
4 L 2 &E
5 ∼ G 3 &E
6 L & ∼ G 4, 5 &I
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c. Derive: S ⊃ ∼ B

1 ∼ B � S Assumption

2 S Assumption

3 ∼ B 1, 2 �E
4 S ⊃ ∼ B 2–3 ⊃I

e. Derive: ∼ M

1 M � P Assumption
2 ∼ P Assumption

3 M Assumption

4 P 1, 3 �E
5 ∼ P 2 R
6 ∼ M 3–5 ∼ I

g. Derive S & I

1 ∼ G & ∼ H Assumption
2 G Assumption

3 ∼ (S & I) Assumption

4 G 2 R
5 ∼ G 1 &E
6 S & I 3–5 ∼ E

i. Derive B

1 ∼ Q ⊃ (K � (J & B)) Assumption
2 ∼ Q & K Assumption

3 ∼ Q 2 &E
4 K 2 &E
5 K � (J & B) 1, 3 ⊃E
6 J & B 4, 5 �E
7 B 6 &E

k. Derive: N ⊃ (C ⊃ ∼ D)

1 ∼ D & (N ∨ H) Assumption

2 N Assumption

3 C Assumption

4 ∼ D 1 &E
5 C ⊃ ∼ D 3–4 ⊃I
6 N ⊃ (C ⊃ ∼ D) 2–5 ⊃I
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2. Derivability

a. Derive: H & (K ⊃ J)

1 (Z � R) & H Assumption
2 (K ⊃ J) & ∼ ∼ Y Assumption
3 D ∨ B Assumption

4 H 1 &E
5 K ⊃ J 2 &E
6 H & (K ⊃ J) 4, 5 &I

c. Derive: A ⊃ B

1 A � (A ⊃ B) Assumption

2 A Assumption

3 A ⊃ B 1, 2 �E
4 B 2, 3 ⊃E
5 A ⊃ B 2–4 ⊃I

e. Derive: ∼ G

1 B & F Assumption
2 ∼ (B & G) Assumption

3 G Assumption

4 B 1 &E
5 B & G 4, 3 &I
6 ∼ (B & G) 2 R
7 ∼ G 3–6 ∼ I

3. Validity

a. Derive: L ∨ P

1 ∼ (L & E) Assumption
2 ∼ (L & E) � P Assumption

3 P 1, 2 �E
4 L ∨ P 3 ∨I

c. Derive: R ⊃ T

1 R ⊃ S Assumption
2 S ⊃ T Assumption

3 R Assumption

4 S 1, 3 ⊃E
5 T 2, 4 ⊃E
6 R ⊃ T 3–5 ⊃I
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e. Derive: ∼ (A & D)

1 A ⊃ (B & C) Assumption
2 ∼ C Assumption

3 A & D Assumption

4 A 3 &E
5 B & C 1, 4 ⊃E
6 C 5 &E
7 ∼ C 2 R
8 ∼ (A & D) 3–7 ∼ I

g. Derive: A � C

1 A � B Assumption
2 B � C Assumption

3 A Assumption

4 B 1, 3 �E
5 C 4, 2 �E

6 C Assumption

7 B 6, 2 �E
8 A 7, 1 �E
9 A � C 3–5, 6–8 �I

i. Derive: F & G

1 F � G Assumption
2 F ∨ G Assumption

3 F Assumption

4 F 3 R

5 G Assumption

6 F 5, 1 �E
7 F 2, 3–4, 5–6 ∨E
8 G 1, 7 �E
9 F & G 7, 8 &I

4. Theorems

a. Derive: A ⊃ (A ∨ B)

1 A Assumption

2 A ∨ B 1 ∨I
3 A ⊃ (A ∨ B) 1–2 ⊃I
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e. Derive: (A ⊃ B) ⊃ [(C ⊃ A) ⊃ (C ⊃ B)]

1 A ⊃ B Assumption

2 C ⊃ A Assumption

3 C Assumption

4 A 2, 3 ⊃E
5 B 1, 4 ⊃E
6 C ⊃ B 3–5 ⊃I
7 (C ⊃ A) ⊃ (C ⊃ B) 2–6 ⊃I
8 (A ⊃ B) ⊃ [(C ⊃ A) ⊃ (C ⊃ B)] 1–7 ⊃I

g. Derive: [(A ⊃ B) & ∼ B] ⊃ ∼ A

1 (A ⊃ B) & ∼ B Assumption

2 A ⊃ B 1 &E
3 A Assumption

4 B 2, 3 ⊃E
5 ∼ B 1 &E
6 ∼ A 3–5 ∼ I
7 [(A ⊃ B) & ∼ B] ⊃ ∼ A 1–6 ⊃I

i. Derive: A ⊃ [B ⊃ (A ⊃ B)]

1 A Assumption

2 B Assumption

3 A Assumption

4 B 2 R
5 A ⊃ B 3–4 ⊃I
6 B ⊃ (A ⊃ B) 2–5 ⊃I
7 A ⊃ [B ⊃ (A ⊃ B)] 1–6 ⊃I

c. Derive: (A � B) ⊃ (A ⊃ B)

1 A � B Assumption

2 A Assumption

3 B 1, 2 �E
4 A ⊃ B 2–3 ⊃I
5 (A � B) ⊃ (A ⊃ B) 1–4 ⊃I
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k. Derive: (A ⊃ B) ⊃ [∼ B ⊃ ∼ (A & D)]

1 A ⊃ B Assumption

2 ∼ B Assumption

3 A & D Assumption

4 A 3 &E
5 B 1, 4 ⊃E
6 ∼ B 2 R
7 ∼ (A & D) 3–6 ∼ I
8 ∼ B ⊃ ∼ (A & D) 2–7 ⊃I
9 (A ⊃ B) ⊃ [∼ B ⊃ ∼ (A & D)] 1–8 ⊃I

5. Equivalence

a. Derive: (A ∨ ∼ ∼ B) & C

1 (A ∨ ∼ ∼ B) & C Assumption

2 (A ∨ ∼ ∼ B) & C 1 R

Derive: (A ∨ ∼ ∼ B) & C

1 (A ∨ ∼ ∼ B) & C Assumption

2 (A ∨ ∼ ∼ B) & C 1 R

c. Derive: ∼ ∼ A

1 A Assumption

2 ∼ A Assumption

3 A 1 R
4 ∼ A 2 R
5 ∼ ∼ A 2–4 ∼ I

Derive: A

1 ∼ ∼ A Assumption

2 ∼ A Assumption

3 ∼ ∼ A 1 R
4 ∼ A 2 R
5 A 2–4 ∼ E
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Derive: A ⊃ B

1 ∼ B ⊃ ∼ A Assumption

2 A Assumption

3 ∼ B Assumption

4 ∼ A 1, 3 ⊃E
5 A 2 R
6 B 3–5 ∼ E
7 A ⊃ B 2–6 ⊃I

c. 1 M ⊃ (K ⊃ B) Assumption
2 ∼ K ⊃ ∼ M Assumption
3 (L & M) & ∼ B Assumption

4 L & M 3 &E
5 M 4 &E
6 K ⊃ B 5, 1 ⊃E
7 ∼ K Assumption

8 ∼ M 7, 2 ⊃E
9 M 4 &E

10 K 7–9 ∼ E
11 B 6, 10 ⊃E
12 ∼ B 3 &E

6. Inconsistency

a. 1 A � ∼ (A � A) Assumption
2 A Assumption

3 ∼ (A � A) 1, 2 �E
4 A Assumption

5 A 4 R
6 A � A 4–5, 4–5 �I

e. Derive: ∼ B ⊃ ∼ A

1 A ⊃ B Assumption

2 ∼ B Assumption

3 A Assumption

4 B 1, 3 ⊃E
5 ∼ B 2 R
6 ∼ A 3–5 ∼ I
7 ∼ B ⊃ ∼ A 2–6 ⊃I
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e. 1 ∼ (Y � A) Assumption
2 ∼ Y Assumption
3 ∼ A Assumption

4 ∼ Y Assumption

5 ∼ A Assumption

6 ∼ Y 2 R
7 Y 4 R
8 A 5–7 ∼ E

9 A Assumption

10 ∼ Y Assumption

11 A 9 R
12 ∼ A 3 R
13 Y 10–12 ∼ E
14 Y � A 4–8, 9–13 �I
15 ∼ (Y � A) 1 R

g. 1 (∼ C ⊃ ∼ D) & (C ⊃ D) Assumption
2 D ⊃ ∼ C Assumption
3 ∼ (B & ∼ D) Assumption
4 B � (∼ C ∨ D) Assumption

5 D Assumption

6 ∼ C 2, 5 ⊃E
7 ∼ C ⊃ ∼ D 1 &E
8 ∼ D 6, 7 ⊃E
9 D 5 R

10 ∼ D 5–9 ∼ I
11 ∼ D Assumption

12 C ⊃ D 1 &E
13 C Assumption

14 D 12, 13 ⊃E
15 ∼ D 11 R
16 ∼ C 13–15 ∼ I
17 ∼ C ∨ D 16 ∨I
18 B 4, 17 �E
19 B & ∼ D 18, 11 &I
20 ∼ (B & ∼ D) 3 R
21 D 11–20 ∼ E
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7. Derivability

a. Derive: F & Z

1 F ⊃ A Assumption
2 (A & B) � Z Assumption
3 B & F Assumption

4 F 3 &E
5 A 1, 3 ⊃E
6 B 3 &E
7 A & B 5, 6 &I
8 Z 2, 7 �E
9 F & Z 4, 8 &I

c. Derive: ∼ C

1 C � A Assumption
2 A ⊃ G Assumption
3 ∼ (G ∨ U) Assumption

4 C Assumption

5 A 4, 5 �E
6 G 2, 5 ⊃E
7 G ∨ U 6 ∨I
8 ∼ (G ∨ U) 3 R
9 ∼ C 4–8 ∼ I

e. Derive: ∼ S

1 B ∨ ∼ Z Assumption
2 ∼ Z ⊃ D Assumption
3 B � D Assumption
4 D � ∼ S Assumption

5 B Assumption

6 D 3, 5 �E
7 ∼ Z Assumption

8 D 2, 7 ⊃E
9 D 1, 5–6, 7–8 ∨E

10 ∼ S 4, 9 �E
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8. Validity

a. Derive: (K & G) & (G & K)

1 E ⊃ K Assumption
2 A � G Assumption
3 A & E Assumption

4 A 3 &E
5 G 2, 4 �E
6 E 3 &E
7 K 1, 6 ⊃E
8 K & G 5, 7 &E
9 G & K 5, 7 &E

10 (K & G) & (G & K) 8, 9 &I

c. Derive: Y

1 C ∨ ∼ D Assumption
2 C ⊃ Y Assumption
3 D Assumption

4 C Assumption

5 Y 2, 4 ⊃E
6 ∼ D Assumption

7 ∼ Y Assumption

8 D 3 R
9 ∼ D 6 R

10 Y 7–9 ∼ E
11 Y 1, 4–5, 6–10 ∨E

e. Derive: ∼ P ⊃ ∼ K

1 K ⊃ [K ⊃ (K ⊃ P)] Assumption

2 ∼ P Assumption

3 K Assumption

4 K ⊃ (K ⊃ P) 1, 3 ⊃E
5 K ⊃ P 3, 4 ⊃E
6 P 3, 5 ⊃E
7 ∼ P 2 R
8 ∼ K 3–7 ∼ I
9 ∼ P ⊃ ∼ K 2–8 ⊃I
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9. Theorems

a. Derive: (A & ∼ A) ⊃ ∼ B

1 A & ∼ A Assumption

2 B Assumption

3 A 1 &E
4 ∼ A 1 &E
5 ∼ B 2–4 ∼ I
6 (A & ∼ A) ⊃ ∼ B 1–5 ⊃I

c. Derive: A ⊃ [B ⊃ (A & B)]

1 A Assumption

2 B Assumption

3 A & B 1, 2 &I
4 B ⊃ (A & B) 2–3 ⊃I
5 A ⊃ [B ⊃ (A & B)] 1–4 ⊃I

e. Derive: A ⊃ [A ∨ (B & C)]

1 A Assumption

2 A ∨ (B & C) 1 ∨I
3 A ⊃ [A ∨ (B & C)] 1–2 ⊃I

10. Equivalence

a. Derive: (A ∨ A) ∨ A

1 A Assumption

2 A ∨ A 1 ∨I
3 (A ∨ A) ∨ A 2 ∨I

Derive: A

1 (A ∨ A) ∨ A Assumption

2 A ∨ A Assumption

3 A Assumption

4 A 3 R
5 A 2, 3–4, 3–4, ∨E
6 A Assumption

7 A 6 R
8 A 1, 2–5, 6–7 ∨E
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c. Derive: B ⊃ A

1 (A ∨ B) ⊃ A Assumption

2 B Assumption

3 A ∨ B 2 ∨I
4 A 3, 1 ⊃I
5 B ⊃ A 2–4 ⊃I

Derive: (A ∨ B) ⊃ A

1 B ⊃ A Assumption

2 (A ∨ B) Assumption

3 A Assumption

4 A 3 R
5 B Assumption

6 A 5, 1 ⊃E
7 A 2, 3–4, 5–6 ∨E
8 (A ∨ B) ⊃ A 2–7 ⊃I

11. Inconsistency

a. {A ⊃ (B & ∼ B), A}

1 A ⊃ (B & ∼ B) Assumption
2 A Assumption

3 B & ∼ B 2, 1 ⊃E
4 B 3 &E
5 ∼ B 3 &E

c. {Z � W, Z, W ⊃ ∼ Z}

1 Z � W Assumption
2 Z Assumption
3 W ⊃ ∼ Z Assumption

4 W 2, 1 �E
5 ∼ Z 4, 3 ⊃E
6 Z 2 R
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e. {∼ ∼ ∼ D ⊃ D, ∼ D}

1 ∼ ∼ ∼ D ⊃ D Assumption
2 ∼ D Assumption

3 ∼ ∼ D Assumption

4 ∼ ∼ D 3 R
5 ∼ D 2 R
6 ∼ ∼ ∼ D 3–5 ∼ I
7 D 6, 1 ⊃E
8 ∼ D 2 R

12. Derivability

a. Derive: ∼ Q ⊃ ∼ P

1 P ⊃ Q Assumption

2 ∼ Q Assumption

3 P Assumption

4 Q 1, 3 ⊃E
5 ∼ Q 2 R
6 ∼ P 3–5 ∼ I
7 ∼ Q ⊃ ∼ P 2–6 ⊃I

c. Derive: H � M

1 H ⊃ M Assumption
2 ∼ H ⊃ ∼ M Assumption

3 H Assumption

4 M 1, 3 ⊃E

5 M Assumption

6 ∼ H Assumption

7 ∼ M 2, 6 ⊃E
8 M 5 R
9 H 6–8 ∼ E

10 H � M 3–4, 5–9 �I
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e. Derive: ∼ I

1 ∼ (F ⊃ G) Assumption
2 ∼ (G ⊃ H) Assumption

3 I Assumption

4 ∼ (G ⊃ H) 2 R
5 G Assumption

6 ∼ H Assumption

7 ∼ (F ⊃ G) 1 R
8 F Assumption

9 G 5 R
10 F ⊃ G 8–9 ⊃I
11 H 6–10 ∼ E
12 G ⊃ H 5–11 ⊃I
13 ∼ I 3–12 ∼ I

g. Derive: C

1 L � ∼ (Z � ∼ C) Assumption
2 ∼ (L ∨ Z) Assumption

3 ∼ C Assumption

4 Z � ∼ C Assumption

5 Z 3, 4 �E
6 L ∨ Z 5 ∨I
7 ∼ (L ∨ Z) 2 R
8 ∼ (Z � ∼ C) 4–7 ∼ I
9 L 1, 8 �E

10 L ∨ Z 9 ∨I
11 ∼ (L ∨ Z) 2 R
12 C 3–11 ∼ E

i. Derive: K

1 ∼ (Y ⊃ X) Assumption
2 ∼ (X ⊃ H) Assumption

3 ∼ K Assumption

4 ∼ (X ⊃ H) 2 R
5 X Assumption

6 ∼ H Assumption

7 ∼ (Y ⊃ X) 1 R
8 Y Assumption

9 X 5 R
10 Y ⊃ X 8–9 ⊃I
11 H 6–10 ∼ E
12 X ⊃ H 5–11 ⊃I
13 K 3–12 ∼ E
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k. Derive: ( J ⊃ (E & ∼ F)) ⊃ Z

1 (L ⊃ X) ∨ B Assumption
2 (∼ (L ⊃ X) & ∼ B) � ( J ⊃ (E & ∼ F)) Assumption

3 J ⊃ (E & ∼ F) Assumption

4 ∼ Z Assumption

5 ∼ (L ⊃ X) & ∼ B 2, 3 �E
6 ∼ (L ⊃ X) 5 &E
7 (L ⊃ X) Assumption

8 (L ⊃ X) 7 R
9 B Assumption

10 ∼ (L ⊃ X) Assumption

11 B 9 R
12 ∼ B 5 &E
13 L ⊃ X 10–12 ∼ E
14 L ⊃ X 1, 7–8, 9–13 ∨E
15 Z 4–14 ∼ E
16 ( J ⊃ (E & ∼ F)) ⊃ Z 3–15 ⊃I

m. Derive: (R � P) � (R � Q)

1 P � Q Assumption

2 R � P Assumption

3 R Assumption

4 P 2, 3 �E
5 Q 1, 4 �E
6 Q Assumption

7 P 1, 6 �E
8 R 2, 7 �E
9 R � Q 3–5, 6–8 �I

10 R � Q Assumption

11 R Assumption

12 Q 10, 11 �E
13 P 1, 12 �E
14 P Assumption

15 Q 1, 14 �E
16 R 10, 15 �E
17 R � P 11–13, 14–16 �I
18 (R � P) � (R � Q) 2–9, 10–17 �I
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o. Derive: (A ∨ B) ⊃ ∼ C

1 A ⊃ (Q & B) Assumption
2 (∼ Q � B) & (C ⊃ A) Assumption

3 A ∨ B Assumption

4 A Assumption

5 C Assumption

6 Q & B 1, 4 ⊃E
7 B 6 &E
8 ∼ Q � B 2 &E
9 Q 6 &E

10 ∼ Q 7, 8 �E
11 ∼ C 5–10 ∼ I
12 B Assumption

13 C Assumption

14 C ⊃ A 2 &E
15 A 13, 14 ⊃E
16 Q & B 1, 15 ⊃E
17 ∼ Q � B 2 &E
18 Q 16 &E
19 ∼ Q 12, 17 �E
20 ∼ C 13–19 ∼ I
21 ∼ C 3, 4–11, 12–20 ∨E
22 (A ∨ B) ⊃ ∼ C 3–21 ⊃I

13. Validity

a. Derive: H

1 (H & I) ∨ (H & S) Assumption

2 H & I Assumption

3 H 2 &E

4 H & S Assumption

5 H 4 &E
6 H 1, 2–3, 4–5 ∨E
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c. Derive: J � ∼ C

1 B � ∼ B Assumption

2 ∼ ( J � ∼ C) Assumption

3 B Assumption

4 ∼ B 1, 3 �E
5 B 3 R
6 ∼ B 3–5 ∼ I
7 B 1, 6 �E
8 J � ∼ C 2–7 ∼ E

e. Derive: B

1 M ⊃ I Assumption
2 ∼ I & L Assumption
3 M ∨ B Assumption

4 M Assumption

5 ∼ B Assumption

6 I 1, 4 ⊃E
7 ∼ I 2 &E
8 B 5–7 ∼ E
9 B Assumption

10 B 9 R
11 B 3, 4–8, 9–10 ∨E

g. Derive: ∼ D

1 M ⊃ A Assumption
2 (M � (A & M)) ⊃ (C & ∼ (A & D)) Assumption
3 ∼ (A & D) � (C & ∼ D) Assumption

4 M Assumption

5 A 1, 4 ⊃E
6 A & M 4, 5 &I
7 A & M Assumption

8 M 7 &E
9 M � (A & M) 4–6, 7–8 �I

10 C & ∼ (A & D) 2, 9 ⊃E
11 ∼ (A & D) 10 &E
12 C & ∼ D 3, 11 �E
13 ∼ D 12 &E
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i. Derive ∼ S � ∼ N

1 ( J & Y) ⊃ ∼ A Assumption
2 S ⊃ (A & ∼ A) Assumption
3 N ⊃ (A & ( J & Y)) Assumption

4 ∼ S Assumption

5 N Assumption

6 A & ( J & Y) 3, 5 ⊃E
7 J & Y 6 &E
8 A 6 &E
9 ∼ A 1, 7 ⊃E

10 ∼ N 5–9 ∼ I
11 ∼ N Assumption

12 S Assumption

13 A & ∼ A 2, 12 ⊃E
14 A 13 &E
15 ∼ A 13 &E
16 ∼ S 12–15 ∼ I
17 ∼ S � ∼ N 4–10, 11–16 �I

k. Derive: (H & I) ⊃ J

1 (∼ H ∨ J) ∨ K Assumption
2 K ⊃ ∼ I Assumption

3 H & I Assumption

4 ∼ H ∨ J Assumption

5 ∼ H Assumption

6 ∼ J Assumption

7 H 3 &E
8 ∼ H 5 R
9 J 6–8 ∼ E

10 J Assumption

11 J 10 R
12 J 4, 5–9, 10–11 ∨E
13 K Assumption

14 ∼ J Assumption

15 I 3 &E
16 ∼ I 2, 13 ⊃E
17 J 14–16 ∼ E
18 J 1, 4–12, 13–17 ∨E
19 (H & I) ⊃ J 3–18 ⊃I
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m. Derive: F

1 F ∨ H Assumption
2 ∼ H � (L ∨ G) Assumption
3 (G & B) ∨ [G & (K ⊃ G)] Assumption

4 G & B Assumption

5 G 4 &E

6 G & (K ⊃ G) Assumption

7 G 6 &E
8 G 3, 4–5, 6–7 ∨E
9 L ∨ G 8 ∨I

10 ∼ H 2, 9 �E
11 F Assumption

12 F 11 R

13 H Assumption

14 ∼ F Assumption

15 H 13 R
16 ∼ H 10 R
17 F 14–16 ∼ E
18 F 1, 11–12, 13–17 ∨E
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o. Derive: E ∨ F

1 (A ∨ B) & ∼ C Assumption
2 ∼ C ⊃ (D & ∼ A) Assumption
3 B ⊃ (A ∨ E) Assumption

4 ∼ C 1 &E
5 D & ∼ A 2, 4 ⊃E
6 A ∨ B 1 &E
7 A Assumption

8 ∼ B Assumption

9 A 7 R
10 ∼ A 5 &E
11 B 8–10 ∼ E

12 B Assumption

13 B 12 R
14 B 6, 7–11, 12–13 ∨E
15 A ∨ E 3, 14 ⊃E
16 A Assumption

17 ∼ E Assumption

18 A 16 R
19 ∼ A 5 &E
20 E 17–19 ∼ E

21 E Assumption

22 E 21 R
23 E 15, 16–20, 21–22 ∨E
24 E ∨ F 23 ∨I

14. Theorems

a. Derive: ∼ [(A & B) & ∼ (A & B)]

1 (A & B) & ∼ (A & B) Assumption

2 A & B 1 &E
3 ∼ (A & B) 1 &E
4 ∼ [(A & B) & ∼ (A & B)] 1–3 ∼ I
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c. Derive: (A � ∼ A) ⊃ ∼ (A � ∼ A)

1 A � ∼ A Assumption

2 A Assumption

3 ∼ A 1, 2 �E
4 A 2 R
5 ∼ A 2–4 ∼ I
6 ∼ A Assumption

7 A 1, 6 �E
8 ∼ A 6 R
9 A 6–8 ∼ E

10 ∼ (A � ∼ A) 1–9 ∼ I
11 A � ∼ A Assumption

12 ∼ (A � ∼ A) 10 R
13 (A � ∼ A) ⊃ ∼ (A � ∼ A) 11–12 ⊃I

e. Derive: (A ⊃ B) ∨ (B ⊃ A)

1 ∼ [(A ⊃ B) ∨ (B ⊃ A)] Assumption

2 A Assumption

3 ∼ B Assumption

4 B Assumption

5 A 2 R
6 B ⊃ A 4–5 ⊃I
7 (A ⊃ B) ∨ (B ⊃ A) 6 ∨I
8 ∼ [(A ⊃ B) ∨ (B ⊃ A)] 1 R
9 B 3–8 ∼ E

10 A ⊃ B 2–9 ⊃I
11 (A ⊃ B) ∨ (B ⊃ A) 10 ∨I
12 ∼ [(A ⊃ B) ∨ (B ⊃ A)] 1 R
13 (A ⊃ B) ∨ (B ⊃ A) 1–12 ∼ E
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g. Derive: [A ⊃ (B ⊃ C)] � [(A ⊃ B) ⊃ (A ⊃ C)]

1 A ⊃ (B ⊃ C) Assumption

2 A ⊃ B Assumption

3 A Assumption

4 B 2, 3 ⊃E
5 B ⊃ C 1, 3 ⊃E
6 C 4, 5 ⊃E
7 A ⊃ C 3–6 ⊃I
8 (A ⊃ B) ⊃ (A ⊃ C) 2–7 ⊃I

9 (A ⊃ B) ⊃ (A ⊃ C) Assumption

10 A Assumption

11 B Assumption

12 A Assumption

13 B 11 R
14 A ⊃ B 12–13 ⊃I
15 A ⊃ C 9, 14 ⊃E
16 C 10, 15 ⊃E
17 B ⊃ C 11–16 ⊃I
18 A ⊃ (B ⊃ C) 10–17 ⊃I
19 [A ⊃ (B ⊃ C)] � [(A ⊃ B) ⊃ (A ⊃ C)] 1–8, 9–18 �I

i. Derive: [(A � B) ⊃ C] ⊃ [∼ (A & B) ∨ C]

1 (A � B) ⊃ C Assumption

2 ∼ (∼ (A & B) ∨ C) Assumption

3 A & B Assumption

4 A Assumption

5 B 3 &E

6 B Assumption

7 A 3 &E
8 A � B 4–5, 6–7 �I
9 C 1, 8 ⊃E

10 ∼ (A & B) ∨ C 9 ∨I
11 ∼ (∼ (A & B) ∨ C) 2 R
12 ∼ (A & B) 3–11 ∼ I
13 ∼ (A & B) ∨ C 12 ∨I
14 ∼ (∼ (A & B) ∨ C) 2 R
15 ∼ (A & B) ∨ C 2–14 ∼ E
16 [(A � B) ⊃ C] ⊃ [∼ (A & B) ∨ C] 1–15 ⊃I
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15. Equivalence

a. Derive: A ⊃ B

1 ∼ A ∨ B Assumption

2 A Assumption

3 ∼ A Assumption

4 ∼ B Assumption

5 A 2 R
6 ∼ A 3 R
7 B 4–6 ∼ E

8 B Assumption

9 B 8 R
10 B 1, 3–7, 8–9 ∨E
11 A ⊃ B 2–10 ⊃I

Derive: ∼ A ∨ B

1 A ⊃ B Assumption

2 ∼ (∼ A ∨ B) Assumption

3 ∼ A Assumption

4 ∼ A ∨ B 3 ∨I
5 ∼ (∼ A ∨ B) 2 R
6 A 3–5 ∼ E
7 B 1, 6 ⊃E
8 ∼ A ∨ B 7 ∨I
9 ∼ (∼ A ∨ B) 2 R

10 ∼ A ∨ B 2–9 ∼ E



SOLUTIONS TO SELECTED EXERCISES ON P. 217 117

c. Derive: A & ∼ B

1 ∼ (A ⊃ B) Assumption

2 ∼ A Assumption

3 A Assumption

4 ∼ B Assumption

5 ∼ A 2 R
6 A 3 R
7 B 4–6 ∼ E
8 A ⊃ B 3–7 ⊃I
9 ∼ (A ⊃ B) 1 R

10 A 2–9 ∼ E
11 B Assumption

12 A Assumption

13 B 11 R
14 A ⊃ B 12–13 ⊃I
15 ∼ (A ⊃ B) 1 R
16 ∼ B 11–15 ∼ I
17 A & ∼ B 10, 16 &I

Derive: ∼ (A ⊃ B)

1 A & ∼ B Assumption

2 A ⊃ B Assumption

3 A 1 &E
4 B 2, 3 ⊃E
5 ∼ B 1 &E
6 ∼ (A ⊃ B) 2–5 ∼ I

e. Derive: (A & B) ∨ (∼ A & ∼ B)

1 A � B Assumption

2 ∼ [(A & B) ∨ (∼ A & ∼ B)] Assumption

3 A Assumption

4 B 1, 3 �E
5 A & B 3, 4 &I
6 (A & B) ∨ (∼ A & ∼ B) 5 ∨I
7 ∼ [(A & B) ∨ (∼ A & ∼ B)] 2 R
8 ∼ A 3–7 ∼ I
9 B Assumption

10 A 1, 9 �E
11 ∼ A 8 R
12 ∼ B 9–11 ∼ I
13 ∼ A & ∼ B 8, 12 &I
14 (A & B) ∨ (∼ A & ∼ B) 13 ∨I
15 ∼ [(A & B) ∨ (∼ A & ∼ B)] 2 R
16 (A & B) ∨ (∼ A & ∼ B) 2–15 ∼ E
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Derive: A � B

1 (A & B) ∨ (∼ A & ∼ B) Assumption

2 A & B Assumption

3 A Assumption

4 B 2 &E

5 B Assumption

6 A 2 &E
7 A � B 3–4, 5–6 �I

8 ∼ A & ∼ B Assumption

9 A Assumption

10 ∼ B Assumption

11 A 9 R
12 ∼ A 8 &E
13 B 10–12 ∼ E

14 B Assumption

15 ∼ A Assumption

16 B 14 R
17 ∼ B 8 &E
18 A 15–17 ∼ E
19 A � B 9–13, 14–18 �I
20 A � B 1, 2–7, 8–19 ∨E

16. Inconsistency

a. 1 (A ⊃ B) & (A ⊃ ∼ B) Assumption
2 (C ⊃ A) & (∼ C ⊃ A) Assumption

3 A ⊃ B 1 &E
4 A ⊃ ∼ B 1 &E
5 C Assumption

6 C ⊃ A 2 &E
7 A 5, 6 ⊃E
8 B 3, 7 ⊃E
9 ∼ B 4, 7 ⊃E

10 ∼ C 5–9 ∼ I
11 ∼ C ⊃ A 2 &E
12 A 10, 11 ⊃E
13 B 3, 12 ⊃E
14 ∼ B 4, 12 ⊃E
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c. 1 W ∨ (Z ⊃ Y) Assumption
2 ∼ Y & ∼ (W ∨ ∼ Z) Assumption

3 W Assumption

4 ∼ Y Assumption

5 W ∨ ∼ Z 3 ∨I
6 ∼ (W ∨ ∼ Z) 2 &E
7 Y 4–6 ∼ E

8 Z ⊃ Y Assumption

10 ∼ Z Assumption

11 W ∨ ∼ Z 10 ∨I
12 ∼ (W ∨ ∼ Z) 2 &E
13 Z 10–12 ∼ E
14 Y 8, 13 ⊃E
15 Y 1, 3–7, 8–14 ∨E
16 ∼ Y 2 &E

e. 1 [(A � B) � (D & ∼ D)] � B Assumption
2 A Assumption

3 B Assumption

4 (A � B) � (D & ∼ D) 1, 3 �E
5 A Assumption

6 B 3 R

7 B Assumption

8 A 2 R
9 A � B 5–6, 7–8 �I

10 D & ∼ D 4, 9 �E
11 D 10 &E
12 ∼ D 10 &E
13 ∼ B 3–12 ∼ I
14 A � B Assumption

15 ∼ (D & ∼ D) Assumption

16 B 2, 14 �E
17 ∼ B 13 R
18 D & ∼ D 15–17 ∼ E

19 D & ∼ D Assumption

20 ∼ (A � B) Assumption

21 D 19 &E
22 ∼ D 19 &E
23 A � B 20–22 ∼ E
24 (A � B) � (D & ∼ D) 14–18, 19–23 �I
25 B 1, 24 �E
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17. Validity

a. Derive: M

1 S & F Assumption
2 F ⊃ B Assumption
3 (B & ∼ M) ⊃ ∼ S Assumption

4 ∼ M Assumption

5 F 1 &E
6 B 2, 5 ⊃E
7 B & ∼ M 6, 4 &I
8 ∼ S 3, 7 ⊃E
9 S 1 &E

10 M 4–9 ∼ E

c. Derive: ∼ J

1 (C ⊃ ∼ R) & (R ⊃ L) Assumption
2 C � (C ∨ L) Assumption
3 J ⊃ R Assumption

4 J Assumption

5 R 3, 4 ⊃E
6 R ⊃ L 1 &E
7 L 5, 6 ⊃E
8 C ∨ L 7 ∨I
9 C 2, 8 �E

10 C ⊃ ∼ R 1 &E
11 ∼ R 9, 10 ⊃E
12 ∼ J 4–11 ∼ I

e. Derive: ∼ M

1 ∼ (R ∨ W) Assumption
2 (R � M) ∨ [(M ∨ G) ⊃ (W � M)] Assumption

3 M Assumption

4 R � M Assumption

5 R 3, 4 �E
6 R ∨ W 5 ∨I

7 (M ∨ G) ⊃ (W � M) Assumption

8 M ∨ G 3 ∨I
9 W � M 7, 8 ⊃E

10 W 3, 9 �E
11 R ∨ W 10 ∨I
12 R ∨ W 2, 4–6, 7–11 ∨E
13 ∼ (R ∨ W) 1 R
14 ∼ M 3–13 ∼ I
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g. Derive: H ⊃ J

1 (H & T) ⊃ J Assumption
2 (M ⊃ D) & (∼ D ⊃ M) Assumption
3 ∼ T � (∼ D & M) Assumption

4 H Assumption

5 ∼ J Assumption

6 T Assumption

7 H & T 4, 6 &I
8 J 1, 7 ⊃E
9 ∼ J 5 R

10 ∼ T 6–9 ∼ I
11 ∼ D & M 3, 10 �E
12 M ⊃ D 2 &E
13 M 11 &E
14 D 12, 13 ⊃E
15 ∼ D 11 &E
16 J 5–15 ∼ E
17 H ⊃ J 4–16 ⊃I
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i. Derive: L ⊃ T

1 L ⊃ (C ∨ T) Assumption
2 (∼ L ∨ B) & (∼ B ∨ ∼ C) Assumption

3 L Assumption

4 C ∨ T 1, 3 ⊃E
5 C Assumption

6 ∼ B ∨ ∼ C 2 &E
7 ∼ B Assumption

8 ∼ L ∨ B 2 &E
9 ∼ L Assumption

10 ∼ T Assumption

11 L 3 R
12 ∼ L 9 R
13 T 10–12 ∼ E

14 B Assumption

15 ∼ T Assumption

16 B 14 R
17 ∼ B 7 R
18 T 15–17 ∼ E
19 T 8, 9–13, 14–18 ∨E

20 ∼ C Assumption

21 ∼ T Assumption

22 ∼ C 20 R
23 C 5 R
24 T 21–23 ∼ E
25 T 6, 7–19, 20–24 ∨E

26 T Assumption

27 T 26 R
28 T 4, 5–25, 26–27 ∨E
29 L ⊃ T 3–28 ⊃ I
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18. Inconsistency

a. 1 (M ⊃ B) & (B ⊃ P) Assumption
2 M & ∼ P Assumption

3 M 2 &E
4 M ⊃ B 1 &E
5 B 3, 4 ⊃E
6 B ⊃ P 1 &E
7 P 5, 6 ⊃E
8 ∼ P 2 &E

c. 1 B ⊃ I Assumption
2 (∼ B & ∼ I) ⊃ C Assumption
3 ∼ C & ∼ I Assumption

4 B Assumption

5 I 1, 4 ⊃E
6 ∼ I 3 &E
7 ∼ B 4–6 ∼ I
8 ∼ I 3 &E
9 ∼ B & ∼ I 7, 8 &I

10 C 2, 9 ⊃E
11 ∼ C 3 &E

e. 1 M ∨ (F ⊃ T) Assumption
2 N � ∼ T Assumption
3 (F & N) & ∼ M Assumption

4 M Assumption

5 M 4 R

6 F ⊃ T Assumption

7 ∼ M Assumption

8 F & N 3 &E
9 F 8 &E

10 T 6, 9 ⊃E
11 N 8 &E
12 ∼ T 2, 11 �E
13 M 7–12 ∼ E
14 M 1, 4–5, 6–13 ∨E
15 ∼ M 3 &E

19.a. We would not want to include this derivation rule because it is not
truth-preserving. A sentence of SL of the form P ∨ Q can be true while P is
false.
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c. Suppose we are on line n of a derivation and a sentence P occurs on
an earlier accessible line i. P can be derived without using the rule Reitera-
tion as follows:

i P

n P & P i, i &I
n � 1 P n &E

e. Suppose an argument of SL has ∼ P among its premises, where P is
a theorem in SD. Consider a derivation that has the premises of the argument
as its only primary assumptions and that has the negation of the conclusion
as an auxiliary assumption immediately after the primary assumptions. Within
the subderivation that has the negation of the conclusion as its assumption,
∼ P can be derived by Reiteration, for ∼ P occurs as one of the primary assump-
tions. Since P is a theorem in SD, it can also be derived within the sub-
derivation without introducing any new assumptions that are not discharged.
Consequently, Negation Elimination can be applied to discharge the negation
of the conclusion yielding the (unnegated) conclusion. The conclusion is
derivable from the set of premises; hence the argument is valid in SD.

20.a. Assume that some argument of SL is valid in SD. Then, by defini-
tion, the conclusion is derivable in SD from the set consisting of only prem-
ises. By the result (*), the conclusion is truth-functionally entailed by that set.
So the argument is truth-functionally valid. Assume that some argument of SL
is truth-functionally valid. Then the conclusion is truth-functionally entailed
by the set consisting of the premises. By (*), the conclusion is derivable in SD
from that set. So the argument is valid in SD.

c. Assume that sentences P and Q of SL are equivalent in SD. Then 
{P} Q and {Q} P. By (*), it follows that {P} Q and {Q} P. By Exercise 5.b
in Section 3.5E, P and Q are truth-functionally equivalent. Assume that sen-
tences P and Q of SL are truth-functionally equivalent. By Exercise 5.b in Sec-
tion 3.5E, {P} Q and {Q} P. By (*), then, {P} Q and {Q} P. So P and Q
are equivalent in SL.

|–|–|=|=

|=|=|–|–

Section 5.5E

1. Derivability

a. Derive: ∼ D

1 D ⊃ E Assumption
2 E ⊃ (Z & W) Assumption
3 ∼ Z ∨ ∼ W Assumption

4 ∼ (Z & W) 3 DeM
5 ∼ E 2, 4 MT
6 ∼ D 1, 5 MT
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c. Derive: K

1 (W ⊃ S) & ∼ M Assumption
2 (∼ W ⊃ H) ∨ M Assumption
3 (∼ S ⊃ H) ⊃ K Assumption

4 W ⊃ S 1 &E
5 ∼ S ⊃ ∼ W 4 Trans
6 ∼ M 1 &E
7 ∼ W ⊃ H 2, 6 DS
8 ∼ S ⊃ H 5, 7 HS
9 K 3, 8 ⊃E

e. Derive: C

1 (M ∨ B) ∨ (C ∨ G) Assumption
2 ∼ B & (∼ G & ∼ M) Assumption

3 ∼ B 2 &E
4 (B ∨ M) ∨ (C ∨ G) 1 Com
5 B ∨ [M ∨ (C ∨ G)] 4 Assoc
6 M ∨ (C ∨ G) 3, 5 DS
7 ∼ G & ∼ M 2 &E
8 ∼ G 7 &E
9 (M ∨ C) ∨ G 6 Assoc

10 M ∨ C 8, 9 DS
11 ∼ M 7 &E
12 C 10, 11 DS

2. Validity

a. Derive: Y � Z

1 ∼ Y ⊃ ∼ Z Assumption
2 ∼ Z ⊃ ∼ X Assumption
3 ∼ X ⊃ ∼ Y Assumption

4 Y Assumption

5 ∼ Z ⊃ ∼ Y 2, 3 HS
6 Y ⊃ Z 5 Trans
7 Z 4, 6 ⊃E

8 Z Assumption

9 Z ⊃ Y 1 Trans
10 Y 8, 9 ⊃E
11 Y � Z 4–7, 8–10 �I
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c. Derive: I ⊃ ∼ D

1 (F & G) ∨ (H & ∼ I) Assumption
2 I ⊃ ∼ (F & D) Assumption

3 I Assumption

4 ∼ (F & D) 2, 3 ⊃E
5 ∼ F ∨ ∼ D 4 DeM
6 ∼ ∼ I 3 DN
7 ∼ H ∨ ∼ ∼ I 6 ∨I
8 ∼ (H & ∼ I) 7 DeM
9 F & G 1, 8 DS

10 F 9 &E
11 ∼ ∼ F 10 DN
12 ∼ D 5, 11 DS
13 I ⊃ ∼ D 3–12 ⊃I

e. Derive: I ∨ H

1 F ⊃ (G ⊃ H) Assumption
2 ∼ I ⊃ (F ∨ H) Assumption
3 F ⊃ G Assumption

4 ∼ I Assumption

5 F ∨ H 2, 4 ⊃E
6 ∼ H Assumption

7 F 5, 6 DS
8 G 3, 7 ⊃E
9 G ⊃ H 1, 7 ⊃E

10 ∼ G 6, 9 MT
11 H 6–10 ∼ E
12 ∼ I ⊃ H 4–11 ⊃I
13 ∼ ∼ I ∨ H 12 Impl
14 I ∨ H 13 DN
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g. Derive: X � Y

1 [(X & Z) & Y] ∨ (∼ X ⊃ ∼ Y) Assumption
2 X ⊃ Z Assumption
3 Z ⊃ Y Assumption

4 X Assumption

5 Z 2, 4 ⊃E
6 Y 3, 5 ⊃E

7 Y Assumption

8 (X & Z) & Y Assumption

9 X & Z 8 &E
10 X 9 &E

11 ∼ X ⊃ ∼ Y Assumption

12 Y ⊃ X 11 Trans
13 X 7, 12 ⊃E
14 X 1, 8–10, 11–13 ∨E
15 X � Y 4–6, 7–14 �I

3. Theorems

a. Derive: A ∨ ∼ A

1 ∼ (A ∨ ∼ A) Assumption

2 ∼ A & ∼ ∼ A 1 DeM
3 ∼ A 2 &E
4 ∼ ∼ A 2 &E
5 A ∨ ∼ A 1–4 ∼ E

c. Derive: A ∨ [(∼ A ∨ B) & (∼ A ∨ C)]

1 ∼ A Assumption

2 ∼ A ∨ (B & C) 1 ∨I
3 (∼ A ∨ B) & (∼ A ∨ C) 2 Dist
4 ∼ A ⊃ [(∼ A ∨ B) & (∼ A ∨ C)] 1–3 ⊃I
5 ∼ ∼ A ∨ [(∼ A ∨ B) & (∼ A ∨ C)] 4 Impl
6 A ∨ [(∼ A ∨ B) & (∼ A ∨ C)] 5 DN
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e. Derive: [A ⊃ (B & C)] � [(∼ B ∨ ∼ C) ⊃ ∼ A]

1 A ⊃ (B & C) Assumption

2 ∼ (B & C) ⊃ ∼ A 1 Trans
3 (∼ B ∨ ∼ C) ⊃ ∼ A 2 DeM

4 (∼ B ∨ ∼ C) ⊃ ∼ A Assumption

5 ∼ (B & C) ⊃ ∼ A 4 DeM
6 A ⊃ (B & C) 5 Trans
7 [A ⊃ (B & C)] � [(∼ B ∨ ∼ C) ⊃ ∼ A] 1–3, 4–6 �I

g. Derive: [A ⊃ (B � C)] � (A ⊃ [(∼ B ∨ C) & (∼ C ∨ B)])

1 A ⊃ (B � C) Assumption

2 A ⊃ [(B ⊃ C) & (C ⊃ B)] 1 Equiv
3 A ⊃ [(∼ B ∨ C) & (C ⊃ B)] 2 Impl
4 A ⊃ [(∼ B ∨ C) & (∼ C ∨ B)] 3 Impl

5 A ⊃ [(∼ B ∨ C) & (∼ C ∨ B)] Assumption

6 A ⊃ [(B ⊃ C) & (∼ C ∨ B)] 5 Impl
7 A ⊃ [(B ⊃ C) & (C ⊃ B)] 6 Impl
8 A ⊃ (B � C) 7 Equiv
9 [A ⊃ (B � C)] � (A ⊃ [(∼ B ∨ C) & (∼ C ∨ B)]) 1–4, 5–8 �I

i. Derive: [∼ A ⊃ (∼ B ⊃ C)] ⊃ [(A ∨ B) ∨ (∼ ∼ B ∨ C)]

1 ∼ A ⊃ (∼ B ⊃ C) Assumption

2 ∼ ∼ A ∨ (∼ B ⊃ C) 1 Impl
3 ∼ ∼ A ∨ (∼ ∼ B ∨ C) 2 Impl
4 A ∨ (∼ ∼ B ∨ C) 3 DN
5 A ∨ [(∼ ∼ B ∨ ∼ ∼ B) ∨ C] 4 Idem
6 A ∨ [∼ ∼ B ∨ (∼ ∼ B ∨ C)] 5 Assoc
7 (A ∨ ∼ ∼ B) ∨ (∼ ∼ B ∨ C) 6 Assoc
8 (A ∨ B) ∨ (∼ ∼ B ∨ C) 7 DN
9 [∼ A ⊃ (∼ B ⊃ C)] ⊃ [(A ∨ B) ∨ (∼ ∼ B ∨ C)] 1–8 ⊃I

4. Equivalence

a. Derive: ∼ (∼ A & ∼ B)

1 A ∨ B Assumption

2 ∼ ∼ A ∨ B 1 DN
3 ∼ ∼ A ∨ ∼ ∼ B 2 DN
4 ∼ (∼ A & ∼ B) 3 DeM
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Derive: A ∨ B

1 ∼ (∼ A & ∼ B) Assumption

2 ∼ ∼ A ∨ ∼ ∼ B 1 DeM
3 A ∨ ∼ ∼ B 2 DN
4 A ∨ B 3 DN

c. Derive: ∼ (A ⊃ C) ⊃ ∼ B

1 (A & B) ⊃ C Assumption

2 (B & A) ⊃ C 1 Com
3 B ⊃ (A ⊃ C) 2 Exp
4 ∼ (A ⊃ C) ⊃ ∼ B 3 Trans

Derive: (A & B) ⊃ C

1 ∼ (A ⊃ C) ⊃ ∼ B Assumption

2 B ⊃ (A ⊃ C) 1 Trans
3 (B & A) ⊃ C 2 Exp
4 (A & B) ⊃ C 3 Com

e. Derive: A ∨ (∼ B � ∼ C)

1 A ∨ (B � C) Assumption

2 A ∨ [(B ⊃ C) & (C ⊃ B)] 1 Equiv
3 A ∨ [(∼ C ⊃ ∼ B) & (C ⊃ B)] 2 Trans
4 A ∨ [(∼ C ⊃ ∼ B) & (∼ B ⊃ ∼ C)] 3 Trans
5 A ∨ [(∼ B ⊃ ∼ C) & (∼ C ⊃ ∼ B)] 4 Com
6 A ∨ (∼ B � ∼ C) 5 Equiv

Derive: A ∨ (B � C)

1 A ∨ (∼ B � ∼ C) Assumption

2 A ∨ [(∼ B ⊃ ∼ C) & (∼ C ⊃ ∼ B)] 1 Equiv
3 A ∨ [(C ⊃ B) & (∼ C ⊃ ∼ B)] 2 Trans
4 A ∨ [(C ⊃ B) & (B ⊃ C)] 3 Trans
5 A ∨ [(B ⊃ C) & (C ⊃ B)] 4 Com
6 A ∨ (B � C) 5 Equiv

5. Inconsistency

a. 1 [(E & F) ∨ ∼ ∼ G] ⊃ M Assumption
2 ∼ [[(G ∨ E) & (F ∨ G)] ⊃ (M & M)] Assumption

3 ∼ ([(G ∨ E) & (F ∨ G)] ⊃ M) 2 Idem
4 ∼ ([(G ∨ E) & (G ∨ F)] ⊃ M) 3 Com
5 ∼ ([G ∨ (E & F)] ⊃ M) 4 Dist
6 ∼ ([(E & F) ∨ G] ⊃ M) 5 Com
7 ∼ ([(E & F) ∨ ∼ ∼ G] ⊃ M) 6 DN
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c. 1 M & L Assumption
2 [L & (M & ∼ S)] ⊃ K Assumption
3 ∼ K ∨ ∼ S Assumption
4 ∼ (K � ∼ S) Assumption

5 K ⊃ ∼ S 3 Impl
6 [(L & M) & ∼ S] ⊃ K 2 Assoc
7 (L & M) ⊃ (∼ S ⊃ K) 6 Exp
8 L & M 1 Com
9 ∼ S ⊃ K 7, 8 ⊃E

10 (K ⊃ ∼ S) & (∼ S ⊃ K) 5, 9 &I
11 K � ∼ S 10 Equiv

e. 1 ∼ [W & (Z ∨ Y)] Assumption
2 (Z ⊃ Y) ⊃ Z Assumption
3 (Y ⊃ Z) ⊃ W Assumption

4 ∼ W ∨ ∼ (Z ∨ Y) 1 DeM
5 ∼ Z Assumption

6 ∼ (Z ⊃ Y) 2, 5 MT
7 ∼ (∼ Z ∨ Y) 6 Impl
8 ∼ ∼ Z & ∼ Y 7 DeM
9 ∼ ∼ Z 8 &E

10 ∼ Z 5 R
11 Z 5–10 ∼ E
12 Z ∨ Y 11 ∨I
13 ∼ ∼ (Z ∨ Z) 12 DN
14 ∼ W 4, 13 DS
15 ∼ (Y ⊃ Z) 3, 14 MT
16 ∼ (∼ Y ∨ Z) 15 Impl
17 ∼ ∼ Y & ∼ Z 16 DeM
18 ∼ Z 17 &E

6. Validity

a. Derive: ∼ B

1 (R ⊃ C) ∨ (B ⊃ C) Assumption
2 ∼ (E & A) ⊃ ∼ (R ⊃ C) Assumption
3 ∼ E & ∼ C Assumption

4 ∼ E 3 &E
5 ∼ E ∨ ∼ A 4 ∨I
6 ∼ (E & A) 5 DeM
7 ∼ (R ⊃ C) 2, 6 ⊃E
8 B ⊃ C 1, 7 DS
9 ∼ C 3 &E

10 ∼ B 8, 9 MT
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c. Derive: ∼ W ⊃ ∼ A

1 A ⊃ [W ∨ ∼ (C ∨ R)] Assumption
2 ∼ R ⊃ C Assumption

3 ∼ W Assumption

4 A Assumption

5 W ∨ ∼ (C ∨ R) 1, 4 ⊃E
6 ∼ (C ∨ R) 3, 5 DS
7 ∼ ∼ R ∨ C 2 Impl
8 R ∨ C 7 DN
9 C ∨ R 8 Com

10 ∼ A 4–9 ∼ I
11 ∼ W ⊃ ∼ A 3–10 ⊃I

e. Derive: J ⊃ ∼ (E ∨ ∼ M)

1 ∼ (J & ∼ H) Assumption
2 ∼ H ∨ M Assumption
3 E ⊃ ∼ M Assumption

4 J Assumption

5 ∼ J ∨ ∼ ∼ H 1 DeM
6 ∼ ∼ J 4 DN
7 ∼ ∼ H 5, 6 DS
8 M 2, 7 DS
9 ∼ ∼ M 8 DN

10 ∼ E 3, 9 MT
11 ∼ E & ∼ ∼ M 10, 9 &I
12 ∼ (E ∨ ∼ M) 11 DeM
13 J ⊃ ∼ (E ∨ ∼ M) 4–12 ⊃I

g. Derive: ∼ A ⊃ [H ⊃ (F & B)]

1 (H & ∼ S) ⊃ A Assumption
2 ∼ B ⊃ ∼ S Assumption
3 ∼ S ∨ C Assumption
4 C ⊃ F Assumption

5 ∼ A Assumption

6 H Assumption

7 H ⊃ (∼ S ⊃ A) 1 Exp
8 ∼ S ⊃ A 6, 7 ⊃E
9 ∼ ∼ S 5, 8 MT

10 C 3, 9 DS
11 F 4, 10 ⊃E
12 ∼ ∼ B 2, 9 MT
13 B 12 DN
14 F & B 11, 13 &I
15 H ⊃ (F & B) 6–14 ⊃I
16 ∼ A ⊃ [H ⊃ (F & B)] 5–15 ⊃I
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8.a. The rules of replacement are two-way rules. If we can derive Q from
P by using only these rules, we can derive P from Q by using the rules in
reverse order.

c. Suppose that before a current line n of a derivation, an accessible
line i contains a sentence of the form P ⊃ Q. The sentence P ⊃ (P & Q) can
be derived by using the following routine:

i P ⊃ Q
n P Assumption

n � 1 Q i, n ⊃E
n � 2 P & Q n, n � 1 &E
n � 3 P ⊃ (P & Q) n � n � 2 ⊃I

7. Inconsistency

a. 1 B ∨ ∼ C Assumption
2 (L ⊃ ∼ G) ⊃ C Assumption
3 (G � ∼ B) & (∼ L ⊃ ∼ B) Assumption
4 ∼ L Assumption

5 ∼ L ∨ ∼ G 4 ∨I
6 L ⊃ ∼ G 5 Impl
7 C 2, 6 ⊃E
8 ∼ L ⊃ ∼ B 3 &E
9 ∼ B 4, 8 ⊃E

10 ∼ C 1, 9 DS
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CHAPTER SIX

Section 6.1E

1.a. We shall prove that every sentence of SL that contains only binary
connectives, if any, is true on every truth-value assignment on which all its
atomic components are true. Hence every sentence of SL that contains only
binary connectives is true on at least one truth-value assignment, and thus no
such sentence can be truth-functionally false. We proceed by mathematical
induction on the number of occurrences of connectives in such sentences.
(Note that we need not consider all sentences of SL in our induction but only
those with which the thesis is concerned.)
Basis clause: Every sentence with zero occurrences of a binary connective (and
no occurrences of unary connectives) is true on every truth-value assignment
on which all its atomic components are true.
Inductive step: If every sentence with k or fewer occurrences of binary connec-
tives (and no occurrences of unary connectives) is true on every truth-value
assignment on which all its atomic components are true, then every sentence
with k � 1 occurrences of binary connectives (and no occurrences of unary
connectives) is true on every truth-value assignment on which all its atomic
components are true.

The proof of the basis clause is straightforward. A sentence with zero
occurrences of a connective is an atomic sentence, and each atomic sentence
is true on every truth-value assignment on which its atomic component (which
is the sentence itself) is true.

The inductive step is also straightforward. Assume that the thesis holds
for every sentence of SL with k or fewer occurrences of binary connectives and
no unary connectives. Any sentence P with k � 1 occurrences of binary con-
nectives and no unary connectives must be of one of the four forms Q & R,
Q ∨ R, Q ⊃ R, and Q � R. In each case Q and R contain k or fewer occur-
rences of binary connectives, so the inductive hypothesis holds for both Q and
R. That is, both Q and R are true on every truth-value assignment on which
all their atomic components are true. Since P’s immediate components are Q
and R, its atomic components are just those of Q and R. But conjunctions,
disjunctions, conditionals, and biconditionals are true when both their imme-
diate components are true. So P is also true on every truth-value assignment
on which its atomic components are true, for both its immediate components
are then true. This completes our proof. (Note that in this clause we ignored
sentences of the form ∼ Q, for the thesis concerns only those sentences of SL
that contain no occurrences of ‘∼’.)

b. Every sentence P that contains no binary connectives either con-
tains no connectives or contains at least one occurrence of ‘∼’. We prove the
thesis by mathematical induction on the number of occurrences of ‘∼’ in such
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sentences. The first case consists of the atomic sentences of SL since these con-
tain zero occurrences of connectives.
Basis clause: Every atomic sentence is truth-functionally indeterminate.
Inductive step: If every sentence with k or fewer occurrences of ‘∼’ (and no
binary connectives) is truth-functionally indeterminate, then every sentence
with k � 1 occurrences of ‘∼’ (and no binary connectives) is truth-functionally
indeterminate.

The basis clause is obvious.
The inductive step is also obvious. Suppose P contains k � 1 occur-

rences of ‘∼’ and no binary connectives and that the thesis holds for every sen-
tence with fewer than k � 1 occurrences of ‘∼’ and no binary connectives. P
is a sentence of the form ∼ Q, where Q contains k occurrences of ‘∼’; hence,
by the inductive hypothesis, Q is truth-functionally indeterminate. The nega-
tion of a truth-functionally indeterminate sentence is also truth-functionally
indeterminate. Hence ∼ Q, that is, P, is truth-functionally indeterminate. This
completes the induction.

c. The induction is on the number of occurrences of connectives in
P. The thesis to be proved is

If two truth-value assignments A� and A� assign the same truth-values
to the atomic components of a sentence P, then P has the same truth-
value on A� and A�.

Basis clause: The thesis holds for every sentence with zero occurrences of con-
nectives.
Inductive step: If the thesis holds for every sentence with k or fewer occurrences
of connectives, then the thesis holds for every sentence with k � 1 occurrences
of connectives.

The basis clause is obvious. If P contains zero occurrences of connec-
tives, then P is an atomic sentence and its own only atomic component. P must
have the same truth-value on A� and A� because ex hypothesi it is assigned the
same truth-value on each assignment.

To prove the inductive step, we let P be a sentence with k � 1 occur-
rences of connectives and assume that the thesis holds for every sentence
containing k or fewer occurrences of connectives. Then P is of the form ∼ Q,
Q & R, Q ∨ R, Q ⊃ R, or Q � R. In each case the immediate component(s)
of P contain k or fewer occurrences of connectives and hence fall under the
inductive hypothesis. So each immediate component of P has the same truth-
value on A� and A�. P therefore has the same truth-value on A� and A�, as
determined by the characteristic truth-tables.

d. We prove the thesis by mathematical induction on the number of
conjuncts in an iterated conjunction of sentences P1, . . . , Pn of SL.
Basis clause: Every iterated conjunction of just one sentence of SL is true on a
truth-value assignment if and only if that one sentence is true on that assignment.
Inductive step: If every iterated conjunction of k or fewer sentences of SL is true
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on a truth-value assignment if and only if each of those conjuncts is true on
that assignment, then every iterated conjunction of k � 1 sentences of SL is
true on a truth-value assignment if and only if each of those conjuncts is true
on that assignment.

The basis clause is trivial.
To prove the inductive step, we assume that the thesis holds for iter-

ated conjunctions of k or fewer sentences of SL. Let P be an iterated conjunc-
tion of k � 1 sentences. Then P is Q & R, where Q is an iterated conjunction
of k sentences. P is therefore an iterated conjunction of all the sentences of
which Q is an iterated conjunction, and R. By the inductive hypothesis, the the-
sis holds of Q; that is, Q is true on a truth-value assignment if and only if the
sentences of which Q is an iterated conjunction are true on that assignment.
Hence, whenever all the sentences of which P is an iterated conjunction are
true, both Q and R are true, and thus P is true as well. Whenever at least one
of those sentences is false, either Q is false or R is false, making P false as well.
Hence P is true on a truth-value assignment if and only if all the sentences of
which it is an iterated conjunction are true on that assignment.

e. We proceed by mathematical induction on the number of occur-
rences of connectives in P. The argument is

The thesis holds for every atomic sentence P.

If the thesis holds for every sentence P with k or fewer
occurrences of connectives, then it holds for every sentence P
with k � 1 occurrences of connectives.

The thesis holds for every sentence P of SL.

The proof of the basis clause is fairly simple. If P is an atomic sentence and
Q is a sentential component of P, then Q must be identical with P (since each
atomic sentence is its own only atomic component). For any sentence Q1, then,
[P](Q1//Q) is simply the sentence Q1. Here it is trivial that if Q and Q1 are
truth-functionally equivalent, so are P (which is just Q) and [P](Q1//Q)
(which is just Q1).

In proving the inductive step, the following result will be useful: 

6.1.1. If Q and Q1 are truth-functionally equivalent and R and R1

are truth-functionally equivalent, then each of the following pairs
are pairs of truth-functionally equivalent sentences:

∼ Q ∼ Q1

Q & R Q1 & R1

Q ∨ R Q1 ∨ R1

Q ⊃ R Q1 ⊃ R1

Q � R Q1 � R1
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Proof: The truth-value of a molecular sentence is wholly determined
by the truth-values of its immediate components. Hence, if there is
a truth-value assignment on which some sentence in the left-hand
column has a truth-value different from that of its partner in the
right-hand column, then on that assignment either Q and Q1 have
different truth-values or R and R1 have different truth-values. But this
is impossible because ex hypothesi Q and Q1 are truth-functionally
equivalent and R and R1 are truth-functionally equivalent.

To prove the inductive step of the thesis, we assume the inductive
hypothesis: that the thesis holds for every sentence with k or fewer occur-
rences of connectives. Let P be a sentence of SL with k � 1 occurrences of
connectives, let Q be a sentential component of P, let Q1 be a sentence that
is truth-functionally equivalent to Q, and let [P](Q1//Q) be a sentence that
results from replacing one or more occurrences of Q in P with Q1. Suppose,
first, that Q is identical with P. Then, by the reasoning in the proof of the
basis clause, it follows trivially that P and [P](Q1//Q) are truth-functionally
equivalent. Now suppose that Q is a sentential component of P that is not
identical with P (in which case we say that Q is a proper sentential component
of P). Either P is of the form ∼ R or P has a binary connective as its main
connective and is of one of the four forms R & P, R ∨ P, R ⊃ P, and R � P.
We shall consider the two cases separately.

i. P is of the form ∼ R. Since Q is a proper sentential component of
P, Q must be a sentential component of R. Hence [P](Q1//Q) is a sentence
∼ [R](Q1//Q). But R has k occurrences of connectives, so by the inductive
hypothesis, R is truth-functionally equivalent to [R](Q1//Q). It follows from
6.1.1 that ∼ R is truth-functionally equivalent to ∼ [R](Q1//Q); that is, P is
truth-functionally equivalent to [P](Q1//Q).

ii. P is of the form R & S, R ∨ S, R ⊃ S, or R � S. Since Q is a proper
component of P, [P](Q1//Q) must be P with its left immediate component
replaced by a sentence [R](Q1//Q), P with its right immediate component
replaced with a sentence [S](Q1//Q), or P with both replacements made.
Both R and S have fewer than k � 1 occurrences of connectives, and so the
inductive hypothesis holds for both R and S. Hence R is truth-functionally
equivalent to [R](Q1//Q), and S is truth-functionally equivalent to [S]
(Q1//Q). And R is truth-functionally equivalent to R and S is truth-function-
ally equivalent to S. Whatever replacements are made in P, it follows by 6.1.1
that P is truth-functionally equivalent to [P](Q1//Q).

This completes the proof of the inductive step and thus the proof of our thesis.

2. An example of a sentence that contains only binary connectives and
is truth-functionally true is ‘A ⊃ A’. An attempted proof would break down in
the proof of the inductive step (since no atomic sentence is truth-functionally
true, the basis clause will go through).
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Section 6.2E

1. Suppose that we have constructed, in accordance with the algo-
rithm, a sentence for a row of a truth-function schema that defines a truth-
function of n arguments. We proved in Exercise 1.d in Section 6.1E the result
that an iterated conjunction (. . . (P1 & P2) & . . . & Pn) is true on a truth-
value assignment if and only if P1, . . . , Pn are all true on that truth-value
assignment. We have constructed the present iterated conjunction of atomic
sentences and negations of atomic sentences in such a way that each conjunct
is true when the atomic components have the truth-values represented in that
row. Hence for that assignment the sentence constructed is true. For any other
assignments to the atomic components of the sentence, at least one of the con-
juncts is false; hence the conjunction is also false.

2.a. (A & ∼ B) ∨ (∼ A & ∼ B)
b. A & ∼ A
d. ([(A & B) & C] ∨ [(A & B) & ∼ C]) ∨ [(∼ A & ∼ B) & C]

3. Suppose that the table defines a truth-function of n arguments. We
first construct an iterated disjunction of n disjuncts such that the ith disjunct
is the negation of the ith atomic sentence of SL if the ith truth-value in the
row is T, and the ith disjunct is the ith atomic sentence of SL if the ith truth-
value in the row is F. Note that this iterated disjunction is false exactly when
its atomic components have the truth-values displayed in that row. We then
negate the iterated disjunction, to obtain a sentence that is true for those truth-
values and false for all other truth-values that may be assigned to its atomic
components.

4. To prove that {‘∼’, ‘&’} is truth-functionally complete, it will suffice
to show that for each sentence of SL containing only ‘∼’, ‘∨’, and ‘&’, there is
a truth-functionally equivalent sentence of SL that contains the same atomic
components and in which the only connectives are ‘∼’ and ‘&’. For it will then
follow, from the fact that {‘∼’, ‘∨’, ‘&’} is truth-functionally complete, that
{‘∼’, ‘&’} is also truth-functionally complete. But every sentence of the form

P ∨ Q

is truth-functionally equivalent to

∼ (∼ P & ∼ Q)

So by repeated substitutions, we can obtain, from sentences containing ‘∼’, ‘∨’,
and ‘&’, truth-functionally equivalent sentences that contain only ‘∼’ and ‘&’.

To show that {‘∼’, ‘⊃’} is truth-functionally complete, it suffices to point
out that every sentence of the form

P & Q
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is truth-functionally equivalent to the corresponding sentence

∼ (P ⊃ ∼ Q)

and that every sentence of the form

P ∨ Q

is truth-functionally equivalent to the corresponding sentence

∼ P ⊃ Q

For then we can find, for each sentence containing only ‘∼’, ‘∨’, and ‘&’, a
truth-functionally equivalent sentence with the same atomic components con-
taining only ‘∼’ and ‘⊃’. It follows that {‘∼’, ‘⊃’} is truth-functionally complete,
since {‘∼’, ‘∨’, ‘&’} is.

5. To show this, we need only note that the negation and disjunction
truth-functions can be expressed using only the dagger. The truth-table for
‘A ↓ A’ is

A A ↓ A

T T F T
F F T F

The sentence ‘A ↓ A’ expresses the negation truth-function, for the column
under the dagger is identical with the column to the right of the vertical line
in the characteristic truth-table for negation.

The disjunction truth-function is expressed by ‘(A ↓ B) ↓ (A ↓ B)’, as
the following truth-table shows:

A B (A ↓ B) ↓ (A ↓ B)

T T T F T T T F T
T F T F F T T F F
F T F F T T F F T
F F F T F F F T F

This table shows that ‘(A ↓ B) ↓ (A ↓ B)’ is true on every truth-value assign-
ment on which at least one of ‘A’ and ‘B’ is true. Hence that sentence
expresses the disjunction truth-function.

Thus any truth-function that is expressed by a sentence of SL con-
taining only the connectives ‘∼’ and ‘∨’ can be expressed by a sentence con-
taining only ‘↓’ as a connective. To form such a sentence, we convert the
sentence of SL containing just ‘∼’ and ‘∨’ that expresses the truth-function in
question as follows. Repeatedly replace components of the form ∼ P with P ↓ P
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and components of the form P ∨ Q with (P ↓ Q) ↓ (P ↓ Q) until a sentence
containing ‘↓’ as the only connective is obtained. Since {‘∨’, ‘∼’} is truth-
functionally complete, so is {‘↓’}.

7. The set {‘∼’} is not truth-functionally complete because every sentence
containing only ‘∼’ is truth-functionally indeterminate. Hence truth-functions
expressed in SL by truth-functionally true sentences and truth-functions
expressed in SL truth-functionally false sentences cannot be expressed by a
sentence that contains only ‘∼’.

The set {‘&’, ‘∨’, ‘⊃’, ‘�’} is not truth-functionally complete because
no sentence that contains only binary connectives (if any) is truth-functionally
false. Hence no truth-function that is expressed in SL by a truth-functionally
false sentence can be expressed by a sentence containing only binary con-
nectives of SL.

8. We shall prove by mathematical induction that in the truth-table
for a sentence P containing only the connectives ‘∼’ and ‘�’ and two atomic
components, the column under the main connective of P has an even num-
ber of Ts and an even number of Fs. For then we shall know that no sentence
containing only those connectives can express, for example, the truth-function
defined as follows (the material conditional truth-function):

T T T
T F F
F T T
F F T

In the induction remember that any sentence of SL that contains two atomic
components has a four-row truth-table. Our induction will proceed on the
number of occurrences of connectives in P. However, the first case, that con-
sidered in the basis clause, is the case where P contains one occurrence of a
connective. This is because every sentence that contains zero occurrences of
connectives is an atomic sentence and thus cannot contain more than one
atomic component.
Basis clause: The thesis holds for every sentence of SL with exactly two atomic
components and one occurrence of (one of) the connectives ‘∼’ and ‘�’.

In this case P cannot be of the form ∼ Q, for if the initial ‘∼’ is the
only connective in P, then Q is atomic, and hence P does not contain two
atomic components. So P is of the form Q � R, where Q and R are atomic
sentences. Q � R will have to be true on assignments that assign the same
truth-values to Q and R and false on other assignments. Hence the thesis holds
in this case.
Inductive step: If the thesis holds for every sentence of SL that contains k or
fewer occurrences of the connectives ‘∼’ and ‘�’ (and no other connectives)
and two atomic components, then the thesis holds for every sentence of SL
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that contains two atomic components and k � 1 occurrences of the connec-
tives ‘∼’ and ‘�’ (and no other connectives).

Let P be a sentence of SL that contains exactly two atomic compo-
nents and k � 1 occurrences of the connectives ‘∼’ and ‘�’ (and no other
connectives). There are two cases to consider.

i. P is of the form ∼ Q. Then Q falls under the inductive hypothesis;
hence in the truth-table for Q the column under the main connective con-
tains an even number of Ts and an even number of  Fs. The column for the
sentence ∼ Q simply reverses the Ts and Fs, so it also contains an even num-
ber of Ts and an even number of Fs.

ii. P is of the form Q � R. Then Q and R each contain fewer occur-
rences of connectives. If, in addition, Q and R each contain both of the atomic
components of P, then they fall under the inductive hypothesis—Q has an
even number of Ts and an even number of Fs in its truth-table column, and
so does R. On the other hand, if Q or R (or both) only contains one of the
atomic components of P (e.g., if P is ‘∼ A � (B � A)’ then Q is ‘∼ A’), then
Q or R (or both) fails to fall under the inductive hypothesis. However, in this
case the component in question also has an even number of Ts and an even
number of Fs in its column in the truth-table for P. This is because (a) two
rows assign T to the single atomic component of Q and, by the result in Exer-
cise 1.c, Q has the same truth-value in these two rows; and (b) two rows assign
F to the single atomic component of Q and so, by the same result, Q has the
same truth-value in these two rows.

We will now show that if Q and R each have an even number of Ts
and an even number of Fs in their truth-table columns, then so must P. Let
us assume the contrary, that is, we shall suppose that P has an odd number of
Ts and an odd number of Fs in its truth-table column. There are then two
possibilities.

a. There are 3 Ts and 1 F in P’s truth-table column. Then in three
rows of their truth-table columns, Q and R have the same truth-value, and in
one row they have different truth-values. So either Q has one more T in its
truth-table column than does R, or vice-versa. Either way, since the sum of an
even number plus 1 is odd, it follows that either Q has an odd number of Ts
in its truth-table column or R has an odd number of Ts in its truth-table col-
umn. This contradicts our inductive hypothesis, so we conclude that P cannot
have 3 Ts and 1 F in its truth-table column.

b. There are 3 Fs and 1 T in P’s truth-table column. By reasoning sim-
ilar to that just given, it is easily shown that this is impossible, given the induc-
tive hypothesis.

Therefore P must have an even number of Ts and Fs in its truth-table column.



142 SOLUTIONS TO SELECTED EXERCISES ON PP. 248 AND 254–255

9. First, a binary connective whose unit set is truth-functionally com-
plete must be such that a sentence of which it is the main connective is false
whenever all its immediate components are true. Otherwise, every sentence
containing only that connective would be true whenever its atomic compo-
nents were. And then, for example, the negation truth-function would not be
expressible using that connective. Similar reasoning shows that the main col-
umn of the characteristic truth-table must contain T in the last row. Otherwise,
no sentence containing that connective could be truth-functionally true.

Second, the column in the characteristic truth-table must contain an
odd number of Ts and an odd number of Fs. For otherwise, as the induction
in Exercise 8 shows, any sentence containing two atomic components and only
this connective would have an even number of Ts and an even number of Fs
in its truth-table column. The disjunction truth-function, for example, would
then not be expressible.

Combining these two results, it is easily verified that there are only two
possible characteristic truth-tables for a binary connective whose unit set is
truth-functionally complete—that for ‘↓’ and that for ‘’.

Section 6.3E

1.a. {A ⊃ B, C ⊃ D}, {A ⊃ B}, {C ⊃ D}, ∅
b. {C ∨ ∼ D, ∼ D ∨ C, C ∨ C}, {C ∨ ∼ D, ∼ D ∨ C}, {C ∨ ∼ D, C ∨ C},

{∼ D ∨ C, C ∨ C}, {C ∨ ∼ D}, {∼ D ∨ C}, {C ∨ C}, ∅
c. {(B & A) � K}, ∅
d. ∅

2.a, b, d, e.

4.a. To prove that SD* is sound, it suffices to add a clause for the new
rule to the induction in the proof of Metatheorem 6.3.1.

13. If Qk�1 at position k � 1 is justified by ∼ �I, then Qk�1 is a negated
biconditional.

h P
j ∼ Q

k � 1 ∼ (P � Q) h, j ∼ �I

By the inductive hypothesis, �h P and �j ∼ Q. Since P and ∼ Q are acces-
sible at position k � 1, every member of �h is a member of �k�1, and every
member of �j is a member of �k�1. Hence, by 6.3.2, �k�1 P and �k�1 ∼ Q.
But ∼ (P � Q) is true whenever P and ∼ Q are both true. So �k�1 ∼ (P � Q)
as well.

c. To show that SD* is not sound, it suffices to give an example of a
derivation in SD* of a sentence P from a set � of sentences such that P is not
truth-functionally entailed by �. That is, we show that for some � and P, 

|=
|=|=

|=|=
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� P in SD*, but � P. Here is an example:

1 A Assumption
2 A ∨ B Assumption

3 B 1, 2 C∨E

It is easily verified that {A, A ∨ B} does not truth-functionally entail ‘B’.

e. Yes. In proving Metatheorem 6.3.1, we showed that each rule of SD
is truth-preserving. It follows that if every rule of SD* is a rule of SD, then every
rule of SD* is truth-preserving. Of course, as we saw in Exercise 4.c, adding a
rule produces a system that is not sound if the rule is not truth-preserving.

5. No. In SD we can derive Q from a sentence P & Q by &E. But, if
‘&’ had the suggested truth-table, then {P & Q} would not truth-functionally
entail Q, for (by the second row of the table) P & Q would be true when P
is true and Q is false. Hence it would be the case that {P & Q} Q in SD but
not the case that {P & Q} Q.

6. To prove that SD� is sound for sentential logic, we must show that
the rules of SD� that are not rules of SD are truth-preserving. (By Metatheo-
rem 6.3.1, the rules of SD have been shown to be truth-preserving.) The three
additional rules of inference in SD� are Modus Tollens, Hypothetical Syllo-
gism, and Disjunctive Syllogism. We introduced each of these rules in Chap-
ter 5 as a derived rule. For example, we showed that Modus Tollens is elim-
inable, that anything that can be derived using this rule can be derived without
it, using just the smaller set of rules in SD. It follows that each of these three
rules is truth-preserving. For if use of one of these rules can lead from true
sentences to false ones, then we can construct a derivation in SD (without
using the derived rule) in which the sentence derived is not truth-functionally
entailed by the set consisting of the undischarged assumptions. But Metathe-
orem 6.3.1 shows that this is impossible. Hence each of the derived rules is
truth-preserving.

All that remains to be shown, in proving that SD� is sound, is that the
rules of replacement are also truth-preserving. We can incorporate this as a
thirteenth case in the proof of the inductive step for Metatheorem 6.3.1:

13. If Qk�1 at position k � 1 is justified by a rule of replacement, then
Qk�1 is derived as follows:

h P
k � 1 [P](Q1//Q) h RR

where RR is some rule of replacement, sentence P at position h is accessible at
position k � 1, and [P](Q1//Q) is a sentence that is the result of replacing a
component Q of P with a component Q1 in accordance with one of the rules
of replacement. That the sentence Q is truth-functionally equivalent to Q1, no

|=
�

|=/�
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matter what the rule of replacement is, is easily verified. So, by Exercise 1.e in
Section 6.1E, [P](Q1//Q) is truth-functionally equivalent to P. By the induc-
tive hypothesis, �k P; and since P at h is accessible at position k � 1, it fol-
lows that �k�1 P. But [P](Q1//Q) is true whenever P is true (since they are
truth-functionally equivalent), so �k�1 [P](Q1//Q); that is, �k�1 Qk�1.

Section 6.4E

1. Proof of 6.4.4 Assume that � P in SD. Then there is a derivation
in SD of the following sort

1 P1

. .
n Pn

. .
m P

(where P1, P2, . . . , Pn are members of �). To show that � ∪ {∼ P} is incon-
sistent in SD, we need only produce a derivation of some sentence Q and 
∼ Q from members of � ∪ {∼ P}. This is easy. Start with the derivation of P
from � and add ∼ P as a new primary assumption at line n � 1, renumbering
subsequent lines as is appropriate. As a new last line, enter ∼ P by Reiteration.
The result is a derivation of the sort

1 P1

. .
n Pn

n � 1 ∼ P

. .
m � 1 P
m � 2 ∼ P n � 1 R

So if � P, then � ∪ {∼ P} is inconsistent in SD.
Now assume that � ∪ {∼ P} is inconsistent in SD. Then there is a der-

ivation in SD of the sort

1 P1

. .
n Pn

n � 1 ∼ P

. .
m Q
. .
p ∼ Q

�

�

|=|=
|=

|=
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(where P1, P2, . . . , Pn all members of �). To show that � P, we need only
produce a derivation in which the primary assumptions are members of � and
the last line is P. This is easy. Start with this derivation, but make ∼ P an aux-
iliary assumption rather than a primary assumption. Enter P as a new last line,
justified by Negation Elimination. The result is a derivation of the sort

1 P1

. .
n Pn

n � 1 ∼ P

. .
m Q

. .
p ∼ Q

p � 1 P n � 1 � p ∼ E

Proof of 6.4.10. Assume � ∪ {P} is inconsistent in SD. Then there is
a derivation in SD of the sort

1 P1

.
n Pn

n � 1 P

. .
m Q

. .
p ∼ Q

(where P1, P2, . . . , Pn are members of �). But then there is also a derivation
of the following sort

1 P1

. .
n Pn

n � 1 P

.
m Q
p ∼ Q

p � 1 ∼ P n � 1 � p ∼ I

This shows that if � ∪ {P} is inconsistent in SD, then � ∼ P in SD.�

�



146 SOLUTIONS TO SELECTED EXERCISES ON P. 265

2. If � is inconsistent in SD then, by the definition of inconsistency in
SD, there is some sentence P such that both P and ∼ P are derivable in SD
from �. By the definition of derivability in SD, there is a derivation in which
all of the primary assumptions are members of � and P occurs in the scope
of only those assumptions, and there is a derivation in which all of the pri-
mary assumptions are members of � and ∼ P occurs in the scope of only those
assumptions. Because all derivations are finite in length, it follows that only a
finite subset of members of � occurs as primary assumptions in each of these
derivations, i.e., P is derivable from a finite subset �� of � and ∼ P is derivable
from a finite subset �� of �. We can extend the derivation of P from �� to a
derivation of P from �� ∪ �� by adding members of �� that are not members
of �� as primary assumptions in that derivation, and we can extend the deri-
vation of ∼ P from �� to a derivation of ∼ P from �� ∪ �� by adding mem-
bers of �� that are not members of �� as primary assumptions in that deriva-
tion. This establishes that both P and ∼ P are derivable from the finite subset
�� ∪ �� of �, and hence that there is a finite subset of � that is inconsistent
in SD.

4. Since every rule of SD is a rule of SD�, every derivation in SD is a
derivation in SD�. So if � P, then � P in SD, by Metatheorem 6.4.1, and
therefore � P in SD�. That is, SD� is complete for sentential logic.

7. a. Since we already know that SD is complete, we need only show
that wherever Reiteration is used in a derivation in SD, it can be eliminated
in favor of some combination of the remaining rules of SD. This was proved
in Exercise 13.c in Section 5.4E. Hence SD* is complete as well.

8. We used the fact that Conjunction Elimination is a rule of SD in
proving (b) for 6.4.11, where we showed that if a sentence P & Q is a mem-
ber of a set �* that is maximally consistent in SD, then both P and Q are mem-
bers of �*.

9. First assume that some set � is truth-functionally consistent. Then
obviously every finite subset of � is truth-functionally consistent as well, for all
members of a finite subset of � are members of �, hence all are true on at
least one truth-value assignment.

Now assume that some set � is truth-functionally inconsistent. If � is
finite, then obviously at least one finite subset of � (namely, � itself) is truth-
functionally inconsistent. If � is infinite, then, by Lemma 6.4.3, � is inconsis-
tent in SD, and, by 6.4.6, some finite subset �� of � is inconsistent in SD—that
is, for some sentence P, �� P and �� ∼ P. Hence, by Metatheorem 6.3.3,
�� P and �� ∼ P, so �� is truth-functionally inconsistent; hence not every
finite subset of � is truth-functionally consistent.

|=|=
��

�

�|=
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CHAPTER SEVEN

Section 7.2E

1.a. ‘The President’ is a singular term, ‘Democrat’ is not
x is a Democrat

(‘w’ or ‘y’ or ‘z’ may be used in place of ‘x’)
c. ‘Sarah’ and ‘Smith College’ are the singular terms

x attends Smith College
Sarah attends x
x attends y

e. The singular terms are ‘Charles’ and ‘Rita’
w and Rita are brother and sister
Charles and w are brother and sister
w and z are brother and sister

g. The singular terms are ‘2’, ‘4’, and ‘8’
x times 4 is 8
2 times x is 8
2 times 4 is y
x times y is 8
x times 4 is y
2 times x is y
x times y is z

i. The singular terms are ‘0’, ‘0’, and ‘0’
z plus 0 is 0
0 plus z is 0
0 plus 0 is z
w plus y is 0
w plus 0 is y
0 plus w is y
w plus y is z

2. Herman is larger than Herman.
Herman is larger than Juan.
Herman is larger than Antonio.
Juan is larger than Herman.
Juan is larger than Juan.
Juan is larger than Antonio.
Antonio is larger than Herman.
Antonio is larger than Juan.
Antonio is larger than Antonio.
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Herman is to the right of Herman.
Herman is to the right of Juan.
Herman is to the right of Antonio.
Juan is to the right of Herman.
Juan is to the right of Juan.
Juan is to the right of Antonio.
Antonio is to the right of Herman.
Antonio is to the right of Juan.
Antonio is to the right of Antonio.

Herman is larger than Herman but smaller than Herman.
Herman is larger than Herman but smaller than Juan.
Herman is larger than Herman but smaller than Antonio.
Herman is larger than Juan but smaller than Herman.
Herman is larger than Juan but smaller than Juan.
Herman is larger than Juan but smaller than Antonio.
Herman is larger than Antonio but smaller than Herman.
Herman is larger than Antonio but smaller than Juan.
Herman is larger than Antonio but smaller than Antonio.

Juan is larger than Herman but smaller than Herman.
Juan is larger than Herman but smaller than Juan.
Juan is larger than Herman but smaller than Antonio.
Juan is larger than Juan but smaller than Herman.
Juan is larger than Juan but smaller than Juan.
Juan is larger than Juan but smaller than Antonio.
Juan is larger than Antonio but smaller than Herman.
Juan is larger than Antonio but smaller than Juan.
Juan is larger than Antonio but smaller than Antonio.

Antonio is larger than Herman but smaller than Herman.
Antonio is larger than Herman but smaller than Juan.
Antonio is larger than Herman but smaller than Antonio.
Antonio is larger than Juan but smaller than Herman.
Antonio is larger than Juan but smaller than Juan.
Antonio is larger than Juan but smaller than Antonio.
Antonio is larger than Antonio but smaller than Herman.
Antonio is larger than Antonio but smaller than Juan.
Antonio is larger than Antonio but smaller than Antonio.



150 SOLUTIONS TO SELECTED EXERCISES ON PP. 277–280

EXERCISES 7.3E

1. The PL analogs of the sentences of English, in the same order given
in the Solution Manual answers to exercise 7.2E 2, are

Lhh
Lhj
Lha
Ljh
Ljj
Lja
Lah
Laj
Laa

Rhh
Rhj
Rha
Rjh
Rjj
Rja
Rah
Raj
Raa

Shhh
Shhj
Shha
Shjh
Shjj
Shja
Shah
Shaj
Shaa

Sjhh
Sjhj
Sjha
Sjjh
Sjjj
Sjja
Sjah
Sjaj
Sjaa
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Sahh
Sahj
Saha
Sajh
Sajj
Saja
Saah
Saaj
Saaa

2. a. Bai
c. Bbn
e. Beh
g. (Aph & Ahn) & Ank
i. Aih � Aip
k. ([(Lap & Lbp) & (Lcp & Ldp)] & Lep) & ∼ ([(Bap ∨ Bbp) ∨

(Bcp ∨ Bdp)] ∨ Bep)
m. (Tda & Tdb) & (Tdc & Tde)
o. ∼ ([(Tab ∨ Tac) ∨ (Tad ∨ Tae)] ∨ Taa) & [(Lab & Lac) & 

(Lad & Lae)]

3. a. (Ia & Ba) & ∼ Ra
c. (Bd & Rd) & Id
e. Ib ⊃ (Id & Ia)
g. Lab & Dac
i. ∼ (Lca ∨ Dca) & (Lcd & Dcd)
k. Acb � (Sbc & Rb)

m. (Sdc & Sca) ⊃ Sda
o. (Lcb & Lba) ⊃ (Dca & Sca)
q. Rd & ∼ [Ra ∨ (Rb ∨ Rc)]

4. a.UD: Margaret, Todd, Charles, and Sarah
Gx: x is good at skateboarding
Lx: x likes skateboarding
Hx: x wears headgear
Kx: x wears knee pads

Rxy: x is more reckless than y (at skateboarding)
Sxy: x is more skillful than y (at skateboarding)

c: Charles
m: Margaret
s: Sarah
t: Todd
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(Lm & Lt) & ∼ (Gm ∨ Gt)
Gc & ∼ Lc
Gs & Ls
[(Hm & Ht) & (Hc & Hs)] & [(Kc & Ks) & ∼ (Km ∨ Kt)]
[(Rsm & Rst) & Rsc] & [(Scs & Scm) & Sct]

Note: it may be tempting to use a two-place predicate to symbolize being good
at skateboarding, for example, ‘Gxy’, and another two-place predicate to sym-
bolize liking skateboarding. So too we might use two-place predicates to sym-
bolize wearing headgear and wearing kneepads. Doing so would require
including skateboarding, headgear, and knee pads in the universe of discourse.
But things are now a little murky. Skateboarding is more of an activity than a
thing (although activities are often the ‘‘topics of conversation’’ as when we
say that some people like, for example, hiking, skiing, and canoeing while oth-
ers don’t). And while we might include all headgear and kneepads in our uni-
verse of discourse, we do not know which ones the characters in our passage
wear, so we would be hard pressed to name the favored items.

Moreover, here there is no need to invoke these two-place predicates
because here we are not asked to investigate logical relations that can only be
expressed with two-place predicates. The case would be different if the passage
included the sentence ‘If Sarah is good at anything she is good at sailing’ and
we were asked to show that it follows from the passage that Sarah is good at
sailing. (On the revised scenario we are told that Sarah is good at skate-
boarding, and that if she is good at anything—she is, skateboarding—she is
good at sailing. So she is good at sailing. Here we are treating skateboarding
as something, something Sarah is good at. But we will leave these complexities
until we have fully developed the language PL.)

c. One appropriate symbolization key is

UD: Andrew, Christopher, Amanda
Hz: z is a hiker
Mz: z is a mountain climber
Kz: z is a kayaker
Sz: z is a swimmer

Lzw: z likes w
Nzw: z is nuts about w

a: Andrew
c: Christopher

m: Amanda

(Ha & Hc) & ∼ (Ma ∨ Mc)
(Hm & Mm) & Km
(Ka ∨ Kc) & ∼ (Ka & Kc)
∼ [(Sa ∨ Sc) ∨ Sm]
((Lac & Lca) & [(Lam & Lma) & (Lmc & Lcm)]) & (Nma & Nam)
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Section 7.4E

1.a. (∀z)Bz
c. ∼ (∃x)Bx
e. (∃x)Bx & (∃x)Rx
g. (∃z)Rz ⊃ (∃z)Bz
i. (∀y)By � ∼ (∃y)Ry

2.a. (∃x)Ox & (∃x)Ex
c. ∼ (∃x)Lxa
e. (∀x)Gx
g. (∃x)(Px & Ex)
i. (∀y)[(Py & Lby) ⊃ Ey]
k. (∃y)(Lby & Lyc)

3.a. Pj ⊃ (∀x)Px
c. (∃y)Py ⊃ (Pj & Pr)
e. ∼ Pr ⊃ ∼ (∃x)Px
g. (Pj ⊃ Pr) & (Pr ⊃ (∀x)Px)
i. (∀y)Sy & ∼ (∀y)Py
k. (∀x)Sx ⊃ (∃y)Py

Section 7.5E

1.a. A formula but not a sentence (an open sentence): the ‘z’ in ‘Zz’ is free.
c. A formula and a sentence.
e. A formula but not a sentence (an open sentence): the ‘x’ in ‘Fxz’

is free.
g. A formula and a sentence.
i. Not a formula. ‘∼ (∃x)’ is an expression of SL, but ‘(∼ ∃x)’ is not.
k. Not a formula. Since there is no ‘y’ in ‘Lxx’, ‘(∃y)Lxx’ is not a

formula. Hence, neither is ‘(∃x)(∃y)Lxx’.
m. A formula and a sentence.
o. A formula but not a sentence (an open sentence): ‘w’ in ‘Fw’ is 

free.

2.a. A sentence. The subformulas are

(∃x)(∀y)Byx (∃x)
(∀y)Byx (∀y)
Byx None
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c. Not a sentence. The ‘x’ in ‘(Bg ⊃ Fx)’ is free. The subformulas are

(∀x)(∼ Fx & Gx)� (Bg ⊃ Fx) �
(∀x)(∼ Fx & Gx) (∀x)
Bg ⊃ Fx ⊃
∼ Fx & Gx &
∼ Fx ∼
Gx None
Bg None
Fx None

e. Sentence. The subformulas are

∼ (∃x)Px & Rab &
∼ (∃x)Px ∼
Rab None
(∃x)Px (∃x)
Px None

g. Sentence. The subformulas are

∼ [∼ (∀x)Fx � (∃w) ∼ Gw] ⊃ Maa ⊃
∼ [∼ (∀x)Fx � (∃w) ∼ Gw] ∼
Maa None
∼ (∀x)Fx � (∃w) ∼ Gw �
∼ (∀x)Fx ∼
(∃w) ∼ Gw (∃w)
(∀x)Fx (∀x)
Fx None
∼ Gw ∼
Gw None

i. Sentence. The subformulas are

∼ ∼ ∼ (∃x)(∀z)(Gxaz ∨ ∼ Hazb) ∼
∼ ∼ (∃x)(∀z)(Gxaz ∨ ∼ Hazb) ∼
∼ (∃x)(∀z)(Gxaz ∨ ∼ Hazb) ∼
(∃x)(∀z)(Gxaz ∨ ∼ Hazb) (∃x)
(∀z)(Gxaz ∨ ∼ Hazb) (∀z)
Gxaz ∨ ∼ Hazb ∨
Gxaz None
∼ Hazb ∼
Hazb None
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k. Sentence. The subformulas are

(∃x)[Fx ⊃ (∀w)(∼ Gx ⊃ ∼ Hwx)] (∃x)
Fx ⊃ (∀w)(∼ Gx ⊃ ∼ Hwx) ⊃
Fx None
(∀w)(∼ Gx ⊃ ∼ Hwx) (∀w)
∼ Gx ⊃ ∼ Hwx ⊃
∼ Gx ∼
∼ Hwx ∼
Gx None
Hwx None

m. A sentence. The subformulas are

(Hb ∨ Fa) � (∃z)(∼ Fz & Gza) �
Hb ∨ Fa ∨
(∃z)(∼ Fz & Gza) (∃z)
Hb None
Fa None
∼ Fz & Gza &
∼ Fz ∼
Gza None
Fz None

3.a. (∀x)(Fx ⊃ Ga) Quantified
c. ∼ (∀x)(Fx ⊃ Ga) Truth-functional
e. ∼ (∃x)Hx Truth-functional
g. (∀x)(Fx � (∃w)Gw) Quantified
i. (∃w)(Pw ⊃ (∀y)(Hy � ∼ Kyw)) Quantified
k. ∼ [(∃w)(Jw ∨ Nw) ∨ (∃w)(Mw ∨ Lw)] Truth-functional

m. (∀z)Gza ⊃ (∃z)Fz Truth-functional
o. (∃z) ∼ Hza Quantified
q. (∀x) ∼ Fx � (∀z) ∼ Hza Truth-functional

4.a. Maa & Fa
c. ∼ (Ca � ∼ Ca)
e. (Fa & ∼ Gb) ⊃ (Bab ∨ Bba)
g. ∼ (∃z)Naz � (∀w)(Mww & Naw)
i. Fab � Gba
k. ∼ (∃y)(Hay & Hya)

m. (∀y)[(Hay & Hya) ⊃ (∃z)Gza]
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5.a. (∀y)Ray ⊃ Byy No
c. (∀y)(Rwy ⊃ Byy) No
e. (∀y)(Ryy ⊃ Byy) No
g. (Ray ⊃ Byy) No
i. Rab ⊃ Bbb No

6.a. (∀y) ∼ Ray � Paa Yes
c. (∀y) ∼ Ray � Pba No
e. (∀y)(∼ Ryy � Paa) No
g. (∀y) ∼ Raw � Paa No

Section 7.6E

1.a. A-sentence (∀y)(Py ⊃ Cy)
c. O-sentence (∃w)(Dw & ∼ Sw)
e. I-sentence (∃z)(Nz & Bz)
g. E-sentence (∀x)(Px ⊃ ∼ Sx)
i. A-sentence (∀w)(Pw ⊃ Mw)
k. A-sentence (∀y)(Sy ⊃ Cy)

m. E-sentence (∀y)(Ky ⊃ ∼ Sy)
o. E-sentence (∀y)(Qy ⊃ ∼ Zy)

2.a. (∀y)(By ⊃ Ly)
c. (∀z)(Rz ⊃ ∼ Lz)
e. (∃x)Bx & (∃x)Rx
g. [(∃z)Bz & (∃z)Rz] & ∼ (∃z)(Bz & Rz)
i. (∃y)By & [(∃y)Sy & (∃y)Ly]
k. (∀w)(Cw ⊃ Rw) & ∼ (∀w)(Rw ⊃ Cw)

m. (∀y)Ry ∨ [(∀y)By ∨ (∀y)Gy]
o. (∃w)(Rw & Sw) & (∃w)(Rw & ∼ Sw)
q. (∃x)Ox & (∀y)(Ly ⊃ ∼ Oy)

3.a. An I-sentence and the corresponding O-sentence of PL can both be
true. Consider the English sentences ‘Some positive integers are even’ and
‘Some positive integers are not even’. Where the UD is positive integers and
‘Ex’ is interpreted as ‘x is even’, these can be symbolized as ‘(∃x)Ex’ and ‘(∃x)
∼ Ex’, respectively, and both sentences of PL are true.

An I-sentence and an O-sentence can also both be false. Consider ‘Some
tiggers are fast’ and ‘Some tiggers are not fast’. Where the UD is mammals, ‘Tx’
is interpreted as ‘x is a tigger’ and ‘Fx’ as ‘x is fast’, these become, respectively,
‘(∃x)(Tx & Fx)’ and ‘(∃x)(Tx & ∼ Fx)’ As there are no tiggers, both sentences
of PL are false. Note, however, that there cannot be an I-sentence and a corre-
sponding O-sentence of the sorts (∃x)A and (∃x) ∼ A, where A is anj atomic for-
mula and both the I-sentence and the O-sentence are false. For however A is
interpreted, either there is something that satisfies it, or there is not. In the first
instance (∃x)A is true, in the second (∃x) ∼ A is true.
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Section 7.7E

1.a. (∀z)(Pz ⊃ Hz)
c. (∃z)(Pz & Hz)
e. (∀w)[(Hw & Pw) ⊃ ∼ Iw]
g. ∼ (∀x)[(Px ∨ Ix) ⊃ Hx]
i. (∀y)[(Iy & Hy) ⊃ Ry]
k. (∃z)Iz ⊃ Ih

m. (∃w)Iw ⊃ (∀x)(Rx ⊃ Ix)
o. ∼ (∃y)[Hy & (Py & Iy)]
q. (∀z)(Pz ⊃ Iz) ⊃ ∼ (∃z)(Pz & Hz)
s. (∀w)(Rw ⊃ [(Lw & Iw) & ∼ Hw])

2.a. (∀w)(Lw ⊃ Aw)
c. (∀x)(Lx ⊃ Fx) & (∀x)(Tx ⊃ ∼ Fx)
e. (∃y)[(Fy & Ly) & Cdy]
g. (∀z)[(Lz ∨ Tz) ⊃ Fz]
i. (∃w)(Tw & Fw) & ∼ (∀w)(Tw ⊃ Fw)
k. (∀x)[(Lx & Cbx) ⊃ (Ax & ∼ Fx)]

m. (∃z)(Lz & Fz) ⊃ (∀w)(Tw ⊃ Fw)
o. ∼ Fb & Bb

3.a. (∀x)(Ex ⊃ Yx)
c. (∃y)(Ey & Yy) & ∼ (∀y)(Ey ⊃ Yy)
e. (∃z)(Ez & Yz) ⊃ (∀x)(Lx ⊃ Yx)
g. (∀w)[(Ew & Sw) ⊃ Yw]
i. (∀w)[(Lw & Ew) ⊃ (Yw & Iw)]
k. (∀x)[(Ex ∨ Lx) ⊃ (Yx ⊃ Ix)]

m. ∼ (∃z)[(Pz & ∼ Iz) & Yz]
o. (∀x)[(Ex & Rxx) ⊃ Yx]
q. (∀x)([Ex ∨ Lx) & (Rx ∨ Yx)] ⊃ Rxx)
s. (∀z)([Yz & (Lz & Ez)] ⊃ Rzz)

4.a. (∀x)[Px ⊃ (Ux & Ox)]
c. (∀z)[Az ⊃ ∼ (Oz ∨ Uz)]
e. (∀w)(Ow � Uw)
g. (∃y)(Py & Uy) & (∀y)[(Py & Ay) ⊃ ∼ Uy]
i. (∃z)[Pz & (Oz & Uz)] & (∀x)[Sx ⊃ (Ox & Ux)]
k. ((∃x)(Sx & Ux) & (∃x)(Px & Ux)) & ∼ (∃x)(Ax & Ux)

5.a. Two is prime and three is prime.
c. There is an integer that is even and there is an integer that is odd.
e. Each integer is either even or odd.
g. There is an integer that is not larger than one. [Note: that integer

is one itself.]
i. Each integer is such that if it is even then it is evenly divisible by two.
k. Every integer is evenly divisible by one.
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m. An integer is evenly divisible by two if and only if it is even.
o. If one is larger than some integer then it is larger than every integer.
q. No integer is prime and evenly divisible by four.

Section 7.8E

1.a. (∃y)[Sy & (Cy & Ly)]
c. ∼ (∀w)[(Sw & Lw) ⊃ Cw]
e. ∼ (∀x)[(∃y)(Sy & Sxy) ⊃ Sx]
g. ∼ (∀x)[(∃y)(Sy & (Dxy ∨ Sxy)) ⊃ Sx]
i. (∀z)[(Sz & (∃w)(Swz ∨ Dwz)) ⊃ Lz]
k. Sr ∨ (∃y)(Sy & Dry)

m. (Sr & (∀z)[(Dzr ∨ Szr) ⊃ Sz]) ∨ (Sj & (∀z)[(Dzj ∨ Szj) ⊃ Sz])

2.a. (∀x)[Ax ⊃ (∃y)(Fy & Exy)] & (∀x)[Fx ⊃ (∃y)(Ay & Exy)]
c. ∼(∃y)(Fy & Eyp)
e. ∼(∃y)(Fy & Eyp) & (∃y)(Cy & Eyp)
g. ∼ (∃w)(Aw & Uw) & (∃w)(Aw & Fw)
i. (∃w)[(Aw & ∼ Fw) & (∀y)[(Fy & Ay) ⊃ Ewy]]
k. (∃z)[Fz & (∀y)(Ay ⊃ Dzy)] & (∃z)[Az & (∀y)(Fy ⊃ Dzy)]

m. (∀x)[(∀y)Dxy ⊃ (Px ∨ (Ax ∨ Ox))]

3.a. (∀x)[Px ⊃ (∃y)(Syx & Bxy)]
c. (∀y)[(Py & (∀z)Bzy) ⊃ (∀w)(Swy ⊃ Byw)]
e. (∀w)(∀x)[(Pw & Sxw) ⊃ Bwx] ⊃ (∀z)(Pz ⊃ Wz)
g. (∀x)(∀y)([(Px & Syx) & Bxy] ⊃ (∼ Nxy & ∼ Lyx))
i. (∃y)[Py & (∀z)(Pz ⊃ Byz)]
k. (∀z)((Pz & Uz) ⊃ [(∀w)(Swz ⊃ Bzw) ∨ (∀w)(Swz ⊃ Gzw)])

m. (∀w)(∀x)([(Pw & Sxw) & (Bwx & Bxw)] ⊃ (Ww & Wx))
o. (∃x)(∃y)[(Px & Syx) & ∼ Uxty]
q. (∀y)(∀z)([(Py & Szy) & ∼ Lzy] ⊃ (∼ Uzy & Bzy))

4.a. Hildegard sometimes loves Manfred.
c. Manfred sometimes loves Hildegard and Manfred always loves

Siegfried.
e. If Manfred ever loves himself, then he does so whenever Hildegard

loves him.
g. There is someone no one ever loves.
i. There is a time at which someone loves everyone.
k. There is always someone who loves everyone.

m. No one loves anyone all the time.
o. Everyone loves, at some time, himself or herself.

5.a. An even integer times any integer is even.
c. If the sum of a pair of integers is even, then either both integers

are even or both are odd.
e. There is no prime that is larger than every prime.



SOLUTIONS TO SELECTED EXERCISES ON PP. 345–348, 365–367 159

g. There are no primes such that their product is prime.
i. There is a prime such that it times any prime is even.
k. The product of a pair of integers is odd if and only if both mem-

bers of the pair are odd.
m. If a pair of integers are both odd, then their product is odd and

their sum is even.
o. The sum of an odd integer and an even integer is odd, and their

product is even.
q. There is an integer that is larger than one, that three is larger than,

and that is prime and even.

Section 7.9E

1.a. (∀x)[(Wx & ∼ x � d) ⊃ Sx]
c. (∀x)[(Wx & ∼ x � d) ⊃ [Sx ∨ (∃y)[Sy & (Dxy ∨ Sxy)]]]
e. [Sdj & (∀x)(Sxj ⊃ x � d)] & ∼ (∃x)Dxj
g. (∃x)[(Sxr & Sxj) & (∀y)[(Syr ∨ Syj) ⊃ y � x]]
i. (∃x)(∃y)[((Dxr & Dyr) & (Sx & Sy)) & ∼ x � y]
k. (∃x)[(Sxj & Sx) & (∀y)(Syj ⊃ y � x)] & (∃x)(∃y)(([(Sx & Sy) &

(Dxj & Dyj)] & ∼ x � y) & (∀z)[Dzj ⊃ (z � x ∨ z � y)])

2.a. Every positive integer is less than some positive integer [or] There
is no largest positive integer.

c. There is positive integer than which no integer is less.
e. 2 is even and prime, and it is the only positive integer that is both

even and prime.
g. The product of any pair of odd positive integers is itself odd.
i. If either of a pair of positive integers is even, their product is even.
k. There is exactly one prime that is greater than 5 and less than 9.

3.a. (∀x)(∀y)(Nxy ⊃ Nyx) Symmetric only
c. Neither reflexive, nor

symmetric, nor transitive
e. (∀x)(∀y)(Rxy ⊃ Ryx) Symmetric and transitive

(∀x)(∀y)(∀z)[(Rxy & Ryz) ⊃ Rxz]
g. (∀x)Txx Transitive and reflexive

(∀x)(∀y)(∀z)[(Txy & Tyz) ⊃ Txz] (in UD: Physical objects)
i. (∀x)(∀y)(Exy ⊃ Eyx) Symmetric and reflexive

(∀x)Exx (in UD: People)
k. (∀x)Wxx Symmetric, transitive, and

(∀x)(∀y)(Wxy ⊃ Wyx) reflexive (in UD: Physical
(∀x)(∀y)(∀z)[(Wxy) & Wyz) ⊃ Wxz] objects)

m. (∀x)(∀y)(∀z)[(Axy & Ayz) ⊃ Axz] Transitive only
o. (∀x)Lxx Symmetric, transitive, and

(∀x)(∀y)(Lxy ⊃ Lyx) reflexive (in UD: People)
(∀x)(∀y)(∀z)[(Lxy & Lyz) ⊃ Lxz]
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4.a. Sjc
c. Sjc & (∀x)[(Sxc & ∼ x � j) ⊃ Ojx]
e. (∃x)[(Dxd & (∀y)[(Dyd & ∼ y � x) ⊃ Oxy]) & Px]
g. Dcd & (∀x)[(Dxd & ∼ x � c) ⊃ Ocx]
i. (∃x)[(Sxh & (∀y)[(Syh & ∼ y � x) ⊃ Txy]) & Mcx]
k. (∃x)[(Bx & (∀y)(By ⊃ y � x)) &

(∃w)((Mx & (∀z)(Mz ⊃ z � w)) & x � w)]
m. (∃x)[(Mxc & Bxj) & (∀w)(Bwj ⊃ x � w)]

5.a. ∼ (∃y)a � f(y)
c. (∃x)(Px & Ex)
e. (∀x)(∃y)y � f(x)
g. (∀y)(Oy ⊃ Ef(y))
i. (∀x)(∀y)[Ot(x,y) ⊃ Et( f(x), f(y))]
k. (∀x)(∀y)[Os(x,y) ⊃ [(Ox & Ey) ∨ (Oy & Ex)]]

m. (∀x)(∀y)[(Px & Py) ⊃ ∼ Pt(x,y)]
o. (∀z)[(Ez ⊃ Eq(z)) & (Oz ⊃ Oq(z)]
q. (∀x)[Ox ⊃ Ef(q(x))]
s. (∀x)[(Px & ∼ x � b) ⊃ Os(b,x)]
u. (∃x)(∃y)[(Px & Py) & t(x,y) � f(s(x,y))]
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CHAPTER EIGHT

Section 8.1E

1.a. F
c. T
e. F
g. T

2.a. T
c. T
e. F
g. F

3.a. One interpretation is

UD: Set of people
Nxy: x is the mother of y

a: Jane Doe
d: Jay Doe

c. One interpretation is

UD: Set of U.S. cities
Lx: x is in California

Cxy: x is to the north of y
h: San Francisco
m: Los Angeles

e. One interpretation is

UD: Set of positive integers
Mx: x is odd
Nx: x is even

a: 1
b: 2

4.a. One interpretation is

UD: Set of positive integers
Cxy: x equals y squared

r: 2
s: 3
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c. One interpretation is

UD: Set of people
Lx: x is a lion

i: Igor Stravinsky
j: Jesse Winchester

m: Margaret Mead

e. One interpretation is

UD: Set of positive integers
Jx: x is even
a: 1
b: 2
c: 3
d: 4

5.a. One interpretation is

UD: Set of people
Fxy: x is the mother of y

a: Liza Minelli
b: Judy Garland (Liza Minelli’s mother)

On this interpretation, ‘Fab ⊃ Fba’ is true, and ‘Fba ⊃ Fab’ is false.

c. One interpretation is

UD: Set of planets
Cxyz: the orbit of x is between the orbit of y and the orbit of z

Mx: x is inhabited by human life
a: Earth
p: Venus
q: Pluto
r: Mars

On this interpretation, ‘∼ Ma ∨ Cpqr’ is false, and ‘Capq ∨ ∼ Mr’ is true.

e. One interpretation is

UD: Set of positive integers
Lxy: x is less than y
Mxy: x equals y

j: 1
k: 1

On this interpretation the first sentence is true and the second false.



6.a. Suppose that ‘Ba’ is true on some interpretation. Then ‘Ba ∨ ∼ Ba’
is true on that interpretation. Suppose that ‘Ba’ is false on some interpreta-
tion. Then ‘∼ Ba’ is true on that interpretation, and so is ‘Ba ∨ ∼ Ba’. Since
on any interpretation ‘Ba’ is either true or false, we have shown that ‘Ba ∨ ∼ Ba’
is true on every interpretation.

7.a. False. For consider any person w who is over 40 years old. It is true
that that person is over 40 years old but false that some person is her own sis-
ter. So that person w is not such that if w is over 40 years old then some per-
son is her own sister.

c. False. The sentence says that there is at least one person x such that
every person y is either a child or a brother of x, which is obviously false.

e. True. The antecedent, ‘(∃x)Cx’, is true. At least one person is
over 40 years old. And the consequent, ‘((∃x)(∃y)Fxy ⊃ (∃y)By)’, is also true:
‘(∃x)(∃y)Fxy’ is true, and ‘(∃y)By’ is true.

g. True. The antecedent, ‘(∀x)Bx’, is false, so the conditional sentence
is true.

i. True. The sentence says that there is at least one person x such that
either x is over 40 years old or x and some person y are sisters and y is over
40 years old. Both conditions are true.

8.a. True. Every U.S. president held office after George Washington’s
first term. Note that for the sentence to be true, George Washington too must
have held office after George Washington’s first term of office. He did—he
was in office for two terms.

c. True. George Washington was the first U.S. president, and at least
one U.S. president y held office after Washington.

e. True. Each U.S. president y is such that if y is a U.S. citizen (which
every U.S. president y is) then at least one U.S. president held office before
or after y’s first term.

g. False. Every U.S. president x held office after George Washington’s
first term, but, for any such president x, no non-U.S. citizen has held office
before x (because every U.S. president is a U.S. citizen).

i. True (in 2003!). The sentence says that a disjunction is not the case
and therefore that each disjunct is false. The first disjunct, ‘Bg’, is false—
George Washington was not a female. The second disjunct, which says that
there is a U.S. president who held office after every U.S. president’s first term
of office, is false (there is no one yet who has held office after George W.
Bush’s first term).

9.a. True. The first conjunct, ‘Bb’, is true. The second conjunct is also
true since no positive integer that is greater than 2 is equal to 2.

c. True. No positive integer x is equal to any number than which it is
greater.

e. True. The antecedent is true since it is not the case that every pos-
itive integer is greater than every positive integer. But ‘Mcba’ is also true:
3 � 2 � 1.
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g. True. No positive integer z that is even is such that the result of sub-
tracting 1 from z is also even.

i. False. Not every positive integer (in fact, no positive integer) is such
that it equals itself if and only if there are not two positive integers of which
it is the difference. Every positive integer equals itself, but every positive inte-
ger is also the difference between two positive integers.

Section 8.2E

1.a. The sentence is false on the following interpretation:

UD: Set of positive integers
Fx: x is divisible by 4
Gx: x is even

Every positive integer that is divisible by 4 is even, but not every positive inte-
ger is even.

c. The sentence is false on the following interpretation:

UD: Set of positive integers
Bxy: x is less than y

Every positive integer is less than at least one positive integer, but there is no
single positive integer that every positive integer is less than.

e. The sentence is false on the following interpretation:

UD: Set of positive integers
Fx: x is odd
Gx: x is prime

The antecedent, ‘(∀x)Fx ⊃ (∀w)Gw’, is true since its antecedent, ‘(∀x)Fx’, is
false. But the consequent, ‘(∀z)(Fz ⊃ Gz)’, is false since at least one odd positive
integer is not prime (the integer 9, for example).

g. The sentence is false on the following interpretation:

UD: Set of positive integers
Gx: x is negative
Fxy: x equals y

No positive integer is negative, but not every positive integer is such that if it
equals itself (which every one does) then it is negative.

2.a. The sentence is true on the following interpretation:

UD: Set of positive integers
Bxy: x equals y



The sentence to the left of ‘�’ is true since it is not the case that all positive
integers equal one another; and the sentence to the right of ‘�’ is true since
each positive integer is equal to itself.

c. The sentence is true on the following interpretation:

UD: Set of positive integers
Fx: x is odd
Gx: x is even

At least one positive integer is odd, and at least one positive integer is even,
but no positive integer is both odd and even.

e. The sentence is true on the following interpretation:

UD: Set of positive integers
Fx: x is negative
Gx: x is odd

Trivially, every negative positive integer is odd since no positive integer is neg-
ative; and every positive integer that is odd is not negative.

g. The sentence is true on the following interpretation:

UD: Set of positive integers
Bx: x is prime
Hx: x is odd

The antecedent is false—not every positive integer is such that it is prime if
and only if it is odd, and the consequent is true—at least one positive integer
is both prime and odd.

i. The sentence is true on the following interpretation:

UD: Set of positive integers
Bxy: x is less than y

The less-than relation is transitive, making the first conjunct true; for every
positive integer there is a greater one, making the second conjunct true; and
the less-than relation is irreflexive, making the third conjunct true.

3.a. The sentence is true on the following interpretation:

UD: Set of positive integers
Fx: x is odd
Gx: x is prime
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At least one positive integer is both odd and prime, but also at least one pos-
itive integer is neither odd nor prime.

The sentence is false on the following interpretation:

UD: Set of positive integers
Fx: x is positive
Gx: x is prime

At least one positive integer is both positive and prime, but no positive inte-
ger is neither positive nor prime.

c. The sentence is true on the following interpretation:

UD: Set of positive integers
Bxy: x is evenly divisible by y

n: the number 9

The antecedent, ‘(∀x)Bnx’, is false on this interpretation; 9 is not evenly divis-
ible by every positive integer.

The sentence is false on the following interpretation:

UD: Set of positive integers
Bxy: x is less than or equal to y

n: the number 1

The number 1 is less than or equal to every positive integer, so the antecedent
is true and the consequent false.

e. The sentence is true on the following interpretation:

UD: Set of positive integers
Nxy: x equals y

Each positive integer x is such that each positive integer w that is equal to x
is equal to itself.

The sentence is false on the following interpretation:

UD: Set of positive integers
Nxy: x is greater than y

No positive integer x is such that every positive integer w that is greater or
smaller than x is greater than itself.



168 SOLUTIONS TO SELECTED EXERCISES ON PP. 387–388

g. The sentence is true on the following interpretation:

UD: Set of positive integers
Cx: x is greater than 0
Dx: x is prime

Every positive integer is either greater than 0 or prime (because every posi-
tive integer is greater than 0), and at least one positive integer is both greater
than 0 and prime. The biconditional is therefore true on this interpretation.

The sentence is false on the following interpretation:

UD: Set of positive integers
Cx: x is even
Dx: x is odd

Every positive integer is either even or odd, but no positive integer is both.
The biconditional is therefore false on this interpretation.

4.a. If the antecedent is true on an interpretation, then at least one
member x of the UD, let’s assume a, stands in the relation B to every mem-
ber y of the UD. But then it follows that for every member y of the UD, there
is at least one member x that stands in the relation B to y—namely, a. So the
consequent is also true. If the antecedent is false on an interpretation, then
the conditional is trivially true. So the sentence is true on every interpretation.

c. If ‘Fa’ is true on an interpretation, then ‘Fa ∨ [(∀x)Fx ⊃ Ga]’ is true.
If ‘Fa’ is false on an interpretation, then ‘(∀x)Fx’ is false, making ‘(∀x)Fx ⊃ Ga’
true. Either way, the disjunction is true.

e. If ‘(∃x)Hx’ is true on an interpretation, then the disjunction is true
on that interpretation. If ‘(∃x)Hx’ is false on an interpretation, then no mem-
ber of the UD is H. In this case, every member of the UD is such that if it is
H (which it is not) then it is J, and so the second disjunct is true, making the
disjunction true as well. Either way, then, the disjunction is true.

5.a. No member of any UD is such that it is in the extension of ‘B’ if
and only if it isn’t in the extension of ‘B’. So the existentially quantified sen-
tence is false on every interpretation.

c. The second conjunct is true on an interpretation if and only if no
member of the UD is G and no member of the UD is not F—that is, every
member of the UD is F. But then the first conjunct must be false, because its
antecedent is true but its consequent is false. Thus there is no interpretation
on which the entire conjunction is true; it is quantificationally false.

e. The third conjunct is true on an interpretation if and only if at least
one member u of the UD is A but is not C. For the first conjunct to be true,
u must also be B since it is A; and for the second conjunct to be true, u must
also be C since it is B. But that means that the conjunction is true if and only
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if at least one member u of the UD is both C and not C. This latter is impos-
sible; so there is no interpretation on which the sentence is true, i.e., it is quan-
tificationally false.

6.a. The sentence is quantificationally indeterminate. It is true on the
interpretation

UD: Set of positive integers
Gx: x is odd
Hx: x is even

since at least one positive integer is odd and at least one is even, and at least
one positive integer (in fact, every positive integer) is not both odd and even.

The sentence is false on the interpretation

UD: Set of positive integers
Gx: x is less than zero
Hx: x is even

since the first conjunct is false: no positive integer is less than zero.

c. The sentence is quantificationally true. If every member of the UD
that is F is also G, then every member of the UD that fails to be G must also
fail to be F.

e. The sentence is quantificationally indeterminate. It is true on the
interpretation

UD: Set of positive integers
Dx: x is odd

Hxy: x is greater than or equal to y

because the consequent, which says that there is a positive integer z such that
every odd positive integer is greater than or equal to z, is true. The positive
integer 1 satisfies this condition.

The sentence is false on the interpretation

UD: Set of positive integers
Dx: x is odd

Hxy: x equals y

because the antecedent, which says that for every odd positive integer there is
at least one positive integer to which it is equal, is true; but the antecedent,
which says that there is some one positive integer to which every odd positive
integer is equal, is false.
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Section 8.3E

1.a. The first sentence is false and the second true on the following
interpretation:

UD: Set of positive integers
Fx: x is odd
Gx: x is prime

a: the number 4

Some positive integer is odd and the number 4 is not prime, so ‘(∃x)Fx ⊃ Ga’
is false. But any even positive integer is such that if that integer is odd (which
it is not) then the number 4 is prime; so ‘(∃x)(Fx ⊃ Ga)’ is true.

c. The first sentence is false and the second true on the following
interpretation:

UD: Set of integers
Fx: x is a multiple of 2
Gx: x is an odd number

It is false that either every integer is a multiple of 2 or every integer is odd,
but it is true that every integer is either a multiple of 2 or odd.

e. The first sentence is false and the second true on the following
interpretation:

UD: Set of positive integers
Fx: x is odd
Gx: x is prime

An odd prime (e.g., the number 3) is not such that it is even if and only if it is
prime. But ‘(∃x)Fx � (∃x)Gx’ is true since ‘(∃x)Fx’ and ‘(∃x)Gx’ are both true.

g. The first sentence is true and the second false on the following
interpretation:

UD: Set of positive integers
Bx: x is less than 5

Dxy: x is divisible by y without remainder

The number 1 is less than 5 and divides every positive integer without remain-
der. But ‘(∀x)(Bx ⊃ (∀y)Dyx)’ is false, for 2 is less than 5 but does not divide
any odd number without remainder.
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i. The first sentence is false and the second true on the following
interpretation:

UD: set of positive integers
Fx: x is odd

Kxy: x is smaller than y

The number 1 does not satisfy the condition that if it is odd (which it is) then
there is a positive integer that is smaller than it. But at least one positive inte-
ger does satisfy the condition—in fact, all other positive integers do.

2.a. Suppose that ‘(∀x)Fx ⊃ Ga’ is true on an interpretation. Then
either ‘(∀x)Fx’ is false or ‘Ga’ is true. If ‘(∀x)Fx’ is false, then some member
of the UD is not in the extension of ‘F’. But then that object is trivially such
that if it is F (which it is not) then a is G. So ‘(∃x)(Fx ⊃ Ga)’ is true. If ‘Ga’
is true, then trivially every member x of the UD is such that if x is F then a is
G; so ‘(∃x)(Fx ⊃ Ga)’ is true in this case as well.

Now suppose that ‘(∀x)Fx ⊃ Ga’ is false on some interpretation. Then
‘(∀x)Fx’ is true, and ‘Ga’ is false. Every object in the UD is then in the exten-
sion of ‘F’; hence no member x is such that if it is F (which it is) then a is G
(which is false). So ‘(∃x)(Fx ⊃ Ga)’ is false as well.

c. Suppose that ‘(∃x)(Fx ∨ Gx)’ is true on an interpretation. Then at
least one member of the UD is either in the extension of ‘F’ or in the exten-
sion of ‘G’. This individual therefore does not satisfy ‘∼ Fy & ∼ Gy’, and so
‘(∀y)(∼ Fy & ∼ Gy)’ is false and its negation true.

Now suppose that ‘(∃x)(Fx ∨ Gx)’ is false on an interpretation. Then
no member of the UD satisfies ‘Fx ∨ Gx’—no member of the UD is in the
extension of ‘F’ or in the extension of ‘G’. In this case, every member of the
UD satisfies ‘∼ Fy & ∼ Gy’; so ‘(∀y)(∼ Fy & ∼ Gy)’ is true and its negation false.

e. Suppose that ‘(∀x)(∀y)Gxy’ is true on an interpretation. Then each
pair of objects in the UD is in the extension of ‘G’. But then ‘(∀y)(∀x)Gxy’
must also be true. The same reasoning establishes the reverse.

3.a. The sentences are not quantificationally equivalent. The first sen-
tence is true and the second false on the following interpretation:

UD: Set of positive integers
Fx: x is greater than 4
Gx: x is less than 10

At least one positive integer is either greater than 4 or less than 10, but it
is false that every positive integer fails to be both greater than 4 and less
than 10.
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c. The sentences are not quantificationally equivalent. The first sen-
tence is false and the second true on the following interpretation:

UD: Set of positive integers
Gxy: x equals y

It is false that each pair of positive integers is such that either the first equals
the second or vice versa, but it is true that each pair of positive integers is such
that either the first member equals itself (which is always true) or it is equal
to the second.

4.a. All the set members are true on the following interpretation:

UD: Set of positive integers
Bx: x is odd
Cx: x is prime

At least one positive integer is odd, and at least one positive integer is prime,
and some positive integers are neither odd nor prime.

c. All the set members are true on the following interpretation:

UD: Set of positive integers
Fx: x is greater than 10
Gx: x is greater than 5
Nx: x is smaller than 3
Mx: x is smaller than 5

Every positive integer that is greater than 10 is greater than 5, every positive
integer that is smaller than 3 is smaller than 5, and no positive integer that is
greater than 5 is also smaller than 5.

e. All the set members are true on the following interpretation:

UD: Set of positive integers
Nx: x is negative
Mx: x equals 0
Cxy: x is greater than 7

The two sentences are trivially true, the first because no positive integer is neg-
ative and the second because no positive integer equals 0.

g. All the set members are true on the following interpretation:

UD: Set of positive integers
Nx: x is prime
Mx: x is an even number
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The first sentence is true because 3 is prime but not even. Hence not all primes
are even numbers. The second is true because any nonprime integer is such
that if it is prime (which it is not) then it is even. Hence it is false that all pos-
itive integers fail to satisfy this condition.

i. All the set members are true on the following interpretation:

UD: Set of positive integers
Fxy: x evenly divides y
Gxy: x is greater than y

a: 1

At least one positive integer is evenly divisible by 1, at least one positive inte-
ger is such that 1 is not greater than that integer, and every positive integer
is either evenly divisible by 1 or such that 1 is greater than it.

5.a. If the set is quantificationally consistent, then there is an interpre-
tation on which both set members are true. But if ‘(∃x)(Bx & Cx)’ is true on
an interpretation, then at least one member x of the UD is in the extensions
of both ‘B’ and ‘C’. That member is not neither B nor C, so, if ‘(∃x)(Bx & Cx)’
is true, then ‘(∀x) ∼ (Bx ∨ Cx)’ is false. There is no interpretation on which
both set members are true.

c. If the first set member is true on an interpretation, then every pair
x and y of members of the UD is such that either x stands in the relation B
to y or y stands in the relation B to x. In particular, each pair consisting of a
member of the UD and itself must satisfy the condition and so must stand in
the relation B to itself. This being so, the second set member is false on such
an interpretation. Thus there can be no interpretation on which both set
members are true.

e. If the first sentence is true on an interpretation, then there is at
least one member of the UD that stands in the relation G to every member
of the UD. In that case it is false that every pair of members of the UD fail to
satisfy ‘Gxy’, so the second sentence must be false. Thus there can be no inter-
pretation on which both set members are true.

6.a. The set is quantificationally inconsistent. If the third member is
true, then something in the UD is F. If the first member is also true, then,
because the antedent will be true, the consequent will also be true: everything
in the UD will be F. But then the second sentence must be false: there is noth-
ing that is not F. Thus there can be no interpretation on which all three set
members are true.

c. The set is quantificationally consistent, as the following interpretation
shows:

UD: Set of positive integers
Gxy: x equals y
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The first sentence is true because each positive integer fails to be equal to all
positive integers; and the second sentence is true because every positive inte-
ger is equal to itself. Thus both members of the set are true on at least one
interpretation.

7. Suppose that P and Q are quantificationally equivalent. Then on every
interpretation P and Q have the same truth-value. Thus the biconditional P � Q
is true on every interpretation (since a biconditional is true when its immediate
components have the same truth-value); hence it is quantificationally true.

Suppose that P � Q is quantificationally true. Therefore it is true on
every interpretation. Then P and Q have the same truth-value on every inter-
pretation (since a biconditional is true only if its immediate components have
the same truth-value) and are quantificationally equivalent.

Section 8.4E

1.a. The set members are true and ‘(∃x)(Hx & Fx)’ false on the fol-
lowing interpretation:

UD: Set of positive integers
Fx: x is evenly divisible by 2

Hx: x is odd
Gx: x is greater than or equal to 1

Every positive integer that is evenly divisible by 2 is greater than or equal to
1, every odd positive integer is greater than or equal to 1, but no positive inte-
ger is both evenly divisible by 2 and odd.

c. The set member is true and ‘Fa’ is false on the following inter-
pretation:

UD: Set of positive integers
Fx: x is even

a: the number 1

At least one positive integer is even, but the number 1 is not even.

e. The set members are true and ‘(∃x)Bx’ is false on the following
interpretation:

UD: Set of positive integers
Bx: x is negative
Cx: x is prime

Every positive integer is trivially such that if it is negative then it is prime, for
no positive integer is negative; and at least one positive integer is prime. But
no positive integer is negative.
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g. The set member is true and ‘(∀x) ∼ Lxx’ is false on the following
interpretation:

UD: Set of positive integers
Lxy: x is greater than or equal to y

Every positive integer x is such that for some positive integer y, x is not greater
than or equal to y. But it is false that every positive integer is not greater than
or equal to itself.

2.a. The premises are true and the conclusion false on the following
interpretation:

UD: Set of positive integers
Fx: x is positive
Gx: x is negative
Nx: x equals 0

The first premise is true since its antecedent is false. The second premise is triv-
ially true because no positive integer equals 0. The conclusion is false for no
positive integer satisfies the condition of being either not positive or negative.

c. The premises are true and the conclusion false on the following
interpretation:

UD: Set of positive integers
Fx: x is prime
Gx: x is even
Hx: x is odd

There is an even prime positive integer (the number 2), and at least one pos-
itive integer is odd and prime, but no positive integer is both even and odd.

e. The premises are true and the conclusion false on the following
interpretation:

UD: Set of positive integers
Fx: x is negative
Gx: x is odd

The first premise is trivially true, for no positive integer is negative. For the
same reason, the second premise is true. But at least one positive integer is
odd, and so the conclusion is false.
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g. The premises are true and the conclusion false on the following
interpretation:

UD: Set of positive integers
Gx: x is prime

Dxy: x equals y

Some positive integer is prime, and every prime number equals itself, but there
is no prime number that is equal to every positive integer.

i. The premises are true and the conclusion false on the following
interpretation:

UD: Set of positive integers
Fx: x is odd
Gx: x is positive
Hx: x is prime

Every odd positive integer is positive, and every prime positive integer is pos-
itive, but not every positive integer is odd or prime.

3.a. A symbolization of the first argument is

(∀x)Bx

(∃x)Bx

To see that this argument is quantificationally valid, assume that ‘(∀x)Bx’ is
true on some interpretation. Then every member of the UD is B. Since every
UD is nonempty, it follows that there is at least one member that is B. So
‘(∃x)Bx’ is true as well.

A symbolization of the second argument is

(∀x)(Px ⊃ Bx)

(∃x)(Px & Bx)

The premise is true and the conclusion false on the following interpretation:

UD: Set of positive integers
Px: x is negative
Bx: x is prime

c. One symbolization of the first argument is

(∃x)(∀y)Lxy

(∀y)(∃x)Lxy



SOLUTIONS TO SELECTED EXERCISES ON P. 398 177

To see that the argument is quantificationally valid, assume that the premise
is true on some interpretation. Then some member x of the UD—let’s call it
a—stands in the relation L to every member of the UD. Thus for each mem-
ber y of the UD, there is some member—namely, a—that stands in the rela-
tion L to y. So the conclusion is true as well.

A symbolization of the second argument is

(∀x)(∃y)Lyx

(∃y)(∀x)Lyx

The following interpretation makes the premise true and the conclusion false:

UD: Set of positive integers
Lxy: x is larger than y

For each positive integer, there is a larger one, but no positive integer is the
largest.

e. A symbolization of the first argument is

(∃x)(Tx & Sx) & (∃x)(Tx & ∼ Hx)

(∃x)(Tx & (Sx ∨ ∼ Hx))

To see that this argument is quantificationally valid, assume that the premise
is true on some interpretation. Then at least one member of the UD—let’s
call it a—is both T and S and at least one member of the UD is both T and
not H. a satisfies the condition of being both T and either S or H, and so the
conclusion is true as well.

A symbolization of the second argument is

(∀x)(Tx ⊃ Sx) & ∼ (∃x)(Tx & Hx)

(∃x)(Tx & (Sx ∨ ∼ Hx))

The following interpretation makes the premise true and the conclusion false:

UD: Set of positive integers
Tx: x is negative
Sx: x is odd

Hx: x is prime

Every negative positive integer (there are none) is odd, and there is no posi-
tive integer that is negative and prime. But it is false that some positive inte-
ger is both negative and either odd or not prime.
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g. A symbolization of the first argument is

(∀x)(Ax ⊃ Cx) & (∀x)(Cx ⊃ Sx)

(∀x)(Ax ⊃ Sx)

To see that the argument is quantificationally valid, assume that the premise
is true on some interpretation. Then every member of the UD that is A is also
C, and every member of the UD that is C is also S. So if a member of the UD
is A, it is C and therefore S as well, which is what the conclusion says.

A symbolization of the second argument is

(∀x)(Sx ⊃ Cx) & (∀x)(Cx ⊃ Ax)

(∀x)(Ax ⊃ Sx)

The premise is true and the conclusion false on the following interpretation:

UD: Set of positive integers
Ax: x is positive
Cx: x is greater than 1
Sx: x is even

Every even positive integer is greater than 1, and every positive integer that is
greater than 1 is positive. But not every positive integer that is positive is
even—some positive integers are odd.

4.a. The argument is quantificationally invalid. The premises are true
and the conclusion false on the following interpretation:

UD: Set of positive integers
Dx: x is odd
Fx: x is greater than 10
Lx: x is greater than 9

Every odd positive integer that is greater than 9 is greater than 10; at least one
odd positive integer is not greater than 10; but it is false that no positive inte-
ger is greater than 9.

c. The argument is quantificationally invalid. The premise is true and
the conclusion false on the following interpretation:

UD: Set of positive integers
Hx: x is less than 0
Rx: x is less than �1
Sx: x is less than �2
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There is at least one positive integer such that it is less than 0 if and only if it
is less than both �1 and �2; every positive integer has this property. But there
is no positive integer that is either less than 0 and less than �1 or less than 0
and less than �2.

Section 8.5E

1.a. Ca ⊃ Daa
c. Ba ∨ Faa
e. Ca ⊃ (N ⊃ Ba)
g. Ba ⊃ Ca
i. Ca ∨ (Daa ∨ Ca)

2. Remember that, in expanding a sentence containing the individual
constant ‘g’, we must use that constant.

a. Dag & Dgg
c. [Aa & (Daa ∨ Dba)] ∨ [Ab & (Dab ∨ Dbb)]
e. [Ua ⊃ ((Daa ∨ Daa) ∨ (Dab ∨ Dba))]

& [Ub ⊃ ((Dba ∨ Dab) ∨ (Dbb ∨ Dbb))]
g. [Dag ⊃ ((∼ Ua & Daa) ∨ (∼ Ug & Dag))]

& [Dgg ⊃ ((∼ Ua & Dga) ∨ (∼ Ug & Dgg))]
i. ∼ (K ∨ ((Daa & Dab) ∨ (Dba & Dbb)))

3. Remember that if any individual constants occur in a sentence,
those constants must be used in the expansion of the sentence.

a. Bb & [(Gab ⊃ ∼ Eab) & (Gbb ⊃ ∼ Ebb)]
c. [(Gaa ⊃ ∼ Eaa) & (Gab ⊃ ∼ Eab)] 

& [(Gba ⊃ ∼ Eba) & (Gbb ⊃ ∼ Ebb)]
e. Impossible! This sentence contains three individual constants, ‘a’,

‘b’, and ‘c’; so it can be expanded only for sets of at least three constants.
g. [Ba ⊃ ∼ ((Ba & Maaa) ∨ (Bb & Maab))]

& [Bb ⊃ ∼ ((Ba & Mbaa) ∨ (Bb & Mbab))]
i. [Eaa � ∼ ((Maaa ∨ Maba) ∨ (Mbaa ∨ Mbba))]

& [Ebb � ∼ ((Maab ∨ Mabb) ∨ (Mbab ∨ Mbbb))]

4.a. [(Ga ⊃ Naa) & (Gb ⊃ Nbb)] & (Gc ⊃ Ncc)
c. ((Na � Ba) ∨ (Na � Bb)) ∨ (Na � Bc)

5. The truth-table for an expansion for the set {‘a’} is

↓
Fa (Fa & ∼ Fa) ⊃ ∼ Fa

T T F F T T F T
F F F T F T T F

This truth-table shows that the the sentence

((∃x)Fx & (∃y) ∼ Fy) ⊃ (∀x) ∼ Fx
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is true on every interpretation with a one-member UD. The truth-table for an
expansion for the set {‘a’, ‘b’} is

↓
Fa Fb [(Fa ∨ Fb) & (∼ Fa ∨ ∼ Fb)] ⊃ (∼ Fa & ∼ Fb)

T T T T T F F T F F T T F T F F T
T F T T F T F T T T F F F T F T F
F T F T T T T F T F T F T F F F T
F F F F F F T F T T F T T F T T F

This truth-table shows that the sentence

((∃x)Fx & (∃y) ∼ Fy) ⊃ (∀x) ∼ Fx

is true on at least one interpretation with a two-member UD and false on at
least one interpretation with a two-member UD.

6.a. One assignment to its atomic components for which the expansion

[Naa ∨ (Naa ∨ Nan)] & [Nnn ∨ (Nna ∨ Nnn)]

is true is

↓
Naa Nan Nna Nnn [Naa ∨ (Naa ∨ Nan)] & [Nnn ∨ (Nna ∨ Nnn)]

T T T T T T T T T T T T T T T

Using this information, we shall construct an interpretation with a two-
member UD such that the relation N holds between each two members of
the UD:

UD: The set {1, 2}
Nxy: x is less than, equal to, or greater than y

Every member of the UD is less than, equal to, or greater than both itself and
the other member of the UD, and so ‘(∀x)(Nxx ∨ (∃y)Nxy)’ is true on this
interpretation.

c. There is only one assignment to its atomic components for which
the expansion ‘Saan & Snnn’ is true.

↓
Saan Snnn Saan & Snnn

T T T T T
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Using this information, we construct an interpretation with a two-member UD:

UD: The set {1, 2}
Sxyz: x equals y times z

a: 2
n: 1

Because 1 � 1 � 1 and 2 � 2 � 1, ‘(∀y)Syyn’ is true on this interpretation.

7.a. ↓
Fa Ga (Fa ⊃ Ga) ⊃ Ga

F F F T F F F

c.
Baa Bab Bba Bbb [(Baa ∨ Bab) & (Bba ∨ Bbb)]

T F F T T T F T F T T

↓
⊃ [(Baa & Bba) ∨ (Bab & Bbb)]

F T F F F F F T

e. ↓
Fa Ga Fb Gb [(Fa & Fb) ⊃ (Ga & Gb)] ⊃ [(Fa ⊃ Ga) & (Fb ⊃ Gb)]

T F F T T F F T F F T F T F F F F T T

g. ↓
Faa Ga ∼ Ga ⊃ (Faa ⊃ Ga)

T F T F F T F F

8.a. ↓
Baa Bab Bba Bbb ∼ [(Baa & Bab) & (Bba & Bbb)] � (Baa & Bbb)

T F F T T T F F F F F T T T T T

c.
Fa Fb Ga Gb [(Fa ∨ Fb) & (Ga ∨ Gb)]

T F F T T T F T F T T

↓
& ∼ [(Fa & Ga) ∨ (Fb & Gb)]

T T T F F F F F T
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e. ↓
Fa Ga (Fa ⊃ Ga) & (Ga ⊃ ∼ Fa)

F T F T T T T T T F

g. ↓
Ba Ha (Ba � Ha) ⊃ (Ba & Ha)

T T T T T T T T T

i. Sneaky. This one can’t be done because, as pointed out in Section
8.2, the sentence is false on all interpretations with finite UDs.

9.a.
Fa Fb Ga Gb ((Fa & Ga) ∨ (Fb & Gb))

T T F F T F F F T F F

↓
⊃ (∼ (Fa ∨ Ga) ∨ ∼ (Fb ∨ Gb))

T F  T T F F F T T F

Fa Fb Ga Gb ((Fa & Ga) ∨ (Fb & Gb))

T F T T T T T T F F T

↓
⊃ (∼ (Fa ∨ Ga) ∨ ∼ (Fb ∨ Gb))

F F  T T T F F F T T

c. ↓
Bnn Bnn ⊃ ∼ Bnn

F F T T F

↓
Bnn Bnn ⊃ ∼ Bnn

T T F F T

e. ↓
Naa (Naa ∨ Naa) ⊃ Naa

T T T T T T

Naa Nab Nba Nbb [[(Naa ∨ Naa) ⊃ Naa]

T T T F T T T T T
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↓
& [(Nba ∨ Nab) ⊃ Nbb]] & [[(Nab ∨ Nba) ⊃ Naa]

F T T T F F F T T T T T

& [(Nbb ∨ Nbb) ⊃ Nbb]]

T F F F T F

g. ↓
Ca Da (Ca ∨ Da) � (Ca & Da)

T T T T T T T T T

↓
Ca Da (Ca ∨ Da) � (Ca & Da)

T F T T F F T F F

11. The expanded sentence ‘Ga & ∼ Ga’ is a truth-functional compound.
It is false on every truth-value assignment, so it is quantificationally false.
But the fact that this sentence is quantificationally false only shows that
‘(∃y)Gy & (∃y) ∼ Gy’ is not true on any interpretation that has a one-member
UD—for it is an expansion using only one constant. The sentence is in fact not
quantificationally false, for it is true on some interpretations with larger universes
of discourse. We may expand the sentence for the set {‘a’, ‘b’} to show this:

↓
Ga Gb (Ga ∨ Gb) & (∼ Ga ∨ ∼ Gb)

T F T T F T F T T T F

12.a. ↓ ↓
Fa Fb Ga (Fa ∨ Fb) ⊃ Ga (Fa ⊃ Ga) ∨ (Fb ⊃ Ga)

T F F T T F F F T F F T F T F

c. ↓ ↓
Fa Fb Ga Gb (Fa & Fb) ∨ (Ga & Gb) (Fa ∨ Ga) & (Fb ∨ Gb)

T F F T T F F F F F T T T F T F T T

e. ↓ ↓
Fa Fb Ga Gb (Fa � Ga) & (Fb � Gb) (Fa ∨ Fb) � (Ga ∨ Gb)

T F F T T F F F F F T T T F T F T T
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g. ↓
Ba Bb Daa Dab Dba Dbb (Ba & (Daa & Dba)) ∨ (Bb & (Dab & Dbb))

F F T T T T F F T T T F F F T T T

↓
(Ba ⊃ (Daa & Dba)) & (Bb ⊃ (Dab & Dbb))

F T T T T T F T T T T

i. ↓
Fa Fb Kaa Kab Kba Kbb ((Fa ⊃ Kaa) ∨ (Fa ⊃ Kba)) & ((Fb ⊃ Kab) ∨ (Fb ⊃ Kbb))

T T F T F T T F F F T F F F T T T T T T T

↓
((Fa ⊃ Kaa) ∨ (Fa ⊃ Kba)) ∨ ((Fb ⊃ Kab) ∨ (Fb ⊃ Kbb))

T F F F T F F T T T T T T T T

13.a. ↓ ↓ ↓
Ba Bb Ca Cb Ba ∨ Bb Ca ∨ Cb ∼ [(Ba ∨ Ca) & (Bb ∨ Cb)]

T F T F T T F T T F T   T T T F F F F

c. ↓ ↓ ↓
Fa Ga Ma Na Fa ⊃ Ga Na ⊃ Ma Ga ⊃ ∼ Ma

F F F F F T F F T F F T T F

e. ↓ ↓
Caa Ma Na Na ⊃ (Ma & Caa) Ma ⊃ ∼ Caa

T F F F T F F T F T F T

g. ↓
Ma Mb Na Nb ∼ [(Na ⊃ Ma) & (Nb ⊃ Mb)]

F T T T T   T F F F T T T

↓
∼ [∼ (Na ⊃ Ma) & ∼ (Nb ⊃ Mb)]

T T T F F F F T T T

i. ↓ ↓ ↓
Faa Gaa Faa ∼ Gaa Faa ∨ Gaa

T F T T F T T F
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15.a. ↓ ↓ ↓
Fa Ga Na (Fa ⊃ Ga) ⊃ Na Na ⊃ Ga ∼ Fa ∨ Ga

T F F T F F T F F T F F T F F

c. ↓
Fa Fb Ga Gb Ha Hb (Fa & Ga) ∨ (Fb & Gb)

T T T F F T T T T T T F F

↓ ↓
(Fa & Ha) ∨ (Fb & Hb) (Ga & Ha) ∨ (Gb & Hb)

T F F T T T T T F F F F F T

e. ↓ ↓ ↓
Fa Ga Fa ⊃ Ga ∼ Fa ∼ Ga

F T F T T T F F T

g. ↓ ↓
Daa Dab Dba Dbb Ga Gb Ga ∨ Gb (Ga ⊃ Daa) & (Gb ⊃ Dbb)

T F F T F T F T T F T T T T T T

↓
[(Ga & Daa) & (Ga & Dab)] ∨ [(Gb & Dba) & (Gb & Dbb)]

F F T F F F F F T F F F T T T

i. ↓ ↓ ↓
Fa Ga Ha Fa ⊃ Ga Ha ⊃ Ga Fa ∨ Ha

F F F F T F F T F F F F

Section 8.6E

1.a. F
c. T
e. T
g. F
i. F

2.a. The sentence is false on the following interpretation:

UD: Set of positive integers

There is no positive integer that is identical to every positive integer.



c. The sentence is false on the following interpretation:

UD: The set {1, 2, 3}

It is not true that for any three members of the UD, at least two are identical.

e. The sentence is false on the following interpretation:

UD: The set {1}
Gxy: x is greater than y

It is not true that there is a pair of members of the UD such that either the
members of the pair are not identical or one member is greater than the other.
The only pair of members of the UD consists of 1 and 1.

3.a. Consider any interpretation and any members x, y, and z of its UD.
If x and y are not the same member or if y and z are not the same member,
then these members do not satisfy the condition specified by ‘(x � y & y � z)’,
and so they do satisfy ‘[(x � y & y � z) ⊃ x � z]’. On the other hand, if x
and y are the same and y and z are the same, then x and z must be the same,
satisfying the consequent ‘x � z’. In this case as well, then, x, y, and z satisfy
‘[(x � y & y � z) ⊃ x � z]’. Therefore the universal claim is true on every
interpretation.

c. Consider any interpretation and any members x and y of its UD. If
x and y are not the same, they do not satisfy ‘x � y’ and so do satisfy
‘[x � y ⊃ (Gxy � Gyx)]’. If x and y are the same, and hence satisfy ‘x � y’,
they must satisfy ‘(Gxy � Gyx)’ as well—the pair consisting of the one object
and itself is either in the extension or not. Therefore the universal claim must
be true on every interpretation.

4.a. The first sentence is true and the second false on the following
interpretation:

UD: Set of positive integers

Every positive integer is identical to at least one positive integer (itself), but
not even one positive integer is identical to every positive integer.

c. The first sentence is false and the second is true on the following
interpretation:

UD: Set of positive integers
a: 1
b: 1
c: 2
d: 3

186 SOLUTIONS TO SELECTED EXERCISES ON P. 430
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5.a. The sentences are all true on the following interpretation:

UD: Set of positive integers
a: 1
b: 1
c: 1
d: 2

c. The sentences are all true on the following interpretation:

UD: Set of positive integers

The first sentence is true because there are at least two positive integers. The
second sentence is true because for any positive integer x, we can find a pair
of positive integers z and w such that either x is identical to z or x is identical
to w—just let one of the pair be x itself.

6.a. The following interpretation shows that the entailment does not hold:

UD: The set {1, 2}

It is true that for any x, y, and z in the UD, at least two of x, y, and z must be
identical. But it is not true that for any x and y in the UD, x and y must be
identical.

c. The following interpretation shows that the entailment does not hold:

UD: The set {1, 2}
Gxy: x is greater than or equal to y

At least one member of the UD (the number 2) is greater than or equal to
every member of the UD, and at least one member of the UD (the number
1) is not greater than or equal to any member of the UD other than itself.
But no member of the UD is not greater than or equal to itself.

7.a. The argument can be symbolized as

(∀x)[Mx ⊃ (∃y)(∼ y � x & Lxy)] & (∀x)[Mx ⊃ (∀y)(Pxy ⊃ Lxy)]

(∀x)(Mx ⊃ ∼ Pxx)

The argument is quantificationally invalid, as the following interpretation shows:

UD: Set of positive integers
Mx: x is odd
Lxy: x is less than or equal to y
Pxy: x squared equals y
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For every odd positive integer, there is at least one other positive integer that
it is less than or equal to, and every odd positive integer is such that it is less
than or equal to its square(s). However, the conclusion, which says that no odd
positive integer is its own square, is false because the square of 1 is 1.

c. The argument can be symbolized as

(∀x) [(Fx & (∃y)(Pxy & Lxy)) ⊃ Lxx]

(∀x) [Fx ⊃ (∃y)(∃z)((Lxy & Lxz) & ∼ y � z)]

The argument is quantificationally invalid, as the following interpretation shows:

UD: Set of positive integers
Fx: x is odd

Lxy: x is greater than y
Pxy: x is less than y

Trivially, every odd positive integer that is both less than and greater than
some positive integer (there are none) is less than itself. But not all odd pos-
itive integers are greater than at least two positive integers—the number 1
is not.

e. The argument may be symbolized as

(∀x) ∼ (∃y)(∃z)(∃w)([[Pyz & Pzx) & Pwx]

& [(∼ y � z & ∼ z � w) & ∼ w � y]]

& (∀x1)[Px1x ⊃ ((x1 � y ∨ x1 � z) ∨ x1 � w)])

(∀x)(∃y)(∃z)[(Pyx & Pzx) & ∼ y � z)]

(∀x)(∃y)(∃z)[((Pyx & Pzx) & ∼ y � z) & (∀w)(Pwx ⊃ (w � y ∨ w � z))]

The argument is quantificationally invalid, as the following interpretation shows:

UD: Set of positive integers
Pxy: x is greater than y

No positive integer is less than exactly three positive integers (for any positive
integer, there are infinitely many positive integers that are greater). Every pos-
itive integer is less than at least two positive integers. But no positive integer
is less than exactly two positive integers.

8.a. ↓
a � a ∼ a � a

T F T



SOLUTIONS TO SELECTED EXERCISES ON PP. 431–432 189

↓
a � a a � b b � a b � b (∼ a � a ∨ ∼ b � a) ∨ (∼ a � b ∨ ∼ b � b)

T F F T F T T T F T T F T F T

c. ↓ ↓
a � a Gaa (Gaa ∨ Gaa) ∨ a � a Gaa

T F F F F T T F

e. ↓ ↓
a � a a � b b � a b � b a � a & b � b (∼ a � a ∨ ∼ a � b) ∨ (∼ b � a ∨ ∼ b � b)

T F F T T T T F T T T F T T F T F T

↓
(∼ a � a & ∼ a � b) ∨ (∼ b � a & ∼ b � b)

F T F T F F T F F F T

9.a. True. Every positive integer is less than its successor.
c. True. For any positive integer x, there is a positive integer that

equals 2x.
e. False. The sum of any even integer and any odd integer is odd, not

even.
g. True. For any positive integer x there is a positive integer z that sat-

isfies the first disjunct, namely, x squared plus z is even.

10.a. The sentence is false on the following interpretation:

UD: Set of positive integers
Px: x is odd

f(x): the successor of x

It is false that a positive integer with an odd successor is itself odd.

c. The sentence is false on the following interpretation:

UD: Set of positive integers
g(x): the successor of x

There is no positive integer that is the successor of every positive integer.

e. The sentence is false on the following interpretation:

UD: Set of positive integers
f(x): x squared

Since 1 � 12, not all positive integers fail to be equal to their squares.



11.a. The sentence is true on an interpretation if and only if every mem-
ber x of the UD satisfies ‘(∃y) y � f( f(x))’, and that is the case if and only if
for every member x of the UD, there is a member y such that y is identical
to f( f(x)). Since f is a function that is defined for every member of the UD,
there must be a member that is identical to f(x), and hence there must also
be a member that is identical to f( f(x)). Hence the sentence is true on every
interpretation.

c. Assume that the antecedent is true on some interpretation. By the
first conjunct, it must be the case that every member x of the UD stands in
the relation H to f(x), and also that every member f(x) stands in the relation
H to f( f(x)). By the second conjunct it follows that every member x of the
UD therefore stands in the relation H to f( f(x)). The consequent must there-
fore be true as well. Since the consequent is true on every interpretation on
which the antecedent is true, the sentence is quantificationally true.

12.a. The first sentence is true and the second false on the following
interpretation:

UD: Set of positive integers
Lxyz: x plus y equals z
f(x): the successor of x

a: 1
b: 2

The sum of 1 and 2 is 3, the successor of 2; but the sum of 1 and 3 is not 2.

c. The first sentence is true and the second false on the following
interpretation:

UD: Set of positive integers
f(x): x squared
g(x): the successor of x

For any positive integer x, there is a positive integer that is equal to the square
of the successor of x; but there is no positive integer that is equal to its own
successor squared.

13.a. The members of the set are all true on the following interpretation:

UD: Set of positive integers
f(x): x squared

a: 1
b: 1
c: 1

The number 1 equals itself squared, which is what each of the three sentences
in the set say on this interpretation.
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c. The members of the set are all true on the following interpretation:

UD: Set of positive integers
f(x): the smallest odd integer that is less than or equal to x

There is a positive integer, namely 1, that is the smallest odd integer less than
or equal to any positive integer, and there is at least one positive integer, for
example 2, that fails to be the smallest odd integer less than or equal to even
one positive integer.

14.a. The argument is quantificationally invalid, as the following inter-
pretation shows:

UD: Set of positive integers
Fx: x is odd

g(x): the successor of x

The premise, which says that every positive integer is such that either it or its
successor is odd, is true on this interpretation. The conclusion, which says that
every positive integer is such that either it or the successor of its successor is
odd, is false—no even positive integer satisfies this condition.

c. The argument is quantificationally invalid, as the following inter-
pretation shows:

UD: Set of positive integers
Lxyz: x plus y equals z
f(x): the successor of x

The premise is true on this interpretation: every positive integer is such that
its successor plus some positive integer equals a positive integer. The con-
clusion is false: there is no positive integer such that the sum of x and any
integer’s successor equals any integer’s successor.

e. The argument is quantificationally valid. If the premise is true on
an intepretation, then every member x of the UD that is a value of the func-
tion g and that is B is such that nothing stands in the relation H to x. If the
antecedent of the conclusion is true, then a is a value of the function g (for
the argument b), and is such that something stands in the relation H to a. It
follows from the premise that the consequent of the conclusion must be true
as well, i.e., a cannot be B. So the conclusion is true on any interpretation on
which the premise is true.

15.a. ↓ ↓
a � g(a) Fa Fg(a) Fa ∨ Fg(a) a � g(a)

T T T T T T T
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↓ ↓
a � g(a) Fa Fg(a) Fa ∨ Fg(a) a � g(a)

T F F F F F T

c.
a � f(a) a � f(b) a � f( f(a)) a � f( f(b)) b � f(a) b � f(b) b � f( f(a))

F T T F T F F

↓ ↓
b � f( f(b)) ∼ a � f(a) & ∼ b � f(b) a � f(a) ∨ b � f(a)

T T F T T F F T T

↓ ↓ ↓
a � f(b) ∨ b � f(b) a � f( f(a)) ∨ b � f( f(a)) a � f( f(b)) ∨ b � f( f(b))

T T F T T F F T T

Section 8.7E

1.a. Let d be a variable assignment for this interpretation. d satisfies the
antecedent ‘∼ (∀x)Ex’ just in case it fails to satisfy ‘(∀x)Ex’. d fails to satisfy
‘(∀x)Ex’ just in case there is at least one member u of the UD such that d[u/x]
fails to satisfy ‘Ex’. The number 1 is such a member: d[1/x] fails to satisfy ‘Ex’
because 〈d[1/x](x)〉, which is 〈1〉, is not a member of I(E), the set of 1-tuples
of even positive integers. So d satisfies ‘∼ (∀x)Ex’.

d satisfies the consequent ‘(∃y) Lyo’ when there is at least one mem-
ber u of the UD such that d[u/y] satisfies ‘Lyo’, that is, just in case there is at
least one member u such that 〈d[u/y](y), I (o)〉, which is 〈u, 1〉, is in I(L).
There is no such member, for there is no positive integer that is less than 1.
Therefore d does not satisfy ‘(∃y)Lyo’ and consequently d does not satisfy the
conditional ‘∼ (∀x)Ex ⊃ (∃y)Lyo’. The sentence is false on this interpretation.

c. Let d be a variable assignment for this interpretation. d satisfies
‘(∃x)(Ko ∨ Ex)’ just in case there is some member u of the UD such that d[u/x]
satisfies ‘Ko ∨ Ex’. There is such a member—take 2 as an example. d[2/x] sat-
isfies ‘Ko ∨ Ex’ because d[2/x] satisfies the second disjunct. d[2/x] satisfies
‘Ex’ because 〈d[2/x](x)〉, which is 〈2〉, is a member of I(E)—2 is even. There-
fore d satisfies ‘(∃x)(Ko ∨ Ex)’. The sentence is true on this interpretation.

e. Let d be a variable assignment for this interpretation. d satisfies 
‘(Ko � (∀x)Ex) ⊃ (∃y)(∃z)Lyz’ if and only if either d fails to satisfy the
antecedent or d does satisfy the consequent. d satisfies the antecedent because
it fails to satisfy both ‘Ko’ (no satisfaction assignment satisfies this formula) and
‘(∀x) Ex’. d does not satisfy the latter because not every member u of the UD
is such that d[u/x] satisfies ‘Ex’—no odd number is in the extension of ‘E’.
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d also satisfies the consequent ‘(∃y)(∃z)Lyz’ because, for example,
d[1/y] satisfies ‘(∃z)Lyz’. The latter is the case because, for example, d[1/y, 2/z]
satisfies ‘Lyz’; 〈1, 2〉 is in the extension of ‘L’. The sentence is true on this
interpretation.

2.a. Let d be a variable assignment for this interpretation. d satisfies
‘(∃x)(Ex ⊃ (∀y)Ey)’ just in case there is at least one member u of the UD
such that d[u/x] satisfies ‘Ex ⊃ (∀y)Ey’. There is such a member; take 1 as
an example. d[1/x] satisfies ‘Ex ⊃ (∀y)Ey’ because it fails to satisfy ‘Ex’.
d[1/x] fails to satisfy ‘Ex’ because 〈d[1/x](x)〉, which is 〈1〉, is not a member
of I(E)—1 is not even. So d satisfies ‘(∃x)(Ex ⊃ (∀y)Ey)’. The sentence is true
on this interpretation.

c. Let d be a variable assignment for this interpretation. d satisfies
‘(∀x)(Tx ⊃ (∃y)Gyx)’ just in case every member u of the UD is such that
d[u/x] satisfies ‘Tx ⊃ (∃y)Gyx’, that is, just in case both d[1/x] and d[3/x]
satisfy ‘Tx ⊃ (∃y)Gyx’. d[1/x] satisfies ‘Tx ⊃ (∃y)Gyx’ because it satisfies
‘(∃y)Gyx’. d[1/x] satisfies ‘(∃y)Gyx’ because there is at least one member u of
the UD such that d[1/x, u/y] satisfies ‘Gyx’—3 is such a member. d[1/x, 3/y]
satisfies ‘Gyx’ because 〈d[1/x, 3/y](y), d[1/x, 3/y](x)〉, which is 〈3, 1〉, is a
member of I(G)—3 is greater than 1.

d[3/x] satisfies ‘Tx ⊃ (∃y)Gyx’ because d[3/x] does not satisfy ‘Tx’.
d[3/x] does not satisfy ‘Tx’ because 〈d[3/x](x)〉, which is 〈3〉, is not a mem-
ber of I(T)—3 is not less than 2. So both d[1/x] and d[3/x] satisfy
‘Tx ⊃ (∃y)Gyx’ and therefore d satisfies ‘(∀x)(Tx ⊃ (∃y)Gyx)’. The sentence
is true on this interpretation.

e. Let d be a variable assignment for this interpretation. d satisfies
this sentence just in case for every member u of the UD, d[u/x] satisfies
‘(∀y)Gxy ∨ (∃y)Gxy’. However, the number 1 is not such that d[1/x] satis-
fies the formula. d[1/x] does not satisfy ‘(∀y)Gxy’, because there is not even
one member u of the UD such that d[1/x, u/y] satisfies ‘Gxy’—no 2-tuple
〈1, u〉 is in the extension of ‘G’. d[1/x] also does not satisfy ‘(∃y)Gxy’, for
the same reason. Because d[1/x] does not satisfy ‘(∀y)Gxy ∨ (∃y)Gxy’, d
does not satisfy the universally quantified sentence. The sentence is false on
this interpretation.

3.a. Let d be a variable assignment for this interpretation. d satisfies
‘Mooo � Pooo’ just in case either d satisfies both ‘Mooo’ and ‘Pooo’ or d
satisfies neither of ‘Mooo’ and ‘Pooo’. d does not satisfy ‘Mooo’ because
〈I(o), I(o), I(o)〉, which is 〈1, 1, 1〉, is not a member of I(M)—1 � 1 � 1. d does
not satisfy ‘Pooo’ because 〈I(o), I(o), I(o)〉, which again is 〈1, 1, 1〉, is not a mem-
ber of I(P)—1 � 1 � 1. So d satisfies neither immediate component and there-
fore does satisfy ‘Mooo � Pooo’. The sentence is true on this interpretation.

c. Let d be a variable assignment for this interpretation. d satisfies
‘(∀x)(∀y)(∀z)(Mxyz � Pxyz)’ just in case every member u of the UD is such that
d[u/x] satisfies ‘(∀y)(∀z)(Mxyz � Pxyz)’. d[u/x] satisfies ‘(∀y)(∀z)(Mxyz � Pxyz)’
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just in case every member u1 of the UD is such that d[u/x, u1/y] satisfies
‘(∀z)(Mxyz � Pxyz)’. d[u/x, u1/y] satisfies ‘(∀z)(Mxyz � Pxyz)’ just in case
every member u2 of the UD is such that d[u/x, u1/y, u2/z] satisfies
‘Mxyz � Pxyz’. So d satisfies ‘(∀x)(∀y)(∀z)(Mxyz � Pxyz) just in case for any
members u, u1, and u2 of the UD, d[u/x, u1/y, u2/z] satisfies ‘Mxyz � Pxyz’.
But this is not the case. For example, d[1/x, 2/y, 3/z] does not satisfy ‘Mxyz’,
because 〈d[1/x, 2/y, 3/z](x), d[1/x, 2/y, 3/z](y), d[1/x, 2/y, 3/z](z)〉,
which is 〈1, 2, 3〉, is not a member of I(M)—1 � 2 � 3. On the other hand,
d[1/x, 2/y, 3/z] does satisfy ‘Pxyz’, because 〈d[1/x, 2/y, 3/z](x), d[1/x, 2/y,
3/z](y), d[1/x, 2/y, 3/z](z)〉, which again is 〈1, 2, 3〉, is a member of I(P)—
1 � 2 � 3. The assignment d[1/x, 2/y, 3/z] therefore does not satisfy
‘Mxyz � Pxyz’, and so d does not satisfy ‘(∀x)(∀y)(∀z)(Mxyz � Pxyz)’. The
sentence is false on this interpretation.

e. Let d be a variable assignment for this interpretation. d satisfies
this sentence if and only if for every member u of the UD, d[u/y] satisfies
‘(∃z)(Pyoz ⊃ Pooo)’. The latter is the case for a member u of the UD if
and only if there is a member u1 of the UD such that d[u/y, u1/z] satisfies
‘Pyoz ⊃ Pooo’. No variable assignment can satisfy ‘Pooo’, for 〈1, 1, 1〉 is not
in the extension of ‘P’. But for any member u of the UD we can find a mem-
ber u1 such that 〈u, 1, u1〉, is not in the extension of ‘P’; pick any number
other than the number that is the successor of u. The sentence is true on
this interpretation.

5. We shall show that the sentence is true on every interpretation. Let
I be any interpretation. ‘(∀x)((∀y)Fy ⊃ Fx)’ is true on I if and only if every
variable assignment satisfies the sentence. A variable assignment d satisfies
‘(∀x)((∀y)Fy ⊃ Fx)’ if and only if every member u of the UD is such that
d[u/x] satisfies ‘(∀y)Fy ⊃ Fx’. Consider any member u of the UD. If 〈u〉 is a
member of I(F), then d[u/x] satisfies ‘Fx’ and hence also satisfies ‘(∀y)Fy ⊃ Fx’.
If 〈u〉 is not a member of I(F), then d[u/x] does not satisfy ‘(∀y)Fy’. This is
because u is such that d[u/x, u/y] does not satisfy ‘Fy’— 〈d[u/x, u/y](y)〉,
which is 〈u〉, is not a member of I(F). So if 〈u〉 is not a member of I(F), then
d[u/x] satisfies ‘(∀y)Fy ⊃ Fx’ because it fails to satisfy the antecedent. Each
member u of the UD is such that either 〈u〉 is a member of I(F) or it isn’t,
so each member u of the UD is such that d[u/x] satisfies ‘(∀y)Fy ⊃ Fx’.
Therefore d must satisfy ‘(∀x)((∀y)Fy ⊃ Fx)’. The sentence is true on every
interpretation.

7. Assume that ‘Fa’ is true on an interpretation. Then every variable
assignment for this interpretation satisfies ‘Fa’. So we know that 〈I(a)〉 is in the
extension of ‘F’. We shall now show that every variable assignment also satis-
fies ‘(∃x)Fx’. Let d be any such assignment. d satisfies ‘(∃x)Fx’ if and only if
there is some member u of the UD such that d[u/x] satisfies ‘Fx’. We know
that there is such a member, namely, I(a). d[I(a)/x] satisfies ‘Fx’ because 〈I(a)〉
is in the extension of ‘F’. Therefore ‘(∃x)Fx’ is true on the interpretation as well.
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9.a. Let d be a variable assignment for this interpretation. Then d sat-
isfies ‘(∀x)(∀y)[∼ x � y ⊃ (Ex ⊃ Gxy)]’ if and only if for every positive inte-
ger u, d[u�x] satisfies ‘(∀y)[∼ x � y ⊃ (Ex ⊃ Gxy)]’. This will be the case if
and only if for every pair of positive integers u and u1, d[u�x, u1�y] satisfies
‘∼ x � y ⊃ (Ex ⊃ Gxy)’. But d[2�x, 3�y], for example, does not satisfy the
open sentence. d[2�x, 3�y] does satisfy ‘∼ x � y’, for 2 and 3 are distinct
members of the UD. d[2�x, 3�y] does not satisfy ‘Ex ⊃ Gxy’, for it satisfies
the antecedent and fails to satisfy the consequent. d[2�x, 3�y] satisfies ‘Ex’
because 〈d[2�x, 3�y](x)〉, which is 〈2〉, is a member of I (E). d[2�x, 3�y]
fails to satisfy ‘Gxy’ because 〈d[2�x, 3�y](x), d[2�x, 3�y](y)〉, which is 〈2, 3〉,
is not a member of I(G)—2 is not greater than 3. We conclude that
‘(∀x)(∀y)[∼ x � y ⊃ (Ex ⊃ Gxy)]’ is false on this interpretation.

c. Let d be a variable assignment for this interpretation. Then d sat-
isfies the sentence if and only if for every member u of the UD, d[u�x] satis-
fies ‘Ex ⊃ (∃y)(∼ x � y & ∼ Gxy). Every odd positive integer u is such that
d[u�x] satisfies the formula because every odd positive integer u is such that
d[u�x] fails to satisfy ‘Ex’. Every even positive integer u is such that d[u�x]
satisfies the formula because every positive integer (odd or even) satisfies
the consequent, ‘(∃y)(∼ x � y & ∼ Gxy)’. For every positive integer u there is
a positive integer u1 such that d[u�x, u1�y] satisfies ‘∼ x � y & ∼ Gxy’: Let
u1 be any integer that is greater than u. In this case, d[u�x, u1�y] satisfies 
‘∼ x � y’ becasue u and u1 are not identical, and the variant also satisfies 
‘∼ Gxy’ because 〈u, u1〉 is not in the extension of ‘G’. The sentence is there-
fore true on this interpretation.

10.a. A sentence of the form (∀x)x � x is true on an interpretation I if
and only if every variable assignment satisfies the sentence on I. A variable
assignment d satisfies (∀x)x � x if and only if for every member u of the UD,
d[u�x] satisfies x � x—and this is the case if and only for every member u of
the UD, d[u�x](x) is identical to d[u�x](x). Trivially, this is so. Therefore
(∀x)x � x is satisfied by every variable assignment on every interpretation; it
is quantificationally true.

11.a. Let d be a variable assignment for this interpretation. d satisfies the
universally quantified sentence just in case every member u of the UD is such
that d[u�x] satisfies ‘Oh(x) ⊃ Og(x,x)’. A member u of the UD satisfies the
antecedent ‘Oh(x)’ just in case the member u� of the UD such that 〈u, u�〉 is
a member of I(h) is itself a member of I(O). This will be the case if u is odd,
since u�, its square, will also be odd. But now we note that for every (odd or
even) positive integer u, d[u�x] will fail to satisfy the consequent ‘Og(x,x)’.
This is because the member u� of the UD such that 〈u, u, u�〉 is a member of
I(g) must be odd, but no positive integer u� that is double a positive integer
u can be odd. So every odd positive integer u is such that d[u�x] fails to satisfy
‘Oh(x) ⊃ Og(x,x)’, so d fails to satisfy the universally quantified sentence and
hence the sentence is false.
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c. Let d be a variable assignment for this interpretation. d satisfies the
sentence just in case for at least one pair of members u and u� of the UD,
d[u�x,u��y] satisfies ‘Ox & x � h(y)’. This will be the case if for at least one
pair of members u and u� of the UD, 〈u〉 is a member of I(O) and 〈u�, u〉 is a
member of I(h), i.e., u is odd and u is the square of u�. The positive integers
9 and 3 satisfy this condition, so d[9�x,3�y] satisfies ‘Ox & x � h(y)’, d satis-
fies the existentially quantified sentence, and hence the sentence is true on
this interpretation.

12.a. A sentence of the form (∀x)(∃y)y � f(x) is quantificationally true
just in case it is satisfied by every variable assignment d on every interpreta-
tion I. A variable assignment d will satisfy the sentence just in case for every
member u of the UD there is a member u� of the UD such that d[u�x, u��y]
satisfies y � f(x). The latter holds just in case for every member u of the UD
there is a member u� of the UD such that 〈u, u�〉 is a member of I( f ). And
this will be the case because of our requirement that I( f ) must always be a 
function on the UD.
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CHAPTER NINE

Section 9.1E

a. 1. (∃x)Fx� SM
2. (∃x) ∼ Fx� SM
3. Fa 1 ∃D
4. ∼ Fb 2 ∃D

The tree has a completed open branch.

e. 1. ∼ (∀x)(Fx ⊃ Gx)� SM
2. ∼ (∃x)Fx� SM
3. ∼ (∃x)Gx� SM
4. (∃x) ∼ (Fx ⊃ Gx)� 1 ∼ ∀D
5. (∀x) ∼ Fx 2 ∼ ∃D
6. (∀x) ∼ Gx 3 ∼ ∃D
7. ∼ (Fa ⊃ Ga)� 4 ∃D
8. Fa 7 ∼ ⊃D
9. ∼ Ga 7 ∼ ⊃D

10. ∼ Fa 5 ∀D
�

The tree is closed.

g. 1. (∃x)Fx� SM
2. (∃y)Gy� SM
3. (∃z)(Fz & Gz)� SM
4. Fa 1 ∃D
5. Gb 2 ∃D
6. Fc & Gc� 3 ∃D
7. Fc 6 &D
8. Gc 6 &D

The tree has a completed open branch.

c. 1. (∃x)(Fx & ∼ Gx)� SM
2. (∀x)(Fx ⊃ Gx) SM
3. Fa & ∼ Ga� 1 ∃D
4. Fa 3 &D
5. ∼ Ga 3 &D
6. Fa ⊃ Ga� 2 ∀D

7. ∼ Fa Ga 6 ⊃D
� �

The tree is closed.
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i. 1. (∀x)(∀y)(Fxy ⊃ Fyx) SM
2. (∃x)(∃y)(Fxy & ∼ Fyx)� SM
3. (∃y)(Fay & ∼ Fya)� 2 ∃D
4. Fab & ∼ Fba� 3 ∃D
5. Fab 4 &D
6. ∼ Fba 4 &D
7. (∀y)(Fay ⊃ Fya) 1 ∀D
8. Fab ⊃ Fba� 7 ∀D

9. ∼ Fab Fba 8 ⊃D
� �

The tree is closed.

m. 1. (∀x)(Fx ⊃ (∃y)Gyx) SM
2. ∼ (∀x) ∼ Fx� SM
3. (∀x)(∀y) ∼ Gxy SM
4. (∃x) ∼ ∼ Fx� 2 ∼ ∀D
5. ∼ ∼ Fa� 4 ∃D
6. Fa 5 ∼ ∼ D
7. Fa ⊃ (∃y)Gya� 1 ∀D

8. ∼ Fa (∃y)Gya� 7 ⊃D
9. � Gba 8 ∃D

10. (∀y) ∼ Gby 3 ∀D
11. ∼ Gba 10 ∀D

�

The tree is closed.

k. 1. (∃x)Fx ⊃ (∀x)Fx� SM
2. ∼ (∀x)(Fx ⊃ (∀y)Fy)� SM
3. (∃x) ∼ (Fx ⊃ (∀y)Fy)� 2 ∼ ∀D
4. ∼ (Fa ⊃ (∀y)Fy)� 3 ∃D
5. Fa 4 ∼ ⊃D
6. ∼ (∀y)Fy� 4 ∼ ⊃D
7. (∃y) ∼ Fy� 6 ∼ ∀D
8. ∼ Fb 7 ∃D

9. ∼ (∃x)Fx� (∀x)Fx 1 ⊃D
10. (∀x) ∼ Fx 9 ∼ ∃D
11. ∼ Fa 10 ∀D
12. � Fb 9 ∀D

�

The tree is closed.
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o. 1. (∃x)Lxx� SM
2. ∼ (∃x)(∃y)(Lxy & Lyx)� SM
3. (∀x) ∼ (∃y)(Lxy & Lyx) 2 ∼ ∃D
4. Laa 1 ∃D
5. ∼ (∃y)(Lay & Lya)� 3 ∀D
6. (∀y) ∼ (Lay & Lya) 5 ∼ ∃D
7. ∼ (Laa & Laa)� 6 ∀D

8. ∼ Laa ∼ Laa 7 ∼ &D
� �

The tree is closed.

q. 1. (∃x)(Fx ∨ Gx)� SM
2. (∀x)(Fx ⊃ ∼ Gx) SM
3. (∀x)(Gx ⊃ ∼ Fx) SM
4. ∼ (∃x)(∼ Fx ∨ ∼ Gx)� SM
5. (∀x) ∼ (∼ Fx ∨ ∼ Gx) 4 ∼ ∃D
6. Fa ∨ Ga 1 ∃D
7. Fa ⊃ ∼ Ga� 2 ∀D
8. Ga ⊃ ∼ Fa� 3 ∀D
9. ∼ (∼ Fa ∨ ∼ Ga)� 5 ∀D

10. ∼ ∼ Fa� 9 ∼ ∨D
11. ∼ ∼ Ga� 9 ∼ ∨D
12. Ga 11 ∼ ∼ D
13. Fa 10 ∼ ∼ D

14. ∼ Fa ∼ Ga 7 ⊃D
� �

The tree is closed.
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Section 9.2E

Note: In these answers, whenever a tree is open we give a complete
tree. This is because the strategems we have suggested do not uniquely deter-
mine the order of decomposition, and so the first open branch to be com-
pleted on your tree may not be the first such branch completed on our tree.
In accordance with strategem 5, you should stop when your tree has one com-
pleted open branch.

a. 1. (∀x)Fx ∨ (∃y)Gy� SM
2. (∃x)(Fx & Gb)� SM
3. Fa & Gb� 2 ∃D
4. Fa 3 &D
5. Gb 3 &D

6. (∀x)Fx (∃y)Gy� 1 ∨D
7. Fa 6 ∀D
8. Fb 6 ∀D
9. Gc 6 ∃D

The tree has two completed open branches. The set is quantificationally
consistent.

c. 1. (∀x)(Fx ⊃ Gxa) SM
2. (∃x)Fx� SM
3. (∀y) ∼ Gya SM
4. Fb 2 ∃D
5. Fb ⊃ Gba� 1 ∀D

6. ∼ Fb Gba 5 ⊃D
7. � ∼ Gba 3 ∀D

�

The tree is closed. The set is quantificationally inconsistent.
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g. 1. (∀x)(Fx ∨ Gx) SM
2. ∼ (∃y)(Fy ∨ Gy)� SM
3. (∀y) ∼ (Fy ∨ Gy) 2 ∼ ∃D
4. ∼ (Fa ∨ Ga)� 3 ∀D
5. ∼ Fa 4 ∼ ∨D
6. ∼ Ga 4 ∼ ∨D
7. Fa ∨ Ga� 1 ∀D

8. Fa Ga 7 ∨D
� �

The tree is closed. The set is quantificationally inconsistent.

e. 1. (∀x)(Fx ⊃ Gxa) SM
2. (∃x)Fx� SM
3. (∀y)Gya SM
4. Fb 2 ∃D
5. Fb ⊃ Gba� 1 ∀D

6. ∼ Fb Gba 5 ⊃D
7. � Gaa 3 ∀D
8. Fa ⊃ Gaa� 1 ∀D

9. ∼ Fa Gaa 8 ⊃D

The tree has two completed open branches. The set is quantificationally
consistent.

i. 1. (∀z)Hz SM
2. (∃x)Hx ⊃ (∀y)Fy� SM
3. Ha 1 ∀D

4. ∼ (∃x)Hx� (∀y)Fy 2 ⊃D
5. (∀x) ∼ Hx 4 ∼ ∃D
6. ∼ Ha 5 ∀D
7. � Fa 4 ∀D

The tree has one completed open branch. The set is quantificationally consistent.
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k. 1. (∀x)(∀y)Lxy SM
2. (∃z) ∼ Lza ⊃ (∀z) ∼ Lza� SM
3. (∀y)Lay 1 ∀D
4. Laa 3 ∀D

5. ∼ (∃z) ∼ Lza� (∀z) ∼ Lza 2 ⊃D
6. ∼ Laa 5 ∀D
7. (∀z) ∼ ∼ Lza � 5 ∼ ∃D
8. ∼ ∼ Laa� 7 ∀D
9. Laa 8 ∼ ∼ D

The tree has one completed open branch. The set is quantificationally consistent.

m. 1. (∀x)(Rx � ∼ Hxa) SM
2. ∼ (∀y) ∼ Hby� SM
3. Ra SM
4. (∃y) ∼ ∼ Hby� 2 ∼ ∀D
5. ∼ ∼ Hbc� 4 ∃D
6. Hbc 5 ∼ ∼ D
7. Ra � ∼ Haa� 1 ∀D
8. Rb � ∼ Hba� 1 ∀D
9. Rc � ∼ Hca� 1 ∀D

10. Ra ∼ Ra 7 �D
11. ∼ Haa ∼ ∼ Haa 7 �D

�

12. Rb ∼ Rb 8 �D
13. ∼ Hba ∼ ∼ Hba� 8 �D

14. Rc ∼ Rc Rc ∼ Rc 9 �D
15. ∼ Hca ∼ ∼ Hca� ∼ Hca ∼ ∼ Hca� 9 �D
16. Hca Hca 15 ∼ ∼ D
17. Hba Hba 13 ∼ ∼ D

The tree has four completed open branches (the leftmost four). The set is
quantificationally consistent.
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Section 9.3E

1.a. 1. ∼ ((∃x)Fx ∨ ∼ (∃x)Fx)� SM
2. ∼ (∃x)Fx� 1 ∼ ∨D
3. ∼ ∼ (∃x)Fx� 1 ∼ ∨D
4. (∀x) ∼ Fx 2 ∼ ∃D
5. (∃x)Fx� 3 ∼ ∼ D
6. Fa 5 ∃D
7. ∼ Fa 4 ∀D

�

The tree is closed. The sentence ‘(∃x)Fx ∨ ∼ (∃x)Fx’ is quantificationally true.

c. 1. ∼ ((∀x)Fx ∨ (∀x) ∼ Fx)� SM
2. ∼ (∀x)Fx� 1 ∼ ∨D
3. (∃x) ∼ Fx� 1 ∼ ∨D
4. (∃x) ∼ Fx� 2 ∼ ∀D
5. (∃x) ∼ ∼ Fx� 3 ∼ ∀D
6. ∼ Fa 4 ∃D
7. ∼ ∼ Fb� 5 ∃D
8. Fb 7 ∼ ∼ D

The tree has a completed open branch, therefore the given sentence is not
quantificationally true.

e. 1. ∼ ((∀x)Fx ∨ (∃x) ∼ Fx)� SM
2. ∼ (∀x)Fx� 1 ∼ ∨D
3. ∼ (∃x) ∼ Fx� 1 ∼ ∨D
4. (∃x) ∼ Fx� 2 ∼ ∀D
5. (∀x) ∼ ∼ Fx 3 ∼ ∃D
6. ∼ Fa 4 ∃D
7. ∼ ∼ Fa� 5 ∀D
8. Fa 7 ∼ ∼ D

�

The tree is closed. The sentence ‘(∀x)Fx ∨ (∃x) ∼ Fx’ is quantificationally true.
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i. 1. ∼ (((∀x)Fx ∨ (∀x)Gx) ⊃ (∀x)(Fx ∨ Gx))� SM
2. (∀x)Fx ∨ (∀x)Gx� 1 ∼ ⊃D
3. ∼ (∀x)(Fx ∨ Gx)� 1 ∼ ⊃D
4. (∃x) ∼ (Fx ∨ Gx)� 3 ∼ ∀D
5. ∼ (Fa ∨ Ga)� 4 ∃D
6. ∼ Fa 5 ∼ ∨D
7. ∼ Ga 5 ∼ ∨D

8. (∀x)Fx (∀x)Gx 2 ∨D
9. Fa Ga 8 ∀D

� �

The tree is closed. The sentence ‘((∀x)Fx ∨ (∀x)Gx) ⊃ (∀x)(Fx ∨ Gx)’ is quan-
tificationally true.

k. 1. ∼ ((∃x)(Fx & Gx) ⊃ ((∃x)Fx & (∃x)Gx))� SM
2. (∃x)(Fx & Gx)� 1 ∼ ⊃D
3. ∼ ((∃x)Fx & (∃x)Gx)� 1 ∼ ⊃D
4. Fa & Ga� 2 ∃D
5. Fa 4 &D
6. Ga 4 &D

7. ∼ (∃x)Fx� ∼ (∃x)Gx� 3 ∼ &D
8. (∀x) ∼ Fx (∀x) ∼ Gx 7 ∼ ∃D
9. ∼ Fa ∼ Ga 8 ∀D

� �

The tree is closed. The sentence ‘(∃x)(Fx & Gx) ⊃ ((∃x)Fx & (∃x)Gx)’ is quan-
tificationally true.

g. 1. ∼ ((∀x)(Fx ∨ Gx) ⊃ ((∃x) ∼ Fx ⊃ (∃x)Gx))� SM
2. (∀x)(Fx ∨ Gx) 1 ∼ ⊃D
3. ∼ ((∃x) ∼ Fx ⊃ (∃x)Gx)� 1 ∼ ⊃D
4. (∃x) ∼ Fx� 3 ∼ ⊃D
5. ∼ (∃x)Gx� 3 ∼ ⊃D
6. (∀x) ∼ Gx 5 ∼ ∃D
7. ∼ Fa 4 ∃D
8. Fa ∨ Ga� 2 ∀D

9. Fa Ga 8 ∨D
10. � ∼ Ga 6 ∀D

�

The tree is closed. The sentence ‘(∀x)(Fx ∨ Gx) ⊃ [(∃x) ∼ Fx ⊃ (∃x)Gx]’ is
quantificationally true.
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m. 1. ∼ (∼ (∃x)Fx ∨ (∀x) ∼ Fx)� SM
2. ∼ ∼ (∃x)Fx� 1 ∼ ∨D
3. ∼ (∀x) ∼ Fx� 1 ∼ ∨D
4. (∃x)Fx� 2 ∼ ∼ D
5. (∃x) ∼ ∼ Fx� 3 ∼ ∀D
6. Fa 4 ∃D
7. ∼ ∼ Fb� 5 ∃D
8. Fb 7 ∼ ∼ D

The tree has a completed open branch, therefore the given sentence is not
quantificationally true.

o. 1. ∼ ((∀x)((Fx & Gx) ⊃ Hx) ⊃ (∀x)(Fx ⊃ (Gx & Hx)))� SM
2. (∀x)((Fx & Gx) ⊃ Hx) 1 ∼ ⊃D
3. ∼ (∀x)(Fx ⊃ (Gx & Hx))� 1 ∼ ⊃D
4. (∃x) ∼ (Fx ⊃ (Gx & Hx))� 3 ∼ ∀D
5. ∼ (Fa ⊃ (Ga & Ha))� 4 ∃D
6. Fa 5 ∼ ⊃D
7. ∼ (Ga & Ha)� 5 ∼ ⊃D
8. (Fa & Ga) ⊃ Ha� 2 ∀D

9. ∼ (Fa & Ga)� Ha 8 ⊃D

10. ∼ Ga ∼ Ha ∼ Ga ∼ Ha 7 ∼ &D
�

11. ∼ Fa ∼ Ga ∼ Fa ∼ Ga 9 ∼ &D
� �

The tree has at least one completed open branch, therefore the given sentence
is not quantificationally true.
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s. 1. ∼ ((∀x)Gxx ⊃ (∀x)(∀y)Gxy)� SM
2. (∀x)Gxx 1 ∼ ⊃D
3. ∼ (∀x)(∀y)Gxy� 1 ∼ ⊃D
4. (∃x) ∼ (∀y)Gxy� 3 ∼ ∀D
5. ∼ (∀y)Gay� 4 ∃D
6. (∃y) ∼ Gay� 5 ∼ ∀D
7. ∼ Gab 6 ∃D
8. Gaa 2 ∀D
9. Gbb 2 ∀D

The tree has a completed open branch, therefore the given sentence is not
quantificationally true.

u. 1. ∼ ((∃x)(∀y)Gxy ⊃ (∀x)(∃y)Gyx)� SM
2. (∃x)(∀y)Gxy� 1 ∼ ⊃D
3. ∼ (∀x)(∃y)Gyx� 1 ∼ ⊃D
4. (∃x) ∼ (∃y)Gyx� 3 ∼ ∀D
5. (∀y)Gay 2 ∃D
6. ∼ (∃y)Gyb� 4 ∃D
7. (∀y) ∼ Gyb 6 ∼ ∃D
8. Gab 5 ∀D
9. ∼ Gab 7 ∀D

�

The tree is closed. The sentence ‘(∃x)(∀y)Gxy ⊃ (∀x)(∃y)Gyx’ is quantifica-
tionally true.

q. 1. ∼ ((∀x)(Fx ⊃ Gx) ⊃ (∀x)(Fx ⊃ (∀y)Gy))� SM
2. (∀x)(Fx ⊃ Gx) 1 ∼ ⊃D
3. ∼ (∀x)(Fx ⊃ (∀y)Gy)� 1 ∼ ⊃D
4. (∃x) ∼ (Fx ⊃ (∀y)Gy)� 3 ∼ ∀D
5. ∼ (Fa ⊃ (∀y)Gy)� 4 ∃D
6. Fa 5 ∼ ⊃D
7. ∼ (∀y)Gy� 5 ∼ ⊃D
8. (∃y) ∼ Gy� 7 ∼ ∀D
9. ∼ Gb 8 ∃D

10. Fa ⊃ Ga� 2 ∀D

11. ∼ Fa Ga 10 ⊃D
12. � Fb ⊃ Gb� 2 ∀D

13. ∼ Fb Gb 12 ⊃D
�

The tree has a completed open branch, therefore the given sentence is not
quantificationally true.
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w. 1. ∼ (((∃x)Lxx ⊃ (∀y)Lyy) ⊃ (Laa ⊃ Lgg))� SM
2. (∃x)Lxx ⊃ (∀y)Lyy� 1 ∼ ⊃D
3. ∼ (Laa ⊃ Lgg)� 1 ∼ ⊃D
4. Laa 3 ∼ ⊃D
5. ∼ Lgg 3 ∼ ⊃D

6. ∼ (∃x)Lxx� (∀y)Lyy 2 ⊃D
7. (∀x) ∼ Lxx 6 ∼ ∃D
8. ∼ Laa 7 ∀D
9. � Lgg 6 ∀D

�

The tree is closed. The sentence ‘[(∃x)Lxx ⊃ (∀y)Lyy] ⊃ (Laa ⊃ Lgg)’ is quan-
tificationally true.

2.a. 1. (∀x)Fx & (∃x) ∼ Fx� SM
2. (∀x)Fx 1 &D
3. (∃x) ∼ Fx� 1 &D
4. ∼ Fa 3 ∃D
5. Fa 2 ∀D

�

The tree is closed. Therefore the sentence is quantificationally false.

c. 1. (∃x)Fx & (∃x) ∼ Fx� SM
2. (∃x)Fx� 1 &D
3. (∃x) ∼ Fx� 1 &D
4. Fa 2 ∃D
5. ∼ Fb 3 ∃D

The tree has at least one completed open branch. Therefore, the given sen-
tence is not quantificationally false.

e. 1. (∀x)(Fx ⊃ (∀y) ∼ Fy) SM
2. Fa ⊃ (∀y) ∼ Fy� 1 ∀D

3. ∼ Fa (∀y) ∼ Fy 2 ⊃D
4. ∼ Fa 3 ∀D

The tree has at least one completed open branch. Therefore, the given sen-
tence is not quantificationally false.
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i. 1. (∃x)(∃y)(Fxy & ∼ Fyx)� SM
2. (∃y)(Fay & ∼ Fya)� 1 ∃D
3. Fab & ∼ Fba� 2 ∃D
4. Fab 3 &D
5. ∼ Fba 3 &D

The tree has at least one completed open branch. Therefore, the given sen-
tence is not quantificationally false.

m. 1. (∃x)(∀y)Gxy & ∼ (∀y)(∃x)Gxy� SM
2. (∃x)(∀y)Gxy� 1 &D
3. ∼ (∀y)(∃x)Gxy� 1 &D
4. (∃y) ∼ (∃x)Gxy� 3 ∼ ∀D
5. (∀y)Gay 2 ∃D
6. ∼ (∃x)Gxb� 4 ∃D
7. (∀x) ∼ Gxb 6 ∼ ∃D
8. Gab 5 ∀D
9. ∼ Gab 7 ∀D

�

The tree is closed. Therefore the sentence is quantificationally false.

k. 1. (∀x)(∀y)(Fxy ⊃ ∼ Fyx) SM
2. (∀y)(Fay ⊃ ∼ Fya) 1 ∀D
3. Faa ⊃ ∼ Faa� 2 ∀D

4. ∼ Faa ∼ Faa 3 ⊃D

The tree has at least one completed open branch. Therefore, the given sen-
tence is not quantificationally false.

g. 1. (∀x)(Fx � ∼ Fx) SM
2. Fa � ∼ Fa� 1 ∀D

3. Fa ∼ Fa 2 �D
4. ∼ Fa ∼ ∼ Fa� 2 �D
5. � Fa 4 ∼ ∼ D

�

The tree is closed. Therefore the sentence is quantificationally false.
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3.a. 1. ∼ ((∃x)Fxx ⊃ (∃x)(∃y)Fxy)� SM
2. (∃x)Fxx� 1 ∼ ⊃D
3. ∼ (∃x)(∃y)Fxy� 1 ∼ ⊃D
4. (∀x) ∼ (∃y)Fxy 3 ∼ ∃D
5. Faa 2 ∃D
6. ∼ (∃y)Fay� 4 ∀D
7. (∀y) ∼ Fay 6 ∼ ∃D
8. ∼ Faa 7 ∀D

�

The tree for the negation of ‘(∃x)Fxx ⊃ (∃x)(∃y)Fxy’ is closed. Therefore the
latter sentence is quantificationally true.

c. 1. ∼ ((∃x)(∀y)Lxy ⊃ (∃x)Lxx)� SM
2. (∃x)(∀y)Lxy� 1 ∼ ⊃D
3. ∼ (∃x)Lxx� 1 ∼ ⊃D
4. (∀x) ∼ Lxx 3 ∼ ∃D
5. (∀y)Lay 2 ∃D
6. ∼ Laa 4 ∀D
7. Laa 5 ∀D

�

The tree for the negation of ‘(∃x)(∀y)Lxy ⊃ (∃x)Lxx’ is closed. Therefore the
latter sentence is quantificationally true.

e. 1. ∼ ((∀x)(Fx ⊃ (∃y)Gya)⊃ (Fb ⊃ (∃y)Gya))� SM
2. (∀x)(Fx ⊃ (∃y)Gya) 1 ∼ ⊃D
3. ∼ (Fb ⊃ (∃y)Gya)� 1 ∼ ⊃D
4. Fb 3 ∼ ⊃D
5. ∼ (∃y)Gya� 3 ∼ ⊃D
6. (∀y) ∼ Gya 5 ∼ ∃D
7. Fb ⊃ (∃y)Gya� 2 ∀D

8. ∼ Fb (∃y)Gya� 7 ⊃D
9. � Gca 8 ∃D

10. ∼ Gca 6 ∀D
�

The tree for the negation of ‘(∀x)(Fx ⊃ (∃y)Gya) ⊃ (Fb ⊃ (∃y)Gya)’ is closed.
Therefore the latter sentence is quantificationally true.
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1. (∀x)(Fx ⊃ (∀y)Gxy)⊃ (∃x)(Fx ⊃ ∼ (∀y)Gxy)� SM

2. ∼ (∀x)(Fx ⊃ (∀y)Gxy)� (∃x)(Fx ⊃ ∼ (∀y)Gxy)� 1 ⊃D
3. (∃x) ∼ (Fx ⊃ (∀y)Gxy)� 2 ∼ ∀D
4. ∼ (Fa ⊃ (∀y)Gay)� 3 ∃D
5. Fa 4 ∼ ⊃D
6. ∼ (∀y)Gay� 4 ∼ ⊃D
7. (∃y) ∼ Gay� 6 ∼ ∀D
8. ∼ Gab 7 ∃D
9. Fa ⊃ ∼ (∀y)Gay� 2 ∃D

10. ∼ Fa ∼ (∀y)Gay� 9 ⊃D
11. (∃y) ∼ Gay� 10 ∼ ∀D
12. ∼ Gab 11 ∃D

Both the tree for the given sentence and the tree for its negation have at least
one completed open branch. Therefore the given sentence is quantification-
ally indeterminate.

g. 1. ∼ ((∀x)(Fx ⊃ (∀y)Gxy) ⊃ (∃x)(Fx ⊃ ∼ (∀y)Gxy))� SM
2. (∀x)(Fx ⊃ (∀y)Gxy) 1 ∼ ⊃D
3. ∼ (∃x)(Fx ⊃ ∼ (∀y)Gxy)� 1 ∼ ⊃D
4. (∀x) ∼ (Fx ⊃ ∼ (∀y)Gxy) 3 ∼ ∃D
5. ∼ (Fa ⊃ ∼ (∀y)Gay)� 4 ∀D
6. Fa 5 ∼ ⊃D
7. ∼ ∼ (∀y)Gay� 5 ∼ ⊃D
8. (∀y)Gay 7 ∼ ∼ D
9. Fa ⊃ (∀y)Gay� 2 ∀D

10. ∼ Fa (∀y)Gay 9 ⊃D
11. � Gaa 10 ∀D
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4.a. 1. ∼ ((∀x)Mxx � ∼ (∃x) ∼ Mxx)� SM

2. (∀x)Mxx ∼ (∀x)Mxx� 1 ∼ �D
3. ∼ ∼ (∃x) ∼ Mxx� ∼ (∃x) ∼ Mxx� 1 ∼ �D
4. (∃x) ∼ Mxx� 3 ∼ ∼ D
5. ∼ Maa 4 ∃D
6. Maa 2 ∀D
7. � (∃x) ∼ Mxx� 2 ∼ ∀D
8. (∀x) ∼ ∼ Mxx 3 ∼ ∃D
9. ∼ Mbb 7 ∃D

10. ∼ ∼ Mbb� 8 ∀D
11. Mbb 10 ∼ ∼ D

�

The tree is closed. Therefore the sentences ‘(∀x)Mxx’ and ‘∼ (∃x) ∼ Mxx’ are
quantificationally equivalent.

c. 1. ∼ ((∀x)(Fa ⊃ Gx) � (Fa ⊃ (∀x)Gx))� SM

2. (∀x)(Fa ⊃ Gx) ∼ (∀x)(Fa ⊃ Gx)� 1 ∼ �D
3. ∼ (Fa ⊃ (∀x)Gx)� Fa ⊃ (∀x)Gx� 1 ∼ �D
4. Fa 3 ∼ ⊃D
5. ∼ (∀x)Gx� 3 ∼ ⊃D
6. (∃x) ∼ Gx� 5 ∼ ∀D
7. ∼ Gb 6 ∃D
8. Fa ⊃ Gb� 2 ∀D

9. ∼ Fa Gb 8 ⊃D
10. � � (∃x) ∼ (Fa ⊃ Gx)� 2 ∼ ∀D
11. ∼ (Fa ⊃ Gc)� 10 ∃D
12. Fa 11 ∼ ⊃D
13. ∼ Gc 11 ∼ ⊃D

14. ∼ Fa (∀x)Gx 3 ⊃D
15. � Gc 14 ∀D

�

The tree is closed. Therefore the sentences ‘(∀x)(Fa ⊃ Gx)’ and ‘Fa ⊃ (∀x)Gx’
are quantificationally equivalent.
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e. 1. ∼ (((∃x)Fx ⊃ Ga) � (∃x)(Fx ⊃ Ga))� SM

2. (∃x)Fx ⊃ Ga� ∼ ((∃x)Fx ⊃ Ga)� 1 ∼ �D
3. ∼ (∃x)(Fx ⊃ Ga)� (∃x)(Fx ⊃ Ga)� 1 ∼ �D
4. (∀x) ∼ (Fx ⊃ Ga) 3 ∼ ∃D

5. ∼ (∃x)Fx� Ga 2 ⊃D
6. (∀x) ∼ Fx 5 ∼ ∃D
7. ∼ (Fa ⊃ Ga)� ∼ (Fa ⊃ Ga)� 4 ∀D
8. Fa Fa 7 ∼ ⊃D
9. ∼ Ga ∼ Ga 7 ⊃D

10. ∼ Fa � 6 ∀D
11. � (∃x)Fx� 2 ∼ ⊃D
12. ∼ Ga 2 ∼ ⊃D
13. Fb ⊃ Ga� 3 ∃D
14. Fc 11 ∃D

15. ∼ Fb Ga 13 ⊃D
�

The tree has at least one completed open branch, therefore the given
sentences are not quantificationally equivalent.
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g. 1. ∼ (((∀x)Fx ⊃ Ga) � (∃x)(Fx ⊃ Ga))� SM

2. (∀x)Fx ⊃ Ga� ∼ ((∀x)Fx ⊃ Ga)� 1 ∼ �D
3. ∼ (∃x)(Fx ⊃ Ga)� (∃x)(Fx ⊃ Ga)� 1 ∼ �D
4. (∀x) ∼ (Fx ⊃ Ga) 3 ∼ ∃D

5. ∼ (∀x)Fx� Ga 2 ⊃D
6. (∃x) ∼ Fx� 5 ∼ ∀D
7. ∼ Fb 6 ∃D
8. ∼ (Fb ⊃ Ga)� ∼ (Fa ⊃ Ga)� 4 ∀D
9. Fb Fa 8 ∼ ⊃D

10. ∼ Ga ∼ Ga 8 ∼ ⊃D
11. � � (∀x)Fx 2 ∼ ⊃D
12. ∼ Ga 2 ∼ ⊃D
13. Fc ⊃ Ga� 3 ∃D

14. ∼ Fc Ga 13 ⊃D
15. Fc � 11 ∀D

�

The tree is closed. Therefore the sentences ‘(∀x)Fx ⊃ Ga’ and ‘(∃x)(Fx ⊃ Ga)’
are quantificationally equivalent.
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i. 1. ∼ ((∀x)(∀y)(Fx ⊃ Gy) � (∀x)(Fx ⊃ (∀y)Gy))� SM

2. (∀x)(∀y)(Fx ⊃ Gy) ∼ (∀x)(∀y)(Fx ⊃ Gy)� 1 ∼ �D
3. ∼ (∀x)(Fx ⊃ (∀y)Gy)� (∀x)(Fx ⊃ (∀y)Gy) 1 ∼ �D
4. (∃x) ∼ (Fx ⊃ (∀y)Gy)� 3 ∼ ∀D
5. ∼ (Fa ⊃ (∀y)Gy)� 4 ∃D
6. Fa 5 ∼ ⊃D
7. ∼ (∀y)Gy� 5 ∼ ⊃D
8. (∃y) ∼ Gy� 7 ∼ ∀D
9. ∼ Gb 8 ∃D

10. (∀y)(Fa ⊃ Gy) 2 ∀D
11. Fa ⊃ Gb� 10 ∀D

12. ∼ Fa Gb 11 ⊃D
13. � � (∃x) ∼ (∀y)(Fx ⊃ Gy)� 2 ∼ ∀D
14. ∼ (∀y)(Fc ⊃ Gy)� 13 ∃D
15. (∃y) ∼ (Fc ⊃ Gy)� 14 ∼ ∀D
16. ∼ (Fc ⊃ Gd)� 15 ∃D
17. Fc 16 ∼ ⊃D
18. ∼ Gd 16 ∼ ⊃D
19. Fc ⊃ (∀y)Gy� 3 ∀D

20. ∼ Fc (∀y)Gy 19 ⊃D
21. � Gd 20 ∀D

�

The tree is closed. Therefore the sentences ‘(∀x)(∀y)(Fx ⊃ Gy)’ and 
‘(∀x)(Fx ⊃ (∀y)Gy)’ are quantificationally equivalent.
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k. 1. ∼ ((∀x)(Fa � Gx) � (Fa � (∀x)Gx))� SM

2. (∀x)(Fa � Gx) ∼ (∀x)(Fa � Gx)� 1 ∼ �D
3. ∼ (Fa � (∀x)Gx)� Fa � (∀x)Gx� 1 ∼ �D

4. Fa ∼ Fa 3 ∼ �D
5. ∼ (∀x)Gx� (∀x)Gx 3 ∼ �D
6. (∃x) ∼ Gx� 5 ∼ ∀D
7. ∼ Gb 6 ∃D
8. Fa � Gb� Fa � Gb� 2 ∀D

9. Fa ∼ Fa Fa ∼ Fa 8 �D
10. Gb ∼ Gb Gb ∼ Gb 8 �D
11. � � � Gb 5 ∀D
12. � (∃x) ∼ (Fa � Gx)� 2 ∼ ∀D
13. ∼ (Fa � Gc)� 12 ∃D

5 ∀D

14. Fa ∼ Fa 3 �D
15. (∀x)Gx ∼ (∀x)Gx� 3 �D

16. Fa ∼ Fa Fa ∼ Fa 13 ∼ �D
17. ∼ Gc Gc ∼ Gc Gc 13 ∼ �D
18. Gc � � 15 ∀D
19. � (∃x) ∼ Gx� 15 ∼ ∀D
20. ∼ Gd 19 ∃D

The tree has at least one completed open branch, therefore the given
sentences are not quantificationally equivalent.
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m. 1. ∼ ((∀x)(Fx ⊃ (∀y)Gy) � (∀x)(∀y)(Fx ⊃ Gy))� SM

2. (∀x)(Fx ⊃ (∀y)Gy) ∼ (∀x)(Fx ⊃ (∀y)Gy)� 1 ∼ �D
3. ∼ (∀x)(∀y)(Fx ⊃ Gy)� (∀x)(∀y)(Fx ⊃ Gy) 1 ∼ �D
4. (∃x) ∼ (∀y)(Fx ⊃ Gy)� 3 ∼ ∀D
5. ∼ (∀y)(Fa ⊃ Gy)� 4 ∃D
6. (∃y) ∼ (Fa ⊃ Gy)� 5 ∼ ∀D
7. ∼ (Fa ⊃ Gb)� 6 ∃D
8. Fa 7 ∼ ⊃D
9. ∼ Gb 7 ∼ ⊃D

10. Fa ⊃ (∀y)Gy� 2 ∀D

11. ∼ Fa (∀y)Gy 10 ⊃D
12. � Gb 11 ∀D
13. � (∃x) ∼ (Fx ⊃ (∀y)Gy)� 2 ∼ ∀D
14. ∼ (Fc ⊃ (∀y)Gy)� 13 ∃D
15. Fc 14 ∼ ⊃D
16. ∼ (∀y)Gy� 14 ∼ ⊃D
17. (∃y) ∼ Gy� 16 ∼ ∀D
18. ∼ Gd 17 ∃D
19. (∀y)(Fc ⊃ Gy) 3 ∀D
20. Fc ⊃ Gd� 19 ∀D

21. ∼ Fc Gd 20 ⊃D
� �

The tree is closed. Therefore the sentences ‘(∀x)(Fx ⊃ (∀y)Gy)’ and
‘(∀x)(∀y)(Fx ⊃ Gy)’ are quantificationally equivalent.

5.a. 1. (∀x)(Fx ⊃ Gx) SM
2. Ga SM
3. ∼ Fa SM
4. Fa ⊃ Ga� 1 ∀D

5. ∼ Fa Ga 4 ⊃D

The tree has at least one completed open branch. Therefore the argument is
quantificationally invalid.
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c. 1. (∀x)(Kx ⊃ Lx) SM
2. (∀x)(Lx ⊃ Mx) SM
3. ∼ (∀x)(Kx ⊃ Mx)� SM
4. (∃x) ∼ (Kx ⊃ Mx)� 3 ∼ ∀D
5. ∼ (Ka ⊃ Ma)� 4 ∃D
6. Ka 5 ∼ ⊃D
7. ∼ Ma 5 ∼ ⊃D
8. Ka ⊃ La� 1 ∀D
9. La ⊃ Ma� 2 ∀D

10. ∼ Ka La 8 ⊃D
�

11. ∼ La Ma 9 ⊃D
� �

The tree is closed. Therefore the argument is quantificationally valid.

e. 1. (∀x)(Fx ⊃ Gx) ⊃ (∃x)Nx� SM
2. (∀x)(Nx ⊃ Gx) SM
3. ∼ (∀x)(∼ Fx ∨ Gx)� SM
4. (∃x) ∼ (∼ Fx ∨ Gx)� 3 ∼ ∀D
5. ∼ (∼ Fa ∨ Ga)� 4 ∃D
6. ∼ ∼ Fa� 5 ∼ ∨D
7. ∼ Ga 5 ∼ ∨D
8. Fa 6 ∼ ∼ D
9. Na ⊃ Ga� 2 ∀D

10. ∼ Na Ga 9 ⊃D
�

11. ∼ (∀x)(Fx ⊃ Gx)� (∃x)Nx� 1 ⊃D
12. Nb 11 ∃D
13. (∃x) ∼ (Fx ⊃ Gx)� 11 ∼ ∀D
14. ∼ (Fb ⊃ Gb)� 13 ∃D
15. Fb 14 ∼ ⊃D
16. ∼ Gb 14 ∼ ⊃D
17. Nb ⊃ Gb� Nb ⊃ Gb� 2 ∀D

18. ∼ Nb Gb ∼ Nb Gb 17 ⊃D
� �

The tree has at least one completed open branch. Therefore the argument is
quantificationally invalid.
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g. 1. (∀x)(∼ Ax ⊃ Kx) SM
2. (∃y) ∼ Ky� SM
3. ∼ (∃w)(Aw ∨ ∼ Lwf)� SM
4. (∀w) ∼ (Aw ∨ ∼ Lwf) 3 ∼ ∃D
5. ∼ Ka 2 ∃D
6. ∼ Aa ⊃ Ka� 1 ∀D
7. ∼ (Aa ∨ ∼ Laf)� 4 ∀D
8. ∼ Aa 7 ∼ ∨D
9. ∼ ∼ Laf� 7 ∼ ∨D

10. Laf 9 ∼ ∼ D

11. ∼ ∼ Aa� Ka 6 ⊃D
12. Aa � 11 ∼ ∼ D

�

The tree is closed. Therefore the argument is quantificationally valid.

i. 1. (∀x)(∀y)Cxy SM
2. ∼ ((Caa & Cab) & (Cba & Cbb))� SM
3. (∀y)Cay 1 ∀D
4. (∀y)Cby 1 ∀D
5. Caa 3 ∀D
6. Cab 3 ∀D
7. Cba 4 ∀D
8. Cbb 4 ∀D

9. ∼ (Caa & Cab)� ∼ (Cba & Cbb)� 2 ∼ &D

10. ∼ Caa ∼ Cab ∼ Cba ∼ Cbb 9 ∼ &D
� � � �

The tree is closed. Therefore the argument is quantificationally valid.

k. 1. (∀x)(Fx ⊃ Gx) SM
2. ∼ (∃x)Fx� SM
3. ∼ ∼ (∃x)Gx� SM
4. (∃x)Gx� 3 ∼ ∼ D
5. Ga 4 ∃D
6. (∀x) ∼ Fx 2 ∼ ∃D
7. Fa ⊃ Ga� 1 ∀D
8. ∼ Fa 6 ∀D

9. ∼ Fa Ga 7 ⊃D

The tree has at least one completed open branch. Therefore the argument is
quantificationally invalid.
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m. 1. (∃x)Cx ⊃ Ch� SM
2. ∼ ((∃x)Cx � Ch)� SM

3. (∃x)Cx� ∼ (∃x)Cx� 2 ∼ �D
4. ∼ Ch Ch 2 ∼ �D
5. (∀x) ∼ Cx 3 ∼ ∃D
6. ∼ Ch 5 ∀D
7. Ca � 3 ∃D

8. ∼ (∃x)Cx� Ch 1 ⊃D
9. (∀x) ∼ Cx � 8 ∼ ∃D

10. ∼ Ca 9 ∀D
�

The tree is closed. Therefore the argument is quantificationally valid.

6.a. 1. (∀x) ∼ Jx SM
2. (∃y)(Hby ∨ Ryy) ⊃ (∃x)Jx� SM
3. ∼ (∀y) ∼ (Hby ∨ Ryy)� SM
4. (∃y) ∼ ∼ (Hby ∨ Ryy)� 3 ∼ ∀D
5. ∼ ∼ (Hba ∨ Raa)� 4 ∃D
6. Hba ∨ Raa� 5 ∼ ∼ D
7. ∼ Ja 1 ∀D
8. ∼ Jb 1 ∀D

9. ∼ (∃y)(Hby ∨ Ryy)� (∃x)Jx� 2 ⊃D
10. Jc 9 ∃D
11. ∼ Jc 1 ∀D
12. (∀y) ∼ (Hby ∨ Ryy) � 9 ∼ ∃D
13. ∼ (Hba ∨ Raa)� 12 ∀D
14. ∼ Hba 13 ∼ ∨D
15. ∼ Raa 13 ∼ ∨D

16. Hba Raa 6 ∨D
� �

The tree is closed. Therefore the entailment does hold.
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c. 1. (∀y)((Hy & Fy) ⊃ Gy) SM
2. (∀z)Fz & ∼ (∀x)Kxb� SM
3. ∼ (∀x)(Hx ⊃ Gx)� SM
4. (∀z)Fz 2 &D
5. ∼ (∀x)Kxb� 2 &D
6. (∃x) ∼ (Hx ⊃ Gx)� 3 ∼ ∀D
7. (∃x) ∼ Kxb� 5 ∼ ∀D
8. ∼ Kab 7 ∃D
9. ∼ (Hc ⊃ Gc)� 6 ∃D

10. Hc 9 ∼ ⊃D
11. ∼ Gc 9 ∼ ⊃D
12. (Hc & Fc) ⊃ Gc� 1 ∀D

13. ∼ (Hc & Fc)� Gc 12 ⊃D
�

14. ∼ Hc ∼ Fc 13 ∼ &D
15. � Fc 4 ∀D

�

The tree is closed. Therefore the entailment does hold.

e. 1. (∀z)(Lz � Hz) SM
2. (∀x) ∼ (Hx ∨ ∼ Bx) SM
3. ∼ ∼ Lb� SM
4. Lb 3 ∼ ∼ D
5. Lb � Hb� 1 ∀D

6. Lb ∼ Lb 5 �D
7. Hb ∼ Hb 5 �D
8. ∼ (Hb ∨ ∼ Bb)� � 2 ∀D
9. ∼ Hb 8 ∼ ∨D

10. ∼ ∼ Bb 8 ∼ ∨D
�

The tree is closed. Therefore the entailment does hold.
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Section 9.4E

1.a. 1. (∀x)Fxx SM
2. (∃x)(∃y) ∼ Fxy� SM
3. (∀x)x � a SM
4. (∃y) ∼ Fby� 2 ∃D
5. ∼ Fbc 4 ∃D
6. Faa 1 ∀D
7. c � a 3 ∀D
8. Fac 6, 7 �D
9. b � a 3 ∀D

10. Fbc 8, 9 �D
�

The tree is closed. Therefore the set is quantificationally inconsistent.

c. 1. (∀x)(x � a ⊃ Gxb) SM
2. ∼ (∃x)Gxx� SM
3. a � b SM
4. (∀x) ∼ Gxx 2 ∼ ∃D
5. a � a ⊃ Gab� 1 ∀D

6. ∼ a � a Gab 5 ⊃D
7. � ∼ Gaa 4 ∀D
8. Gaa 3, 6 �D

�

The tree is closed. Therefore the set is quantificationally inconsistent.

e. 1. (∀x)((Fx & ∼ Gx) ⊃ ∼ x � a) SM
2. Fa & ∼ Ga� SM
3. Fa 2 &D
4. ∼ Ga 2 &D
5. (Fa & ∼ Ga) ⊃ ∼ a � a� 1 ∀D

6. ∼ (Fa & ∼ Ga)� ∼ a � a 5 ⊃D
�

7. ∼ Fa ∼ ∼ Ga� 6 ∼ &D
8. � Ga 7 ∼ ∼ D

�

The tree is closed. Therefore the set is quantificationally inconsistent.
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g. 1. (∀x)(x � a ⊃ Gxf(b)) SM
2. ∼ (∃x)Gxf(x)� SM
3. f(a)� f(b) SM
4. (∀x) ∼ Gxf(x) 2 ∼ ∃D
5. a � a ⊃ Gaf(b)� 1 ∀D

6. ∼ a � a Gaf(b) 5 ⊃D
7. � ∼ Gaf(a) 4 ∀D
8. Gaf(a) 3, 6 �D

�

The tree is closed. Therefore the set is quantificationally inconsistent.

i. 1. (∃x) ∼ x � g(x)� SM
2. (∀x)(∀y)x � g(y) SM
3. ∼ a � g(a) 1 ∃D
4. (∀y)a � g(y) 2 ∀D
5. a � g(a) 4 ∀D

�

The tree is closed. Therefore the set is quantificationally inconsistent.

k. 1. (∀x)[Hx ⊃ (∀y)Txy] SM
2. (∃x)Hf(x)� SM
3. ∼ (∃x)Txx� SM
4. Hf(a) 2 ∃D
5. (∀x) ∼ Txx 3 ∼ ∃D
6. Hf(a) ⊃ (∀y)Tf(a)y� 1 ∀D

6 ⊃D

7. ∼ Hf(a) (∀y)Tf(a)y)
� Tf(a)f(a) 7 ∀D

∼ Tf(a)f(a) 5 ∀D
�

The tree is closed. Therefore the set is quantificationally inconsistent.



224 SOLUTIONS TO SELECTED EXERCISES ON PP. 483–486

m. 1. (∀x)[Fx ⊃ (∃y)f(y)� x] SM
2. (∃x)Fx� SM
3. Fa 2 ∃D
4. Fa ⊃ (∃y)f(y)� a� 1 ∀D

5. ∼ Fa (∃y)f(y)� a� 4 ⊃D
�

6. f(b)� a 5 ∃D
7. Ff(b) ⊃ (∃y)f(y)� f(b) 1 ∀D

8. ∼ Ff(b) (∃y)f(y)� f(b) 7 ⊃D

The tree has a completed open branch. Therefore the set is quantificationally
consistent.

2.a. 1. ∼ (a � b � b � a)� SM

2. a � b ∼ a � b 1 ∼ �D
3. ∼ b � a b � a 1 ∼ �D
4. ∼ a � a ∼ b � b 2, 3 �D

� �

The tree is closed. Therefore ‘a � b � b � a’ is quantificationally true.

c. 1. ∼ ((Gab & ∼ Gba) ⊃ ∼ a � b)� SM
2. Gab & ∼ Gba� 1 ∼ ⊃D
3. ∼ ∼ a � b� 1 ∼ ⊃D
4. Gab 2 &D
5. ∼ Gba 2 &D
6. a � b 3 ∼ ∼ D
7. Gaa 4, 6 �D
8. ∼ Gaa 5, 6 �D

�

The tree is closed. Therefore the sentence ‘(Gab & ∼ Gba) ⊃ ∼ a � b’ is quan-
tificationally true.
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e. 1. ∼ (Fa � (∃x)(Fx & x � a))� SM

2. Fa ∼ Fa 1 ∼ �D
3. ∼ (∃x)(Fx & x � a)� (∃x)(Fx & x � a)� 1 ∼ �D
4. (∀x) ∼ (Fx & x � a) 3 ∼ ∃D
5. ∼ (Fa & a � a)� 4 ∀D

6. ∼ Fa ∼ a � a 5 ∼ &D
7. � � Fb & b � a� 3 ∃D
8. Fb 7 &D
9. b � a 7 &D

10. ∼ Fb 2, 9 �D
�

The tree is closed. Therefore the sentence ‘Fa � (∃x)(Fx & x � a)’ is quan-
tificationally true.

g. 1. ∼ ((∀x)x � a ⊃ ((∃x)Fx ⊃ (∀x)Fx))� SM
2. (∀x)x � a 1 ∼ ⊃D
3. ∼ ((∃x)Fx ⊃ (∀x)Fx)� 1 ∼ ⊃D
4. (∃x)Fx� 3 ∼ ⊃D
5. ∼ (∀x)Fx� 3 ∼ ⊃D
6. (∃x) ∼ Fx� 5 ∼ ∀D
7. Fb 4 ∃D
8. ∼ Fc 6 ∃D
9. c � a 2 ∀D

10. b � a 2 ∀D
11. c � b 9, 10 �D
12. Fc 7, 11 �D

�

The tree is closed. Therefore the sentence ‘(∀x)x � a ⊃ ((∃x)Fx ⊃ (∀x)Fx)’
is quantificationally true.

i. 1. (∀x)(∀y) ∼ x � y SM
2. (∀y) ∼ a � y 1 ∀D
3. ∼ a � a 2 ∀D

�

The tree is closed. Therefore the sentence ‘(∀x)(∀y) ∼ x � y’ is quantifica-
tionally false.
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k. 1. (∃x)(∃y) ∼ x � y� SM
2. (∃y) ∼ a � y� 1 ∃D
3. ∼ a � b 2 ∃D

1. ∼ (∃x)(∃y) ∼ x � y� SM
2. (∀x) ∼ (∃y) ∼ x � y 1 ∼ ∃D
3. ∼ (∃y) ∼ a � y� 2 ∀D
4. (∀y) ∼ ∼ a � y 3 ∼ ∃D
5. ∼ ∼ a � a� 4 ∀D
6. a � a 5 ∼ ∼ D

Both the tree for the given sentence and the tree for its negation have at least
one completed open branch. Therefore the given sentence is quantification-
ally indeterminate.

m. 1. ∼ (∀x)(∀y)((Fx � Fy) ⊃ x � y)� SM
2. (∃x) ∼ (∀y)((Fx � Fy) ⊃ x � y)� 1 ∼ ∀D
3. ∼ (∀y)((Fa � Fy) ⊃ a � y)� 2 ∃D
4. (∃y) ∼ ((Fa � Fy) ⊃ a � y)� 3 ∼ ∀D
5. ∼ ((Fa � Fb) ⊃ a � b)� 4 ∃D
6. Fa � Fb� 5 ∼ ⊃D
7. ∼ a � b 5 ∼ ⊃D

8. Fa ∼ Fa 6 �D
9. Fb ∼ Fb 6 �D

1. (∀x)(∀y)((Fx � Fy) ⊃ x � y) SM
2. (∀y)((Fa � Fy) ⊃ a � y) 1 ∀D
3. (Fa � Fa) ⊃ a � a� 2 ∀D

4. ∼ (Fa � Fa)� a � a 3 ⊃D

5. Fa ∼ Fa 4 ∼ �D
6. ∼ Fa Fa 4 ∼ �D

� �

Both the tree for the given sentence and the tree for its negation have at least
one completed open branch. Therefore the given sentence is quantification-
ally indeterminate.
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o. 1. ∼ (((∃x)Gax & ∼ (∃x)Gxa) ⊃ (∀x)(Gxa ⊃ ∼ x � a))� SM
2. (∃x)Gax & ∼ (∃x)Gxa� 1 ∼ ⊃D
3. ∼ (∀x)(Gxa ⊃ ∼ x � a)� 1 ∼ ⊃D
4. (∃x)Gax� 2 &D
5. ∼ (∃x)Gxa� 2 &D
6. (∀x) ∼ Gxa 5 ∼ ∃D
7. (∃x) ∼ (Gxa ⊃ ∼ x � a)� 3 ∼ ∀D
8. ∼ (Gba ⊃ ∼ b � a)� 7 ∃D
9. Gac 4 ∃D

10. Gba 8 ∼ ⊃D
11. ∼ ∼ b � a 8 ∼ ⊃D
12. ∼ Gba 6 ∀D

�

The tree is closed. Therefore the sentence ‘[(∃x)Gax & ∼ (∃x)Gxa] ⊃ (∀x)
(Gxa ⊃ ∼ x � a)’ is quantificationally true.

3.a. 1. ∼ (∃x)x � f(a) SM
2. (∀x) ∼ x � f(a) 1 ∼ ∃D
3. ∼ f(a)� f(a) 2 ∀D

�

The tree is closed. Therefore the given sentence is quantificationally true.

c. 1. ∼ (∃x)(∃y)x � y SM
2. (∀x) ∼ (∃y)x � y 1 ∼ ∃D
3. ∼ (∃y)a � y 2 ∀D
4. (∀y) ∼ a � y 3 ∼ ∃D
5. ∼ a � a 4 ∀D

�

The tree is closed. Therefore the given sentence is quantificationally true.

e. 1. ∼ (∀x)[Gx ⊃ (∃y)f(x)� y] SM
2. (∃x) ∼ [Gx ⊃ (∃y)f(x)� y] 1 ∼ ∀D
3. ∼ [Ga ⊃ (∃y)f(a)� y] 2 ∃D
4. Ga 3 ∼ ⊃D
5. ∼ (∃y)f(a)� y 3 ∼ ⊃D
6. (∀y) ∼ f(a)� y 5 ∼ ∃D
7. ∼ f(a)� f(a) 7 ∀D

�

The tree is closed. Therefore the given sentence is quantificationally true.
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g. 1. ∼ (∀y)(∃x)[∼ y � x & f(x) � y]� SM
2. (∃y) ∼ (∃x)[∼ y � x & f(x) � y]� 1 ∼ ∀D
3. ∼ (∃x)[∼ a � x & f(x) � a]� 2 ∃D
4. (∀x) ∼ [∼ a � x & f(x) � a] 3 ∼ ∃D
5. ∼ [∼ a � a & f(a) � a]� 4 ∀D

6. ∼ a � a ∼ f(a) � a 5 ∼ ⊃D
7. � ∼ [∼ a � f(a) & f( f(a)) � a� 4 ∀D

8. ∼ a � f(a) ∼ f( f(a)) � a 7 ∼ ⊃D

The tree has a completed open branch (the left branch). Therefore the given
sentence is not quantificationally true.

4.a. 1. ∼ (∼ a � b � ∼ b � a)� SM

2. ∼ a � b ∼ ∼ a � b� 1 ∼ �D
3. ∼ ∼ b � a� ∼ b � a 1 ∼ �D
4. b � a 3 ∼ ∼ D
5. ∼ b � b 2, 4 � D
6. � a � b 2 ∼ ∼ D
7. ∼ a � a 6, 3 �D

�

The tree is closed. Therefore the sentences ‘∼ a � b’ and ‘∼ b � a’ are quan-
tificationally equivalent.
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c. 1. ∼ ((∀x)x � a � (∀x)x � b)� SM

2. (∀x)x � a ∼ (∀x)x � a� 1 ∼ �D
3. ∼ (∀x)x � b� (∀x)x � b 1 ∼ �D
4. (∃x) ∼ x � b� 3 ∼ ∀D
5. ∼ c � b 4 ∃D
6. b � a 2 ∀D
7. c � a 2 ∀D
8. c � b 6, 7 �D
9. � (∃x) ∼ x � a� 2 ∼ ∀D

10. ∼ c � a 9 ∃D
11. c � b 3 ∀D
12. a � b 3 ∀D
13. c � a 11, 12 �D

�

The tree is closed. Therefore the sentences ‘(∀x)x � a’ and ‘(∀x)x � b’ are
quantificationally equivalent.

e. 1. ∼ ((∀x)(∀y)x � y � (∀x)x � a)� SM

2. (∀x)(∀y)x � y ∼ (∀x)(∀y)x � y� 1 ∼ �D
3. ∼ (∀x)x � a� (∀x)x � a 1 ∼ �D
4. (∃x) ∼ x � a� 3 ∼ ∀D
5. ∼ b � a 4 ∃D
6. (∀y)b � y 2 ∀D
7. b � a 6 ∀D
8. � (∃x) ∼ (∀y)x � y� 2 ∼ ∀D
9. ∼ (∀y)b � y� 8 ∃D

10. (∃y) ∼ b � y� 9 ∼ ∀D
11. ∼ b � c 10 ∃D
12. b � a 3 ∀D
13. c � a 3 ∀D
14. b � c 12, 13 �D

�

The tree is closed. Therefore the sentences ‘(∀x)(∀y)x � y’ and ‘(∀x)x � a’
are quantificationally equivalent.
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g. 1. ∼ ((∀x)(Fx ⊃ x � a) � (∀x)(Fa ⊃ x � a))� SM

2. (∀x)(Fx ⊃ x � a) ∼ (∀x)(Fx ⊃ x � a)� 1 ∼ �D
3. ∼ (∀x)(Fa ⊃ x � a)� (∀x)(Fa ⊃ x � a) 1 ∼ �D
4. (∃x) ∼ (Fa ⊃ x � a)� 3 ∼ ∀D
5. ∼ (Fa ⊃ b � a)� 4 ∃D
6. Fa 5 ∼ ⊃D
7. ∼ b � a 5 ∼ ⊃D
8. Fb ⊃ b � a� 2 ∀D

9. ∼ Fb b � a 8 ⊃D
10. Fa ⊃ a � a� � 2 ∀D

11. ∼ Fa a � a 10 ⊃D
12. � (∃x) ∼ (Fx ⊃ x � a)� 2 ∼ ∀D
13. ∼ (Fb ⊃ b � a)� 12 ∃D
14. Fb 13 ∼ ⊃D
15. ∼ b � a 13 ∼ ⊃D
16. Fa ⊃ a � a� 3 ∀D
17. Fa ⊃ b � a� 3 ∀D

18. ∼ Fa a � a 16 ⊃D

19. ∼ Fa b � a ∼ Fa b � a 17 ⊃D
� �

The tree has at least one completed open branch, therefore the given sen-
tences are not quantificationally equivalent.
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i. 1. ∼ (((∀x)Fx ∨ (∀x) ∼ Fx) � (∀y)(Fy ⊃ y � b))� SM

2. (∀x)Fx ∨ (∀x) ∼ Fx� ∼ ((∀x)Fx ∨ (∀x) ∼ Fx)� 1 ∼ �D
3. ∼ (∀y)(Fy ⊃ y � b)� (∀y)(Fy ⊃ y � b) 1 ∼ �D
4. (∃y) ∼ (Fy ⊃ y � b)� 3 ∼ ∀D
5. ∼ (Fa ⊃ a � b)� 4 ∃D
6. Fa 5 ∼ ⊃D
7. ∼ a � b 5 ∼ ⊃D

8. (∀x)Fx (∀x) ∼ Fx 2 ∨D
9. Fa ∼ Fa 8 ∀D

10. Fb � 8 ∀D
11. ∼ (∀x)Fx� 2 ∼ ∨D
12. ∼ (∀x) ∼ Fx� 2 ∼ ∨D
13. (∃x) ∼ Fx� 11 ∼ ∀D
14. (∃x) ∼ ∼ Fx� 12 ∼ ∀D
15. ∼ Fa 13 ∃D
16. ∼ ∼ Fc� 14 ∃D
17. Fc 16 ∼ ∼ D
18. Fc ⊃ c � b� 3 ∀D

19. ∼ Fc c � b 18 ⊃D
�

20. Fb ⊃ b � b� 3 ∀D

21. ∼ Fb b � b 20 ⊃D
22. ∼ Fc 19, 21 �D
23. � Fa ⊃ a � b� 3 ∀D

24. ∼ Fa a � b 23 ⊃D
25. b � c b � c 19, 21 �D
26. c � c c � c 19, 25 �D
27. a � c 19, 24 �D
28. Fa 27, 17 �D

�
29. Fb 17, 25 �D

The tree has at least one completed open branch, therefore the given sen-
tences are not quantificationally equivalent.
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k. 1. ∼ ((∃x)(x � a & x � b) � a � b)� SM

2. (∃x)(x � a & x � b)� ∼ (∃x)(x � a & x � b)� 1 ∼ �D
3. ∼ a � b a � b 1 ∼ �D
4. (∀x) ∼ (x � a & x � b) 2 ∼ ∃D
5. ∼ (a � a & a � b)� 4 ∀D
6. ∼ (b � a & b � b) 4 ∀D

7. ∼ a � a ∼ a � b 5 ∼ &D
8. c � a & c � b� � � 2 ∃D
9. c � a 8 &D

10. c � b 8 &D
11. ∼ c � b 3, 9 �D

�

The tree is closed. Therefore the sentences ‘(∃x)(x � a & x � b)’ and ‘a � b’
are quantificationally equivalent.

5.a. 1. a � b & ∼ Bab� SM
2. ∼ ∼ (∀x)Bxx� SM
3. (∀x)Bxx 2 ∼ ∼ D
4. a � b 1 &D
5. ∼ Bab 1 &D
6. Bbb 3 ∀D
7. Bab 4, 6 �D

�

The tree is closed. Therefore the argument is quantificationally valid.

c. 1. (∀z)(Gz ⊃ (∀y)(Ky ⊃ Hzy)) SM
2. (Ki & Gj) & i � j� SM
3. ∼ Hii SM
4. Ki & Gj� 2 &D
5. i � j 2 &D
6. Ki 4 &D
7. Gj 4 &D
8. Gj ⊃ (∀y)(Ky ⊃ Hjy)� 1 ∀D

9. ∼ Gj (∀y)(Ky ⊃ Hjy) 8 ⊃D
10. � Ki ⊃ Hji� 9 ∀D

11. ∼ Ki Hji 10 ⊃D
12. � Hii 5, 11 �D

�

The tree is closed. Therefore the argument is quantificationally valid.
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e. 1. a � b SM
2. ∼ (Ka ∨ ∼ Kb)� SM
3. ∼ Ka 2 ∼ ∀D
4. ∼ ∼ Kb� 2 ∼ ∀D
5. Kb 4 ∼ ∼ D
6. Ka 1, 5 �D

�

The tree is closed. Therefore the argument is quantificationally valid.

g. 1. (∀x)(x � a ∨ x � b) SM
2. (∃x)(Fxa & Fbx)� SM
3. ∼ (∃x)Fxx SM
4. (∀x) ∼ Fxx 3 ∼ ∃D
5. Fca & Fbc� 2 ∃D
6. Fca 5 &D
7. Fbc 5 &D
8. c � a ∨ c � b� 1 ∀D
9.

10. c � a c � b 8 ∨D
11. Fcc 6, 10 �D
12. Fcc 7, 10 �D
13. ∼ Fcc ∼ Fcc 4 ∀D

� �

The tree is closed. Therefore the argument is quantificationally valid.

i. 1. (∀x)(∀y)(Fxy ∨ Fyx) SM
2. a � b SM
3. ∼ (∀x)(Fxa ∨ Fbx)� SM
4. (∃x) ∼ (Fxa ∨ Fbx)� 3 ∼ ∀D
5. ∼ (Fca ∨ Fbc)� 4 ∃D
6. ∼ Fca 5 ∼ ∀D
7. ∼ Fbc 5 ∼ ∀D
8. (∀y)(Fay ∨ Fya) 1 ∀D
9. Fac ∨ Fca� 8 ∀D

10. Fac Fca 9 ∀D
11. ∼ Fac � 2, 7 �D

�

The tree is closed. Therefore the argument is quantificationally valid.
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k. 1. (∀x)(Fx � ∼ Gx) SM
2. Fa SM
3. Gb SM
4. ∼ ∼ a � b� SM
5. a � b 4 ∼ ∼ D
6. Fa � ∼ Ga� 1 ∀D

7. Fa ∼ Fa 6 �D
8. ∼ Ga ∼ ∼ Ga 6 �D
9. Ga � 3, 5 �D

�

The tree is closed. Therefore the argument is quantificationally valid.

m. 1. (∀x)(∀y)x � y SM
2. ∼ ∼ (∃x)(∃y)(Fx & ∼ Fy)� SM
3. (∃x)(∃y)(Fx & ∼ Fy)� 2 ∼ ∼ D
4. (∃y)(Fa & ∼ Fy)� 3 ∃D
5. Fa & ∼ Fb� 4 ∃D
6. Fa 5 &D
7. ∼ Fb 5 &D
8. (∀y)a � y 1 ∀D
9. a � b 8 ∀D

10. ∼ Fa 7, 9 �D
�

The tree is closed. Therefore the argument is quantificationally valid.

o. 1. (∀x)(Hx ⊃ Hf(x) SM
2. (∃z) ∼ Hf(z) SM
3. ∼ ∼ (∀x)Hx SM
4. (∀x)Hx 3 ∼ ∼ D
5. ∼ Hf(a) 2 ∃D
6. Ha 4 ∀D
7. Ha ⊃ Hf(a) 1 ∀D

8. ∼ Ha Hf(a) 7 ⊃D
� �

The tree is closed. Therefore the argument is quantificationally valid.
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q. 1. (∀x)(∀y)(Hxy � ∼ Hyx) SM
2. (∃x)(Hxf(x) & ∼ Hf(x)x� SM
3. ∼ ∼ (∀x)f(x) � x SM

(∀x)f(x) � x 3 ∼ ∼ D
4. Haf(a) & ∼ Hf(a)a� 2 ∃D

Haf(a) 4 &D
∼ Hf(a)a 4 &D

5. (∀y)(Hay � Hya) 1 ∀D
6. Haf(a) � Hf(a)a� 5 ∀D

7. Haf(a) ∼ Haf(a) 6 �D
8. Hf(a)a ∼ Hf(a)a 6 �D
9. � �

The tree is closed. Therefore the argument is quantificationally valid.

s. 1. (∀x)[Px ⊃ (Ox v ∼ x � f(b))] SM
2. (∃x)[(Px & ∼ Ox) & x � f(b)]� SM
3. ∼ Ob SM
4. (Pa & ∼ Oa) & a � f(b)� 2 ∃D
5. Pa & ∼ Oa� 4 &D
6. a � f(b) 4 &D
7. Pa 5 &D
8. ∼ Oa 5 &D
9. Pa ⊃ (Oa v ∼ a � f(b)� 1 ∀D

10. Pb ⊃ (Ob v ∼ b � f(b)) 1 ∀D

11. ∼ Pa Oa v ∼ a � f(b) 9 ⊃D
�

Oa ∼ a � f(b) 11 ∨D
� �

The tree is closed. Therefore the argument is quantificationally valid.
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6.a. 1. (∀x)(Fx ⊃ (∃y)(Gyx & ∼ y � x)) SM
2. (∃x)Fx� SM
3. ∼ (∃x)(∃y) ∼ x � y� SM
4. (∀x) ∼ (∃y) ∼ x � y 3 ∼ ∃D
5. Fa 2 ∃D
6. Fa ⊃ (∃y)(Gya & ∼ y � a)� 1 ∀D

7. ∼ Fa (∃y)(Gya & ∼ y � a)� 6 ⊃D
8. � Gba & ∼ b � a� 7 ∃D
9. Gba 8 &D

10. ∼ b � a 8 &D
11. ∼ (∃y) ∼ a � y� 4 ∀D
12. ∼ (∃y) ∼ b � y� 4 ∀D
13. (∀y) ∼ ∼ a � y 11 ∼ ∃D
14. (∀y) ∼ ∼ b � y 12 ∼ ∃D
15. ∼ ∼ a � a� 13 ∀D
16. ∼ ∼ a � b� 13 ∀D
17. ∼ ∼ b � a� 14 ∀D
18. ∼ ∼ b � b� 14 ∀D
19. a � a 15 ∼ ∼ D
20. a � b 16 ∼ ∼ D
21. b � a 17 ∼ ∼ D
22. b � b 18 ∼ ∼ D
23. ∼ b � b 10, 21 �D

�

The tree is closed. Therefore the alleged entailment does hold.

c. 1. (∀x)(Fx ⊃ ∼ x � a) SM
2. (∃x)Fx� SM
3. ∼ (∃x)(∃y) ∼ x � y� SM
4. Fb 2 ∃D
5. (∀x) ∼ (∃y) ∼ x � y 3 ∼ ∃D
6. Fb ⊃ ∼ b � a� 1 ∀D

7. ∼ Fb ∼ b � a 6 ⊃D
8. � ∼ (∃y) ∼ a � y� 5 ∀D
9. (∀y) ∼ ∼ a � y 8 ∼ ∃D

10. ∼ ∼ a � b� 9 ∀D
11. a � b 10 ∼ ∼ D
12. ∼ a � a 7, 11 �D

�

The tree is closed. Therefore the alleged entailment does hold.
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e. 1. (∃w)(∃z) ∼ w � z� SM
2. (∃w)Hw� SM
3. ∼ (∃w) ∼ Hw� SM
4. (∀w) ∼ ∼ Hw 3 ∼ ∃D
5. (∃z) ∼ a � z� 1 ∃D
6. Hb 2 ∃D
7. ∼ a � c 5 ∃D
8. ∼ ∼ Ha� 4 ∀D
9. ∼ ∼ Hb� 4 ∀D

10. ∼ ∼ Hc� 4 ∀D
11. Ha 8 ∼ ∼ D
12. Hb 9 ∼ ∼ D
13. Hc 10 ∼ ∼ D

The tree has at least one completed open branch. Therefore, the alleged
entailment does not hold.

g. 1. (∀x)(∀y)((Fx � Fy) � x � y) SM
2. (∃z)Fz� SM
3. ∼ (∃x)(∃y)(∼ x � y & (Fx & ∼ Fy))� SM
4. (∀x) ∼ (∃y)(∼ x � y & (Fx & ∼ Fy)) 3 ∼ ∃D
5. Fa 2 ∃D
6. ∼ (∃y)(∼ a � y & (Fa & ∼ Fy))� 4 ∀D
7. (∀y) ∼ (∼ a � y & (Fa & ∼ Fy)) 6 ∼ ∃D
8. ∼ (∼ a � a & (Fa & ∼ Fa))� 7 ∀D
9. (∀y)((Fa � Fy) � a � y) 1 ∀D

10. (Fa � Fa) � a � a� 9 ∀D

11. ∼ ∼ a � a� ∼ (Fa & ∼ Fa)� 8 ∼ &D
12. a � a 11 ∼ ∼ D
13. ∼ Fa ∼ ∼ Fa� 11 ∼ &D
14. � Fa 13 ∼ ∼ D

15. Fa � Fa� ∼ (Fa � Fa)� Fa � Fa� ∼ (Fa � Fa)� 10 �D
16. a � a ∼ a � a a � a ∼ a � a 10 �D
17. � �

18. Fa ∼ Fa Fa ∼ Fa 15 �D
19. Fa ∼ Fa Fa ∼ Fa 15 �D
20. � �

The tree has at least one completed open branch. Therefore, the alleged
entailment does not hold.
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Section 9.5E

Note: Branches that are open but not completed are so indicated by a series
of dots below the branch.

i. 1. (∀x)(∀y)[∼ x � g(y) ⊃ Gxy] SM
2. ∼ (∃x)Gax� SM
3. ∼ (∃x)a � g(x)� SM
4. (∀x) ∼ a � g(x) 3 ∼ ∃D
5. ∼ a � g(a) 4 ∀D
6. (∀x) ∼ Gax 2 ∼ ∃D
7. (∀y)[∼ a � g(y) ⊃ Gay] 1 ∀D
8. ∼ a � g(a) ⊃ Gaa� 7 ∀D
9. ∼ Gaa 6 ∀D

10. ∼ ∼ a � g(a) Gaa 8 ⊃D
11. a � g(a) � 10 ∼ ∼ D

�

The tree is closed. Therefore the entailment holds.

1.a. 1. (∀x)Jx SM
2. (∀x)( Jx � (∃y)(Gyx ∨ Ky)) SM
3. Ja 1 ∀D
4. Ja � (∃y)(Gya ∨ Ky)� 2 ∀D

5. Ja ∼ Ja 4 �D
6. (∃y)(Gya ∨ Ky)� ∼ (∃y)(Gya ∨ Ky) 4 �D

�

7. Gaa ∨ Ka� Gba ∨ Kb� 6 ∃D2

8. Gaa Ka Gba Kb 7 ∨D
o o

The tree has at least one completed open branch. Therefore the set is quan-
tificationally consistent.
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c. 1. (∃x)Fx� SM
2. (∃x) ∼ Fx� SM

3. Fa 1 ∃D2

4. ∼ Fa ∼ Fb 2 ∃D2
�

The tree has a completed open branch. Therefore the set is quantificationally
consistent.

g. 1. (∀x)(∃y)Fxy SM
2. (∃y)(∀x) ∼ Fyx� SM

3. (∀x) ∼ Fax 2 ∃D2
4. (∃y)Fay� 1 ∀D
5. ∼ Faa 3 ∀D

6. Faa Fab 4 ∃D2
7. � (∃y)Fby 1 ∀D
8. ∼ Fab 3 ∀D

�

The tree is closed. Therefore the set is quantificationally inconsistent.

e. 1. (∃x)Fx & (∃x) ∼ Fx� SM
2. (∃x)Fx ⊃ (∀x) ∼ Fx� SM

3. (∃x) Fx� 1 &D
4. (∃x) ∼ Fx� 1 &D
5. Fa 3 ∃D2

6. ∼ Fa ∼ Fb 4 ∃D2
�

7. ∼ (∃x)Fx� (∀x) ∼ Fx 2 ⊃D
8. (∀x) ∼ Fx 7 ∼ ∃D
9. ∼ Fa 8 ∀D

� ∼ Fa 7 ∀D
�

The tree is closed. Therefore the set is quantificationally inconsistent.
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i. 1. (∃x)Hx� SM
2. ∼ (∀x)Hx� SM
3. (∀x)(Hx ⊃ Kx) SM
4. (∃x)(Kx & Hx)� SM

5. (∃x) ∼ Hx� 2 ∼ ∀D
6. Ka & Ha� 4 ∃D2
7. Ka 6 &D
8. Ha 6 &D

9. Ha Hb 1 ∃D2

10. ∼ Ha ∼ Hb ∼ Ha ∼ Hb ∼ Hc 5 ∃D2
11. � Ha ⊃ Ka� � � Ha ⊃ Ka� 3 ∀D
12. Hb ⊃ Kb� Hb ⊃ Kb� 3 ∀D
13. Hc ⊃ Kc 3 ∀D

14. ∼ Ha Ka ∼ Ha Ka 11 ⊃D
� �

15. ∼ Hb Kb ∼ Hb Kb 12 ⊃D
� o

The tree has at least one completed open branch. The set is quantificationally
consistent.
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k. 1. (∀x)(∃y)Lxy SM
2. (∀x)(∃y) ∼ Lxy SM
3. (∃y)Lay� 1 ∀D
4. (∃y) ∼ Lay� 2 ∀D

5. Laa Lab 3 ∃D2

6. ∼ Laa ∼ Lab ∼ Laa ∼ Lab ∼ Lac 4 ∃D2
7. � (∃y)Lby� (∃y)Lby � (∃y)Lby 1 ∀D
8. (∃y)Lcy 1 ∀D
9. (∃y) ∼ Lby� (∃y) ∼ Lby (∃y) ∼ Lby 2 ∀D

10. o (∃y) ∼ Lcy 2 ∀D
o

11. Lba Lbb Lbc 7 ∃D2

12. ∼ Lba ∼ Lbb ∼ Lbc ∼ Lba ∼ Lbb ∼ Lbc ∼ Lba ∼ Lbb ∼ Lbc ∼ Lbd 9 ∃D2
� o � o o o � o

The tree has at least one completed open branch. Therefore the set is quan-
tificationally consistent.
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o. 1. ∼ (∀x)(Kx ⊃ (∀y)(Ky ∨ Lxy))� SM
2. (∀y)(Ky ⊃ (∀x)(Rx ⊃ Lyx)) SM
3. (∀x)Rx SM
4. (∃x) ∼ (Kx ⊃ (∀y)(Ky ∨ Lxy))� 1 ∼ ∀D
5. ∼ (Ka ⊃ (∀y)(Ky ∨ Lay))� 4 ∃D2
6. Ka 5 ∼ ⊃D
7. ∼ (∀y)(Ky ∨ Lay)� 5 ∼ ⊃D
8. (∃y) ∼ (Ky ∨ Lay)� 7 ∼ ∀D

9. ∼ (Ka ∨ Laa)� ∼ (Kb ∨ Lab)� 8 ∃D2
10. ∼ Ka ∼ Kb 9 ∼ ∨D
11. ∼ Laa ∼ Lab 9 ∼ ∨D
12. � Ka ⊃ (∀x)(Rx ⊃ Lax)� 2 ∀D
13. Kb ⊃ (∀x)(Rx ⊃ Lbx)� 2 ∀D
14. Ra 3 ∀D
15. Rb 3 ∀D

16. ∼ Ka (∀x)(Rx ⊃ Lax) 12 ⊃D
�

17. ∼ Kb (∀x)(Rx ⊃ Lbx) 13 ⊃D
18. Ra ⊃ Laa Ra ⊃ Laa 16 ∀D
19. Rb ⊃ Lab� Rb ⊃ Lab� 16 ∀D
20. Ra ⊃ Lba 17 ∀D
21. Rb ⊃ Lbb 17 ∀D

22. ∼ Rb Lab ∼ Rb Lab 19 ⊃D
� � � �

The tree is closed. Therefore the set is quantificationally inconsistent.
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s. 1. (∃x)(∃y)Hf (x,y)� SM
2. ∼ (∃x)Hx� SM
3. (∀x) ∼ Hx 2 ∼ ∃D
4. (∃y)Hf (a,y)� 1 ∃D2

5. Hf (a,a) Hf (a,b) 4 ∃D2

6. a � f (a,a) b � f (a,a) a � f (a,b) b � f (a,b) c � f (a,b) 5 CTD
7. a � a b � b a � a b � b c � c 6, 6 �D
8. Ha Hb Ha Hb Hc 6, 5 �D
9. ∼ Ha ∼ Hb ∼ Ha ∼ Hb ∼ Hc 3 ∀D

� � � � �

This systematic tree is closed. Therefore, the set being tested is quantifica-
tionally inconsistent.

q. 1. (∀x)(∀y)[∼ x � g(y) ⊃ Gxy] SM
2. ∼ (∃x)Gax� SM
3. (∀x) ∼ Gax 2 ∼ED
4. (∀y)[∼ a � g(y) ⊃ Gay] 1 ∀D
5. ∼ Gaa 3 ∀D
6. ∼ a � g(a) ⊃ Gaa� 4 ∀D

7. ∼ ∼ a � g(a)� Gaa 6 ⊃D
8. a � g(a) � 7 ∼ ∼ D

9. a � g(a) b � g(a) 8 CTD
10. a � a a � a 8, 8 �D
11. a � b 9, 8 �D
12. b � a 8, 9 �D

This systematic tree has at least one completed open branches (in fact it has
two).  Therefore, the set being tested is quantificationally consistent.
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u. 1. (∀x)Lxf (x) SM
2. (∃y) ∼ Lf (y)y� SM
3. ∼ Lf (a)a 2 ∃D2
4. Laf (a) 1 ∀D

5. a � f (a) b � f (a) 4 CTD
6. a � a b � b 5, 5 �D
7. ∼ Laa ∼ Lba 5, 3 �D
8. Laa Lba 5, 4 �D

� �

This systematic tree is closed. Therefore the set being tested is quantification-
ally inconsistent.

w. 1. (∀x)(Gx ⊃ ∼ Gh(x)) SM
2. (∃x)(∼ Gx & ∼ Gh(x))� SM
3. ∼ Ga & ∼ Gh(a)� 2 ∃D2
4. ∼ Ga 4 &D
5. ∼ Gh(a) 4 &D

6. a � h(a) b � h(a) 5 CTD
7. a � a b � b 6, 6 �D
8. ∼ Ga ∼ Gb 6, 5 �D
9. Ga ⊃ ∼ Gh(a)� Ga ⊃ ∼ Gh(a)� 1 ∀D

10. Gb ⊃ ∼ Gh(b)� 1 ∀D

11. ∼ Ga ∼ Gh(a) ∼ Ga ∼ Gh(a) 9 ⊃D
o o

This systematic tree a completed open branches (in fact it has two, the left
two). Therefore the set being tested is quantificationally consistent.
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c. 1. ∼ (∃x)(∀y)x � g(y)� SM
2. (∀x) ∼ (∀y)x � g(y) 1 ∼ ∃D
3. ∼ (∀y)a � g(y)� 2 ∀D
4. (∃y) ∼ a � g(y)� 3 ∼ ∀D

5. ∼ a � g(a) ∼ a � g(b) 4 ∃D2

6. a � g(a) b � g(a) a � g(b) b � g(b) c � g(b) 5 CTD
7. � b � b � b � b c � c 6, 6 �D
8. ∼ a � b ∼ a � b ∼ a � c 6, 5 �D
9. ∼ (∀y)b � g(y)� ∼ (∀y)b � g(y)� ∼ (∀y)b � g(y) 2 ∀D

10. ∼ (∀y)c � g(y) 2 ∀D
11. (∃y) ∼ b � g(y)� (∃y) ∼ b � g(y) (∃y) ∼ b � g(y) 9 ∼ ∀D
12. (∃y) ∼ c � g(y) 10 ∼ ∀D

13. ∼ b � g(a) ∼ b � g(b) ∼ b � g(c) incomplete incomplete 11 ∃D2
�

14. a � g(b) b � g(b) c � g(b) incomplete 13 CTD
15. a � a b � b c � c 14, 14 �D
16. ∼ b � a ∼ b � b ∼ b � c 14, 13 �D

� o

If we were to complete the indicated missing work, we would have a systematic
tree with at least one completed open branch (the left most branch). There-
fore, the sentence being tested is not quantificationally false and the sentence
of which it is a negation, ‘(∃x)(∀y)x � g(y)’ is not quantificationally true.

2.a. 1. ∼ (∀x)(Pf(x) ⊃ Px)� SM
2. (∃x) ∼ (Pf(x) ⊃ Px)� 1 ∼ ∀D
3. ∼ (Pf(a) ⊃ Pa)� 2 ∃D2
4. Pf(a) 3 ⊃D
5. ∼ Pa 3 ⊃D

6. a � f(a) b � f(a) 4 CTD
7. a � a b � b 6, 6 �D
8. Pa Pb 6, 4 �D

�

The tree has a completed open branch. Therefore, the sentence being tested
is not quantificationally false and the sentence of which it is the negation,
‘(∀x)(Pf(x) ⊃ Px)’ is not quantificationally true.
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e. 1. ∼ (∀x)(∀y)(Dh(x,y) ⊃ Dh(y,x))� SM
2. (∃x) ∼ (∀y)(Dh(x,y) ⊃ Dh(y,x))� 1 ∼ ∀D
3. ∼ (∀y)(Dh(a,y) ⊃ Dh(y,a))� 2 ∃D2
4. (∃y) ∼ (Dh(a,y) ⊃ Dh(y,a))� 3 ∼ ∀D

5. ∼ (Dh(a,a) ⊃ Dh(a,a))� ∼ (Dh(a,b) ⊃ Dh(b,a))� 4 ∃D2
6. Dh(a,a) Dh(a,b) 5 ∼ ⊃D
7. ∼ Dh(a,a) ∼ Dh(b,a) 5 ∼ ⊃D

�

8. a � h(a,b) b � h(a,b) c � h(a,b) 6 CTD

9. a � h(b,a) b � h(b,a) c � h(b,a) a � h(b,a) b � h(b,a) c � h(b,a) incomplete 7 CTD
10. a � a b � b c � c a � a b � b c � c 9, 9 �D
11. Da Da Da Db Db Db 8, 6 �D
12. ∼ Da ∼ Db ∼ Dc ∼ Da ∼ Db ∼ Dc 9, 7 �D

� �

If we were to complete the application of CTD and �D on the far right branch
we would have a systematic tree with at least one open branch. (The second,
third, fourth, and fifth branches from the left would be completed open
branches.)Therefore, the sentence being tested is not quantificationally false,
and the sentence of which it is the negation, ‘(∀x)(∀y)(Dh(x,y) ⊃ Dh(y,x))’
is not quantificationally true.
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3.a. 1. ∼ (∀x)(∃y)y � f( f(x))� SM
2. (∃x) ∼ (∃y)y � f( f(x))� 1 ∼ ∀D
3. ∼ (∃y)y � f( f(a))� 2 ∃D2
4. (∀y) ∼ y � f( f(a)) 3 ∼ ∃D
5. ∼ a � f( f(a)) 4 ∀D

6. a � f( f(a)) b � f( f(a)) 5 CTD

7. a � f(a) b � f(a) a � f(a) b � f(a) c � f(a) 6 CTD
8. a � a a � a b � b b � b b � b 6, 6 �D
9. b � b a � a c � c 7, 7 �D

10. ∼ a � f(a) ∼ a � f(b) ∼ a � f(a) ∼ a � f(b) ∼ a � f(c) 7, 5 �D
11. � a � f(b) � b � f(b) b � f(c) 7, 6 �D
12. � ∼ a � b 10, 11 �D
13. ∼ b � f( f(a)) ∼ b � f( f(a)) 4 ∀D
14. ∼ c � f( f(a)) 4 ∀D
15. ∼ b � f(b) ∼ b � f(c) 7, 13 �D

� �

The tree is closed. Therefore ‘∼ (∀x)(∃y)y � f( f(x))’ is quantificationally false
and ‘(∀x)(∃y)y � f( f(x))’ is quantificationally true.

4.a. 1. (∀x)(Fax ⊃ (∃y)Fya) SM
2. Faa ⊃ (∃y)Fya� 1 ∀D

3. ∼ Faa (∃y)Fya 2 ⊃D
o

1. ∼ (∀x)(Fax ⊃ (∃y)Fya)� SM
2. (∃x) ∼ (Fax ⊃ (∃y)Fya)� 1 ∼ ∀D

3. ∼ (Faa ⊃ (∃y)Fya)� ∼ (Fab ⊃ (∃y)Fya)� 2 ∃D2
4. Faa Fab 3 ∼ ⊃D
5. ∼ (∃y)Fya� ∼ (∃y)Fya� 3 ∼ ⊃D
6. (∀y) ∼ Fya (∀y) ∼ Fya 5 ∼ ∃D
7. ∼ Faa ∼ Faa 6 ∀D
8. � ∼ Fba 6 ∀D

Both the tree for the sentence and the tree for its negation have at least one com-
pleted open branch. Therefore the sentence is quantificationally indeterminate.
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c. 1. ∼ (∀x)(Fx ⊃ (∀y)(Hy ⊃ Fy))� SM
2. (∃x) ∼ (Fx ⊃ (∀y)(Hy ⊃ Fy))� 1 ∼ ∀D
3. ∼ (Fa ⊃ (∀y)(Hy ⊃ Fy))� 2 ∃D2
4. Fa 3 ∼ ⊃D
5. ∼ (∀y)(Hy ⊃ Fy)� 3 ∼ ⊃D
6. (∃y) ∼ (Hy ⊃ Fy)� 5 ∼ ∀D

7. ∼ (Ha ⊃ Fa)� ∼ (Hb ⊃ Fb)� 6 ∃D2
8. Ha Hb 7 ∼ ⊃D
9. ∼ Fa ∼ Fb 7 ∼ ⊃D

�

1. (∀x)(Fx ⊃ (∀y)(Hy ⊃ Fy)) SM
2. Fa ⊃ (∀y)(Hy ⊃ Fy)� 1 ∀D

3. ∼ Fa (∀y)(Hy ⊃ Fy) 2 ⊃D
o

Both the tree for the sentence and the tree for its negation have at least one com-
pleted open branch. Therefore the sentence is quantificationally indeterminate.

e. 1. ∼ ((∃x)(Fx ∨ ∼ Fx) � ((∃x)Fx ∨ (∃x) ∼ Fx))� SM

2. (∃x)(Fx ∨ ∼ Fx)� ∼ (∃x)(Fx ∨ ∼ Fx)� 1 ∼ �D
3. ∼ ((∃x)Fx ∨ (∃x) ∼ Fx)� (∃x)Fx ∨ (∃x) ∼ Fx� 1 ∼ �D
4. ∼ (∃x)Fx� 3 ∼ ∨D
5. ∼ (∃x) ∼ Fx� 3 ∼ ∨D
6. (∀x) ∼ Fx 4 ∼ ∃D
7. (∀x) ∼ ∼ Fx 5 ∼ ∃D
8. Fa ∨ ∼ Fa� 2 ∃D2

9. Fa ∼ Fa
10. (∀x) ∼ (Fx ∨ ∼ Fx) 2 ∼ ∃D

11. (∃x)Fx� (∃x) ∼ Fx� 3 ∨D
Fa ∼ Fa 11 ∃D2

12. ∼ Fa ∼ Fa 6 ∀D
13. � ∼ ∼ Fa� 7 ∀D
14. Fa 13 ∼ ∼ D
15. � ∼ (Fa ∨ ∼ Fa)� ∼ (Fa ∨ ∼ Fa)� 10 ∀D
16. ∼ Fa ∼ Fa 15 ∼ ∨D
17. ∼ ∼ Fa ∼ ∼ Fa� 15 ∼ ∨D
18. � Fa 17 ∼ ∼ D

�
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The tree for the negation of the sentence is closed. Therefore the sentence is
quantificationally true.

g. 1. ∼ ((∀x)(Fx ⊃ ((∃y)Gyx ⊃ H)) ⊃ (∀x)(Fx ⊃ (∃y)(Gyx ⊃ H)))� SM
2. (∀x)(Fx ⊃ ((∃y)Gyx ⊃ H)) 1 ∼ ⊃D
3. ∼ (∀x)(Fx ⊃ ((∃y)(Gyx ⊃ H))� 1 ∼ ⊃D
4. (∃x) ∼ (Fx ⊃ (∃y)(Gyx ⊃ H))� 3 ∼ ∀D
5. ∼ (Fa ⊃ (∃y)(Gya ⊃ H))� 4 ∃D2
6. Fa 5 ∼ ⊃D
7. ∼ (∃y)(Gya ⊃ H)� 5 ∼ ⊃D
8. (∀y) ∼ (Gya ⊃ H) 7 ∼ ∃D
9. ∼ (Gaa ⊃ H)� 8 ∀D

10. Fa ⊃ ((∃y)Gya ⊃ H)� 2 ∀D
11. Gaa 9 ∼ ⊃D
12. ∼ H 9 ∼ ⊃D

13. ∼ Fa (∃y)Gya ⊃ H� 10 ⊃D
�

14. ∼ (∃y)Gya� H 13 ⊃D
15. (∀y) ∼ Gya � 14 ∼ ∃D
16. ∼ Gaa 15 ∀D

�

The tree for the negation of the sentence is closed. Therefore the sentence is
quantificationally true.

i. 1. (∀x)(∃y)y � f( f(x)) SM
2. (∃y)y � f( f(a))� 1 ∀D

3. a � f( f(a)) b � f( f(a)) 2 ∃D2

4. a � f(a) b � f(a) a � f(a) b � f(a) 3 CTD
5. a � a b � b a � a b � b 4, 4 �D

o o o

The tree has one completed open branch (the far left branch). Therefore the
sentence ‘(∀x)(∃y)y � f( f(x))’ is not quantificationally false.
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1. ∼ (∀x)(∃y)y � f( f(x))� SM
2. (∃x) ∼ (∃y)y � f(f(x))� 1 ∼ ∀D
3. ∼ (∃y)y � f( f(a))� 2 ∃D2
4. (∀y) ∼ y � f( f(a)) 3 ∼ ∃D
5. ∼ a � f( f(a)) 4 ∀D

6. a � f(a) b � f(a) 5 CTD
7. a � a b � b 6, 6 �D
8. ∼ a � f(a) ∼ a � f(b) 6, 5 �D
9. � ∼ b � f( f(a)) 4 ∀D

10. a � f(b) b � f(b) c � f(b) 8 CTD
11. a � a c � c 10, 10 �D
12. ∼ a � a ∼ a � b ∼ a � c 10, 8 �D
13. � ∼ b � f(b) ∼ b � f(b) 6, 9 �D
14. ∼ b � b ∼ b � c 10, 13 �D
15. � ∼ c � f( f(a)) 4 ∀D
16. ∼ c � f(b) 6, 15 �D
17. ∼ c � c 10, 16 �D

�

The tree is closed. Therefore ‘∼ (∀x)(∃y)y � f( f(x))’ is quantificationally false
and ‘(∀x)(∃y)y � f( f(x))’ is quantificationally true.

5.a. 1. Fa SM
2. (∀x)(Fx ⊃ Cx) SM
3. ∼ (∀x)(Fx & Cx)� SM
4. (∃x) ∼ (Fx & Cx)� 2 ∼ ∀D

5. ∼ (Fa & Ca)� ∼ (Fb & Cb)� 4 ∃D2

6. ∼ Fa ∼ Ca ∼ Fb ∼ Cb 5 ∼ &D
7. � Fa ⊃ Ca� Fa ⊃ Ca� Fa ⊃ Ca� 2 ∀D
8. Fb ⊃ Cb� Fb ⊃ Cb� 2 ∀D

9. ∼ Fa Ca ∼ Fa Ca ∼ Fa Ca 7 ⊃D
� � � �

10. ∼ Fb Cb ∼ Fb Cb 8 ⊃D
�

The tree for the premises and the negation of the conclusion has at least one
completed open branch. Therefore the argument is quantificationally invalid.
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c. 1. Fa SM
2. (∀x)(Fx ⊃ Cx) SM
3. ∼ (∃x)(Fx & Cx)� SM
4. (∀x) ∼ (Fx & Cx) 3 ∼ ∃D
5. Fa ⊃ Ca� 2 ∀D
6. ∼ (Fa & Ca)� 4 ∀D

7. ∼ Fa Ca 5 ⊃D
�

8. ∼ Fa ∼ Ca 6 ∼ &D
� �

The tree for the premises and the negation of the conclusion is closed. There-
fore the argument is quantificationally valid.

e. 1. (∀x)(∀y)(∀z)((Lxy & Lyz) ⊃ Lxz) SM
2. (∀x)(∀y)(Lxy ⊃ Lyx) SM
3. ∼ (∀x)Lxx� SM
4. (∃x) ∼ Lxx� 3 ∼ ∀D
5. ∼ Laa 4 ∃D2
6. (∀y)(∀z)((Lay & Lyz)⊃ Laz) 1 ∀D
7. (∀y)(Lay ⊃ Lya) 2 ∀D
8. (∀z)((Laa & Laz) ⊃ Laz) 6 ∀D
9. Laa ⊃ Laa� 7 ∀D

10. (Laa & Laa) ⊃ Laa� 8 ∀D

11. ∼ (Laa & Laa)� Laa 10 ⊃D
�

12. ∼ Laa Laa 9 ⊃D
�

13. ∼ Laa ∼ Laa 11 ∼ &D

The tree for the premises and the negation of the conclusion has at least one
completed open branch. Therefore the argument is quantificationally invalid.
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g. 1. (∃x)((Lx ∨ Sx)∨ Kx)� SM
2. (∀y) ∼ (Ly ∨ Ky) SM
3. ∼ (∃x)Sx� SM
4. (La ∨ Sa)∨ Ka� 1 ∃D2
5. (∀x) ∼ Sx 3 ∼ ∃D

6. La ∨ Sa� Ka 4 ∨D

7. La Sa 6 ∨D
8. ∼ (La ∨ Ka)� ∼ (La ∨ Ka) ∼ (La ∨ Ka)� 2 ∀D
9. ∼ Sa ∼ Sa ∼ Sa 5 ∀D

10. ∼ La � ∼ La 8 ∼ ∨D
11. ∼ Ka ∼ Ka 8 ∼ ∨D

� �

The tree for the premises and the negation of the conclusion is closed. There-
fore the argument is quantificationally valid.

i. 1. (∀x)(Hx ⊃ Kcx) SM
2. (∀x)(Lx ⊃ ∼ Kcx) SM
3. Ld SM
4. ∼ (∃y) ∼ Hy� SM
5. (∀y) ∼ ∼ Hy 4 ∼ ∃D
6. Hc ⊃ Kcc� 1 ∀D
7. Hd ⊃ Kcd� 1 ∀D
8. Lc ⊃ ∼ Kcc� 2 ∀D
9. Ld ⊃ ∼ Kcd� 2 ∀D

10. ∼ ∼ Hc� 5 ∀D
11. ∼ ∼ Hd� 5 ∀D
12. Hc 10 ∼ ∼ D
13. Hd 11 ∼ ∼ D

14. ∼ Hc Kcc 6 ⊃D
�

15. ∼ Hd Kcd 7 ⊃D
�

16. ∼ Lc ∼ Kcc 8 ⊃D
�

17. ∼ Ld ∼ Kcd 9 ⊃D
� �

The tree for the premises and the negation of the conclusion is closed. There-
fore the argument is quantificationally valid.
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k. 1. (∃x)(Fg(x) & ∼ Hg(x))� SM
2. (∀x)(Fx ⊃ Hx) SM
3. ∼ ∼ Ra� SM
4. Ra 3 ∼ ∼D
5. Fg(a) & ∼ Hg(a)� 1 ∃D2
6. Fg(a) 5 &D
7. ∼ Hg(a) 5 &D
8. Fa ⊃ Ha� 2 ∀D

9. ∼ Fa Ha 8 ⊃D

10. a � g(a) b � g(a) a � g(a) b � g(a) 6 CTD
11. a � a b � b a � a b � b 10, 10 �D
12. ∼ Ha ∼ Hb ∼ Ha ∼ Hb 10, 7 �D
13. Fa Fb � Fb 10, 6 �D
14. � Fb ⊃ Hb� Fb ⊃ Hb� 2 ∀D

15. ∼ Fb Hb ∼ Fb Hb 14 ⊃D
� � � �

The tree for the premises and the negation of the conclusion is closed.
Therefore, the argument being tested is quantificationally valid.
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m. 1. a � f(b) & b � f(a)� SM
2. ∼ (∃x)(∃y) ∼ x � y� SM
3. (∀x) ∼ (∃y) ∼ x � y 2 ∼∃D
4. a � f(b) 1 &D
5. b � f(a) 1 &D
6. ∼ (∃y) ∼ a � y� 3 ∀D
7. ∼ (∃y) ∼ b � y� 3 ∀D

8. a � f(b) b � f(b) 4 CTD

9. a � f(a) b � f(a) a � f(a) b � f(a) 5 CTD
10. a � a b � b a � a b � b 9, 9 �D
11. b � a b � a 9, 5 �D
12. a � b a � b 10, 11 �D
13. a � a a � a 4, 4 �D
14. (∀y) ∼ ∼ a � y (∀y) ∼ ∼ a � y (∀y) ∼ ∼ a � y (∀y) ∼ ∼ a � y 6 ∼ ∃D
15. (∀y) ∼ ∼ b � y (∀y) ∼ ∼ b � y (∀y) ∼ ∼ b � y (∀y) ∼ ∼ b � y 7 ∼ ∃D
16. ∼ ∼ a � a� ∼ ∼ a � a� ∼ ∼ a � a� ∼ ∼ a � a� 14 ∀D
17. ∼ ∼ b � b� ∼ ∼ b � b� ∼ ∼ b � b� ∼ ∼ b � b� 15 ∀D
18. a � a a � a a � a a � a 16 ∼ ∼ D
19. b � b b � b b � b b � b 17 ∼ ∼ D

The tree has four completed open branches. Therefore, the argument being
tested is quantificationally invalid.

o. 1. (∃x)Hx� SM
2. (∀x)(Hx ⊃ (∃y) ∼ Hy) SM
3. ∼ (∃w) ∼ Hg(w)� SM
4. Ha 1 ∃D2
5. (∀w) ∼ ∼ Hg(w) 3 ∼ ∃D
6. Ha ⊃ (∃y) ∼ Hy� 2 ∀D
7. ∼ ∼ Hg(a)� 5 ∀D
8. Hg(a) 7 ∼ ∼ D

9. ∼ Ha (∃y) ∼ Hy� 6 ⊃D
�

10. ∼ Ha ∼ Hb 9 ∃D2
�

11. a � g(a) b � g(a) c � g(a) 10 CTD
12. a � a b � b c � c 11, 11 �D
13. Ha Hb Hc 11, 8 �D

�

The tree has two completed open branches. Therefore, the argument is not
quantificationally valid.
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6.a. 1. ∼ ((∀x)(∀y) ∼ Sxy � ∼ (∃x)(∃y)Sxy)� SM

2. (∀x)(∀y) ∼ Sxy ∼ (∀x)(∀y) ∼ Sxy� 1 ∼ �D
3. ∼ ∼ (∃x)(∃y)Sxy� ∼ (∃x)(∃y)Sxy� 1 ∼ �D
4. (∃x)(∃y)Sxy� 3 ∼ ∼ D
5. (∃y)Say� 4 ∃D2

6. Saa Sab 5 ∃D2
7. (∃x) ∼ (∀y) ∼ Sxy� 2 ∼ ∀D
8. (∀x) ∼ (∃y)Sxy 3 ∼ ∃D
9. ∼ (∀y) ∼ Say� 7 ∃D2

10. (∃y) ∼ ∼ Say� 9 ∼ ∀D

11. ∼ ∼ Saa� ∼ ∼ Sab� 10 ∃D2
12. Saa Sab 11 ∼ ∼ D
13. ∼ (∃y)Say� ∼ (∃y)Say� 8 ∀D
14. ∼ (∃y)Sby� 8 ∀D
15. (∀y) ∼ Say (∀y) ∼ Say 2 ∀D
16. (∀y) ∼ Sby 2 ∀D
17. ∼ Saa ∼ Sab 15 ∀D
18. � � (∀y) ∼ Say (∀y) ∼ Say 13 ∼ ∃D
19. (∀y) ∼ Sby 14 ∼ ∃D
20. ∼ Saa ∼ Sab 18 ∀D

� �

The tree for the negation of the corresponding biconditional is closed. There-
fore the sentences are equivalent.
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c. 1. ∼ ((∃x)(∀x ⊃ B) � ((∀x)Ax ⊃ B))� SM

2. (∃x)(Ax ⊃ B)� ∼ (∃x)(Ax ⊃ B)� 1 ∼ �D
3. ∼ ((∀x)Ax ⊃ B)� (∀x)Ax ⊃ B� 1 ∼ �D
4. (∀x)Ax 3 ∼ ⊃D
5. ∼ B 3 ∼ ⊃D
6. Aa ⊃ B� 2 ∃D2

7. ∼ Aa B 6 ⊃D
8. � (∀x) ∼ (Ax ⊃ B) 2 ∼ ∃D

9. ∼ (∀x)Ax� B 3 ⊃D
10. (∃x) ∼ Ax� 9 ∼ ∀D
11. ∼ Aa 10 ∃D2
12. Aa 4 ∀D
13. � ∼ (Aa ⊃ B)� ∼ (Aa ⊃ B)� 8 ∀D
14. Aa Aa 13 ∼ ⊃D
15. ∼ B ∼ B 13 ∼ ⊃D

� �

The tree for the negation of the corresponding biconditional is closed. There-
fore the sentences are equivalent.

e. 1. ∼ ((∀x)(Ax ⊃ B) � ((∃x)Ax ⊃ B))� SM

2. (∀x)(Ax ⊃ B) ∼ (∀x)(Ax ⊃ B)� 1 ∼ �D
3. ∼ ((∃x)Ax ⊃ B)� (∃x)Ax ⊃ B� 1 ∼ �D
4. (∃x)Ax� 3 ∼ ⊃D
5. ∼ B 3 ∼ ⊃D
6. Aa 4 ∃D2
7. (∃x) ∼ (Ax ⊃ B)� 2 ∼ ∀D
8. ∼ (Aa ⊃ B)� 7 ∃D2
9. Aa 8 ∼ ⊃D

10. ∼ B 8 ∼ ⊃D

11. ∼ (∃x)Ax� B 3 ⊃D
12. (∀x) ∼ Ax � 11 ∼ ∃D
13. ∼ Aa 12 ∀D
14. Aa ⊃ B� � 2 ∀D

15. ∼ Aa B 1 4 ⊃D
� �
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The tree for the negation of the corresponding biconditional is closed. There-
fore the sentences are equivalent.

g. 1. ∼ ((∃x)(∃y)Hxy � (∃y)(∃x)Hxy)� SM

2. (∃x)(∃y)Hxy� ∼ (∃x)(∃y)Hxy� 1 ∼ �D
3. ∼ (∃y)(∃x)Hxy� (∃y)(∃x)Hxy� 1 ∼ �D
4. (∃y)Hay� 2 ∃D2
5. (∀y) ∼ (∃x)Hxy 3 ∼ ∃D
6. (∃x)Hxa� 3 ∃D2

7. Haa Hab 4 ∃D2
8. (∀x) ∼ (∃y)Hxy 2 ∼ ∃D

9. Haa Hba 6 ∃D2
10. ∼ (∃x)Hxa� ∼ (∃x)Hxa� 5 ∀D
11. ∼ (∃x)Hxb� 5 ∀D
12. ∼ (∃y)Hay� ∼ (∃y)Hay� 8 ∀D
13. ∼ (∃y)Hby� 8 ∀D
14. (∀x) ∼ Hxa (∀x) ∼ Hxa 10 ∼ ∃D
15. (∀x) ∼ Hxb 11 ∼ ∃D
16. (∀y) ∼ Hay (∀y) ∼ Hay 12 ∼ ∃D
17. (∀y) ∼ Hby 13 ∼ ∃D
18. ∼ Haa ∼ Haa 14 ∀D
19. � ∼ Hab 15 ∀D
20. � ∼ Haa 16 ∀D
21. � ∼ Hba 17 ∀D

�

The tree for the negation of the corresponding biconditional is closed. There-
fore the sentences are equivalent.
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i. 1. ∼ [(∀x)(∃y)y � f(x) � (∀x)(∃y)x � f(y)]� SM

2. (∀x)(∃y)y � f(x) ∼ (∀x)(∃y)y � f(x)� 1 �D
3. ∼ (∀x)(∃y)x � f(y)� (∀x)(∃y)x � f(y) 1 �D
4. (∃x) ∼ (∃y)y � f(x)� 2 ∼ ∀D
5. ∼ (∃y)y � f(a)� 4 ∃D2
6. (∀y) ∼ y � f(a) 5 ∼ ∃D
7.
8. (∃x) ∼ (∃y)x � f(y)� 3 ∼ ∃D
9. ∼ (∃y)a � f(y)� 8 ∃D2

10. ∼ f(a) � f(a) 6 ∀D
11. (∀y) ∼ a � f(y) � 9 ∼ ∃D
12. ∼ a � f(a) 11 ∀D
13. (∃y)y � f(a)� 2 ∀D

14. a � f(a) b � f(a) 13 ∃D2

15. a � f(a) b � f(a) a � f(a) b � f(a) c � f(a) 14 CTD
16. a � a b � b a � a b � b c � c 15, 15 �D
17. ∼ a � a ∼ a � b ∼ a � a ∼ a � b ∼ a � c 15, 12 �D

� � o o

The tree has a completed open branch (the second from the left). Therefore
the sentences are not quantificationally equivalent.

7.a. 1. (∀x)(Fax ⊃ Fxa) SM
2. ∼ (Fab ∨ Fba)� SM
3. ∼ Fab 2 ∼ ∨D
4. ∼ Fba 2 ∼ ∨D
5. Faa ⊃ Faa� 1 ∀D
6. Fab ⊃ Fba� 1 ∀D

7. ∼ Fab Fba 6 ⊃D
�

8. ∼ Faa Faa 5 ⊃D

The tree has at least one completed open branch. Therefore the given set does
not quantificationally entail the given sentence.
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c. 1. ∼ Fa SM
2. (∀x)(Fa ⊃ (∃y)Gxy) SM
3. ∼ ∼ (∃y)Gay� SM
4. (∃y)Gay� 3 ∼ ∼ D

5. Gaa Gab 4 ∃D2
6. Fa ⊃ (∃y)Gay� Fa ⊃ (∃y)Gay� 2 ∀D
7. Fb ⊃ (∃y)Gby� 2 ∀D

o

8. ∼ Fa (∃y)Gay 6 ⊃D
o

The tree has at least one completed open branch. Therefore the given set does
not quantificationally entail the given sentence.

e. 1. (∃x)Gx� SM
2. (∀x)(Gx ⊃ Dxx) SM
3. ∼ (∃x)(Gx & (∀y)Dxy)� SM
4. (∀x) ∼ (Gx & (∀y)Dxy)� 3 ∼ ∃D
5. Ga 1 ∃D2
6. Ga ⊃ Daa� 2 ∀D
7. ∼ (Ga & (∀y)Day)� 4 ∀D

8. ∼ Ga ∼ (∀y)Day� 7 ∼ &D
�

9. ∼ Ga Daa 6 ⊃D
10. � (∃y) ∼ Day� 8 ∼ ∀D

11. ∼ Daa ∼ Dab 10 ∃D2
12. � Gb ⊃ Dbb� 2 ∀D
13. ∼ (Gb & (∀y)Dby)� 4 ∀D

14. ∼ Gb ∼ (∀y)Dby 13 ∼ &D

15. ∼ Gb Dbb ∼ Gb Dbb 12 ⊃D
o o

The tree has at least one completed open branch. Therefore the given set does
not quantificationally entail the given sentence.
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g. 1. (∀x)(∀y)x � g(x,y) SM
2. ∼ (∀x)x � g(x,x)� SM
3. (∃x) ∼ x � g(x,x)� 2 ∼ ∀D
4. ∼ a � g(a,a) 3 ∃D2
5. (∀y)a � g(a,y) 1 ∀D
6. a � g(a,a) 1 ∀D

�

This tree is closed. Therefore, the alleged entailment does hold.

9. If a tree is closed, then on each branch of that tree there is some
atomic sentence P and its negation, ∼ P. One of these sentences occurs sub-
sequent to the other on the branch in question. Let Q be the latter of the two
sentences and let n be the number of the line on which Q occurs. Then n is
either the last line of the branch or the second to the last line of the branch.
The reason is that once both an atomic sentence and its negation have been
added to a branch, that branch is closed and no further sentences can be
added to the branch after the current decomposition has been completed.
(Some decomposition rules do add two sentences to each branch passing
through the sentence being decomposed.) Hence such a branch is finite—for
no infinite branch can have a last member.

11. No. For example, consider the sentence ‘(∃x)(Fx & ∼ Fb)’ and its
substitution instance ‘Fb & ∼ Fb’. Clearly, every tree for the unit set of the lat-
ter sentence closes, but the systematic tree for the unit set of ‘(∃x)(Fx & ∼ Fb)’
does not close. Rather it has a completed open branch:

1. (∃x)(Fx & ∼ Fb)� SM

2. Fa & ∼ Fb� Fb & ∼ Fb� 1 ∃D2
3. Fa Fb 2 &D
4. ∼ Fb ∼ Fb 2 &D

�

13. Since it is already specified that stage 1 is done before stage 2 and
stage 2 before stage 3, and stage 3 before stage 4, we would have to specify
the order in which work within each stage is to be done, and what constants
are to be used in what order.



c. Derive: ∼ Qe

1 (∀z)Mz Assumption
2 (∀z) ∼ Mz Assumption

3 Qe Assumption

4 Ma 1 ∀E
5 ∼ Ma 2 ∀E
6 ∼ Qe 3–5 ∼ I

Section 10.1.2E

a. Derive: (∃x)(Ax & Jx)

1 Jc Assumption
2 Ac Assumption

3 Ac & Jc 1, 2 &I
4 (∃x)(Ax & Jx) 3 ∃I

c. Derive: (∃y)(∃z)Cyz

1 (∀w)(∀z)Cwz Assumption

2 (∀z)Ckz 1 ∀E
3 Ckr 2 ∀E
4 (∃z)Ckz 3 ∃I
5 (∃y)(∃z)Cyz 4 ∃I

Section 10.1.3E

a. Derive: (∀y)Hy

1 (∀x)Hx Assumption

2 Ha 1 ∀E
3 (∀y)Hy 2 ∀I

CHAPTER TEN

Section 10.1.1E

a. Derive: Fa & Fb

1 (∀x)Fx Assumption

2 Fa 1 ∀E
3 Fb 1 ∀E
4 Fa & Fb 2, 3 &I
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c. Derive: (∀x)(Ex ⊃ Kx)

1 (∀x)(Ex ⊃ Sx) Assumption
2 (∀x)(Sx ⊃ Kx) Assumption

3 Es Assumption

4 Es ⊃ Ss 1 ∀E
5 Ss 3, 4 ⊃E
6 Ss ⊃ Ks 2 ∀E
7 Ks 5, 6 ⊃E
8 Es ⊃ Ks 3–7 ⊃I
9 (∀x)(Ex ⊃ Kx) 8 ∀I

Section 10.1.4E

1.a. Derive: (∃y)(Zy ∨ Hy)

1 (∃x)Zx Assumption

2 Za Assumption

3 Za ∨ Ha 2 ∨I
4 (∃y)(Zy ∨ Hy) 3 ∃I
5 (∃y)(Zy ∨ Hy) 1, 2–4 ∃E

c. Derive: (∀x)(∃y)Bxy

1 (∃y)(∀y)Bxy Assumption

2 (∀x)Bxf Assumption

3 Bhf 2 ∀E
4 (∃y)Bhy 3 ∃I
5 (∀x)(∃y)Bxy 4 ∀I
6 (∀x)(∃y)Bxy 1, 2–5 ∃E

2.a. This sentence can be derived by ∀E applied to the sentence on
line 1.

c. This sentence cannot be derived. Note that ‘Saaab’ is not a substi-
tution instance of ‘(∀x)Saaxx’. Either ‘a’ can replace the free variable in the
open sentence ‘Saaxx’, or ‘b’ can replace it, but they cannot both replace it
in forming a substitution instance.

e. This sentence can be derived by ∃I applied to the sentence on line 2.
g. This sentence can be derived by ∃I applied to the sentence on line

2. Note that ‘Saabb’ is a substitution instance of ‘(∃w)Swwbb’.
i. This sentence cannot be derived. Note that ∀I cannot be used to

derive this sentence, for ‘a’ occurs in an undischarged assumption on line 1,
which violates the first restriction on using ∀I.

k. This sentence cannot be derived. Note that ‘Saabb’ is not a substi-
tution instance of ‘(∀x)Saxxb’.
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Section 10.2E

1.a. Derive: (Mk & Gh) & Md

1 (∀x)(Mx & Gx) Assumption

2 Mk & Gk 1 ∀E
3 Mk 2 &E
4 Mh & Gh 1 ∀E
5 Gh 4 &E
6 Mk & Gh 3, 5 &I
7 Md & Gd 1 ∀E
8 Md 7 &E
9 (Mk & Gh) & Md 6, 8 &I

c. Derive: (∃x)(∼ Bxx ⊃ (∀z)Msz)

1 Bnn ∨ (Kn & Lj) Assumption
2 ∼ (∀z)Msz ⊃ ∼ Kn Assumption

3 ∼ Bnn Assumption

4 Bnn Assumption

5 ∼ Kn Assumption

6 Bnn 4 R
7 ∼ Bnn 3 R
8 Kn 5–7 ∼ E

9 Kn & Lj Assumption

10 Kn 9 &E
11 Kn 1, 4–8, 9–10 ∨E
12 ∼ (∀z)Msz Assumption

13 ∼ Kn 2, 12 ⊃E
14 Kn 11 R
15 (∀z)Msz 12–14 ∼ E
16 ∼ Bnn ⊃ (∀z)Msz 3–15 ⊃I
17 (∃x)(∼ Bxx ⊃ (∀z)Msz) 16 ∃I

e. Derive: ((∀x)Hxg ∨ Rg) ∨ Lg

1 (∀z)[(Rz ∨ (∀x)Hxz) � Kzzz] Assumption
2 Kggg Assumption

3 (Rg ∨ (∀x)Hxg) � Kggg 1 ∀E
4 Rg ∨ (∀x)Hxg 2, 3 �E
5 Rg Assumption

6 (∀x)Hxg ∨ Rg 5 ∨I

7 (∀x)Hxg Assumption

8 (∀x)Hxg ∨ Rg 7 ∨I
9 (∀x)Hxg ∨ Rg 4, 5–6, 7–8 ∨E

10 ((∀x)Hxg ∨ Rg) ∨ Lg 9 ∨I
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g. Derive: (∀w)(∃z) ∼ (Hz & Rzw)

1 (∀z)[Hz ⊃ (Rzz ⊃ Gz)] Assumption
2 (∀z)(Gz ⊃ Bz) & (∀z) ∼ Bz Assumption

3 Ha ⊃ (Raa ⊃ Ga) 1 ∀E
4 (∀z)(Gz ⊃ Bz) 2 &E
5 Ga ⊃ Ba 4 ∀E
6 (∀z) ∼ Bz 2 &E
7 Ha & Raa Assumption

8 Ha 7 &E
9 Raa ⊃ Ga 8, 3 ⊃E

10 Raa 7 &E
11 Ga 9, 10 ⊃E
12 Ba 5, 11 ⊃E
13 ∼ Ba 6 ∀E
14 ∼ (Ha & Raa) 7–13 ∼ I
15 (∃z) ∼ (Hz & Rza) 14 ∃I
16 (∀w)(∃z) ∼ (Hz & Rzw) 15 ∀I

i. Derive: Sc

1 (∃x)Px ⊃ Sc Assumption
2 (∃x)[Txx & (∃y)(Py & ∼ Jy)] Assumption

3 Taa & (∃y)(Py & ∼ Jy) Assumption

4 (∃y)(Py & ∼ Jy) 3 &E
5 Pb & ∼ Jb Assumption

6 Pb 5 &E
7 (∃x)Px 6 ∃I
8 Sc 1, 7 ⊃E
9 Sc 4, 5–8 ∃E

10 Sc 2, 3–9 ∃E

2.a. Derive: ∼ Na

1 (∀x)Hx ⊃ ∼ (∃y)Ky Assumption
2 Ha ⊃ Na Assumption

3 Ha 1 ∀E ← ERROR!
4 Na 2, 3 ⊃E

‘Ha’ cannot be derived from the sentence on line 1 which is a conditional sen-
tence. The rule Universal Elimination can be used only on universally quan-
tified sentences.
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This is a tempting move but not a use of the rule Existential Elimination which
requires the use of a subderivation. Here is a correct derivation:

This is not a substitution instance of the sentence on line 1. To generate a
proper substitution instance the leading quantifier must be dropped (not a
quantifier located internally) and the free variable(s) replaced with the same
constant. Here is a correct derivation:

Notice that the leading quantifier in line 1, ‘(∀x)’, has been dropped in form-
ing the substitution instance on line 2.

c. Derive: (∃x)Zx

1 (∃x)Qx Assumption
2 (∀x)(Zx � Qx) Assumption

3 Zd � Qd 2 ∀E
4 Qd 1 ∃E ← ERROR!
5 Zd 3, 4 �E
6 (∃x)Zx 5 ∃I

1 (∃x)Qx Assumption
2 (∀x)(Zx � Qx) Assumption

3 Zd � Qd 2 ∀E
4 Qd Assumption
5
6 Zd 3, 4 �E
7 (∃x)Zx 5 ∃I
8 (∃x)Zx 1, 4–6 ∃E

e. Derive: (∀x)(Jx & Gc) ∨ Lc

1 (∀x)(∀y)(Jx & Gy) Assumption

2 (∀x)(Jx & Gc) 1 ∀E ← ERROR!
3 (∀x)(Jx & Gc) ∨ Lc 2 ∨I

1 (∀x)(∀y)( Jx & Gy) Assumption

2 (∀y)( Jb & Gy) 1 ∀E
3 Jb & Gc 2 ∀E
4 (∀x)( Jx & Gc) 3 ∀I
5 (∀x)( Jx & Gc) ∨ Lc 4 ∨I
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a. Derive: (∀x)Ax � (∀x)(Ax & Ax)

1 (∀x)Ax Assumption

Subgoal → (∀x)(Ax & Ax)
(∀x)(Ax & Ax) Assumption

Subgoal → (∀x)Ax
Goal → (∀x)Ax � (∀x)(Ax & Ax) 1–—, —–— �I

g. Derive: (∃x)(∃z)Azx

1 (∃w)(∃y)Awy Assumption

2 (∃y)Aky Assumption

3 Aka Assumption

4 (∃z)Aza 3 ∃I
5 (∃z)Aza 2, 3–4 ∃E ← ERROR!
6 (∃x)(∃z)Azx 5 ∃I
7 (∃x)(∃z)Azx 1, 2–6 ∃E

1 (∃w)(∃y)Awy Assumption

2 (∃y)Aky Assumption

3 Aka Assumption

4 (∃z)Aza 3 ∃I
5 (∃x)(∃z)Azx 4 ∃I
6 (∃x)(∃z)Azx 2, 3–5 ∃E
7 (∃x)(∃z)Azx 1, 2–6 ∃E

The application of Existential Elimination on line 5 is a mistake because the
instantiating constant ‘a’ occurring on line 3 occurs in the last sentence in the
subderivation on line 4. This violates the third condition on the rule Existen-
tial Elimination.

Here is a correct version of the derivation:

Section 10.4E

1. Goal analysis
First Part: Indicating goals and subgoals
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c. Derive: (∀x)(Fx ⊃ Hx)

1 (∀x)(Fx ⊃ Gx) Assumption
2 (∀x)(Gx ⊃ Hx) Assumption

Subgoal → Fa ⊃ Ha
Goal → (∀x)(Fx ⊃ Hx) — ∀I

e. Derive: (∀x)(Hx ∨ ∼ Sx)

1 (∀x) ∼ Kx Assumption
2 (∀x)(∼ Kx ⊃ ∼ Sx) Assumption

Subgoal → ∼ Ka ⊃ ∼ Sa
Goal → ∼ Sa

Ha ∨ ∼ Sa — ∨I
(∀x)(Hx ∨ ∼ Sx) — ∀I

g. Derive: (∃x) ∼ Cx

1 (∃x) ∼ (Cx ∨ ∼ Rx) Assumption

2 ∼ (Ca ∨ ∼ Ra) Assumption

Subgoal → (∃x) ∼ Cx
Goal → (∃x) ∼ Cx 1, 2–— ∃E

Notice that unlike exercise (b) the goal sentence is a quantified conditional
sentence not a conditional sentence. Thus the appropriate subgoal is a sub-
stitution instance of the goal sentence to be derived on the last line.

‘∼ Sa’ is the current goal sentence. At this point a glance at the assumptions
shows that ‘∼ Sx’ is a subformula of the second assumption which suggests that
a substitution instance of the second assumption might be a good subgoal.

Given that the goal sentence must come from an existentially quantified pri-
mary assumption, it is advisable to set up a subderivation for the application
of the rule Existential Elimination and then take the goal sentence as the new
subgoal within the scope of the subderivation.
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i. Derive: (∃x)(∃y)(∼ Kx & ∼ Oy)

1 (∃x)(Mx & ∼ Kx) Assumption
2 (∃y)(∼ Oy & Wy) Assumption

3 Mj & ∼ Kj Assumption

4 ∼ Oc & Wc Assumption

Subgoal → (∃x)(∃y)(∼ Kx & ∼Oy)
Goal → (∃x)(∃y)(∼ Kx & ∼ Oy) 2, 4–— ∃E

(∃x)(∃y)(∼ Kx & ∼ Oy) 1, 3–— ∃E

k. Derive: (∀x)(Fx ⊃ (∃y)(Gxy ∨ ∼ Hxy))

1 (∀x)(Fx ⊃ (∃y)Gxy) Assumption

2 Fa Assumption

Gab Assumption

Subgoal → (∃y)(Gay ∨ ∼ Hay)
Goal → (∃y)(Gay ∨ ∼ Hay) —, —–— ∃E

Fa ⊃ (∃y)(Gay ∨ ∼ Hay) 2–— ⊃I
(∀x)(Fx ⊃ (∃y)(Gxy ∨ ∼ Hxy)) — ∀I

The goal sentence contains the subformula ‘∼ Oy’ which very likely can be
derived using the assumption on line 2 which also contains the same subfor-
mula. Therefore, setting up another subderivation within the first allows for
the use of the rule Existential Elimination. Notice that the assumption on line
4 is a substitution instance of the sentence on line 2 and that the instantiat-
ing constant is different from the one used on line 3.

This may be difficult to see at first because the key subformula is ‘(∃y)Gxy’
and is buried within the assumption on line 1. Eventually this subformula must
be derived to support the use of Existential Elimination. We know this sub-
formula is crucial because it contains the predicate ‘G’ which is found in the
goal sentence. Another way to approach the problem is to derive ‘Fa ⊃
(∃y)Gay’ and then derive ‘(∃y)Gay’ which suggests the use of Existential Elim-
ination and the next subgoal.
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Second Part: Completing the derivations

a. Derive: (∀x)Ax � (∀x)(Ax & Ax)

1 (∀x)Ax Assumption

2 Ab 1 ∀E
3 Ab & Ab 2, 2 &I
4 (∀x)(Ax & Ax) 3 ∀I
5 (∀x)(Ax & Ax) Assumption

6 Ab & Ab 5 ∀E
7 Ab 6 &E
8 (∀x)Ax 7 ∀I
9 (∀x)Ax � (∀x)(Ax & Ax) 1–4, 5–8 �I

c. Derive: (∀x)(Fx ⊃ Hx)

1 (∀x)(Fx ⊃ Gx) Assumption
2 (∀x)(Gx ⊃ Hx) Assumption

3 Fa Assumption

4 Fa ⊃ Ga 1 ∀E
5 Ga 3, 4 ⊃E
6 Ga ⊃ Ha 2 ∀E
7 Ha 5, 6 ⊃E
8 Fa ⊃ Ha 3–7 ⊃I
9 (∀x)(Fx ⊃ Hx) 8 ∀I

e. Derive: (∀x)(Hx ∨ ∼ Sx)

1 (∀x) ∼ Kx Assumption
2 (∀x)(∼ Kx ⊃ ∼ Sx) Assumption

3 ∼ Ka 1 ∀E
4 ∼ Ka ⊃ ∼ Sa 2 ∀E
5 ∼ Sa 3, 4 ⊃E
6 Ha ∨ ∼ Sa 5 ∨I
7 (∀x)(Hx ∨ ∼ Sx) 6 ∀I

1 (∀x)(Fx ⊃ (∃y)Gxy) Assumption

2 Fa Assumption

3 Fa ⊃ (∃y)Gay 1 ∀E
4 (∃y)Gay 2, 3 ⊃E
5 Gab Assumption

Subgoal → (∃y)(Gay ∨ ∼ Hay)
Goal → (∃y)(Gay ∨ ∼ Hay) 4, 5–— ∃E

Fa ⊃ (∃y)(Gay ∨ ∼ Hay) 2–— ⊃I
(∀x)(Fx ⊃ (∃y)(Gxy ∨ ∼ Hxy)) — ∀I
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g. Derive: (∃x) ∼ Cx

1 (∃x) ∼ (Cx ∨ ∼ Rx) Assumption

2 ∼ (Ca ∨ ∼ Rx) Assumption

3 Ca Assumption

4 Ca ∨ ∼ Ra 3 ∨I
5 ∼ (Ca ∨ ∼ Ra) 2 R
6 ∼ Ca 3–5 ∼ I
7 (∃x) ∼ Cx 6 ∃I
8 (∃x) ∼ Cx 1, 2–7 ∃E

i. Derive: (∃x)(∃y)(∼ Kx & ∼ Oy)

1 (∃x)(Mx & ∼ Kx) Assumption
2 (∃y)(∼ Oy & Wy) Assumption

3 Mj & ∼ Kj Assumption

4 ∼ Oc & Wc Assumption

5 ∼ Kj 3 &E
6 ∼ Oc 4 &E
7 ∼ Kj & ∼ Oc 5, 6 &I
8 (∃y)(∼ Kj & ∼ Oy) 7 ∃I
9 (∃x)(∃y)(∼ Kx & ∼ Oy) 8 ∃I

10 (∃x)(∃y)(∼ Kx & ∼ Oy) 2, 4–9 ∃E
11 (∃x)(∃y)(∼ Kx & ∼ Oy) 1, 3–10 ∃E

k. Derive: (∀x)(Fx ⊃ (∃y)(Gxy ∨ ∼ Hxy))

1 (∀x)(Fx ⊃ (∃y)Gxy) Assumption

2 Fa Assumption

3 Fa ⊃ (∃y)Gay 1 ∀E
4 (∃y)Gay 2, 3 ⊃E
5 Gab Assumption

6 Gab ∨ ∼ Hab 5 ∨I
7 (∃y)(Gay ∨ ∼ Hay) 6 ∃I
8 (∃y)(Gay ∨ ∼ Hay) 4, 5–7 ∃E
9 Fa ⊃ (∃y)(Gay ∨ ∼ Hay) 2–8 ⊃I

10 (∀x)(Fx ⊃ (∃y)(Gxy ∨ ∼ Hxy)) 9 ∀I

2. Derivability

a. Derive: (∀z)Kzz

1 (∀x)Kzz Assumption

2 Kcc 1 ∀E
3 (∀z)Kzz 2 ∀I
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e. Derive: (∃x)(∃y)(∃z)Bxyz

1 (∃y)Byyy Assumption

2 Bjjj Assumption

3 (∃z)Bjjz 2 ∃I
4 (∃y)(∃z)Bjyz 3 ∃I
5 (∃x)(∃y)(∃z)Bxyz 4 ∃I
6 (∃x)(∃y)(∃z)Bxyz 1, 2–5 ∃E

3. Validity

a. Derive: (Caa & Cab) & (Cba & Cbb)

1 (∀x)(∀y)Cxy Assumption

2 (∀y)Cay 1 ∀E
3 Caa 2 ∀E
4 Cab 2 ∀E
5 Caa & Cab 3, 4 &I
6 (∀y) Cby 1 ∀E
7 Cba 6 ∀E
8 Cbb 6 ∀E
9 Cba & Cbb 7, 8 &I

10 (Caa & Cab) & (Cba & Cbb) 5, 9 &I

c. Derive: (∀x)(Hx ⊃ Gx)

1 (∀y)[(Hy & Fy) ⊃ Gy] Assumption
2 (∀z)Fz & ∼ (∀x)Kxb Assumption

3 Hm Assumption

4 (Hm & Fm) ⊃ Gm 1 ∀E
5 (∀z)Fz 2 &E
6 Fm 5 ∀E
7 Hm & Fm 3, 6 &I
8 Gm 4, 7 ⊃E
9 Hm ⊃ Gm 3–8 ⊃I

10 (∀x)(Hx ⊃ Gx) 9 ∀I

c. Derive: (∃y)Hy

1 (∀z)(Gz ⊃ Hz) Assumption
2 Gi Assumption

3 Gi ⊃ Hi 1 ∀E
4 Hi 2, 3 ⊃E
5 (∃y)Hy 4 ∃I
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e. Derive: (∃w)(Aw ∨ ∼ Lwf)

1 (∀x)(∼ Ax ⊃ Kx) Assumption
2 (∃y) ∼ Ky Assumption

3 ∼ Ka Assumption

4 ∼ Aa ⊃ Ka 1 ∀E
5 ∼ Aa Assumption

6 Ka 4, 5 ⊃E
7 ∼ Ka 3 R
8 Aa 5–7 ∼ E
9 Aa ∨ ∼ Laf 8 ∨I

10 (∃w)(Aw ∨ ∼ Lwf) 9 ∃I
11 (∃w)(Aw ∨ ∼ Lwf) 2, 3–10 ∃E

4. Theorems

a. Derive: (∀x)(∃y)(Ay ⊃ Ax)

1 Ac Assumption

2 Ac 1 R
3 Ac ⊃ Ac 1–2 ⊃I
4 (∃y)(Ay ⊃ Ac) 3 ∃I
5 (∀x)(∃y)(Ay ⊃ Ax) 4 ∀I

c. Derive: (∀x)(Ax ⊃ Bx) ⊃ ((∀x)Ax ⊃ (∀x)Bx)

1 (∀x)(Ax ⊃ Bx) Assumption

2 (∀x)Ax Assumption

3 Ac ⊃ Bc 1 ∀E
4 Ac 2 ∀E
5 Bc 3, 4 ⊃E
6 (∀x)Bx 5 ∀I
7 (∀x)Ax ⊃ (∀x)Bx 2–6 ⊃I
8 (∀x)(Ax ⊃ Bx) ⊃ ((∀x)Ax ⊃ (∀x)Bx) 1–7 ⊃I
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e. Derive: (∀x)(Bi ⊃ Ax) � (Bi ⊃ (∀x)Ax)

1 (∀x)(Bi ⊃ Ax) Assumption

2 Bi Assumption

3 Bi ⊃ Ac 1 ∀E
4 Ac 2, 3 ⊃E
5 (∀x)Ax 4 ∀I
6 Bi ⊃ (∀x)Ax 2–5 ⊃I

7 Bi ⊃ (∀x)Ax Assumption

8 Bi Assumption

9 (∀x)Ax 7, 8 ⊃E
10 Ac 9 ∀E
11 Bi ⊃ Ac 8–10 ⊃I
12 (∀x)(Bi ⊃ Ax) 11 ∀I
13 (∀x)(Bi ⊃ Ax) � (Bi ⊃ (∀x)Ax) 1–6, 7–12 �I

5. Equivalence

a. Derive: (∀x)(Ax & Ax)

1 (∀x)Ax Assumption

2 Ak 1 ∀E
3 Ak & Ak 2, 2 &I
4 (∀x)(Ax & Ax) 3 ∀I

Derive: (∀x)Ax

1 (∀x)(Ax & Ax) Assumption

2 Ai & Ai 1 ∀E
3 Ai 2 &E
4 (∀x)Ax 3 ∀I

c. Derive: (∃x)Ax ∨ (∃x)Bx

1 (∃x)(Ax ∨ Bx) Assumption

2 Aa ∨ Ba Assumption

3 Aa Assumption

4 (∃x)Ax 3 ∃I
5 (∃x)Ax ∨ (∃x)Bx 4 ∨I

6 Ba Assumption

7 (∃x)Bx 6 ∃I
8 (∃x)Ax ∨ (∃x)Bx 7 ∨I
9 (∃x)Ax ∨ (∃x)Bx 2, 3–5, 6–8 ∨E

10 (∃x)Ax ∨ (∃x)Bx 1, 2–9 ∃E
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Derive: (∃x)(Ax ∨ Bx)

1 (∃x)Ax ∨ (∃x)Bx Assumption

2 (∃x)Ax Assumption

3 Aa Assumption

4 Aa ∨ Ba 3 ∨I
5 (∃x)(Ax ∨ Bx) 4 ∃I
6 (∃x)(Ax ∨ Bx) 2, 3–5 ∃E

7 (∃x)Bx Assumption

8 Ba Assumption

9 Aa ∨ Ba 8 ∨I
10 (∃x)(Ax ∨ Bx) 9 ∃I
11 (∃x)(Ax ∨ Bx) 7, 8–10 ∃E
12 (∃x)(Ax ∨ Bx) 1, 2–6, 7–11 ∨E

e. Derive: (∃x) ∼ Ax

1 ∼ (∀x)Ax Assumption

2 ∼ (∃x) ∼ Ax Assumption

3 ∼ Ac Assumption

4 (∃x) ∼ Ax 3 ∃I
5 ∼ (∃x) ∼ Ax 2 R
6 Ac 3–5 ∼ E
7 (∀x)Ax 6 ∀I
8 ∼ (∀x)Ax 1 R
9 (∃x) ∼ Ax 2–8 ∼ E

Derive: ∼ (∀x)Ax

1 (∃x) ∼ Ax Assumption

2 ∼ Ac Assumption

3 (∀x)Ax Assumption

4 Ac 3 ∀E
5 ∼ Ac 2 R
6 ∼ (∀x)Ax 3–5 ∼ I
7 ∼ (∀x)Ax 1, 2–6 ∃E
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6. Inconsistency

a.

1 (∀x)Hx Assumption
2 (∀y) ∼ (Hy ∨ Byy) Assumption

3 Hc 1 ∀E
4 Hc ∨ Bcc 3 ∨I
5 ∼ (Hc ∨ Bcc) 2 ∀E

c.

1 (∀x)Rx Assumption
2 (∃x) ∼ Rx Assumption

3 ∼ Ri Assumption

4 (∀x)Rx Assumption

5 ∼ Ri 3 R
6 Ri 1 ∀E
7 ∼ (∀x)Rx 4–6 ∼ I
8 ∼ (∀x)Rx 2, 3–7 ∃E
9 (∀x)Rx 1 R

e.

1 (∀w)(∀z)( Jwz � ∼ Jwz) Assumption

2 (∀z)( Jaz � ∼ Jaz) 1 ∀E
3 Jab � ∼ Jab 2 ∀E
4 Jab Assumption

5 ∼ Jab 3, 4 �E
6 Jab 4 R
7 ∼ Jab 4–6 ∼ I
8 Jab 3, 7 �E

7. Derivability

a. Derive: (∃x)Bx

1 (∀x)(∼ Bx ⊃ ∼ Wx) Assumption
2 (∃x)Wx Assumption

3 Wa Assumption

4 ∼ Ba ⊃ ∼ Wa 1 ∀E
5 ∼ Ba Assumption

6 ∼ Wa 4, 5 ⊃E
7 Wa 3 R
8 Ba 5–7 ∼ E
9 (∃x)Bx 8 ∃I

10 (∃x)Bx 2, 3–9 ∃E
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e. Derive: (∃z)Lz ⊃ (∃y)Ky

1 (∀z)(∼ Lz ∨ (∃y)Ky) Assumption

2 (∃z)Lz Assumption

3 La Assumption

4 ∼ La ∨ (∃y)Ky 1 ∀E
5 ∼ La Assumption

6 ∼ (∃y)Ky Assumption

7 La 3 R
8 ∼ La 5 R
9 (∃y)Ky 6–8 ∼ E

10 (∃y)Ky Assumption

11 (∃y)Ky 10 R
12 (∃y)Ky 4, 5–9, 10–11 ∨E
13 (∃y)Ky 2, 3–12 ∃E
14 (∃z)Lz ⊃ (∃y)Ky 2–13 ⊃I

c. Derive: Ha ⊃ (∃x)Sxcc

1 (∀x)(Hx ⊃ (∀y)Rxyb) Assumption
2 (∀x)(∀z)(Razx ⊃ Sxzz) Assumption

3 Ha Assumption

4 Ha ⊃ (∀y)Rayb 1 ∀E
5 (∀y)Rayb 3, 4 ⊃E
6 Racb 5 ∀E
7 (∀z)(Razb ⊃ Sbzz) 2 ∀E
8 Racb ⊃ Sbcc 7 ∀E
9 Sbcc 6, 8 ⊃E

10 (∃x)Sxcc 9 ∃I
11 Ha ⊃ (∃x)Sxcc 3–10 ⊃I
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g. Derive: (∃x)Cx

1 (∃x)(Cx ∨ (∀y)(Wxy ⊃ Cy)) Assumption
2 (∀x)(Wxa & ∼ Ca) Assumption

3 Cb ∨ (∀y)(Wby ⊃ Cy) Assumption

4 Cb Assumption

5 (∃x)Cx 4 ∃I

6 (∀y)(Wby ⊃ Cy) Assumption

7 ∼ (∃x)Cx Assumption

8 Wba ⊃ Ca 6 ∀E
9 Wba & ∼ Ca 2 ∀E

10 Wba 9 &E
11 Ca 8, 10 ⊃E
12 ∼ Ca 9 &E
13 (∃x)Cx 7–12 ∼ E
14 (∃x)Cx 3, 4–5, 6–13 ∨E
15 (∃x)Cx 1, 3–14 ∃E

8. Validity

a. Derive: (∀x)(Zx ⊃ (∃y)(Ky ∨ Sy))

1 (∀x)(Zx ⊃ (∃y)Ky) Assumption

2 Za ⊃ (∃y)Ky 1 ∀E
3 Za Assumption

4 (∃y)Ky 2, 3 ⊃E
5 Kb Assumption

6 Kb ∨ Sb 5 ∨I
7 (∃y)(Ky ∨ Sy) 6 ∃I
8 (∃y)(Ky ∨ Sy) 4, 5–7 ∃E
9 Za ⊃ (∃y)(Ky ∨ Sy) 3–8 ⊃I

10 (∀x)(Zx ⊃ (∃y)(Ky ∨ Sy)) 9 ∀I
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e. Derive: ∼ (∀x)(Cx ⊃ Lx)

1 (∀x)(Lx ⊃ Yx) Assumption
2 (∃x)(Cx & Yx) & (∃x)(Cx & ∼ Yx) Assumption

3 (∃x)(Cx & ∼ Yx) 2 &E
4 Cb & ∼ Yb Assumption

5 (∀x)(Cx ⊃ Lx) Assumption

6 Cb ⊃ Lb 5 ∀E
7 Cb 4 &E
8 Lb ⊃ Yb 1 ∀E
9 Lb 6, 7 ⊃E

10 Yb 8, 9 ⊃E
11 ∼ Yb 4 &E
12 ∼ (∀x)(Cx ⊃ Lx) 5–11 ∼ I
13 ∼ (∀x)(Cx ⊃ Lx) 3, 4–12 ∃E

c. Derive: (∀x)(Hx ⊃ Wxx)

1 (∀x)(Hx ⊃ Fx) Assumption
2 (∀x)((Fx & Uxx) ⊃ Wxx) Assumption
3 (∀z)Uzz Assumption

4 Ha Assumption

5 Ha ⊃ Fa 1 ∀E
6 Fa 4, 5 ⊃E
7 Uaa 3 ∀E
8 Fa & Uaa 6, 7 &I
9 (Fa & Uaa) ⊃ Waa 2 ∀E

10 Waa 8, 9 ⊃E
11 Ha ⊃ Waa 4–10 ⊃I
12 (∀x)(Hx ⊃ Wxx) 11 ∀I
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g. Derive: (∃x) ∼ Kx

1 (∀x)(∀y)((Ry ∨ Dx) ⊃ ∼ Ky) Assumption
2 (∀x)(∃y)(Ax ⊃ ∼ Ky) Assumption
3 (∃x)(Ax ∨ Rx) Assumption

4 Aa ∨ Ra Assumption

5 Aa Assumption

6 (∃y)(Aa ⊃ ∼ Ky) 2 ∀E
7 Aa ⊃ ∼ Kb Assumption

8 ∼ Kb 5, 7 ⊃E
9 (∃x) ∼ Kx 8 ∃I

10 (∃x) ∼ Kx 6, 7–9 ∃E

11 Ra Assumption

12 (∀y)((Ry ∨ Dc) ⊃ ∼ Ky) 1 ∀E
13 (Ra ∨ Dc) ⊃ ∼ Ka 12 ∀E
14 Ra ∨ Dc 11 ∨I
15 ∼ Ka 13, 14 ⊃E
16 (∃x) ∼ Kx 15 ∃I
17 (∃x) ∼ Kx 4, 5–10, 11–16 ∨E
18 (∃x) ∼ Kx 3, 4–17 ∃E

i. Derive: (∃z)[Bz & (∀y)(By ⊃ Hzy)]

1 (∀x)(∀y)[(Hky & Hxk) ⊃ Hxy] Assumption
2 (∀z)(Bz ⊃ Hkz) Assumption
3 (∃x)(Bx & Hxk) Assumption

4 Bi & Hik Assumption

5 Ba Assumption

6 Ba ⊃ Hka 2 ∀E
7 Hka 5, 6 ⊃E
8 Hik 4 &E
9 Hka & Hik 7, 8 &I

10 (∀y)[(Hky & Hik) ⊃ Hiy] 1 ∀E
11 (Hka & Hik) ⊃ Hia 10 ∀E
12 Hia 9, 11 ⊃E
13 Ba ⊃ Hia 5–12 ⊃I
14 (∀y)(By ⊃ Hiy) 13 ∀I
15 Bi 4 &E
16 Bi & (∀y)(By ⊃ Hiy) 15, 14 &I
17 (∃z)[Bz & (∀y)(By ⊃ Hzy)] 16 ∃I
18 (∃z)[Bz & (∀y)(By ⊃ Hzy)] 3, 4–17 ∃E



SOLUTIONS TO SELECTED EXERCISES ON P. 558 281

k. Derive: (∀w)([Gw & (∃z)(Gz & Hwz)] ⊃ Hww)

1 (∀x)(∀y)[(Gx & Gy) ⊃ (Hxy ⊃ Hyx)] Assumption
2 (∀x)(∀y)(∀z)([Gx & Gy) & Gz] ⊃ [(Hxy & Assumption

Hyz) ⊃ Hxz])

3 Ga & (∃z)(Gz & Haz) Assumption

4 (∃z)(Gz & Haz) 3 &E
5 Gb & Hab Assumption

6 (∀y)[(Ga & Gy) ⊃ (Hay ⊃ Hya)] 1 ∀E
7 (Ga & Gb) ⊃ (Hab ⊃ Hba) 6 ∀E
8 Gb 5 &E
9 Ga 3 &E

10 Ga & Gb 9, 8 &I
11 Hab ⊃ Hba 10, 7 ⊃E
12 Hab 5 &E
13 Hba 11, 12 ⊃E
14 Hab & Hba 12, 13 &I
15 (∀y)(∀z)([(Ga & Gy) & Gz] ⊃ 2 ∀E

[(Hay & Hyz) ⊃ Haz])
16 (∀z)([(Ga & Gb) & Gz] ⊃ [(Hab & 15 ∀E

Hbz) ⊃ Haz])
17 [(Ga & Gb) & Ga] ⊃ [(Hab & Hba) 16 ∀E

⊃ Haa]
18 (Ga & Gb) & Ga 10, 9 &I
19 (Hab & Hba) ⊃ Haa 17, 18 ⊃E
20 Haa 14, 19 ⊃E
21 Haa 4, 5–20 ∃E
22 [Ga & (∃z)(Gz & Haz)] ⊃ Haa 3–21 ⊃I
23 (∀w)([Gw & (∃z)(Gz & Hwz)] ⊃ Hww) 22 ∀I
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c. Derive: (∀x)Ax � ∼ (∃x) ∼ Ax

1 (∀x)Ax Assumption

2 (∃x) ∼ Ax Assumption

3 ∼ Ac Assumption

4 (∃x) ∼ Ax Assumption

5 Ac 1 ∀E
6 ∼ Ac 3 R
7 ∼ (∃x) ∼ Ax 4–6 ∼ I
8 ∼ (∃x) ∼ Ax 2, 3–7 ∃E
9 (∃x) ∼ Ax 2 R

10 ∼ (∃x) ∼ Ax 2–9 ∼ I

11 ∼ (∃x) ∼ Ax Assumption

12 ∼ Ac Assumption

13 (∃x) ∼ Ax 12 ∃I
14 ∼ (∃x) ∼ Ax 11 R
15 Ac 12–14 ∼ E
16 (∀x)Ax 15 ∀I
17 (∀x)Ax � ∼ (∃x) ∼ Ax 1–10, 11–16 �I

9. Theorems

a. Derive: [(∀x)(∀y)Axy & (∀x)(Axx ⊃ Bi)] ⊃ Bi

1 (∀x)(∀y)Axy & (∀x)(Axx ⊃ Bi) Assumption

2 (∀x)(Axx ⊃ Bi) 1 &E
3 Akk ⊃ Bi 2 ∀E
4 (∀x)(∀y)Axy 1 &E
5 (∀y)Aky 4 ∀E
6 Akk 5 ∀E
7 Bi 3, 6 ⊃E
8 [(∀x)(∀y)Axy & (∀x)(Axx ⊃ Bi)] ⊃ Bi 1–7 ⊃I
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e. Derive: (∃x)(Bi ⊃ Ax) � (Bi ⊃ (∃x)Ax)

1 (∃x)(Bi ⊃ Ax) Assumption

2 Bi Assumption

3 Bi ⊃ Ac Assumption

4 Ac 2, 3 ⊃E
5 (∃x)Ax 4 ∃I
6 (∃x)Ax 1, 3–5 ∃E
7 Bi ⊃ (∃x)Ax 2–6 ⊃I

8 Bi ⊃ (∃x)Ax Assumption

9 ∼ (∃x)(Bi ⊃ Ax) Assumption

10 Bi Assumption

11 (∃x)Ax 8, 10 ⊃E
12 Ac Assumption

13 ∼ Ad Assumption

14 Bi Assumption

15 Ac 12 R
16 Bi ⊃ Ac 14–15 ⊃I
17 (∃x)(Bi ⊃ Ax) 16 ∃I
18 ∼ (∃x)(Bi ⊃ Ax) 9 R
19 Ad 13–18 ∼ E
20 Ad 11, 12–19 ∃E
21 Bi ⊃ Ad 10–20 ⊃I
22 (∃x)(Bi ⊃ Ax) 21 ∃I
23 ∼ (∃x)(Bi ⊃ Ax) 9 R
24 (∃x)(Bi ⊃ Ax) 9–23 ∼ E
25 (∃x)(Bi ⊃ Ax) � (Bi ⊃ (∃x) Ax) 1–7, 8–24 �I

10. Equivalence

a. Derive: (∀x)(Bx ⊃ Bx)

1 (∀x)(Ax ⊃ Ax) Assumption

2 Ba Assumption

3 Ba 2 R
4 Ba ⊃ Ba 2–3 ⊃I
5 (∀x)(Bx ⊃ Bx) 4 ∀I

Derive: (∀x)(Ax ⊃ Ax)

1 (∀x)(Bx ⊃ Bx) Assumption

2 Aa Assumption

3 Aa 2 R
4 Aa ⊃ Aa 2–3 ⊃I
5 (∀x)(Ax ⊃ Ax) 4 ∀I
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c. Derive: (∃y) ∼ By ⊃ (∀x) ∼ Ax

1 (∀x)(∀y)(Ax ⊃ By) Assumption

2 (∃y) ∼ By Assumption

3 ∼ Ba Assumption

4 (∀y)(Ab ⊃ By) 1 ∀E
5 Ab ⊃ Ba 4 ∀E
6 Ab Assumption

7 Ba 5, 6 ⊃E
8 ∼ Ba 3 R
9 ∼ Ab 6–8 ∼ I

10 (∀x) ∼ Ax 9 ∀I
11 (∀x) ∼ Ax 2, 3–10 ∃E
12 (∃y) ∼ By ⊃ (∀x) ∼ Ax 2–11 ⊃I

Derive: (∀x)(∀y)(Ax ⊃ By)

1 (∃y) ∼ By ⊃ (∀x) ∼ Ax Assumption

2 Aa Assumption

3 ∼ Bb Assumption

4 (∃y) ∼ By 3 ∃I
5 (∀x) ∼ Ax 1, 4 ⊃E
6 ∼ Aa 5 ∀E
7 Aa 2 R
8 Bb 3–7 ∼ E
9 Aa ⊃ Bb 2–8 ⊃I

10 (∀y)(Aa ⊃ By) 9 ∀I
11 (∀x)(∀y)(Ax ⊃ By) 10 ∀I

e. Derive: ∼ (∀x)Ax ∨ (∀y)By

1 (∃x)(∀y)(Ax ⊃ By) Assumption

2 (∀y)(Aa ⊃ By) Assumption

3 Aa ⊃ Bb 2 ∀E
4 ∼ (∼ (∀x)Ax ∨ (∀y)By) Assumption

5 (∀x)Ax Assumption

6 Aa 5 ∀E
7 Bb 3, 6 ⊃E
8 (∀y)By 7 ∀I
9 ∼ (∀x) Ax ∨ (∀y)By 8 ∨I

10 ∼ (∼ (∀x)Ax ∨ (∀y)By) 4 R
11 ∼ (∀x)Ax 5–10 ∼ I
12 ∼ (∀x)Ax ∨ (∀y)By 11 ∨I
13 ∼ (∼ (∀x)Ax ∨ (∀y)By) 4 R
14 ∼ (∀x)Ax ∨ (∀y)By 4–13 ∼ E
15 ∼ (∀x)Ax ∨ (∀y)By 1, 2–14 ∃E
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Derive: (∃x)(∀y)(Ax ⊃ By)

1 ∼ (∀x)Ax ∨ (∀y)By Assumption

2 ∼ (∀x)Ax Assumption

3 ∼ (∃x)(∀y)(Ax ⊃ By) Assumption

4 ∼ Aa Assumption

5 Aa Assumption

6 ∼ Bb Assumption

7 ∼ Aa 4 R
8 Aa 5 R
9 Bb 6–8 ∼ E

10 Aa ⊃ Bb 5–9 ⊃I
11 (∀y)(Aa ⊃ By) 10 ∀I
12 (∃x)(∀y)(Ax ⊃ By) 11 ∃I
13 ∼ (∃x)(∀y)(Ax ⊃ By) 3 R
14 Aa 4–13 ∼ E
15 (∀x)Ax 14 ∀I
16 ∼ (∀x)Ax 2 R
17 (∃x)(∀y)(Ax ⊃ By) 3–16 ∼ E

18 (∀y)By Assumption

19 Aa Assumption

20 Bb 18 ∀E
21 Aa ⊃ Bb 19–20 ⊃I
22 (∀y)(Aa ⊃ By) 21 ∀I
23 (∃x)(Ay)(Ax ⊃ By) 22 ∃I
24 (∃x)(∀y)(Ax ⊃ By) 1, 2–17, 18–23 ∨E

11. Inconsistency

a.

1 (∀y)(∃z)Byz Assumption
2 (∀w) ∼ Baw Assumption

3 (∃z)Baz 1 ∀E
4 Bab Assumption

5 (∀w) ∼ Baw Assumption

6 ∼ Bab 5 ∀E
7 Bab 4 R
8 ∼ (∀w) ∼ Baw 5–7 ∼ I
9 ∼ (∀w) ∼ Baw 3, 4–8 ∃E

10 (∀w) ∼ Baw 2 R
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c.

1 (∃x)(∼ Bx & Lxx) Assumption
2 (∀z)(Cz & Bz) Assumption
3 (∀y)[(By & ∼ Cy) � Lyy] Assumption

4 ∼ Bi & Lii Assumption

5 (Bi & ∼ Ci) � Lii 3 ∀E
6 Lii 4 &E
7 Bi & ∼ Ci 5, 6 �E
8 (∀z)(Cz & Bz) Assumption

9 Bi 7 &E
10 ∼ Bi 4 &E
11 ∼ (∀z)(Cz & Bz) 8–10 ∼ I
12 ∼ (∀z)(Cz & Bz) 1, 4–11 ∃E
13 (∀z)(Cz & Bz) 2 R

e.

1 (∃x)(∃y)Fxy ∨ (∀x)(∀y)(∀z)Hxxyz Assumption
2 (∃x)(∃y)Fxy ⊃ ∼ Haaab Assumption
3 (Hbbba ∨ ∼ Haaab) � (∀x) ∼ (∀x ∨ ∼ Ax) Assumption

4 (∃x)(∃y)Fxy Assumption

5 ∼ Haaab 2, 4 ⊃E
6 Hbbba ∨ ∼ Haaab 5 ∨I
7 (∀x)(∀y)(∀z)Hxxyz Assumption

8 (∀y)(∀z)Hbbyz 7 ∀E
9 (∀z)Hbbbz 8 ∀E

10 Hbbba 9 ∀E
11 Hbbba ∨ ∼ Haaab 10 ∨I
12 Hbbba ∨ ∼ Haaab 1, 4–6, 7–11 ∨E
13 (∀x) ∼ (Ax ∨ ∼ Ax) 3, 12 �E
14 Ac Assumption

15 Ac ∨ ∼ Ac 14 ∨I
16 ∼ (Ac ∨ ∼ Ac) 13 ∀E
17 ∼ Ac 14–16 ∼ I
18 Ac ∨ ∼ Ac 17 ∨I
19 ∼ (Ac ∨ ∼ Ac) 13 ∀E
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12. Validity

a. Derive: (∃x)(Fxg & Cx)

1 (∀x)[Sx ⊃ (Cx ∨ Bx)] Assumption
2 (∃x)[Fxg & (Sx & ∼ Bx)] Assumption

3 Fkg & (Sk & ∼ Bk) Assumption

4 Sk ⊃ (Ck ∨ Bk) 1 ∀E
5 Sk & ∼ Bk 3 &E
6 Sk 5 &E
7 Ck ∨ Bk 4, 6 ⊃E
8 Ck Assumption

9 Ck 8 R
10 Bk Assumption

11 ∼ Ck Assumption

12 Bk 10 R
13 ∼ Bk 5 &E
14 Ck 11–13 ∼ E
15 Ck 7, 8–9, 10–14 ∨E
16 Fkg 3 &E
17 Fkg & Ck 16, 15 &I
18 (∃x)(Fxg & Cx) 17 ∃I
19 (∃x)(Fxg & Cx) 2, 3–18 ∃E

c. Derive: Fnm

1 (∀x)[(∃y)(∃z)[∼ Iyz & (Lyx & Lzx)] ⊃ Assumption
(∀z)((∃y)[Lyz & (∀w)(Lwz ⊃ Iwy)] ⊃ Fxz)]

2 ∼ Ihg & (Lhn & Lgn) Assumption
3 Ldm & (∀w)(Lwm ⊃ Iwd) Assumption

4 (∃y)(∃z)[∼ Iyz & (Lyn & Lzn)] ⊃ 1 ∀E
(∀z)((∃y)[Lyz & (∀w)(Lwz ⊃ Iwy)] ⊃ Fnz)

5 (∃z)[∼ Ihz & (Lhn & Lzn)] 2 ∃I
6 (∃y)(∃z)[∼ Iyz & (Lyn & Lzn)] 5 ∃I
7 (∀z)((∃y)[Lyz & (∀w)(Lwz ⊃ Iwy)] ⊃ Fnz) 4, 6 ⊃E
8 (∃y)[Lym & (∀w)(Lwm ⊃ Iwy)] ⊃ Fnm 7 ∀E
9 (∃y)[Lym & (∀w)(Lwm ⊃ Iwy)] 3 ∃I

10 Fnm 8, 9 ⊃E
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e. Derive: (∀x)[Hx ⊃ ∼ (∃y)(Hy & Sxy)] ⊃ (∃z)(Lz & Szz)

1 (∃x)[Hx & (∃y)(Dy & Sxy)] Assumption
2 (∃x)[Hx & (∀y)(Dy ⊃ ∼ Sxy)] Assumption
3 (∀x)(∀y)([(Px & Sxy) & (Dy ∨ Hy)] ⊃ Lx) Assumption
4 (∀x)[Hx ⊃ (Px & (∀y)[Sxy ⊃ (Dy ∨ Hy)])] Assumption
5 (∀x)(Hx ⊃ (∃y)Sxy) Assumption

6 (∀x)[Hx ⊃ ∼ (∃y)(Hy & Sxy)] Assumption

7 Ha & (∀y)(Dy ⊃ ∼ Say) Assumption

8 Ha ⊃ (Pa & (∀y)[Say ⊃ (Dy ∨ Hy)]) 4 ∀E
9 Ha 7 &E

10 Pa & (∀y)[Say ⊃ (Dy ∨ Hy)] 8, 9 ⊃E
11 (∀y)[Say ⊃ (Dy ∨ Hy)] 10 &E
12 Ha ⊃ (∃y)Say 5 ∀E
13 (∃y)Say 9, 12 ⊃E
14 Sab Assumption

15 Sab ⊃ (Db ∨ Hb) 11 ∀E
16 Db ∨ Hb 14, 15 ⊃E
17 Db Assumption

18 (∀y)(Dy ⊃ ∼ Say) 7 &E
19 Db ⊃ ∼ Sab 18 ∀E
20 ∼ Hb Assumption

21 ∼ Sab 17, 19 ⊃E
22 Sab 14 R
23 Hb 20–22 ∼ E

24 Hb Assumption

25 Hb 24 R
26 Hb 16, 17–23, 24–25 ∨E
27 Hb & Sab 26, 14 &I
28 (∃y)(Hy & Say) 27 ∃I
29 (∃y)(Hy & Say) 13, 14–28 ∃E
30 ∼ (∃z)(Lz & Szz) Assumption

31 (∃y)(Hy & Say) 29 R
32 Ha ⊃ ∼ (∃y)(Hy & Say) 6 ∀E
33 ∼ (∃y)(Hy & Say) 9, 32 ⊃E
34 (∃z)(Lz & Szz) 30–33 ∼ E
35 (∃z)(Lz & Szz) 2, 7–34 ∃E
36 (∀x) [Hx ⊃ ∼ (∃y)(Hy & Sxy)] ⊃ (∃z)(Lz & Szz) 6–35 ⊃I
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13. Inconsistency

a.

1 (∃x)[Px & (∀y)(Uxy � ∼ Uyy)] Assumption

2 Pa & (∀y)(Uay � ∼ Uyy) Assumption

3 (∀y)(Uay � ∼ Uyy) 2 &E
4 Uaa � ∼ Uaa 3 ∀E
5 ∼ (Hi & ∼ Hi) Assumption

6 Uaa Assumption

7 ∼ Uaa 4, 6 �E
8 Uaa 6 R
9 ∼ Uaa 6–8 ∼ I

10 Uaa 4, 9 �E
11 Hi & ∼ Hi 5–10 ∼ E
12 Hi & ∼ Hi 1, 2–11 ∃E
13 Hi 12 &E
14 ∼ Hi 12 &E

c.

1 (∀x)[(Px & Bx) ⊃ ∼ Mx] Assumption
2 (∀x)[(Px & Rx) ⊃ Bx] Assumption
3 (∀x)[(Px & Rx) ⊃ Mx] Assumption
4 (∃x)(Px & Rx) Assumption

5 Pm & Rm Assumption

6 (Pm & Rm) ⊃ Mm 3 ∀E
7 (Pm & Rm) ⊃ Bm 2 ∀E
8 Bm 5, 7 ⊃E
9 (Pm & Bm) ⊃ ∼ Mm 1 ∀E

10 Pm 5 &E
11 Pm & Bm 10, 8 &I
12 (∃x)(Px & Rx) Assumption

13 Mm 5, 6 ⊃E
14 ∼ Mm 9, 11 ⊃E
15 ∼ (∃x)(Px & Rx) 12–14 ∼ I
16 ∼ (∃x)(Px & Rx) 4, 5–15 ∃E
17 (∃x)(Px & Rx) 4 R

Section 10.5E

1. Derivability

a. Derive: (∃y)(∼ Fy ∨ ∼ Gy)

1 ∼ (∀y)(Fy & Gy) Assumption

2 (∃y) ∼ (Fy & Gy) 1 QN
3 (∃y)(∼ Fy ∨ ∼ Gy) 2 DeM
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c. Derive: (∃z)(Az & ∼ Cz)

1 (∃z)(Gz & Az) Assumption
2 (∀y)(Cy ⊃ ∼ Gy) Assumption

3 Gh & Ah Assumption

4 Ch ⊃ ∼ Gh 2 ∀E
5 Gh 3 &E
6 ∼ ∼ Gh 5 DN
7 ∼ Ch 4, 6 MT
8 Ah 3 &E
9 Ah & ∼ Ch 8, 7 &I

10 (∃z)(Az & ∼ Cz) 9 ∃I
11 (∃z)(Az & ∼ Cz) 1, 3–10 ∃E

e. Derive: (∃x)Cxb

1 (∀x)[(∼ Cxb ∨ Hx) ⊃ Lxx] Assumption
2 (∃y) ∼ Lyy Assumption

3 ∼ Lmm Assumption

4 (∼ Cmb ∨ Hm) ⊃ Lmm 1 ∀E
5 ∼ (∼ Cmb ∨ Hm) 3, 4 MT
6 ∼ ∼ Cmb & ∼ Hm 5 DeM
7 ∼ ∼ Cmb 6 &E
8 Cmb 7 DN
9 (∃x)Cxb 8 ∃I

10 (∃x)Cxb 2, 3–9 ∃E

2. Validity

a. Derive: (∀y) ∼ (Hby ∨ Ryy)

1 (∀y) ∼ Jx Assumption
2 (∃y)(Hby ∨ Ryy) ⊃ (∃x)Jx Assumption

3 ∼ (∃x)Jx 1 QN
4 ∼ (∃y)(Hby ∨ Ryy) 2, 3 MT
5 (∀y) ∼ (Hby ∨ Ryy) 4 QN
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c. Derive: (∀x)(∀y)Hxy & (∀x) ∼ Tx

1 (∀x) ∼ ((∀y)Hyx ∨ Tx) Assumption
2 ∼ (∃y)(Ty ∨ (∃x) ∼ Hxy) Assumption

3 (∀y) ∼ (Ty ∨ (∃x) ∼ Hxy) 2 QN
4 ∼ (Ta ∨ (∃x) ∼ Hxa) 3 ∀E
5 ∼ Ta & ∼ (∃x) ∼ Hxa 4 DeM
6 ∼ (∃x) ∼ Hxa 5 &E
7 (∀x) ∼ ∼ Hxa 6 QN
8 ∼ ∼ Hba 7 ∀E
9 Hba 8 DN

10 (∀y)Hby 9 ∀I
11 (∀x)(∀y)Hxy 10 ∀I
12 ∼ Ta 5 &E
13 (∀x) ∼ Tx 12 ∀I
14 (∀x)(∀y)Hxy & (∀x) ∼ Tx 11, 13 &I

e. Derive: (∃x) ∼ Kxx

1 (∀z)[Kzz ⊃ (Mz & Nz)] Assumption
2 (∃z) ∼ Nz Assumption

3 ∼ Ng Assumption

4 Kgg ⊃ (Mg & Ng) 1 ∀E
5 ∼ Mg ∨ ∼ Ng 3 ∨I
6 ∼ (Mg & Ng) 5 DeM
7 ∼ Kgg 4, 6 MT
8 (∃x) ∼ Kxx 7 ∃I
9 (∃x) ∼ Kxx 2, 3–8 ∃E

g. Derive: (∃w)(Qw & Bw) ⊃ (∀y)(Lyy ⊃ ∼ Ay)

1 (∃z)Qz ⊃ (∀w)(Lww ⊃ ∼ Hw) Assumption
2 (∃x)Bx ⊃ (∀y)(Ay ⊃ Hy) Assumption

3 (∃w)(Qw & Bw) Assumption

4 Qm & Bm Assumption

5 Qm 4 &E
6 (∃z)Qz 5 ∃I
7 (∀w)(Lww ⊃ ∼ Hw) 1, 6 ⊃E
8 Lcc ⊃ ∼ Hc 7 ∀E
9 Bm 4 &E

10 (∃x)Bx 9 ∃I
11 (∀y)(Ay ⊃ Hy) 2, 10 ⊃E
12 Ac ⊃ Hc 11 ∀E
13 ∼ Hc ⊃ ∼ Ac 12 Trans
14 Lcc ⊃ ∼ Ac 8, 13 HS
15 (∀y)(Lyy ⊃ ∼ Ay) 14 ∀I
16 (∀y)(Lyy ⊃ ∼ Ay) 3, 4–15 ∃E
17 (∃w)(Qw & Bw) ⊃ (∀y)(Lyy ⊃ ∼ Ay) 3–16 ⊃I
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i. Derive: ∼ (∀x)(∀y)Bxy ⊃ (∀x)(∼ Px ∨ ∼ Hx)

1 ∼ (∀x)(∼ Px ∨ ∼ Hx) ⊃ (∀x)[Cx & (∀y)(Ly ⊃ Axy)] Assumption
2 (∃x) [Hx & (∀y)(Ly ⊃ Axy)] ⊃ (∀x)(Rx & (∀y)Bxy) Assumption

3 ∼ (∀x)(∼ Px ∨ ∼ Hx) Assumption

4 (∃x) ∼ (∼ Px ∨ ∼ Hx) 3 QN
5 ∼ (∼ Pi ∨ ∼ Hi) Assumption

6 ∼ ∼ Pi & ∼ ∼ Hi 5 DeM
7 ∼ ∼ Hi 6 &E
8 Hi 7 DN
9 (∀x)[Cx & (∀y)(Ly ⊃ Axy)] 1, 3 ⊃E

10 Ci & (∀y)(Ly ⊃ Aiy) 9 ∀E
11 (∀y)(Ly ⊃ Aiy) 10 &E
12 Hi & (∀y)(Ly ⊃ Aiy) 8, 11 &I
13 (∃x)[Hx & (∀y)(Ly ⊃ Axy)] 12 ∃I
14 (∀x)(Rx & (∀y)Bxy) 2, 13 ⊃E
15 Rj & (∀y)Bjy 14 ∀E
16 (∀y)Bjy 15 &E
17 (∀x)(∀y)Bxy 16 ∀I
18 (∀x)(∀y)Bxy 4, 5–17 ∃E
19 ∼ (∀x)(∼ Px ∨ ∼ Hx) ⊃ (∀x)(∀y)Bxy 3–18 ⊃I
20 ∼ (∀x)(∀y)Bxy ⊃ ∼ ∼ (∀x)(∼ Px ∨ ∼ Hx) 19 Trans
21 ∼ (∀x)(∀y)Bxy ⊃ (∀x)(∼ Px ∨ ∼ Hx) 20 DN

3. Theorems

a. Derive: (∀x)(Ax ⊃ Bx) ⊃ (∀x)(Bx ∨ ∼ Ax)

1 (∀x)(Ax ⊃ Bx) Assumption

2 (∀x)(∼ Ax ∨ Bx) 1 Impl
3 (∀x)(Bx ∨ ∼ Ax) 2 Com
4 (∀x)(Ax ⊃ Bx) ⊃ (∀x)(Bx ∨ ∼ Ax) 1–3 ⊃I

c. Derive: ∼ (∃x)(Ax ∨ Bx) ⊃ (∀x) ∼ Ax

1 ∼ (∃x)(Ax ∨ Bx) Assumption

2 (∀x) ∼ (Ax ∨ Bx) 1 QN
3 ∼ (Ac ∨ Bc) 2 ∀E
4 ∼ Ac & ∼ Bc 3 DeM
5 ∼ Ac 4 &E
6 (∀x) ∼ Ax 5 ∀I
7 ∼ (∃x)(Ax ∨ Bx) ⊃ (∀x) ∼ Ax 1–6 ⊃I
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e. Derive: ((∃x)Ax ⊃ (∃x)Bx) ⊃ (∃x)(Ax ⊃ Bx)

1 ∼ (∃x)(Ax ⊃ Bx) Assumption

2 (∀x) ∼ (Ax ⊃ Bx) 1 QN
3 ∼ (Ac ⊃ Bc) 2 ∀E
4 ∼ (∼ Ac ∨ Bc) 3 Impl
5 ∼ ∼ Ac & ∼ Bc 4 DeM
6 ∼ ∼ Ac 5 &E
7 (∃x) ∼ ∼ Ax 6 ∃I
8 ∼ (∀x) ∼ Ax 7 QN
9 ∼ ∼ (∃x)Ax 8 QN

10 ∼ Bc 5 &E
11 (∀x) ∼ Bx 10 ∀I
12 ∼ (∃x)Bx 11 QN
13 ∼ ∼ (∃x)Ax & ∼ (∃x)Bx 9, 12 &I
14 ∼ (∼ (∃x)Ax ∨ (∃x)Bx) 13 DeM
15 ∼ ((∃x)Ax ⊃ (∃x)Bx) 14 Impl
16 ∼ (∃x)(Ax ⊃ Bx) ⊃ ∼ ((∃x)Ax ⊃ (∃x)Bx) 1–15 ⊃I
17 ((∃x)Ax ⊃ (∃x)Bx) ⊃ (∃x)(Ax ⊃ Bx) 16 Trans

4. Equivalence

a. Derive: (∃x)(Ax & ∼ Bx)

1 ∼ (∀x)(Ax ⊃ Bx) Assumption

2 (∃x) ∼ (Ax ⊃ Bx) 1 QN
3 (∃x) ∼ (∼ Ax ∨ Bx) 2 Impl
4 (∃x)(∼ ∼ Ax & ∼ Bx) 3 DeM
5 (∃x)(Ax & ∼ Bx) 4 DN

Derive: ∼ (∀x)(Ax ⊃ Bx)

1 (∃x)(Ax & ∼ Bx) Assumption

2 (∃x)(∼ ∼ Ax & ∼ Bx) 1 DN
3 (∃x) ∼ (∼ Ax ∨ Bx) 2 DeM
4 (∃x) ∼ (Ax ⊃ Bx) 3 Impl
5 ∼ (∀x)(Ax ⊃ Bx) 4 QN

c. Derive: (∃x)[∼ Ax ∨ (∼ Cx ⊃ ∼ Bx)]

1 ∼ (∀x) ∼ [(Ax & Bx) ⊃ Cx] Assumption

2 (∃x) ∼ ∼ [(Ax & Bx) ⊃ Cx] 1 QN
3 (∃x)[(Ax & Bx) ⊃ Cx] 2 DN
4 (∃x)[Ax ⊃ (Bx ⊃ Cx)] 3 Exp
5 (∃x)[∼ Ax ∨ (Bx ⊃ Cx)] 4 Impl
6 (∃x)[∼ Ax ∨ (∼ Cx ⊃ ∼ Bx)] 5 Trans
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e. Derive: ∼ (∃x)[(∼ Ax ∨ ∼ Bx) & (Ax ∨ Bx)]

1 (∀x)(Ax � Bx) Assumption

2 ∼ ∼ (∀x)(Ax � Bx) 1 DN
3 ∼ (∃x) ∼ (Ax � Bx) 2 QN
4 ∼ (∃x) ∼ [(Ax & Bx) ∨ (∼ Ax & ∼ Bx)] 3 Equiv
5 ∼ (∃x)[∼ (Ax & Bx) & ∼ (∼ Ax & ∼ Bx)] 4 DeM
6 ∼ (∃x)[(∼ Ax ∨ ∼ Bx) & ∼ (∼ Ax & ∼ Bx)] 5 DeM
7 ∼ (∃x)[(∼ Ax ∨ ∼ Bx) & (∼ ∼ Ax ∨ ∼ ∼ Bx)] 6 DeM
8 ∼ (∃x)[(∼ Ax ∨ ∼ Bx) & (Ax ∨ ∼ ∼ Bx)] 7 DN
9 ∼ (∃x)[(∼ Ax ∨ ∼ Bx) & (Ax ∨ Bx)] 8 DN

Derive: ∼ (∀x) ∼ [(Ax & Bx) ⊃ Cx]

1 (∃x)[∼ Ax ∨ (∼ Cx ⊃ ∼ Bx)] Assumption

2 (∃x)[∼ Ax ∨ (Bx ⊃ Cx)] 1 Trans
3 (∃x)[Ax ⊃ (Bx ⊃ Cx)] 2 Impl
4 (∃x)[(Ax & Bx) ⊃ Cx] 3 Exp
5 ∼ ∼ (∃x)[(Ax & Bx) ⊃ Cx] 4 DN
6 ∼ (∀x) ∼ [(Ax & Bx) ⊃ Cx] 5 QN

Derive: (∀x)(Ax � Bx)

1 ∼ (∃x)[(∼ Ax ∨ ∼ Bx) & (Ax ∨ Bx)] Assumption

2 ∼ (∃x)[(∼ Ax ∨ ∼ Bx) & (Ax ∨ ∼ ∼ Bx)] 1 DN
3 ∼ (∃x)[(∼ Ax ∨ ∼ Bx) & (∼ ∼ Ax ∨ ∼ ∼ Bx)] 2 DN
4 ∼ (∃x)[(∼ Ax ∨ ∼ Bx) & ∼ (∼ Ax & ∼ Bx)] 3 DeM
5 ∼ (∃x)[∼ (Ax & Bx) & ∼ (∼ Ax & ∼ Bx)] 4 DeM
6 ∼ (∃x) ∼ [(Ax & Bx) ∨ (∼ Ax & ∼ Bx)] 5 DeM
7 ∼ (∃x) ∼ (Ax � Bx) 6 Equiv
8 ∼ ∼ (∀x)(Ax � Bx) 7 QN
9 (∀x)(Ax � Bx) 8 DN

5. Inconsistency

a.

1 [(∀x)(Mx � Jx) & ∼ Mc] & (∀x)Jx Assumption

2 (∀x)(Mx � Jx) & ∼ Mc 1 &E
3 (∀x)(Mx � Jx) 2 &E
4 Mc � Jc 3 ∀E
5 (Mc ⊃ Jc) & ( Jc ⊃ Mc) 4 Equiv
6 Jc ⊃ Mc 5 &E
7 ∼ Mc 2 &E
8 ∼ Jc 6, 7 MT
9 (∀x)Jx 1 &E

10 Jc 9 ∀E
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c.

1 (∀x)(∀y)Lxy ⊃ ∼ (∃z)Tz Assumption
2 (∀x)(∀y)Lxy ⊃ ((∃w)Cww ∨ (∃z)Tz) Assumption
3 (∼ (∀x)(∀y)Lxy ∨ (∀z)Bzzk) & Assumption

(∼ (∀z)Bzzk ∨ ∼ (∃w)Cww)
4 (∀x)(∀y)Lxy Assumption

5 ∼ (∃z)Tz 1, 4 ⊃E
6 (∃w)Cww ∨ (∃z)Tz 2, 4 ⊃E
7 (∃w)Cww 5, 6 DS
8 ∼ (∀x)(∀y)Lxy ∨ (∀z)Bzzk 3 &E
9 (∀x)(∀y)Lxy ⊃ (∀z)Bzzk 8 Impl

10 (∀z)Bzzk 4, 9 ⊃E
11 ∼ (∀z)Bzzk ∨ ∼ (∃w)Cww 3 &E
12 (∀z)Bzzk ⊃ ∼ (∃w)Cww 11 Impl
13 ∼ (∃w)Cww 10, 12 ⊃E

e.

1 (∀x)(∀y)(Gxy ⊃ Hc) Assumption
2 (∃x)Gix & (∀x)(∀y)(∀z)Lxyz Assumption
3 ∼ Lcib ∨ ∼ (Hc ∨ Hc) Assumption

4 (∃x)Gix 2 &E
5 Gik Assumption

6 (∀y)(Giy ⊃ Hc) 1 ∀E
7 Gik ⊃ Hc 6 ∀E
8 Hc 5, 7 ⊃E
9 Hc 4, 5–8 ∃E

10 (∀x)(∀y)(∀z)Lxyz 2 &E
11 (∀y)(∀z)Lcyz 10 ∀E
12 (∀z)Lciz 11 ∀E
13 Lcib 12 ∀E
14 ∼ ∼ Lcib 13 DN
15 ∼ (Hc ∨ Hc) 3, 14 DS
16 ∼ Hc 15 Idem

6. a. Suppose there is a sentence on an accessible line i of a deriva-
tion to which Universal Elimination can be properly applied at line n. The sen-
tence that would be derived by Universal Elimination can also be derived by
using the routine beginning at line n:

i (∀x)P

n ∼ P(a/x) Assumption

n � 1 (∃x) ∼ P n ∃I
n � 2 ∼ (∀x)P n � 1 QN
n � 3 (∀x)P i R
n � 4 P(a/x) n � n � 3 ∼ E



Suppose there is a sentence on an accessible line i of a derivation to which
Universal Introduction can be properly applied at line n. The sentence that
would be derived by Universal Introduction can also be derived by using the
routine beginning at line n:

i P(a/x)

n ∼ (∀x)P Assumption

n � 1 (∃x) ∼ P n QN
n � 2 ∼ P(a/x) Assumption

n � 3 ∼ (∀x)P Assumption

n � 4 P(a/x) i R
n � 5 ∼ P(a/x) n � 2 R
n � 6 (∀x)P n � 3 � n � 5 ∼ E
n � 7 (∀x)P n � 1, n � 2 � n � 6 ∃E
n � 8 ∼ (∀x)P n R
n � 9 (∀x)P n � n � 8 ∼ E

No restriction on the use of Existential Elimination was violated at line n � 7.
We assumed that we could have applied Universal Introduction at line n to
P(a/x) on line i. So a does not occur in any undischarged assumption prior
to line n, and a does not occur in (∀x)P. So a does not occur in P. Hence

(i) a does not occur in any undischarged assumption prior to n � 7.
Note that the assumptions on lines n � 2 and n � 3 have been discharged and
that a cannot occur in the assumption on line n, for a does not occur in P.

(ii) a does not occur in (∃x) ~ P, for a does not occur in P.
(iii) a does not occur in (∀x)P, for a does not occur in P.
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1.a. Derive: a � b ⊃ b � a

1 a � b Assumption

2 a � a 1, 1 �E
3 b � a 1, 2 �E
4 a � b ⊃ b � a 1–3 ⊃I

Section 10.6E

c. Derive: (∼ a � b & b � c) ⊃ ∼ a � c

1 ∼ a � b & b � c Assumption

2 ∼ a � b 1 &E
3 b � c 1 &E
4 ∼ a � c 2, 3 �E
5 (∼ a � b & b � c) ⊃ ∼ a � c) 1–4 ⊃I
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e. Derive: ∼ a � c ⊃ (∼ a � b ∨ ∼ b � c)

1 ∼ a � c Assumption

2 ∼ (∼ a � b ∨ ∼ b � c) Assumption

3 ∼ a � b Assumption

4 ∼ a � b ∨ ∼ b � c 3 ∨I
5 ∼ (∼ a � b ∨ ∼ b � c) 3 R
6 a � b 3–5 ∼ E
7 ∼ b � c 1, 6 �E
8 ∼ a � b ∨ ∼ b � c 7 ∨I
9 ∼ (∼ a � b ∨ ∼ b � c) 2 R

10 ∼ a � b ∨ ∼ b � c 2–9 ∼ E
11 ∼ a � c ⊃ (∼ a � b ∨ ∼ b � c) 1–10 ⊃I

2.a. Derive: ∼ (∀x)Bxx

1 a � b & ∼ Bab Assumption

2 ∼ Bab 1 &E
3 a � b 1 &E
4 (∀x)Bxx Assumption

5 Baa 4 ∀E
6 ∼ Baa 2, 3 �E
7 ∼ (∀x)Bxx 4–6 ∼ I

c. Derive: Hii

1 (∀z)[Gz ⊃ (∀y)(Ky ⊃ Hzy)] Assumption
2 (Ki & Gj) & i � j Assumption

3 Gj ⊃ (∀y)(Ky ⊃ Hjy) 1 ∀E
4 Ki & Gj 2 &E
5 Gj 4 &E
6 (∀y)(Ky ⊃ Hjy) 3, 5 ⊃E
7 Ki ⊃ Hji 7 ∀E
8 Ki 4 &E
9 Hji 7, 8 ⊃E

10 i � j 2 &E
11 Hii 9, 10 �E
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e. Derive: Ka ∨ ∼ Kb

1 a � b Assumption

2 ∼ (Ka ∨ ∼ Ka) Assumption

3 Ka Assumption

4 Ka ∨ ∼ Ka 3 ∨I
5 ∼ (Ka ∨ ∼ Ka) 2 R
6 ∼ Ka 3–5 ∼ I
7 Ka ∨ ∼ Ka 6 ∨I
8 ∼ (Ka ∨ ∼ Ka) 2 R
9 Ka ∨ ∼ Ka 2–8 ∼ E

10 Ka ∨ ∼ Kb 1, 9 �E

3.a. Derive: (∀x)(x � x ∨ ∼ x � x)

1 (∀x)x � x �I
2 a � a 1 ∀E
3 a � a ∨ ∼ a � a 2 ∨I
4 (∀x)(x � x ∨ ∼ x � x) 3 ∀I

c. Derive: (∀x)(∀y)(x � y � y � x)

1 a � b Assumption

2 a � a 1, 1 �E
3 b � a 1, 2 �E

4 b � a Assumption

5 b � b 4, 4 �E
6 a � b 4, 5 �E
7 a � b � b � a 1–3, 4–6 �I
8 (∀y)(a � y � y � a) 7 ∀I
9 (∀x)(∀y)(x � y � y � x) 8 ∀I

e. Derive: ∼ (∃x) ∼ x � x

1 (∃x) ∼ x � x Assumption

2 ∼ a � a Assumption

3 (∃x) ∼ x � x Assumption

4 (∀x)x � x �I
5 a � a 4 ∀E
6 ∼ a � a 2 R
7 ∼ (∃x) ∼ x � x 3–6, ∼ I
8 ∼ (∃x) ∼ x � x 1, 2–7 ∃E
9 (∃x) ∼ x � x 1 R

10 ∼ (∃x) ∼ x � x 1–9 ∼ I
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4.a. Derive: (∃x)(∃y)[(Ex & Ey) & ∼ x � y]

1 ∼ t � f Assumption
2 Et & Ef Assumption

3 (Et & Ef) & ∼ t � f 1, 2 &I
4 (∃y)[(Et & Ey) & ∼ t � y] 3 ∃I
5 (∃x)(∃y)[(Ex & Ey) & ∼ x � y] 4 ∃I

c. Derive: ∼ s � b

1 ∼ Ass & Aqb Assumption
2 (∀x)[(∃y)Ayx ⊃ Abx] Assumption

3 s � b Assumption

4 (∃y)Ayb ⊃ Abb 2 ∀E
5 Aqb 1 &E
6 (∃y)Ayb 5 ∃I
7 Abb 4, 6 ⊃E
8 ∼ Ass 1 &E
9 ∼ Abb 3, 8 �E

10 ∼ s � b 3–9 ∼ I

e. Derive: (∃x)[(Rxe & Pxa) & (∼ x � e & ∼ x � a)]

1 (∃x)(Rxe & Pxa) Assumption
2 ∼ Ree Assumption
3 ∼ Paa Assumption

4 Rie & Pia Assumption

5 i � e Assumption

6 Rie 4 &E
7 Ree 5, 6 �E
8 ∼ Ree 2 R
9 ∼ i � e 5–8 ∼ I

10 i � a Assumption

11 Pia 4 &E
12 Paa 10, 11 �E
13 ∼ Paa 3 R
14 ∼ i � a 10–13 ∼ I
15 ∼ i � e & ∼ i � a 9, 14 &I
16 (Rie & Pia) & (∼ i � e & ∼ i � a) 4, 15 &I
17 (∃x)[(Rxe & Pxa) & (∼ x � e & ∼ x � a)] 16 ∃I
18 (∃x)[(Rxe & Pxa) & (∼ x � e & ∼ x � a)] 1, 4–17 ∃E
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5.a. 1 (∃x)Sx Assumption

2 Sg(f) Assumption

3 (∃x)Sg(x) 2 ∃I
4 (∃x)Sg(x) 1, 2–3 ∃E

Line 2 is a mistake as an instantiating individual constant must be used, not a
closed complex term.

c. Correctly done.

e. 1 (∀x)Lxxx Assumption

2 Lf(a,a)a 1 ∀E
3 (∀x)Lf(x,x)x 2 ∀I

Line 2 is a mistake. Universal Elimination does not permit using both a closed
complex term and at the same time an individual constant in the substitution
instance, not to mention that all three occurrences of the variable ‘x’ must be
replaced.

g. 1 (∀x)Rf(x,x) Assumption

2 Rf(c,c) 1 ∀E
3 (∀y)Ry 2 ∀I

Line 3 is a mistake. Universal Introduction cannot be applied using a closed
complex term.

i. Correctly done.

6. Theorems in PDE:

a. Derive: (∀x)(∃y)f(x) � y

1 (∀x)x � x �I
2 f(a) � f(a) 1 ∀E
3 (∃y)f(a) � y 2 ∃I
4 (∀x)(∃y)f(x) � y 3 ∀I

c. Derive:(∀x)Ff(x) ⊃ (∀x)Ff(g(x))

1 (∀x)Ff(x) Assumption

2 Ff(g(a)) 1 ∀E
3 (∀x)Ff(g(x)) 2 ∀I
4 (∀x)Ff(x) ⊃ (∀x)Ff(g(x)) 1–3 ⊃I
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g. Derive: (∀x)(∀y)[( f(x) � y & f(y) � x) ⊃ x � f( f(x))]

1 f(a) � b & f(b) � a Assumption

2 f(b) � a 1 &E
3 f(b) � f(b) 2, 2 �E
4 a � f(b) 2, 3 �E
5 f(a) � b 1 &E
6 a � f( f(a)) 4, 5 �E
7 ( f(a) � b & f(b) � a) ⊃ a � f( f(a)) 1–6 ⊃ I
8 (∀y)[( f(a) � y & f(y) � a) ⊃ a � f( f(a))] 7 ∀I
9 (∀x)(∀y)[( f(x) � y & f(y) � x) ⊃ x � f( f(x))] 8 ∀I

7. Validity in PDE:

a. Derive: (∀x)Gf(x)f( f(x))

1 (∀x)(Bx ⊃ Gxf(x)) Assumption
2 (∀x)Bf(x) Assumption

3 Bf(a) ⊃ Gf(a)f( f(a)) 1 ∀E
4 Bf(a) 2 ∀I
5 Gf(a)f( f(a)) 3, 4 ⊃E
6 (∀x)Gf(x)f( f(x)) 5 ∀I

c. Derive: ∼ f(a) � b

1 (∀x)(∀y)( f(x) � y ⊃ Myxc) Assumption
2 ∼ Mbac & ∼ Mabc Assumption

3 (∀y)( f(a) � y ⊃ Myac) 1 ∀E
4 f(a) � b ⊃ Mbac 3 ∀E
5 f(a) � b Assumption

6 Mbac 4, 5 ⊃E
7 ∼ Mbac 2 &E
8 ∼ f(a) � b 5–7 ∼ I

e. Derive: (∀x)( f( f(x)) � x ⊃ f( f( f( f(x)))) � x)

1 f( f(a)) � a Assumption

2 f( f(f(f(a)))) � a 1, 1 �E
3 f( f(a)) � a ⊃ f( f( f( f(a)))) � a 1–2 ⊃I
4 (∀x)( f( f(x)) � x ⊃ f( f( f( f(x)))) � x) 3 ∀I
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e. Derive: (∃x)Lxf(x)g(x)

1 (∃x)(∀y)(∀z)Lxyz Assumption

2 (∀y)(∀z)Layz Assumption

3 (∀z)La f(a)z 2 ∀E
4 Laf(a)g(a) 3 ∀E
5 (∃x)Lxf(x)g(x) 4 ∃I
6 (∃x)Lx f(x)g(x) 1, 2–5 ∃E

g. Derive: (∀x)Df(x)f(x)

1 (∀x)[Zx ⊃ (∀y)(∼ Dxy � Hf( f(y)))] Assumption
2 (∀x)(Zx & ∼ Hx) Assumption

3 Zf(a) ⊃ (∀y)(∼Df(a)y � Hf( f(y))) 1 ∀E
4 Zf(a) & ∼ Hf(a) 2 ∀E
5 Zf(a) 4 &E
6 (∀y)(∼ Df(a)y � Hf( f(y))) 3, 5 ⊃E
7 ∼ Df(a)f(a) � Hf( f( f(a))) 6 ∀E
8 ∼Df(a)f(a) Assumption

9 Hf( f( f(a))) 7, 8 �E
10 Zf( f( f(a))) & ∼ Hf( f( f(a))) 2 ∀E
11 ∼ Hf( f( f(a))) 10 &E
12 Df(a)f(a) 8–11 ∼ E
13 (∀x)Df(x)f(x) 12 ∀I
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CHAPTER ELEVEN

Section 11.1E

5. Let Γ ∪ {(∃x)P} be a quantificationally consistent set of sentences,
none of which contains the constant a. Then there is some interpretation I on
which every member of Γ ∪ {(∃x)P} is true. Because (∃x)P is true on I, we
know that for any variable assignment d, there is a member u of the UD such
that d[u�x] satisfies P on I. Let I� be the interpretation that is just like I except
that I�(a) � u. Because a does not occur in Γ ∪ {(∃x)P}, it follows from 11.1.7
that every member of Γ ∪ {(∃x)P} is true on I�.

On our assumption that d[u�x] satisfies P on I, it follows from 11.1.6
that d[u�x] satisfies P on I�. By the way that we have constructed I�, u is I�(a),
and so d[u�x] is d[I�(a)�x]. From result 11.1.1, we therefore know that d
satisfies P(a�x) on I�. By 11.1.3, then, every variable assignment on I� satisfies
P(a�x), and so it is true on I�.

Every member of Γ ∪ {(∃x)P, P(a�x)} being true on I�, we conclude
that the extended set is quantificationally consistent.

6. Assume that I is an interpretation on which each member of the
UD is assigned to at least one individual constant and that every substitution
instance of (∀x)P is true on I. Now (∀x)P is true on I if every variable assign-
ment satisfies (∀x)P and, by 11.1.3, if some variable assignment d satisfies
(∀x)P. The latter is the case if for every member u of the UD, d[u�x] satis-
fies P. Consider an arbitrary member u of the UD. By our assumption, u � I(a)
for some individual constant a. Also by assumption, P(a�x) is true on I—so d
satisfies P(a�x). By 11.1.1, then, d[I(a)/x], which is d[u�x], satisfies P. We con-
clude that for every member u of the UD, d[u�x] satisfies P, that d therefore
satisfies (∀x)P, and that (∀x)P is true on I.

Section 11.2E

4. To prove 11.2.5, we will make use of the following:

11.2.6. Let t1 and t2 be closed terms such that denI,d(t1) � denI,d(t2),
and let t be a term that contains t1. Then for any variable assignment
d, and any term t(t2��t1) that results from replacing one or more occur-
rences of t1 in t with t2, denI,d(t(t2��t1)) � denI,d(t).

Proof. If t1 is t, then t(t2��t1) must be t2, and by assumption
denI,d(t1) � denI,d(t2).

For the case where t contains but is not identical to t1, we shall
prove 11.2.6 by mathematical induction on the number of functors
that occur in t—since t must be a complex term in this case.
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Basis clause: If t contains one functor, then for any variable assignment
d, and any term t(t2��t1) that results from replacing one or more
occurrences of t1 in t with t2, denI,d(t(t2��t1)) � denI,d(t).

Proof of basis clause: t has the form f (t1�, . . . , tn� ), where each t�i
is a variable or constant. In this case, one or more of the ti’s must
be t1 and has been replaced by t2 to form f (t1�, . . . , tn� )(t2��t1)
and the remaining t i’s are unchanged. In the former cases, by
assumption we have denI,d(t1) � denI,d(t2). So the denotations of
the arguments at the corresponding positions in f (t1�, . . . , t n� ) and
f (t1�, . . . , tn� )(t2��t1) are identical, and therefore denI,d( f (t1�, . . . , tn� )) �
denI,d ( f (t1�, . . . , tn� )(t2��t1)).

Inductive step: If 11.2.6 holds for every term t that contains k or fewer
functors, then it also holds for every term t that contains k � 1
functors.

Proof of inductive step: Assume the inductive hypothesis for an arbi-
trary integer k. We must show that 11.2.6 holds for every term t that
contains k � 1 functors. In this case, t has the form f (t1�, . . . , tn� ),
where each t�i contains k or fewer functors and one or more of the t i’s
that is identical to or contains t1 has had one or more occurrences of
t1 replaced by t2 to form f (t1�, . . . , tn� )(t2��t1) and the remaining t i’s
are unchanged. In the former cases, it follows form the inductive
hypothesis that the denotations of the arguments at the corresponding
positions in f (t1�, . . . , tn� ) and f (t1�, . . . , tn� )(t2��t1) are identical, and
therefore denI,d( f (t1�, . . . , tn� )) � denI,d ( f (t1�, . . . , tn� )(t2��t1)).

We can now use 11.2.6 in the

Proof of 11.2.5: We shall prove only the first half of 11.2.5, since the sec-
ond half is proved in the same way with minor modifications. Let t1 and
t2 be closed terms and let P be a sentence that contains t1. If {t1 � t2, P}
is quantificationally inconsistent then trivially {t1 � t2, P} P(t2��t1).

If {t1 � t2, P} is quantificationally consistent, then let I be an
interpretation on which both t1 � t2 and P are true and hence satis-
fied by every satisfaction assignment d. We will show by mathematical
induction on the number of occurrences of logical operators in a for-
mula P that if t1 � t2 is satisfied by a satisfaction assignment d on an
interpretation I, then P is satisfied by d if and only if P(t2��t1) is sat-
isfied by d.

Basis clause: If P contains zero occurrences of logical operators and
t1 � t2 is satisfied by a satisfaction assignment d on an interpretation
I then P is satisfied by d if and only if P(t2��t1) is satisfied by d on I.

Proof of basis clause: Since P contains t1, P must be either a formula
of the form At1� . . . t n� or a formula of the form t1 � t2.

|=



If P has the form At1� . . . t n� then P(t2��t1) is At1� . . . t n�, where
each t i� is either t i� or the result of replacing t1 in ti� with t2. In the former
case, denI,d(ti�) � denI,d(ti�) since t i� is t i�. In the latter case, denI,d(t i�) �
denI,d(t i�) by 11.2.6. So 	denI,d(t1�), denI,d(t2�), . . . , denI,d(tn� )

� 	denI,d(t1�), denI,d(t2�), . . . , denI,d(tn�)
 and so 	denI,d(t1�),
denI,d(t2�), . . . , denI,d(tn� )
 is a member of I(A) if and only if
	denI,d(t1�), denI,d(t2�), . . . , denI,d(tn�)
 is a member of I(A).
Consequently, d satisfies At1� . . . tn� if and only if d satisfies At1� . . . tn�.

If P has the form t1� � t2� then P(t2��t1) is t1� � t2�, where each
t i� is either t i� or the result of replacing t1 in t i� with t2. In the former
case, denI,d(ti�) � denI,d(ti�) since ti� is ti�. In the latter case, denI,d(ti�) �
denI,d(ti�) by 11.2.6. It follows that denI,d(t1�) � denI,d(t2�) if and only if
denI,d(t1�) � denI,d(t2�). Since d satisfies t1� � t2� if and only if denI,d(t1�) �
denI,d(t2�) and d satisfies t1� � t2� if and only if denI,d(t1�) � denI,d(t2�), it
follows that d satisfies t1� � t2� if and only if it satisfies t1� � t2�.

Inductive step: If 11.2.5 is true of every formula P that contains k or
fewer occurrences of logical operators then 11.2.5 is also true of every
formula P that contains k � 1 occurrences of logical operators.

Proof of inductive step: Assume that the inductive hypothesis holds
for an arbitrary integer k. Let P be a formula that contains k � 1 log-
ical operators. We must show that if t1 � t2 is satisfied by a satisfaction
assignment d on an interpretation I then P is satisfied by d if and only
if P(t2��t1) is also satisfied by d. We shall show this by considering each
form that P might have.

Case 1. P is a formula of the form ∼ Q. Then P is satisfied by
d if and only if Q is not satisfied by d. Since Q contains k logical oper-
ators, it follows by the inductive hypothesis that Q is not satisfied by
d if and only if Q(t2��t1) is not satisfied by d, and this is the case if
and only if ∼ Q(t2��t1), which is P(t2��t1), is satisfied by d.

Cases 2–5. P has one of the forms (Q & R), (Q ∨ R), (Q ⊃ R),
or (Q � R). Similar to case 1.

Case 6. P has the form (∀x)Q. Then P is satisfied by d if and
only if every variable assignment d� that is like d except possibly in the
value assigned to x satisfies Q. Since t1 and t2 are closed terms, every
such variable assignment d� will satisfy t1 � t2 since denI,d(t1) �
denI,d�(t1) and denI,d(t2) � denI,d�(t2) by 11.2.2. Because Q contains
k occurrences of logical operators, it follows by the inductive hypoth-
esis that every such variable assignment d� will satisfy Q if and only if
it also satisfies Q(t2��t1), and every such variable assignment d� will
satisfy Q(t2��t1) if and only if d satisfies (∀x)Q(t2��t1), which is
P(t2��t1) (t1, being a closed term, is not the variable x).

Case 7. P has the form (∃x)Q. Similar to case 6.
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Section 11.3E

1.a. Assume that an argument of PL is valid in PD. Then the conclusion
is derivable in PD from the set consisting of the premises. By Metatheorem
11.3.1, it follows that the conclusion is quantificationally entailed by the set
consisting of the premises. Therefore the argument is quantificationally valid.

b. Assume that a sentence P is a theorem in PD. Then ∅ P. So 
∅ P, by Metatheorem 11.3.1, and P is quantificationally true.

2. Our induction will be on the number of occurrences of logical oper-
ators in P, for we must now take into account the quantifiers as well as the
truth-functional connectives.
Basis clause: Thesis 11.3.4 holds for every atomic formula of PL.

Proof: Assume that P is an atomic formula and that Q is a subformula
of P. Then P and Q are identical. For any formula Q1, then,
[P](Q1��Q) is simply Q1. It is trivial that the thesis holds in this case.

Inductive step: Let P be a formula with k � 1 occurrences of logical operators, let
Q be a subformula of P, and let Q1 be a formula related to Q as stipulated.
Assume (the inductive hypothesis) that 11.3.4 holds for every formula with k or
fewer occurrences of logical operators. We now establish that 11.3.4 holds for P
as well. Suppose first that Q and P are identical. In this case, that 11.3.4 holds
for P and [P](Q1��Q) is established as in the proof of the basis clause. So assume
that Q is a subformula of P that is not identical with P (in which case we say that
Q is a proper subformula of P). We consider each form that P may have.

(i) P is of the form ∼ R. Since Q is a proper subformula of P, Q is a
subformula of R. Therefore [P](Q1��Q) is ∼ [R](Q1��Q). Since R has fewer
than k � 1 occurrences of logical operators, it follows from the inductive hypoth-
esis that, on any interpretation, a variable assignment satisfies R if and only if it
satisfies [R](Q1��Q). Since an assignment satisfies a formula if and only if it
fails to satisfy the negation of the formula, it follows that on any interpretation
a variable assignment satisfies ∼ R if and only if it satisfies ∼ [R](Q1��Q).

(ii)–(v) P is of the form R & S, R ∨ S, R ⊃ S, or R � S. These cases
are handled similarly to case (ii) in the inductive proof of Lemma 6.1 (in
Chapter 6), with obvious adjustments as in case (i).

(vi) P is of the form (∀x)R. Since Q is a proper subformula of P, Q
is a subformula of R. Therefore [P](Q1��Q) is (∀x)[R](Q1��Q). Since R has
fewer than k � 1 occurrences of logical operators, it follows, by the inductive
hypothesis, that on any interpretation a variable assignment satisfies R if and
only if that assignment satisfies [R](Q1��Q). Now (∀x)R is satisfied by a vari-
able assignment d if and only if for each member u of the UD, d[u�x] satisfies
R. The latter is the case just in case [R](Q1��Q) is satisfied by every variant
d[u�x]. And this is the case if and only if (∀x)[R](Q1��Q) is satisfied by d.
Therefore on any interpretation (∀x)[R is satisfied by a variable assignment if
and only if (∀x)[R](Q1��Q) is satisfied by that assignment.

(vii) P is of the form (∃x)R. This case is similar to case (vi).

|=
�



3. Qk�1 is justified at position k � 1 by Quantifier Negation. Then
Qk�1 is derived as follows:

h S
k � 1 Qk�1 h QN

where some component R of S has been replaced by a component R1 to obtain
Qk�1 and the four forms that R and R1 may have are

R is R1 is
∼ (∀x)P (∃x) ∼ P
(∃x) ∼ P ∼ (∀x)P
∼ (∃x)P (∀x) ∼ P
(∀x) ∼ P ∼ (∃x)P

Whichever pair R and R1 constitute, the two sentences contain exactly the
same nonlogical constants. We first establish that on any interpretation vari-
able assignment d satisfies R if and only if d satisfies R1.

(i) Either R is ∼ (∀x)P and R1 is (∃x) ∼ P, or R is (∃x) ∼ P and R1

is ∼ (∀x) P. Assume that a variable assignment d satisfies ∼ (∀x)P. Then d
does not satisfy (∀x)P. There is then at least one variant d[u�x] that does not
satisfy P. Hence d[u�x] satisfies ∼ P. It follows that d[u�x] satisfies (∃x) ∼ P.
Now assume that a variable assignment d satisfies (∃x) ∼ P. Then some vari-
ant d[u�x] satisfies ∼ P. This variant does not satisfy P. Therefore d does not
satisfy (∀x)P and does satisfy ∼ (∀x)P.

(ii) Either R is ∼ (∃x)P and R1 is (∀x) ∼ P, or R is (∀x) ∼ P and R1

is ∼ (∃x)P. This case is similar to case (i).
R and R1 contain the same nonlogical symbols and variables, so it fol-

lows, by 11.3.4 (Exercise 2), that S is satisfied by a variable assignment if and
only if Qk�1 is satisfied by that assignment. So on any interpretation S and
Qk�1 have the same truth-value.

By the inductive hypothesis, Γk S. But Γk is a subset of Γk�1, and so
Γk�1 S, by 11.3.2. Since S and Qk�1 have the same truth-value on any inter-
pretation, it follows that Γk�1 Qk�1.

Section 11.4E

2. Assume that Γ ∪ {∼ P} is inconsistent in PD. Then there is a deri-
vation of the following sort, where Q1, . . . , Qn are members of Γ:

1 Q1 Assumption
. .

n Qn Assumption
n � 1 ∼ P Assumption

. .
m S

. .
p ∼ S

|=
|=

|=
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We construct a new derivation as follows:

1 Q1 Assumption
. .

n Qn Assumption

n � 1 ∼ P Assumption

. .
m S

. .
p ∼ S

p � 1 P n � 1 � p ∼ E

where lines 1 to p are as in the original derivation, except that ∼ P is now an
auxiliary assumption. This shows that Γ P.

3.a. Assume that an argument of PL is quantificationally valid. Then the
set consisting of the premises quantificationally entails the conclusion. By
Metatheorem 11.4.1, the conclusion is derivable from that set in PD. There-
fore the argument is valid in PD.

b. Assume that a sentence P is quantificationally true. Then ∅ P. By
Metatheorem 11.4.1, ∅ P. So P is a theorem in PD.

4. We shall associate with each symbol of PL a numeral as follows. With
each symbol of PL that is a symbol of SL, associate the two-digit numeral that
is associated with that symbol in the enumeration of Section 6.4. With the sym-
bol � (the prime) associate the numeral ‘66’. With the nonsubscripted lower-
case letters ‘a’, ‘b’, . . . , ‘z’, associate the numerals ‘67’, ‘68’, . . . , ‘92’,
respectively. With the symbols ‘∀’ and ‘∃’ associate the numerals ‘93’ and ‘94’,
respectively. (Note that the numerals ‘66’ to ‘94’ are not associated with any
symbol of SL.) We then associate with each sentence of PL the numeral that
consists of the associated numerals of each of the symbols that occur in the
sentence, in the order in which the symbols occur. We now enumerate the sen-
tences of PL by letting the first sentence be the sentence whose numeral
designates a number that is smaller than the number designated by any other
sentence’s associated numeral; the second sentence is the sentence whose
numeral designates the next largest number designated by the associated
numeral of any sentence; and so on.

5. Assume that Γ P. Then there is a derivation

1 Q1

. .
n Qn

. .

m P

where Q1, . . . , Qn are all members of Γ. The primary assumptions are all
members of any superset Γ� of Γ, and so Γ� P as well.��

�

|=
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6.a. Assume that a does not occur in any member of the set Γ ∪ {(∃x)P}
and that the set is consistent in PD. Assume, contrary to what we want to prove,
that Γ ∪ {(∃x)P, P(a�x)} is inconsistent in PD. Then there is a derivation of
the sort

1 Q1

. .
n Qn

n � 1 (∃x)P
n � 2 P(a�x)

m R
. .

p ∼ R

where Q1, . . . , Qn are all members of Γ. We may convert this into a deriva-
tion showing that Γ ∪ {(∃x)P} is inconsistent in PD, contradicting our initial
assumption:

1 Q1

. .
n Qn

n � 1 (∃x)P

n � 2 P(a�x)

n � 3 (∃x)P

. .
m � 1 R

. .
p � 1 ∼ R
p � 2 ∼ (∃x)P n � 3 � p � 1 ∼ I
p � 3 ∼ (∃x)P n � 2 � p � 2 ∃E
p � 4 (∃x)P n � 1 R

(Note that use of ∃E is legitimate at line p � 3 because a, by our initial hypoth-
esis, does not occur in (∃x)P or in any member of Γ.)

We conclude that if the set Γ ∪ {(∃x)P} is consistent in PD and a does
not occur in any member of that set, then Γ ∪ {(∃x)P(a�x)} is also consistent
in PD.

b. Let Γ* be constructed as in our proof of Lemma 11.4.4. Assume
that (∃x)P is a member of Γ* and that (∃x)P is the ith sentence in our enu-
meration of the sentences of PL. Then, by the way each member of the infinite
sequence Γ1, Γ2, Γ3, . . . is constructed, Γi�1 contains (∃x)P and a substitu-
tion instance of (∃x)P if Γi ∪ {(∃x)P} is consistent in PD. Since each member
of the infinite sequence is consistent in PD, Γi is consistent to PD. So assume
that Γi ∪ {(∃x)P} is inconsistent in PD. Then, since we assumed that Pi, that
is, (∃x)P, is a member of Γ* and since every member of Γi is a member of Γ*,
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it follows that Γ* is inconsistent in PD. But this contradicts our original assump-
tion, and so Γi ∪ {(∃x)P} is consistent in PD. Hence Γi�1 is Γi ∪ {(∃x)P, P(a/x)}
for some constant a, and so some substitution instance of (∃x)P is a member
of Γi�1 and thus of Γ*.

7. We shall prove that the sentence at each position i in the new
derivation can be justified by the same rule that was used at position i in the
original derivation.

Basis clause: Let i � 1. The sentence at position 1 of the original derivation is
an assumption, and so the sentence at position 1 of the new sequence can be
justified similarly.

Inductive step: Assume (the inductive hypothesis) that at every position i prior
to position k � 1, the new sequence contains a sentence that may be justified
by the rule justifying the sentence at position i of the original derivation. We
now prove that the sentence at position k � 1 of the new sequence can be jus-
tified by the rule justifying the sentence at position k � 1 of the original der-
ivation. We shall consider the rules by which the sentence at position k � 1
of the original derivation could have been justified:

1. P is justified at position k � 1 by Assumption. Obviously, P* can be
justified by Assumption at position k � 1 of the new sequence.

2. P is justified at position k � 1 by Reiteration. Then P occurs at an
accessible earlier position in the original derivation. Therefore P* occurs at an
accessible earlier position in the new sequence, so P* can be justified at posi-
tion k � 1 by Reiteration.

3. P is a conjunction Q & R justified at position k � 1 by Conjunc-
tion Introduction. Then the conjuncts Q and R of P occur at accessible ear-
lier positions in the original derivation. Therefore Q* and R* occur at acces-
sible earlier positions in the new sequence. So P*, which is just Q* & R*, can
be justified at position k � 1 by Conjunction Introduction.

4–12. P is justified by one of the other truth-functional connective
introduction or elimination rules. These cases are as straightforward as case 3,
so we move on to the quantifier rules.

13. P is a sentence Q(a�x) justified at position k � 1 by ∀E, appeal-
ing to an accessible earlier position with (∀x)Q. Then (∀x)Q* occurs at the
accessible earlier position of the new sequence, and Q(a�x)* occurs at posi-
tion k � 1. But Q(a�x)* is just a substitution instance of (∀x)Q*. So Q(a�x)*
can be justified at position k � 1 by ∀E.

14. P is a sentence (∃x)Q and is justified at position k � 1 by ∃I. This
case is similar to case 13.

15. P is a sentence (∀x)Q and is justified at position k � 1 by ∀I. Then
some substitution instance occurs at an accessible earlier position j, where a is



a constant that does not occur in any undischarged assumption prior to posi-
tion k � 1 or in (∀x)Q. Q(a�x)* and (∀x)Q* occur at positions j and k � 1
of the new sequence. Q(a�x)* is a substitution instance of (∀x)Q*. The instan-
tiating constant a in Q(a�x) is some ai, and so the instantiating constant in
Q(a�x)* is bi. Since ai did not occur in any undischarged assumption before
position k � 1 or in (∀x)Q in the original derivation and bi does not occur in
the original derivation, bi does not occur in any undischarged assumption prior
to position k � 1 of the new sequence or in (∀x)Q*. So (∀x)Q* can be justi-
fied by ∀I at position k � 1 in the new sequence.

16. P is justified at position k � 1 by ∃E. This case is similar to case 15.

Since every sentence in the new sequence can be justified by a rule of PD, it
follows that the new sequence is indeed a derivation of PD.

10. We required that Γ* be ∃-complete so that we could construct an
interpretation I* for which we could prove that every member of Γ* is true on
I*. In requiring that Γ be ∃-complete in addition to being maximally consis-
tent in PD, we were guaranteed that Γ* had property g of sets that are both
maximally consistent in PD and ∃-complete; and we used this fact in case 7 of
the proof that every member of Γ* is true on I*.

11. To prove that PD* is complete for predicate logic, it will suffice to
show that with ∀E* instead of ∀E, every set Γ* of PD* that is both maximally
consistent in PD* and ∃-complete has property f (i.e., (∀x)P ∈ Γ* if and only
if for every constant a, P(a�x) ∈ Γ*). For the properties a to e and g can be
shown to characterize such sets by appealing to the rules of PD* that are rules
of PD. Here is our proof:

Proof: Assume that (∀x)P ∈ Γ*. Then, since {(∀x)P} ∼ (∃x) ∼ P by
∀E*, it follows from 11.3.3 that ∼ (∃x) ∼ P ∈ Γ*. Then (∃x) ∼ P ∉ Γ*,
by a. Assume that for some substitution instance P(a�x) of (∀x)P,
P(a�x) ∉ Γ*. Then, by a, ∼ P(a�x) ∈ Γ*. Since {∼ P(a�x)} (∃x) ∼ P
(without use of ∀E), it follows that (∃x) ∼ P ∈ Γ*. But we have just
shown that (∃x) ∼ P ∉ Γ*. Hence, if (∀x)P ∈ Γ*, then every substi-
tution instance P(a�x) of (∀x)P is a member of Γ*.

Now assume that (∀x)P ∉ Γ*. Then, by a, ∼ (∀x)P ∈ Γ*. But
then, since {∼ (∀x)P} (∃x) ∼ P (without use of ∀E), it follows that
(∃x) ∼ P ∈ Γ*. Since Γ* is ∃-complete, some substitution instance 
∼ P(a�x) of (∃x) ∼ P is a member of Γ*. By a, P(a�x) ∉ Γ*.

13. Assume that some sentence P is not quantificationally false. Then P
is true on at least one interpretation, so {P} is quantificationally consistent. Now
suppose that {P} is inconsistent in PD. Then some sentences Q and ∼ Q are
derivable from {P} in PD. By Metatheorem 11.3.1, it follows that {P} Q and 
{P} ∼ Q. But then P cannot be true on any interpretation, contrary to our|=

|=
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assumption. So {P} is consistent in PD. By 11.4.3 and 11.4.4 {Pe}—the set result-
ing from doubling the subscript of every individual constant in P—is a subset
of a set Γ* that is both maximally consistent in PD and ∃-complete. It follows
from Lemma 11.4.8 that Γ* is quantificationally consistent. But, in proving
11.4.8, we actually showed more—for the characteristic interpretation I* that we
constructed for Γ* has the set of positive integers as UD. Hence every member
of Γ* is true on some interpretation with the set of positive integers as UD, and
thus Pe is true on some interpretation with the set of positive integers as UD. P
can also be shown true on some interpretation with that UD, using 11.1.13.

16. We shall prove 11.4.1 by mathematical induction on the number of
functors occurring in t.

Basis clause: 11.4.1 holds of every complex closed term that contains
1 occurrence of a functor.

Proof of basis clause: If t contains 1 functor then t is f (t1, . . . , tn),
where each t i is a constant. Let a be the alphabetically earliest constant
such that f (t1, . . . , tn) � a is a member of Γ*. It follows from clause 4
of the definition of I* that I*( f ) includes 	I*(t1), . . . , I*(tn), I*(a)

and so denI*,d ( f (t1, . . . , tn)) � I*(a).

Inductive step: If 11.4.1 holds of every complex closed term that con-
tains k or fewer occurrences of functors, then 11.4.1 holds of every
complex closed term that contains k occurrences of functors.

Proof of inductive step: Assume the inductive hypothesis: that 11.4.1
holds of every complex closed term that contains k or fewer occur-
rences of functors. Let t be a term that contains k � 1 occurrences of
functors; we will show that 11.4.1 holds of t as well.

t has the form f (t1, . . . , tn), where each ti is a closed term con-
taining k or fewer occurrences of functors. Let a be the alphabetically
earliest constant such that f (t1, . . . , tn) � a is a member of Γ*. It follows
from the inductive hypothesis that for each ti, denI*,d(t i) � I*(ai), where
ai is the alphabetically earliest constant such that t i � ai is a member of
Γ*. It follows from property (i) of maximally consistent, ∃-complete sets
that f (a1, . . . , an) � a is a member of Γ*, and it follows from clause 4
of the definition of I* that I*( f ) includes 	I*(a1), . . . , I*(an), I*(a)

So denI*,d( f (t1, . . . , tn)) � denI*,d( f (a1, . . . , an)) � I*(a).

17. Consider the sentence ‘(∀x)(∀y)x � y’. This sentence is not quan-
tificationally false; it is true on every interpretation with a one-member UD.
In addition, however, it is true on only those interpretations that have one-
member UDs. (This is because for any variable assignment and any members
u1 and u2 of a UD, d[u1/x, u2/y] satisfies ‘x � y’ as required for the truth of
‘(∀x) (∀y)x � y’ if and only if u1 and u2 are the same object.) So there can
be no interpretation with the set of positive integers as UD on which the sen-
tence is true.



Section 11.5E

2.a. Assume that for some sentence P, {P} has a closed truth-tree. Then,
by 11.5.1, {P} is quantificationally inconsistent. Hence there is no interpreta-
tion on which P, the sole member of {P}, is true. Therefore P is quantifica-
tionally false.

b. Assume that for some sentence P, {∼ P} has a closed truth-tree.
Then, by 11.5.1, {∼ P} is quantificationally inconsistent. Hence there is no inter-
pretation on which ∼ P is true. So P is true on every interpretation; that is, P
is quantificationally true.

d. Assume that Γ ∪ {∼ P} has a closed truth-tree. Then, by 11.5.1,
Γ ∪ {∼ P} is quantificationally inconsistent. Hence there is no interpretation on
which every member of Γ is true and ∼ P is also true. That is, there is no inter-
pretation on which every member of Γ is true and P is false. But then Γ P.

3.a. P is obtained from ∼ ∼ P by ∼ ∼ D. It is straightforward that 
{∼ ∼ P} P.

d. P or ∼ Q is obtained from ∼ (P ⊃ Q) by ∼ ⊃D. On any interpretation
on which ∼ (P ⊃ Q) is true, P ⊃ Q is false—hence P is true and Q is false. But,
if Q is false, then ∼ Q is true. Thus {∼ (P ⊃ Q)} P, and {∼ (P ⊃ Q)} ∼ Q.

e. P(a�x) is obtained from (∀x)P by ∀D. It follows, from 11.1.4, that
{(∀x)P} P(a�x).

4.a. ∼ P and ∼ Q are obtained from ∼ (P & Q) by ∼ &D. On any inter-
pretation on which ∼ (P & Q) is true, P & Q is false. But then either P is false,
or Q is false. Hence on such an interpretation either ∼ P is true, or ∼ Q is true.

5. The path is extended to form two paths to level k � 1 as a result
of applying one of the branching rules �D or ∼ �D to a sentence P on Γk.
We consider four cases.

a. Sentences P and ∼ P are entered at level k � 1 as the result of apply-
ing �D to a sentence P � Q on Γk. On any interpretation on which P � Q
is true, so is either P or ∼ P. Therefore either P and all the sentences on Γk

are true on IΓk
, which is a path variant of I for the new path containing P, or

∼ P and all the sentences on Γk are true on IΓk
, which is a path variant of I

for the new path containing ∼ P.
b. Sentence Q (or ∼ Q) is entered at level k � 1 as the result of apply-

ing �D to a sentence P � Q on Γk. Then P (or ∼ P) occurs on Γk at level k
(application of �D involves making entries at two levels, and Q and ∼ Q are
entries made on the second of these levels). Since {P � Q, P} quantification-
ally entails Q (and {P � Q, ∼ P} quantificationally entails ∼ Q), it follows that
Q and all the sentences on Γk (∼ Q and all the sentences on Γk) are all true
on IΓk

, which is a path variant of I for the new path containing Q (∼ Q).
c. Sentences P and ∼ P are entered at level k � 1 as the result of apply-

ing ∼ �D to a sentence ∼ (P � Q) on Γk. This case is similar to (a).
d. Sentence Q (or ∼ Q) is entered at level k � 1 as the result of apply-

ing ∼ �D to a sentence ∼ (P � Q) on Γk. This case is similar to (b).

|=

|=|=

|=

|=
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6. Yes. Dropping a rule would not make the method unsound, for, with
the remaining rules, it would still follow that if a branch on a tree for a set Γ
closes, then Γ is quantificationally inconsistent. That is, the remaining rules
would still be consistency-preserving.

7. In proving that the tree method for SL is sound, there are obvious
adjustments that must be made in the proof of Metatheorem 11.5.1. First, not
all the tree rules for PL are tree rules for SL. In proving Lemma 11.5.2, then,
we take only the tree rules for SL into consideration. And in the case of SL we
would be proving that certain sets are truth-functionally consistent or inconsis-
tent, rather than quantificationally consistent or inconsistent. The basic semantic
concept for SL is that of a truth-value assignment, rather than an interpretation.
With these stipulations, the proof of Metatheorem 11.5.1 can be converted
straight-forwardly into a proof of the parallel metatheorem for SL.

Section 11.6E

1.a. Assume that a sentence P is quantificationally false. Then {P} is
quantificationally inconsistent. It follows from Metatheorem 11.6.1 that every
systematic tree for {P} closes.

b. Assume that a sentence P is quantificationally true. Then ∼ P is
quantificationally false, and {∼ P} is quantificationally inconsistent. It follows
from Metatheorem 11.6.1 that every systematic tree for {∼ P} closes.

d. Assume that Γ P. Then on every interpretation on which every
member of Γ is true, P is true, and ∼ P is therefore false. So Γ ∪ {∼ P} is quan-
tificationally inconsistent. It follows from Metatheorem 11.6.1 that every sys-
tematic tree for Γ ∪ {∼ P} closes.

2.a. The lengths are 6, 2, and 6, respectively.

b. Assume that the length of a sentence ∼ (Q & R) is k. Then since
∼ (Q & R) contains an occurrence of the tilde and an occurrence of the
ampersand that neither Q nor R contains, the length of Q is k � 2 or less
and the length of R is k � 2 or less. Hence the length of ∼ Q is k � 1 or less,
and the length of ∼ R is k � 1 or less.

d. Assume that the length of a sentence ∼ (∀x)Q is k. Then the length
of the formula Q is k � 2. Hence the length of Q(a�x) is k � 2, since Q(a�x)
differs from Q only in containing a wherever Q contains x and neither con-
stants nor variables are counted in computing the length of a formula. Hence
the length of ∼ Q(a�x) is k � 1.

3.a. P is of the form Q ∨ R. Assume that P ∈ Γ. Then, by e, either
Q ∈ Γ, or R ∈ Γ. If Q ∈ Γ, then I(Q) � T, by the inductive hypothesis. If
R ∈ Γ, then I(R) � T, by the inductive hypothesis. Either way, it follows that
I(Q ∨ R) � T.

|=



c. P is of the form Q ⊃ R. Assume that P ∈ Γ. Then, by g, either
∼ Q ∈ Γ or R ∈ Γ. By the inductive hypothesis, then, either I(∼ Q) � T or
I(R) � T. So either I(Q) � F or I(R) � T. Consequently, I(Q ⊃ R) � T.

f. P is of the form ∼ (Q � R). Assume that P ∈ Γ. Then, by j, either
both Q ∈ Γ and ∼ R ∈ Γ, or both ∼ Q ∈ Γ and R ∈ Γ. In the former case,
I(Q) � T and I(∼ R) � T, by the inductive hypothesis; so I(Q) � T and I(R) �
F. In the latter case, I(∼ Q) � T and I(R) � T, by the inductive hypothesis;
hence I(Q) � F and I(R) � T. Either way, it follows that I(Q � R) � F, and
so I(∼ (Q � R)) � T.

g. P is of the form (∃x)Q. Assume that P ∈ Γ. Then, by m, there
is some constant a such that Q(a�x) ∈ Γ. By the inductive hypothesis,
I(Q(a�x)) � T. By 11.1.5, {Q(a�x)} (∃x)Q. So I((∃x)Q) � T as well.

5. Clauses 7 and 9. First consider clause 7. Suppose that Q ⊃ R has k
occurrences of logical operators. Then Q certainly has fewer than k occurrences
of logical operators, and so does R. But, in the proof for case 7, once we
assume that Q ⊃ R ∈ Γ, we know that ∼ Q or R is a member of Γ by prop-
erty g of Hintikka sets. The problem is that we cannot apply the inductive
hypothesis to ∼ Q since ∼ Q might contain k occurrences of logical operators.
In the sentence ‘(Am & Bm) ⊃ Bm’, for instance, this happens. The entire
sentence has two occurrences of logical operators, but so does the negation
of the antecedent ‘∼ (Am & Bm)’. However, it can easily be shown that the
length of ∼ Q is less than the length of Q ⊃ R.

Similarly, in the case of clause 9 we know that if Q � R ∈ Γ, then
either both Q ∈ Γ and R ∈ Γ or both ∼ Q ∈ Γ and ∼ R ∈ Γ. But then we are
not guaranteed that either ∼ Q or ∼ R has fewer occurrences of logical oper-
ators than does Q � R. For instance, ‘∼ Am’ and ‘∼ Bm’ each contain one
occurrence of a logical operator, and so does ‘Am � Bm’.

6. If ∃D were not included, then we could not be assured that the set
of sentences on each nonclosed branch of a systematic tree has property m of
Hintikka sets. And in the inductive proof that every Hintikka set is quantifi-
cationally consistent we made use of this property in steps (12) and (13).

7. Yes, it would. For let us trace those places in our proof of Metathe-
orem 11.6.1 where we appealed to the rule ∼ ∀D. We used it to establish that
the set of sentences on a nonclosed branch of a systematic tree has property
1 of Hintikka sets, and we appealed to property 1 in step (12) of our induc-
tive proof of 11.6.4. So let us first replace property 1 by the following:

1*. If ∼ (∀x)P ∈ Γ, then, for some constant a that occurs in some sen-
tence in Γ, ∼ P(a�x) ∈ Γ.

It is then easily established that every nonclosed branch of a systematic tree
has properties a to k, 1*, and m to n. In our inductive proof of Lemma 11.6.4,
change step (12) to the following:

�
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12*. P is of the form ∼ (∀x)Q. Assume that P ∈ Γ. Then, by 1*, there
is some constant a such that ∼ Q(a�x) ∈ Γ. By the inductive hypothesis,
I(∼ Q(a�x)) � T, and so I(Q(a�x)) � F. Since {(∀x)Q} Q(a�x), by 11.1.4,
it follows that I((∀x)Q) � F and I(∼ (∀x)Q) � T.

8. Certain adjustments are obvious if we are to convert the proof of
Metatheorem 11.6.1 into a proof that the tree method for SL is complete for
sentential logic. The tree method for SL contains only some of the rules of the
tree method for PL; hence we have fewer rules to work with. We replace talk of
quantificational concepts (consistency and the like) with talk of truth-functional
concepts, hence talk of interpretations with talk of truth-value assignments.

A Hintikka set of SL will have only properties a to j of Hintikka sets
for PL. And trees for SL are all finite, so we have only finite open branches to
consider in this case. (Thus Lemma 11.6 would not be used in the proof for
SL.) Finally, the construction of the characteristic truth-value assignment for a
Hintikka set of SL requires only clause 2 of the construction of the charac-
teristic interpretation for a Hintikka set of PL.

9. We must first show that a set Γ* that is both maximally consistent
in PD and ∃-complete has the 14 properties of Hintikka sets. We list those prop-
erties here. (And we refer to the 7 properties a to g of sets that are both max-
imally consistent in PD and ∃-complete as ‘M(a)’, ‘M(b)’, . . . , ‘M(g)’.)

a. For any atomic sentence P, not both P and ∼ P are members of Γ*.

Proof: This follows immediately from property M(a) of Γ*.

b. If ∼ ∼ P is a member of Γ*, then P is a member of Γ*.

Proof: If ∼ ∼ P ∈ Γ*, then ∼ P ∉ Γ*, by M(a), and P ∈ Γ*, by M(a).

c. If P & Q ∈ Γ*, then P ∈ Γ* and Q ∈ Γ*.

Proof: This follows from property M(b) of Γ*.

d. If ∼ (P & Q) ∈ Γ*, then either ∼ P ∈ Γ* or ∼ Q ∈ Γ*.

Proof: If ∼ (P & Q) ∈ Γ*, then P & Q ∉ Γ*, by M(a). By M(b),
either P ∉ Γ* or Q ∉ Γ*. By M(a), either ∼ P ∈ Γ* or ∼ Q ∈ Γ*.

e. to j. are established similarly.

k. If (∀x)P ∈ Γ, then at least one substitution instance of (∀x)P is a
member of Γ and for every constant a that occurs in some sentence of Γ,
P(a�x) ∈ Γ.

Proof: This follows from property M(f) of Γ*.

|=



l. If ∼ (∀x)P ∈ Γ*, then (∃x) ∼ P ∈ Γ*.

Proof: If ∼ (∀x)P ∈ Γ*, then (∀x)P ∉ Γ*, by M(a). Then, for some
constant a, P(a�x) ∉ Γ*, by M(f). Then ∼ P(a�x) ∈ Γ*, by M(a). So
(∃x) ∼ P ∈ Γ*, by M(g).

m. If (∃x)P ∈ Γ*, then, for at least one constant a, P(a�x) ∈ Γ*.

Proof: This follows from property M(g) of Γ*.

n. If ∼ (∃x)P ∈ Γ*, then (∀x) ∼ P ∈ Γ*.

Proof: If ∼ (∃x)P ∈ Γ*, then (∃x)P ∉ Γ*, by M(a). Then, for every
constant a, P(a�x) ∉ Γ*, by M(g). So, for every constant a, 
∼ P(a�x) ∈ Γ*, by M(a). And (∀x) ∼ P ∈ Γ*, by M(f).

Second, that every Hintikka set is ∃-complete follows from property m
of Hintikka sets.

Third, we show that some Hintikka sets are not maximally consistent
in PD. Here is an example of such a set:

{(∀x)Fx, (∃y)Fy, Fa}

It is easily verified that this set is a Hintikka set. And the set is of course con-
sistent in PD. But this set is not such that the addition to the set of any sen-
tence that is not already a member will create an inconsistent set. For instance,
the sentence ‘Fb’ may be added, and the resulting set is also consistent in PD:

{(∀x)Fx, (∃y)Fy, Fa, Fb}

Hence the set is not maximally consistent in PD.
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